├── .gitignore
├── .md_replace.csv
├── AdvancedExamples.ipynb
├── AdvancedExamples.md
├── Dockerfile
├── Experimental.ipynb
├── Experimental.md
├── LICENSE
├── README.ipynb
├── README.md
├── README_files
├── README_1_1.jpg
├── README_20_0.png
├── README_20_1.png
└── README_20_2.png
├── StacItem.ipynb
├── StacItem.md
├── nsl
└── stac
│ ├── __init__.py
│ ├── client.py
│ ├── destinations
│ ├── __init__.py
│ ├── aws.py
│ ├── base.py
│ ├── gcp.py
│ └── memory.py
│ ├── enum.py
│ ├── experimental.py
│ ├── subscription.py
│ └── utils.py
├── requirements-demo.txt
├── requirements-test.txt
├── requirements.txt
├── setup.cfg
├── setup.py
└── test
├── __init__.py
└── test_client.py
/.gitignore:
--------------------------------------------------------------------------------
1 | .ipynb_checkpoints/
2 | nsl.stac.egg-info/
3 |
4 | ipynb2md.py
5 |
6 | build/
7 | dist/
8 | tmp/
9 | venv/
10 |
--------------------------------------------------------------------------------
/.md_replace.csv:
--------------------------------------------------------------------------------
1 | .jpg), .jpeg)
--------------------------------------------------------------------------------
/AdvancedExamples.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Complex Queries\n",
8 | "Below are a few complex queries, downloading and filtering of StacItem results. You can also look through the [test directory](./test) for more examples of how to use queries.\n",
9 | "\n",
10 | "- [View Optical](#view)\n",
11 | "- [Limits and Offsets](#limits-and-offsets)\n",
12 | "\n",
13 | "## View\n",
14 | "Proto3, the version of proto definition used for gRPC STAC, creates messages that are similar to structs in C. One of the drawbacks to structs is that for floats, integers, enums and booleans all fields that are not set are initialized to a value of zero. In geospatial sciences, defaulting to zero can cause problems in that an algorithm or user might interpret that as a true value. \n",
15 | "\n",
16 | "To get around this, Google uses wrappers for floats and ints and some of those are used in gRPC STAC. For example, some of the fields like `off_nadir`, `azimuth` and others in the View protobuf message, [View](https://geo-grpc.github.io/api/#epl.protobuf.v1.View), use the `google.protobuf.FloatValue` wrapper. As a consequence, accessing those values requires calling `field_name.value` instead of `field_name` to access the data.\n",
17 | "\n",
18 | "For our ground sampling distance query we're using another query filter; this time it's the [FloatFilter](https://geo-grpc.github.io/api/#epl.protobuf.v1.FloatFilter). It behaves just as the TimestampFilter, but with floats for `value` or for `start` + `end`.\n",
19 | "\n",
20 | "In order to make our off nadir query we need to insert it inside of an [ViewRequest](https://geo-grpc.github.io/api/#epl.protobuf.v1.ViewRequest) container and set that to the `view` field of the `StacRequest`.\n"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 1,
26 | "metadata": {},
27 | "outputs": [
28 | {
29 | "name": "stdout",
30 | "output_type": "stream",
31 | "text": [
32 | "nsl client connecting to stac service at: api.nearspacelabs.net:9090\n",
33 | "\n",
34 | "attempting NSL authentication against https://api.nearspacelabs.net\n",
35 | "fetching new authorization in 60 minutes\n",
36 | "SWIFT STAC item '20200703T174443Z_650_POM1_ST2_P' from 2020-07-03T17:44:43+00:00\n",
37 | "has a off_nadir 1.980, which should be less than or equal to requested off_nadir 10.0: confirmed True\n",
38 | "SWIFT STAC item '20200703T174028Z_513_POM1_ST2_P' from 2020-07-03T17:40:28+00:00\n",
39 | "has a off_nadir 9.310, which should be less than or equal to requested off_nadir 10.0: confirmed True\n",
40 | "SWIFT STAC item '20200703T174021Z_509_POM1_ST2_P' from 2020-07-03T17:40:21+00:00\n",
41 | "has a off_nadir 8.052, which should be less than or equal to requested off_nadir 10.0: confirmed True\n",
42 | "SWIFT STAC item '20190822T183518Z_746_POM1_ST2_P' from 2019-08-22T18:35:18+00:00\n",
43 | "has a off_nadir 9.423, which should be less than or equal to requested off_nadir 10.0: confirmed True\n",
44 | "SWIFT STAC item '20190822T183510Z_742_POM1_ST2_P' from 2019-08-22T18:35:10+00:00\n",
45 | "has a off_nadir 9.349, which should be less than or equal to requested off_nadir 10.0: confirmed True\n",
46 | "SWIFT STAC item '20190821T180042Z_568_POM1_ST2_P' from 2019-08-21T18:00:42+00:00\n",
47 | "has a off_nadir 9.685, which should be less than or equal to requested off_nadir 10.0: confirmed True\n",
48 | "SWIFT STAC item '20190821T180028Z_561_POM1_ST2_P' from 2019-08-21T18:00:28+00:00\n",
49 | "has a off_nadir 8.978, which should be less than or equal to requested off_nadir 10.0: confirmed True\n",
50 | "SWIFT STAC item '20190821T180002Z_548_POM1_ST2_P' from 2019-08-21T18:00:02+00:00\n",
51 | "has a off_nadir 9.282, which should be less than or equal to requested off_nadir 10.0: confirmed True\n",
52 | "SWIFT STAC item '20190821T175954Z_544_POM1_ST2_P' from 2019-08-21T17:59:54+00:00\n",
53 | "has a off_nadir 8.855, which should be less than or equal to requested off_nadir 10.0: confirmed True\n",
54 | "SWIFT STAC item '20190821T175943Z_539_POM1_ST2_P' from 2019-08-21T17:59:43+00:00\n",
55 | "has a off_nadir 8.956, which should be less than or equal to requested off_nadir 10.0: confirmed True\n",
56 | "SWIFT STAC item '20190818T174304Z_205_POM1_ST2_P' from 2019-08-18T17:43:04+00:00\n",
57 | "has a off_nadir 7.015, which should be less than or equal to requested off_nadir 10.0: confirmed True\n",
58 | "SWIFT STAC item '20190818T174227Z_181_POM1_ST2_P' from 2019-08-18T17:42:27+00:00\n",
59 | "has a off_nadir 8.237, which should be less than or equal to requested off_nadir 10.0: confirmed True\n"
60 | ]
61 | }
62 | ],
63 | "source": [
64 | "from datetime import datetime, timezone\n",
65 | "from nsl.stac.client import NSLClient\n",
66 | "from nsl.stac import StacRequest, GeometryData, ProjectionData, ViewRequest, View, FloatFilter\n",
67 | "from nsl.stac.enum import FilterRelationship, Mission\n",
68 | "\n",
69 | "# create our off_nadir query to only return data captured with an angle of less than or \n",
70 | "# equal to 10 degrees\n",
71 | "off_nadir = FloatFilter(value=10.0, rel_type=FilterRelationship.LTE)\n",
72 | "# create an eo_request container\n",
73 | "view_request = ViewRequest(off_nadir=off_nadir)\n",
74 | "# define ourselves a point in Texas\n",
75 | "ut_stadium_wkt = \"POINT(-97.7323317 30.2830764)\"\n",
76 | "geometry_data = GeometryData(wkt=ut_stadium_wkt, proj=ProjectionData(epsg=4326))\n",
77 | "# create a StacRequest with geometry, eo_request and a limit of 20\n",
78 | "stac_request = StacRequest(intersects=geometry_data, view=view_request, limit=20)\n",
79 | "\n",
80 | "# get a client interface to the gRPC channel\n",
81 | "client = NSLClient()\n",
82 | "for stac_item in client.search(stac_request):\n",
83 | " print(\"{0} STAC item '{1}' from {2}\\nhas a off_nadir {3:.3f}, which should be less than or \"\n",
84 | " \"equal to requested off_nadir {4}: confirmed {5}\".format(\n",
85 | " stac_item.mission,\n",
86 | " stac_item.id,\n",
87 | " datetime.fromtimestamp(stac_item.observed.seconds, tz=timezone.utc).isoformat(),\n",
88 | " stac_item.view.off_nadir.value,\n",
89 | " off_nadir.value,\n",
90 | " True))"
91 | ]
92 | },
93 | {
94 | "cell_type": "markdown",
95 | "metadata": {},
96 | "source": [
97 | "Notice that the off_nadir value is printed with some floating point limiting (`:.3f`). Printing out the full value in python would introduce floating point precicion errors for the item. This is because the FloatValue is a float32, but python want's all number to be as large and precise as possible. This is something to be aware of when using Python in general.\n",
98 | "\n",
99 | "Also, even though we set the `limit` to 20, the print out only returns 2 values. For this location, there were only two scenes that were captured with that off nadir angle.\n",
100 | "\n",
101 | "## Limits and Offsets\n",
102 | "It may be that while using the `client.search` request, you've requested so much data that you overrun the 15 second timeout. If that's the case, then you can search for data using `limit` and `offset`.\n",
103 | "\n",
104 | "For most simple requests, a `limit` and `offset` are not necessary. But if you're going through all the data in the archive or if you've constructed a complex request, it may be necessary."
105 | ]
106 | },
107 | {
108 | "cell_type": "code",
109 | "execution_count": 2,
110 | "metadata": {},
111 | "outputs": [
112 | {
113 | "name": "stdout",
114 | "output_type": "stream",
115 | "text": [
116 | "stac item id: 20190829T172909Z_1600_POM1_ST2_P at 200 index in request\n",
117 | "stac item id: 20190829T172054Z_1354_POM1_ST2_P at 400 index in request\n",
118 | "stac item id: 20190829T171353Z_1152_POM1_ST2_P at 600 index in request\n",
119 | "stac item id: 20190829T170044Z_770_POM1_ST2_P at 800 index in request\n",
120 | "stac item id: 20190829T165121Z_495_POM1_ST2_P at 1000 index in request\n"
121 | ]
122 | }
123 | ],
124 | "source": [
125 | "from datetime import date\n",
126 | "from nsl.stac.client import NSLClient\n",
127 | "from nsl.stac import StacRequest, GeometryData, ProjectionData, enum\n",
128 | "from nsl.stac.utils import pb_timestampfield\n",
129 | "# wkt geometry of Travis County, Texas\n",
130 | "travis_wkt = \"POLYGON((-97.9736 30.6251, -97.9188 30.6032, -97.9243 30.5703, \\\n",
131 | " -97.8695 30.5484, -97.8476 30.4717, -97.7764 30.4279, \\\n",
132 | " -97.5793 30.4991, -97.3711 30.4170, -97.4916 30.2089, \\\n",
133 | " -97.6505 30.0719, -97.6669 30.0665, -97.7107 30.0226, \\\n",
134 | " -98.1708 30.3567, -98.1270 30.4279, -98.0503 30.6251))\" \n",
135 | "\n",
136 | "# Query data from before September 1, 2019\n",
137 | "time_filter = pb_timestampfield(value=date(2019, 9, 1), rel_type=enum.FilterRelationship.LTE)\n",
138 | "\n",
139 | "geometry_data = GeometryData(wkt=travis_wkt, \n",
140 | " proj=ProjectionData(epsg=4326))\n",
141 | "\n",
142 | "# get a client interface to the gRPC channel\n",
143 | "client = NSLClient()\n",
144 | "\n",
145 | "limit = 200\n",
146 | "offset = 0\n",
147 | "total = 0\n",
148 | "while total < 1000:\n",
149 | " # make our request\n",
150 | " stac_request = StacRequest(datetime=time_filter, intersects=geometry_data, limit=limit, offset=offset)\n",
151 | " # prepare request for next \n",
152 | " offset += limit\n",
153 | " for stac_item in client.search(stac_request):\n",
154 | " total += 1\n",
155 | " # do cool things with data here\n",
156 | " if total % limit == 0:\n",
157 | " print(\"stac item id: {0} at {1} index in request\".format(stac_item.id, total))"
158 | ]
159 | },
160 | {
161 | "cell_type": "markdown",
162 | "metadata": {},
163 | "source": [
164 | "As you can see in the above results, the `search` request is made 5 different times in the while loop. Each time the `limit` is 200 and the `offset` is increased by 200. "
165 | ]
166 | }
167 | ],
168 | "metadata": {
169 | "kernelspec": {
170 | "display_name": "Python 3",
171 | "language": "python",
172 | "name": "python3"
173 | },
174 | "language_info": {
175 | "codemirror_mode": {
176 | "name": "ipython",
177 | "version": 3
178 | },
179 | "file_extension": ".py",
180 | "mimetype": "text/x-python",
181 | "name": "python",
182 | "nbconvert_exporter": "python",
183 | "pygments_lexer": "ipython3",
184 | "version": "3.9.2"
185 | }
186 | },
187 | "nbformat": 4,
188 | "nbformat_minor": 2
189 | }
190 |
--------------------------------------------------------------------------------
/AdvancedExamples.md:
--------------------------------------------------------------------------------
1 | # Complex Queries
2 | Below are a few complex queries, downloading and filtering of StacItem results. You can also look through the [test directory](./test) for more examples of how to use queries.
3 |
4 | - [View Optical](#view)
5 | - [Limits and Offsets](#limits-and-offsets)
6 |
7 | ## View
8 | Proto3, the version of proto definition used for gRPC STAC, creates messages that are similar to structs in C. One of the drawbacks to structs is that for floats, integers, enums and booleans all fields that are not set are initialized to a value of zero. In geospatial sciences, defaulting to zero can cause problems in that an algorithm or user might interpret that as a true value.
9 |
10 | To get around this, Google uses wrappers for floats and ints and some of those are used in gRPC STAC. For example, some of the fields like `off_nadir`, `azimuth` and others in the View protobuf message, [View](https://geo-grpc.github.io/api/#epl.protobuf.v1.View), use the `google.protobuf.FloatValue` wrapper. As a consequence, accessing those values requires calling `field_name.value` instead of `field_name` to access the data.
11 |
12 | For our ground sampling distance query we're using another query filter; this time it's the [FloatFilter](https://geo-grpc.github.io/api/#epl.protobuf.v1.FloatFilter). It behaves just as the TimestampFilter, but with floats for `value` or for `start` + `end`.
13 |
14 | In order to make our off nadir query we need to insert it inside of an [ViewRequest](https://geo-grpc.github.io/api/#epl.protobuf.v1.ViewRequest) container and set that to the `view` field of the `StacRequest`.
15 |
16 |
17 |
18 |
19 |
20 |
21 | Expand Python Code Sample
22 |
23 |
24 | ```python
25 | from datetime import datetime, timezone
26 | from nsl.stac.client import NSLClient
27 | from nsl.stac import StacRequest, GeometryData, ProjectionData, ViewRequest, View, FloatFilter
28 | from nsl.stac.enum import FilterRelationship, Mission
29 |
30 | # create our off_nadir query to only return data captured with an angle of less than or
31 | # equal to 10 degrees
32 | off_nadir = FloatFilter(value=10.0, rel_type=FilterRelationship.LTE)
33 | # create an eo_request container
34 | view_request = ViewRequest(off_nadir=off_nadir)
35 | # define ourselves a point in Texas
36 | ut_stadium_wkt = "POINT(-97.7323317 30.2830764)"
37 | geometry_data = GeometryData(wkt=ut_stadium_wkt, proj=ProjectionData(epsg=4326))
38 | # create a StacRequest with geometry, eo_request and a limit of 20
39 | stac_request = StacRequest(intersects=geometry_data, view=view_request, limit=20)
40 |
41 | # get a client interface to the gRPC channel
42 | client = NSLClient()
43 | for stac_item in client.search(stac_request):
44 | print("{0} STAC item '{1}' from {2}\nhas a off_nadir {3:.3f}, which should be less than or "
45 | "equal to requested off_nadir {4}: confirmed {5}".format(
46 | stac_item.mission,
47 | stac_item.id,
48 | datetime.fromtimestamp(stac_item.observed.seconds, tz=timezone.utc).isoformat(),
49 | stac_item.view.off_nadir.value,
50 | off_nadir.value,
51 | True))
52 | ```
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 | Expand Python Print-out
61 |
62 |
63 | ```text
64 | found NSL_ID under profile name `default`
65 | nsl client connecting to stac service at: api.nearspacelabs.net:9090
66 |
67 | authorizing NSL_ID: ``
68 | attempting NSL authentication against https://api.nearspacelabs.net/oauth/token...
69 | successfully authenticated with NSL_ID: ``
70 | will attempt re-authorization in 60 minutes
71 | SWIFT STAC item '20200703T174443Z_650_POM1_ST2_P' from 2020-07-03T17:44:43+00:00
72 | has a off_nadir 1.980, which should be less than or equal to requested off_nadir 10.0: confirmed True
73 | SWIFT STAC item '20200703T174028Z_513_POM1_ST2_P' from 2020-07-03T17:40:28+00:00
74 | has a off_nadir 9.310, which should be less than or equal to requested off_nadir 10.0: confirmed True
75 | SWIFT STAC item '20200703T174021Z_509_POM1_ST2_P' from 2020-07-03T17:40:21+00:00
76 | has a off_nadir 8.052, which should be less than or equal to requested off_nadir 10.0: confirmed True
77 | SWIFT STAC item '20190822T183518Z_746_POM1_ST2_P' from 2019-08-22T18:35:18+00:00
78 | has a off_nadir 9.423, which should be less than or equal to requested off_nadir 10.0: confirmed True
79 | SWIFT STAC item '20190822T183510Z_742_POM1_ST2_P' from 2019-08-22T18:35:10+00:00
80 | has a off_nadir 9.349, which should be less than or equal to requested off_nadir 10.0: confirmed True
81 | SWIFT STAC item '20190821T180042Z_568_POM1_ST2_P' from 2019-08-21T18:00:42+00:00
82 | has a off_nadir 9.685, which should be less than or equal to requested off_nadir 10.0: confirmed True
83 | SWIFT STAC item '20190821T180028Z_561_POM1_ST2_P' from 2019-08-21T18:00:28+00:00
84 | has a off_nadir 8.978, which should be less than or equal to requested off_nadir 10.0: confirmed True
85 | SWIFT STAC item '20190821T180002Z_548_POM1_ST2_P' from 2019-08-21T18:00:02+00:00
86 | has a off_nadir 9.282, which should be less than or equal to requested off_nadir 10.0: confirmed True
87 | SWIFT STAC item '20190821T175954Z_544_POM1_ST2_P' from 2019-08-21T17:59:54+00:00
88 | has a off_nadir 8.855, which should be less than or equal to requested off_nadir 10.0: confirmed True
89 | SWIFT STAC item '20190821T175943Z_539_POM1_ST2_P' from 2019-08-21T17:59:43+00:00
90 | has a off_nadir 8.956, which should be less than or equal to requested off_nadir 10.0: confirmed True
91 | SWIFT STAC item '20190818T174304Z_205_POM1_ST2_P' from 2019-08-18T17:43:04+00:00
92 | has a off_nadir 7.015, which should be less than or equal to requested off_nadir 10.0: confirmed True
93 | SWIFT STAC item '20190818T174227Z_181_POM1_ST2_P' from 2019-08-18T17:42:27+00:00
94 | has a off_nadir 8.237, which should be less than or equal to requested off_nadir 10.0: confirmed True
95 | ```
96 |
97 |
98 |
99 |
100 |
101 |
102 | Notice that the off_nadir value is printed with some floating point limiting (`:.3f`). Printing out the full value in python would introduce floating point precicion errors for the item. This is because the FloatValue is a float32, but python want's all number to be as large and precise as possible. This is something to be aware of when using Python in general.
103 |
104 | Also, even though we set the `limit` to 20, the print out only returns 2 values. For this location, there were only two scenes that were captured with that off nadir angle.
105 |
106 | ## Limits and Offsets
107 | It may be that while using the `client.search` request, you've requested so much data that you overrun the 15 second timeout. If that's the case, then you can search for data using `limit` and `offset`.
108 |
109 | For most simple requests, a `limit` and `offset` are not necessary. But if you're going through all the data in the archive or if you've constructed a complex request, it may be necessary.
110 |
111 |
112 |
113 |
114 |
115 | Expand Python Code Sample
116 |
117 |
118 | ```python
119 | from datetime import date
120 | from nsl.stac.client import NSLClient
121 | from nsl.stac import StacRequest, GeometryData, ProjectionData, enum
122 | from nsl.stac.utils import pb_timestampfield
123 | # wkt geometry of Travis County, Texas
124 | travis_wkt = "POLYGON((-97.9736 30.6251, -97.9188 30.6032, -97.9243 30.5703, \
125 | -97.8695 30.5484, -97.8476 30.4717, -97.7764 30.4279, \
126 | -97.5793 30.4991, -97.3711 30.4170, -97.4916 30.2089, \
127 | -97.6505 30.0719, -97.6669 30.0665, -97.7107 30.0226, \
128 | -98.1708 30.3567, -98.1270 30.4279, -98.0503 30.6251))"
129 |
130 | # Query data from before September 1, 2019
131 | time_filter = pb_timestampfield(value=date(2019, 9, 1), rel_type=enum.FilterRelationship.LTE)
132 |
133 | geometry_data = GeometryData(wkt=travis_wkt,
134 | proj=ProjectionData(epsg=4326))
135 |
136 | # get a client interface to the gRPC channel
137 | client = NSLClient()
138 |
139 | limit = 200
140 | offset = 0
141 | total = 0
142 | while total < 1000:
143 | # make our request
144 | stac_request = StacRequest(datetime=time_filter, intersects=geometry_data, limit=limit, offset=offset)
145 | # prepare request for next
146 | offset += limit
147 | for stac_item in client.search(stac_request):
148 | total += 1
149 | # do cool things with data here
150 | if total % limit == 0:
151 | print("stac item id: {0} at {1} index in request".format(stac_item.id, total))
152 | ```
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 | Expand Python Print-out
161 |
162 |
163 | ```text
164 | stac item id: 20190829T172909Z_1600_POM1_ST2_P at 200 index in request
165 | stac item id: 20190829T172054Z_1354_POM1_ST2_P at 400 index in request
166 | stac item id: 20190829T171353Z_1152_POM1_ST2_P at 600 index in request
167 | stac item id: 20190829T170044Z_770_POM1_ST2_P at 800 index in request
168 | stac item id: 20190829T165121Z_495_POM1_ST2_P at 1000 index in request
169 | ```
170 |
171 |
172 |
173 |
174 |
175 |
176 | As you can see in the above results, the `search` request is made 5 different times in the while loop. Each time the `limit` is 200 and the `offset` is increased by 200.
177 |
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM python:3.7.7-slim-buster
2 |
3 | RUN DEBIAN_FRONTEND=noninteractive apt-get update
4 |
5 | WORKDIR /opt/src/stac-client-python
6 | COPY ./ /opt/src/stac-client-python
7 |
8 | RUN pip3 install --upgrade pip
9 | RUN pip3 install .
