├── npm ├── tests │ ├── B.test.js │ ├── token.test.js │ ├── gematria.test.js │ ├── languages.test.js │ ├── translation.test.js │ ├── i.mlearning.JPG │ └── test.js ├── src │ ├── old │ │ ├── entities │ │ │ ├── persons.js │ │ │ ├── entities.js │ │ │ └── _Entities_.md │ │ ├── Layers │ │ │ ├── 1-GranularLevel │ │ │ │ ├── index.js │ │ │ │ ├── tokens.js │ │ │ │ └── granularLevel.md │ │ │ ├── 3-High │ │ │ │ ├── index.js │ │ │ │ └── highLevel.md │ │ │ └── 2-Mid │ │ │ │ ├── index.js │ │ │ │ └── midLevel.md │ │ ├── index.js │ │ ├── utils │ │ │ ├── LIFO.JS │ │ │ ├── lastUsed.js │ │ │ └── hotReload.js │ │ ├── gematria │ │ │ ├── index.js │ │ │ └── values.json │ │ ├── _Networks_.md │ │ ├── _networks_.js │ │ ├── language │ │ │ └── Language.js │ │ └── nouns │ │ │ └── README.md │ ├── imLearning.js │ └── htmls │ │ └── categories.html ├── .gitignore ├── i.mlearning.png ├── .npmignore ├── index.js ├── package.json ├── LICENSE ├── jsdoc.json ├── Knowledge_Files │ ├── Components of a Supervised Learning Dataset.md │ └── Intro.md └── README.md ├── pip ├── i.mLearning │ ├── top_level.txt │ ├── dependency_links.txt │ ├── SOURCES.txt │ └── PKG-INFO ├── setup.cfg ├── README.md ├── setup.py └── PKG-INFO ├── .DS_Store └── docs ├── i.mlearning.JPG ├── i.mlearning.png ├── neurons_logo.png ├── styles ├── iframe.css ├── reset.css ├── prettify-jsdoc.css └── prettify-tomorrow.css ├── scripts ├── linenumber.js ├── search.js └── app.min.js ├── QuickStart.md ├── modelDesign.md ├── config.md ├── Tokens.md ├── LUI.md ├── README.md ├── index.js.html ├── src_imLearning.js.html ├── module-imlearning.html ├── imLearning.html ├── i.mlearning.md └── index.html /npm/tests/B.test.js: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /npm/tests/token.test.js: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /npm/tests/gematria.test.js: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /npm/tests/languages.test.js: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /npm/src/old/entities/persons.js: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /npm/tests/translation.test.js: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /npm/src/old/entities/entities.js: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /pip/i.mLearning/top_level.txt: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /npm/src/old/Layers/1-GranularLevel/index.js: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /pip/i.mLearning/dependency_links.txt: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /npm/src/old/Layers/1-GranularLevel/tokens.js: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /pip/setup.cfg: -------------------------------------------------------------------------------- 1 | [egg_info] 2 | tag_build = 3 | tag_date = 0 4 | 5 | -------------------------------------------------------------------------------- /.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/neurons-me/i.mLearning/HEAD/.DS_Store -------------------------------------------------------------------------------- /npm/.gitignore: -------------------------------------------------------------------------------- 1 | node_modules/ 2 | package-lock.json 3 | yarn.lock 4 | .DS_Store 5 | ``` -------------------------------------------------------------------------------- /docs/i.mlearning.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/neurons-me/i.mLearning/HEAD/docs/i.mlearning.JPG -------------------------------------------------------------------------------- /docs/i.mlearning.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/neurons-me/i.mLearning/HEAD/docs/i.mlearning.png -------------------------------------------------------------------------------- /npm/i.mlearning.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/neurons-me/i.mLearning/HEAD/npm/i.mlearning.png -------------------------------------------------------------------------------- /docs/neurons_logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/neurons-me/i.mLearning/HEAD/docs/neurons_logo.png -------------------------------------------------------------------------------- /npm/tests/i.mlearning.JPG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/neurons-me/i.mLearning/HEAD/npm/tests/i.mlearning.JPG -------------------------------------------------------------------------------- /pip/README.md: -------------------------------------------------------------------------------- 1 | ## i.mlearning 2 | For Python 3 | https://neurons.me 4 | https://mlearning.studio 5 | 6 | 7 | -------------------------------------------------------------------------------- /npm/src/old/Layers/3-High/index.js: -------------------------------------------------------------------------------- 1 | //1. Highest Level: Categories/Themes 2 | /* 3 | Broad overarching categories or themes. For example, Wildlife, Geography, Nature, and Economics. 4 | */ 5 | -------------------------------------------------------------------------------- /pip/i.mLearning/SOURCES.txt: -------------------------------------------------------------------------------- 1 | README.md 2 | setup.py 3 | i.mLearning.egg-info/PKG-INFO 4 | i.mLearning.egg-info/SOURCES.txt 5 | i.mLearning.egg-info/dependency_links.txt 6 | i.mLearning.egg-info/top_level.txt -------------------------------------------------------------------------------- /docs/styles/iframe.css: -------------------------------------------------------------------------------- 1 | .bd__button { 2 | padding: 10px 0; 3 | text-align: right; 4 | } 5 | .bd__button > a{ 6 | font-weight: 100; 7 | text-decoration: none; 8 | color: #BDC3CB; 9 | font-family: sans-serif; 10 | } 11 | .bd__button > a:hover { 12 | color: #798897; 13 | } -------------------------------------------------------------------------------- /npm/src/old/Layers/2-Mid/index.js: -------------------------------------------------------------------------------- 1 | //Initiate a class called MID that is justa placeholder for now. 2 | class MID { 3 | constructor() { 4 | this.MID = "MID"; 5 | } 6 | showMID() { 7 | console.log(this.MID); 8 | } 9 | 10 | } 11 | 12 | module.exports = MID; -------------------------------------------------------------------------------- /npm/src/old/index.js: -------------------------------------------------------------------------------- 1 | // i.mlearning/index.js 2 | const MID = require('./Layers/Mid/index.js'); 3 | class imLearning { 4 | constructor() { 5 | this.MID = new MID(); 6 | } 7 | // ... any other methods or properties related to IMLearning 8 | } 9 | 10 | module.exports = imLearning; -------------------------------------------------------------------------------- /npm/.npmignore: -------------------------------------------------------------------------------- 