├── Resources
└── TSATquickstart.pdf
├── NASA Open Source Agreement.pdf
├── Trunk
├── TSAT_Library
│ ├── TSAT_Lib.slx
│ ├── TSAT_AirProps.slx
│ ├── TSAT_GenHeatX.slx
│ ├── TSAT_GenTools.slx
│ ├── TSAT_Conduction.slx
│ ├── TSAT_Convection.slx
│ ├── TSAT_Deformation.slx
│ ├── TSAT_Radiation.slx
│ ├── lib_GenTools_MinMax.slx
│ ├── lib_AirProps_ThermCond.slx
│ ├── lib_AirProps_Viscosity.slx
│ ├── lib_Convection_FCSphere.slx
│ ├── lib_GenTools_Averaging.slx
│ ├── lib_GenTools_SubMatrix.slx
│ ├── TSAT_Support
│ │ ├── AirPropsLib.JPG
│ │ ├── ConductionLib.JPG
│ │ ├── ConvectionLib.JPG
│ │ ├── RadiationLib.JPG
│ │ ├── DeformationLib.JPG
│ │ ├── GeneralHeatXLib.JPG
│ │ ├── GeneralToolsLib.JPG
│ │ ├── LibraryBlockPics.pptx
│ │ ├── AirProps_TSAT_ThermCond.html
│ │ ├── AirProps_TSAT_Viscosity.html
│ │ ├── Convection_TSAT_SimpConvHeatX.html
│ │ ├── Convection_TSAT_SimpNatConvHeatX.html
│ │ ├── Convection_TSAT_SimpNatConvHeatXII.html
│ │ ├── GenTools_TSAT_Averaging.html
│ │ ├── GenTools_TSAT_MinMax.html
│ │ ├── AirProps_TSAT_HeatCapacity.html
│ │ ├── Convection_TSAT_ColebrookCorr.html
│ │ ├── Convection_TSAT_HydraulicDiameter.html
│ │ ├── GenTools_TSAT_PolynomialFit.html
│ │ ├── Convection_TSAT_FilmCoolTref.html
│ │ ├── GenTools_TSAT_SubMatrix.html
│ │ ├── AirProps_TSAT_SpecificHeatConstVol.html
│ │ ├── GenTools_TSAT_1DlinearInterp.html
│ │ ├── Convection_TSAT_CylinderCrossFlowChurchillBern.html
│ │ ├── Convection_TSAT_FCSphere.html
│ │ ├── GenTools_TSAT_WeightedAveraging.html
│ │ ├── Radiation_TSAT_HeatXCoeffNonRefSink.html
│ │ ├── Convection_TSAT_FCHorizRectCavity.html
│ │ ├── Convection_TSAT_SphereCrossFlowWhitaker.html
│ │ ├── Convection_TSAT_TurbIncompFlatPlateBL.html
│ │ ├── GenTools_TSAT_LogisticFun.html
│ │ ├── GenTools_TSAT_2DlinearInterp.html
│ │ ├── Radiation_TSAT_HeatXCoeffRefPlanar.html
│ │ ├── Convection_TSAT_CylinderCrossFlowHilpert.html
│ │ ├── Convection_TSAT_LamIncompFlatPlateBL.html
│ │ ├── GenTools_TSAT_3DlinearInterp.html
│ │ ├── Convection_TSAT_CylinderCrossFlowZukauskas.html
│ │ ├── Convection_TSAT_MixedBLFlatPlate.html
│ │ ├── Convection_TSAT_LaminarFlatPlate_ChurchillOzoe.html
│ │ ├── Convection_TSAT_LaminarFlatPlate.html
│ │ ├── Convection_TSAT_SiederTate.html
│ │ ├── Convection_TSAT_TurbulentFlatPlate.html
│ │ ├── Convection_TSAT_ThinPlateCrossFlowHilpert.html
│ │ ├── Radiation_TSAT_HeatXCoeffRefConcCyl.html
│ │ ├── Conduction_TSAT_InterfaceTemp.html
│ │ ├── Convection_TSAT_DittusBoelter.html
│ │ ├── Convection_TSAT_FCVertPlateLamConvAnalytical.html
│ │ ├── Convection_TSAT_SquareRodCrossFlowHilpert.html
│ │ ├── Convection_TSAT_SutherlandsLaw.html
│ │ ├── Convection_TSAT_LamCoiledTube.html
│ │ ├── Convection_TSAT_FCHorizCyl.html
│ │ ├── Convection_TSAT_HexagonRodCrossFlowHilpert.html
│ │ ├── Convection_TSAT_TurbAxisymBodyAmbrok.html
│ │ ├── Convection_TSAT_FCHorizPlate.html
│ │ ├── Convection_TSAT_FCVertRectCavity.html
│ │ ├── Convection_TSAT_MixedConv.html
│ │ ├── Convection_TSAT_Gnielinski.html
│ │ └── Convection_TSAT_FCVertIncPlateCyl.html
│ ├── lib_AirProps_HeatCapacity.slx
│ ├── lib_Conduction_2DCondADI.slx
│ ├── lib_Convection_FCConcCyls.slx
│ ├── lib_Convection_FCHorizCyl.slx
│ ├── lib_Convection_FalknerSkan.slx
│ ├── lib_Convection_Gnielinski.slx
│ ├── lib_Convection_MixedConv.slx
│ ├── lib_Convection_NonDimParms.slx
│ ├── lib_Convection_SiederTate.slx
│ ├── lib_Convection_Sutherland.slx
│ ├── lib_GenTools_LogisticFun.slx
│ ├── lib_GenTools_PolynomialFit.slx
│ ├── lib_Conduction_InterfaceTemp.slx
│ ├── lib_Convection_ColebrookCorr.slx
│ ├── lib_Convection_DittusBoelter.slx
│ ├── lib_Convection_FCConcSpheres.slx
│ ├── lib_Convection_FCHorizPlate.slx
│ ├── lib_Convection_FilmCoolTref.slx
│ ├── lib_Convection_ImpingingJet.slx
│ ├── lib_Convection_LamCoiledTube.slx
│ ├── lib_Convection_LamFlatPlate.slx
│ ├── lib_Convection_SimpConvHeatX.slx
│ ├── lib_Convection_TurbFlatPlate.slx
│ ├── lib_GenHeatX_LumpedMassHeatX.slx
│ ├── lib_GenTools_1DlinearInterp.slx
│ ├── lib_GenTools_2DlinearInterp.slx
│ ├── lib_GenTools_3DlinearInterp.slx
│ ├── lib_Convection_FCVertRectCavity.slx
│ ├── lib_Convection_HeatCapIdealGas.slx
│ ├── lib_Convection_MixedBLFlatPlate.slx
│ ├── lib_Convection_SimpNatConvHeatX.slx
│ ├── lib_Convection_TurbAxiSymAmbrok.slx
│ ├── lib_GenTools_WeightedAveraging.slx
│ ├── lib_AirProps_SpecificHeatConstVol.slx
│ ├── lib_Convection_ChurchillBernstein.slx
│ ├── lib_Convection_FCHorizRectCavity.slx
│ ├── lib_Convection_FCTiltedRectCavity.slx
│ ├── lib_Convection_FCVertIncPlateCyl.slx
│ ├── lib_Convection_FluidEnergyBalance.slx
│ ├── lib_Convection_HydraulicDiameter.slx
│ ├── lib_Convection_LamCircTurbAnnulus.slx
│ ├── lib_Convection_LamIntFlwVarShapes.slx
│ ├── lib_Convection_SimpNatConvHeatXII.slx
│ ├── lib_Convection_TubeBankZukauskas.slx
│ ├── lib_Deformation_ThermExp1DElastic.slx
│ ├── lib_Radiation_HeatXCoeffRefPlanar.slx
│ ├── lib_Conduction_2DCondFullyImplicit.slx
│ ├── lib_Convection_CylCrossFlowHilpert.slx
│ ├── lib_Convection_CylCrossFlowZukauskas.slx
│ ├── lib_Convection_FalknerSkanTempVary.slx
│ ├── lib_Convection_LamIncompFlatPlateBL.slx
│ ├── lib_Convection_TurbIncompFlatPlateBL.slx
│ ├── lib_Radiation_HeatXCoeffNonRefSink.slx
│ ├── lib_Radiation_HeatXCoeffRefConcCyl.slx
│ ├── lib_Convection_MixedIncompFlatPlateBL.slx
│ ├── lib_Convection_SphereCrossFlowWhitaker.slx
│ ├── lib_Conduction_HeatX1DVarPropsAndGenBCs.slx
│ ├── lib_Convection_HexagonRodCrossFlowHilpert.slx
│ ├── lib_Convection_LamFlatPlate_ChurchillOzoe.slx
│ ├── lib_Convection_SquareRodCrossFlowHilpert.slx
│ ├── lib_Convection_ThinPlateCrossFlowHilpert.slx
│ ├── lib_Conduction_2DCondADI_IterSubsysCapable.slx
│ ├── lib_Convection_FCVertPlateLamConvAnalytical.slx
│ ├── lib_Convection_TurbFlatPlatePowLawTempVary.slx
│ ├── lib_Conduction_2DCondFullyImplicit_IterSubsysCapable.slx
│ ├── lib_Conduction_HeatX1DVarPropsAndGenBCs_IterSubsysCapable.slx
│ ├── slblocks.m
│ └── MATLAB_Scripts
│ │ ├── MSK_ReplaceBlock_TSAT.m
│ │ ├── MSK_SEC_Enables3_TSAT.m
│ │ ├── MSK_SEC_Enables2_TSAT.m
│ │ └── MSK_SEC_Enables_TSAT.m
├── TSAT_Tools
│ ├── Examples
│ │ ├── SineFunction.JPG
│ │ ├── SineFunctionPts.mat
│ │ ├── SinFunctionSplineFit.fig
│ │ ├── SinFunctionPtsFromImage.fig
│ │ ├── Ex_PolySumAndProd.m
│ │ ├── Ex_ThermExp1DElastic.m
│ │ ├── Ex_ReduceDataSet.m
│ │ └── Ex_DigitizeImage.m
│ ├── Tools
│ │ ├── ReduceDataSet.m
│ │ ├── PolyProd.m
│ │ ├── ThermExp1DElastic.m
│ │ ├── PolySum.m
│ │ ├── trimLine.m
│ │ ├── digitizeImage.m
│ │ ├── extendLine.m
│ │ └── lineOffset.m
│ └── readme_tools.txt
├── TSAT_Examples
│ ├── Averaging
│ │ └── AveragingEx.slx
│ ├── Air Properties
│ │ └── AirPropsEx.slx
│ ├── Matrix Tools
│ │ └── MatrixToolsEx.slx
│ ├── Interpolation
│ │ ├── interpolationEx.slx
│ │ └── run_InterpolationEx.m
│ ├── Polynomial Fitting
│ │ ├── PolyfitEx.slx
│ │ ├── PolyfitExMovie.mp4
│ │ └── run_PolyfitEx.m
│ ├── Fluid Energy Balance
│ │ ├── CpvTDataAir.mat
│ │ ├── FluidEnergyBalEx.slx
│ │ └── run_FluidEnergyBalEx.m
│ ├── Iterative Subsystem
│ │ ├── IterSubsysEx.slx
│ │ ├── TempProfile.mp4
│ │ └── run_IterSubsysEx.m
│ ├── Material Transitions
│ │ ├── MatTrans1D.mp4
│ │ ├── MatTrans2D.mp4
│ │ └── MatTransEx.slx
│ ├── 2D Heat Transfer Test
│ │ ├── HeatXTest2D.slx
│ │ ├── TempProfile.mp4
│ │ └── run_HeatXTest2D.m
│ ├── Pipe Heat Transfer (1D)
│ │ ├── PipeHeatX.slx
│ │ ├── TempProfile.mp4
│ │ └── run_PipeHeatX.m
│ ├── Dynamic Material Properties
│ │ ├── DynMatProps.slx
│ │ └── DynMatPropsMovie.mp4
│ ├── Modular Stucture Modeling
│ │ ├── ModularStruct.slx
│ │ └── ModularStuctMovie.mp4
│ ├── Non-Isotropic Structures
│ │ ├── NonIsotropicEx.slx
│ │ ├── NonIsotropicMovie.mp4
│ │ └── run_NonIsotropicEx.m
│ ├── Lumped Mass Heat Transfer
│ │ └── LumpMassHeatXEx.slx
│ ├── Radiation Between Plates (1D)
│ │ ├── TempProfile.mp4
│ │ ├── RadBtwPlatesEx.slx
│ │ └── run_RadBtwPlates.m
│ ├── 2D Heat Transfer - Shape Options
│ │ ├── HeatX2DShapeOpts.slx
│ │ └── HeatX2DShapeOptsMovie.mp4
│ ├── Laminar Boundary Layer Heat Transfer
│ │ ├── LamBLHeatXEx.slx
│ │ ├── PolyfitMovie.mp4
│ │ └── LamBLheatXMovie.mp4
│ ├── Turbulent Boundary Layer Heat Transfer
│ │ ├── PolyfitMovie.mp4
│ │ ├── TurbBLHeatXEx.slx
│ │ └── TurbBLheatXMovie.mp4
│ └── 2D Heat Transfer - Rectangular Object
│ │ ├── HeatX2DRectMovie.mp4
│ │ ├── HeatX2DRect_ADI.slx
│ │ └── HeatX2DRect_Implicit.slx
├── uninstall_TSAT.m
└── install_TSAT.m
├── LICENSE.txt
└── readme_main.txt
/Resources/TSATquickstart.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Resources/TSATquickstart.pdf
--------------------------------------------------------------------------------
/NASA Open Source Agreement.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/NASA Open Source Agreement.pdf
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Lib.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Lib.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_AirProps.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_AirProps.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_GenHeatX.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_GenHeatX.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_GenTools.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_GenTools.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Conduction.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Conduction.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Convection.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Convection.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Deformation.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Deformation.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Radiation.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Radiation.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_GenTools_MinMax.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_GenTools_MinMax.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Tools/Examples/SineFunction.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Tools/Examples/SineFunction.JPG
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Averaging/AveragingEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Averaging/AveragingEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_AirProps_ThermCond.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_AirProps_ThermCond.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_AirProps_Viscosity.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_AirProps_Viscosity.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FCSphere.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FCSphere.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_GenTools_Averaging.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_GenTools_Averaging.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_GenTools_SubMatrix.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_GenTools_SubMatrix.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Tools/Examples/SineFunctionPts.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Tools/Examples/SineFunctionPts.mat
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Air Properties/AirPropsEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Air Properties/AirPropsEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/AirPropsLib.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/AirPropsLib.JPG
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/ConductionLib.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/ConductionLib.JPG
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/ConvectionLib.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/ConvectionLib.JPG
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/RadiationLib.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/RadiationLib.JPG
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_AirProps_HeatCapacity.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_AirProps_HeatCapacity.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Conduction_2DCondADI.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Conduction_2DCondADI.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FCConcCyls.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FCConcCyls.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FCHorizCyl.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FCHorizCyl.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FalknerSkan.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FalknerSkan.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_Gnielinski.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_Gnielinski.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_MixedConv.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_MixedConv.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_NonDimParms.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_NonDimParms.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_SiederTate.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_SiederTate.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_Sutherland.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_Sutherland.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_GenTools_LogisticFun.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_GenTools_LogisticFun.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_GenTools_PolynomialFit.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_GenTools_PolynomialFit.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Matrix Tools/MatrixToolsEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Matrix Tools/MatrixToolsEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/DeformationLib.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/DeformationLib.JPG
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/GeneralHeatXLib.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/GeneralHeatXLib.JPG
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/GeneralToolsLib.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/GeneralToolsLib.JPG
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Conduction_InterfaceTemp.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Conduction_InterfaceTemp.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_ColebrookCorr.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_ColebrookCorr.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_DittusBoelter.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_DittusBoelter.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FCConcSpheres.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FCConcSpheres.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FCHorizPlate.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FCHorizPlate.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FilmCoolTref.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FilmCoolTref.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_ImpingingJet.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_ImpingingJet.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_LamCoiledTube.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_LamCoiledTube.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_LamFlatPlate.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_LamFlatPlate.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_SimpConvHeatX.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_SimpConvHeatX.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_TurbFlatPlate.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_TurbFlatPlate.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_GenHeatX_LumpedMassHeatX.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_GenHeatX_LumpedMassHeatX.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_GenTools_1DlinearInterp.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_GenTools_1DlinearInterp.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_GenTools_2DlinearInterp.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_GenTools_2DlinearInterp.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_GenTools_3DlinearInterp.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_GenTools_3DlinearInterp.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Tools/Examples/SinFunctionSplineFit.fig:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Tools/Examples/SinFunctionSplineFit.fig
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Interpolation/interpolationEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Interpolation/interpolationEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Polynomial Fitting/PolyfitEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Polynomial Fitting/PolyfitEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/LibraryBlockPics.pptx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/LibraryBlockPics.pptx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FCVertRectCavity.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FCVertRectCavity.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_HeatCapIdealGas.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_HeatCapIdealGas.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_MixedBLFlatPlate.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_MixedBLFlatPlate.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_SimpNatConvHeatX.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_SimpNatConvHeatX.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_TurbAxiSymAmbrok.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_TurbAxiSymAmbrok.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_GenTools_WeightedAveraging.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_GenTools_WeightedAveraging.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Tools/Examples/SinFunctionPtsFromImage.fig:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Tools/Examples/SinFunctionPtsFromImage.fig