10 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
--------------------------------------------------------------------------------
/README_files/README_1_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nearspacelabs/stac-client-python/e3a5695075a2439c63e95f80fb2d01f83fb483ff/README_files/README_1_1.jpg
--------------------------------------------------------------------------------
/README_files/README_20_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nearspacelabs/stac-client-python/e3a5695075a2439c63e95f80fb2d01f83fb483ff/README_files/README_20_0.png
--------------------------------------------------------------------------------
/README_files/README_20_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nearspacelabs/stac-client-python/e3a5695075a2439c63e95f80fb2d01f83fb483ff/README_files/README_20_1.png
--------------------------------------------------------------------------------
/README_files/README_20_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nearspacelabs/stac-client-python/e3a5695075a2439c63e95f80fb2d01f83fb483ff/README_files/README_20_2.png
--------------------------------------------------------------------------------
/StacItem.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## STAC Item Properties\n",
8 | "A STAC item is a metadata container for spatially and temporally bounded earth observation data. The data can be aerial imagery, radar data or other types of earth observation data. A STAC item has metadata properties describing the dataset and `Assets` that contain information for downloading the data being described. Almost all properties of a STAC item are aspects you can query by using a `StacRequest` with different types of filters.\n",
9 | "\n",
10 | "Return to [README.md](./README.md)"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 1,
16 | "metadata": {},
17 | "outputs": [
18 | {
19 | "name": "stdout",
20 | "output_type": "stream",
21 | "text": [
22 | "nsl client connecting to stac service at: api.nearspacelabs.net:9090\n",
23 | "\n",
24 | "attempting NSL authentication against https://api.nearspacelabs.net\n",
25 | "fetching new authorization in 60 minutes\n"
26 | ]
27 | }
28 | ],
29 | "source": [
30 | "from nsl.stac.client import NSLClient\n",
31 | "from nsl.stac import StacRequest\n",
32 | "\n",
33 | "stac_request = StacRequest(id='20190822T183518Z_746_POM1_ST2_P')\n",
34 | "\n",
35 | "# get a client interface to the gRPC channel\n",
36 | "client = NSLClient()\n",
37 | "# for this request we might as well use the search one, as STAC ids ought to be unique\n",
38 | "stac_item = client.search_one(stac_request)"
39 | ]
40 | },
41 | {
42 | "cell_type": "markdown",
43 | "metadata": {},
44 | "source": [
45 | "Here are the sections where we go into more detail about properties and assets.\n",
46 | "\n",
47 | "- [ID, Temporal, and Spatial](#id-temporal-and-spatial)\n",
48 | "- [Assets](#assets)\n",
49 | "- [Electro Optical](#electro-optical)\n",
50 | "\n",
51 | "Printing out all the data demonstrates what is typically in a StacItem:"
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": 2,
57 | "metadata": {},
58 | "outputs": [
59 | {
60 | "name": "stdout",
61 | "output_type": "stream",
62 | "text": [
63 | "id: \"20190822T183518Z_746_POM1_ST2_P\"\n",
64 | "collection: \"NSL_SCENE\"\n",
65 | "properties {\n",
66 | " type_url: \"nearspacelabs.com/proto/st.protobuf.v1.NslDatast.protobuf.v1.NslData/st.protobuf.v1.NslData\"\n",
67 | " value: \"\\n\\340\\014\\n\\03620190822T162258Z_TRAVIS_COUNTY\\\"\\003 \\352\\0052\\03520200702T102306Z_746_ST2_POM1:\\03520190822T183518Z_746_POM1_ST2:\\03520200702T101632Z_746_ST2_POM1:\\03520200702T102302Z_746_ST2_POM1:\\03520200702T102306Z_746_ST2_POM1B\\03520190822T183518Z_746_POM1_ST2H\\001R\\374\\n\\n$\\004\\304{?\\216\\371\\350=\\376\\377\\306>\\300\\327\\256\\275\\323rv?2\\026*D3Qy6\\177>\\3675\\000\\000\\200?\\022\\024\\r+}\\303\\302\\025\\033;\\362A\\0353}\\367\\300%g\\232\\250@\\022\\024\\r\\026}\\303\\302\\025\\376?\\362A\\035\\000\\367\\235@%\\232\\t\\331?\\022\\024\\r\\351|\\303\\302\\025\\021A\\362A\\035M\\370\\033\\301%g\\016\\226\\277\\022\\024\\r\\201|\\303\\302\\025\\3709\\362A\\035\\000\\252\\245@%\\315\\3547?\\022\\024\\r\\310|\\303\\302\\025\\245G\\362A\\035\\232\\315l\\301%3\\347\\270\\300\\022\\024\\rq|\\303\\302\\025\\2149\\362A\\035\\000\\376o@%\\000(\\017@\\022\\024\\rD|\\303\\302\\025oD\\362A\\0353\\323\\302\\301%\\315\\306\\230\\300\\022\\024\\r\\031|\\303\\302\\025\\035=\\362A\\035g\\277$A%\\000\\340\\231?\\022\\024\\rE|\\303\\302\\025\\215I\\362A\\0353\\275z\\300%g\\020\\236\\300\\022\\024\\r\\345{\\303\\302\\0258C\\362A\\035\\0008\\242?%\\232\\231\\226\\277\\022\\024\\r\\010|\\303\\302\\025!I\\362A\\0353\\377\\212\\300%\\000V\\241\\300\\022\\024\\r|{\\303\\302\\025\\207F\\362A\\0353\\203Y@%\\315,\\313\\276\\022\\024\\r\\001{\\303\\302\\025FJ\\362A\\035g^\\025@%\\315\\010\\214?\\022\\024\\r\\313z\\303\\302\\025\\353H\\362A\\0353\\3377@%g\\326\\325\\277\\022\\024\\rjz\\303\\302\\025\\260@\\362A\\035\\315F\\006A%g\\246[\\277\\022\\024\\r\\035z\\303\\302\\0254E\\362A\\035\\232\\001|@%\\232!\\265?\\022\\024\\r\\330y\\303\\302\\025\\320@\\362A\\0353Sa\\300%\\000@\\245>\\022\\024\\r\\362y\\303\\302\\025zE\\362A\\035\\232\\221\\020\\300%3U\\206@\\022\\024\\r\\337y\\303\\302\\025\\210F\\362A\\035g\\246l?%gf\\234\\276\\022\\024\\r\\335y\\303\\302\\025aF\\362A\\035\\000\\260\\023@%\\315,#\\277\\022\\024\\r\\321y\\303\\302\\025\\234F\\362A\\035\\000 7@%\\232!\\221?\\022\\024\\r\\307y\\303\\302\\025\\177F\\362A\\035\\232\\371\\371?%\\315\\224\\225?\\022\\024\\r\\213y\\303\\302\\025\\350@\\362A\\0353\\'\\343\\300%3g&\\300\\022\\024\\r\\300y\\303\\302\\025\\tF\\362A\\035\\315h\\312@%g\\266\\013?\\022\\024\\r_y\\303\\302\\025\\236A\\362A\\035\\315\\340\\311@%3\\363j>\\022\\024\\r\\271x\\303\\302\\025G?\\362A\\0353\\334\\272\\301%gb\\201\\300\\022\\024\\r\\307x\\303\\302\\025WG\\362A\\035\\000|6\\301%\\232\\231i>\\022\\024\\r\\200x\\303\\302\\025\\016F\\362A\\035\\315\\007\\244\\301%\\315L\\000>\\022\\024\\rqx\\303\\302\\025jI\\362A\\035\\315\\254\\007\\301%\\232E\\247?\\022\\024\\rjx\\303\\302\\025(I\\362A\\035\\232\\305\\000\\301%\\315L\\'>\\022\\024\\r\\027x\\303\\302\\025\\356A\\362A\\035\\232I\\246?%\\315\\004\\246\\277\\022\\024\\r\\010x\\303\\302\\025AB\\362A\\035\\232y\\305\\300%\\315\\3740?\\022\\024\\r\\032x\\303\\302\\0257D\\362A\\0353\\003\\275\\277%\\232\\311.?\\022\\024\\r\\002x\\303\\302\\025&C\\362A\\035\\315\\014\\301\\277%g*2@\\022\\024\\r\\361w\\303\\302\\025\\330B\\362A\\035\\000T\\347\\300%\\232\\235\\025\\300\\022\\024\\r\\372v\\303\\302\\025\\030<\\362A\\0353\\323\\364?%gNt\\300\\022\\024\\r;w\\303\\302\\025\\273I\\362A\\03533\\335>%\\232\\025\\213?\\022\\024\\r\\324v\\303\\302\\025QC\\362A\\035\\315,\\305\\277%\\232\\375\\035@\\022\\024\\r\\340v\\303\\302\\025@G\\362A\\035\\315@\\234\\300%\\232)\\342?\\022\\024\\r\\312v\\303\\302\\025yC\\362A\\035\\315\\214\\247\\276%g\\246\\375>\\022\\024\\r\\222v\\303\\302\\025\\233A\\362A\\035\\315\\334\\244?%g\\366\\035\\277\\022\\024\\r\\256v\\303\\302\\025\\\\F\\362A\\0353G\\204@%\\232A\\017@\\022\\024\\rov\\303\\302\\025\\215=\\362A\\035\\232\\325\\340@%3\\263\\033\\276\\022\\024\\r\\206v\\303\\302\\025SC\\362A\\0353\\263k?%3\\363\\177\\276\\022\\024\\r\\267v\\303\\302\\025NK\\362A\\035\\315\\0148\\277%3\\323\\000>\\022\\024\\r\\255v\\303\\302\\025kK\\362A\\035gf4\\277%\\000\\312\\201\\277\\022\\024\\r)v\\303\\302\\025\\316=\\362A\\035\\232\\271Z\\277%\\315\\014\\375\\277\\022\\024\\r_v\\303\\302\\025\\356H\\362A\\035\\315\\004n@%3\\243\\240\\276\\022\\024\\r7v\\303\\302\\025\\350H\\362A\\0353#\\212@%g~\\272?\\022\\024\\r\\314u\\303\\302\\025Y;\\362A\\035\\000\\000F=%gF\\253?\\022\\024\\r\\276u\\303\\302\\025q>\\362A\\0353/\\234\\300%g\\246T\\277\\022\\024\\r\\266u\\303\\302\\025\\321>\\362A\\035\\315 \\272\\300%3SW\\300\\022\\024\\r\\307u\\303\\302\\025\\211A\\362A\\035\\000$\\264\\300%3\\243\\r\\277\\022\\024\\r\\360u\\303\\302\\025RK\\362A\\0353\\347\\231@%\\315\\325\\036\\300\\022\\024\\r\\262u\\303\\302\\025\\035F\\362A\\0353\\2633\\276%\\232i3?\\032#m_3009743_sw_14_1_20160928_20161129\\\"Y\\t&\\2068NM\\357\\\"A\\021\\003\\3272rL\\217IA\\031\\267G\\014x\\260\\375\\\"A!\\202I\\225>\\020\\222IA*3\\0221+proj=utm +zone=14 +datum=NAD83 +units=m +no_defs*\\005\\r\\205[\\\"A2\\005\\r\\000\\356\\\\@:\\005\\r\\227\\210\\306AB\\005\\r\\205E\\257@\\022\\315\\001\\n e502fe83507f0d28c826f33619a678e9\\022\\03120200806T033934Z_SWIFTERA\\030\\010 \\377\\377\\377\\377\\377\\377\\377\\377\\377\\001(A0\\0018\\340\\025@\\330\\247\\004H\\270\\275\\004R\\03620190822T162258Z_TRAVIS_COUNTYR\\03120200701T112634Z_SWIFTERAR\\03120200701T112634Z_SWIFTERAR\\03120200701T112634Z_SWIFTERAX\\263\\027\"\n",
68 | "}\n",
69 | "assets {\n",
70 | " key: \"GEOTIFF_RGB\"\n",
71 | " value {\n",
72 | " href: \"https://api.nearspacelabs.net/download/20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.tif\"\n",
73 | " type: \"image/vnd.stac.geotiff\"\n",
74 | " eo_bands: RGB\n",
75 | " asset_type: GEOTIFF\n",
76 | " cloud_platform: GCP\n",
77 | " bucket_manager: \"Near Space Labs\"\n",
78 | " bucket_region: \"us-central1\"\n",
79 | " bucket: \"swiftera-processed-data\"\n",
80 | " object_path: \"20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.tif\"\n",
81 | " }\n",
82 | "}\n",
83 | "assets {\n",
84 | " key: \"THUMBNAIL_RGB\"\n",
85 | " value {\n",
86 | " href: \"https://api.nearspacelabs.net/download/20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.png\"\n",
87 | " type: \"image/png\"\n",
88 | " eo_bands: RGB\n",
89 | " asset_type: THUMBNAIL\n",
90 | " cloud_platform: GCP\n",
91 | " bucket_manager: \"Near Space Labs\"\n",
92 | " bucket_region: \"us-central1\"\n",
93 | " bucket: \"swiftera-processed-data\"\n",
94 | " object_path: \"20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.png\"\n",
95 | " }\n",
96 | "}\n",
97 | "geometry {\n",
98 | " wkb: \"\\001\\006\\000\\000\\000\\001\\000\\000\\000\\001\\003\\000\\000\\000\\001\\000\\000\\000\\005\\000\\000\\000\\352\\244L\\267\\311oX\\300\\316\\340\\320\\247\\234I>@\\241\\273\\2606\\267oX\\300<\\002\\205\\'EG>@\\031\\003\\203\\307\\266nX\\3001z\\244\\372\\233G>@CCAI\\306nX\\300\\326\\013\\351\\023\\343I>@\\352\\244L\\267\\311oX\\300\\316\\340\\320\\247\\234I>@\"\n",
99 | " proj {\n",
100 | " epsg: 4326\n",
101 | " }\n",
102 | " envelope {\n",
103 | " xmin: -97.7466867683867\n",
104 | " ymin: 30.278398961994966\n",
105 | " xmax: -97.72990596574927\n",
106 | " ymax: 30.288621181865743\n",
107 | " proj {\n",
108 | " epsg: 4326\n",
109 | " }\n",
110 | " }\n",
111 | " simple: STRONG_SIMPLE\n",
112 | "}\n",
113 | "bbox {\n",
114 | " xmin: -97.7466867683867\n",
115 | " ymin: 30.278398961994966\n",
116 | " xmax: -97.72990596574927\n",
117 | " ymax: 30.288621181865743\n",
118 | " proj {\n",
119 | " epsg: 4326\n",
120 | " }\n",
121 | "}\n",
122 | "datetime {\n",
123 | " seconds: 1566498918\n",
124 | " nanos: 505476000\n",
125 | "}\n",
126 | "observed {\n",
127 | " seconds: 1566498918\n",
128 | " nanos: 505476000\n",
129 | "}\n",
130 | "created {\n",
131 | " seconds: 1596743811\n",
132 | " nanos: 247169000\n",
133 | "}\n",
134 | "updated {\n",
135 | " seconds: 1612193286\n",
136 | " nanos: 12850810\n",
137 | "}\n",
138 | "platform_enum: SWIFT_2\n",
139 | "platform: \"SWIFT_2\"\n",
140 | "instrument_enum: POM_1\n",
141 | "instrument: \"POM_1\"\n",
142 | "constellation: \"UNKNOWN_CONSTELLATION\"\n",
143 | "mission_enum: SWIFT\n",
144 | "mission: \"SWIFT\"\n",
145 | "gsd {\n",
146 | " value: 0.20000000298023224\n",
147 | "}\n",
148 | "eo {\n",
149 | "}\n",
150 | "view {\n",
151 | " off_nadir {\n",
152 | " value: 9.42326831817627\n",
153 | " }\n",
154 | " azimuth {\n",
155 | " value: -74.85270690917969\n",
156 | " }\n",
157 | " sun_azimuth {\n",
158 | " value: 181.26959228515625\n",
159 | " }\n",
160 | " sun_elevation {\n",
161 | " value: 71.41288757324219\n",
162 | " }\n",
163 | "}\n",
164 | "\n"
165 | ]
166 | }
167 | ],
168 | "source": [
169 | "print(stac_item)"
170 | ]
171 | },
172 | {
173 | "cell_type": "markdown",
174 | "metadata": {},
175 | "source": [
176 | "In addition to spatial and temporal details there are also details about the capturing device. We use both strings (to stay compliant with STAC JSON) and enum fields for these details. The `platform_enum` and `platform` is the model of the vehicle holding the sensor. The `instrument_enum` and `instrument` is the sensor that collected the scenes. In our case we're using `mission_enum` and `mission` to represent a class of flight vehicles that we're flying. In the case of the Landsat satellite program the breakdown would be:\n",
177 | "\n",
178 | " * `platform_enum`: `enum.PLATFORM.LANDSAT_8`\n",
179 | " * `sensor_enum`: `enum.SENSOR.OLI_TIRS`\n",
180 | " * `mission_enum`: `enum.MISSION.LANDSAT`\n",
181 | " * `platform`: \"LANDSAT_8\"\n",
182 | " * `sensor`: \"OLI_TIRS\"\n",
183 | " * `mission`: \"LANDSAT\"\n",
184 | "\n",
185 | "\n",
186 | "### ID Temporal and Spatial\n",
187 | "Every STAC Item has a unique id, a datetime/observation, and a geometry/bbox (bounding-box)."
188 | ]
189 | },
190 | {
191 | "cell_type": "code",
192 | "execution_count": 3,
193 | "metadata": {},
194 | "outputs": [
195 | {
196 | "name": "stdout",
197 | "output_type": "stream",
198 | "text": [
199 | "STAC Item id: 20190822T183518Z_746_POM1_ST2_P\n",
200 | "\n",
201 | "STAC Item observed: seconds: 1566498918\n",
202 | "nanos: 505476000\n",
203 | "\n",
204 | "STAC Item datetime: seconds: 1566498918\n",
205 | "nanos: 505476000\n",
206 | "\n",
207 | "STAC Item bbox: xmin: -97.7466867683867\n",
208 | "ymin: 30.278398961994966\n",
209 | "xmax: -97.72990596574927\n",
210 | "ymax: 30.288621181865743\n",
211 | "proj {\n",
212 | " epsg: 4326\n",
213 | "}\n",
214 | "\n",
215 | "STAC Item geometry: wkb: \"\\001\\006\\000\\000\\000\\001\\000\\000\\000\\001\\003\\000\\000\\000\\001\\000\\000\\000\\005\\000\\000\\000\\352\\244L\\267\\311oX\\300\\316\\340\\320\\247\\234I>@\\241\\273\\2606\\267oX\\300<\\002\\205\\'EG>@\\031\\003\\203\\307\\266nX\\3001z\\244\\372\\233G>@CCAI\\306nX\\300\\326\\013\\351\\023\\343I>@\\352\\244L\\267\\311oX\\300\\316\\340\\320\\247\\234I>@\"\n",
216 | "proj {\n",
217 | " epsg: 4326\n",
218 | "}\n",
219 | "envelope {\n",
220 | " xmin: -97.7466867683867\n",
221 | " ymin: 30.278398961994966\n",
222 | " xmax: -97.72990596574927\n",
223 | " ymax: 30.288621181865743\n",
224 | " proj {\n",
225 | " epsg: 4326\n",
226 | " }\n",
227 | "}\n",
228 | "simple: STRONG_SIMPLE\n",
229 | "\n"
230 | ]
231 | }
232 | ],
233 | "source": [
234 | "print(\"STAC Item id: {}\\n\".format(stac_item.id))\n",
235 | "print(\"STAC Item observed: {}\".format(stac_item.observed))\n",
236 | "print(\"STAC Item datetime: {}\".format(stac_item.datetime))\n",
237 | "print(\"STAC Item bbox: {}\".format(stac_item.bbox))\n",
238 | "print(\"STAC Item geometry: {}\".format(stac_item.geometry))"
239 | ]
240 | },
241 | {
242 | "cell_type": "markdown",
243 | "metadata": {},
244 | "source": [
245 | "As you can see above, the `id` is a string value. The format of the id is typically not guessable (ours is based of off the time the data was processed, the image index, the platform and the sensor).\n",
246 | "\n",
247 | "The `observed` and `datetime` fields are the same value. STAC specification uses a generic field `datetime` to define the spatial component, the `S`, in STAC. We wanted a more descriptive variable, so we use `observed`, as in, the moment the scene was captured. This is a UTC timestamp in seconds and nano seconds.\n",
248 | "\n",
249 | "The `bbox` field describes the xmin, ymin, xmax, and ymax points that describe the bounding box that contains the scene. The `sr` field has an [epsg](http://www.epsg.org/) `wkid`. In this case the 4326 `wkid` indicates [WGS-84](http://epsg.io/4326)\n",
250 | "\n",
251 | "The `geometry` field has subfields `wkb`, `sr`, and `simple`. The `wkb` is a [well known binary](https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry#Well-known_binary) geometry format preferred for it's size. `sr` is the same as in the `bbox`. `simple` can be ignored.\n",
252 | "\n",
253 | "Below we demonstrate how you can create python `datetime` objects:"
254 | ]
255 | },
256 | {
257 | "cell_type": "code",
258 | "execution_count": 4,
259 | "metadata": {},
260 | "outputs": [
261 | {
262 | "name": "stdout",
263 | "output_type": "stream",
264 | "text": [
265 | "UTC Observed Scene: 2019-08-22 18:35:18\n",
266 | "UTC Processed Data: 2020-08-06 19:56:51\n",
267 | "UTC Updated Metadata: 2021-02-01 15:28:06\n"
268 | ]
269 | }
270 | ],
271 | "source": [
272 | "from datetime import datetime\n",
273 | "print(\"UTC Observed Scene: {}\".format(datetime.utcfromtimestamp(stac_item.observed.seconds)))\n",
274 | "print(\"UTC Processed Data: {}\".format(datetime.utcfromtimestamp(stac_item.created.seconds)))\n",
275 | "print(\"UTC Updated Metadata: {}\".format(datetime.utcfromtimestamp(stac_item.updated.seconds)))"
276 | ]
277 | },
278 | {
279 | "cell_type": "markdown",
280 | "metadata": {},
281 | "source": [
282 | "Updated is when the metadata was last updated. Typically that will be right after it's `processed` timestamp.\n",
283 | "\n",
284 | "Below is a demo of using shapely to get at the geometry data."
285 | ]
286 | },
287 | {
288 | "cell_type": "code",
289 | "execution_count": 5,
290 | "metadata": {},
291 | "outputs": [
292 | {
293 | "name": "stdout",
294 | "output_type": "stream",
295 | "text": [
296 | "wkt printout of polygon:\n",
297 | "MULTIPOLYGON (((-97.7466867683867 30.28754662370266, -97.74555747279238 30.27839896199497, -97.72990596574927 30.27972380176124, -97.73085242627444 30.28862118186574, -97.7466867683867 30.28754662370266)))\n",
298 | "\n",
299 | "centroid of polygon:\n",
300 | "POINT (-97.738289581264 30.28357703330576)\n",
301 | "\n",
302 | "bounds:\n",
303 | "POLYGON ((-97.7466867683867 30.27839896199497, -97.7466867683867 30.28862118186574, -97.72990596574927 30.28862118186574, -97.72990596574927 30.27839896199497, -97.7466867683867 30.27839896199497))\n",
304 | "\n"
305 | ]
306 | }
307 | ],
308 | "source": [
309 | "from shapely.geometry import Polygon\n",
310 | "from shapely.wkb import loads\n",
311 | "\n",
312 | "print(\"wkt printout of polygon:\\n{}\\n\".format(loads(stac_item.geometry.wkb)))\n",
313 | "print(\"centroid of polygon:\\n{}\\n\".format(loads(stac_item.geometry.wkb).centroid))\n",
314 | "print(\"bounds:\\n{}\\n\".format(Polygon.from_bounds(stac_item.bbox.xmin, \n",
315 | " stac_item.bbox.ymin, \n",
316 | " stac_item.bbox.xmax, \n",
317 | " stac_item.bbox.ymax)))"
318 | ]
319 | },
320 | {
321 | "cell_type": "markdown",
322 | "metadata": {},
323 | "source": [
324 | "### Assets\n",
325 | "Each STAC item should have at least one asset. An asset should be all the information you'll need to download the asset in question. For Near Space Labs customers, you'll be using the href, but you can also see the private bucket details of the asset. In protobuf the asset map has a key for each asset available. There's no part of the STAC specification for defining key names. Near Space Labs typically uses the data type, the optical bands and the cloud storage provider to construct a key name."
326 | ]
327 | },
328 | {
329 | "cell_type": "code",
330 | "execution_count": 6,
331 | "metadata": {},
332 | "outputs": [
333 | {
334 | "name": "stdout",
335 | "output_type": "stream",
336 | "text": [
337 | "there are 2 assets\n",
338 | "THUMBNAIL\n",
339 | " href: https://api.nearspacelabs.net/download/20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.png\n",
340 | " type: image/png\n",
341 | " protobuf enum number and name: 9, THUMBNAIL\n",
342 | "\n",
343 | "GEOTIFF\n",
344 | " href: https://api.nearspacelabs.net/download/20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.tif\n",
345 | " type: image/vnd.stac.geotiff\n",
346 | " protobuf enum number and name: 2, GEOTIFF\n",
347 | "\n"
348 | ]
349 | }
350 | ],
351 | "source": [
352 | "from nsl.stac import Asset, utils\n",
353 | "from nsl.stac.enum import AssetType\n",
354 | "def print_asset(asset: Asset):\n",
355 | " asset_name = AssetType(asset.asset_type).name\n",
356 | " print(\" href: {}\".format(asset.href))\n",
357 | " print(\" type: {}\".format(asset.type))\n",
358 | " print(\" protobuf enum number and name: {0}, {1}\".format(asset.asset_type, asset_name))\n",
359 | " print()\n",
360 | "\n",
361 | "print(\"there are {} assets\".format(len(stac_item.assets)))\n",
362 | "print(AssetType.THUMBNAIL.name)\n",
363 | "print_asset(utils.get_asset(stac_item, asset_type=AssetType.THUMBNAIL))\n",
364 | "\n",
365 | "print(AssetType.GEOTIFF.name)\n",
366 | "print_asset(utils.get_asset(stac_item, asset_type=AssetType.GEOTIFF))"
367 | ]
368 | },
369 | {
370 | "cell_type": "markdown",
371 | "metadata": {},
372 | "source": [
373 | "As you can see above, our data only consists of jpg thumbnails and Geotiffs. But there can be other data stored in Assets in the future.\n",
374 | "\n",
375 | "You can read more details about Assets [here](https://geo-grpc.github.io/api/#epl.protobuf.Asset)\n",
376 | "\n",
377 | "### View\n",
378 | "Some imagery analysis tools require knowing certain types of angular information. Here's a printout of the information we've collected with data. A summary of View values can be found [here](https://geo-grpc.github.io/api/#epl.protobuf.v1.View)."
379 | ]
380 | },
381 | {
382 | "cell_type": "code",
383 | "execution_count": 7,
384 | "metadata": {},
385 | "outputs": [
386 | {
387 | "name": "stdout",
388 | "output_type": "stream",
389 | "text": [
390 | "off_nadir {\n",
391 | " value: 9.42326831817627\n",
392 | "}\n",
393 | "azimuth {\n",
394 | " value: -74.85270690917969\n",
395 | "}\n",
396 | "sun_azimuth {\n",
397 | " value: 181.26959228515625\n",
398 | "}\n",
399 | "sun_elevation {\n",
400 | " value: 71.41288757324219\n",
401 | "}\n",
402 | "\n"
403 | ]
404 | }
405 | ],
406 | "source": [
407 | "print(stac_item.view)"
408 | ]
409 | },
410 | {
411 | "cell_type": "markdown",
412 | "metadata": {},
413 | "source": [
414 | "These `sun_azimuth`, `sun_elevation`, `off_nadir` and `azimuth` are all boxed in the [google.protobuf.FloatValue type](https://developers.google.com/protocol-buffers/docs/reference/csharp/class/google/protobuf/well-known-types/float-value). To get at the value you must access the `value` field."