1 | .eslintignore 2 | .eslintrc.js 3 | .prettierignore 4 | .prettierrc 5 | CODE_OF_CONDUCT.md 6 | CONTRIBUTING.md 7 | gitprofile.config.js 8 | library.config.js 9 | tailwind.config.mjs 10 | vite.config.js 11 | stats.html 12 | docs 13 | node_modules/ 14 | package-lock.json 15 | yarn.lock 16 | .DS_Store -------------------------------------------------------------------------------- /pip/setup.py: -------------------------------------------------------------------------------- 1 | from setuptools import setup, find_packages 2 | 3 | setup( 4 | name='i.mLearning', 5 | version='0.1.0', 6 | author='suiGn', 7 | description='i.mLearning library for Python', 8 | long_description=open('README.md').read(), 9 | long_description_content_type='text/markdown', 10 | packages=find_packages(), 11 | classifiers=[ 12 | 'Programming Language :: Python :: 3', 13 | ], 14 | python_requires='>=3.6', 15 | ) -------------------------------------------------------------------------------- /npm/index.js: -------------------------------------------------------------------------------- 1 | /* In i.mlearning/index.js 2 | ⓝⓔⓤⓡⓞⓝⓢ.ⓜⓔ 3 | 🆂🆄🅸🅶🅽 */ 4 | 5 | /** 6 | * @module imlearning 7 | * @description Exports the main functionalities of the i.mlearning library. 8 | */ 9 | 10 | import imLearning from './src/imLearning.js'; 11 | 12 | /** 13 | * The main export object of i.mlearning package. 14 | * @type {Object} 15 | */ 16 | const imlearning = { 17 | imLearning 18 | }; 19 | 20 | export default imlearning; 21 | console.log("i.mLearning loaded;"); 22 | -------------------------------------------------------------------------------- /npm/tests/test.js: -------------------------------------------------------------------------------- 1 | // Load the mLearning module 2 | const mLearning = require('../src/index'); 3 | 4 | // Test the functionality of the waves method 5 | mLearning.method.waves.frequency = 10; 6 | console.log("Testing Waves Frequency: " + mLearning.method.waves.frequency); // Output: 10 7 | 8 | // Test the functionality of the lastUsed utility 9 | const methodRecord = mLearning.utils.lastUsed.createRecord('methodRecords'); 10 | console.log('Created record:', methodRecord); 11 | console.log('All tests completed.'); 12 | -------------------------------------------------------------------------------- /pip/PKG-INFO: -------------------------------------------------------------------------------- 1 | Metadata-Version: 2.4 2 | Name: i.mLearning 3 | Version: 0.1.0 4 | Summary: i.mLearning library for Python 5 | Author: suiGn 6 | Classifier: Programming Language :: Python :: 3 7 | Requires-Python: >=3.6 8 | Description-Content-Type: text/markdown 9 | Dynamic: author 10 | Dynamic: classifier 11 | Dynamic: description 12 | Dynamic: description-content-type 13 | Dynamic: requires-python 14 | Dynamic: summary 15 | 16 | ## i.mlearning 17 | For Python 18 | https://neurons.me 19 | https://mlearning.studio 20 | 21 | 22 | -------------------------------------------------------------------------------- /pip/i.mLearning/PKG-INFO: -------------------------------------------------------------------------------- 1 | Metadata-Version: 2.4 2 | Name: i.mLearning 3 | Version: 0.1.0 4 | Summary: i.mLearning library for Python 5 | Author: suiGn 6 | Classifier: Programming Language :: Python :: 3 7 | Requires-Python: >=3.6 8 | Description-Content-Type: text/markdown 9 | Dynamic: author 10 | Dynamic: classifier 11 | Dynamic: description 12 | Dynamic: description-content-type 13 | Dynamic: requires-python 14 | Dynamic: summary 15 | 16 | ## i.mlearning 17 | For Python 18 | https://neurons.me 19 | https://mlearning.studio 20 | 21 | 22 | -------------------------------------------------------------------------------- /npm/src/old/utils/LIFO.JS: -------------------------------------------------------------------------------- 1 | //LAST IN FIRST OUT. 2 | class LIFO { 3 | constructor() { 4 | this._stack = []; 5 | } 6 | 7 | push(item) { 8 | this._stack.push(item); 9 | } 10 | 11 | pop() { 12 | return this._stack.pop(); 13 | } 14 | 15 | peek() { 16 | return this._stack[this._stack.length - 1]; 17 | } 18 | 19 | isEmpty() { 20 | return this._stack.length === 0; 21 | } 22 | 23 | getStack() { 24 | return this._stack; 25 | } 26 | } 27 | export default LIFO; -------------------------------------------------------------------------------- /npm/src/imLearning.js: -------------------------------------------------------------------------------- 1 | /** 2 | * Class representing a learning module. 3 | * @description Provides functionalities to manage and organize learning datasets. 4 | */ 5 | class imLearning { 6 | /** 7 | * Initialize a new LearningModule instance. 8 | */ 9 | constructor() { 10 | console.log("mLearning initialized"); 11 | } 12 | 13 | /** 14 | * A method to demonstrate functionality. 15 | */ 16 | demonstrate() { 17 | console.log("Demonstrating the mLearning functionality."); 18 | } 19 | } 20 | 21 | export default imLearning; 22 | -------------------------------------------------------------------------------- /npm/src/old/utils/lastUsed.js: -------------------------------------------------------------------------------- 1 | // Create a cache object to store the last used records 2 | const cache = {}; 3 | 4 | // Function to create a record for a given category 5 | const createRecord = (category) => { 6 | const record = { 7 | category, 8 | lastUsed: new Date(), 9 | }; 10 | 11 | cache[category] = record; 12 | return record; 13 | }; 14 | 15 | // Function to get the last used record for a given category 16 | const getLastUsedRecord = (category) => { 17 | return cache[category]; 18 | }; 19 | 20 | module.exports = { 21 | createRecord, 22 | getLastUsedRecord, 23 | }; 24 | -------------------------------------------------------------------------------- /docs/scripts/linenumber.js: -------------------------------------------------------------------------------- 1 | /*global document */ 2 | 3 | (function() { 4 | var source = document.getElementsByClassName('prettyprint source linenums'); 5 | var i = 0; 6 | var lineNumber = 0; 7 | var lineId; 8 | var lines; 9 | var totalLines; 10 | var anchorHash; 11 | 12 | if (source && source[0]) { 13 | anchorHash = document.location.hash.substring(1); 14 | lines = source[0].getElementsByTagName('li'); 15 | totalLines = lines.length; 16 | 17 | for (; i < totalLines; i++) { 18 | lineNumber++; 19 | lineId = 'line' + lineNumber; 20 | lines[i].id = lineId; 21 | if (lineId === anchorHash) { 22 | lines[i].className += ' selected'; 23 | } 24 | } 25 | } 26 | })(); 27 | -------------------------------------------------------------------------------- /npm/package.