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Fluid Energy Balance/CpvTDataAir.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Fluid Energy Balance/CpvTDataAir.mat
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Iterative Subsystem/IterSubsysEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Iterative Subsystem/IterSubsysEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Iterative Subsystem/TempProfile.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Iterative Subsystem/TempProfile.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Material Transitions/MatTrans1D.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Material Transitions/MatTrans1D.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Material Transitions/MatTrans2D.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Material Transitions/MatTrans2D.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Material Transitions/MatTransEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Material Transitions/MatTransEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_AirProps_SpecificHeatConstVol.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_AirProps_SpecificHeatConstVol.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_ChurchillBernstein.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_ChurchillBernstein.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FCHorizRectCavity.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FCHorizRectCavity.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FCTiltedRectCavity.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FCTiltedRectCavity.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FCVertIncPlateCyl.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FCVertIncPlateCyl.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FluidEnergyBalance.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FluidEnergyBalance.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_HydraulicDiameter.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_HydraulicDiameter.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_LamCircTurbAnnulus.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_LamCircTurbAnnulus.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_LamIntFlwVarShapes.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_LamIntFlwVarShapes.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_SimpNatConvHeatXII.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_SimpNatConvHeatXII.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_TubeBankZukauskas.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_TubeBankZukauskas.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Deformation_ThermExp1DElastic.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Deformation_ThermExp1DElastic.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Radiation_HeatXCoeffRefPlanar.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Radiation_HeatXCoeffRefPlanar.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/2D Heat Transfer Test/HeatXTest2D.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/2D Heat Transfer Test/HeatXTest2D.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/2D Heat Transfer Test/TempProfile.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/2D Heat Transfer Test/TempProfile.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Pipe Heat Transfer (1D)/PipeHeatX.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Pipe Heat Transfer (1D)/PipeHeatX.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Pipe Heat Transfer (1D)/TempProfile.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Pipe Heat Transfer (1D)/TempProfile.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Polynomial Fitting/PolyfitExMovie.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Polynomial Fitting/PolyfitExMovie.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Conduction_2DCondFullyImplicit.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Conduction_2DCondFullyImplicit.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_CylCrossFlowHilpert.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_CylCrossFlowHilpert.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_CylCrossFlowZukauskas.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_CylCrossFlowZukauskas.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FalknerSkanTempVary.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FalknerSkanTempVary.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_LamIncompFlatPlateBL.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_LamIncompFlatPlateBL.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_TurbIncompFlatPlateBL.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_TurbIncompFlatPlateBL.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Radiation_HeatXCoeffNonRefSink.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Radiation_HeatXCoeffNonRefSink.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Radiation_HeatXCoeffRefConcCyl.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Radiation_HeatXCoeffRefConcCyl.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Fluid Energy Balance/FluidEnergyBalEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Fluid Energy Balance/FluidEnergyBalEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/AirProps_TSAT_ThermCond.html:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/AirProps_TSAT_ThermCond.html
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/AirProps_TSAT_Viscosity.html:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/AirProps_TSAT_Viscosity.html
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_MixedIncompFlatPlateBL.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_MixedIncompFlatPlateBL.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_SphereCrossFlowWhitaker.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_SphereCrossFlowWhitaker.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Dynamic Material Properties/DynMatProps.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Dynamic Material Properties/DynMatProps.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Modular Stucture Modeling/ModularStruct.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Modular Stucture Modeling/ModularStruct.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Non-Isotropic Structures/NonIsotropicEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Non-Isotropic Structures/NonIsotropicEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Conduction_HeatX1DVarPropsAndGenBCs.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Conduction_HeatX1DVarPropsAndGenBCs.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_HexagonRodCrossFlowHilpert.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_HexagonRodCrossFlowHilpert.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_LamFlatPlate_ChurchillOzoe.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_LamFlatPlate_ChurchillOzoe.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_SquareRodCrossFlowHilpert.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_SquareRodCrossFlowHilpert.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_ThinPlateCrossFlowHilpert.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_ThinPlateCrossFlowHilpert.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Lumped Mass Heat Transfer/LumpMassHeatXEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Lumped Mass Heat Transfer/LumpMassHeatXEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Non-Isotropic Structures/NonIsotropicMovie.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Non-Isotropic Structures/NonIsotropicMovie.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Radiation Between Plates (1D)/TempProfile.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Radiation Between Plates (1D)/TempProfile.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/Convection_TSAT_SimpConvHeatX.html:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/Convection_TSAT_SimpConvHeatX.html
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Conduction_2DCondADI_IterSubsysCapable.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Conduction_2DCondADI_IterSubsysCapable.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_FCVertPlateLamConvAnalytical.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_FCVertPlateLamConvAnalytical.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Convection_TurbFlatPlatePowLawTempVary.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Convection_TurbFlatPlatePowLawTempVary.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Dynamic Material Properties/DynMatPropsMovie.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Dynamic Material Properties/DynMatPropsMovie.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Modular Stucture Modeling/ModularStuctMovie.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Modular Stucture Modeling/ModularStuctMovie.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Radiation Between Plates (1D)/RadBtwPlatesEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Radiation Between Plates (1D)/RadBtwPlatesEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/Convection_TSAT_SimpNatConvHeatX.html:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/Convection_TSAT_SimpNatConvHeatX.html
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/Convection_TSAT_SimpNatConvHeatXII.html:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/TSAT_Support/Convection_TSAT_SimpNatConvHeatXII.html
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/2D Heat Transfer - Shape Options/HeatX2DShapeOpts.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/2D Heat Transfer - Shape Options/HeatX2DShapeOpts.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Laminar Boundary Layer Heat Transfer/LamBLHeatXEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Laminar Boundary Layer Heat Transfer/LamBLHeatXEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Laminar Boundary Layer Heat Transfer/PolyfitMovie.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Laminar Boundary Layer Heat Transfer/PolyfitMovie.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Laminar Boundary Layer Heat Transfer/LamBLheatXMovie.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Laminar Boundary Layer Heat Transfer/LamBLheatXMovie.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Turbulent Boundary Layer Heat Transfer/PolyfitMovie.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Turbulent Boundary Layer Heat Transfer/PolyfitMovie.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Turbulent Boundary Layer Heat Transfer/TurbBLHeatXEx.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Turbulent Boundary Layer Heat Transfer/TurbBLHeatXEx.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Conduction_2DCondFullyImplicit_IterSubsysCapable.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Conduction_2DCondFullyImplicit_IterSubsysCapable.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/2D Heat Transfer - Rectangular Object/HeatX2DRectMovie.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/2D Heat Transfer - Rectangular Object/HeatX2DRectMovie.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/2D Heat Transfer - Rectangular Object/HeatX2DRect_ADI.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/2D Heat Transfer - Rectangular Object/HeatX2DRect_ADI.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/2D Heat Transfer - Shape Options/HeatX2DShapeOptsMovie.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/2D Heat Transfer - Shape Options/HeatX2DShapeOptsMovie.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/Turbulent Boundary Layer Heat Transfer/TurbBLheatXMovie.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/Turbulent Boundary Layer Heat Transfer/TurbBLheatXMovie.mp4
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/lib_Conduction_HeatX1DVarPropsAndGenBCs_IterSubsysCapable.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Library/lib_Conduction_HeatX1DVarPropsAndGenBCs_IterSubsysCapable.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Examples/2D Heat Transfer - Rectangular Object/HeatX2DRect_Implicit.slx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nasa/TSAT/HEAD/Trunk/TSAT_Examples/2D Heat Transfer - Rectangular Object/HeatX2DRect_Implicit.slx
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/slblocks.m:
--------------------------------------------------------------------------------
1 | function blkStruct = slblocks
2 | % Specify that the product should appear in the library browser
3 | % and be cached in its repository
4 | Browser.Library = 'TSAT_Lib';
5 | Browser.Name = 'TSAT';
6 | Browser(1).Choice = 1;
7 | blkStruct.Browser = Browser;
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/MATLAB_Scripts/MSK_ReplaceBlock_TSAT.m:
--------------------------------------------------------------------------------
1 |
2 | function MSK_ReplaceBlock_TMATS(oldblock,newblock)
3 |
4 | pos = get_param(oldblock,'Position');
5 | orient = get_param(oldblock,'Orientation');
6 | delete_block(oldblock);
7 | add_block(newblock,oldblock,'Position',pos,'Orientation',orient);
8 |
9 | end
--------------------------------------------------------------------------------
/Trunk/TSAT_Tools/Tools/ReduceDataSet.m:
--------------------------------------------------------------------------------
1 | function [ T,Y ] = ReduceDataSet( t,y,dt )
2 | %ReduceDataSet.m Summary
3 | % This function takes the data set (t,y) and reduces the number of points
4 | % by only retaining the data points that are spaced approximately dt
5 | % apart.
6 |
7 | n = 0;
8 | for i = 1:length(t)
9 | if t(i) >= (n*dt + t(1))
10 | T(n+1) = t(i);
11 | Y(n+1) = y(i);
12 | n = n + 1;
13 | end
14 | end
15 |
16 | end
17 |
18 |
--------------------------------------------------------------------------------
/Trunk/TSAT_Tools/Tools/PolyProd.m:
--------------------------------------------------------------------------------
1 | function [ Poly ] = PolyProd( p1,p2 )
2 |
3 | %This function take two polynomial p1 and p2 represented by a vector of
4 | %their coefficients and multiplys them to find the product polynomial Poly.
5 |
6 | %Ex: p1 = s^2 + 2*s + 3 --> p1 = [1 2 3]
7 |
8 | order = length(p1) + length(p2) - 2;
9 |
10 | P = zeros(length(p1),order+1);
11 | for i = 1:length(p1)
12 | P(i,i:i+length(p2)-1) = p1(i)*p2;
13 | end
14 | Poly = zeros(1,order+1);
15 | for i = 1:order+1
16 | Poly(i) = sum(P(:,i));
17 | end
18 |
19 | end
20 |
21 |
--------------------------------------------------------------------------------
/Trunk/TSAT_Tools/Tools/ThermExp1DElastic.m:
--------------------------------------------------------------------------------
1 | function [ L ] = ThermExp1DElastic( T_data, alpha_data, To, Tf, Lo )
2 | %This function mimics the operation of the TSAT Thermal Expansion 1D
3 | %Elastic block
4 |
5 | n = 20;
6 | T = linspace(To,Tf,n);
7 | alpha = zeros(1,n);
8 | for i = 1:n
9 | if T(i) <= T_data(1)
10 | alpha(i) = alpha_data(1);
11 | elseif T(i) >= T_data(end)
12 | alpha(i) = alpha_data(end);
13 | else
14 | alpha(i) = interp1(T_data,alpha_data,T(i),'linear');
15 | end
16 | end
17 |
18 | Int_alphadT = trapz(T,alpha);
19 | dL = Lo*Int_alphadT;
20 |
21 | L = Lo + dL;
22 |
23 | end
24 |
25 |
--------------------------------------------------------------------------------
/Trunk/TSAT_Tools/Tools/PolySum.m:
--------------------------------------------------------------------------------
1 | function [ Poly ] = PolySum( p1,p2 )
2 |
3 | %Sums the 2 polynomials given their coefficients
4 | if length(p1) == length(p2)
5 | Poly = p1 + p2;
6 | elseif length(p1) > length(p2)
7 | P2 = zeros(1,length(p1));
8 | k = length(p2);
9 | for i = length(p1):-1:length(p1)-length(p2)+1
10 | P2(i) = p2(k);
11 | k = k -1;
12 | end
13 | Poly = p1 + P2;
14 | elseif length(p1) < length(p2)
15 | P1 = zeros(1,length(p2));
16 | k = length(p1);
17 | for i = length(p2):-1:length(p2)-length(p1)+1
18 | P1(i) = p1(k);
19 | k = k -1;
20 | end
21 | Poly = p2 + P1;
22 | end
23 |
24 | end
25 |
26 |
--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------
1 | LICENSE
2 |
3 | The Thermal Systems Analysis Toolbox (TSAT) has an Open Source License. It is
4 |
5 | Licensed under the
6 | Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with
7 | the License.
8 | You may obtain a copy of the License at
9 |
10 | http://www.apache.org/licenses/LICENSE-2.0
11 |
12 |
13 | Unless required by applicable law or agreed to in writing, software
14 | distributed under the License
15 | is distributed on an "AS IS" BASIS,
16 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
17 | or implied.
18 | See the License for the specific language governing permissions and
19 | limitations under
20 | the License.