415 | ]
416 | },
417 | {
418 | "cell_type": "code",
419 | "execution_count": 8,
420 | "metadata": {},
421 | "outputs": [
422 | {
423 | "name": "stdout",
424 | "output_type": "stream",
425 | "text": [
426 | "sun_azimuth: 181.26959\n",
427 | "sun_elevation: 71.41289\n",
428 | "off_nadir: 9.42327\n",
429 | "azimuth: -74.85271\n"
430 | ]
431 | }
432 | ],
433 | "source": [
434 | "print(\"sun_azimuth: {:.5f}\".format(stac_item.view.sun_azimuth.value))\n",
435 | "print(\"sun_elevation: {:.5f}\".format(stac_item.view.sun_elevation.value))\n",
436 | "print(\"off_nadir: {:.5f}\".format(stac_item.view.off_nadir.value))\n",
437 | "print(\"azimuth: {:.5f}\".format(stac_item.view.azimuth.value))"
438 | ]
439 | },
440 | {
441 | "cell_type": "markdown",
442 | "metadata": {},
443 | "source": [
444 | "Notice that we're only printing out 5 decimal places. As these are stored as float values, we can't trust any of the precision that Python provides us beyond what we know the data to possess.\n",
445 | "\n",
446 | "You can read more details about electro-optical data [here](https://geo-grpc.github.io/api/#epl.protobuf.Eo)\n",
447 | "\n",
448 | "Return to [README.md](./README.md)"
449 | ]
450 | }
451 | ],
452 | "metadata": {
453 | "kernelspec": {
454 | "display_name": "Python 3",
455 | "language": "python",
456 | "name": "python3"
457 | },
458 | "language_info": {
459 | "codemirror_mode": {
460 | "name": "ipython",
461 | "version": 3
462 | },
463 | "file_extension": ".py",
464 | "mimetype": "text/x-python",
465 | "name": "python",
466 | "nbconvert_exporter": "python",
467 | "pygments_lexer": "ipython3",
468 | "version": "3.9.2"
469 | }
470 | },
471 | "nbformat": 4,
472 | "nbformat_minor": 2
473 | }
474 |
--------------------------------------------------------------------------------
/StacItem.md:
--------------------------------------------------------------------------------
1 | ## STAC Item Properties
2 | A STAC item is a metadata container for spatially and temporally bounded earth observation data. The data can be aerial imagery, radar data or other types of earth observation data. A STAC item has metadata properties describing the dataset and `Assets` that contain information for downloading the data being described. Almost all properties of a STAC item are aspects you can query by using a `StacRequest` with different types of filters.
3 |
4 | Return to [README.md](./README.md)
5 |
6 |
7 |
8 |
9 |
10 | Expand Python Code Sample
11 |
12 |
13 | ```python
14 | from nsl.stac.client import NSLClient
15 | from nsl.stac import StacRequest
16 |
17 | stac_request = StacRequest(id='20190822T183518Z_746_POM1_ST2_P')
18 |
19 | # get a client interface to the gRPC channel
20 | client = NSLClient()
21 | # for this request we might as well use the search one, as STAC ids ought to be unique
22 | stac_item = client.search_one(stac_request)
23 | ```
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 | Expand Python Print-out
32 |
33 |
34 | ```text
35 | found NSL_ID under profile name `default`
36 | nsl client connecting to stac service at: api.nearspacelabs.net:9090
37 |
38 | authorizing NSL_ID: ``
39 | attempting NSL authentication against https://api.nearspacelabs.net/oauth/token...
40 | successfully authenticated with NSL_ID: ``
41 | will attempt re-authorization in 60 minutes
42 | ```
43 |
44 |
45 |
46 |
47 |
48 |
49 | Here are the sections where we go into more detail about properties and assets.
50 |
51 | - [ID, Temporal, and Spatial](#id-temporal-and-spatial)
52 | - [Assets](#assets)
53 | - [Electro Optical](#electro-optical)
54 |
55 | Printing out all the data demonstrates what is typically in a StacItem:
56 |
57 |
58 |
59 |
60 |
61 | Expand Python Code Sample
62 |
63 |
64 | ```python
65 | print(stac_item)
66 | ```
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 | Expand Python Print-out
75 |
76 |
77 | ```text
78 | id: "20190822T183518Z_746_POM1_ST2_P"
79 | collection: "NSL_SCENE"
80 | properties {
81 | type_url: "nearspacelabs.com/proto/st.protobuf.v1.NslDatast.protobuf.v1.NslData/st.protobuf.v1.NslData"
82 | value: "\n\340\014\n\03620190822T162258Z_TRAVIS_COUNTY\"\003 \352\0052\03520200702T102306Z_746_ST2_POM1:\03520190822T183518Z_746_POM1_ST2:\03520200702T101632Z_746_ST2_POM1:\03520200702T102302Z_746_ST2_POM1:\03520200702T102306Z_746_ST2_POM1B\03520190822T183518Z_746_POM1_ST2H\001R\374\n\n$\004\304{?\216\371\350=\376\377\306>\300\327\256\275\323rv?2\026*D3Qy6\177>\3675\000\000\200?\022\024\r+}\303\302\025\033;\362A\0353}\367\300%g\232\250@\022\024\r\026}\303\302\025\376?\362A\035\000\367\235@%\232\t\331?\022\024\r\351|\303\302\025\021A\362A\035M\370\033\301%g\016\226\277\022\024\r\201|\303\302\025\3709\362A\035\000\252\245@%\315\3547?\022\024\r\310|\303\302\025\245G\362A\035\232\315l\301%3\347\270\300\022\024\rq|\303\302\025\2149\362A\035\000\376o@%\000(\017@\022\024\rD|\303\302\025oD\362A\0353\323\302\301%\315\306\230\300\022\024\r\031|\303\302\025\035=\362A\035g\277$A%\000\340\231?\022\024\rE|\303\302\025\215I\362A\0353\275z\300%g\020\236\300\022\024\r\345{\303\302\0258C\362A\035\0008\242?%\232\231\226\277\022\024\r\010|\303\302\025!I\362A\0353\377\212\300%\000V\241\300\022\024\r|{\303\302\025\207F\362A\0353\203Y@%\315,\313\276\022\024\r\001{\303\302\025FJ\362A\035g^\025@%\315\010\214?\022\024\r\313z\303\302\025\353H\362A\0353\3377@%g\326\325\277\022\024\rjz\303\302\025\260@\362A\035\315F\006A%g\246[\277\022\024\r\035z\303\302\0254E\362A\035\232\001|@%\232!\265?\022\024\r\330y\303\302\025\320@\362A\0353Sa\300%\000@\245>\022\024\r\362y\303\302\025zE\362A\035\232\221\020\300%3U\206@\022\024\r\337y\303\302\025\210F\362A\035g\246l?%gf\234\276\022\024\r\335y\303\302\025aF\362A\035\000\260\023@%\315,#\277\022\024\r\321y\303\302\025\234F\362A\035\000 7@%\232!\221?\022\024\r\307y\303\302\025\177F\362A\035\232\371\371?%\315\224\225?\022\024\r\213y\303\302\025\350@\362A\0353\'\343\300%3g&\300\022\024\r\300y\303\302\025\tF\362A\035\315h\312@%g\266\013?\022\024\r_y\303\302\025\236A\362A\035\315\340\311@%3\363j>\022\024\r\271x\303\302\025G?\362A\0353\334\272\301%gb\201\300\022\024\r\307x\303\302\025WG\362A\035\000|6\301%\232\231i>\022\024\r\200x\303\302\025\016F\362A\035\315\007\244\301%\315L\000>\022\024\rqx\303\302\025jI\362A\035\315\254\007\301%\232E\247?\022\024\rjx\303\302\025(I\362A\035\232\305\000\301%\315L\'>\022\024\r\027x\303\302\025\356A\362A\035\232I\246?%\315\004\246\277\022\024\r\010x\303\302\025AB\362A\035\232y\305\300%\315\3740?\022\024\r\032x\303\302\0257D\362A\0353\003\275\277%\232\311.?\022\024\r\002x\303\302\025&C\362A\035\315\014\301\277%g*2@\022\024\r\361w\303\302\025\330B\362A\035\000T\347\300%\232\235\025\300\022\024\r\372v\303\302\025\030<\362A\0353\323\364?%gNt\300\022\024\r;w\303\302\025\273I\362A\03533\335>%\232\025\213?\022\024\r\324v\303\302\025QC\362A\035\315,\305\277%\232\375\035@\022\024\r\340v\303\302\025@G\362A\035\315@\234\300%\232)\342?\022\024\r\312v\303\302\025yC\362A\035\315\214\247\276%g\246\375>\022\024\r\222v\303\302\025\233A\362A\035\315\334\244?%g\366\035\277\022\024\r\256v\303\302\025\\F\362A\0353G\204@%\232A\017@\022\024\rov\303\302\025\215=\362A\035\232\325\340@%3\263\033\276\022\024\r\206v\303\302\025SC\362A\0353\263k?%3\363\177\276\022\024\r\267v\303\302\025NK\362A\035\315\0148\277%3\323\000>\022\024\r\255v\303\302\025kK\362A\035gf4\277%\000\312\201\277\022\024\r)v\303\302\025\316=\362A\035\232\271Z\277%\315\014\375\277\022\024\r_v\303\302\025\356H\362A\035\315\004n@%3\243\240\276\022\024\r7v\303\302\025\350H\362A\0353#\212@%g~\272?\022\024\r\314u\303\302\025Y;\362A\035\000\000F=%gF\253?\022\024\r\276u\303\302\025q>\362A\0353/\234\300%g\246T\277\022\024\r\266u\303\302\025\321>\362A\035\315 \272\300%3SW\300\022\024\r\307u\303\302\025\211A\362A\035\000$\264\300%3\243\r\277\022\024\r\360u\303\302\025RK\362A\0353\347\231@%\315\325\036\300\022\024\r\262u\303\302\025\035F\362A\0353\2633\276%\232i3?\032#m_3009743_sw_14_1_20160928_20161129\"Y\t&\2068NM\357\"A\021\003\3272rL\217IA\031\267G\014x\260\375\"A!\202I\225>\020\222IA*3\0221+proj=utm +zone=14 +datum=NAD83 +units=m +no_defs*\005\r\205[\"A2\005\r\000\356\\@:\005\r\227\210\306AB\005\r\205E\257@\022\315\001\n e502fe83507f0d28c826f33619a678e9\022\03120200806T033934Z_SWIFTERA\030\010 \377\377\377\377\377\377\377\377\377\001(A0\0018\340\025@\330\247\004H\270\275\004R\03620190822T162258Z_TRAVIS_COUNTYR\03120200701T112634Z_SWIFTERAR\03120200701T112634Z_SWIFTERAR\03120200701T112634Z_SWIFTERAX\263\027"
83 | }
84 | assets {
85 | key: "GEOTIFF_RGB"
86 | value {
87 | href: "https://api.nearspacelabs.net/download/20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.tif"
88 | type: "image/vnd.stac.geotiff"
89 | eo_bands: RGB
90 | asset_type: GEOTIFF
91 | cloud_platform: GCP
92 | bucket_manager: "Near Space Labs"
93 | bucket_region: "us-central1"
94 | bucket: "swiftera-processed-data"
95 | object_path: "20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.tif"
96 | }
97 | }
98 | assets {
99 | key: "THUMBNAIL_RGB"
100 | value {
101 | href: "https://api.nearspacelabs.net/download/20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.png"
102 | type: "image/png"
103 | eo_bands: RGB
104 | asset_type: THUMBNAIL
105 | cloud_platform: GCP
106 | bucket_manager: "Near Space Labs"
107 | bucket_region: "us-central1"
108 | bucket: "swiftera-processed-data"
109 | object_path: "20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.png"
110 | }
111 | }
112 | geometry {
113 | wkb: "\001\006\000\000\000\001\000\000\000\001\003\000\000\000\001\000\000\000\005\000\000\000\352\244L\267\311oX\300\316\340\320\247\234I>@\241\273\2606\267oX\300<\002\205\'EG>@\031\003\203\307\266nX\3001z\244\372\233G>@CCAI\306nX\300\326\013\351\023\343I>@\352\244L\267\311oX\300\316\340\320\247\234I>@"
114 | proj {
115 | epsg: 4326
116 | }
117 | envelope {
118 | xmin: -97.7466867683867
119 | ymin: 30.278398961994966
120 | xmax: -97.72990596574927
121 | ymax: 30.288621181865743
122 | proj {
123 | epsg: 4326
124 | }
125 | }
126 | simple: STRONG_SIMPLE
127 | }
128 | bbox {
129 | xmin: -97.7466867683867
130 | ymin: 30.278398961994966
131 | xmax: -97.72990596574927
132 | ymax: 30.288621181865743
133 | proj {
134 | epsg: 4326
135 | }
136 | }
137 | datetime {
138 | seconds: 1566498918
139 | nanos: 505476000
140 | }
141 | observed {
142 | seconds: 1566498918
143 | nanos: 505476000
144 | }
145 | created {
146 | seconds: 1596743811
147 | nanos: 247169000
148 | }
149 | updated {
150 | seconds: 1612193286
151 | nanos: 12850810
152 | }
153 | platform_enum: SWIFT_2
154 | platform: "SWIFT_2"
155 | instrument_enum: POM_1
156 | instrument: "POM_1"
157 | constellation: "UNKNOWN_CONSTELLATION"
158 | mission_enum: SWIFT
159 | mission: "SWIFT"
160 | gsd {
161 | value: 0.20000000298023224
162 | }
163 | eo {
164 | }
165 | view {
166 | off_nadir {
167 | value: 9.42326831817627
168 | }
169 | azimuth {
170 | value: -74.85270690917969
171 | }
172 | sun_azimuth {
173 | value: 181.26959228515625
174 | }
175 | sun_elevation {
176 | value: 71.41288757324219
177 | }
178 | }
179 |
180 | ```
181 |
182 |
183 |
184 |
185 |
186 |
187 | In addition to spatial and temporal details there are also details about the capturing device. We use both strings (to stay compliant with STAC JSON) and enum fields for these details. The `platform_enum` and `platform` is the model of the vehicle holding the sensor. The `instrument_enum` and `instrument` is the sensor that collected the scenes. In our case we're using `mission_enum` and `mission` to represent a class of flight vehicles that we're flying. In the case of the Landsat satellite program the breakdown would be:
188 |
189 | * `platform_enum`: `enum.PLATFORM.LANDSAT_8`
190 | * `sensor_enum`: `enum.SENSOR.OLI_TIRS`
191 | * `mission_enum`: `enum.MISSION.LANDSAT`
192 | * `platform`: "LANDSAT_8"
193 | * `sensor`: "OLI_TIRS"
194 | * `mission`: "LANDSAT"
195 |
196 |
197 | ### ID Temporal and Spatial
198 | Every STAC Item has a unique id, a datetime/observation, and a geometry/bbox (bounding-box).
199 |
200 |
201 |
202 |
203 |
204 | Expand Python Code Sample
205 |
206 |
207 | ```python
208 | print("STAC Item id: {}\n".format(stac_item.id))
209 | print("STAC Item observed: {}".format(stac_item.observed))
210 | print("STAC Item datetime: {}".format(stac_item.datetime))
211 | print("STAC Item bbox: {}".format(stac_item.bbox))
212 | print("STAC Item geometry: {}".format(stac_item.geometry))
213 | ```
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 | Expand Python Print-out
222 |
223 |
224 | ```text
225 | STAC Item id: 20190822T183518Z_746_POM1_ST2_P
226 |
227 | STAC Item observed: seconds: 1566498918
228 | nanos: 505476000
229 |
230 | STAC Item datetime: seconds: 1566498918
231 | nanos: 505476000
232 |
233 | STAC Item bbox: xmin: -97.7466867683867
234 | ymin: 30.278398961994966
235 | xmax: -97.72990596574927
236 | ymax: 30.288621181865743
237 | proj {
238 | epsg: 4326
239 | }
240 |
241 | STAC Item geometry: wkb: "\001\006\000\000\000\001\000\000\000\001\003\000\000\000\001\000\000\000\005\000\000\000\352\244L\267\311oX\300\316\340\320\247\234I>@\241\273\2606\267oX\300<\002\205\'EG>@\031\003\203\307\266nX\3001z\244\372\233G>@CCAI\306nX\300\326\013\351\023\343I>@\352\244L\267\311oX\300\316\340\320\247\234I>@"
242 | proj {
243 | epsg: 4326
244 | }
245 | envelope {
246 | xmin: -97.7466867683867
247 | ymin: 30.278398961994966
248 | xmax: -97.72990596574927
249 | ymax: 30.288621181865743
250 | proj {
251 | epsg: 4326
252 | }
253 | }
254 | simple: STRONG_SIMPLE
255 |
256 | ```
257 |
258 |
259 |
260 |
261 |
262 |
263 | As you can see above, the `id` is a string value. The format of the id is typically not guessable (ours is based of off the time the data was processed, the image index, the platform and the sensor).
264 |
265 | The `observed` and `datetime` fields are the same value. STAC specification uses a generic field `datetime` to define the spatial component, the `S`, in STAC. We wanted a more descriptive variable, so we use `observed`, as in, the moment the scene was captured. This is a UTC timestamp in seconds and nano seconds.
266 |
267 | The `bbox` field describes the xmin, ymin, xmax, and ymax points that describe the bounding box that contains the scene. The `sr` field has an [epsg](http://www.epsg.org/) `wkid`. In this case the 4326 `wkid` indicates [WGS-84](http://epsg.io/4326)
268 |
269 | The `geometry` field has subfields `wkb`, `sr`, and `simple`. The `wkb` is a [well known binary](https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry#Well-known_binary) geometry format preferred for it's size. `sr` is the same as in the `bbox`. `simple` can be ignored.
270 |
271 | Below we demonstrate how you can create python `datetime` objects:
272 |
273 |
274 |
275 |
276 |
277 | Expand Python Code Sample
278 |
279 |
280 | ```python
281 | from datetime import datetime
282 | print("UTC Observed Scene: {}".format(datetime.utcfromtimestamp(stac_item.observed.seconds)))
283 | print("UTC Processed Data: {}".format(datetime.utcfromtimestamp(stac_item.created.seconds)))
284 | print("UTC Updated Metadata: {}".format(datetime.utcfromtimestamp(stac_item.updated.seconds)))
285 | ```
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 | Expand Python Print-out
294 |
295 |
296 | ```text
297 | UTC Observed Scene: 2019-08-22 18:35:18
298 | UTC Processed Data: 2020-08-06 19:56:51
299 | UTC Updated Metadata: 2021-02-01 15:28:06
300 | ```
301 |
302 |
303 |
304 |
305 |
306 |
307 | Updated is when the metadata was last updated. Typically that will be right after it's `processed` timestamp.
308 |
309 | Below is a demo of using shapely to get at the geometry data.
310 |
311 |
312 |
313 |
314 |
315 | Expand Python Code Sample
316 |
317 |
318 | ```python
319 | from shapely.geometry import Polygon
320 | from shapely.wkb import loads
321 |
322 | print("wkt printout of polygon:\n{}\n".format(loads(stac_item.geometry.wkb)))
323 | print("centroid of polygon:\n{}\n".format(loads(stac_item.geometry.wkb).centroid))
324 | print("bounds:\n{}\n".format(Polygon.from_bounds(stac_item.bbox.xmin,
325 | stac_item.bbox.ymin,
326 | stac_item.bbox.xmax,
327 | stac_item.bbox.ymax)))
328 | ```
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 | Expand Python Print-out
337 |
338 |
339 | ```text
340 | wkt printout of polygon:
341 | MULTIPOLYGON (((-97.7466867683867 30.28754662370266, -97.74555747279238 30.27839896199497, -97.72990596574927 30.27972380176124, -97.73085242627444 30.28862118186574, -97.7466867683867 30.28754662370266)))
342 |
343 | centroid of polygon:
344 | POINT (-97.738289581264 30.28357703330576)
345 |
346 | bounds:
347 | POLYGON ((-97.7466867683867 30.27839896199497, -97.7466867683867 30.28862118186574, -97.72990596574927 30.28862118186574, -97.72990596574927 30.27839896199497, -97.7466867683867 30.27839896199497))
348 |
349 | ```
350 |
351 |
352 |
353 |
354 |
355 |
356 | ### Assets
357 | Each STAC item should have at least one asset. An asset should be all the information you'll need to download the asset in question. For Near Space Labs customers, you'll be using the href, but you can also see the private bucket details of the asset. In protobuf the asset map has a key for each asset available. There's no part of the STAC specification for defining key names. Near Space Labs typically uses the data type, the optical bands and the cloud storage provider to construct a key name.
358 |
359 |
360 |
361 |
362 |
363 | Expand Python Code Sample
364 |
365 |
366 | ```python
367 | from nsl.stac import Asset, utils
368 | from nsl.stac.enum import AssetType
369 | def print_asset(asset: Asset):
370 | asset_name = AssetType(asset.asset_type).name
371 | print(" href: {}".format(asset.href))
372 | print(" type: {}".format(asset.type))
373 | print(" protobuf enum number and name: {0}, {1}".format(asset.asset_type, asset_name))
374 | print()
375 |
376 | print("there are {} assets".format(len(stac_item.assets)))
377 | print(AssetType.THUMBNAIL.name)
378 | print_asset(utils.get_asset(stac_item, asset_type=AssetType.THUMBNAIL))
379 |
380 | print(AssetType.GEOTIFF.name)
381 | print_asset(utils.get_asset(stac_item, asset_type=AssetType.GEOTIFF))
382 | ```
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 | Expand Python Print-out
391 |
392 |
393 | ```text
394 | there are 2 assets
395 | THUMBNAIL
396 | href: https://api.nearspacelabs.net/download/20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.png
397 | type: image/png
398 | protobuf enum number and name: 9, THUMBNAIL
399 |
400 | GEOTIFF
401 | href: https://api.nearspacelabs.net/download/20190822T162258Z_TRAVIS_COUNTY/Published/REGION_0/20190822T183518Z_746_POM1_ST2_P.tif
402 | type: image/vnd.stac.geotiff
403 | protobuf enum number and name: 2, GEOTIFF
404 |
405 | ```
406 |
407 |
408 |
409 |
410 |
411 |
412 | As you can see above, our data only consists of jpg thumbnails and Geotiffs. But there can be other data stored in Assets in the future.
413 |
414 | You can read more details about Assets [here](https://geo-grpc.github.io/api/#epl.protobuf.Asset)
415 |
416 | ### View
417 | Some imagery analysis tools require knowing certain types of angular information. Here's a printout of the information we've collected with data. A summary of View values can be found [here](https://geo-grpc.github.io/api/#epl.protobuf.v1.View).
418 |
419 |
420 |
421 |
422 |
423 | Expand Python Code Sample
424 |
425 |
426 | ```python
427 | print(stac_item.view)
428 | ```
429 |
430 |
431 |
432 |
433 |
434 |
435 |
436 | Expand Python Print-out
437 |
438 |
439 | ```text
440 | off_nadir {
441 | value: 9.42326831817627
442 | }
443 | azimuth {
444 | value: -74.85270690917969
445 | }
446 | sun_azimuth {
447 | value: 181.26959228515625
448 | }
449 | sun_elevation {
450 | value: 71.41288757324219
451 | }
452 |
453 | ```
454 |
455 |
456 |
457 |
458 |
459 |
460 | These `sun_azimuth`, `sun_elevation`, `off_nadir` and `azimuth` are all boxed in the [google.protobuf.FloatValue type](https://developers.google.com/protocol-buffers/docs/reference/csharp/class/google/protobuf/well-known-types/float-value). To get at the value you must access the `value` field.
461 |
462 |
463 |
464 |
465 |
466 | Expand Python Code Sample
467 |
468 |
469 | ```python
470 | print("sun_azimuth: {:.5f}".format(stac_item.view.sun_azimuth.value))
471 | print("sun_elevation: {:.5f}".format(stac_item.view.sun_elevation.value))
472 | print("off_nadir: {:.5f}".format(stac_item.view.off_nadir.value))
473 | print("azimuth: {:.5f}".format(stac_item.view.azimuth.value))
474 | ```
475 |
476 |
477 |
478 |
479 |
480 |
481 |
482 | Expand Python Print-out
483 |
484 |
485 | ```text
486 | sun_azimuth: 181.26959
487 | sun_elevation: 71.41289
488 | off_nadir: 9.42327
489 | azimuth: -74.85271
490 | ```
491 |
492 |
493 |
494 |
495 |
496 |
497 | Notice that we're only printing out 5 decimal places. As these are stored as float values, we can't trust any of the precision that Python provides us beyond what we know the data to possess.
498 |
499 | You can read more details about electro-optical data [here](https://geo-grpc.github.io/api/#epl.protobuf.Eo)
500 |
501 | Return to [README.md](./README.md)
502 |
--------------------------------------------------------------------------------
/nsl/stac/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2019-20 Near Space Labs
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | #
15 | # for additional information, contact:
16 | # info@nearspacelabs.com
17 |
18 | import abc
19 | import base64
20 | import os
21 | import re
22 | import json
23 | import math
24 | import time
25 | import warnings
26 | import logging
27 |
28 | import grpc
29 | import requests
30 |
31 | from dataclasses import dataclass
32 | from pathlib import Path
33 | from random import randint
34 | from typing import Dict, Optional, Set, Tuple
35 |
36 | from google.auth.exceptions import DefaultCredentialsError
37 | from google.cloud import storage as gcp_storage
38 | from google.oauth2 import service_account
39 | from tenacity import retry, stop_after_delay, wait_fixed
40 |
41 | from epl.protobuf.v1 import stac_service_pb2_grpc
42 | from epl.protobuf.v1.geometry_pb2 import GeometryData, ProjectionData, EnvelopeData
43 | from epl.protobuf.v1.query_pb2 import TimestampFilter, FloatFilter, StringFilter, UInt32Filter
44 | from epl.protobuf.v1.stac_pb2 import StacRequest, StacItem, Asset, Collection, CollectionRequest, Eo, EoRequest, \
45 | LandsatRequest, Mosaic, MosaicRequest, DatetimeRange, View, ViewRequest, Extent, Interval, Provider
46 |
47 | __all__ = [
48 | 'bearer_auth', 'gcs_storage_client', 'stac_service', 'url_to_channel',
49 | 'CollectionRequest', 'EoRequest', 'StacRequest', 'LandsatRequest', 'MosaicRequest', 'ViewRequest',
50 | 'Collection', 'Eo', 'StacItem', 'Mosaic', 'View', 'Asset',
51 | 'GeometryData', 'ProjectionData', 'EnvelopeData', 'FloatFilter', 'TimestampFilter', 'StringFilter', 'UInt32Filter',
52 | 'DatetimeRange', 'Extent', 'Interval', 'Provider',
53 | 'AUTH0_TENANT', 'API_AUDIENCE', 'ISSUER', 'STAC_SERVICE', 'AuthInfo',
54 | ]
55 |
56 | CLOUD_PROJECT = os.getenv("CLOUD_PROJECT")
57 | GOOGLE_APPLICATION_CREDENTIALS = os.getenv("GOOGLE_APPLICATION_CREDENTIALS")
58 | SERVICE_ACCOUNT_DETAILS = os.getenv("SERVICE_ACCOUNT_DETAILS")
59 |
60 | NSL_ID = os.getenv("NSL_ID")
61 | NSL_SECRET = os.getenv("NSL_SECRET")
62 | # if an application uses this package, this singleton pattern of using an __init__.py file means that the package
63 | # and all the network calls will be made immediately upon application start. In some cases a virtual machine might
64 | # be able to start an application before it has network access.