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "i.mlearning", 3 | "version": "2.3.42", 4 | "description": "mLearning about all.this.", 5 | "main": "index.js", 6 | "scripts": { 7 | "test": "node src/test.js", 8 | "start": "node this.js" 9 | }, 10 | "keywords": [ 11 | "mLearning", 12 | "machine learning", 13 | "deep Learning" 14 | ], 15 | "bugs": { 16 | "url": "https://github.com/suiGn/i.mLearning/issues" 17 | }, 18 | "repository": { 19 | "type": "git", 20 | "url": "git+https://github.com/suiGn/i.mLearning.git" 21 | }, 22 | "homepage": "https://github.com/suiGn/i.mLearning#readme", 23 | "docs": "https://suiGn.github.io/i.mLearning", 24 | "author": "suiGN", 25 | "license": "MIT", 26 | "type": "module", 27 | "repoType": "NPM Package", 28 | "category": "utils" 29 | } 30 | 31 | 32 | -------------------------------------------------------------------------------- /npm/src/old/gematria/index.js: -------------------------------------------------------------------------------- 1 | const HEBREW_MAPPINGS = { 2 | 'א': 1, 3 | 'ב': 2, 4 | 'ג': 3, 5 | 'ד': 4, 6 | 'ה': 5, 7 | 'ו': 6, 8 | 'ז': 7, 9 | 'ח': 8, 10 | 'ט': 9, 11 | 'י': 10, 12 | 'כ': 20, 13 | 'ל': 30, 14 | 'מ': 40, 15 | 'נ': 50, 16 | 'ס': 60, 17 | 'ע': 70, 18 | 'פ': 80, 19 | 'צ': 90, 20 | 'ק': 100, 21 | 'ר': 200, 22 | 'ש': 300, 23 | 'ת': 400, 24 | // Final forms of some letters have different values: 25 | 'ך': 500, // final kaf 26 | 'ם': 600, // final mem 27 | 'ן': 700, // final nun 28 | 'ף': 800, // final pe 29 | 'ץ': 900 // final tsade 30 | }; 31 | 32 | function computeGematria(word) { 33 | return word.split('').reduce((sum, letter) => sum + (HEBREW_MAPPINGS[letter] || 0), 0); 34 | } 35 | 36 | 37 | 38 | module.exports = { 39 | computeGematria, 40 | }; -------------------------------------------------------------------------------- /npm/src/old/_Networks_.md: -------------------------------------------------------------------------------- 1 | When using `netstat` or any other network monitoring tool to assess the safety of network connections, the determination of "Safe," "Not Safe," or "Unknown" typically depends on a variety of factors, including but not limited to: 2 | 3 | - **Known ports**: Common ports like 80 for HTTP or 443 for HTTPS are generally considered safe as they are standard for web traffic. 4 | - **Established connections**: Connections to known and trusted IP addresses or domains are often considered safe. 5 | - **Unexpected connections**: Numerous connections to unfamiliar foreign addresses might be flagged as suspicious. 6 | - **Listening ports**: Open ports listening for incoming connections might be a security risk if they aren't required for your system's operation or if they are not properly secured. 7 | - **Process ownership**: Network connections associated with known and trusted applications are usually considered safe, while those owned by unknown or untrusted processes might be considered unsafe. -------------------------------------------------------------------------------- /npm/src/old/utils/hotReload.js: -------------------------------------------------------------------------------- 1 | /* 2 | the time parameter represents the delay in milliseconds before the file is reloaded. 3 | The setTimeout function is used to simulate this delay. 4 | If you want to specify the time in a different format, such as seconds or minutes, 5 | you can modify the implementation accordingly. 6 | For example, if you want to provide the time in seconds, 7 | you can convert it to milliseconds by multiplying it by 1000: 8 | 9 | function hotReload(file, timeInSeconds) { 10 | const timeInMillis = timeInSeconds * 1000; 11 | reloadData = { file, time: timeInMillis }; 12 | } 13 | 14 | With this modification, you can now use mLearning.hotReload('/this', 5) 15 | to specify a delay of 5 seconds before the file is reloaded. 16 | Feel free to adjust the implementation to suit your specific requirements regarding the time format. 17 | */ 18 | 19 | // mLearning module 20 | function hotReload(x, y){ 21 | console.log("Hot reloading File Path: " + x + " Every: " + y); 22 | } 23 | 24 | 25 | module.exports = hotReload; 26 | 27 | 28 | -------------------------------------------------------------------------------- /npm/src/old/Layers/1-GranularLevel/granularLevel.md: -------------------------------------------------------------------------------- 1 | ### Granular Level (Fine-grained Details) 2 | 3 | - **Purpose**: Represents the most detailed data points, functionalities, or entities. 4 | - **Contains:** 5 | - **Utilities/Helpers**: Functions that perform very specific tasks. 6 | - **Models**: Data structures or classes for the finest details. 7 | - **Services**: Functions that might interface with databases or other external systems at a granular level. 8 | - **Views (if applicable)**: Visual components or displays for these very specific entities. 9 | 10 | ### Granular Level: 11 | 12 | If a user clicks on **"Sharks"** under marine animals, the **granular level handle displaying specific data on sharks or pulling up related content.** 13 | Fine-tuned utilities or services might fetch specific data points about sharks from a database. 14 | 15 | **Docs:** [this.me](https://www.neurons.me/this-me) 16 | 17 | **Docs:** [neurons.me](https://www.neurons.me/) 18 | 19 | SVG Image -------------------------------------------------------------------------------- /npm/src/old/Layers/2-Mid/midLevel.md: -------------------------------------------------------------------------------- 1 | ### Mid Level (Detailed Categories) 2 | Once "Wildlife" **(category)** is chosen, functions in the Mid level handle displaying "Biology" or differentiating between marine animals and land animals. 3 | Business logic handle user interactions specific to this subcategory. 4 | 5 | - **Purpose**: Delves deeper into specifics, but not the most detailed level. Could represent subcategories or more detailed themes. 6 | 7 | - **Contains:** 8 | - **Sub-controllers**: Manage the flow within this level, calling on granular functions or operations as needed. 9 | - **Business Logic**: Code handling specific processes related to the subcategories. 10 | - **Views (if applicable)**: For visual representations specific to this middle level. 