21 |
22 | See the "NASA Open Source Agreement.pdf" document for more details on the license.
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/MATLAB_Scripts/MSK_SEC_Enables3_TSAT.m:
--------------------------------------------------------------------------------
1 | function MSK_SEC_Enables3_TSAT(var,i,pref)
2 |
3 | A = get_param(gcb,'MaskEnables');
4 | for n = 1:length(i)
5 | switch pref
6 | case 'en' % turn output on when checked
7 | switch var
8 | case 'on'
9 | A(i(n)) = {'on'};
10 | case 'off'
11 | A(i(n)) = {'off'};
12 | otherwise
13 | A(i(n)) = {'on'};
14 | end
15 | case 'dis' % turn output off when checked
16 | switch var
17 | case 'on'
18 | A(i(n)) = {'off'};
19 | case 'off'
20 | A(i(n)) = {'off'};
21 | otherwise
22 | A(i(n)) = {'on'};
23 | end
24 | end
25 | end
26 | set_param(gcb, 'MaskEnables',A);
--------------------------------------------------------------------------------
/Trunk/TSAT_Tools/Examples/Ex_PolySumAndProd.m:
--------------------------------------------------------------------------------
1 | % Ex_PolySumAndProd.m ====================================================%
2 |
3 | % Written By: Jonathan Kratz
4 | % Date: January 2, 2018
5 | % Description: This script illustrates the usage of the "PolySum.m"
6 | % and "PolyProd" function. These are general-use tool that can be used to
7 | % sum and multiply polynomials.
8 |
9 | close all
10 | clear all
11 | clc
12 |
13 | % Polynomials
14 | p1 = [1 2 3]; % x^2 + 2*x + 3
15 | p2 = [3 -5 -1 2]; % 3*x^3 - 5*x^2 - 1*x + 2
16 |
17 | % Polynomial Sum
18 | pSum = PolySum(p1,p2);
19 | fprintf('Summation of p1 and p2 = %-2.0ix^3 + %-2.0ix^2 + %-2.0ix + %-2.0i\n',pSum(1),pSum(2),pSum(3),pSum(4));
20 |
21 | % Polynomial Product
22 | pProd = PolyProd(p1,p2);
23 | fprintf('Product of p1 and p2 = %-2.0ix^5 + %-2.0ix^4 + %-2.0ix^3 + %-2.0ix^2 + %-2.0ix + %-2.0i\n',pProd(1),pProd(2),pProd(3),pProd(4),pProd(5),pProd(6));
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/MATLAB_Scripts/MSK_SEC_Enables2_TSAT.m:
--------------------------------------------------------------------------------
1 | function MSK_SEC_Enables2_TMATS(var,i,pref)
2 |
3 | A = get_param(gcb,'MaskEnables');
4 | for n = 1:length(i)
5 | switch pref
6 | case 'en' % turn output on when checked
7 | switch get_param(gcb,var)
8 | case 'on'
9 | A(i(n)) = {'on'};
10 | case 'off'
11 | A(i(n)) = {'off'};
12 | otherwise
13 | A(i(n)) = {'on'};
14 | end
15 | case 'dis' % turn output off when checked
16 | switch get_param(gcb,var)
17 | case 'on'
18 | A(i(n)) = {'off'};
19 | case 'off'
20 | A(i(n)) = {'off'};
21 | otherwise
22 | A(i(n)) = {'on'};
23 | end
24 | end
25 | end
26 | set_param(gcb, 'MaskEnables',A);
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/MATLAB_Scripts/MSK_SEC_Enables_TSAT.m:
--------------------------------------------------------------------------------
1 | function MSK_SEC_Enables_TMATS(var,i,pref)
2 |
3 | A = get_param(gcb,'MaskEnables');
4 | for n = 1:length(i)
5 | switch pref
6 | case 'en' % turn output on when checked
7 | switch get_param(gcb,var)
8 | case 'on'
9 | A(i(n)) = {'on'};
10 | case 'off'
11 | A(i(n)) = {'off'};
12 | otherwise
13 | A(i(n)) = {'on'};
14 | end
15 | case 'dis' % turn output off when checked
16 | switch get_param(gcb,var)
17 | case 'on'
18 | A(i(n)) = {'off'};
19 | case 'off'
20 | A(i(n)) = {'on'};
21 | otherwise
22 | A(i(n)) = {'on'};
23 | end
24 | end
25 | end
26 | set_param(gcb, 'MaskEnables',A);
--------------------------------------------------------------------------------
/Trunk/TSAT_Tools/Examples/Ex_ThermExp1DElastic.m:
--------------------------------------------------------------------------------
1 | % Ex_ThermExp1DElastic.m ==================================================%
2 |
3 | % Written By: Jonathan Kratz
4 | % Date: January 2, 2018
5 | % Description: This script illustrates the usage of the
6 | % "ThermExp1DElastic.m" function. It performs the same task as the "Thermal
7 | % Expansion 1D Elastic" block. In the example, Inconel 718 will be
8 | % considered.
9 |
10 | clear all
11 | close all
12 | clc
13 |
14 | % thermal expansion coefficient data
15 | T_data = [659.7, 859.7, 1059.7, 1359.7, 1459.7, 1659.7, 1859.7]; %temperature [R]
16 | alpha_data = [0.0000071, 0.0000075, 0.0000077, 0.0000079, 0.000008, 0.0000084, 0.0000089]; %thermal expansion coefficient [1/R]
17 | To = 700; %initial temperature [R]
18 | Tf = 1800; %final temperature [R]
19 | Lo = 1; %initial length of the object [ft]
20 |
21 | % execute function
22 | [ L ] = ThermExp1DElastic( T_data, alpha_data, To, Tf, Lo );
23 |
24 | % display results
25 | fprintf('Initial Length @ %-5.4fR: %-5.4fin\n',To,Lo*12)
26 | fprintf('Final Length @ %-5.4fR: %-5.4fin\n',Tf,L*12)
--------------------------------------------------------------------------------
/Trunk/TSAT_Library/TSAT_Support/GenTools_TSAT_Averaging.html:
--------------------------------------------------------------------------------
1 |
4 |
5 | TSAT: Averaging Library Block
6 |
7 |
This block is meant for averaging 1-D and 2-D arrays. It can be used to return the average of the rows, columns, or all values within the data set.
8 | Averaging Inputs: 9 |
| Averaging Inputs | Description |
| Data | 1-D or 2-D array of data you wish to average [nxm] |
| Averaging Outputs | Description |
| Average - Rows | Average of the each row of the data array [nx1] |
| Average - Columns | Average of the each column of the data array [1xm] |
| Average - All | Average of all of the entries in the data array [1x1] |
| Averaging Mask Variables | Description |
| avg_rows_M | Check this box if you want to output the average of the rows |
| avg_cols_M | Check this box if you want to output the average of the columns |
| avg_all_M | Check this box if you want to output the average of all entries |
This block is meant for determining the minimum or maximum value(s) in 1-D and 2-D arrays. It can be used to return the min or max of the rows, columns, or all values within the data set.
8 | Matrix MinMax Inputs: 9 |
| Matrix MinMax Inputs | Description |
| Data | 1-D or 2-D array of data you wish to find the min/max(s) [nxm] |
| Matrix MinMax Outputs | Description |
| Min/Max - Rows | Min/Max of the each row of the data array [nx1] |
| Min/Max - Columns | Min/Max of the each column of the data array [1xm] |
| Min/Max - All | Min/Max of all of the entries in the data array [1x1] |
| Matrix MinMax Mask Variables | Description |
| rows_M | Check this box if you want to output the min/max of the rows |
| cols_M | Check this box if you want to output the min/max of the columns |
| all_M | Check this box if you want to output the min/max of all entries |
This function provides an estimate of the heat capacity of air given its temperature. The function uses empirical relations which are valid for dry air in the temperature range of 60K - 2000K (108R - 3600R) and pressures up to 2000MPa. The resource for this empirical correlations is:
8 |
Lemmon, E., Jacobsen, R., Penoncello, S., and Friend, D., Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000K at pressure to 2000MPa, Journal of Physics Chemistry Reference Data, Vol. 29, No. 3, 2000 9 |
This function is capable of evaluating the heat capacity for various temperatures at the same time given an array of temperature inputs. 10 |
Units are clearly stated on the inport and outport so assure that your inputs are in the specified units and the output is properly converted to your desired units after the calculation.
11 | 12 | Air Properies - Heat Capacity Inputs: 13 |
| Air Properies - Heat Capacity Inputs | Description |
| T | Temperature of the air in degrees Rankine (R) (nx1) |
| Air Properies - Heat Capacity Outputs | Description |
| Cp | Heat capacity of the air in Btu/(slug-R) (nx1) |
This block approximates the friction factor for fully developed turbulent flow in a circular pipe using the Colebrook correlation. The correlation accounts for surface roughness. The Colebrook correlation is solved in this block using the secant root method. Parameters include surface roughness (e) and the diameter of the pipe (D). The ratio of these quanties (e/D) is what really matters in the calculation. As long as this ratio is correct the friction factor calculation will be valid.
8 | Colebrook Correlation Inputs: 9 |
| Colebrook Correlation Inputs | Description |
| Re | Reynolds number based on the pipe diameter [1x1] |
| Colebrook Correlation Outputs | Description |
| f | friction factor [1x1] |
| conv | Output is 1 if the iterative solver converged and 0 if it did not [1x1] |
| Colebrook Correlation Mask Variables | Description |
| e_M | Surface roughness (has units of length) [1x1] |
| D_M | Diameter of the pipe [1x1] |
Reference for the information in this help file and the presented correlation: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block calculates the hydraulic diameter (Dh) of an arbitrary shape based on its area (A) and perimeter (P). The units of the inputs must be consistent and the units of the outputs will be the same as the length unit used in the inputs. The hydrualic diameter is useful for evaluating heat transfer in non-circular tubes. The equation for calculating the hydraulic diameter is simply:
9 | $$ 10 | Dh = \frac{4A}{P} 11 | $$ 12 |
In most applications this block may be used to return a single hydraulic diameter for a single tube of constant cross-sectional shape. However, this block does have ability to perform multiple calculations given consistently sized 1-D arrays for each of the inputs.
13 | 14 | Hydraulic Diameter Inputs: 15 |
| Hydraulic Diameter Inputs | Description |
| A | Area of the cross-section [nx1] |
| P | Perimeter of the cross-section [nx1] |
| Hydraulic Diameter Outputs | Description |
| Dh | Hydraulic diameter [nx1] |
This block allow for on-the-fly polynomial fits to data. The power of the polynomial is given as a parameter and the data is the inputs. The output is the polynomial coefficients:
8 | $$ 9 | y(x) = a_0 + a_1x + a_2x^2 + ... + a_Nx^N 10 | $$ 11 | $$ 12 | a = [a_0 \: a_1 \: a_2 \: ... \: a_N] 13 | $$ 14 |
Note that the data arrays must be the same length and the power of the polynomial must be a positive integer that is less than or equal to the number of data points. Furthermore the x data must be monotonically increasing and both data vectors must be made entirely of finite numbers.
15 | 16 | Polynomial Fit Inputs: 17 |
| Polynomial Fit Inputs | Description |
| xdata | Independent variable data [nx1] |
| ydata | Dependent variable data [nx1] |
| Polynomial Fit Outputs | Description |
| a | Polynomial coefficients [(N+1)x1] |
| Polynomial Fit Masked Variables | Description |
| N_M | Power of the polynomial [1x1] |
| BN_M | Block name. It's a hidden parameter used for error reporting purposes. |
This function computes the effective temperature of the fluid on the surface of a structure due to film cooling. The model utilizes a film cooling coefficient to determine this reference temperature (T_ref) based one the temperatures of the hot flow path (T_hot) and cooling flow (T_cool).
8 | $$ 9 | T_{ref} = T_{hot} + \eta \left( T_{cool}-T_{hot} \right) 10 | $$ 11 |
Units of the inputs must be consistent and the output will be in the same units as the input.
12 | Film Cooling Reference Temperature Inputs: 13 |
| Film Cooling Reference Temperature Inputs | Description |
| T_hot | Temperature of the hot flow path [nxm] |
| T_cool | Temperature of the flow used for film cooling [nxm] |
| Film Cooling Reference Temperature Outputs | Description |
| T_ref | The effective reference temperature of the fluid in contact with the structure [nxm] |
| Film Cooling Reference Temperature Mask Variables | Description |
| eta_M | Film cooling coefficient. This number between 0 and 1 determines the effectiveness of the film cooling. [1x1] |
This block returns a sub-matrix within the input matrix given the row and column indices the define the sub-matrix. This block is meant for 2D matrices and will work for 1D arrays as well.
8 |
To avoid errors, observe some restrictions. The input matrix, MAT, must be a 1-D or 2-D array. The starting and ending indexes for the rows and columns (R1_M, R2_M, C1_M, C2_M) must be real, finite, postive, integer scalars. Also the row indexes may not exceed the number of rows in MAT and the column indexes may not exceed the number of columns in MAT. Furthermore, The ending indexes must be greater than or equal to the starting indexes (R2_M >= R1_M, C2_M >= C1_M).
9 | 10 | Sub-Matrix (2D) Inputs: 11 |
| Sub-Matrix (2D) Inputs | Description |
| MAT | 1-D or 2-D Array (Matrix) [nxm] |
| Sub-Matrix (2D) Outputs | Description |
| subMAT | Sub-matrix within MAT corresponding to the given row and column indexes [(R2_M-R1_M)+1 x (C2_M-C1_M)+1] |
| Sub-Matrix(2D) Masked Variables | Description |
| R1_M | Starting row index [1x1] |
| R2_M | Ending row index [1x1] |
| C1_M | Starting column index [1x1] |
| C2_M | Ending column index [1x1] |
This function provides an estimate of the constant volume specific heat of air given its temperature and density. The function uses empirical relations which are valid for dry air in the temperature range of 60K - 2000K (108R - 3600R) and pressures up to 2000MPa. The resource for this empirical correlations is:
8 |
Lemmon, E., Jacobsen, R., Penoncello, S., and Friend, D., Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000K at pressure to 2000MPa, Journal of Physics Chemistry Reference Data, Vol. 29, No. 3, 2000 9 |
This function is capable of evaluating the specific heat for various temperatures at the same time given an arrays of temperature and density. 10 |
Units are clearly stated on the inport and outport so assure that your inputs are in the specified units and the output is properly converted to your desired units after the calculation.
11 | 12 | Air Properies - Specific Heat at Constant Volume Inputs: 13 |
| Air Properies - Specific Heat at Constant Volume Inputs | Description |
| T | Temperature of the air in degrees Rankine (R) (nx1) |
| rho | Density of the air (slug/ft^3) (nx1) |
| Air Properies - Specific Heat at Constant Volume Outputs | Description |
| Cv | Specific heat at constant volume of the air (Btu/(slug-R)) (nx1) |
This block performs linear interpolation on a set of data (x_data, y_data) at interpolation points defined in the array x_int. The inputs must be the appropriate dimensions which are noted in the tables below. If incorrect dimension are specified then y_int will be output as an array of ones the size of x_int and a warning will be printed to the screen. The independent data array, x_data, must be monotonically increasing. If x_int has values in it that are outside the range of x_data then y_int will be assigned the value of the y_data array at the closest data point.