65 | NSL_NETWORK_DELAY = int(os.getenv("NSL_NETWORK_DELAY", 0))
66 |
67 | # URL of the OAuth service
68 | AUTH0_TENANT = os.getenv('AUTH0_TENANT', 'https://api.nearspacelabs.net')
69 | # Name of the API for which we issue tokens
70 | API_AUDIENCE = os.getenv('API_AUDIENCE', 'https://api.nearspacelabs.com')
71 | # Name of the service responsible for issuing NSL tokens
72 | ISSUER = 'https://api.nearspacelabs.net/'
73 |
74 | TOKEN_REFRESH_THRESHOLD = 60 # seconds
75 |
76 | MAX_GRPC_ATTEMPTS = int(os.getenv('MAX_ATTEMPTS', 4))
77 | INIT_BACKOFF_MS = int(os.getenv('INIT_BACKOFF_MS', 4))
78 | MAX_BACKOFF_MS = int(os.getenv('MAX_BACKOFF_MS', 4))
79 | MULTIPLIER = int(os.getenv('MULTIPLIER', 4))
80 |
81 | STAC_SERVICE_HOST = os.getenv('STAC_SERVICE_HOST', 'api.nearspacelabs.net')
82 | STAC_SERVICE = os.getenv('STAC_SERVICE', f'{STAC_SERVICE_HOST}:9090')
83 | BYTES_IN_MB = 1024 * 1024
84 | # at this point only allowing 10 MB or smaller messages
85 | MESSAGE_SIZE_MB = int(os.getenv('MESSAGE_SIZE_MB', 10))
86 | GRPC_CHANNEL_OPTIONS = [('grpc.max_message_length', MESSAGE_SIZE_MB * BYTES_IN_MB),
87 | ('grpc.max_receive_message_length', MESSAGE_SIZE_MB * BYTES_IN_MB)]
88 |
89 | # TODO prep for ip v6
90 | IP_REGEX = re.compile(r"[\d]{1,3}\.[\d]{1,3}\.[\d]{1,3}\.[\d]{1,3}")
91 | # DEFAULT Insecure until we have a https service
92 | INSECURE = True
93 | NSL_CREDENTIALS = Path(Path.home(), '.nsl', 'credentials')
94 |
95 | logger = logging.getLogger()
96 |
97 |
98 | class SleepingPolicy(abc.ABC):
99 | @abc.abstractmethod
100 | def sleep(self, try_i: int):
101 | """
102 | How long to sleep in milliseconds.
103 | :param try_i: the number of retry (starting from zero)
104 | """
105 | assert try_i >= 0
106 |
107 |
108 | # Retry mechanism
109 | # https://github.com/grpc/grpc/issues/19514#issuecomment-531700657
110 | class ExponentialBackoff(SleepingPolicy):
111 | def __init__(self, *, init_backoff_ms: int, max_backoff_ms: int, multiplier: int):
112 | self.init_backoff = randint(0, init_backoff_ms)
113 | self.max_backoff = max_backoff_ms
114 | self.multiplier = multiplier
115 |
116 | def sleep(self, try_i: int):
117 | sleep_range = min(self.init_backoff * self.multiplier ** try_i, self.max_backoff)
118 | sleep_ms = randint(0, sleep_range)
119 | logger.debug(f"Sleeping for {sleep_ms}")
120 | time.sleep(sleep_ms / 1000)
121 |
122 |
123 | class RetryOnRpcErrorClientInterceptor(grpc.UnaryUnaryClientInterceptor, grpc.StreamUnaryClientInterceptor):
124 | def __init__(self,
125 | *,
126 | max_attempts: int,
127 | sleeping_policy: SleepingPolicy,
128 | status_for_retry: Optional[Tuple[grpc.StatusCode]] = None):
129 | self.max_attempts = max_attempts
130 | self.sleeping_policy = sleeping_policy
131 | self.status_for_retry = status_for_retry
132 |
133 | def _intercept_call(self, continuation, client_call_details, request_or_iterator):
134 | for try_i in range(self.max_attempts):
135 | response = continuation(client_call_details, request_or_iterator)
136 |
137 | if isinstance(response, grpc.RpcError):
138 |
139 | # Return if it was last attempt
140 | if try_i == (self.max_attempts - 1):
141 | return response
142 |
143 | # If status code is not in retryable status codes
144 | if self.status_for_retry and response.code() not in self.status_for_retry:
145 | return response
146 |
147 | self.sleeping_policy.sleep(try_i)
148 | else:
149 | return response
150 |
151 | def intercept_unary_unary(self, continuation, client_call_details, request):
152 | return self._intercept_call(continuation, client_call_details, request)
153 |
154 | def intercept_stream_unary(self, continuation, client_call_details, request_iterator):
155 | return self._intercept_call(continuation, client_call_details, request_iterator)
156 |
157 |
158 | interceptors = (
159 | RetryOnRpcErrorClientInterceptor(
160 | max_attempts=MAX_GRPC_ATTEMPTS,
161 | sleeping_policy=ExponentialBackoff(init_backoff_ms=INIT_BACKOFF_MS,
162 | max_backoff_ms=MAX_BACKOFF_MS,
163 | multiplier=MULTIPLIER),
164 | status_for_retry=(grpc.StatusCode.UNAVAILABLE,),
165 | ),
166 | )
167 |
168 |
169 | def url_to_channel(stac_service_url):
170 | if stac_service_url.startswith("localhost") or IP_REGEX.match(stac_service_url) or \
171 | "." not in stac_service_url or stac_service_url.startswith("http://") or INSECURE:
172 | stac_service_url = stac_service_url.strip("http://")
173 | channel = grpc.insecure_channel(stac_service_url, options=GRPC_CHANNEL_OPTIONS)
174 | else:
175 | stac_service_url = stac_service_url.strip("https://")
176 | channel_credentials = grpc.ssl_channel_credentials()
177 | channel = grpc.secure_channel(stac_service_url,
178 | credentials=channel_credentials,
179 | options=GRPC_CHANNEL_OPTIONS)
180 |
181 | return grpc.intercept_channel(channel, *interceptors)
182 |
183 |
184 | class __GCSStorageClient:
185 | _client = None
186 |
187 | @property
188 | def client(self):
189 | if self._client is not None:
190 | return self._client
191 |
192 | if SERVICE_ACCOUNT_DETAILS:
193 | details = json.loads(SERVICE_ACCOUNT_DETAILS)
194 | creds = service_account.Credentials.from_service_account_info(details)
195 | client = gcp_storage.Client(project=CLOUD_PROJECT, credentials=creds)
196 | elif GOOGLE_APPLICATION_CREDENTIALS:
197 | creds = service_account.Credentials.from_service_account_file(GOOGLE_APPLICATION_CREDENTIALS)
198 | client = gcp_storage.Client(project=CLOUD_PROJECT, credentials=creds)
199 | else:
200 | try:
201 | # https://github.com/googleapis/google-auth-library-python/issues/271#issuecomment-400186626
202 | warnings.filterwarnings("ignore", "Your application has authenticated using end user credentials")
203 | client = gcp_storage.Client(project="")
204 | except DefaultCredentialsError:
205 | client = None
206 | self._client = client
207 | return self._client
208 |
209 |
210 | def _generate_grpc_channel(stac_service_url=None):
211 | # TODO host env should include http:// so we can just see if it's https or http
212 |
213 | if stac_service_url is None:
214 | stac_service_url = STAC_SERVICE
215 |
216 | channel = url_to_channel(stac_service_url)
217 |
218 | print("nsl client connecting to stac service at: {}\n".format(stac_service_url))
219 |
220 | return channel, stac_service_pb2_grpc.StacServiceStub(channel)
221 |
222 |
223 | class __StacServiceStub(object):
224 | def __init__(self):
225 | channel, stub = _generate_grpc_channel()
226 | self._channel = channel
227 | self._stub = stub
228 |
229 | @property
230 | def channel(self):
231 | return self._channel
232 |
233 | @property
234 | def stub(self):
235 | return self._stub
236 |
237 | def set_channel(self, channel):
238 | """
239 | This allows you to override the channel created on init, with another channel. This might be needed if multiple
240 | libraries are using the same channel, or if multi-threading.
241 | :param channel:
242 | :return:
243 | """
244 | self._stub = stac_service_pb2_grpc.StacServiceStub(channel)
245 | self._channel = channel
246 |
247 | def update_service_url(self, stac_service_url):
248 | """allows you to update your stac service address"""
249 | self._channel, self._stub = _generate_grpc_channel(stac_service_url)
250 |
251 |
252 | @dataclass
253 | class Contract:
254 | balance: int
255 | region: int
256 | type: str
257 |
258 | @staticmethod
259 | def from_jwt(token: str):
260 | payload = json.loads(base64.b64decode(token.split('.')[1] + '=='))
261 | contract = payload[f'{API_AUDIENCE}/contract']
262 | return Contract(balance=contract['balance'], region=contract['region'], type=contract['type'])
263 |
264 | def is_valid_for(self, region: str) -> bool:
265 | if self.region == 1 or region == 'REGION_0' or region == 'SAMPLES':
266 | return True
267 |
268 | if region == "REGION_1":
269 | masked = self.region & 2
270 | elif region == "REGION_2":
271 | masked = self.region & 4
272 | elif region == "REGION_3":
273 | masked = self.region & 8
274 | elif region == "REGION_4":
275 | masked = self.region & 16
276 | elif region == "REGION_5":
277 | masked = self.region & 32
278 | elif region == "REGION_6":
279 | masked = self.region & 64
280 | elif region == "REGION_7":
281 | masked = self.region & 128
282 | else:
283 | return False
284 | return masked != 0 and masked <= self.region
285 |
286 |
287 | class AuthInfo:
288 | nsl_id: str = None
289 | nsl_secret: str = None
290 | token: str = None
291 | expiry: float = 0
292 | skip_authorization: bool = False
293 | contract: Contract
294 |
295 | def __init__(self, nsl_id: str, nsl_secret: str):
296 | if not nsl_id or not nsl_secret:
297 | raise ValueError("nsl_id and nsl_secret must be non-zero length strings")
298 | self.nsl_id = nsl_id
299 | self.nsl_secret = nsl_secret
300 |
301 | # this only retries if there's a timeout error
302 | @retry(reraise=True, stop=stop_after_delay(3), wait=wait_fixed(0.5))
303 | def authorize(self):
304 | if self.skip_authorization:
305 | return
306 |
307 | expiry, token = AuthInfo.get_token_client_credentials(self.nsl_id, self.nsl_secret)
308 | self.expiry = expiry
309 | self.token = token
310 | self.contract = Contract.from_jwt(token)
311 |
312 | @property
313 | def permissions(self) -> Set[str]:
314 | _, payload, _ = self.token.split('.')
315 | payload = json.loads(base64.b64decode(payload + '==='))
316 | return {permission for permission in payload.get('permissions', set())}
317 |
318 | @staticmethod
319 | def get_token_client_credentials(nsl_id: str, nsl_secret: str,
320 | auth_url=f"{AUTH0_TENANT}/oauth/token",
321 | grant_type: str = 'client_credentials',
322 | additional_headers: dict = None):
323 | print(f"attempting NSL authentication against {auth_url}...")
324 | now = time.time()
325 |
326 | if additional_headers is None:
327 | additional_headers = dict()
328 |
329 | headers = {'content-type': 'application/json', **additional_headers}
330 | post_body = {
331 | 'client_id': nsl_id,
332 | 'client_secret': nsl_secret,
333 | 'audience': API_AUDIENCE,
334 | 'grant_type': grant_type,
335 | }
336 |
337 | res = requests.post(auth_url, json=post_body, headers=headers)
338 |
339 | if res.status_code != 200 and res.status_code != 201:
340 | # evaluate codes first.
341 | message = f"authentication failed with code '{res.status_code}' and reason '{res.reason}'"
342 | raise requests.exceptions.RequestException(message)
343 | elif len(res.content) == 0:
344 | # then if response is empty, HTTPResponse method for read returns b"" which will be zero in length
345 | raise requests.exceptions.RequestException("empty authentication return. notify nsl of error")
346 |
347 | print(f"successfully authenticated with NSL_ID: `{nsl_id}`")
348 | res_json = res.json()
349 | expiry = now + int(res_json['expires_in'])
350 | token = res_json['access_token']
351 | return expiry, token
352 |
353 |
354 | class __BearerAuth:
355 | _auth_info_map: Dict[str, AuthInfo] = {}
356 | _profile_map: Dict[str, str] = {}
357 | _default_nsl_id = None
358 |
359 | def __init__(self, init=False):
360 | if (not NSL_ID or not NSL_SECRET) and not NSL_CREDENTIALS.exists():
361 | warnings.warn(f"NSL_ID and NSL_SECRET environment variables not set, and {NSL_CREDENTIALS} does not exist")
362 | return
363 |
364 | # if credentials exist, add them to our auth store
365 | if NSL_CREDENTIALS and NSL_CREDENTIALS.exists():
366 | for profile_name, auth_info in self.loads().items():
367 | self._auth_info_map[auth_info.nsl_id] = auth_info
368 | if profile_name == 'default':
369 | self._default_nsl_id = auth_info.nsl_id
370 | self._profile_map[profile_name] = auth_info.nsl_id
371 | print(f"found NSL_ID {auth_info.nsl_id} under profile name `{profile_name}`")
372 |
373 | # if env vars were specified, add them as well and set them to the default
374 | if NSL_ID and NSL_SECRET:
375 | print(f"using NSL_ID {NSL_ID} specified in env var")
376 | self._auth_info_map[NSL_ID] = AuthInfo(nsl_id=NSL_ID, nsl_secret=NSL_SECRET)
377 | self._default_nsl_id = NSL_ID
378 |
379 | # if env vars are unset and no NSL_ID was tagged as default, use the first one available
380 | if self.default_nsl_id is None:
381 | self._default_nsl_id = list(key for key in self._auth_info_map.keys())[0]
382 | print(f"using NSL_ID {self.default_nsl_id}")
383 |
384 | if init:
385 | self._auth_info_map[self._default_nsl_id].authorize()
386 |
387 | @property
388 | def default_nsl_id(self):
389 | return self._default_nsl_id
390 |
391 | def auth_header(self, nsl_id: str = None, profile_name: str = None) -> str:
392 | auth_info = self._get_auth_info(nsl_id, profile_name)
393 | if not auth_info.skip_authorization and (auth_info.expiry - time.time()) < TOKEN_REFRESH_THRESHOLD:
394 | print(f'authorizing NSL_ID: `{auth_info.nsl_id}`')
395 | auth_info.authorize()
396 | diff_seconds = auth_info.expiry - time.time()
397 | ttl = round(int(math.ceil(float(diff_seconds / 60) / 10) * 10))
398 | print(f"will attempt re-authorization in {ttl} minutes")
399 | return f"Bearer {auth_info.token}"
400 |
401 | def get_credentials(self, nsl_id: str = None, profile_name: str = None) -> Optional[AuthInfo]:
402 | if profile_name is not None:
403 | nsl_id = self._profile_map.get(profile_name, None)
404 | return self._auth_info_map.get(nsl_id if nsl_id is not None else self.default_nsl_id, None)
405 |
406 | def set_credentials(self, nsl_id: str, nsl_secret: str, profile_name: str = None):
407 | if len(self._auth_info_map) == 0:
408 | self._default_nsl_id = nsl_id
409 |
410 | self._auth_info_map[nsl_id] = AuthInfo(nsl_id=nsl_id, nsl_secret=nsl_secret)
411 | self._auth_info_map[nsl_id].authorize()
412 | if profile_name is not None:
413 | self._profile_map[profile_name] = nsl_id
414 |
415 | def unset_credentials(self, profile_name: str):
416 | nsl_id = self._profile_map.pop(profile_name)
417 | delattr(self._auth_info_map, nsl_id)
418 | if self._default_nsl_id == nsl_id:
419 | if len(self._auth_info_map) == 0:
420 | self._default_nsl_id = None
421 | else:
422 | self._default_nsl_id = list(key for key in self._auth_info_map.keys())[0]
423 | print(f"using NSL_ID {self.default_nsl_id}")
424 |
425 | def is_valid_for(self, region: str, nsl_id: str = None, profile_name: str = None) -> bool:
426 | auth_info = self._get_auth_info(nsl_id=nsl_id, profile_name=profile_name)
427 | return auth_info.contract.is_valid_for(region)
428 |
429 | def loads(self) -> Dict[str, AuthInfo]:
430 | output = dict()
431 | with NSL_CREDENTIALS.open('r') as file_obj:
432 | lines = file_obj.readlines()
433 | for i, line in enumerate(lines):
434 | if line.startswith('['):
435 | if not lines[i + 1].startswith('NSL_ID') or not lines[i + 2].startswith('NSL_SECRET'):
436 | raise ValueError("credentials should be of the format:\n[named profile]\nNSL_ID={your "
437 | "nsl id}\nNSL_SECRET={your nsl secret}")
438 | # for id like 'NSL_ID = all_the_id_text\n', first strip remove front whitespace and newline, and optionally the leading quote
439 | # .strip(), now we now [6:] starts after 'NSL_ID' .strip()[6:], strip potential whitespace
440 | # between NSL_ID and '=' with .strip()[6:].strip(), start one after equal
441 | # .strip()[6:].strip()[1:], strip potential whitespace
442 | # after equal .strip()[6:].strip()[1:].strip()
443 | profile_name = line.strip().lstrip('[').rstrip(']')
444 | nsl_id = lines[i + 1].strip()[6:].strip().strip('"')[1:].strip().strip('"')
445 | nsl_secret = lines[i + 2].strip()[10:].strip().strip('"')[1:].strip().strip('"')
446 |
447 | output[profile_name] = AuthInfo(nsl_id=nsl_id, nsl_secret=nsl_secret)
448 | return output
449 |
450 | def dumps(self):
451 | with NSL_CREDENTIALS.open('w') as file_obj:
452 | for profile_name, nsl_id in self._profile_map.items():
453 | creds = self.get_credentials(nsl_id)
454 | file_obj.write(f'[{profile_name}]\n')
455 | file_obj.write(f'NSL_ID="{creds.nsl_id}"\n')
456 | file_obj.write(f'NSL_SECRET="{creds.nsl_secret}"\n')
457 | file_obj.write('\n')
458 | file_obj.close()
459 |
460 | def _get_auth_info(self, nsl_id: str = None, profile_name: str = None) -> AuthInfo:
461 | if nsl_id is None and profile_name is None:
462 | nsl_id = self._default_nsl_id
463 |
464 | if nsl_id not in self._auth_info_map and profile_name not in self._profile_map:
465 | raise ValueError("credentials must be set by environment variables NSL_ID & NSL_SECRET, by setting a "
466 | "credentials file at ~/.nsl/credentials, or by using the set_credentials method")
467 |
468 | if profile_name is not None:
469 | nsl_id = self._profile_map[profile_name]
470 | return self._auth_info_map[nsl_id]
471 |
472 |
473 | time.sleep(NSL_NETWORK_DELAY)
474 | bearer_auth = __BearerAuth()
475 | stac_service = __StacServiceStub()
476 | gcs_storage_client = __GCSStorageClient()
477 |
--------------------------------------------------------------------------------
/nsl/stac/client.py:
--------------------------------------------------------------------------------
1 | # Copyright 2019-20 Near Space Labs
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | #
15 | # for additional information, contact:
16 | # info@nearspacelabs.com
17 | import uuid
18 |
19 | import requests
20 |
21 | from typing import Iterator, List, Optional, Tuple
22 | from warnings import warn
23 |
24 | from epl.protobuf.v1 import stac_pb2
25 |
26 | from nsl.stac import AUTH0_TENANT, bearer_auth, stac_service as stac_singleton, utils, TimestampFilter
27 | from nsl.stac.destinations import BaseDestination, MemoryDestination
28 | from nsl.stac.subscription import Subscription
29 | from nsl.stac.utils import item_region
30 |
31 |
32 | class NSLClient:
33 | def __init__(self, nsl_only=True, nsl_id=None, profile_name=None):
34 | """
35 | Create a client connection to a gRPC STAC service. nsl_only limits all queries to only return data from Near
36 | Space Labs.
37 | :param nsl_only:
38 | """
39 | self._stac_service = stac_singleton
40 | self._nsl_only = nsl_only
41 | if profile_name:
42 | nsl_id = bearer_auth._get_auth_info(profile_name=profile_name).nsl_id
43 | if nsl_id:
44 | bearer_auth._default_nsl_id = nsl_id
45 |
46 | @property
47 | def default_nsl_id(self):
48 | """
49 | if you don't set the nsl_id for each stac request, then this nsl_id is the default choice.
50 | if you set this default value you must make sure that the nsl_id has already been 'set' by calling `set_credentials`
51 | :return:
52 | """
53 | return bearer_auth.default_nsl_id
54 |
55 | def set_credentials(self, nsl_id: str, nsl_secret: str):
56 | """
57 | Set nsl_id and secret for use in querying metadata and downloading imagery
58 | :param nsl_id:
59 | :param nsl_secret:
60 | """
61 | bearer_auth.set_credentials(nsl_id=nsl_id, nsl_secret=nsl_secret)
62 |
63 | def update_service_url(self, stac_service_url):
64 | """
65 | update the stac service address
66 | :param stac_service_url: localhost:8080, 34.34.34.34:9000, http://api.nearspacelabs.net:9090, etc
67 | :return:
68 | """
69 | self._stac_service.update_service_url(stac_service_url=stac_service_url)
70 |
71 | def search_one(self,
72 | stac_request: stac_pb2.StacRequest,
73 | timeout=15,
74 | nsl_id: str = None,
75 | profile_name: str = None,
76 | correlation_id: str = None) -> stac_pb2.StacItem:
77 | """
78 | search for one item from the db that matches the stac request
79 | :param timeout: timeout for request
80 | :param stac_request: StacRequest of query parameters to filter by
81 | :param nsl_id: ADVANCED ONLY. Only necessary if more than one nsl_id and nsl_secret have been defined with
82 | set_credentials method. Specify nsl_id to use. if NSL_ID and NSL_SECRET environment variables not set must use
83 | NSLClient object's set_credentials to set credentials
84 | :param profile_name: if a ~/.nsl/credentials file exists, you can override the [default] credential usage, by
85 | using a different profile name
86 | :param correlation_id: is a unique identifier that is added to the very first interaction (incoming request)
87 | to identify the context and is passed to all components that are involved in the transaction flow
88 | :return: StacItem
89 | """
90 | # limit to only search Near Space Labs SWIFT data
91 | if self._nsl_only:
92 | stac_request.mission_enum = stac_pb2.SWIFT
93 |
94 | metadata = self._grpc_headers(nsl_id, profile_name, correlation_id)
95 | return self._stac_service.stub.SearchOneItem(stac_request, timeout=timeout, metadata=metadata)
96 |
97 | def count(self,
98 | stac_request: stac_pb2.StacRequest,
99 | timeout=15,
100 | nsl_id: str = None,
101 | profile_name: str = None,
102 | correlation_id: str = None) -> int:
103 | """
104 | count all the items in the database that match the stac request
105 | :param timeout: timeout for request
106 | :param stac_request: StacRequest query parameters to apply to count method (limit ignored)
107 | :param nsl_id: ADVANCED ONLY. Only necessary if more than one nsl_id and nsl_secret have been defined with
108 | set_credentials method. Specify nsl_id to use. if NSL_ID and NSL_SECRET environment variables not set must use
109 | NSLClient object's set_credentials to set credentials
110 | :param profile_name: if a ~/.nsl/credentials file exists, you can override the [default] credential usage, by
111 | using a different profile name
112 | :param correlation_id: is a unique identifier that is added to the very first interaction (incoming request)
113 | to identify the context and is passed to all components that are involved in the transaction flow
114 | :return: int
115 | """
116 | # limit to only search Near Space Labs SWIFT data
117 | if self._nsl_only:
118 | stac_request.mission_enum = stac_pb2.SWIFT
119 |
120 | metadata = self._grpc_headers(nsl_id, profile_name, correlation_id)
121 | db_result = self._stac_service.stub.CountItems(stac_request, timeout=timeout, metadata=metadata)
122 | if db_result.status:
123 | # print db_result
124 | print(db_result.status)
125 | return db_result.count
126 |
127 | def search(self,
128 | stac_request: stac_pb2.StacRequest,
129 | timeout=15,
130 | nsl_id: str = None,
131 | profile_name: str = None,
132 | auto_paginate: bool = False,
133 | only_accessible: bool = False,
134 | page_size: int = 50,
135 | correlation_id: str = None) -> Iterator[stac_pb2.StacItem]:
136 | """
137 | search for stac items by using StacRequest. return a stream of StacItems
138 | :param timeout: timeout for request
139 | :param stac_request: StacRequest of query parameters to filter by
140 | :param nsl_id: ADVANCED ONLY. Only necessary if more than one nsl_id and nsl_secret have been defined with
141 | set_credentials method. Specify nsl_id to use. if NSL_ID and NSL_SECRET environment variables not set must use
142 | NSLClient object's set_credentials to set credentials
143 | :param profile_name: if a ~/.nsl/credentials file exists, you can override the [default] credential usage, by
144 | using a different profile name
145 | :param auto_paginate:
146 | - if specified, this will automatically paginate and yield all received StacItems.