11 | 12 | ### Example: 13 | 14 | Given list of categories (Wildlife, Geography, etc.): 15 | 16 | **Docs:** [this.me](https://www.neurons.me/this-me) 17 | **Docs:** [mlearning.me](https://www.mlearning.me) 18 | **Docs:** [neurons.me](https://www.neurons.me/) 19 | 20 | SVG Image -------------------------------------------------------------------------------- /npm/LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2023 i.mlearning neurons.me 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. -------------------------------------------------------------------------------- /npm/src/old/entities/_Entities_.md: -------------------------------------------------------------------------------- 1 | In the context of a relational database and depending on your application, an "entity" can indeed represent a person, place, animal, thing, or even a concept—essentially any distinct object or item that can have data stored about it. Each type of entity will have its own set of attributes that are relevant to the application's domain. 2 | 3 | Here's a more elaborated example of an entity in a table 4 | that could represent a person in a social network. 5 | I'll include some common attributes you might find relevant: 6 | 7 | CREATE TABLE persons ( 8 | person_id SERIAL PRIMARY KEY, 9 | first_name VARCHAR(255) NOT NULL, 10 | last_name VARCHAR(255) NOT NULL, 11 | date_of_birth DATE, 12 | gender VARCHAR(50), 13 | email VARCHAR(255) UNIQUE, 14 | phone_number VARCHAR(50), 15 | address_id INT, -- This can be a foreign key to an 'addresses' table 16 | occupation_id INT, -- This can be a foreign key to an 'occupations' table 17 | bio TEXT, 18 | profile_picture_url TEXT, 19 | created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, 20 | updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP 21 | ); -------------------------------------------------------------------------------- /docs/styles/reset.css: -------------------------------------------------------------------------------- 1 | /* reset css */ 2 | html, body, div, span, applet, object, iframe, 3 | h1, h2, h3, h4, h5, h6, p, blockquote, pre, 4 | a, abbr, acronym, address, big, cite, code, 5 | del, dfn, em, img, ins, kbd, q, s, samp, 6 | small, strike, strong, sub, sup, tt, var, 7 | b, u, i, center, 8 | dl, dt, dd, ol, ul, li, 9 | fieldset, form, label, legend, 10 | table, caption, tbody, tfoot, thead, tr, th, td, 11 | article, aside, canvas, details, embed, 12 | figure, figcaption, footer, header, hgroup, 13 | menu, nav, output, ruby, section, summary, 14 | time, mark, audio, video { 15 | margin: 0; 16 | padding: 0; 17 | border: 0; 18 | font-size: 100%; 19 | font: inherit; 20 | vertical-align: baseline; 21 | } 22 | /* HTML5 display-role reset for older browsers */ 23 | article, aside, details, figcaption, figure, 24 | footer, header, hgroup, menu, nav, section { 25 | display: block; 26 | } 27 | body { 28 | line-height: 1; 29 | } 30 | ol, ul { 31 | list-style: none; 32 | } 33 | blockquote, q { 34 | quotes: none; 35 | } 36 | blockquote:before, blockquote:after, 37 | q:before, q:after { 38 | content: ''; 39 | content: none; 40 | } 41 | table { 42 | border-collapse: collapse; 43 | border-spacing: 0; 44 | } 45 | -------------------------------------------------------------------------------- /npm/jsdoc.json: -------------------------------------------------------------------------------- 1 | { 2 | "source": { 3 | "include": ["./src", "./index.js"] 4 | }, 5 | "opts": { 6 | "destination": "./docs", 7 | "template": "../../../../../../Sandbox/dev_tools/assets/better-docs", 8 | "readme": "./README.md" 9 | }, 10 | "templates": { 11 | "cleverLinks": false, 12 | "monospaceLinks": false, 13 | "search": true, 14 | "default": { 15 | "staticFiles": { 16 | "include": [ 17 | "./README.md" 18 | ] 19 | } 20 | }, 21 | "better-docs": { 22 | "name": "docs.i.mLearning", 23 | "title": "docs.i.mLearning", 24 | "css": "style.css", 25 | "trackingCode": "-", 26 | "hideGenerator": false, 27 | "navLinks": [ 28 | { 29 | "label": "All.This", 30 | "href": "https://suign.github.io/all.this/" 31 | }, 32 | { 33 | "label": "@Source", 34 | "href": "https://suign.github.io/" 35 | }, 36 | { 37 | "label": "Github", 38 | "href": "https://github.com/suiGn/cleaker" 39 | }, 40 | { 41 | "label": "Cleaker.me", 42 | "href": "https://cleaker.me" 43 | }, 44 | { 45 | "label": "What is all.this?", 46 | "href": "https://www.neurons.me/all-this" 47 | } 48 | ] 49 | } 50 | } 51 | } -------------------------------------------------------------------------------- /npm/src/old/_networks_.js: -------------------------------------------------------------------------------- 1 | const { exec } = require('child_process'); 2 | 3 | 4 | function parseNetstatOutput(output) { 5 | const lines = output.split('\n'); 6 | let totalConnections = 0; // Initialize a counter for the total connections 7 | 8 | // Skip the header lines and start parsing from actual data 9 | for (let i = 2; i < lines.length; i++) { 10 | const columns = lines[i].trim().split(/\s+/); 11 | if (columns.length >= 6) { 12 | const protocol = columns[0]; 13 | const localAddress = columns[3]; 14 | const foreignAddress = columns[4]; 15 | const state = columns[5]; 16 | // Increment the total number of connections 17 | totalConnections++; 18 | // Create an object with the data 19 | const connection = { protocol, localAddress, foreignAddress, state }; 20 | // Here you would send this data to PostgreSQL or write to a directory 21 | console.log(connection); 22 | } 23 | } 24 | 25 | // Output the total number of connections after parsing 26 | console.log(`Total number of connections: ${totalConnections}`); 27 | } 28 | 29 | exec('netstat -tuln', (error, stdout, stderr) => { 30 | if (error) { 31 | console.error(`exec error: ${error}`); 32 | return; 33 | } 34 | // stdout is a string with the command's output 35 | parseNetstatOutput(stdout); 36 | }); 37 | -------------------------------------------------------------------------------- /docs/scripts/search.js: -------------------------------------------------------------------------------- 1 | (function() { 2 | const input = document.querySelector('#search') 3 | const targets = [ ...document.querySelectorAll('#sidebarNav li')] 4 | input.addEventListener('keyup', () => { 5 | // loop over each targets and hide the not corresponding ones 6 | targets.forEach(target => { 7 | if (!target.innerText.toLowerCase().includes(input.value.toLowerCase())) { 8 | target.style.display = 'none' 9 | 10 | /** 11 | * Detects an empty list 12 | * Remove the list and the list's title if the list is not displayed 13 | */ 14 | const list = [...target.parentNode.childNodes].filter( elem => elem.style.display !== 'none') 15 | 16 | if (!list.length) { 17 | target.parentNode.style.display = 'none' 18 | target.parentNode.previousSibling.style.display = 'none' 19 | } 20 | 21 | /** 22 | * Detects empty category 23 | * Remove the entire category if no item is displayed 24 | */ 25 | const category = [...target.parentNode.parentNode.childNodes] 26 | .filter( elem => elem.tagName !