8 | 1D Linear Interpolation Inputs: 9 |
| 1D Linear Interpolation Inputs | Description |
| x_data | 1-D array of data corresponding to the independent variable [nx1] |
| y_data | 1-D array of data corresponding to the dependent variable [nx1] |
| x_int | 1-D array of interpolation points corresponding to the independent variable [px1] |
| 1D Linear Interpolation Outputs | Description |
| y_int | 1-D array of interpolation points corresponding to the dependent variable [px1] |
| 1D Linear Interpolation Mask Variables | Description |
| BN_M | Block name (hidden variable that is used in warning messages) |
This block estimates the average Nusselt number of an external flow over an isothermal cylinder using a correlation developed by Churchill and Bernstein:
8 |
S.W. Chruchill, and M. Bernstein, J. Heat Transfer, 99, 300, 1977.
9 |
The correlation is:
10 | $$ 11 | Nu = 0.3 + \frac{0.62Re^{1/2}Pr^{1/3}}{\left[ 1 + (0.4/Pr)^{2/3} \right]^{1/4}} \left[ 1 + \left( \frac{Re}{282000} \right)^{5/8} \right]^{4/5} 12 | $$ 13 |
where Nu is the Nusselt number, Re is the Reynolds number (with characteristic length = diameter of the cylinder), and Pr is the Prandtl number. Note that all fluid properrties should be evaluated at film temperature. The correlation is valid for a wide range of conditions but subject to the following restrictions: 14 | $$ 15 | RePr \geq 0.2 16 | $$ 17 |
This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
18 | 19 | Cylinder Cross Flow - Churchill & Bernstein Inputs: 20 |
| Cylinder Cross Flow - Churchill & Bernstein Inputs | Description |
| Re | Reynolds number (based on the diameter of the cylinder) [nx1] |
| Pr | Prandtl number [nx1] |
| Cylinder Cross Flow - Churchill & Bernstein Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the Re and Pr restictions are violated or not. The value of 1 if a violation is present and 0 otherwise. [nx1] |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block estimates the average Nusselt number of a free convecting flow about a sphere using a correlation recommended by Churchill. The reference and correlation is given below:
9 |
S. W. Churchill, "Free Convection Around Immersed Bodies," in G. F. Hewitt, Exec. Ed., Heat Exchanger Design Handbook, Section 2.5.7, Begell Hous, New York, 2002.
10 | $$ 11 | Nu = 2 + \frac{0.589 Ra^{1/4}}{ \left[ 1 + \left( 0.469/Pr \right)^{9/16} \right]^{4/9} }, \: \: \left( Ra \leq 10^{11}, \: Pr \geq 0.7 \right) 12 | $$ 13 |
The Rayliegh number should use the sphere diamter as the characteristich length. Note that all fluid properties should be evaluated at the film temperature (average of the bulk fluid and surface temperatures). This block is capable of performing multiple calculations given 1-D arrays of consistent size for the inputs.
14 | 15 | Sphere Free Convection Inputs: 16 |
| Sphere Free Convection Inputs | Description |
| Ra | Rayliegh number (Characteristic Length = Sphere Diameter) [nx1] |
| Pr | Prandtl number [nx1] |
| Sphere Free Convection Outputs | Description |
| Nu | Average Nusselt number over the circumference of the cylinder [nx1] |
| Validity | Variable indicating if the any of the applicable restrictions were violated. This value will be 1 if this condition is viloated and 0 otherwise. [nx1] |
This block is meant for calculating the weighted average of a 1-D or 2-D array based on weighting values supplied as an input. It can be used to return the weighted average of the rows, columns, or all values within the data set. The weighted average is defined with the following equation.
8 | $$ 9 | x_{avg} = \frac{\sum_{i=1}^{i=n} x_{i}w_{i}}{\sum_{i=1}^{i=n} w_{i}} 10 | $$ 11 |
In the equation above x is the data array, w is the array of weighting values, and n is the number of elements in the data set.
12 | Weighted Averaging Inputs: 13 |
| Weighted Averaging Inputs | Description |
| Data | 1-D or 2-D array of data you wish to average [nxm] |
| Weightings | 1-D or 2-D array of weighting values that corresponds to the Data array that is being averaged [nxm] |
| Weighted Averaging Outputs | Description |
| Average - Rows | Average of the each row of the data array [nx1] |
| Average - Columns | Average of the each column of the data array [1xm] |
| Average - All | Average of all of the entries in the data array [1x1] |
| Weighted Averaging Mask Variables | Description |
| avg_rows_M | Check this box if you want to output the average of the rows |
| avg_cols_M | Check this box if you want to output the average of the columns |
| avg_all_M | Check this box if you want to output the average of all entries |
This function computes the radiation heat transfer coefficient when the radiation term is written in a linear form (q = u*(Text - Tsurf)). This block is applicable for radiation between a surface and a non-reflective sink such as a distant black body. The equation for calculating the heat transfer coefficient is given below.
8 | $$ 9 | u = \epsilon \sigma \left( T_{sink}^2 + T_{surf}^2 \right) \left( T_{sink} + T_{surf} \right) 10 | $$ 11 |
where
12 | $$ 13 | u = radiation \: heat \: transfer \: coefficient 14 | $$ 15 | $$ 16 | \epsilon = emmisivity \: of \: the \: surface 17 | $$ 18 | $$ 19 | \sigma = Boltzmann's \: constant 20 | $$ 21 | $$ 22 | T_{surf} = temperature \: of \: the \: surface 23 | $$ 24 | $$ 25 | T_{sink} = temperature \: of \: the \: sink 26 | $$ 27 |
This block requires specific units be used. The units are clearly indicated on the input and output ports as well as the tables below.
28 |
This block accepts inputs of various dimensions as long as all inputs are consistent in dimensions.
29 | Radiation HeatX Coefficient - Non-Reflective Sink Inputs: 30 |
| Radiation HeatX Coefficient - Non-Reflective Sink Inputs | Description |
| Tsurf | Temperature of the surface of the object of interest (R) [nxm] |
| Tsink | Temperature of a distant non-reflective sink (R) [nxm] |
| eps | Emissivity of the surface of the object of interest (-) [nxm] |
| Radiation HeatX Coefficient - Non-Reflective Sink Outputs | Description |
| u | Radiation heat transfer coefficient (Btu/(sec-ft^2-R)) [nxm] |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block gives first approximation of the average Nusselt number of free convection within a rectangular horizontal cavity with the bottom side heated. The correlation employed was recommended by Globe and Dropkin. The Reference, eqaution, and additonal restrictions are listed below:
9 |
S. Globe, and D. Dropkin, J. Heat Transfer, 81C, 24, 1959.
10 | $$ 11 | Nu = 0.069Ra^{1/3}Pr^{0.074}, \: \: 3 \times 10^{5} \leq Ra 7 \times 10^{9} 12 | $$ 13 |
Ra is the Rayliegh number and Pr is the Prandtl number. Note that all fluid properrties should be evaluated at average of the hot and cold surface. The correlation applies for values of L/H that are sufficiently small such that the effects of the side walls are negligible. L is the distance between the top and bottom surface and H is the distance between the side surfaces. 14 |
This block is capable of performing multiple calculations given 1-D arrays of consistent size for the inputs and parameters.
15 | 16 | Horizontal Rectangular Cavity (Heated Bottom) Inputs: 17 |
| Horizontal Rectangular Cavity (Heated Bottom) Inputs | Description |
| Ra | Rayliegh number [nx1] |
| Pr | Prandtl number [nx1] |
| Horizontal Rectangular Cavity (Heated Bottom) Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the Rayleigh number restrictions were violated. This value will be 1 if this condition is viloated and 0 otherwise. [nx1] |
This block estimates the average Nusselt number of an external flow over an isothermal sphere using an empirical correlation developed by Whitaker:
8 |
S. Whitaker., AIchE J., 18, 361, 1972.
9 |
The correlation is:
10 | $$ 11 | Nu = 2 + \left( 0.4Re^{1/2} + 0.06Re^{2/3} \right)Pr^{0.4} \left( \frac{\mu}{\mu_{s}} \right)^{1/4} 12 | $$ 13 |
where
14 | $$ 15 | Nu = Nusselt \: number, \: Re = Reynolds \: number, \: Pr = Prandtl \: number 16 | $$ 17 | $$ 18 | \mu = vicosity, \: \mu_{s} = viscosity \: at \: surface \: temperature 19 | $$ 20 |
The Reynolds number should be calculated based on the diameter of the sphere. Note that all fluid properrties should be evaluated at freestream temperature except for mus (the viscosity at the surface temperature). The correlation is subject to the following restrictions:
21 | $$ 22 | 3.5 \leq Re \leq 76000, \: 0.71 \leq Pr \leq 380, \: 1.0 \leq \mu/\mu{s} \leq 3.2 23 | $$ 24 |
This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
25 | 26 | Sphere Cross Flow - Whitaker Inputs: 27 |
| Sphere Cross Flow - Whitaker Inputs | Description |
| Re | Reynolds number (based on the diameter of the sphere) [nx1] |
| Pr | Prandtl number [nx1] |
| mu | Viscosity of the fluid [nx1] |
| mus | Viscosity of the fluid at the surface temperature [nx1] |
| Sphere Cross Flow - Whitaker Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the Re and Pr restictions are violated or not. The value of 1 if a violation is present and 0 otherwise. [nx1] |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block approximates the boundary layer and thermal boundary layer thicknesses of incompressible laminar flow over a flat plate with a pressure gradient of 0. The calculation assumes the boundary layer was tripped at the leading edge of the plate. The following equations are employed:
9 | $$ 10 | \delta = \frac{0.37x}{Re_{x}^{1/5}}, \: Re_{x} = \frac{\rho u x}{\mu} 11 | $$ 12 | $$ 13 | \delta_t = \delta \: (approximately) 14 | $$ 15 |
This block is capable of performing multiple calculations given 1-D arrays of consistent size for the inputs. The units of the inputs and parameters do not matter as long as they are consistent.
16 | 17 | Flat Plate Incompressible Turbulent Boundary Layer (Zero PG) Inputs: 18 |
| Flat Plate Incompressible Turbulent Boundary Layer (Zero PG) Inputs | Description |
| rho_u | Product of density and velocity [nx1] |
| mu | Viscosity [nx1] |
| Flat Plate Incompressible Turbulent Boundary Layer (Zero PG) Outputs | Description |
| del | Boundary layer [nx1] |
| delt | Thermal boundary layer [nx1] |
| Flat Plate Incompressible Turbulent Boundary Layer (Zero PG) Masked Variables | Description |
| x_M | Local position relative to the leading edge. This value should be positive. [nx1] |
This block computes the logistic function given x as an input. The exact shape of the logistic function is determined based on it's parameters.
8 | $$ 9 | y = \frac{L_f - L_o}{1 + e^{-k \left( x - x_o \right) }} + L_o 10 | $$ 11 |
where
12 | $$ 13 | L_o = the \: value \: of \: the \: function \: at \: the \: left \: asymptote 14 | $$ 15 | $$ 16 | L_f = the \: value \: of \: the \: function \: at \: the \: right \: asymptote 17 | $$ 18 | $$ 19 | x_o = the \: location \: of \: the \: inflection \: point \: (center) \: of \: the \: curve 20 | $$ 21 | $$ 22 | k = the \: slope \: of \: the \: curve 23 | $$ 24 |
All of these parameters can be specified and some of them can be calculated apriori by the block given some additional information. In particular xo and k can be computed by the block. 25 | $$ 26 | x_o = 0.5 \left(x_L + x_R\right) 27 | $$ 28 | $$ 29 | k = -\frac{ln(99)}{x_L-x_o} 30 | $$ 31 |
where
32 | $$ 33 | x_L = location \: where \: y \: is \: within \: 1 \: percent \: of \: L_o 34 | $$ 35 | $$ 36 | x_R = location \: where \: y \: is \: within \: 1 \: percent \: of \: L_f 37 | $$ 38 | Logistic Function Inputs: 39 |
| Logistic Function Inputs | Description |
| x | independent variable [nx1] |
| Logistic Function Outputs | Description |
| y | Solution to the logistic equation (dependent variable) [1xn] |
| Logistic Function Mask Variables | Description |
| avg_rows_M | Check this box if you want to output the average of the rows |
| avg_cols_M | Check this box if you want to output the average of the columns |
| avg_all_M | Check this box if you want to output the average of all entries |
This block performs linear interpolation on a set of data (x_data, y_data, z_data) at interpolation points defined in the arrays x_int, and y_int. The inputs must be the appropriate dimensions which are noted in the tables below. If incorrect dimension are specified then z_int will be output as an array of ones the size of x_int and a warning will be printed to the screen. The independent data arrays, x_data and y_data, must be monotonically increasing. If x_int and or y_int have values in it that are outside the range of x_data or y_data respectively, then z_int will be assigned the value of the z_data array at the closest data point or interpolated based on data from the closest row or column of data when applicable.
8 | 2D Linear Interpolation Inputs: 9 |
| 2D Linear Interpolation Inputs | Description |
| x_data | 1-D array of data corresponding to the independent variable on the columns of z_data [nx1] |
| y_data | 1-D array of data corresponding to the independent variable on the rows of z_data [mx1] |
| z_data | 2-D array of data corresponding to the dependent variable that is a function of x and y [nxm] |
| x_int | 1-D array of interpolation points corresponding to x_data [px1] |
| y_int | 1-D array of interpolation points corresponding to y_data [px1] |
| 2D Linear Interpolation Outputs | Description |
| z_int | 1-D array of interpolated values corresponding to the dependent variable for the interpolation points (x_int,y_int) [px1] |
| 2D Linear Interpolation Mask Variables | Description |
| BN_M | Block name (hidden variable that is used in warning messages) |
This function computes the radiation heat transfer coefficient when the radiation term is written in a linear form (q = u*(Text - Tsurf)). This block is applicable for reflective parallel planar surfaces. The equation for calculating the heat transfer coefficient is given below.
8 | $$ 9 | u = \frac{\sigma}{ \frac{1}{\epsilon_{surf}} + \frac{1}{\epsilon_{ext}} - 1 } \left( T_{ext}^2 + T_{surf}^2 \right) \left( T_{ext} + T_{surf} \right) 10 | $$ 11 |
where
12 | $$ 13 | u = radiation \: heat \: transfer \: coefficient 14 | $$ 15 | $$ 16 | \epsilon_{surf} = emmisivity \: of \: the \: surface \: of \: interest 17 | $$ 18 | $$ 19 | \epsilon_{ext} = emmisivity \: of \: the \: external \: surface 20 | $$ 21 | $$ 22 | \sigma = Boltzmann's \: constant 23 | $$ 24 | $$ 25 | T_{surf} = temperature \: of \: the \: surface 26 | $$ 27 | $$ 28 | T_{ext} = temperature \: of \: the \: external \: surface 29 | $$ 30 |
This block requires specific units be used. The units are clearly indicated on the input and output ports as well as the tables below.