147 | - If `stac_request.limit` is specified, only the that amount of StacItems will be yielded.
148 | - If `stac_request.offset` is specified, pagination will begin at that `offset`.
149 | - If set to `False` (the default), `stac_request.limit` and `stac_request.offset` can be used to manually
150 | page through StacItems.
151 | :param only_accessible: limits results to only StacItems downloadable by your level of sample/paid access
152 | :param page_size: how many results to page at a time
153 | :return: stream of StacItems
154 | """
155 | for item in self._search_all(stac_request,
156 | timeout,
157 | nsl_id=nsl_id,
158 | profile_name=profile_name,
159 | auto_paginate=auto_paginate,
160 | page_size=page_size,
161 | correlation_id=correlation_id):
162 | if not only_accessible or \
163 | bearer_auth.is_valid_for(item_region(item), nsl_id=nsl_id, profile_name=profile_name):
164 | yield item
165 |
166 | def search_collections(self,
167 | collection_request: stac_pb2.CollectionRequest,
168 | timeout=15,
169 | nsl_id: str = None,
170 | profile_name: str = None,
171 | correlation_id: str = None) -> Iterator[stac_pb2.Collection]:
172 |
173 | metadata = self._grpc_headers(nsl_id, profile_name, correlation_id)
174 | for item in self._stac_service.stub.SearchCollections(collection_request, timeout=timeout, metadata=metadata):
175 | yield item
176 |
177 | def subscribe(self,
178 | stac_request: stac_pb2.StacRequest,
179 | destination: BaseDestination,
180 | nsl_id: str = None,
181 | profile_name: str = None,
182 | is_active=True) -> str:
183 | """
184 | Creates a subscription to a `StacRequest`, to deliver matching `StacItem`s to a `BaseDestination`.
185 | """
186 | assert stac_request.updated == TimestampFilter(), \
187 | "cannot subscribe to StacRequests with a set `updated` timestamp filter"
188 | assert not (isinstance(destination, MemoryDestination) or destination.__class__ == BaseDestination), \
189 | "cannot create subscriptions that deliver to `BaseDestination`s or `MemoryDestination`s"
190 |
191 | if self._nsl_only:
192 | stac_request.mission_enum = stac_pb2.SWIFT
193 | res = requests.post(f'{AUTH0_TENANT}/subscription',
194 | headers=self._json_headers(nsl_id, profile_name),
195 | json=dict(stac_request=utils.stac_request_to_b64(stac_request),
196 | destination=destination.to_json_str(),
197 | is_active=is_active))
198 |
199 | NSLClient._handle_json_response(res, 201)
200 | sub_id = res.json()['sub_id']
201 | print(f'created subscription with id: {sub_id}')
202 | return sub_id
203 |
204 | def resubscribe(self, sub_id: str, nsl_id: str = None, profile_name: str = None):
205 | """Reactivates a subscription with the given `sub_id`."""
206 | res = requests.put(f'{AUTH0_TENANT}/subscription/{sub_id}',
207 | headers=self._json_headers(nsl_id, profile_name))
208 |
209 | NSLClient._handle_json_response(res, 200)
210 | print(f'reactivated subscription with id: {sub_id}')
211 | return
212 |
213 | def unsubscribe(self, sub_id: str, nsl_id: str = None, profile_name: str = None):
214 | """Deactivates a subscription with the given `sub_id`."""
215 | res = requests.delete(f'{AUTH0_TENANT}/subscription/{sub_id}',
216 | headers=self._json_headers(nsl_id, profile_name))
217 |
218 | NSLClient._handle_json_response(res, 202)
219 | print(f'deactivated subscription with id: {sub_id}')
220 | return
221 |
222 | def subscriptions(self, nsl_id: str = None, profile_name: str = None) -> List[Subscription]:
223 | """Fetches all subscriptions."""
224 | res = requests.get(f'{AUTH0_TENANT}/subscription',
225 | headers=self._json_headers(nsl_id, profile_name))
226 |
227 | NSLClient._handle_json_response(res, 200)
228 | return list(Subscription(response_dict) for response_dict in res.json()['results'])
229 |
230 | def _search_all(self,
231 | stac_request: stac_pb2.StacRequest,
232 | timeout=15,
233 | nsl_id: str = None,
234 | profile_name: str = None,
235 | auto_paginate: bool = False,
236 | page_size: int = 50,
237 | correlation_id: str = None) -> Iterator[stac_pb2.StacItem]:
238 | # limit to only search Near Space Labs SWIFT data
239 | if self._nsl_only:
240 | stac_request.mission_enum = stac_pb2.SWIFT
241 |
242 | if not auto_paginate:
243 | metadata = self._grpc_headers(nsl_id, profile_name, correlation_id)
244 | for item in self._stac_service.stub.SearchItems(stac_request, timeout=timeout, metadata=metadata):
245 | if not item.id:
246 | warn(f"STAC item missing STAC id: \n{item};\n ending search")
247 | return
248 | else:
249 | yield item
250 | else:
251 | original_limit = stac_request.limit if stac_request.limit > 0 else None
252 | offset = stac_request.offset
253 | count = 0
254 |
255 | stac_request.limit = page_size if original_limit is None else max(original_limit, page_size)
256 | items = list(self._search_all(stac_request, timeout=timeout,
257 | nsl_id=nsl_id, profile_name=profile_name,
258 | page_size=page_size, correlation_id=correlation_id))
259 | while len(items) > 0:
260 | for item in items:
261 | if original_limit is None or (original_limit is not None and count < original_limit):
262 | yield item
263 | count += 1
264 | if original_limit is not None and count >= original_limit:
265 | break
266 |
267 | if original_limit is not None and count >= original_limit:
268 | break
269 |
270 | stac_request.offset += len(items)
271 | items = list(self._search_all(stac_request, timeout=timeout,
272 | nsl_id=nsl_id, profile_name=profile_name,
273 | page_size=page_size, correlation_id=correlation_id))
274 |
275 | stac_request.offset = offset
276 | stac_request.limit = original_limit if original_limit is not None else 0
277 |
278 | def _json_headers(self,
279 | nsl_id: str = None,
280 | profile_name: str = None,
281 | correlation_id: str = None) -> dict:
282 | headers = {k: v for (k, v) in self._grpc_headers(nsl_id, profile_name, correlation_id)}
283 | return {'content-type': 'application/json', **headers}
284 |
285 | def _grpc_headers(self,
286 | nsl_id: str = None,
287 | profile_name: str = None,
288 | correlation_id: str = None) -> Tuple[Tuple[str, str], ...]:
289 | correlation_id = str(uuid.uuid4()) if correlation_id is None else correlation_id
290 | return (('x-correlation-id', correlation_id),
291 | ('authorization', bearer_auth.auth_header(nsl_id=nsl_id, profile_name=profile_name)))
292 |
293 | @staticmethod
294 | def _handle_json_response(res, status_code: int):
295 | if res.status_code != status_code:
296 | raise requests.exceptions.RequestException(f'non-nominal status code: {res.status_code}')
297 | elif len(res.content) == 0:
298 | # then if response is empty, HTTPResponse method for read returns b"" which will be zero in length
299 | raise requests.exceptions.RequestException("empty authentication return. notify nsl of error")
300 |
--------------------------------------------------------------------------------
/nsl/stac/destinations/__init__.py:
--------------------------------------------------------------------------------
1 | from .base import BaseDestination, DestinationDecoder
2 | from .aws import AWSDestination
3 | from .gcp import GCPDestination
4 | from .memory import MemoryDestination
5 |
6 | __all__ = ['BaseDestination', 'DestinationDecoder',
7 | 'AWSDestination', 'GCPDestination', 'MemoryDestination']
8 |
--------------------------------------------------------------------------------
/nsl/stac/destinations/aws.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | from pathlib import Path
4 | from typing import Optional, Union
5 |
6 | import boto3
7 |
8 | from epl.protobuf.v1 import stac_pb2
9 | from nsl.stac.enum import AssetType
10 | from nsl.stac.destinations.base import BaseDestination
11 |
12 | AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID')
13 | AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY')
14 |
15 |
16 | class AWSDestination(BaseDestination):
17 | type = 'aws'
18 |
19 | _client = None
20 | save_directory: Path
21 | role_arn: str
22 | bucket: str
23 | region: str
24 |
25 | def __init__(self,
26 | role_arn: str,
27 | bucket: str,
28 | region: str,
29 | asset_type: AssetType = AssetType.GEOTIFF,
30 | save_directory: Union[Path, str] = '/'):
31 | super().__init__(asset_type=asset_type)
32 | self.save_directory = Path(save_directory)
33 | self.role_arn = role_arn
34 | self.bucket = bucket
35 | self.region = region
36 |
37 | def deliver(self, nsl_id: str, sub_id: str, stac_item: stac_pb2.StacItem):
38 | try:
39 | # TODO: in the future, check a local cache for this asset to avoid multiple downloads
40 | self.target_obj(stac_item).upload_fileobj(self.src_blob(stac_item).open('rb'))
41 | return None
42 | except BaseException as err:
43 | print(f'ERROR: failed to transfer asset {stac_item.id}:\n{err}')
44 | raise err
45 |
46 | def __json__(self) -> dict:
47 | return dict(**super().__json__(),
48 | role_arn=self.role_arn,
49 | bucket=self.bucket,
50 | region=self.region,
51 | save_directory=str(self.save_directory))
52 |
53 | def target_obj(self, stac_item: stac_pb2.StacItem) -> Optional[object]:
54 | return self.s3.Object(self.bucket, self.blob_path(stac_item, self.save_directory))
55 |
56 | @property
57 | def s3(self):
58 | if self._client is None:
59 | client = boto3\
60 | .Session(aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY)\
61 | .client('sts')
62 | assumed_role = client.assume_role(RoleArn=self.role_arn, RoleSessionName='nearspacelabs')
63 | credentials = assumed_role['Credentials']
64 | self._client = boto3.resource('s3',
65 | aws_access_key_id=credentials['AccessKeyId'],
66 | aws_secret_access_key=credentials['SecretAccessKey'],
67 | aws_session_token=credentials['SessionToken'])
68 | return self._client
69 |
--------------------------------------------------------------------------------
/nsl/stac/destinations/base.py:
--------------------------------------------------------------------------------
1 | import json
2 | from pathlib import Path
3 | from typing import Iterator, Optional
4 |
5 | from epl.protobuf.v1 import stac_pb2
6 | from nsl.stac import Asset
7 | from nsl.stac.enum import AssetType
8 | from nsl.stac.utils import get_asset, get_blob_metadata
9 |
10 |
11 | class BaseDestination(dict):
12 | type: str
13 | # TODO: make plural?
14 | asset_type: AssetType
15 |
16 | def __init__(self, asset_type: AssetType = AssetType.GEOTIFF):
17 | super().__init__(self)
18 | # FIXME: only allow co_geotiff, tiff and jpeg2000
19 | self.asset_type = asset_type
20 |
21 | @property
22 | def asset_type_str(self) -> str: return stac_pb2.AssetType.Name(self.asset_type)
23 |
24 | def deliver(self, nsl_id: str, sub_id: str, stac_item: stac_pb2.StacItem): pass
25 |
26 | def deliver_batch(self, nsl_id, sub_id: str, stac_items: Iterator[stac_pb2.StacItem]): pass
27 |
28 | def to_json_str(self) -> str: return json.dumps(self.__json__(), sort_keys=True)
29 |
30 | def __json__(self) -> dict: return dict(type=self.type, asset_type=self.asset_type_str)
31 |
32 | def file_name(self, stac_item: stac_pb2.StacItem) -> str:
33 | if self.asset_type == AssetType.TIFF or self.asset_type == AssetType.GEOTIFF:
34 | return f'{stac_item.id}.tif'
35 | elif self.asset_type == AssetType.THUMBNAIL:
36 | return Path(self.asset(stac_item).object_path).name
37 | elif self.asset_type == AssetType.JPEG:
38 | return f'{stac_item.id}.jpg'
39 | elif self.asset_type == AssetType.PNG:
40 | return f'{stac_item.id}.png'
41 | elif self.asset_type == AssetType.JPEG_2000:
42 | return f'{stac_item.id}.jp2'
43 |
44 | return stac_item.id
45 |
46 | def asset(self, stac_item: stac_pb2.StacItem) -> Optional[Asset]:
47 | return get_asset(stac_item=stac_item, asset_type=self.asset_type, b_relaxed_types=True)
48 |
49 | def src_blob(self, stac_item: stac_pb2.StacItem):
50 | asset = self.asset(stac_item)
51 | return get_blob_metadata(asset.bucket, asset.object_path)
52 |
53 | def blob_path(self, stac_item: stac_pb2.StacItem, root_dir=Path('/')) -> str:
54 | return str(root_dir.joinpath(self.file_name(stac_item)))
55 |
56 |
57 | class DestinationDecoder(json.JSONDecoder):
58 | def __init__(self, *args, **kwargs):
59 | json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
60 |
61 | def object_hook(self, dct: dict) -> Optional[BaseDestination]:
62 | from nsl.stac.destinations.aws import AWSDestination
63 | from nsl.stac.destinations.gcp import GCPDestination
64 | from nsl.stac.destinations.memory import MemoryDestination
65 |
66 | destination_type = dct.get('type', '')
67 | asset_type = DestinationDecoder.asset_type_from_str(dct.get('asset_type', self.default_asset_type_str))
68 |
69 | dct = {k: dct[k] for k in dct if k not in {'type', 'asset_type'}}
70 | if destination_type == AWSDestination.type:
71 | return AWSDestination(asset_type=asset_type, **dct)
72 | if destination_type == GCPDestination.type:
73 | return GCPDestination(asset_type=asset_type, **dct)
74 | if destination_type == MemoryDestination.type:
75 | return MemoryDestination(asset_type=asset_type, **dct)
76 | return None
77 |
78 | @staticmethod
79 | def asset_type_from_str(s: str) -> AssetType: return AssetType(stac_pb2.AssetType.Value(s))
80 |
81 | @property
82 | def default_asset_type_str(self) -> str: return stac_pb2.AssetType.Name(stac_pb2.GEOTIFF)
83 |
--------------------------------------------------------------------------------
/nsl/stac/destinations/gcp.py:
--------------------------------------------------------------------------------
1 | from pathlib import Path
2 | from typing import Union
3 |
4 | from google.cloud.storage import Blob, Bucket
5 |
6 | from epl.protobuf.v1 import stac_pb2
7 | from nsl.stac import gcs_storage_client
8 | from nsl.stac.enum import AssetType
9 | from nsl.stac.destinations.base import BaseDestination
10 |
11 |
12 | class GCPDestination(BaseDestination):
13 | # TODO: GKE access to a bucket w/in the same region is Free
14 | # TODO: "transfer" between buckets w/in the same region is Free
15 | type = 'gcp'
16 |
17 | save_directory: Path
18 | bucket: str
19 | region: str
20 |
21 | def __init__(self,
22 | bucket: str,
23 | region: str,
24 | asset_type: AssetType = AssetType.GEOTIFF,
25 | save_directory: Union[Path, str] = '/'):
26 | super().__init__(asset_type=asset_type)
27 | self.save_directory = Path(save_directory)
28 | self.bucket = bucket
29 | self.region = region
30 |
31 | def deliver(self, nsl_id: str, sub_id: str, stac_item: stac_pb2.StacItem):
32 | try:
33 | # TODO: in the future, check a local cache for this asset to avoid multiple downloads
34 | self.target_blob(stac_item)\
35 | .upload_from_file(self.src_blob(stac_item).open('rb'), client=gcs_storage_client.client)
36 | return None
37 | except BaseException as err:
38 | print(f'ERROR: failed to transfer asset {stac_item.id}:\n{err}')
39 | raise err
40 |
41 | def __json__(self) -> dict:
42 | return dict(**super().__json__(),
43 | bucket=self.bucket,
44 | region=self.region,
45 | save_directory=str(self.save_directory))
46 |
47 | def target_blob(self, stac_item: stac_pb2.StacItem) -> Blob:
48 | return Blob(name=self.blob_path(stac_item, self.save_directory),
49 | bucket=Bucket(client=gcs_storage_client.client, name=self.bucket))
50 |
--------------------------------------------------------------------------------
/nsl/stac/destinations/memory.py:
--------------------------------------------------------------------------------
1 | from pathlib import Path
2 | from typing import Union
3 |
4 | from epl.protobuf.v1 import stac_pb2
5 | from nsl.stac.destinations.base import BaseDestination
6 | from nsl.stac.enum import AssetType
7 | from nsl.stac.utils import download_asset
8 |
9 |
10 | class MemoryDestination(BaseDestination):
11 | type = 'memory'
12 | save_directory: Path
13 |
14 | def __init__(self, asset_type: AssetType = AssetType.GEOTIFF, save_directory: Union[Path, str] = '/'):
15 | super().__init__(asset_type=asset_type)
16 | self.save_directory = Path(save_directory)
17 |
18 | def deliver(self, nsl_id: str, sub_id: str, stac_item: stac_pb2.StacItem):
19 | try:
20 | file_path = self.save_directory.joinpath(self.file_name(stac_item))
21 | download_asset(asset=self.asset(stac_item),
22 | from_bucket=True,
23 | save_filename=str(file_path))
24 | return None
25 | except BaseException as err:
26 | print(f'ERROR: failed downloading asset for {stac_item.id}:\n{err}')
27 | raise err
28 |
29 | def __json__(self) -> dict:
30 | return dict(**super().__json__(), save_directory=str(self.save_directory))
31 |
--------------------------------------------------------------------------------
/nsl/stac/enum.py:
--------------------------------------------------------------------------------
1 | # Copyright 2019-20 Near Space Labs
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | #
15 | # for additional information, contact:
16 | # info@nearspacelabs.com
17 |
18 | import sys
19 | from epl.protobuf.v1.stac_pb2 import AssetType as _AssetType
20 | from epl.protobuf.v1.stac_pb2 import CloudPlatform as _CloudPlatform
21 | from epl.protobuf.v1.query_pb2 import FilterRelationship as _FilterRelationship
22 | from epl.protobuf.v1.query_pb2 import SortDirection as _SortDirection
23 | from epl.protobuf.v1.stac_pb2 import Constellation as _Constellation
24 | from epl.protobuf.v1.stac_pb2 import Mission as _Mission
25 | from epl.protobuf.v1.stac_pb2 import Instrument as _Instrument
26 | from epl.protobuf.v1.stac_pb2 import Platform as _Platform
27 | from epl.protobuf.v1.stac_pb2 import Eo as _Eo
28 |
29 | from enum import IntFlag
30 |
31 | __all__ = ['AssetType', 'Band', 'CloudPlatform', 'Constellation', 'Mission', 'Instrument', 'Platform',
32 | 'FilterRelationship', 'SortDirection']
33 |
34 |
35 | class AssetType(IntFlag):
36 | UNKNOWN_ASSET = _AssetType.UNKNOWN_ASSET
37 | JPEG = _AssetType.JPEG
38 | GEOTIFF = _AssetType.GEOTIFF
39 | LERC = _AssetType.LERC
40 | MRF = _AssetType.MRF
41 | MRF_IDX = _AssetType.MRF_IDX
42 | MRF_XML = _AssetType.MRF_XML
43 | CO_GEOTIFF = _AssetType.CO_GEOTIFF
44 | RAW = _AssetType.RAW
45 | THUMBNAIL = _AssetType.THUMBNAIL
46 | TIFF = _AssetType.TIFF
47 | JPEG_2000 = _AssetType.JPEG_2000
48 | XML = _AssetType.XML
49 | TXT = _AssetType.TXT
50 | PNG = _AssetType.PNG
51 | OVERVIEW = _AssetType.OVERVIEW
52 | JSON = _AssetType.JSON
53 | HTML = _AssetType.HTML
54 | WEBP = _AssetType.WEBP
55 |
56 |
57 | class Band(IntFlag):
58 | UNKNOWN_BAND = _Eo.UNKNOWN_BAND
59 | COASTAL = _Eo.COASTAL
60 | BLUE = _Eo.BLUE
61 | GREEN = _Eo.GREEN
62 | RED = _Eo.RED
63 | RGB = _Eo.RGB
64 | NIR = _Eo.NIR
65 | # special case for landsat 1 - 3
66 | NIR_2 = _Eo.NIR_2
67 | RGBIR = _Eo.RGBIR
68 | SWIR_1 = _Eo.SWIR_1
69 | SWIR_2 = _Eo.SWIR_2
70 | PAN = _Eo.PAN
71 | CIRRUS = _Eo.CIRRUS
72 | LWIR_1 = _Eo.LWIR_1
73 | LWIR_2 = _Eo.LWIR_2
74 |
75 |
76 | class CloudPlatform(IntFlag):
77 | UNKNOWN_CLOUD_PLATFORM = _CloudPlatform.UNKNOWN_CLOUD_PLATFORM
78 | AWS = _CloudPlatform.AWS
79 | GCP = _CloudPlatform.GCP
80 | AZURE = _CloudPlatform.AZURE
81 | IBM = _CloudPlatform.IBM
82 |
83 |
84 | class Constellation(IntFlag):
85 | UNKNOWN_PLATFORM = _Constellation.UNKNOWN_CONSTELLATION
86 |
87 |
88 | class Mission(IntFlag):
89 | UNKNOWN_MISSION = _Mission.UNKNOWN_MISSION
90 | LANDSAT = _Mission.LANDSAT
91 | NAIP = _Mission.NAIP
92 | SWIFT = _Mission.SWIFT
93 | PNOA = _Mission.PNOA
94 |
95 |
96 | class Instrument(IntFlag):
97 | UNKNOWN_INSTRUMENT = _Instrument.UNKNOWN_INSTRUMENT
98 | OLI = _Instrument.OLI
99 | TIRS = _Instrument.TIRS
100 | OLI_TIRS = _Instrument.OLI_TIRS
101 | POM_1 = _Instrument.POM_1
102 | TM = _Instrument.TM
103 | ETM = _Instrument.ETM
104 | MSS = _Instrument.MSS
105 | POM_2 = _Instrument.POM_2
106 |
107 |
108 | class Platform(IntFlag):
109 | UNKNOWN_PLATFORM = _Platform.UNKNOWN_PLATFORM
110 | LANDSAT_1 = _Platform.LANDSAT_1
111 | LANDSAT_2 = _Platform.LANDSAT_2
112 | LANDSAT_3 = _Platform.LANDSAT_3
113 | LANDSAT_123 = _Platform.LANDSAT_123
114 | LANDSAT_4 = _Platform.LANDSAT_4
115 | LANDSAT_5 = _Platform.LANDSAT_5
116 | LANDSAT_45 = _Platform.LANDSAT_45
117 | LANDSAT_7 = _Platform.LANDSAT_7
118 | LANDSAT_8 = _Platform.LANDSAT_8
119 | SWIFT_2 = _Platform.SWIFT_2
120 | SWIFT_3 = _Platform.SWIFT_3
121 |
122 |
123 | class SortDirection(IntFlag):
124 | NOT_SORTED = _SortDirection.NOT_SORTED
125 | DESC = _SortDirection.DESC
126 | ASC = _SortDirection.ASC
127 |
128 |
129 | class FilterRelationship(IntFlag):
130 | EQ = _FilterRelationship.EQ
131 | LTE = _FilterRelationship.LTE
132 | GTE = _FilterRelationship.GTE
133 | LT = _FilterRelationship.LT
134 | GT = _FilterRelationship.GT
135 | BETWEEN = _FilterRelationship.BETWEEN
136 | NOT_BETWEEN = _FilterRelationship.NOT_BETWEEN
137 | NEQ = _FilterRelationship.NEQ
138 | IN = _FilterRelationship.IN
139 | NOT_IN = _FilterRelationship.NOT_IN
140 | LIKE = _FilterRelationship.LIKE
141 | NOT_LIKE = _FilterRelationship.NOT_LIKE
142 |
143 |
144 | # Final check to make sure that all enums have complete definitions for the associated protobufs
145 | for enum_class_name in __all__:
146 | nsl_enum = getattr(sys.modules[__name__], enum_class_name)
147 | if enum_class_name in ['Band']:
148 | eo_class = getattr(sys.modules[__name__], '_Eo')
149 | epl_pb_enum_wrapper = getattr(eo_class, enum_class_name)
150 | else:
151 | epl_pb_enum_wrapper = getattr(sys.modules[__name__], '_' + enum_class_name)
152 |
153 | for enum_key_name, num in epl_pb_enum_wrapper.items():
154 | enum_values = [member[1].value for member in nsl_enum.__members__.items()]
155 | if num not in enum_values:
156 | raise Exception("protobuf enum_class_name {} not accounted for in enum {}. the stac client hasn't been "
157 | "updated for this version of the protobuf definition".format(enum_key_name,
158 | enum_class_name))
159 |
--------------------------------------------------------------------------------
/nsl/stac/subscription.py:
--------------------------------------------------------------------------------
1 | import json
2 |
3 | from base64 import b64decode
4 | from datetime import datetime, timezone
5 |
6 | from epl.protobuf.v1 import stac_pb2
7 |
8 | from nsl.stac.destinations import BaseDestination, DestinationDecoder
9 | from nsl.stac.utils import stac_request_from_b64
10 |
11 |
12 | class Subscription:
13 | id: str
14 | nsl_id: str
15 | is_active: bool
16 | created_at: datetime
17 | stac_request: stac_pb2.StacRequest
18 | destination: BaseDestination
19 |
20 | def __init__(self, response_dict: dict):
21 | self.id = response_dict['sub_id']
22 | self.nsl_id = response_dict['nsl_id']
23 | self.is_active = response_dict['is_active']
24 | self.created_at = datetime.utcfromtimestamp(response_dict['created_at']).replace(tzinfo=timezone.utc)
25 | self.stac_request = stac_request_from_b64(response_dict['stac_request'])
26 | self.destination = json.loads(response_dict['destination_json'], cls=DestinationDecoder)
27 |
--------------------------------------------------------------------------------
/nsl/stac/utils.py:
--------------------------------------------------------------------------------
1 | # Copyright 2019-20 Near Space Labs
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | #
15 | # for additional information, contact:
16 | # info@nearspacelabs.com
17 |
18 | import base64
19 | import os
20 | import datetime
21 | import http.client
22 | import re
23 | from urllib.parse import urlparse
24 | from typing import List, IO, Union, Dict, Any, Optional
25 | from warnings import warn
26 |
27 | import boto3
28 | import botocore
29 | import botocore.exceptions
30 | import botocore.client
31 | from google.cloud import storage
32 | from google.protobuf import timestamp_pb2, duration_pb2
33 | from tenacity import retry, stop_after_delay, wait_fixed
34 |
35 | from epl.protobuf.v1.stac_pb2 import epl_dot_protobuf_dot_v1_dot_query__pb2 as query
36 | from nsl.stac import gcs_storage_client, bearer_auth, \
37 | StacItem, StacRequest, Asset, TimestampFilter, DatetimeRange, Eo, FloatFilter, enum
38 | from nsl.stac.enum import Band, CloudPlatform, FilterRelationship, SortDirection, AssetType
39 |
40 | DEFAULT_RGB = [Band.RED, Band.GREEN, Band.BLUE, Band.NIR]
41 | RASTER_TYPES = [AssetType.CO_GEOTIFF, AssetType.GEOTIFF, AssetType.MRF]
42 | UNSUPPORTED_TIME_FILTERS = [FilterRelationship.IN,
43 | FilterRelationship.NOT_IN,
44 | FilterRelationship.LIKE,
45 | FilterRelationship.NOT_LIKE]
46 |
47 |
48 | def get_blob_metadata(bucket: str, blob_name: str) -> storage.Blob:
49 | """
50 | get metadata/interface for one asset in google cloud storage
51 | :param bucket: bucket name
52 | :param blob_name: complete blob name of item (doesn't include bucket name)
53 | :return: Blob interface item
54 | """
55 | if gcs_storage_client.client is None:
56 | raise ValueError("GOOGLE_APPLICATION_CREDENTIALS environment variable not set")
57 |
58 | bucket = gcs_storage_client.client.get_bucket(bucket)
59 | return bucket.get_blob(blob_name=blob_name.strip('/'))
60 |
61 |
62 | @retry(reraise=True, stop=stop_after_delay(3), wait=wait_fixed(0.5))
63 | def download_gcs_object(bucket: str,
64 | blob_name: str,
65 | file_obj: IO[bytes] = None,
66 | save_filename: str = "",
67 | make_dir=True) -> str:
68 | """
69 | download a specific blob from Google Cloud Storage (GCS) to a file object handle
70 | :param make_dir: if directory doesn't exist create
71 | :param bucket: bucket name
72 | :param blob_name: the full prefix to a specific asset in GCS. Does not include bucket name
73 | :param file_obj: file object (or BytesIO string_buffer) where data should be written
74 | :param save_filename: the filename to save the file to
75 | :return: returns path to downloaded file if applicable
76 | """
77 | if make_dir and save_filename != "":
78 | path_to_create = os.path.split(save_filename)[0]
79 | if not os.path.exists(path_to_create):
80 | os.makedirs(path_to_create, exist_ok=True)
81 |
82 | blob = get_blob_metadata(bucket=bucket, blob_name=blob_name)
83 |
84 | if file_obj is not None:
85 | blob.download_to_file(file_obj=file_obj, client=gcs_storage_client.client)
86 | if "name" in file_obj.__dict__:
87 | save_filename = file_obj.name
88 | else:
89 | save_filename = ""
90 | try:
91 | file_obj.seek(0)
92 | except:
93 | pass
94 |
95 | return save_filename
96 | elif len(save_filename) > 0:
97 | with open(save_filename, "w+b") as file_obj:
98 | download_gcs_object(bucket, blob_name, file_obj=file_obj)
99 | return save_filename
100 | else:
101 | raise ValueError("must provide filename or file_obj")
102 |
103 |
104 | def download_s3_object(bucket: str,
105 | blob_name: str,
106 | file_obj: IO = None,
107 | save_filename: str = "",
108 | requester_pays: bool = False) -> str:
109 | extra_args = None
110 | if requester_pays:
111 | extra_args = {'RequestPayer': 'requester'}
112 |
113 | s3 = boto3.client('s3')
114 | try:
115 | if file_obj is not None:
116 | s3.download_fileobj(Bucket=bucket, Key=blob_name, Fileobj=file_obj, ExtraArgs=extra_args)
117 | if "name" in file_obj.__dict__:
118 | save_filename = file_obj.name
119 | else:
120 | save_filename = ""
121 | file_obj.seek(0)
122 |
123 | return save_filename
124 | elif len(save_filename) > 0:
125 | s3.download_file(Bucket=bucket, Key=blob_name, Filename=save_filename, ExtraArgs=extra_args)
126 | return save_filename
127 | else:
128 | raise ValueError("must provide filename or file_obj")
129 | except botocore.exceptions.ClientError as e:
130 | if e.response['Error']['Code'] == "404":
131 | print("The object does not exist.")