== 'H2' && elem.style.display !== 'none') 27 | 28 | if (!category.length) { 29 | target.parentNode.parentNode.style.display = 'none' 30 | } 31 | } else { 32 | target.parentNode.style.display = 'block' 33 | target.parentNode.previousSibling.style.display = 'block' 34 | target.parentNode.parentNode.style.display = 'block' 35 | target.style.display = 'block' 36 | } 37 | }) 38 | }) 39 | })() -------------------------------------------------------------------------------- /npm/src/old/language/Language.js: -------------------------------------------------------------------------------- 1 | //create a Language Class 2 | class Language { 3 | constructor() { 4 | this.language = 'en'; 5 | this.languageData = {}; 6 | } 7 | //set the language 8 | setLanguage(language) { 9 | this.language = language; 10 | } 11 | //get the language 12 | getLanguage() { 13 | return this.language; 14 | } 15 | //set the language data 16 | setLanguageData(languageData) { 17 | this.languageData = languageData; 18 | } 19 | //get the language data by key 20 | getLanguageDataByKey(key) { 21 | return this.languageData[key]; 22 | } 23 | //get the language data by key and replace the placeholders 24 | getLanguageDataByKeyAndReplace(key, placeholders) { 25 | let languageData = this.languageData[key]; 26 | if (placeholders) { 27 | for (let placeholder in placeholders) { 28 | languageData = languageData.replace(placeholder, placeholders[placeholder]); 29 | } 30 | } 31 | return languageData; 32 | } 33 | //get the language data by key and replace the placeholders 34 | getLanguageDataByKeyAndReplaceWithArray(key, placeholders) { 35 | let languageData = this.languageData[key]; 36 | if (placeholders) { 37 | for (let placeholder in placeholders) { 38 | languageData = languageData.replace(placeholder, placeholders[placeholder]); 39 | } 40 | } 41 | return languageData; 42 | }; 43 | } 44 | //export the Language class 45 | module.exports = Language; 46 | // Path: src/%40npm/i.mLearning/src/language/Language.js -------------------------------------------------------------------------------- /docs/scripts/app.min.js: -------------------------------------------------------------------------------- 1 | "use strict";$().ready(function(){});var sidebarIsVisible=!1,toggleSidebar=function(e){var a=!(0 h1").text();if(t){o.append($("

").text(t));var s=$("");i.find(".members h4.name").each(function(e,a){var i=$(a),t=i.find(".code-name").clone().children().remove().end().text(),n=i.find("a").attr("href"),r=$('')).text(t);s.append($("
  • ").append(r)),c.push({link:r,offset:i.offset().top})}),o.append(s)}else i.find(".members h4.name").each(function(e,a){var i=$(a),t=i.find(".code-name").clone().children().remove().end().text(),n=i.find("a").attr("href"),r=$('
    ')).text(t);o.append(r),c.push({link:r,offset:i.offset().top})})}),!$.trim(o.text()))return o.hide();function e(){for(var e=n.scrollTop(),a=!1,i=c.length-1;0<=i;i--){var t=c[i];t.link.removeClass("is-active"),e+OFFSET>=t.offset?a?t.link.addClass("is-past"):(t.link.addClass("is-active"),a=!0):t.link.removeClass("is-past")}}var n=$("#main-content-wrapper");n.on("scroll",e),e(),c.forEach(function(e){e.link.click(function(){n.animate({scrollTop:e.offset-OFFSET+1},500)})})}),$().ready(function(){$("#sidebarNav a").each(function(e,a){var i=$(a).attr("href");window.location.pathname.match("/"+i)&&($(a).addClass("active"),$("#sidebarNav").scrollTop($(a).offset().top-150))})}); -------------------------------------------------------------------------------- /npm/src/old/Layers/3-High/highLevel.md: -------------------------------------------------------------------------------- 1 | ### High Level (Conceptual Overview) 2 | 3 | Controllers or functions that deal with selecting the main category, like "Wildlife." 4 | If you're visually representing these categories, you might have large visual blocks or components here. 5 | 6 | # Categories/Themes 7 | 8 | - **Purpose**: Represents the broadest categories or themes. 9 | - **Configuration Files**: Setup and initialization for high-level processes. 10 | - **Controllers**: Orchestrating the flow and interaction between the Mid and Granular levels. 11 | - **Views (if applicable)**: For visual representations, the highest level visual components should be here. 12 | 13 | Given list of categories (Wildlife, Geography, etc.): 14 | 15 | ### **Example Categories:** 16 | 17 | **Wildlife:** This category can encompass all things related to animals, plants, and nature. 18 | **Geography:** Covering landscapes, countries, maps, and geographical phenomena. 19 | **History:** Delving into the past, historical events, ancient civilizations, and important personalities. 20 | **Science & Technology:** From the latest tech innovations to foundational scientific principles. 21 | **Art & Culture:** Covering music, visual arts, dance, literature, and cultural practices from around the world. 22 | **Sports:** All about various sports, athletes, and significant sporting events. 23 | **Fashion:** Trends, history, major figures, and the business of fashion. 24 | **Travel:** Destinations, travel tips, cultures, and the experience of exploring new places. 25 | **Food & Cuisine:** Dishes from around the world, cooking techniques, history of food, and culinary arts. 26 | 27 | **Docs:** [mlearning.me](https://www.mlearning.me) 28 | **Docs:** [neurons.me](https://www.neurons.me/) 29 | SVG Image 30 | -------------------------------------------------------------------------------- /docs/QuickStart.md: -------------------------------------------------------------------------------- 1 | Package Name: i.mlearning 2 | Description: A toolkit for token creation based on Hebrew gematria. 3 | Keywords: gematria, hebrew, tokenization, semantic 4 | Core Modules: 5 | 6 | Gematria Module: 7 | 8 | Functions to compute the gematria value of a word. 9 | Mapping between Hebrew letters and their numeric values. 10 | Utility to convert numbers back to their Hebrew representation. 11 | Token Module: 12 | 13 | Function to generate a token based on a word's gematria value. 14 | Token validation functions. 15 | Relationship handlers to associate tokens. 16 | Translation Module: 17 | 18 | Store and retrieve translations for tokens. 19 | Relate tokens across languages and manage these relationships. 20 | Utilities: 21 | 22 | General utility functions for data validation, error handling, etc. 23 | Helper functions for common tasks like string manipulation in the context of gematria. 