31 |
This block accepts inputs of various dimensions as long as all inputs are consistent in dimensions.
32 | Radiation HeatX Coefficient - Reflective Planar Surfaces Inputs: 33 |
| Radiation HeatX Coefficient - Reflective Planar Surfaces Inputs | Description |
| Tsurf | Temperature of the surface of the object of interest (R) [nxm] |
| Text | Temperature of the external surface (R) [nxm] |
| eps_surf | Emissivity of the surface of the object of interest (-) [nxm] |
| eps_ext | Emissivity of the external surface (-) [nxm] |
| Radiation HeatX Coefficient - Reflective Planar Surfaces Outputs | Description |
| u | Radiation heat transfer coefficient (Btu/(sec-ft^2-R)) [nxm] |
This block estimates the average Nusselt number of an external flow over an isothermal cylinder. The correlation employed was originally developed by Hilpert:
8 |
R. Hilpert, Forsch . Geb. Ingenieurwes., 4 ,215, 1933
9 |
and has been modified to account for fluids with a wider range of Prandtl numbers.
10 | $$ 11 | Nu = CRe^{m}Pr^{1/3} 12 | $$ 13 |
where Nu is the Nusselt number, Re is the Reynolds number (with characteristic length = diameter of the cylinder), Pr is the Prandtly number, and the coefficients C and m are given in the table below:
14 | Model Coefficients: 15 |
| Re | C | m |
| 0.4-4 | 0.989 | 0.330 |
| 4-40 | 0.911 | 0.385 |
| 40-4000 | 0.683 | 0.466 |
| 4000-40000 | 0.193 | 0.618 |
| 40000-400000 | 0.027 | 0.805 |
Note that all fluid properrties should be evaluated at film temperature (average of the bulk fluid and surface temperatures). The correlation is subject to the following restrictions: 24 | $$ 25 | 1 \leq Re \leq 1000000, \: 0.7 \leq Pr \leq 500 26 | $$ 27 |
This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
28 | 29 | Cylinder Cross Flow - Hilpert Inputs: 30 |
| Cylinder Cross Flow - Hilpert Inputs | Description |
| Re | Reynolds number (based on the diameter of the cylinder) [nx1] |
| Pr | Prandtl number [nx1] |
| Cylinder Cross Flow - Hilpert Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the Re and Pr restictions are violated or not. The value of 1 if a violation is present and 0 otherwise. [nx1] |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block approximates the boundary layer and thermal boundary layer thicknesses of incompressible laminar flow over a flat plate with a pressure gradient of 0. The following equations are employed:
9 | $$ 10 | \delta = \frac{5x}{\sqrt{Re_{x}}}, \: Re_{x} = \frac{\rho u x}{\mu} 11 | $$ 12 | $$ 13 | \delta_t = \delta Pr^{-0.4} 14 | $$ 15 |
This block is capable of performing multiple calculations given 1-D arrays of consistent size for the inputs. The units of the inputs and parameters do not matter as long as they are consistent.
16 | 17 | Flat Plate Incompressible Laminar Boundary Layer (Zero PG) Inputs: 18 |
| Flat Plate Incompressible Laminar Boundary Layer (Zero PG) Inputs | Description |
| rho_u | Product of density and velocity [nx1] |
| mu | Viscosity [nx1] |
| Pr | Prandtl number [nx1] |
| Flat Plate Incompressible Laminar Boundary Layer (Zero PG) Outputs | Description |
| del | Boundary layer [nx1] |
| delt | Thermal boundary layer [nx1] |
| validity | Variable indicating if the transition Reynolds number was exceeded making the calculation invalid. This value will be 1 if this condition is viloated and 0 otherwise. [nx1] |
| Flat Plate Incompressible Laminar Boundary Layer (Zero PG) Masked Variables | Description |
| Retr_M | Reynolds number which the boundary layer transitions to turbulent. This is used as a check for validity of the computation. [1x1] |
| x_M | Local position relative to the leading edge. This value should be positive. [nx1] |
This block performs linear interpolation on a set of data v_data = f(y_data,x_data,z_data) at interpolation points defined in the arrays x_int, y_int, and z_int. The inputs must be the appropriate dimensions which are noted in the tables below. If incorrect dimension are specified then v_int will be output as an array of ones the size of x_int and a warning will be printed to the screen. The independent data arrays, x_data, y_data and z_data, must be monotonically increasing. If x_int, y_int, and or z_int have values in it that are outside the range of x_data, y_data, and z_data respectively, then v_int will be assigned the value of the v_data array at the closest data point or interpolated based on data from the closest edge or surface of the defined domain of the data when applicable.
8 | 3D Linear Interpolation Inputs: 9 |
| 3D Linear Interpolation Inputs | Description |
| x_data | 1-D array of data corresponding to the independent variable on the columns of v_data (2nd direction) [nx1] |
| y_data | 1-D array of data corresponding to the independent variable on the rows of v_data (1st direction) [mx1] |
| z_data | 1-D array of data corresponding to the independent variable on the levels of v_data (3rd direction) [nxm] |
| v_data | 3-D array of data corresponding to the dependent variable that is a function of x, y, and z [px1] |
| x_int | 1-D array of interpolation points corresponding to x_data [px1] |
| y_int | 1-D array of interpolation points corresponding to y_data [px1] |
| z_int | 1-D array of interpolation points corresponding to z_data [px1] |
| 3D Linear Interpolation Outputs | Description |
| v_int | 1-D array of interpolated values corresponding to the dependent variable for the interpolation points (x_int,y_int,z_int) [px1] |
| 3D Linear Interpolation Mask Variables | Description |
| BN_M | Block name (hidden variable that is used in warning messages) |
This block estimates the average Nusselt number of an external flow over an isothermal cylinder. The correlation employed was the work of Zukauskas:
8 |
A. Zukauskas, "Heat Transfer from Tubes in Cross Flow," in H.P. Hartnett and T.F. Irvine, Jr., Eds, Advanaces in Heat Transfer, Vol. 8, Academic Press, New York, 1972.
9 |
and was originally developed by Hilpert:
10 |
R. Hilpert, Forsch . Geb. Ingenieurwes., 4 ,215, 1933
11 |
The modifications seeks to account for variations in fluid properties.
12 | $$ 13 | Nu = CRe^{m}Pr^{n} \left( \frac{Pr}{Pr_{s}} \right)^{1/4} 14 | $$ 15 |
where Nu is the Nusselt number, Re is the Reynolds number (with characteristic length = diameter of the cylinder), Pr is the Prandtl number, Prs is the Prandtl number evaluated at the surface temperature of the cylinder, n is 0.37 for Pr <= 10 and 0.36 for Pr >= 10, and the coefficients C and m are given in the table below:
16 | Model Coefficients: 17 |
| Re | C | m |
| 0.4-40 | 0.75 | 0.4 |
| 40-1000 | 0.51 | 0.5 |
| 1000-200000 | 0.26 | 0.6 |
| 200000-1000000 | 0.076 | 0.7 |
Note that all fluid properrties other than Prs should be evaluated at free stream temperature (NOT THE FILM TEMPERATURE). The correlation is subject to the following restrictions: 25 | $$ 26 | 1 \leq Re \leq 1000000, \: 0.7 \leq Pr \leq 500 27 | $$ 28 |
This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
29 | 30 | Cylinder Cross Flow - Zukauskas Inputs: 31 |
| Cylinder Cross Flow - Zukauskas Inputs | Description |
| Re | Reynolds number (based on the diameter of the cylinder) [nx1] |
| Pr | Prandtl number [nx1] |
| Prs | Prandtl number evaluated at the cylinder surface temperature [nx1] |
| Cylinder Cross Flow - Zukauskas Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the Re and Pr restictions are violated or not. The value of 1 if a violation is present and 0 otherwise. [nx1] |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block estimates the Nusselt number of a laminar external flow over an isothermal or isoflux flat plate. It can either calculate the local or average Nusselt number over 1 surface of the plate. The equations is: 9 | $$ 10 | Nu = \left( C_{turb}Re^{4/5} - A \right) Pr^{1/3} 11 | $$ 12 |
where
13 | $$ 14 | A = C_{turb}*Re_{cr}^{4/5} - C_{lam}*Re_{cr}^{1/2} 15 | $$ 16 |
and
17 | Coefficient Values: 18 |
| Isothermal | Isoflux | |
| $$ C_{lam} $$ | 0.664 | 0.906 |
| $$ C_{turb} $$ | 0.037 | 0.0385 |
Note that Re is the Reynolds number and Pr is the Prandtl number. The Reynolds number should be computed using the full length of the plate as the characteristic length. Note that all fluid properrties should be evaluated at film temperature (average of the bulk fluid and surface temperatures). Beyond the flow being transitional the implemented correlations also requires:
24 | $$ 25 | Re_{cr} \leq Re \leq 10^8, \: 0.6 \leq Pr \leq 60 26 | $$ 27 |
If these contraints are not met then the "Validity" output will be 1, and otherwise will be 0. This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
28 | 29 | Mixed BL Flat Plate Inputs: 30 |
| Mixed BL Flat Plate Inputs | Description |
| Re | Reynolds number [nx1] |
| Pr | Prandtl number [nx1] |
| Mixed BL Flat Plate Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the result is valid based on the correlation restrictions. The value will be 1 if there is a violation an 0 otherwise. [nx1] |
| Mixed BL Flat Plate Parameters Mask Variables | Description |
| Recr_M | Critical Reynolds number [nx1] |
| IsothermOrIsoflux_M | Variable indicating an isothermal or isoflux plate |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block estimates the Nusselt number of a laminar external flow over an isothermal flat plate using a correlation developed by Churchill and Ozoe:
9 |
S.W. Churchill, H. Ozoe, Journal of Heat Transfer, 95, 78, 1973.
10 |
It can either calculate the local or average Nusselt number over 1 surface of the plate. The equation is given as: 11 | $$ 12 | Nu = \frac{0.3387Re^{1/2}Pr^{1/3}}{\left[ 1 + \left( 0.0468/Pr \right)^{2/3} \right]^{1/4}} 13 | $$ 14 |
Note that Re is the Reynolds number and Pr is the Prandtl number. If the local Nusselt number is to be computed then the distance from the local point to the leading edge of the plate should be used as the characteristic length in the Reynolds number. If the average Nusselt number is is of interest then the full length of the plate should be used. Note that all fluid properrties should be evaluated at film temperature (average of the bulk fluid and surface temperatures). Beyond the flow being laminar the implemented correlations also requires:
15 | $$ 16 | Pe \geq 100 17 | $$ 18 |
Pe is the Peclet number (Pe = Re*Pr). If this contraint is not met then the "Validity" output will be 1, and otherwise will be 0. This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
19 | 20 | Laminar Flat Plate - Churchill Ozoe Inputs: 21 |
| Laminar Flat Plate - Churchill Ozoe Inputs | Description |
| Re | Reynolds number [nx1] |
| Pr | Prandtl number [nx1] |
| Laminar Flat Plate - Churchill Ozoe Outputs | Description |
| Nu | Local or Average Nusselt number [nx1] |
| Validity | Variable indicating if the result is valid based on the correlation restrictions. The value will be 1 if there is a violation an 0 otherwise. [nx1] |
| Laminar Flat Plate - Churchill Ozoe Parameters Mask Variables | Description |
| LocalOrAverage_M | Variable indicating whether the local or average Nu is to be calculated |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block estimates the Nusselt number of a laminar external flow over an isothermal or isoflux flat plate. It can either calculate the local or average Nusselt number over 1 surface of the plate. The equations is: 9 | $$ 10 | Nu = CRe^{1/2}Pr^{1/3} 11 | $$ 12 |
where C is a coefficient dependent on scenario:
13 | Coefficient Values (C): 14 |
| C | Isothermal | Isoflux |
| Local Nu | 0.332 | 0.453 |
| Average Nu | 0.664 | 0.906 |
Note that Re is the Reynolds number and Pr is the Prandtl number. If the local Nusselt number is to be computed then the distance from the local point to the leading edge of the plate should be used as the characteristic length in the Reynolds number. If the average Nusselt number is is of interest then the full length of the plate should be used. Note that all fluid properrties should be evaluated at film temperature (average of the bulk fluid and surface temperatures). Beyond the flow being laminar the implemented correlations also requires:
20 | $$ 21 | Pr \geq 0.6 22 | $$ 23 |
If this contraint is not met then the "Validity" output will be 1, and otherwise will be 0. This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
24 | 25 | Laminar Flat Plate Inputs: 26 |
| Laminar Flat Plate Inputs | Description |
| Re | Reynolds number [nx1] |
| Pr | Prandtl number [nx1] |
| Laminar Flat Plate Outputs | Description |
| Nu | Local or Average Nusselt number [nx1] |
| Validity | Variable indicating if the result is valid based on the correlation restrictions. The value will be 1 if there is a violation an 0 otherwise. [nx1] |
| Laminar Flat Plate Parameters Mask Variables | Description |
| LocalOrAverage_M | Variable indicating whether the local or average Nu is to be calculated |
| IsothermOrIsoflux_M | Variable indicating an isothermal or isoflux plate |
Reference for the information in this help file and the presented correlation: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
The block approximates the local Nusselt number for fully developed turbulent flow in a smooth circular tube using the Sieder-Tate correlation.
9 | $$ 10 | Nu = 0.027Re^{4/5}Pr^{1/3} \left( \frac{\mu}{\mu_s} \right)^{0.14} 11 | $$ 12 |
For tubes with different shaped cross-sections this correlation can be used as a first approximation with the hydraulic diameter of the tube used in place of the tube diameter. The equation attempts to account for variations in thermal properties of the fluid which is mainly done through considering the viscosity of the fluid at the mean fluid temperature and at the tube surface temperature. This block is recommended more so than the Dittus-Boelter equation when the variation in temperature between the surface of the pipe and the bulk fluid is large. Restrictions to this correlation include:
13 | $$ 14 | 0.7 \leq Pr \leq 16700, \: Re \geq 10000 15 | $$ 16 |
If any of these conditions are not met then the Validty output will be 1, otherwise it will be 0. Also keep in mind that the fully developed assumption typically meanse the local point of interest be at a lenght from the inlet that is 10 times the tube diameter. This correlation is a good approxiamtion for uniform surface temperature and heat flux conditions. In most applications this block may be used to return a single Nusselt number for a single pipe of uniform conditions. However, this block does have ability to perform multiple calculations of Nusselt number given consistently sized 1-D arrays for each of the inputs. The viscosity inputs can be in any viscosity unit as long as they are both in the same units.