132 | else:
133 | raise
134 |
135 |
136 | def download_href_object(asset: Asset,
137 | file_obj: IO = None,
138 | save_filename: str = "",
139 | nsl_id: str = None,
140 | profile_name: str = None) -> str:
141 | """
142 | download the href of an asset
143 | :param asset: The asset to download
144 | :param file_obj: BinaryIO file object to download data into. If file_obj and save_filename and/or save_directory
145 | are set, then only file_obj is used
146 | :param save_filename: absolute or relative path filename to save asset to (must have write permissions)
147 | :param nsl_id: ADVANCED ONLY. Only necessary if more than one NSL_ID and NSL_SECRET have been defined with
148 | set_credentials method. Specify NSL_ID to use for downloading. If NSL_ID and NSL_SECRET environment variables
149 | are not set, you must use `NSLClient.set_credentials` to add at least one set of credentials.
150 | :param profile_name: ADVANCED ONLY. Only necessary if more than one NSL profile has been defined with the
151 | `set_credentials` method. Specifies which NSL profile to use for downloading.
152 | :return: returns the save_filename. if BinaryIO is not a FileIO object type, save_filename returned is an
153 | empty string
154 | """
155 | if not asset.href:
156 | raise ValueError("no href on asset")
157 |
158 | host = urlparse(asset.href)
159 | conn = http.client.HTTPConnection(host.netloc)
160 |
161 | headers = {}
162 | asset_url = host.path
163 | if asset.bucket_manager == "Near Space Labs":
164 | headers = {"authorization": bearer_auth.auth_header(nsl_id=nsl_id, profile_name=profile_name)}
165 | asset_url = "/download/{object}".format(object=asset.object_path)
166 |
167 | if len(asset.type) > 0:
168 | headers["content-type"] = asset.type
169 | conn.request(method="GET", url=asset_url, headers=headers)
170 |
171 | res = conn.getresponse()
172 | if res.status == 404:
173 | raise ValueError("not found error for {path}".format(path=asset.href))
174 | elif res.status == 403:
175 | raise ValueError("auth error for asset {asset}".format(asset=asset.href))
176 | elif res.status == 402:
177 | raise ValueError("not enough credits for downloading asset {asset}".format(asset=asset.href))
178 | elif res.status != 200:
179 | raise ValueError("error code {code} for asset: {asset}".format(code=res.status, asset=asset.href))
180 |
181 | if len(save_filename) > 0:
182 | with open(save_filename, mode='wb') as f:
183 | f.write(res.read())
184 | elif file_obj is not None:
185 | file_obj.write(res.read())
186 | if "name" in file_obj.__dict__:
187 | save_filename = file_obj.name
188 | else:
189 | save_filename = ""
190 | file_obj.seek(0)
191 | else:
192 | raise ValueError("must provide filename or file_obj")
193 |
194 | return save_filename
195 |
196 |
197 | def download_asset(asset: Asset,
198 | from_bucket: bool = False,
199 | file_obj: IO[Union[Union[str, bytes], Any]] = None,
200 | save_filename: str = "",
201 | save_directory: str = "",
202 | requester_pays: bool = False,
203 | nsl_id: str = None,
204 | profile_name: str = None) -> str:
205 | """
206 | download an asset. Defaults to downloading from cloud storage. save the data to a BinaryIO file object, a filename
207 | on your filesystem, or to a directory on your filesystem (the filename will be chosen from the basename of the
208 | object).
209 | :param requester_pays: authorize a requester pays download. this can be costly,
210 | so only enable it if you understand the implications.
211 | :param asset: The asset to download
212 | :param from_bucket: force the download to occur from cloud storage instead of href endpoint
213 | :param file_obj: BinaryIO file object to download data into. If file_obj and save_filename and/or save_directory are
214 | set, then only file_obj is used
215 | :param save_filename: absolute or relative path filename to save asset to (must have write permissions)
216 | :param save_directory: absolute or relative directory path to save asset in (must have write permissions). Filename
217 | is derived from the basename of the object_path or the href
218 | :param nsl_id: ADVANCED ONLY. Only necessary if more than one NSL_ID and NSL_SECRET have been defined with
219 | set_credentials method. Specify NSL_ID to use for downloading. If NSL_ID and NSL_SECRET environment variables
220 | are not set, you must use `NSLClient.set_credentials` to add at least one set of credentials.
221 | :param profile_name: ADVANCED ONLY. Only necessary if more than one NSL profile has been defined with the
222 | `set_credentials` method. Specifies which NSL profile to use for downloading.
223 | :return:
224 | """
225 | if len(save_directory) > 0 and file_obj is None and len(save_filename) == 0:
226 | if os.path.exists(save_directory):
227 | save_filename = os.path.join(save_directory, os.path.basename(asset.object_path))
228 | else:
229 | raise ValueError("directory 'save_directory' doesn't exist")
230 |
231 | if from_bucket and asset.cloud_platform == CloudPlatform.GCP:
232 | return download_gcs_object(bucket=asset.bucket,
233 | blob_name=asset.object_path,
234 | file_obj=file_obj,
235 | save_filename=save_filename)
236 | elif from_bucket and asset.cloud_platform == CloudPlatform.AWS:
237 | return download_s3_object(bucket=asset.bucket,
238 | blob_name=asset.object_path,
239 | file_obj=file_obj,
240 | save_filename=save_filename,
241 | requester_pays=requester_pays)
242 | else:
243 | return download_href_object(asset=asset,
244 | file_obj=file_obj,
245 | save_filename=save_filename,
246 | nsl_id=nsl_id,
247 | profile_name=profile_name)
248 |
249 |
250 | def download_assets(stac_item: StacItem,
251 | save_directory: str,
252 | from_bucket: bool = False,
253 | nsl_id: str = None) -> List[str]:
254 | """
255 | Download all the assets for a StacItem into a directory
256 | :param nsl_id: ADVANCED ONLY. Only necessary if more than one nsl_id and nsl_secret have been defined with
257 | set_credentials method. Specify nsl_id to use. if NSL_ID and NSL_SECRET environment variables not set must use
258 | NSLClient object's set_credentials to set credentials
259 | :param stac_item: StacItem containing assets to download
260 | :param save_directory: the directory where the files should be downloaded
261 | :param from_bucket: force download from bucket. if set to false downloads happen from href. defaults to False
262 | :return:
263 | """
264 | filenames = []
265 | for asset_key in stac_item.assets:
266 | asset = stac_item.assets[asset_key]
267 | filenames.append(download_asset(asset=asset,
268 | from_bucket=from_bucket,
269 | save_directory=save_directory,
270 | nsl_id=nsl_id))
271 | return filenames
272 |
273 |
274 | # TODO https://pypi.org/project/Deprecated/
275 | def get_asset(stac_item: StacItem,
276 | asset_type: AssetType = None,
277 | cloud_platform: CloudPlatform = CloudPlatform.UNKNOWN_CLOUD_PLATFORM,
278 | eo_bands: Eo.Band = Eo.UNKNOWN_BAND,
279 | asset_regex: Dict = None,
280 | asset_key: str = None,
281 | b_relaxed_types: bool = False) -> Optional[Asset]:
282 | """
283 | get a protobuf object(pb) asset from a stac item pb. If your parameters are broad (say, if you used all defaults)
284 | this function would only return you the first asset that matches the parameters. use
285 | :func:`get_assets ` to return more than one asset from a request.
286 | :param stac_item: stac item whose assets we want to search by parameters
287 | :param asset_type: an asset_type enum to return. if not defined then it is assumed to search all asset types
288 | :param cloud_platform: only return assets that are hosted on the cloud platform described in the cloud_platform
289 | field of the item. default grabs the first asset that meets all the other parameters.
290 | :param band: if the data has electro-optical spectrum data, define the band you want to retrieve. if the data is
291 | not electro-optical then don't define this parameter (defaults to UNKNOWN_BAND)
292 | :param asset_basename: only return asset if the basename of the object path matches this value
293 | :return: asset pb object
294 | """
295 | results = get_assets(stac_item, asset_type, cloud_platform, eo_bands, asset_regex, asset_key, b_relaxed_types)
296 | if len(results) > 1:
297 | raise ValueError("must be more specific in selecting your asset. if all enums are used, try using "
298 | "asset_key_regex")
299 | elif len(results) == 1:
300 | return results[0]
301 | return None
302 |
303 |
304 | def _asset_types_match(desired_type: enum.AssetType,
305 | asset_type: enum.AssetType,
306 | b_relaxed_types: bool = False) -> bool:
307 | if not b_relaxed_types:
308 | return desired_type == asset_type
309 | elif desired_type == enum.AssetType.TIFF:
310 | return asset_type == desired_type or \
311 | asset_type == enum.AssetType.GEOTIFF or \
312 | asset_type == enum.AssetType.CO_GEOTIFF
313 | elif desired_type == enum.AssetType.GEOTIFF:
314 | return asset_type == desired_type or asset_type == enum.AssetType.CO_GEOTIFF
315 | return asset_type == desired_type
316 |
317 |
318 | def equals_pb(left: Asset, right: Asset):
319 | """
320 | does the AssetWrap equal a protobuf Asset
321 | :param other:
322 | :return:
323 | """
324 | return left.SerializeToString() == right.SerializeToString()
325 |
326 |
327 | # TODO https://pypi.org/project/Deprecated/
328 | def get_assets(stac_item: StacItem,
329 | asset_type: enum.AssetType = None,
330 | cloud_platform: CloudPlatform = CloudPlatform.UNKNOWN_CLOUD_PLATFORM,
331 | eo_bands: Eo.Band = Eo.UNKNOWN_BAND,
332 | asset_regex: Dict = None,
333 | asset_key: str = None,
334 | b_relaxed_types: bool = False) -> List[Asset]:
335 | """
336 | get a generator of assets from a stac item, filtered by the parameters.
337 | :param stac_item: stac item whose assets we want to search by parameters
338 | :param band: if the data has electro optical spectrum data, define the band you want to retrieve. if the data is not
339 | electro optical then don't define this parameter (defaults to UNKNOWN_BAND)
340 | :param asset_types: a list of asset_types to seach. if not defined then it is assumed to search all asset types
341 | :param cloud_platform: only return assets that are hosted on the cloud platform described in the cloud_platform
342 | field of the item. default grabs the first asset that meets all the other parameters.
343 | :param asset_basename: only return asset if the basename of the object path matches this value
344 | :return: asset pb object
345 | """
346 | if asset_key is not None and asset_key in stac_item.assets:
347 | return [stac_item.assets[asset_key]]
348 | elif asset_key is not None and asset_key and asset_key not in stac_item.assets:
349 | raise ValueError("asset_key {} not found".format(asset_key))
350 |
351 | results = []
352 | for asset_key in stac_item.assets:
353 | current = stac_item.assets[asset_key]
354 | b_asset_type_match = _asset_types_match(desired_type=asset_type,
355 | asset_type=current.asset_type,
356 | b_relaxed_types=b_relaxed_types)
357 | if (eo_bands is not None and eo_bands != enum.Band.UNKNOWN_BAND) and \
358 | current.eo_bands != eo_bands:
359 | continue
360 | if (cloud_platform is not None and cloud_platform != enum.CloudPlatform.UNKNOWN_CLOUD_PLATFORM) and \
361 | current.cloud_platform != cloud_platform:
362 | continue
363 | if (asset_type is not None and asset_type != enum.AssetType.UNKNOWN_ASSET) and \
364 | not b_asset_type_match:
365 | continue
366 | if asset_regex is not None and len(asset_regex) > 0:
367 | b_continue = False
368 | for key, regex_value in asset_regex.items():
369 | if key == 'asset_key':
370 | if not re.match(regex_value, asset_key):
371 | b_continue = True
372 | break
373 | else:
374 | if not hasattr(current, key):
375 | raise AttributeError("no key {0} in asset {1}".format(key, current))
376 | elif not re.match(regex_value, getattr(current, key)):
377 | b_continue = True
378 | break
379 |
380 | if b_continue:
381 | continue
382 |
383 | # check that asset hasn't changed between protobuf and asset_map
384 | pb_asset = stac_item.assets[asset_key]
385 | if not equals_pb(current, pb_asset):
386 | raise ValueError("corrupted protobuf. Asset and AssetWrap have differing underlying protobuf")
387 |
388 | results.append(current)
389 | return results
390 |
391 |
392 | def _asset_has_filename(asset: Asset, asset_basename):
393 | if os.path.basename(asset.object_path).lower() == os.path.basename(asset_basename).lower():
394 | return True
395 | return False
396 |
397 |
398 | # TODO https://pypi.org/project/Deprecated/
399 | def has_asset_type(stac_item: StacItem, asset_type: AssetType):
400 | """
401 | does the stac item contain the asset
402 | :param stac_item:
403 | :param asset_type:
404 | :return:
405 | """
406 | for asset in stac_item.assets.values():
407 | if asset.asset_type == asset_type:
408 | return True
409 | return False
410 |
411 |
412 | # TODO https://pypi.org/project/Deprecated/
413 | def has_asset(stac_item: StacItem, asset: Asset):
414 | """
415 | check whether a stac_item has a perfect match to the provided asset
416 | :param stac_item: stac item whose assets we're checking against asset
417 | :param asset: asset we're looking for in stac_item
418 | :return:
419 | """
420 | for test_asset in stac_item.assets.values():
421 | b_matches = True
422 | for field in test_asset.DESCRIPTOR.fields:
423 | if getattr(test_asset, field.name) != getattr(asset, field.name):
424 | b_matches = False
425 | break
426 | if b_matches:
427 | return b_matches
428 | return False
429 |
430 |
431 | def item_region(stac_item: StacItem) -> str:
432 | for asset_key in stac_item.assets:
433 | return stac_item.assets[asset_key].object_path.split('/')[2]
434 | warn(f"failed to find STAC item's region: {stac_item.id}")
435 | return ""
436 |
437 |
438 | def get_uri(asset: Asset, b_vsi_uri=True, prefix: str = "") -> str:
439 | """
440 | construct the uri for the resource in the asset.
441 | :param asset:
442 | :param b_vsi_uri:
443 | :param prefix:
444 | :return:
445 | """
446 |
447 | if not asset.bucket or not asset.object_path:
448 | if not b_vsi_uri:
449 | raise FileNotFoundError("The bucket ref is not AWS or Google:\nhref : {0}".format(asset.href))
450 | return '/vsicurl_streaming/{}'.format(asset.href)
451 | elif not prefix:
452 | prefix = "{0}://"
453 | if b_vsi_uri:
454 | prefix = "/vsi{0}_streaming"
455 |
456 | if asset.cloud_platform == CloudPlatform.GCP:
457 | prefix = prefix.format("gs")
458 | elif asset.cloud_platform == CloudPlatform.AWS:
459 | prefix = prefix.format("s3")
460 | else:
461 | raise ValueError("The only current cloud platforms are GCP and AWS. This asset doesn't have the "
462 | "'cloud_platform' field defined")
463 |
464 | return "{0}/{1}/{2}".format(prefix, asset.bucket, asset.object_path)
465 |
466 |
467 | def pb_timestampfield(rel_type: FilterRelationship,
468 | value: Union[datetime.datetime, datetime.date] = None,
469 | start: Union[datetime.datetime, datetime.date] = None,
470 | end: Union[datetime.datetime, datetime.date] = None,
471 | sort_direction: SortDirection = SortDirection.NOT_SORTED,
472 | tzinfo: datetime.timezone = datetime.timezone.utc) -> TimestampFilter:
473 | """
474 | Create a protobuf query filter for a timestamp or a range of timestamps. If you use a datetime.date as
475 | the value combined with a rel_type of EQ then you will be creating a query filter for the
476 | 24 period of that date.
477 | :param rel_type: the relationship type to query more
478 | [here](https://geo-grpc.github.io/api/#epl.protobuf.FieldRelationship)
479 | :param value: time to search by using >, >=, <, <=, etc. cannot be used with start or end
480 | :param start: start time for between/not between query. cannot be used with value
481 | :param end: end time for between/not between query. cannot be used with value
482 | :param sort_direction: sort direction for results. Defaults to not sorting by this field
483 | :param tzinfo: timezone info, defaults to UTC
484 | :return: TimestampFilter
485 | """
486 | if rel_type in UNSUPPORTED_TIME_FILTERS:
487 | raise ValueError("unsupported relationship type: {}".format(rel_type.name))
488 |
489 | if value is not None and rel_type != FilterRelationship.EQ and rel_type != FilterRelationship.NEQ:
490 | if not isinstance(value, datetime.datetime):
491 | if rel_type == FilterRelationship.GTE or rel_type == FilterRelationship.LT:
492 | return TimestampFilter(value=pb_timestamp(value, tzinfo, b_force_min=True),
493 | rel_type=rel_type,
494 | sort_direction=sort_direction)
495 | elif rel_type == FilterRelationship.LTE or rel_type == FilterRelationship.GT:
496 | return TimestampFilter(value=pb_timestamp(value, tzinfo, b_force_min=False),
497 | rel_type=rel_type,
498 | sort_direction=sort_direction)
499 | return TimestampFilter(value=pb_timestamp(value, tzinfo), rel_type=rel_type, sort_direction=sort_direction)
500 | elif value is not None and not isinstance(value, datetime.datetime) and \
501 | (rel_type == FilterRelationship.EQ or rel_type == FilterRelationship.NEQ):
502 | start = datetime.datetime.combine(value, datetime.datetime.min.time(), tzinfo=tzinfo)
503 | end = datetime.datetime.combine(value, datetime.datetime.max.time(), tzinfo=tzinfo)
504 | if rel_type == FilterRelationship.EQ:
505 | rel_type = FilterRelationship.BETWEEN
506 | else:
507 | rel_type = FilterRelationship.NOT_BETWEEN
508 |
509 | return TimestampFilter(start=pb_timestamp(start, tzinfo),
510 | end=pb_timestamp(end, tzinfo),
511 | rel_type=rel_type,
512 | sort_direction=sort_direction)
513 |
514 |
515 | def pb_timestamp(d_utc: Union[datetime.datetime, datetime.date],
516 | tzinfo: datetime.timezone = datetime.timezone.utc,
517 | b_force_min=True) -> timestamp_pb2.Timestamp:
518 | """
519 | create a google.protobuf.Timestamp from a python datetime
520 | :param d_utc: python datetime or date
521 | :param tzinfo:
522 | :return:
523 | """
524 | ts = timestamp_pb2.Timestamp()
525 | ts.FromDatetime(timezoned(d_utc, tzinfo, b_force_min))
526 | return ts
527 |
528 |
529 | def datetime_from_pb_timestamp(ts: timestamp_pb2.Timestamp) -> datetime:
530 | return datetime.datetime.utcfromtimestamp(ts.seconds + ts.nanos/1e9)
531 |
532 |
533 | def timezoned(d_utc: Union[datetime.datetime, datetime.date],
534 | tzinfo: datetime.timezone = datetime.timezone.utc,
535 | b_force_min=True) -> datetime.datetime:
536 | # datetime is child to datetime.date, so if we reverse the order of this instance of we fail
537 | if isinstance(d_utc, datetime.datetime) and d_utc.tzinfo is None:
538 | # TODO add warning here:
539 | # print("warning, no timezone provided with datetime, so UTC is assumed")
540 | d_utc = datetime.datetime(d_utc.year,
541 | d_utc.month,
542 | d_utc.day,
543 | d_utc.hour,
544 | d_utc.minute,
545 | d_utc.second,
546 | d_utc.microsecond,
547 | tzinfo=tzinfo)
548 | elif not isinstance(d_utc, datetime.datetime):
549 | # print("warning, no timezone provided with date, so UTC is assumed")
550 | if b_force_min:
551 | d_utc = datetime.datetime.combine(d_utc, datetime.datetime.min.time(), tzinfo=tzinfo)
552 | else:
553 | d_utc = datetime.datetime.combine(d_utc, datetime.datetime.max.time(), tzinfo=tzinfo)
554 | return d_utc
555 |
556 |
557 | # TODO https://pypi.org/project/Deprecated/
558 | def duration(d_start: Union[datetime.datetime, datetime.date], d_end: Union[datetime.datetime, datetime.date]):
559 | d = duration_pb2.Duration()
560 | d.FromTimedelta(timezoned(d_end) - timezoned(d_start))
561 | return d
562 |
563 |
564 | # TODO https://pypi.org/project/Deprecated/
565 | def datetime_range(d_start: Union[datetime.datetime, datetime.date],
566 | d_end: Union[datetime.datetime, datetime.date]) -> DatetimeRange:
567 | """
568 | for datetime range definitions for Mosaic objects.