24 | Database Integration (optional, depending on use case): 25 | 26 | While the core package shouldn't be tied to a specific database, you can provide utilities or connectors for users to save, retrieve, or manage tokens in their choice of database. This would be a more advanced feature and could be added in later versions. 27 | Documentation: 28 | 29 | A comprehensive README providing: 30 | Introduction to the package. 31 | Installation and setup instructions. 32 | Detailed usage examples for each module and function. 33 | Contribution guidelines, if you wish for others to contribute. 34 | Comments within code for better maintainability. 35 | Test Suite: 36 | 37 | Unit tests for all core functionalities. 38 | Integration tests if you have multiple modules interacting. 39 | Potential for Continuous Integration setup for automated testing. 40 | Package Distribution: 41 | 42 | Set up a package.json with appropriate metadata. 43 | Include a license, potentially MIT or whichever you see fit. 44 | Publish to npm when ready. -------------------------------------------------------------------------------- /npm/src/htmls/categories.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | i.mLearning.me - Categories 8 | 39 | 40 | 41 | 42 |

    i.mLearning.me

    43 |

    Discover Categories

    44 | 45 |
    46 |

    Wildlife

    47 |
    Biology
    48 |
    Sharks
    49 |
    Whales
    50 |
    Lions
    51 |
    Elephants
    52 |
    53 | 54 |
    55 |

    Geography

    56 |
    Cities
    57 |
    Paris
    58 |
    Germany
    59 |
    60 | 61 |
    62 |

    Nature

    63 |
    Trees
    64 |
    65 | 66 |
    67 |

    Economics

    68 |
    Finance
    69 |
    70 | 71 | 72 | -------------------------------------------------------------------------------- /docs/modelDesign.md: -------------------------------------------------------------------------------- 1 | # MODEL DESIGN by neurons.me 2 | 3 | In the context of software design and development, when we discuss how **data is structured**, organized, and interrelated, we are essentially referring to the **"data model"** or simply the "model." In the case of an MVC (Model-View-Controller) architecture, the **"model"** is responsible for representing the data and the rules that govern the data. 4 | 5 | *For this model in specific,* we've decided that **topics** have a higher hierarchical priority than **languages**, then this hierarchical relationship would be defined within your model. 6 | 7 | **Here's a simplified representation:** 8 | 9 | ```js 10 | class Topic { 11 | constructor(name) { 12 | this.name = name; // Name of the topic, e.g., "Wildlife" 13 | this.contents = []; // List of content related to the topic 14 | } 15 | } 16 | 17 | class Content { 18 | constructor(title) { 19 | this.title = title; // Title of the content, e.g., "Sharks" 20 | this.languages = []; // Versions of this content in various languages 21 | } 22 | } 23 | 24 | class LanguageVersion { 25 | constructor(language, text) { 26 | this.language = language; // e.g., "English" 27 | this.text = text; // Actual content in this language 28 | } 29 | } 30 | ``` 31 | 32 | #### In this model: 33 | 34 | - `Topic` is the highest class. 35 | - Each `Topic` has multiple pieces of `Content`. 36 | - Each `Content` piece can exist in various `LanguageVersions`. 37 | 38 | **The model dictates** the relationships between these entities. While both `Topic` and `LanguageVersion` might stand independent in some respects, in this hierarchy, `Topic` is indeed prioritized over languages. 39 | 40 | **This hierarchical relationship in the model helps in designing the system, querying data, organizing the database, and more.** 41 | 42 | **Docs:** [this.me](https://www.neurons.me/this-me) 43 | **Docs:** [neurons.me](https://www.neurons.me/) 44 | SVG Image -------------------------------------------------------------------------------- /docs/config.md: -------------------------------------------------------------------------------- 1 | #### Name: i.mlearning src/docs/config.md 2 | 3 | **Docs:** [mlearning](https://www.mlearning.studio) **Docs:** [neurons.me](https://www.neurons.me/) 4 | 5 | # i.mlearning/ 6 | 7 | ```text 8 | i.mlearning/ 9 | │ 10 | ├── index.js # Entry Point 11 | ├── docs/ 12 | ├── tests/ 13 | ├── src/ 14 | │ ├── gematria/ 15 | │ │ ├── index.js 16 | │ │ ├── values.js 17 | │ │ 18 | │ ├── Token/ 19 | │ │ 20 | │ │── Layer/ # Base directory for all layers 21 | │ │ ├── High/ # Components or functionalities for high-level abstraction 22 | │ │ │ ├── index.js # Entry point for high-level functionalities 23 | │ │ │ ├── ... # Other relevant files or directories for high-level operations 24 | │ │ ├── Mid/ # Components or functionalities for mid-level abstraction 25 | │ │ │ ├── index.js # Entry point for mid-level functionalities 26 | │ │ │ ├── ... # Other relevant files or directories for mid-level operations 27 | │ │ └── GranularLevel/ # Components or functionalities for granular-level abstraction 28 | │ │ ├── index.js # Entry point for granular-level functionalities 29 | │ │ ├── ... # Other relevant files or directories for granular operations 30 | │ │ 31 | │ ├── utils/ # Directory for utilities or helper functions that may be shared across layers 32 | │ ├── tokenization.js 33 | │ ├── ... # Other utility functions 34 | │ 35 | │ 36 | └── README.md # Documentation for your module 37 | └── package.json 38 | ``` 39 | 40 | This structure ensures: 41 | 42 | 1. **Separation of Concerns**: Each layer has its own dedicated directory, ensuring functionalities are neatly organized. 43 | 2. **Scalability**: Easily add more functionalities within each layer or even add more layers without disturbing the existing structure. 44 | 3. **Shared Utilities**: Common utility functions or helpers that are used across layers are kept in a central `Utils` directory for ease of access and maintenance. 45 | 46 | Remember `i.mlearning`. 47 | -------------------------------------------------------------------------------- /npm/src/old/gematria/values.json: -------------------------------------------------------------------------------- 1 | { 2 | "gematria_values": [ 3 | { 4 | "number": 10, 5 | "hebrew": "י - Yud", 6 | "description": "Represents the singular point of creation, divinity, and the infinite in the finite." 7 | }, 8 | { 9 | "number": 18, 10 | "hebrew": "חי - Chai", 11 | "description": "Means 'life'. Commonly used in the custom of giving monetary gifts in multiples of 18." 12 | }, 13 | { 14 | "number": 26, 15 | "hebrew": "יהוה - YHWH", 16 | "description": "The numerical value of the Tetragrammaton, the ineffable name of God." 17 | }, 18 | { 19 | "number": 32, 20 | "hebrew": "לב - Lev", 21 | "description": "Means 'heart'. Significant in Kabbalistic literature, associated with the 32 Paths of Wisdom." 