17 | 18 | Sieder-Tate Inputs: 19 |
| Sieder-Tate Inputs | Description |
| Re | Reynolds number based on the pipe diameter [nx1] |
| Pr | Prandtl number [nx1] |
| mu | Viscosity of the fluid evaluated at the bulk fluid temperature [nx1] |
| mus | Viscosity of the fluid evaluated at the surface temperature [nx1] |
| Sieder-Tate Outputs | Description |
| Nu | Local Nusselt number [nx1] |
| Validity | Variable indicating if the correlation is valid for the given conditions. If Re or Pr restriction are viotlated then Validity will be 1 to indicate the result as invalid. Otherwise Validity = 0. [nx1] |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block estimates the Nusselt number of a turbulent external flow over an isothermal or isoflux flat plate. It can either calculate the local or average Nusselt number over 1 surface of the plate. The equations is: 9 | $$ 10 | Nu = CRe^{4/5}Pr^{1/3} 11 | $$ 12 |
where C is a coefficient dependent on scenario:
13 | Coefficient Values (C): 14 |
| C | Isothermal | Isoflux |
| Local Nu | 0.0296 | 0.0308 |
| Average Nu | 0.037 | 0.0385 |
Note that Re is the Reynolds number and Pr is the Prandtl number. If the local Nusselt number is to be computed then the distance from the local point to the leading edge of the plate should be used as the characteristic length in the Reynolds number. If the average Nusselt number is is of interest then the full length of the plate should be used. Note that all fluid properrties should be evaluated at film temperature (average of the bulk fluid and surface temperatures). Beyond the flow being laminar the implemented correlations also requires:
20 | $$ 21 | 500000 \leq Re \leq 10^8, \: 0.6 \leq Pr \leq 60 22 | $$ 23 |
If all of these contraints are not met then the "Validity" output will be 1, and otherwise will be 0. This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
24 | 25 | Turbulent Flat Plate Inputs: 26 |
| Turbulent Flat Plate Inputs | Description |
| Re | Reynolds number [nx1] |
| Pr | Prandtl number [nx1] |
| Turbulent Flat Plate Outputs | Description |
| Nu | Local or Average Nusselt number [nx1] |
| Validity | Variable indicating if the result is valid based on the correlation restrictions. The value will be 1 if there is a violation an 0 otherwise. [nx1] |
| Turbulent Flat Plate Parameters Mask Variables | Description |
| LocalOrAverage_M | Variable indicating whether the local or average Nu is to be calculated |
| IsothermOrIsoflux_M | Variable indicating an isothermal or isoflux plate |
This block estimates the average Nusselt number of an external flow over an isothermal thin plate that is oriented perpendicular to the flow direction. The correlation employed was originally developed by Hilpert and has been modified to address non-circular cross-sectional shapes:
8 |
R. Hilpert, Forsch . Geb. Ingenieurwes., 4 , 215, 1933
9 |
M. Jakoh, Heat Transfer, Vol. 1, Wiley, New York, 1949
10 |
E. M. Sparrow, J. P. Abraham, and J. C. K. Tong, Int. J. Heat Mass Transfer, 47, 5285, 2004
11 |
and has been modified to account for fluids with a wider range of Prandtl numbers. It has options to output the result of the front or back side of the plate. The equation is given as:
12 | $$ 13 | Nu = CRe^{m}Pr^{1/3} 14 | $$ 15 |
where Nu is the Nusselt number, Re is the Reynolds number, Pr is the Prandtl number, and the coefficients C and m are given in the table below:
16 | Model Coefficients: 17 |
| Side | C | m |
| Front | 0.667 | 0.500 |
| Back | 0.191 | 0.667 |
The Reynolds number should use the length of the plates cross-section as the characteristic length. The properties of the fluid should be evaluated at the film temperature. The correlation is subject to the following restrictions for the front surface:
23 | $$ 24 | 10000 \leq Re \leq 50000, \: Pr \geq 0.7 25 | $$ 26 |
and the back surface:
27 | $$ 28 | 7000 \leq Re \leq 80000, \: Pr \geq 0.7 29 | $$ 30 |
This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
31 | 32 | Thin Plate Cross Flow - Hilpert Inputs: 33 |
| Thin Plate Cross Flow - Hilpert Inputs | Description |
| Re | Reynolds number [nx1] |
| Pr | Prandtl number [nx1] |
| Thin Plate Cross Flow - Hilpert Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the Re and Pr restictions are violated or not. The value of 1 if a violation is present and 0 otherwise. [nx1] |
| Thin Plate Cross Flow - Hilpert Masked Variables | Description |
| FrontOrBack_M | Variable indicating if you desire to output the results of the front or back face of the thin plate |
This function computes the radiation heat transfer coefficient when the radiation term is written in a linear form (q = u*(Text - Tsurf)). This block is applicable for reflective concentric cylinder surfaces. The equation for calculating the heat transfer coefficient is given below.
8 | $$ 9 | u = \frac{\sigma}{ \frac{1-\epsilon_{surf}}{\epsilon_{surf}} \frac{R_{ext}}{R_{surf}} + \frac{1}{\epsilon_{ext}} } \left( T_{ext}^2 + T_{surf}^2 \right) \left( T_{ext} + T_{surf} \right) 10 | $$ 11 |
where
12 | $$ 13 | u = radiation \: heat \: transfer \: coefficient 14 | $$ 15 | $$ 16 | \epsilon_{surf} = emmisivity \: of \: the \: surface \: of \: interest 17 | $$ 18 | $$ 19 | \epsilon_{ext} = emmisivity \: of \: the \: external \: surface 20 | $$ 21 | $$ 22 | \sigma = Boltzmann's \: constant 23 | $$ 24 | $$ 25 | T_{surf} = temperature \: of \: the \: surface 26 | $$ 27 | $$ 28 | T_{ext} = temperature \: of \: the \: external \: surface 29 | $$ 30 | $$ 31 | R_{surf} = radius \: of \: the \: surface 32 | $$ 33 | $$ 34 | R_{ext} = radius \: of \: the \: external \: surface 35 | $$ 36 |
This block requires specific units be used. The units are clearly indicated on the input and output ports as well as the tables below.
37 |
This block accepts inputs of various dimensions as long as all inputs are consistent in dimensions.
38 | Radiation HeatX Coefficient - Reflective Concentric Cylinder Surfaces Inputs: 39 |
| Radiation HeatX Coefficient - Reflective Concentric Cylinder Surfaces Inputs | Description |
| Tsurf | Temperature of the surface of the object of interest (R) [nxm] |
| Text | Temperature of the external surface (R) [nxm] |
| eps_surf | Emissivity of the surface of the object of interest (-) [nxm] |
| eps_ext | Emissivity of the external surface (-) [nxm] |
| Radiation HeatX Coefficient - Reflective Concentric Cylinder Surfaces Outputs | Description |
| u | Radiation heat transfer coefficient (Btu/(sec-ft^2-R)) [nxm] |
| Radiation HeatX Coefficient - Reflective Concentric Cylinder Surfaces Mask Variables | Description |
| Rsurf_M | Radius of the surface of interest (ft) [nxm] |
| Rext_M | Radius of the external surface (ft) [nxm] |
This function is meant for estimating the temperature at an interface in a structure with multiple paths to transmit heat. This could be applicable to transitions in material or geometries in which various components connect together at the same location. Each connection to the interface has a temperature associated with it that is adjacent to the interface and a thermal resistance. The interface temperature is estimated using a weighted averaging technique based on the thermal resistances. Below is the equation for calculating the interface temperature if it is a point (vs. a line).
8 | $$ 9 | T_{int} = \frac{\sum_{i=1}^{i=n} T_{i}R_{i}}{\sum_{i=1}^{i=n} R_{i}} 10 | $$ 11 |
In the equation above, T is an array of the temperatures adjacent to the interface, R is the thermal resistance, and n is the number of total connections to the interface.
12 |
There are different options for the interface which allows it to be treated as horizontal line, vertical line, or a single point. If the interface is a horizontal line then all inputs and parameters should be input as a 2xm matrix and the output will be the interface temperature along the horizontal interface which forms a 1xm array. Similarly if the interface is a vertical line then the inputs and parameters should be an nx2 matrix and the output will be an nx1 array of the interface temperature along the vertical line. If the interface is a single point then the inputs and parameters should be a 1-D array or more generally an nxm matrix and the output will be the scalar interface temperature.
13 |
This block does not require specific units be used. However, the units must be consistent. All elements of a given input or parameter should be in the same units.
14 | Interface Temperature Inputs: 15 |
| Interface Temperature Inputs | Description |
| T | Array of temperatures of points adjacent to the interface [2xm, nx2, or nxm] |
| R | Array of thermal resistances between adjacent points to the interface [2xm, nx2, or nxm] |
| Interface Temperature Outputs | Description |
| T_int | The interface temperature. Dimensions are dependent on parameter selection and inputs [1xm, nx1, or 1x1]. |
| Interface Temperature Mask Variables | Description |
| int_horiz_M | Check this box if the interface is a horizontal line |
| int_vert_M | Check this box if the interface is a vertical line |
| int_pt_M | Check this box if the interface is a single point |
Reference for the information in this help file and the presented correlation: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
The block approximates the local Nusselt number for fully developed turbulent flow in a smooth circular tube using the Dittus-Boelter equation.
9 | $$ 10 | Nu = 0.023Re^{4/5}Pr^{n} 11 | $$ 12 | $$ 13 | n = 0.4 \: for \: Ts > Tf \: , \: n = 0.3 \: for \: Ts < Tf 14 | $$ 15 |
Nu is the Nusselt number, Re is the Reynolds number, and Pr is the Prandtl number. For tubes with different shaped cross-sections this correlation can be used a first approximation with the hydraulic diameter of the tube used in place of the tube diameter. The equation has some dependence on whether the tube is being heated or cooled and hence the need for temperature inputs for the surface of the tube (Ts) and mean temperature of the fluid (Tf). All properties should be evaluated at the mean fluid temperature Tf. This correlation has the following restrictions:
16 | $$ 17 | 0.6 \leq Pr \leq 160, \: Re \geq 10000 18 | $$ 19 |
If any of these conditions are not met then the Validty output will be 1, otherwise it will be 0. Also keep in mind that the fully developed assumption typically meanse the local point of interest be at a lenght from the inlet that is 10 times the tube diameter. This correlation is a good approxiamtion for uniform surface temperature and heat flux conditions. If there are large variations in the temperature and thus properties then the Sieder-Tate correlation may be a better approximation. In most application this block may be used to return a single Nusselt number for a single pipe of uniform conditions. However, this block does have ability to perform multiple calculations of Nusselt number given consistently sized 1-D arrays for each of the inputs. The temperature inputs can be in any temperature unit as long as they are both in the same units. In fact it is only important that the temperatures indicate which one is hotter or cooler. The values themselves are not used.
20 | 21 | Dittus-Boelter Inputs: 22 |
| Dittus-Boelter Inputs | Description |
| Re | Reynolds number based on the pipe diameter [nx1] |
| Pr | Prandtl number [nx1] |
| Ts | Surface temperature of the pipe [nx1] |
| Tf | Mean temperature of the fluid in the pipe [nx1] |
| Dittus-Boelter Outputs | Description |
| Nu | Local Nusselt number [nx1] |
| Validity | Variable indicating if the correlation is valid for the given conditions. If Re or Pr restriction are viotlated then Validity will be 1 to indicate the result as invalid. Otherwise Validity = 0. [nx1] |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block estimates the average Nusselt number of free convecting flow past one side of an isothermal vertical flat plate or vertical surface. The average Nusselt number is calculated based on an analytical solution for and isothermal vertical surface in an extensive quiescent medium. The following boundary conditions apply:
9 | $$ 10 | y = 0: \: u = v = 0, \: T = T_{s} 11 | $$ 12 | $$ 13 | y \rightarrow \infty: \: u \rightarrow 0, \: T \rightarrow T_{\infty} 14 | $$ 15 |
where
16 | $$ 17 | u = the \: velocity \: in \: the \: vertical \: direction, \: v = the \: velocity \: in \: the \: horizontal \: direction 18 | $$ 19 | $$ 20 | T_{s} = temperature \: of \: the \: surface, \: T_{\infty} = temperature \: of \: the \: quiescent \: medium 21 | $$ 22 |
The solution is:
23 | $$ 24 | Nu = \frac{4}{3} \left( \frac{Gr}{4} \right)^{1/4} g(Pr) 25 | $$ 26 |
where
27 | $$ 28 | g(Pr) = \frac{0.75 Pr^{1/2}}{ \left( 0.609 + 1.221 Pr^{1/2} + 1.238 Pr \right)^{1/4} } 29 | $$ 30 |
Gr is the Grashof number and Pr is the Prandtl number. Note that this solution comes from the following references
31 |
S. Ostrach, "An Analysis of Laminar Free Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direaction of the Generating Body Force," National Advisory Committee for Aeronautics, Report 1111, 1953.
32 |
E. J. LeFerve, "Laminar Free Convection from a Vertical Plane Surface," Proc. Ninth Int. Congr. Apple. Mech., Brussels, Vol. 4, 168, 1956.
33 |
Note that all fluid properties should be evaluated at film temperature (average of the bulk fluid and surface temperatures). The characteristic length used for the Grashof number should be the length of the plate or surface. Keep in mind that this solution is only applicable to laminar flow which typically occurs when the Rayliegh number (Ra) is less than 10^9. This block is capable of performing multiple calculations given 1-D arrays of consistent size for the inputs.
34 | 35 | Vertical Plate Laminar Free Convection - Analytical Inputs: 36 |
| Vertical Plate Laminar Free Convection - Analytical Inputs | Description |
| Gr | Grashof number [nx1] |
| Pr | Prandtl number [nx1] |
| Vertical Plate Laminar Free Convection - Analytical Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the transition Rayleigh number (10^9) was exceeded making the calculation invalid. This value will be 1 if this condition is viloated and 0 otherwise. [nx1] |
This block estimates the average Nusselt number of an external flow over an isothermal rod with a square cross-section. The correlation employed was originally developed by Hilpert and has been modified to address non-circular cross-sectional shapes:
8 |
R. Hilpert, Forsch . Geb. Ingenieurwes., 4 , 215, 1933
9 |
M. Jakoh, Heat Transfer, Vol. 1, Wiley, New York, 1949
10 |
E. M. Sparrow, J. P. Abraham, and J. C. K. Tong, Int. J. Heat Mass Transfer, 47, 5285, 2004
11 |
and has been modified to account for fluids with a wider range of Prandtl numbers. It has options to address the case in which the flow is directed at a point of the square or a side. The equation is given as:
12 | $$ 13 | Nu = CRe^{m}Pr^{1/3} 14 | $$ 15 |
where Nu is the Nusselt number, Re is the Reynolds number, Pr is the Prandtly number, and the coefficients C and m are given in the table below:
16 | Model Coefficients: 17 |
| Flow direction | C | m |
| Flow at point | 0.304 | 0.59 |
| Flow at face | 0.158 | 0.66 |
Note that when the flow is directed at a face, the Reynolds number should be calculated based on the length of the sides of the square and when the flow is directed at a point, the Reynolds number should be calculated based on the length from opposite points of the square. The properties of the fluid should be evaluated at the film temperature. The correlation is subject to the following restrictions when the flow is directed at a point:
23 | $$ 24 | 6000 \leq Re \leq 60000, Pr \geq 0.7 25 | $$ 26 |
and the following restrictions when the flow is directed at a side:
27 | $$ 28 | 5000 \leq Re \leq 60000, Pr \geq 0.7 29 | $$ 30 |
This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
31 | 32 | Square Rod Cross Flow - Hilpert Inputs: 33 |
| Square Rod Cross Flow - Hilpert Inputs | Description |
| Re | Reynolds number [nx1] |
| Pr | Prandtl number [nx1] |
| Square Rod Cross Flow - Hilpert Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the Re and Pr restictions are violated or not. The value of 1 if a violation is present and 0 otherwise. [nx1] |
| Square Rod Cross Flow - Hilpert Masked Variables | Description |
| PointOrFace_M | Variable indicating if the flow is directed toward a point or side of the square (edge or face of the rod) |
This block implements Sutherlands law to approximate viscosity of a gas.