569 | :param d_start: start datetime or date
570 | :param d_end: end datetime or date
571 | :return: DatetimeRange object
572 | """
573 | return DatetimeRange(start=pb_timestamp(d_start), end=pb_timestamp(d_end))
574 |
575 |
576 | def stac_request_to_b64(req: StacRequest) -> str:
577 | return str(base64.b64encode(req.SerializeToString()), encoding='ascii')
578 |
579 |
580 | def stac_request_from_b64(encoded: str) -> StacRequest:
581 | req = StacRequest()
582 | req.ParseFromString(base64.b64decode(bytes(encoded, encoding='ascii')))
583 | return req
584 |
585 |
586 | def stac_item_to_b64(item: StacItem) -> str:
587 | return str(base64.b64encode(item.SerializeToString()), encoding='ascii')
588 |
589 |
590 | def stac_item_from_b64(encoded: str) -> StacItem:
591 | item = StacItem()
592 | item.ParseFromString(base64.b64decode(bytes(encoded, encoding='ascii')))
593 | return item
594 |
595 |
596 | def eval_float_filter(float_filter: FloatFilter, val: float) -> bool:
597 | rel = float_filter.rel_type
598 |
599 | if rel == enum.FilterRelationship.EQ:
600 | return val == float_filter.value
601 | elif rel == enum.FilterRelationship.NEQ:
602 | return val != float_filter.value
603 | elif rel == enum.FilterRelationship.BETWEEN:
604 | return float_filter.start < val < float_filter.end
605 | elif rel == enum.FilterRelationship.NOT_BETWEEN:
606 | return val < float_filter.start or val > float_filter.end
607 | elif rel == enum.FilterRelationship.GTE:
608 | return val >= float_filter.value
609 | elif rel == enum.FilterRelationship.GT:
610 | return val > float_filter.value
611 | elif rel == enum.FilterRelationship.LTE:
612 | return val <= float_filter.value
613 | elif rel == enum.FilterRelationship.LT:
614 | return val < float_filter.value
615 | else:
616 | raise ValueError(f"not currently evaluating float filters of type: {query.FilterRelationship.Name(rel)}")
617 |
--------------------------------------------------------------------------------
/requirements-demo.txt:
--------------------------------------------------------------------------------
1 | epl.geometry==1.0.3
2 |
3 | ipykernel
4 | jupyter
5 | jupyter_contrib_nbextensions
6 | matplotlib
7 | requests
8 | shapely
9 |
--------------------------------------------------------------------------------
/requirements-test.txt:
--------------------------------------------------------------------------------
1 | epl.geometry==1.0.3
2 |
3 | numpy
4 | pytest
5 | pytest-flake8
6 | requests
7 | treon
8 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | boto3==1.16.10
2 | epl.protobuf.v1==1.0.4
3 | google-cloud-storage>=1.14.0
4 | grpcio-tools~=1.33.0
5 | protobuf~=3.19.0
6 | requests
7 | shapely==1.8.5.post1
8 | tenacity==8.0.1
9 |
--------------------------------------------------------------------------------
/setup.cfg:
--------------------------------------------------------------------------------
1 | # content of setup.cfg
2 | [tool:pytest]
3 | flake8-max-line-length = 120
4 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | # Copyright 2019-20 Near Space Labs
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | #
15 | # for additional information, contact:
16 | # info@nearspacelabs.com
17 |
18 | import sys
19 | import os
20 |
21 | from setuptools import setup
22 |
23 | src_path = os.path.dirname(os.path.abspath(sys.argv[0]))
24 | old_path = os.getcwd()
25 | os.chdir(src_path)
26 | sys.path.insert(0, src_path)
27 |
28 | package_name = 'nsl.stac'
29 | kwargs = {
30 | 'name': package_name,
31 | 'description': 'gRPC Spatio Temporal Asset Catalog library',
32 | 'url': 'https://github.com/nearspacelabs/stac-client-python',
33 | 'long_description': "gRPC Spatio Temporal Asset Catalog library provided by Near Space Labs",
34 | 'author': 'David Raleigh',
35 | 'author_email': 'david@nearspacelabs.com',
36 | 'license': 'Apache 2.0',
37 | 'version': '1.2.7',
38 | 'python_requires': '>3.6.0',
39 | 'packages': ['nsl.stac', 'nsl.stac.destinations'],
40 | 'install_requires': [
41 | # local
42 | 'epl.protobuf.v1',
43 | 'epl.geometry',
44 | # third-party
45 | 'boto3',
46 | 'google-cloud-storage',
47 | 'grpcio-tools==1.33.*',
48 | 'protobuf~=3.19.0',
49 | 'requests',
50 | 'shapely',
51 | 'tenacity',
52 | ],
53 | 'zip_safe': False
54 | }
55 |
56 | clssfrs = [
57 | 'Programming Language :: Python',
58 | 'Programming Language :: Python :: 3',
59 | 'Programming Language :: Python :: 3.7',
60 | 'Programming Language :: Python :: 3.8',
61 | 'Programming Language :: Python :: 3.9',
62 | ]
63 | kwargs['classifiers'] = clssfrs
64 |
65 | setup(**kwargs)
66 |
--------------------------------------------------------------------------------
/test/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2019-20 Near Space Labs
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | #
15 | # for additional information, contact:
16 | # info@nearspacelabs.com
--------------------------------------------------------------------------------
/test/test_client.py:
--------------------------------------------------------------------------------
1 | # Copyright 2019-20 Near Space Labs
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | #
15 | # for additional information, contact:
16 | # info@nearspacelabs.com
17 | import pathlib
18 | import tempfile
19 | import unittest
20 | import io
21 | import os
22 | import pickle
23 |
24 | from epl import geometry as epl_geometry
25 | from epl.geometry import Polygon
26 | from epl.protobuf.v1.geometry_pb2 import EnvelopeData
27 | from google.protobuf import timestamp_pb2
28 | from datetime import datetime, timezone, date, timedelta
29 |
30 | from nsl.stac import StacRequest, LandsatRequest, MosaicRequest
31 | from nsl.stac import StacItem, Asset, TimestampFilter, GeometryData, ProjectionData, Mosaic
32 | from nsl.stac import utils, enum
33 | from nsl.stac.enum import AssetType, Band, CloudPlatform, Mission, FilterRelationship
34 | from nsl.stac.client import NSLClient
35 | from nsl.stac.experimental import StacRequestWrap, NSLClientEx, AssetWrap, StacItemWrap
36 |
37 | client = NSLClient(nsl_only=False)
38 | client_ex = NSLClientEx(nsl_only=False)
39 |
40 |
41 | class TestProtobufs(unittest.TestCase):
42 | def test_mosaic_parts(self):
43 | mosaic = Mosaic(name="bananas", quad_key="stuff", provenance_ids=["no one", "wants", "potato", "waffles"])
44 |
45 | self.assertEqual(mosaic.name, "bananas")
46 | mosaic.observation_range.CopyFrom(utils.datetime_range(date(2016, 1, 1), date(2018, 1, 1)))
47 | d_compare = utils.timezoned(date(2019, 1, 1))
48 | self.assertGreater(d_compare.timestamp(), mosaic.observation_range.start.seconds)
49 | self.assertGreater(d_compare.timestamp(), mosaic.observation_range.end.seconds)
50 |
51 | self.assertEqual(mosaic.provenance_ids[0], "no one")
52 | self.assertEqual(4, len(mosaic.provenance_ids))
53 | mosaic.provenance_ids.append("and boiled chicken")
54 | self.assertEqual(5, len(mosaic.provenance_ids))
55 | mosaic_request = MosaicRequest(name="bananas", quad_key="stuffly")
56 | self.assertEqual(mosaic_request.name, mosaic.name)
57 | stac_item = StacItem(mosaic=mosaic)
58 | self.assertEqual(stac_item.mosaic.name, mosaic.name)
59 |
60 | stac_request = StacRequest(mosaic=mosaic_request)
61 | self.assertEqual(stac_request.mosaic.name, mosaic.name)
62 |
63 | def test_durations(self):
64 | d = utils.duration(datetime(2016, 1, 1), datetime(2017, 1, 1))
65 | self.assertEquals(d.seconds, 31622400)
66 | d = utils.duration(date(2016, 1, 1), datetime(2017, 1, 1))
67 | self.assertEquals(d.seconds, 31622400)
68 | d = utils.duration(date(2016, 1, 1), date(2017, 1, 1))
69 | self.assertEquals(d.seconds, 31622400)
70 | d = utils.duration(datetime(2016, 1, 1), date(2017, 1, 1))
71 | self.assertEquals(d.seconds, 31622400)
72 |
73 | td = timedelta(seconds=d.seconds)
74 | d_end = datetime(2016, 1, 1) + td
75 | self.assertEquals(d_end.year, 2017)
76 | self.assertEquals(d_end.day, 1)
77 | self.assertEquals(d_end.month, 1)
78 |
79 | # FromDatetime for protobuf 3.6.1 throws "TypeError: can't subtract offset-naive and offset-aware datetimes"
80 | ts = utils.pb_timestamp(datetime(2016, 1, 1, tzinfo=timezone.utc))
81 | self.assertIsNotNone(ts)
82 |
83 | d = utils.duration(datetime(2017, 1, 1), datetime(2017, 1, 1, 0, 0, 59))
84 | self.assertEquals(d.seconds, 59)
85 |
86 | now_local = datetime.now().astimezone()
87 | now_utc = datetime.now(tz=timezone.utc)
88 | d = utils.duration(now_local, now_utc)
89 | self.assertLess(d.seconds, 1)
90 |
91 | ts = utils.pb_timestamp(now_local)
92 | ts2 = timestamp_pb2.Timestamp()
93 | ts2.FromDatetime(now_local)
94 | self.assertEquals(ts.seconds, ts2.seconds)
95 |
96 | d = utils.duration(datetime(2016, 1, 1, 0, 0, 59, tzinfo=timezone.utc),
97 | datetime(2016, 1, 1, 0, 1, 59, tzinfo=timezone.utc))
98 | self.assertEquals(d.seconds, 60)
99 |
100 | utc_now = now_local.astimezone(tz=timezone.utc)
101 | later_now = utc_now + timedelta(seconds=33)
102 |
103 | d = utils.duration(now_local, later_now)
104 | self.assertEquals(d.seconds, 33)
105 |
106 |
107 | class TestAssetMatching(unittest.TestCase):
108 | def test_asset_match(self):
109 | asset_1 = Asset(href="pecans")
110 | asset_2 = Asset(href="walnuts")
111 | stac_item = StacItem()
112 | stac_item.assets["test_key"].CopyFrom(asset_1)
113 | self.assertFalse(utils.has_asset(stac_item, asset_2))
114 |
115 |
116 | class TestLandsat(unittest.TestCase):
117 | def test_product_id(self):
118 | product_id = "LC08_L1TP_027039_20150226_20170228_01_T1"
119 | stac_request = StacRequest(landsat=LandsatRequest(product_id=product_id))
120 | stac_item = client.search_one(stac_request)
121 | self.assertIsNotNone(stac_item)
122 | self.assertEquals("LC80270392015057LGN01", stac_item.id)
123 |
124 | def test_wrs_row_path(self):
125 | wrs_path = 27
126 | wrs_row = 38
127 |
128 | stac_request = StacRequest(landsat=LandsatRequest(wrs_path=wrs_path, wrs_row=wrs_row))
129 | stac_item = client.search_one(stac_request)
130 | self.assertNotEqual(len(stac_item.id), 0)
131 |
132 | def test_OLI(self):
133 | stac_id = "LO81120152015061LGN00"
134 | stac_request = StacRequest(id=stac_id)
135 | stac_item = client.search_one(stac_request)
136 | asset = utils.get_asset(stac_item, eo_bands=Band.BLUE, cloud_platform=CloudPlatform.GCP)
137 | self.assertIsNotNone(asset)
138 | asset = utils.get_asset(stac_item,
139 | eo_bands=Band.BLUE,
140 | asset_type=enum.AssetType.GEOTIFF,
141 | cloud_platform=CloudPlatform.AWS)
142 | self.assertIsNotNone(asset)
143 |
144 | asset = utils.get_asset(stac_item, eo_bands=Band.LWIR_1, cloud_platform=CloudPlatform.GCP)
145 | self.assertIsNone(asset)
146 | asset = utils.get_asset(stac_item, eo_bands=Band.LWIR_1, cloud_platform=CloudPlatform.AWS)
147 | self.assertIsNone(asset)
148 |
149 | asset = utils.get_asset(stac_item, eo_bands=Band.CIRRUS, cloud_platform=CloudPlatform.GCP)
150 | self.assertIsNotNone(asset)
151 | asset = utils.get_asset(stac_item, eo_bands=Band.CIRRUS, cloud_platform=CloudPlatform.AWS,
152 | asset_type=enum.AssetType.GEOTIFF)
153 | self.assertIsNotNone(asset)
154 |
155 | aws_count, gcp_count = 0, 0
156 | for key, asset in stac_item.assets.items():
157 | if asset.cloud_platform == CloudPlatform.AWS:
158 | print(asset.object_path)
159 | aws_count += 1
160 | else:
161 | # print(asset.object_path)
162 | gcp_count += 1
163 | self.assertEquals(25, aws_count)
164 | self.assertEquals(12, gcp_count)
165 |
166 | def test_basename(self):
167 | asset_name = r'.*LO81120152015061LGN00_B2\.TIF$'
168 | stac_id = "LO81120152015061LGN00"
169 | stac_request = StacRequest(id=stac_id)
170 | stac_item = client.search_one(stac_request)
171 | asset = utils.get_asset(stac_item, asset_regex={'object_path': asset_name}, cloud_platform=CloudPlatform.AWS)
172 | self.assertIsNotNone(asset)
173 |
174 | def test_thumbnail(self):
175 | stac_id = 'LO81120152015061LGN00'
176 | stac_request = StacRequest(id=stac_id)
177 | stac_item = client.search_one(stac_request)
178 | asset = utils.get_asset(stac_item,
179 | asset_type=AssetType.THUMBNAIL,
180 | cloud_platform=CloudPlatform.AWS,
181 | asset_regex={"asset_key": ".*_2$"})
182 | self.assertIsNotNone(asset)
183 |
184 | def test_aws(self):
185 | stac_id = "LC80270392015025LGN00"
186 | stac_request = StacRequest(id=stac_id)
187 | stac_item = client.search_one(stac_request)
188 | self.assertIsNotNone(stac_item)
189 | count = 0
190 | for key, asset in stac_item.assets.items():
191 | if asset.cloud_platform == CloudPlatform.AWS:
192 | print(asset.object_path)
193 | count += 1
194 | self.assertEquals(29, count)
195 |
196 | def test_L1TP(self):
197 | stac_id = "LT51560171989121KIS00"
198 | stac_request = StacRequest(id=stac_id)
199 | stac_item = client.search_one(stac_request)
200 | self.assertIsNotNone(stac_item)
201 | aws_count, gcp_count = 0, 0
202 | for key, asset in stac_item.assets.items():
203 | if asset.cloud_platform == CloudPlatform.AWS:
204 | aws_count += 1
205 | else:
206 | print(asset.object_path)
207 | gcp_count += 1
208 | self.assertEquals(0, aws_count)
209 | self.assertEquals(20, gcp_count)
210 |
211 | def test_L1G(self):
212 | stac_id = "LT51560202010035IKR02"
213 | stac_request = StacRequest(id=stac_id)
214 | stac_item = client.search_one(stac_request)
215 | self.assertIsNotNone(stac_item)
216 | aws_count, gcp_count = 0, 0
217 | for key, asset in stac_item.assets.items():
218 | if asset.cloud_platform == CloudPlatform.AWS:
219 | aws_count += 1
220 | else:
221 | print(asset.object_path)
222 | gcp_count += 1
223 | self.assertEquals(0, aws_count)
224 | self.assertEquals(20, gcp_count)
225 |
226 | def test_L1t(self):
227 | stac_id = "LT50590132011238PAC00"
228 | stac_request = StacRequest(id=stac_id)
229 | stac_item = client.search_one(stac_request)
230 | self.assertIsNotNone(stac_item)
231 | aws_count, gcp_count = 0, 0
232 | for key, asset in stac_item.assets.items():
233 | if asset.cloud_platform == CloudPlatform.AWS:
234 | aws_count += 1
235 | else:
236 | print(asset.object_path)
237 | gcp_count += 1
238 | self.assertEquals(0, aws_count)
239 | self.assertEquals(20, gcp_count)
240 |
241 | def test_L1GT(self):
242 | stac_id = "LE70080622016239EDC00"
243 | stac_request = StacRequest(id=stac_id)
244 | stac_item = client.search_one(stac_request)
245 | self.assertIsNotNone(stac_item)
246 | aws_count, gcp_count = 0, 0
247 | for key, asset in stac_item.assets.items():
248 | if asset.cloud_platform == CloudPlatform.AWS:
249 | aws_count += 1
250 | else:
251 | print(asset.object_path)
252 | gcp_count += 1
253 | self.assertEquals(0, aws_count)
254 | self.assertEquals(22, gcp_count)
255 |
256 | def test_L8_processed_id(self):
257 | stac_id = "LC81262052018263LGN00"
258 | stac_request = StacRequest(id=stac_id)
259 | stac_item = client.search_one(stac_request)
260 | self.assertIsNotNone(stac_item)
261 | aws_count, gcp_count = 0, 0
262 | for key, asset in stac_item.assets.items():
263 | if asset.cloud_platform == CloudPlatform.AWS:
264 | aws_count += 1
265 | else:
266 | print(asset.object_path)
267 | gcp_count += 1
268 | self.assertEquals(42, aws_count)
269 | self.assertEquals(14, gcp_count)
270 |
271 | def test_L8_processed_id_2(self):
272 | stac_id = "LC81262052018263LGN00"
273 | stac_request = StacRequest(id=stac_id)
274 | stac_item = client.search_one(stac_request)
275 | self.assertIsNotNone(stac_item)
276 | aws_count, gcp_count = 0, 0
277 | for key, asset in stac_item.assets.items():
278 | if asset.cloud_platform == CloudPlatform.AWS:
279 | aws_count += 1
280 | print(asset.object_path)
281 | else:
282 | gcp_count += 1
283 | self.assertEquals(42, aws_count)
284 | self.assertEquals(14, gcp_count)
285 |
286 | def test_count(self):
287 | stac_id = "LC81262052018263LGN00"
288 | stac_request = StacRequest(id=stac_id)
289 | number = client.count(stac_request)
290 | self.assertEquals(1, number)
291 |
292 | def test_2000(self):
293 | start = datetime(1999, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
294 | end = datetime(1999, 4, 6, 12, 52, 59, tzinfo=timezone.utc)
295 | observed_range = utils.pb_timestampfield(rel_type=FilterRelationship.BETWEEN, start=start, end=end)
296 |
297 | stac_request = StacRequest(observed=observed_range, limit=20, landsat=LandsatRequest())
298 | for stac_item in client.search(stac_request):
299 | self.assertEqual(Mission.LANDSAT, stac_item.mission_enum)
300 | print(datetime.fromtimestamp(stac_item.datetime.seconds, tz=timezone.utc))
301 | self.assertGreaterEqual(utils.pb_timestamp(end).seconds, stac_item.datetime.seconds)
302 | self.assertLessEqual(utils.pb_timestamp(start).seconds, stac_item.datetime.seconds)
303 |
304 | self.assertEquals(2728, client.count(stac_request))
305 |
306 | def test_count_more(self):
307 | start = datetime(2014, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
308 | end = datetime(2014, 4, 1, 12, 52, 59, tzinfo=timezone.utc)
309 | observed_range = TimestampFilter(start=utils.pb_timestamp(start),
310 | end=utils.pb_timestamp(end),
311 | rel_type=FilterRelationship.BETWEEN)
312 |
313 | stac_request = StacRequest(observed=observed_range, limit=40, landsat=LandsatRequest())
314 | for stac_item in client.search(stac_request):
315 | self.assertEquals(Mission.LANDSAT, stac_item.mission_enum)
316 | print(datetime.fromtimestamp(stac_item.datetime.seconds, tz=timezone.utc))
317 | self.assertGreaterEqual(utils.pb_timestamp(end).seconds, stac_item.datetime.seconds)
318 | self.assertLessEqual(utils.pb_timestamp(start).seconds, stac_item.datetime.seconds)
319 |
320 | self.assertEquals(12, client.count(stac_request))
321 |
322 |
323 | class TestDatetimeQueries(unittest.TestCase):
324 | def test_date_LT_OR_EQ(self):
325 | bd = date(2014, 11, 3)
326 | observed_range = utils.pb_timestampfield(rel_type=FilterRelationship.LTE, value=bd)
327 | stac_request = StacRequest(observed=observed_range, mission_enum=enum.Mission.NAIP)
328 | stac_item = client.search_one(stac_request)
329 | self.assertIsNotNone(stac_item)
330 | self.assertLessEqual(utils.pb_timestamp(bd).seconds, stac_item.datetime.seconds)
331 |
332 | def test_date_GT_OR_EQ(self):
333 | bd = date(2015, 11, 3)
334 | observed_range = TimestampFilter(value=utils.pb_timestamp(bd, tzinfo=timezone.utc),
335 | rel_type=FilterRelationship.GTE)
336 | stac_request = StacRequest(observed=observed_range)
337 | stac_item = client.search_one(stac_request)
338 | self.assertIsNotNone(stac_item)
339 | self.assertLessEqual(utils.pb_timestamp(bd, tzinfo=timezone.utc).seconds, stac_item.observed.seconds)
340 |
341 | def test_date_GT_OR_EQ_datetime(self):
342 | bd = date(2015, 11, 3)
343 | observed_range = TimestampFilter(value=utils.pb_timestamp(bd, tzinfo=timezone.utc),
344 | rel_type=FilterRelationship.GTE)
345 | stac_request = StacRequest(observed=observed_range)
346 | stac_item = client.search_one(stac_request)
347 | self.assertIsNotNone(stac_item)
348 | self.assertLessEqual(utils.pb_timestamp(bd, tzinfo=timezone.utc).seconds, stac_item.datetime.seconds)
349 |
350 | def test_observed_GT(self):
351 | bdt = datetime(2015, 11, 3, 1, 1, 1, tzinfo=timezone.utc)
352 | observed_range = TimestampFilter(value=utils.pb_timestamp(bdt),
353 | rel_type=FilterRelationship.GT)
354 | stac_request = StacRequest(observed=observed_range)
355 | stac_item = client.search_one(stac_request)
356 | self.assertIsNotNone(stac_item)
357 | self.assertLessEqual(utils.pb_timestamp(bdt).seconds, stac_item.observed.seconds)
358 |
359 | def test_datetime_GT(self):
360 | bdt = datetime(2015, 11, 3, 1, 1, 1, tzinfo=timezone.utc)
361 | observed_range = TimestampFilter(value=utils.pb_timestamp(bdt),
362 | rel_type=FilterRelationship.GT)
363 | stac_request = StacRequest(observed=observed_range)
364 | stac_item = client.search_one(stac_request)
365 | self.assertIsNotNone(stac_item)
366 | self.assertLessEqual(utils.pb_timestamp(bdt).seconds, stac_item.datetime.seconds)
367 |
368 | def test_datetime_range(self):
369 | start = datetime(2013, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
370 | end = datetime(2014, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
371 | observed_range = TimestampFilter(start=utils.pb_timestamp(start),
372 | end=utils.pb_timestamp(end),
373 | rel_type=FilterRelationship.BETWEEN)
374 | stac_request = StacRequest(observed=observed_range, limit=5)
375 | for stac_item in client.search(stac_request):
376 | print(datetime.fromtimestamp(stac_item.datetime.seconds, tz=timezone.utc))
377 | self.assertGreaterEqual(utils.pb_timestamp(end).seconds, stac_item.datetime.seconds)
378 | self.assertLessEqual(utils.pb_timestamp(start).seconds, stac_item.datetime.seconds)
379 |
380 | def test_datetime_not_range(self):
381 | start = datetime(2013, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
382 | end = datetime(2014, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
383 | observed_range = TimestampFilter(start=utils.pb_timestamp(start),
384 | end=utils.pb_timestamp(end),
385 | rel_type=FilterRelationship.NOT_BETWEEN)
386 | stac_request = StacRequest(observed=observed_range, limit=5)
387 | for stac_item in client.search(stac_request):
388 | print(datetime.fromtimestamp(stac_item.datetime.seconds, tz=timezone.utc))
389 | self.assertTrue(utils.pb_timestamp(end).seconds < stac_item.datetime.seconds or
390 | utils.pb_timestamp(start).seconds > stac_item.datetime.seconds)
391 |
392 | def test_datetime_not_range_asc(self):
393 | start = datetime(2013, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
394 | end = datetime(2014, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
395 | observed_range = TimestampFilter(start=utils.pb_timestamp(start),
396 | end=utils.pb_timestamp(end),
397 | rel_type=FilterRelationship.NOT_BETWEEN,
398 | sort_direction=enum.SortDirection.ASC)
399 | stac_request = StacRequest(observed=observed_range, limit=5)
400 | count = 0
401 | for stac_item in client.search(stac_request):
402 | count += 1
403 | print(datetime.fromtimestamp(stac_item.datetime.seconds, tz=timezone.utc))
404 | self.assertTrue(utils.pb_timestamp(end).seconds > stac_item.datetime.seconds or
405 | utils.pb_timestamp(start).seconds < stac_item.datetime.seconds)
406 | self.assertEqual(count, 5)
407 |
408 | def test_datetime_not_range_desc(self):
409 | start = datetime(2013, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