22 | }, 23 | { 24 | "number": 40, 25 | "hebrew": "מ - Mem", 26 | "description": "Represents transition or change, such as the duration of the Great Flood or Moses' time leading the Israelites." 27 | }, 28 | { 29 | "number": 72, 30 | "description": "Associated with the 72 names of God in Kabbalah, derived from three verses in Exodus 14." 31 | }, 32 | { 33 | "number": 137, 34 | "description": "Significant in Jewish contexts and also known as the Fine Structure Constant in physics." 35 | }, 36 | { 37 | "number": 613, 38 | "description": "Represents the total number of mitzvot (commandments) in the Torah." 39 | }, 40 | { 41 | "number": 666, 42 | "description": "While most associated with Christian eschatology, it appears in the Hebrew Bible in contexts like 1 Kings 10:14." 43 | }, 44 | { 45 | "number": 888, 46 | "hebrew": "Mashiach (Mem, Shin, Yud, Chet)", 47 | "description": "The gematria value of the word 'Mashiach' (Messiah) when spelled in a particular way." 48 | } 49 | ] 50 | } 51 | -------------------------------------------------------------------------------- /docs/styles/prettify-jsdoc.css: -------------------------------------------------------------------------------- 1 | /* JSDoc prettify.js theme */ 2 | 3 | /* plain text */ 4 | .pln { 5 | color: #000000; 6 | font-weight: normal; 7 | font-style: normal; 8 | } 9 | 10 | /* string content */ 11 | .str { 12 | color: #006400; 13 | font-weight: normal; 14 | font-style: normal; 15 | } 16 | 17 | /* a keyword */ 18 | .kwd { 19 | color: #000000; 20 | font-weight: bold; 21 | font-style: normal; 22 | } 23 | 24 | /* a comment */ 25 | .com { 26 | font-weight: normal; 27 | font-style: italic; 28 | } 29 | 30 | /* a type name */ 31 | .typ { 32 | color: #000000; 33 | font-weight: normal; 34 | font-style: normal; 35 | } 36 | 37 | /* a literal value */ 38 | .lit { 39 | color: #006400; 40 | font-weight: normal; 41 | font-style: normal; 42 | } 43 | 44 | /* punctuation */ 45 | .pun { 46 | color: #000000; 47 | font-weight: bold; 48 | font-style: normal; 49 | } 50 | 51 | /* lisp open bracket */ 52 | .opn { 53 | color: #000000; 54 | font-weight: bold; 55 | font-style: normal; 56 | } 57 | 58 | /* lisp close bracket */ 59 | .clo { 60 | color: #000000; 61 | font-weight: bold; 62 | font-style: normal; 63 | } 64 | 65 | /* a markup tag name */ 66 | .tag { 67 | color: #006400; 68 | font-weight: normal; 69 | font-style: normal; 70 | } 71 | 72 | /* a markup attribute name */ 73 | .atn { 74 | color: #006400; 75 | font-weight: normal; 76 | font-style: normal; 77 | } 78 | 79 | /* a markup attribute value */ 80 | .atv { 81 | color: #006400; 82 | font-weight: normal; 83 | font-style: normal; 84 | } 85 | 86 | /* a declaration */ 87 | .dec { 88 | color: #000000; 89 | font-weight: bold; 90 | font-style: normal; 91 | } 92 | 93 | /* a variable name */ 94 | .var { 95 | color: #000000; 96 | font-weight: normal; 97 | font-style: normal; 98 | } 99 | 100 | /* a function name */ 101 | .fun { 102 | color: #000000; 103 | font-weight: bold; 104 | font-style: normal; 105 | } 106 | 107 | /* Specify class=linenums on a pre to get line numbering */ 108 | ol.linenums { 109 | margin-top: 0; 110 | margin-bottom: 0; 111 | } 112 | -------------------------------------------------------------------------------- /docs/Tokens.md: -------------------------------------------------------------------------------- 1 | Using Hebrew for token creation based on the gematria system. 2 | 3 | Hebrew Alphabet and Numeric Mapping: 4 | 5 | Traditional Hebrew Gematria mapping: 6 | 7 | Copy code 8 | א - 1 י - 10 ק - 100 9 | ב - 2 כ - 20 ר - 200 10 | ג - 3 ל - 30 ש - 300 11 | ד - 4 מ - 40 ת - 400 12 | ה - 5 נ - 50 13 | ו - 6 ס - 60 14 | ז - 7 ע - 70 15 | ח - 8 פ - 80 16 | ט - 9 צ - 90 17 | 18 | Compute Gematria Values. 19 | 20 | Package Initialization: 21 | 22 | 23 | 10 (י - Yud): Represents the singular point of creation, divinity, and the infinite in the finite. 24 | 25 | 18 (חי - Chai): As mentioned, this means "life". The custom of giving monetary gifts in multiples of 18 is common in Jewish tradition because of this association. 26 | 27 | 26 (יהוה - YHWH): This is the numerical value of the Tetragrammaton, the ineffable name of God. The individual letters are Yud (10), Hei (5), Vav (6), and Hei (5), which add up to 26. 28 | 29 | 32 (לב - Lev): This number, which means "heart" in Hebrew, is significant in Kabbalistic literature, especially in the context of the 32 Paths of Wisdom associated with the Tree of Life. 30 | 31 | 40 (מ - Mem): Represents transition or change. For instance, the Great Flood during Noah's time lasted 40 days and 40 nights, and Moses spent 40 years leading the Israelites through the desert. 32 | 33 | 72: In Kabbalah, there's the concept of the 72 names of God, derived from three verses in Exodus 14, each containing 72 letters. 34 | 35 | 137: This number has intrigued both religious scholars and scientists. It's seen in various Jewish contexts, but it's also known as the Fine Structure Constant in physics, a dimensionless value that describes the strength of the electromagnetic interaction between elementary charged particles. 36 | 37 | 613: Represents the total number of mitzvot (commandments) in the Torah. 38 | 39 | 666: While most associated with Christian eschatology, 666 appears in the Hebrew Bible too. For example, in 1 Kings 10:14, it's the weight of the gold that came to King Solomon in a single year. 40 | 41 | 888: This is the gematria value of the word "Mashiach" (Messiah) when spelled Mem, Shin, Yud, Chet. -------------------------------------------------------------------------------- /npm/Knowledge_Files/Components of a Supervised Learning Dataset.md: -------------------------------------------------------------------------------- 1 | In supervised learning, for classification tasks (classifying images as 'cat' or 'non-cat'), the dataset typically consists of the following components: 2 | 3 | ### Components of a Supervised Learning Dataset 4 | 5 | 1. **Training Data:** 6 | - **Training Data Collection (Features):** This is a set of data used to train the model. For image classification, these are usually arrays of pixel values. 7 | - **Training Labels (Targets):** These are the correct answers or labels for each instance in the training data. In your case, these labels indicate whether each image is of a cat (1) or not (0). 8 | 9 | 2. **Test Data:** 10 | - **Test Data Collection (Features):** This set of data is used only for evaluating the performance of the model after it has been trained. It should not be used in the training phase. 