8 | $$ 9 | \mu = \mu_{ref} \left( \frac{T}{T_{ref}} \right)^{3/2} \frac{T_{ref}+S}{T+S} 10 | $$ 11 | $$ 12 | \mu = viscosity, \: mu_{ref} = reference \: viscosity 13 | $$ 14 | $$ 15 | T = temperature, \: T_{ref} = reference \: temperature 16 | $$ 17 | $$ 18 | S = the \: Sutherland \: temperature 19 | $$ 20 |
Given appropriate parameters it is applicable to various gases. Parameters for some common gases are provided in the table below:
21 | Sutherland Equation Coefficients for Select Gases: 22 |
| Gas | $$ T_{ref} $$ $$ (^oR) $$ | $$ \mu_{ref} $$ $$ 10^{-7} \left( \frac{lb_f-sec}{ft^2} \right) $$ | $$ S $$ $$ (^oR) $$ |
| Air | 524.07 | 3.8157 | 216.2162 |
| Ammonia | 527.67 | 2.0509 | 666.667 |
| Carbon Dioxide | 527.67 | 3.0910 | 432.4324 |
| Carbon Monoxide | 518.67 | 3.5922 | 212.6126 |
| Hydrogen | 528.93 | 1.8295 | 129.7297 |
| Nitrogen | 540.99 | 3.7196 | 200.0000 |
| Oxygen | 526.05 | 4.2146 | 228.8288 |
| Sulfur Dioxide | 528.57 | 2.6190 | 749.5495 |
Sutherland's law is based on kinematic theory of ideal gases and an idealized intermolecular-force potential. It typically gives results that are accurate within a few percent over a wide temperature range. The temperature range in which the equation is valid will be dependent on the gas and the paramters you are using. For hydrocarbon vapors and natural gases, the input temperature T is typically restricted to the a range from 0 to 1000degF. Be sure to observe the valid temperature range when using this block to assure accurate results. Units of the temperature and viscosity will be dependent on the units of the parameters chosen which should be consistent.
34 |
This block is capable of performing multiple viscosity approximations given an array of temperatures.
35 | 36 | Sutherland's Law Inputs: 37 |
| Sutherland's Law Inputs | Description |
| T | Temperature of the gas [nx1] |
| Sutherland's Law Outputs | Description |
| mu | Viscosity of the gas [nx1] |
| Sutherland's Law Parameters Mask Variables | Description |
| Tref_M | Reference temperature [1x1] |
| muref_M | Reference viscosity [1x1] |
| S_M | Sutherland temperature [1x1] |
Coiled tubes are sometimes used to enhance heat transfer without turbulence or additional surface area. It utilizes centrifugal forces within the flow which induces secondary flow that enhances heat transfer. This block estimates the average Nusselt number for a helically coiled tube with an internal flow. The correlation was provided by Shah and Joshi:
8 |
R.K. Shah, and S.D. Joshi, in Handbook of Single-Phase Convective Heat Transfer, Chap. 5, Wiley-Interscience, Hoboken, MJ, 1987.
9 |
The correlation is:
10 | $$ 11 | Nu = \left[ \left( 3.66+\frac{4.343}{a} \right)^{3} + 1.158 \left( \frac{Re(D/C)^{1/2}}{b} \right)^{3/2} \right]^{1/3} \left( \frac{\mu}{\mu_{s}} \right)^{0.14} 12 | $$ 13 |
where
14 | $$ 15 | a = 1 + \frac{927(C/D)}{Re^{2}Pr}, 16 | $$ 17 | $$ 18 | b = 1 + \frac{0.477}{Pr} 19 | $$ 20 |
and
21 | $$ 22 | Nu = Nusselt \: number, \: Re = Reynolds \: number, \: Pr = Prandtl \: number 23 | $$ 24 | $$ 25 | \mu = viscosity, \: \mu_{s} = viscosity \: at \: surface \: temperature 26 | $$ 27 | $$ 28 | D = diameter \: of \: the \: internal \: flow \: path, \: C = diameter \: of \: the \: coils 29 | $$ 30 |
The implemented correlation is valid for:
31 | $$ 32 | 1 \leq Re(D/C)^{1/2} \leq 1000, \: 0.005 \leq Pr \leq 1600 33 | $$ 34 |
The Re contraint typically restricts use to laminar flow (Re < Re,c*(1 + 12*(D/C)^(1/2)), Re,c = ~2300). For turbulent flow the effects of secondary flow is minor and a straight pipe correlation for turbulent flow is more appropriate. Also, a straight pipe laminar flow correlation may suffice when C/D >= 20 in which case error is less than 10%. Note that the Reynolds number and ensuing heat transfer coefficient should be calculated using the diameter of the tube (D) as the characteristic length.
35 |
This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
36 | 37 | Laminar Coiled Tube Inputs: 38 |
| Laminar Coiled Tube Inputs | Description |
| Re | Reynolds number (based on the diameter of the largest tube in the bank) [nx1] |
| Pr | Prandtl number [nx1] |
| mu | Viscosity of the fluid [nx1] |
| mus | Viscosity of the fluid at the surface temperature of the tube [nx1] |
| Laminar Coiled Tube Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the Re and Pr restictions are violated or not. The value of 1 if a violation is present and 0 otherwise. [nx1] |
| Laminar Coiled Tube Masked Variables | Description |
| DoC_M | Ratio of the diameter of the tube flow cross-section to the diameter of the coil [1x1] |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block estimates the average Nusselt number of a free convecting flow about a horizontal isothermal cylinder. This block allows the application of two different correlations. The first is a set of equations developed by Morgan, each of which is valid over a different Rayliegh number (Ra) range. The reference and correlation is given below:
9 |
V. T. Morgan, "The Overall Convective Heat Transfer from Smooth Circular Cylinders," in T. F. Irvine and J. P. Harnett, Eds., Advances in Heat Transfer, Vol. 11, Academic Press, New York, 1975, pp. 199-264.
10 | $$ 11 | Nu = C Ra^n 12 | $$ 13 |
where C and n are constants provided in the following table:
14 | Morgan Correlation Constants: 15 |
| Ra | C | n |
| 10^-10 - 0.01 | 0.675 | 0.058 |
| 0.01 - 100 | 1.02 | 0.148 |
| 100 - 10000 | 0.850 | 0.188 |
| 10000 - 10^7 | 0.480 | 0.25 |
| 10^7 - 10^12 | 0.125 | 0.333 |
The second is a single correlation developed by Churchil and Chu that is valid over a wide range of Rayliegh numbers. Below if the reference and correlation:
24 |
S. W. Churchill, and H. H. S. Chu, Int. J. Heat Mass Transfer, 18, 1049, 1975.
25 | $$ 26 | Nu = \left[ 0.60 + \frac{0.387 Ra^{1/6}}{ \left[ 1 + \left( 0.559/Pr \right)^{9/16} \right]^{8/27} } \right]^{2}, \: \: Ra \leq 10^{12} 27 | $$ 28 |
The Rayliegh number should use the cylinder diamter as the characteristich length. Note that all fluid properties should be evaluated at the film temperature (average of the bulk fluid and surface temperatures). This block is capable of performing multiple calculations given 1-D arrays of consistent size for the inputs.
29 | 30 | Horizontal Cylinder Free Convection Inputs: 31 |
| Horizontal Cylinder Free Convection Inputs | Description |
| Ra | Rayliegh number (Characteristic Length = Cylinder Diameter) [nx1] |
| Pr | Prandtl number [nx1] |
| Horizontal Cylinder Free Convection Outputs | Description |
| Nu | Average Nusselt number over the circumference of the cylinder [nx1] |
| Validity | Variable indicating if the any of the applicable restrictions were violated. This value will be 1 if this condition is viloated and 0 otherwise. [nx1] |
| Horizontal Cylinder Free Convection Mask Variables | Description |
| Corr_M | Variable indication which correlation to use. |
This block estimates the average Nusselt number of an external flow over an isothermal rod with a hexagonal cross-section. The correlation employed was originally developed by Hilpert and has been modified to address non-circular cross-sectional shapes:
8 |
R. Hilpert, Forsch . Geb. Ingenieurwes., 4 , 215, 1933
9 |
M. Jakoh, Heat Transfer, Vol. 1, Wiley, New York, 1949
10 |
E. M. Sparrow, J. P. Abraham, and J. C. K. Tong, Int. J. Heat Mass Transfer, 47, 5285, 2004
11 |
and has been modified to account for fluids with a wider range of Prandtl numbers. It has options to address the case in which the flow is directed at a point of the hexagon or a side. The equation is given as:
12 | $$ 13 | Nu = CRe^{m}Pr^{1/3} 14 | $$ 15 |
where Nu is the Nusselt number, Re is the Reynolds number, Pr is the Prandtl number, and the coefficients C and m are given in the table below:
16 | Model Coefficients: 17 |
| Flow direction | C | m |
| Flow at point | 0.150 | 0.638 |
| Flow at face (Re = 5200 to 20400) | 0.164 | 0.638 |
| Flow at face (Re = 20400 to 105000) | 0.039 | 0.78 |
Note that when the flow is directed at a face, the Reynolds number should be calculated based on the length from opposite sides of the hexagon and when the flow is directed at a point, the Reynolds number should be calculated based on the length from opposite points of the hexagon. The properties of the fluid should be evaluated at the film temperature. The correlation is subject to the following restrictions when the flow is directed at a point:
24 | $$ 25 | 4500 \leq Re \leq 90700, \: Pr \geq 0.7 26 | $$ 27 |
and the following restrictions when the flow is directed at a side:
28 | $$ 29 | 5200 \leq Re \leq 105000, \: Pr \geq 0.7 30 | $$ 31 |
This block is capable of performing multiple Nusselt number approximations given 1-D input arrays of the same size.
32 | 33 | Hexagonal Rod Cross Flow - Hilpert Inputs: 34 |
| Hexagonal Rod Cross Flow - Hilpert Inputs | Description |
| Re | Reynolds number [nx1] |
| Pr | Prandtl number [nx1] |
| Hexagonal Rod Cross Flow - Hilpert Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the Re and Pr restictions are violated or not. The value of 1 if a violation is present and 0 otherwise. [nx1] |
| Hexagonal Rod Cross Flow - Hilpert Masked Variables | Description |
| PointOrFace_M | Variable indicating if the flow is directed toward a point or side of the hexagon (edge or face of the rod) |
Reference for the information in this help file: White, F.M., Viscous Fluid Flow 3rd Ed., McGraw Hill, New York, NY, 2006. Print.
8 |
This block implements a simple and reliable theory developed by Ambrok (1957) that allows for the appsoximation of the local Stanton number of turbulent flow with a varying velocity and temperature profile along an axisymmetric body. Ambrok's Stanton number correlation comes from solving a modeled energy-integral equation so that the local Stanton number could be approximated by simple quadrature.
9 | $$ 10 | St = 0.0295 Pr^{-0.4} \frac{r_0^{0.25} \left( T_w - T_e \right)^{0.25} \mu^{0.2}}{\left[ \int_0^x r_0^{1.25} \left( T_w - T_e \right)^{1.25} \rho U dx \right]^{0.2}} 11 | $$ 12 |
where
13 | $$ 14 | x = axial \: location \: along \: the \: body, \: r_0 = radius \: of \: the \: body 15 | $$ 16 | $$ 17 | Pr = Prandtl \: number, \: T_w = wall \: temperature, \: T_e = free-stream \: temperature 18 | $$ 19 | $$ 20 | U = free-stream \: velocity, \: \rho = density, \: \mu = dynamic \: viscosity 21 | $$ 22 |
The Stanton number is then used to obtain the local Nusselt number.
23 | $$ 24 | Nu = St Re Pr 25 | $$ 26 |
When the radius, r0(x), is constant the Stanton number should give a descent approximation for a 2-D body. When r0, U, and (Tw - Te) are constant the Stanton number correlation reduces to: 27 | $$ 28 | St = 0.0295*Pr^{-0.4}Re^{-0.3} 29 | $$ 30 |
which is nearly equal to the traditional Reynolds Analogy.
31 |
Assure that all inputs and parameters use consistent units. 32 |
This block performs numerical integration and so it is important to have a sufficient number of points for good accuracy and the x array should start near 0 but not 0 as this would result in the denominator being equal to 0. Similaryly, no element of r0 should be equal to 0. It is important that all array parameters and inputs have the same number of elements.
33 | 34 | Turbulent Convection on Axisymmetric Body w/ Varying Velocity and Temperature Inputs: 35 |
| Turbulent Convection on Axisymmetric Body w/ Varying Velocity and Temperature Inputs | Description |
| U | Free-stream velocity [nx1] |
| mu | Dynamic viscosity [nx1] |
| rho | Fluid density [nx1] |
| Tw - Te | Temperature difference between the wall and free-stream [nx1] |
| Turbulent Convection on Axisymmetric Body w/ Varying Velocity and Temperature Outputs | Description |
| Nu | Local Nusselt number [mx1] |
| Turbulent Convection on Axisymmetric Body w/ Varying Velocity and Temperature Masked Variables | Description |
| Pr_M | Prandtl number [1x1] |
| x_M | Axial osition(s) along the surface [nx1] |
| r0_M | Radius of the axisymmetric body [nx1] |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block estimates the average Nusselt number of free convection on the surface of a horizontal plate. Flow patterns and heat transfer are heavily dependent on whether the plate is hot or cold and whether the surface is on the top or the bottom. This block employs different correlations to handle each case.