410 | end = datetime(2014, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
411 | observed_range = TimestampFilter(start=utils.pb_timestamp(start),
412 | end=utils.pb_timestamp(end),
413 | rel_type=FilterRelationship.NOT_BETWEEN,
414 | sort_direction=enum.SortDirection.DESC)
415 | stac_request = StacRequest(observed=observed_range, limit=5)
416 | count = 0
417 | for stac_item in client.search(stac_request):
418 | count += 1
419 | print(datetime.fromtimestamp(stac_item.datetime.seconds, tz=timezone.utc))
420 | self.assertTrue(utils.pb_timestamp(end).seconds < stac_item.datetime.seconds)
421 | self.assertEqual(count, 5)
422 |
423 | def test_observed_not_range_desc(self):
424 | start = datetime(2013, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
425 | end = datetime(2014, 4, 1, 12, 45, 59, tzinfo=timezone.utc)
426 | observed_range = TimestampFilter(start=utils.pb_timestamp(start),
427 | end=utils.pb_timestamp(end),
428 | rel_type=FilterRelationship.NOT_BETWEEN,
429 | sort_direction=enum.SortDirection.DESC)
430 | stac_request = StacRequest(observed=observed_range, limit=5)
431 | count = 0
432 | for stac_item in client.search(stac_request):
433 | count += 1
434 | print(datetime.fromtimestamp(stac_item.observed.seconds, tz=timezone.utc))
435 | self.assertTrue(utils.pb_timestamp(end).seconds < stac_item.observed.seconds)
436 | self.assertEqual(count, 5)
437 |
438 | def test_date_utc_eq(self):
439 | value = date(2019, 8, 6)
440 | texas_utc_offset = timezone(timedelta(hours=-6))
441 | time_filter = utils.pb_timestampfield(rel_type=enum.FilterRelationship.EQ,
442 | value=value,
443 | tzinfo=texas_utc_offset)
444 |
445 | stac_request = StacRequest(datetime=time_filter, limit=2)
446 |
447 | # get a client interface to the gRPC channel
448 | for stac_item in client.search(stac_request):
449 | print("STAC item date, {0}, is before {1}: {2}".format(
450 | datetime.fromtimestamp(stac_item.observed.seconds, tz=timezone.utc).isoformat(),
451 | datetime.fromtimestamp(time_filter.end.seconds, tz=texas_utc_offset).isoformat(),
452 | stac_item.observed.seconds < time_filter.end.seconds))
453 |
454 | start = date(2019, 8, 6)
455 | time_filter = utils.pb_timestampfield(rel_type=FilterRelationship.EQ,
456 | value=start,
457 | tzinfo=timezone(timedelta(hours=-6)))
458 | stac_request = StacRequest(datetime=time_filter, limit=2)
459 | count = 0
460 | for _ in client.search(stac_request):
461 | count += 1
462 |
463 | self.assertEqual(2, count)
464 |
465 |
466 | class TestHelpers(unittest.TestCase):
467 | def test_has_asset(self):
468 | stac_id = "LO81120152015061LGN00"
469 | stac_request = StacRequest(id=stac_id)
470 | stac_item = client.search_one(stac_request=stac_request)
471 | for key in stac_item.assets:
472 | asset = stac_item.assets[key]
473 | self.assertTrue(utils.has_asset(stac_item, asset))
474 | garbage = Asset(href="pie")
475 | self.assertFalse(utils.has_asset(stac_item, garbage))
476 | garbage.asset_type = asset.asset_type
477 | self.assertFalse(utils.has_asset(stac_item, garbage))
478 | garbage.href = asset.href
479 | garbage.bucket = asset.bucket
480 | garbage.type = asset.type
481 | garbage.eo_bands = asset.eo_bands
482 | garbage.cloud_platform = asset.cloud_platform
483 | garbage.bucket_manager = asset.bucket_manager
484 | garbage.bucket_region = asset.bucket_region
485 | garbage.object_path = asset.object_path
486 | self.assertTrue(utils.has_asset(stac_item, garbage))
487 |
488 | def test_download_gcp(self):
489 | stac_id = "LO81120152015061LGN00"
490 | stac_item = client.search_one(stac_request=StacRequest(id=stac_id))
491 | asset = utils.get_asset(stac_item,
492 | asset_type=AssetType.TXT,
493 | cloud_platform=CloudPlatform.GCP,
494 | asset_regex={'href': r'.*LO81120152015061LGN00_MTL\.txt$'})
495 | self.assertIsNotNone(asset)
496 | with tempfile.TemporaryDirectory() as d:
497 | print(d)
498 | file_path = utils.download_asset(asset=asset, from_bucket=True, save_directory=d)
499 | with open(file_path) as f:
500 | data1 = f.read()
501 |
502 | file_path = utils.download_asset(asset=asset, from_bucket=True, save_filename=file_path)
503 | with open(file_path) as f:
504 | data2 = f.read()
505 |
506 | self.assertMultiLineEqual(data1, data2)
507 |
508 | with tempfile.NamedTemporaryFile('w+b', delete=False) as f_obj:
509 | utils.download_asset(asset=asset, from_bucket=True, file_obj=f_obj)
510 | data3 = f_obj.read().decode('ascii')
511 | self.assertMultiLineEqual(data1, data3)
512 |
513 | def test_download_aws(self):
514 | stac_id = "LC80270392015025LGN00"
515 | stac_item = client.search_one(stac_request=StacRequest(id=stac_id))
516 | asset = utils.get_asset(stac_item,
517 | asset_type=AssetType.TXT,
518 | cloud_platform=CloudPlatform.AWS)
519 | self.assertIsNotNone(asset)
520 | with tempfile.TemporaryDirectory() as d:
521 | print(d)
522 | file_path = utils.download_asset(asset=asset, from_bucket=True, save_directory=d)
523 | with open(file_path) as f:
524 | data1 = f.read()
525 |
526 | file_path = utils.download_asset(asset=asset, from_bucket=True, save_filename=file_path)
527 | with open(file_path) as f:
528 | data2 = f.read()
529 |
530 | self.assertMultiLineEqual(data1, data2)
531 |
532 | with tempfile.NamedTemporaryFile('w+b', delete=False) as f_obj:
533 | utils.download_asset(asset=asset, from_bucket=True, file_obj=f_obj)
534 | data3 = f_obj.read().decode('ascii')
535 | self.assertMultiLineEqual(data1, data3)
536 |
537 | def test_download_geotiff(self):
538 | stac_request = StacRequest(id='20190822T183518Z_746_POM1_ST2_P')
539 |
540 | stac_item = client.search_one(stac_request)
541 |
542 | # get the Geotiff asset from the assets map
543 | asset = utils.get_asset(stac_item, asset_type=enum.AssetType.GEOTIFF)
544 |
545 | with tempfile.TemporaryDirectory() as d:
546 | file_path = utils.download_asset(asset=asset, save_directory=d)
547 | print("{0} has {1} bytes".format(os.path.basename(file_path), os.path.getsize(file_path)))
548 |
549 | def test_download_href(self):
550 | stac_id = "20190829T173549Z_1799_POM1_ST2_P"
551 | stac_item = client.search_one(stac_request=StacRequest(id=stac_id))
552 | asset = utils.get_asset(stac_item, asset_type=AssetType.THUMBNAIL)
553 |
554 | self.assertIsNotNone(asset)
555 |
556 | with tempfile.TemporaryDirectory() as d:
557 | file_path = utils.download_asset(asset=asset, save_directory=d)
558 | with open(file_path, 'rb') as f:
559 | data1 = f.read()
560 |
561 | file_path = utils.download_asset(asset=asset, save_filename=file_path)
562 | with open(file_path, 'rb') as f:
563 | data2 = f.read()
564 |
565 | self.assertEqual(data1, data2)
566 |
567 | with tempfile.NamedTemporaryFile('w+b', delete=False) as file_obj:
568 | utils.download_asset(asset=asset, file_obj=file_obj)
569 | data3 = file_obj.read()
570 | self.assertEqual(data1, data3)
571 |
572 | b = io.BytesIO()
573 | utils.download_asset(asset=asset, file_obj=b)
574 | data4 = b.read()
575 | self.assertEqual(data2, data4)
576 |
577 | def test_download_aws_href(self):
578 | stac_id = 'LC80270392015025LGN00'
579 | stac_item = client.search_one(stac_request=StacRequest(id=stac_id))
580 | asset = utils.get_asset(stac_item,
581 | asset_type=AssetType.THUMBNAIL,
582 | asset_regex={"asset_key": ".*_2$"},
583 | cloud_platform=enum.CloudPlatform.AWS)
584 | self.assertIsNotNone(asset)
585 |
586 | with tempfile.TemporaryDirectory() as d:
587 | file_path = utils.download_asset(asset=asset, save_directory=d)
588 | with open(file_path, 'rb') as f:
589 | data1 = f.read()
590 |
591 | file_path = utils.download_asset(asset=asset, save_filename=file_path)
592 | with open(file_path, 'rb') as f:
593 | data2 = f.read()
594 |
595 | self.assertEqual(data1, data2)
596 |
597 |
598 | class TestPerf(unittest.TestCase):
599 | def test_query_limits(self):
600 | # Same geometry as above, but a wkt geometry instead of a geojson
601 | travis_wkt = "POLYGON((-97.9736 30.6251, -97.9188 30.6032, -97.9243 30.5703, -97.8695 30.5484, -97.8476 " \
602 | "30.4717, -97.7764 30.4279, -97.5793 30.4991, -97.3711 30.4170, -97.4916 30.2089, " \
603 | "-97.6505 30.0719, -97.6669 30.0665, -97.7107 30.0226, -98.1708 30.3567, -98.1270 30.4279, " \
604 | "-98.0503 30.6251)) "
605 | geometry_data = GeometryData(wkt=travis_wkt,
606 | proj=ProjectionData(epsg=4326))
607 |
608 | limit = 200
609 | offset = 0
610 | total = 0
611 | while total < 1000:
612 | # make our request
613 | stac_request = StacRequest(intersects=geometry_data, limit=limit, offset=offset)
614 | # prepare request for next
615 | offset += limit
616 | for stac_item in client.search(stac_request):
617 | total += 1
618 | # do cool things with data here
619 | if total % limit == 0:
620 | print("stac item id: {0} at {1} index in request".format(stac_item.id, total))
621 | self.assertEqual(total, 1000)
622 |
623 |
624 | class TestWrap(unittest.TestCase):
625 | def test_landsat(self):
626 | stac_id = 'LO81120152015061LGN00'
627 | request_wrapped = StacRequestWrap(id=stac_id)
628 | for stac_wrapped in client_ex.search_ex(stac_request_wrapped=request_wrapped):
629 | self.assertEqual(stac_wrapped.mission, enum.Mission.LANDSAT)
630 | self.assertEqual(stac_wrapped.mission.name, enum.Mission.LANDSAT.name)
631 | self.assertEqual(stac_wrapped.stac_item.mission, enum.Mission.LANDSAT.name)
632 | self.assertEqual(stac_wrapped.platform, enum.Platform.LANDSAT_8)
633 | self.assertEqual(stac_wrapped.platform.name, enum.Platform.LANDSAT_8.name)
634 | self.assertEqual(stac_wrapped.stac_item.platform, enum.Platform.LANDSAT_8.name)
635 | self.assertEqual(stac_wrapped.instrument, enum.Instrument.OLI)
636 | self.assertEqual(stac_wrapped.instrument.name, enum.Instrument.OLI.name)
637 | self.assertEqual(stac_wrapped.stac_item.instrument, enum.Instrument.OLI.name)
638 | self.assertLessEqual(stac_wrapped.gsd, 60)
639 | self.assertEqual(stac_id, stac_wrapped.stac_item.id)
640 |
641 | asset_wrapped_keys = []
642 | for asset_wrap in stac_wrapped.get_assets():
643 | asset_wrapped_keys.append(asset_wrap.asset_key)
644 | for asset_key in stac_wrapped.stac_item.assets:
645 | self.assertTrue(asset_key in asset_wrapped_keys)
646 |
647 | self.assertEqual(1, client_ex.count_ex(request_wrapped))
648 |
649 | def test_constructor(self):
650 | asset_wrap = AssetWrap(bucket='bucky',
651 | object_path="jebidiah/springfield.tif",
652 | asset_type=enum.AssetType.GEOTIFF,
653 | href='https://bubbles.monkey.io/jebidiah/springfield.tif',
654 | cloud_platform=enum.CloudPlatform.AZURE,
655 | bucket_manager='Smithers',
656 | bucket_region='azores')
657 |
658 | asset_clone = AssetWrap(bucket=asset_wrap.bucket,
659 | object_path=str(pathlib.Path(asset_wrap.object_path).with_suffix('.jpg')),
660 | asset_type=enum.AssetType.THUMBNAIL,
661 | href=str(pathlib.Path(asset_wrap.href).with_suffix('.jpg')),
662 | cloud_platform=asset_wrap.cloud_platform,
663 | bucket_manager=asset_wrap.bucket_manager,
664 | bucket_region=asset_wrap.bucket_region)
665 |
666 | self.assertEqual(asset_wrap.bucket_region, asset_clone.bucket_region)
667 | self.assertEqual(asset_clone.ext, '.jpg')
668 |
669 | def test_deep_copy(self):
670 | asset_wrap = AssetWrap()
671 |
672 | asset_wrap.cloud_platform = enum.CloudPlatform.GCP
673 | pickled = pickle.dumps(asset_wrap)
674 | asset_wrap_deep = pickle.loads(pickled)
675 | self.assertEqual(asset_wrap.cloud_platform, asset_wrap_deep.cloud_platform)
676 | self.assertEqual(asset_wrap, asset_wrap_deep)
677 | asset_wrap_shallow = asset_wrap
678 | self.assertEqual(asset_wrap.cloud_platform, asset_wrap_shallow.cloud_platform)
679 | self.assertEqual(asset_wrap, asset_wrap_shallow)
680 | asset_wrap.cloud_platform = enum.CloudPlatform.AWS
681 | self.assertEqual(asset_wrap.cloud_platform, asset_wrap_shallow.cloud_platform)
682 | self.assertNotEqual(asset_wrap.cloud_platform, asset_wrap_deep.cloud_platform)
683 |
684 | stac_item = StacItemWrap()
685 | print(stac_item.stac_item.ListFields())
686 | stac_item.id = "pancakes"
687 | pickled = pickle.dumps(stac_item)
688 | stac_item_deep = pickle.loads(pickled)
689 | self.assertEqual(stac_item.id, stac_item_deep.id)
690 | self.assertEqual("pancakes", stac_item.id)
691 | self.assertEqual(stac_item, stac_item_deep)
692 | stac_item_shallow = stac_item
693 | self.assertEqual(stac_item.id, stac_item_shallow.id)
694 | stac_item_deep.id = 'waffles'
695 | self.assertNotEqual(stac_item_deep.id, stac_item.id)
696 | self.assertEqual("waffles", stac_item_deep.id)
697 |
698 | def test_platform_landsat(self):
699 | request_wrap = StacRequestWrap()
700 |
701 | request_wrap.mission = enum.Mission.LANDSAT
702 | request_wrap.platform = enum.Platform.LANDSAT_8
703 | request_wrap.set_cloud_cover(rel_type=enum.FilterRelationship.GTE, value=50)
704 |
705 | item_wrapped = client_ex.search_one_ex(request_wrap)
706 | self.assertEqual(item_wrapped.platform, request_wrap.platform)
707 | self.assertEqual(item_wrapped.mission, request_wrap.mission)
708 |
709 | def test_code_example_ex(self):
710 | # create our request. this interface allows us to set fields in our protobuf object
711 | request = StacRequestWrap()
712 |
713 | # our area of interest will be the coordinates of the UT Stadium in Austin Texas
714 | # the order of coordinates here is longitude then latitude (x, y). The results of our query
715 | # will be returned only if they intersect this point geometry we've defined (other geometry
716 | # types besides points are supported)
717 | # This string format, POINT(float, float) is the well-known-text geometry format:
718 | # https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
719 | # the epsg # defines the WGS-84 elispsoid (`epsg=4326`) spatial reference
720 | # (the latitude longitude spatial reference most commonly used)
721 | # the epl.geometry Polygon class is an extension of shapely's Polygon class that supports
722 | # the protobuf definitions we use with STAC
723 | request.intersects = Polygon.import_wkt(wkt="POINT(-97.7323317 30.2830764)", epsg=4326)
724 |
725 | # `set_observed` allows for making sql-like queries for information
726 | # LTE is an enum that means less than or equal to the value in the query field
727 | # Query data from August 25, 2019
728 | request.set_observed(rel_type=enum.FilterRelationship.LTE, value=date(2019, 8, 25))
729 |
730 | request.instrument = enum.Instrument.OLI
731 | # search_one_ex method requests only one item be returned that meets the query filters in the StacRequest
732 | # the item returned is a wrapper of the protobuf message; StacItemWrap. search_one_ex, will only return the most
733 | # recently observed results that matches the time filter and spatial filter
734 | stac_item = client_ex.search_one_ex(request)
735 |
736 | # get the thumbnail asset from the assets map. The other option would be a Geotiff,
737 | # with asset key 'GEOTIFF_RGB'
738 | asset = stac_item.get_asset(asset_type=enum.AssetType.GEOTIFF,
739 | eo_bands=enum.Band.SWIR_1,
740 | cloud_platform=enum.CloudPlatform.GCP)
741 | self.assertIsNotNone(asset)
742 |
743 | self.assertEqual(asset.asset_key, "GEOTIFF_GCP_SWIR_1")
744 | asset.asset_key_suffix = "PANCAKES"
745 | self.assertEqual(asset.asset_key, "GEOTIFF_GCP_SWIR_1")
746 |
747 | self.assertTrue(asset.exists())
748 |
749 | def test_3744_bounds(self):
750 | # request wrapper
751 | request = StacRequestWrap()
752 | request.mission_enum = enum.Mission.SWIFT
753 |
754 | # HARN UTM
755 | neighborhood_box = (621636.1875228449, 3349964.520449501, 623157.4212553708, 3351095.8075163467)
756 | # setting the bounds tests for intersection (not contains)
757 | request.set_bounds(neighborhood_box, epsg=3744)
758 | request.limit = 3
759 | found = 0
760 | # Search for data that intersects the bounding box
761 | for stac_item in client_ex.search_ex(request):
762 | found += 1
763 | self.assertEqual(3, found)
764 |
765 | def test_set_intersects_without_proj(self):
766 | neighborhood_box = (-97.7352547645, 30.27526474757116, -97.7195692, 30.28532)
767 | envelope_data = EnvelopeData(xmin=neighborhood_box[0],
768 | ymin=neighborhood_box[1],
769 | xmax=neighborhood_box[2],
770 | ymax=neighborhood_box[3],
771 | proj=ProjectionData(epsg=0))
772 | r = StacRequestWrap()
773 | b_hit = False
774 | try:
775 | r.bbox = envelope_data
776 | except BaseException:
777 | b_hit = True
778 | self.assertTrue(b_hit)
779 |
780 | b_hit = False
781 | try:
782 | r.set_bounds(bounds=neighborhood_box, epsg=0)
783 | except BaseException:
784 | b_hit = True
785 | self.assertTrue(b_hit)
786 |
787 | b_hit = False
788 | try:
789 | r.set_bounds(bounds=neighborhood_box, epsg=4326)
790 | except BaseException:
791 | b_hit = True
792 |
793 | self.assertFalse(b_hit)
794 |
795 | def test_projection_error(self):
796 | # request wrapper
797 | request = StacRequestWrap()
798 |
799 | # define our area of interest bounds using the xmin, ymin, xmax, ymax coordinates of an area on
800 | # the WGS-84 ellipsoid
801 | neighborhood_box = (-97.7352547645, 30.27526474757116, -97.7195692, 30.28532)
802 | # setting the bounds tests for intersection (not contains)
803 | request.set_bounds(neighborhood_box, epsg=4326)
804 |
805 | self.assertEquals(request.bbox.xmin, neighborhood_box[0])
806 | self.assertEquals(request.intersects.proj.epsg, 4326)
807 |
808 | def test_date_vs_datetime(self):
809 | r = StacRequestWrap()
810 |
811 | d = date(2010, 1, 1)
812 | d_min = datetime.combine(d, time=datetime.min.time(), tzinfo=timezone.utc)
813 | r.set_observed(rel_type=enum.FilterRelationship.GTE, value=d)
814 | time_stamp = r.stac_request.observed.value.seconds + r.stac_request.observed.value.nanos / 1000000000.0
815 | self.assertEquals(datetime.fromtimestamp(time_stamp, tz=timezone.utc), d_min)
816 |
817 | r.set_observed(rel_type=enum.FilterRelationship.LT, value=d)
818 | time_stamp = r.stac_request.observed.value.seconds + r.stac_request.observed.value.nanos / 1000000000.0
819 | self.assertEquals(datetime.fromtimestamp(time_stamp, tz=timezone.utc), d_min)
820 |
821 | d_max = datetime.combine(d, time=datetime.max.time(), tzinfo=timezone.utc)
822 | r.set_observed(rel_type=enum.FilterRelationship.GT, value=d)
823 | time_stamp = r.stac_request.observed.value.seconds + r.stac_request.observed.value.nanos / 1000000000.0
824 | self.assertEquals(datetime.fromtimestamp(time_stamp, tz=timezone.utc), d_max)
825 |
826 | r.set_observed(rel_type=enum.FilterRelationship.LTE, value=d)
827 | time_stamp = r.stac_request.observed.value.seconds + r.stac_request.observed.value.nanos / 1000000000.0
828 | self.assertEquals(datetime.fromtimestamp(time_stamp, tz=timezone.utc), d_max)
829 |
830 | d2 = date(2010, 1, 3)
831 | d_max = datetime.combine(d2, time=datetime.max.time(), tzinfo=timezone.utc)
832 | r.set_observed(rel_type=enum.FilterRelationship.BETWEEN, start=d_min, end=d_max)
833 | time_stamp_start = r.stac_request.observed.start.seconds + r.stac_request.observed.start.nanos / 1000000000.0
834 | time_stamp_end = r.stac_request.observed.end.seconds + r.stac_request.observed.end.nanos / 1000000000.0
835 | self.assertEquals(datetime.fromtimestamp(time_stamp_start, tz=timezone.utc), d_min)
836 | self.assertEquals(datetime.fromtimestamp(time_stamp_end, tz=timezone.utc), d_max)
837 |
838 | r.set_observed(rel_type=enum.FilterRelationship.NOT_BETWEEN, start=d_min, end=d_max)
839 | time_stamp_start = r.stac_request.observed.start.seconds + r.stac_request.observed.start.nanos / 1000000000.0
840 | time_stamp_end = r.stac_request.observed.end.seconds + r.stac_request.observed.end.nanos / 1000000000.0
841 | self.assertEquals(datetime.fromtimestamp(time_stamp_start, tz=timezone.utc), d_min)
842 | self.assertEquals(datetime.fromtimestamp(time_stamp_end, tz=timezone.utc), d_max)
843 |
844 | def test_update_asset(self):
845 | r = StacRequestWrap()
846 | r.mission = enum.Mission.LANDSAT
847 | r.platform = enum.Platform.LANDSAT_8
848 | r.set_observed(rel_type=enum.FilterRelationship.GTE, value=date(2016, 1, 1))
849 |
850 | item = StacItemWrap(client_ex.search_one_ex(r).stac_item)
851 |
852 | asset_key = 'THUMBNAIL_AWS'
853 | asset_wrap = item.get_asset(asset_key=asset_key)
854 | self.assertEqual(asset_wrap.cloud_platform, enum.CloudPlatform.AWS)
855 | self.assertEqual(asset_wrap.cloud_platform, item.stac_item.assets[asset_key].cloud_platform)
856 |
857 | self.assertEqual(enum.CloudPlatform.AWS, item.stac_item.assets[asset_key].cloud_platform)
858 | asset_wrap.cloud_platform = enum.CloudPlatform.GCP
859 | self.assertEqual(asset_wrap.cloud_platform.value, item.stac_item.assets[asset_key].cloud_platform)
860 | self.assertEqual(asset_wrap.cloud_platform, enum.CloudPlatform.GCP)
861 | self.assertEqual(enum.CloudPlatform.GCP.value, item.stac_item.assets[asset_key].cloud_platform)
862 |
863 | def test_feature_collection(self):
864 | r = StacRequestWrap()
865 | r.mission = enum.Mission.NAIP
866 | r.limit = 3
867 | travis_wkt = "POLYGON((-97.9736 30.6251, -97.9188 30.6032, -97.9243 30.5703, -97.8695 30.5484, -97.8476 " \
868 | "30.4717, -97.7764 30.4279, -97.5793 30.4991, -97.3711 30.4170, -97.4916 30.2089, " \
869 | "-97.6505 30.0719, -97.6669 30.0665, -97.7107 30.0226, -98.1708 30.3567, -98.1270 30.4279, " \
870 | "-98.0503 30.6251, -97.9736 30.6251)) "
871 | r.intersects = Polygon.import_wkt(wkt=travis_wkt, epsg=4326)
872 | feature_collection = client_ex.feature_collection_ex(r)
873 | items = list(client_ex.search_ex(r))
874 | r.offset = 3
875 | feature_collection = client_ex.feature_collection_ex(r, feature_collection=feature_collection)
876 | self.assertEqual(len(feature_collection['features']), 6)
877 | items.extend(list(client_ex.search_ex(r)))
878 | r.limit = 6
879 | r.offset = 0
880 |
881 | id_list = [item.id for item in items]
882 | features = feature_collection['features']
883 | for feature in features:
884 | self.assertTrue(feature['id'] in id_list)
885 | self.assertEquals(6, len(items))
886 | union1 = Polygon.s_cascaded_union([item.geometry for item in items])
887 | union2 = Polygon.s_cascaded_union([epl_geometry.shape(feature['geometry'], epsg=4326) for feature in features])
888 | diff = union1.s_difference(union2)
889 | self.assertTrue(union1.s_equals(union2), diff)
890 |
--------------------------------------------------------------------------------