9 |
For the upper surface of a hot plate or lower surface of a cold plate the following correlations are recommended in the reference:
10 |
J. R. Lloyd, and W. R. Moran, J. Heat Transfer, 96, 443, 1974.
11 | $$ 12 | Nu = 0.54Ra^{1/4}, \: \: \left( 10^4 \leq Ra \leq 10^7, \: Pr \geq 0.7 \right) 13 | $$ 14 | $$ 15 | Nu = 0.15Ra^{1/3}, \: \: \left( 10^7 \leq Ra \leq 10^{11}, \: all \: Pr \right) 16 | $$ 17 |
For the lower surface of a hot plate or upper surface of a cold plate the following correlation is recommended by this reference:
18 |
E. Radziemska, and W. M. Lewandowski, Applied Energy, 68, 347, 2001.
19 | $$ 20 | Nu = 0.52Ra^{1/5}, \: \: \left( 10^4 \leq Ra \leq 10^9, \: Pr \geq 0.7 \right) 21 | $$ 22 |
The characteristic length in the Rayliegh number should be consistent with recommendation for the shape. It was found in the following references that L = A/P can be used for a variety of shapes where A is the surface are of one side of the plate and P is it's perimeter:
23 |
R. J. Goldstein, E. M. Sparrow, and D. C. Jones, Int. J. Heat Mass Transfer. 16. 1025. 1973.
24 |
J. R. Lloyd, and W. R. Moran, J. Heat Transfer, 96, 443, 1974.
25 |
Note that all fluid properties should be evaluated at the film temperature (average of the bulk fluid and surface temperatures). This block is capable of performing multiple calculations given 1-D arrays of consistent size for the inputs. The units of the surface and fluid temperature inputs does not matter. Infact the values themselves do not matter. What does matter is the relative temperature difference which determines if the plate is hotter or colder than the surrounding fluid.
26 | 27 | Horizontal Plate Free Convection Inputs: 28 |
| Horizontal Plate Free Convection Inputs | Description |
| Ra | Rayliegh number [nx1] |
| Pr | Prandtl number [nx1] |
| Ts | Temperature of the surface [nx1] |
| Tf | Temperature of the fluid [nx1] |
| Horizontal Plate Free Convection Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the any of the applicable restrictions were violated. This value will be 1 if this condition is viloated and 0 otherwise. [nx1] |
| Horizontal Plate Free Convection Mask Variables | Description |
| UpperOrLower_M | Checked if the upper surface of the plate is to be considered, unchecked if the lower surface of the plate is to be considered. |
Reference for the information in this help file: White, F.M., Viscous Fluid Flow 3rd Ed., McGraw Hill, New York, NY, 2006. Print.
8 |
This block gives a first approximation of the average Nusselt number of free convection within a rectangular vertical cavity. The vertical surfaces are heated and cooled while the horizontal surfaces are adiabatic. The flow motion is characterized by a recirculating or cellular flow for which fluid ascends along the hot wall and descends along the cold wall. A set of empirical correlation is employed by this block. Which is active is dependent on the Rayliegh number and aspect ratio (H/L). H is the height of the cavity and L is the distance between the hot and cold surfaces. The correlations employed were recommended by Catton. The Reference, eqaution, and additonal restrictions are listed below:
9 |
L. Catton, "Natural Convection in Enclosures," Proc. 6th Int. Heat Transfer Conf., Toronto, Canada, 1978, Vol. 6, pp. 13-31.
10 |
L. Catton, P. S. Ayyaswamy, and R. M. Clever, Int. J. Heat Mass Transfer, 17, 173, 1974.
11 |
For aspect ratios in the between 1 and 10 the following correlations have been suggested:
12 | $$ 13 | Nu = 0.22 \left( \frac{Pr}{0.2 + Pr} Ra \right)^{0.28} \left( \frac{H}{L} \right)^{-1/4}, \: \: \left( 2 \leq H/L \leq 10, \: Pr \leq 10^5, \: 10^3 \leq Ra \: \leq 10^{10} \right) 14 | $$ 15 | $$ 16 | Nu = 0.18 \left( \frac{Pr}{0.2 + Pr} Ra \right)^{0.29}, \: \: \left( 1 \leq H/L \leq 2, \: 10^{-3} \leq Pr \leq 10^5, \: 10^3 \leq \frac{Ra Pr}{0.2 + Pr} \right) 17 | $$ 18 |
For larger aspect ratios up to 40 the following correlations are recommended:
19 | $$ 20 | Nu = 0.42 Ra^{1/4} Pr^{0.012} \left( \frac{H}{L} \right)^{-0.3}, \: \: \left( 10 \leq H/L \leq 40, \: 1 \leq Pr \leq 20000, \: 10^4 \leq Ra \leq 10^7 \right) 21 | $$ 22 | $$ 23 | Nu = 0.046Ra^{1/3}, \: \: \left( 1 \leq H/L \leq 40, \: 1 \leq Pr \leq 20, \: 10^6 \leq Ra \leq 10^9 \right) 24 | $$ 25 |
Ra is the Rayliegh number and Pr is the Prandtl number. Note that for small Rayliegh numbers, Ra <= 1000, the buoyancy-driven flow is weak and, in the absence of radiation, heat transfer is primarily by conduction -> Nu = 1. All fluid properrties should be evaluated at average of the hot and cold surfaces. The Rayliegh number should be calculated using L, the distance between the hot and cold surfaces, as the characteristic length. Likewise, this should be the characteristic length associated with the computed Nusselt number. 26 |
This block is capable of performing multiple calculations given 1-D arrays of consistent size for the inputs and parameters.
27 | 28 | Vertical Rectangular Cavity Inputs: 29 |
| Vertical Rectangular Cavity Inputs | Description |
| Ra | Rayliegh number [nx1] |
| Pr | Prandtl number [nx1] |
| Vertical Rectangular Cavity Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the correlation restrictions were violated. This value will be 1 if this condition is viloated and 0 otherwise. [nx1] |
| Vertical Rectangular Cavity Masked Variables | Description |
| AR_M | Aspect ratio of the rectangular cavity (H/L) where H is the height of L is the distance between the hot and cold walls [nx1] |
Reference for the information in this help file and the presented correlation: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
Natural (free) convection is negligible if (Gr/Re^2) << 1 and forced convection is negligible if (Gr/Re^2) is >> 1. However when this condition is not met and (Gr/Re^2) is in the vicinity of 1 free and forced convection both play a significant role in heat transfer. This results in a mixed convection problem.
9 |
This block can be used to approximate the combined forced and natural convection Nusselt number from which the convective heat transfer coefficient can be derived. Three special cases have been extensively studied corresonding to assisted flow (buoyancy force is acting in the same direction as the forced flow), transverse flow (buoyancy force is acting in a direction perpendicular to the forced flow), and opposing flow (buoyancy forced are acting in the opposite direction of the forced flow). In the cases of assisting flow and transfer flow the buoyancy forces are enhancing the rate of heat transfer while opposing flow will decrease it. It is common practice to correlate mixed convection heat transfer for external and internal flows by an expression of the form
10 | $$ 11 | Nu = \left( Nu_{F}^n \pm Nu_{N}^n \right)^{1/n} 12 | $$ 13 |
where
14 | $$ 15 | Nu = mixed \: convection \: Nusselt \: number 16 | $$ 17 | $$ 18 | Nu_{F} = forced \: convection \: Nusselt \: number 19 | $$ 20 | $$ 21 | Nu_{N} = natural \: convection \: Nusselt \: number 22 | $$ 23 | $$ 24 | n = correlation \: exponent 25 | $$ 26 |
The forced and natural convection Nusselts numbers are determined from existing correlations for pure forced and free convection. The sign on the right side of the equation is '+' when the flow is assisting or transverse and '-' when the flow is opposing. The correlation exponent, n, is typically a value between 3 and 4. Most commonly a value around 3 is used however other values are better suited in different scenarios. For example, 3.5 and 4 are typically recommended for used with transverse flow involving a horizontal plate and cylinders or spheres respectively. The mixed convection heat transfer coefficient be calculated using the Nusselt number.
27 | $$ 28 | h = \frac{Nu k}{L} 29 | $$ 30 | where 31 | $$ 32 | h = mixed \: convection \: heat \: transfer \: coefficient 33 | $$ 34 | $$ 35 | k = local \: thermal \: conductivity \: of \: the \: convective \: fluid 36 | $$ 37 | $$ 38 | L = characteristic \: length 39 | $$ 40 |
The correlation used by this block should be viewed as a first approximation and any serious treatment should be accompanied by an examination of the available literature. 41 |
This block accepts inputs of various dimensions as long as all inputs are consistent in dimensions.
42 | Combined Forced & Natural Convection Inputs: 43 |
| Combined Forced & Natural Convection Inputs | Description |
| NuF | Forced convection Nusselt number (-) [nxm] |
| NuN | Natural convection Nusselt number (-) [nxm] |
| Combined Forced & Natural Convection Outputs | Description |
| Nu | Mixed convection Nusselt number (-) [nxm] |
| Combined Forced & Natural Convection Mask Variables | Description |
| dir_M | Relative direction of natural and forced flows (checked - assisted or transverse, unchecked - opposed) |
| n_M | Correlation exponent [1x1] |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block approximates the Nusselt number of a fully developed turbulent internal flow using Gnielinski's correlation.
9 | $$ 10 | Nu = \frac{(f/8)(Re-1000)Pr}{1+12.7(f/8)^{1/2}(Pr^{2/3}-1)} 11 | $$ 12 |
This block provides the option to consider a perfectly smooth or a rough surface. The user is cautioned that Gnielinski's correlation is valid for smooth tubes and so it may become less accurate as surface roughenss increases. Infact it should provide a good first approximation for friction factors (f) that are less than ~4 times it's corresponding smooth surface value. When roughnees increases to the point that f is 4 times larger than the smooth value then additional increases in f will not impact the heat transfer coefficient and thus Nu as well. This result is taken from: 13 |
R. H. Norris, A. E. Bergles, and R. L. Webb, Eds., Augmentation of Convective Heat and Mass Transfer, ASME. New York. 1970.
14 |
As a result, the friction factor in this block is restricted to being less than or equal to 4 times the value of the smooth wall friction factor. Surface roughness is accounted for using the Colebrook correlation. The Colebrook correlation is solved using an iterative technique and so a convergence variable (conv) is output when this option is active so the it can be monitored. This correlaiton is valid for the following conditions: 15 | $$ 16 | 0.5 \leq Pr \leq 2000, \: 3000 \leq Re \leq 5000000 17 | $$ 18 |
If any of these conditions are not met then the Validty output will be 1, otherwise it will be 0. In addition to these conditions one should keep in mind that this approximation is only valid for fully developed turbulent flow which is generally applicable when the flow is downstream of the inlet by a distance that is greater than or equal to 10 times the diamter of the tube (L/D >= 10). The correlation is applicable for both isothermal and isoflux applications. The properties in the correlation should be evaluated at the bulk fluid temperature. If a large temperature difference is present then additional considerations must be given. Available options are reviewed by Kakac in: S. Kakac, R.K. Shah, and W. Aung. Eds., Handbook of Single-Phase Convective Heat Transfer, Chapter 18, Wiley-Interscience, Hoboken, NJ. 1987.
Gnielinski's Correlation Inputs: 21 |
| Gnielinski's Correlation Inputs | Description |
| Re | Reynolds number based on the diameter of the tube (hydraulic diameter for non-circular tubes) [nx1] |
| Pr | Prandtl number [nx1] |
| Gnielinski's Correlation Outputs | Description |
| Nu | Local Nusselt number [nx1] |
| Validity | Variable indicating if the result is valid based on the correlation restriction. The value will be 1 if there is a violation an 0 otherwise. [nx1] |
| conv | Variable indicating if Colebrooks correlation, used to solve for the friction factor for rough surfaces, converged to a solution. The value will be 1 if it converged and 0 if it did not. A value of 0 indicates that the result is not valid. [nx1] |
| Gnielinski's Correlation Parameters Mask Variables | Description |
| SmoothOrRough_M | Variable indication the option to consider a perfectly smooth wall or to consider a rough wall |
| eoD_M | Ratio of surface roughness to pipe diamter (hydraulic diamter is not circular) - e/D [nx1] |
Reference for the information in this help file: Incropera, F.P., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 2002. Print.
8 |
This block estimates the average Nusselt number of free convecting flow over an isothermal vertical or inclined flat plate, or an isothermal vertical cylinder. For inclined plates the correlation is only valid for the top surface of cold plates and bottom surface of hot plates. The bottom surface of cold plates and top surface of hot plates experience a complex 3-D flow that typically enhances heat transfer but is not able to be characterized by a generalized correlation. The following correlation is recommended for the entire range of Raleigh numbers (Ra):
9 | $$ 10 | Nu = \left[ 0.825 + \frac{0.387Ra^{1/6}}{\left[ 1 + \left( 0.492/Pr \right)^{9/16} \right]^{8/27}} \right]^{2} 11 | $$ 12 |
The next correlation has slightly better accuracy for laminar flow 13 | $$ 14 | Nu = 0.68 + \frac{0.670Ra^{1/4}}{\left[ 1 + \left( 0.492/Pr \right)^{9/16} \right]^{4/9}} 15 | $$ 16 |
Subject to restriction:
17 | $$ 18 | Ra \leq 10^9 \: (laminar flow) 19 | $$ 20 |
These equations are valid for vertical plates and vertical cylinders. For cylinders the following restriction should be enforced:
21 | $$ 22 | \frac{D}{L} \leq \frac{35}{Gr^{1/4}} 23 | $$ 24 |
where D/L is the ratio of the cylinders diameter to it's length, and Gr is the Grashoff number (Ra/Pr). As can be seen it is better suited for longer cylinders with a smaller diameter. These equations can be used to approximate the average Nusselt number for inclined plates but only for one surface as mentioned before. In such a case the gravity, g, is replace by g*cos(Angle) where Angle is the inclination angle relative to the vertical axis in which gravity is acting. This adjustment makes the correlation good for angles between 0 and 60 degrees. 25 | 26 |
Note that these empirical correlation come from the following reference:
27 |
S. W. Churchill, and H. H. S. Chu, Int. J. Heat Mass Transfer, 18, 1323, 1975.
28 |
The characteristic length in the Rayliegh number should be the length of the plate or cylinder. Note that all fluid properties should be evaluated at film temperature (average of the bulk fluid and surface temperatures). This block is capable of performing multiple calculations given 1-D arrays of consistent size for the inputs and applicable parameters.
29 | 30 | Vertical Plate/Cylinder or Inclined Plate Free Convection Inputs: 31 |
| Vertical Plate/Cylinder or Inclined Plate Free Convection Inputs | Description |
| Ra | Rayliegh number [nx1] |
| Pr | Prandtl number [nx1] |
| Vertical Plate/Cylinder or Inclined Plate Free Convection Outputs | Description |
| Nu | Average Nusselt number [nx1] |
| Validity | Variable indicating if the any of the applicable restriction were violated. This value will be 1 if this condition is viloated and 0 otherwise. [nx1] |
| Vertical Plate/Cylinder or Inclined Plate Free Convection Mask Variables | Description |
| Corr_M | Variable indicating which correlation to use |
| PlateOrCyl_M | Variable indicating if a plate or a cylinder is being considered |
| InclineOrVert_M | Variable indicating if the plate is vertical or inclined (only applicable for plates) |
| DiamOverLen_M | The diameter to length ratio (D/L) of the cylinder (only applicable to cylinders) [nx1] |