11 | - **Test Labels (Targets):** These are the correct labels for the test data. They allow you to assess how well your model predicts new data. It is crucial that this data is not used during training to ensure that you are evaluating your model’s performance on completely unseen data. 12 | 13 | ### Importance in Supervised Learning 14 | 15 | - **Training Phase:** The model learns by finding patterns between the features and the corresponding labels from the training data. The goal is for the model to learn a function that maps the input features to the target output (labels). 16 | 17 | - **Testing Phase:** The trained model is then used to predict the labels for the test data. The accuracy of these predictions is evaluated by comparing them to the actual labels of the test data. This step is critical as it provides an unbiased evaluation of a model's predictive performance on new data. 18 | 19 | ### Summary 20 | 21 | The entire purpose of separating data into training and test sets in supervised learning is to ensure that the model can not only memorize the details of the training data but also generalize well to new, unseen situations, which is measured by how it performs on the test set. This structure helps in preventing overfitting and in verifying the model's ability to work in real-world scenarios where true labels are not known beforehand. -------------------------------------------------------------------------------- /docs/styles/prettify-tomorrow.css: -------------------------------------------------------------------------------- 1 | /* Tomorrow Theme */ 2 | /* Original theme - https://github.com/chriskempson/tomorrow-theme */ 3 | /* Pretty printing styles. Used with prettify.js. */ 4 | /* SPAN elements with the classes below are added by prettyprint. */ 5 | /* plain text */ 6 | .pln { 7 | color: #4d4d4c; } 8 | 9 | @media screen { 10 | /* string content */ 11 | .str { 12 | color: #718c00; } 13 | 14 | /* a keyword */ 15 | .kwd { 16 | color: #8959a8; } 17 | 18 | /* a comment */ 19 | .com { 20 | color: #8e908c; } 21 | 22 | /* a type name */ 23 | .typ { 24 | color: #4271ae; } 25 | 26 | /* a literal value */ 27 | .lit { 28 | color: #f5871f; } 29 | 30 | /* punctuation */ 31 | .pun { 32 | color: #4d4d4c; } 33 | 34 | /* lisp open bracket */ 35 | .opn { 36 | color: #4d4d4c; } 37 | 38 | /* lisp close bracket */ 39 | .clo { 40 | color: #4d4d4c; } 41 | 42 | /* a markup tag name */ 43 | .tag { 44 | color: #c82829; } 45 | 46 | /* a markup attribute name */ 47 | .atn { 48 | color: #f5871f; } 49 | 50 | /* a markup attribute value */ 51 | .atv { 52 | color: #3e999f; } 53 | 54 | /* a declaration */ 55 | .dec { 56 | color: #f5871f; } 57 | 58 | /* a variable name */ 59 | .var { 60 | color: #c82829; } 61 | 62 | /* a function name */ 63 | .fun { 64 | color: #4271ae; } } 65 | /* Use higher contrast and text-weight for printable form. */ 66 | @media print, projection { 67 | .str { 68 | color: #060; } 69 | 70 | .kwd { 71 | color: #006; 72 | font-weight: bold; } 73 | 74 | .com { 75 | color: #600; 76 | font-style: italic; } 77 | 78 | .typ { 79 | color: #404; 80 | font-weight: bold; } 81 | 82 | .lit { 83 | color: #044; } 84 | 85 | .pun, .opn, .clo { 86 | color: #440; } 87 | 88 | .tag { 89 | color: #006; 90 | font-weight: bold; } 91 | 92 | .atn { 93 | color: #404; } 94 | 95 | .atv { 96 | color: #060; } } 97 | /* Style */ 98 | /* 99 | pre.prettyprint { 100 | background: white; 101 | font-family: Consolas, Monaco, 'Andale Mono', monospace; 102 | font-size: 12px; 103 | line-height: 1.5; 104 | border: 1px solid #ccc; 105 | padding: 10px; } 106 | */ 107 | 108 | /* Specify class=linenums on a pre to get line numbering */ 109 | ol.linenums { 110 | margin-top: 0; 111 | margin-bottom: 0; } 112 | 113 | /* IE indents via margin-left */ 114 | li.L0, 115 | li.L1, 116 | li.L2, 117 | li.L3, 118 | li.L4, 119 | li.L5, 120 | li.L6, 121 | li.L7, 122 | li.L8, 123 | li.L9 { 124 | /* */ } 125 | 126 | /* Alternate shading for lines */ 127 | li.L1, 128 | li.L3, 129 | li.L5, 130 | li.L7, 131 | li.L9 { 132 | /* */ } 133 | -------------------------------------------------------------------------------- /docs/LUI.md: -------------------------------------------------------------------------------- 1 | Creating a Logical, Linguistic User Interface (LUI) essentially means creating a user interface that interacts with users through language and logic processing, typically via text inputs and outputs. This kind of interface can be encountered in chatbots, virtual assistants, CLI (Command Line Interface) applications, and other applications where user interaction is primarily through text and logic instead of graphical elements. 2 | 3 | Components of Logical User Interface: 4 | 1. Parser 5 | Role: Interpret user inputs, deciphering the intent behind the user's text. 6 | Components: Tokenizer, Interpreter, etc. 7 | Operation: Divides inputs into manageable pieces and makes logical interpretations. 8 | 2. Processor 9 | Role: Manage the logical flow of the interaction, handle requests, and prepare responses. 10 | Components: Request Handler, Logic Unit, etc. 11 | Operation: Processes parsed input, applies business logic, and determines the appropriate response. 12 | 3. Responder 13 | Role: Create and manage responses to user inputs. 14 | Components: Response Generator, Formatter, etc. 15 | Operation: Formulates responses based on processed data and ensures they are communicated understandably. 16 | 4. User Input/Output Management 17 | Role: Handle user interactions. 18 | Components: Input Receiver, Output Sender, etc. 19 | Operation: Manages the retrieval of user input and the delivery of responses. 20 | Implementation Guidelines: 21 | 1. Define Language and Logic Rules 22 | Determine Syntax: Define the syntax and grammar acceptable by your LUI. 23 | Create Logic Models: Establish logical models that drive interactions and responses. 24 | 2. Construct Component Models 25 | Develop Components: Build and/or integrate existing NLP (Natural Language Processing) components. 26 | Implement Logic Processing: Ensure that your processor is able to handle various logical flows and conditions. 27 | 3. Build Response Mechanism 28 | Craft Responses: Ensure responses are linguistically sound and contextually relevant. 29 | Enable Variance: Embed variation in responses to make interactions more human-like. 30 | 4. Ensure Robustness 31 | Handle Varied Inputs: Ensure your LUI can manage a range of input styles and linguistics. 32 | Implement Fallbacks: Make sure your LUI handles unrecognized inputs gracefully. 33 | 5. User Experience 34 | Enable Clear Interaction: Ensure the user can easily understand how to interact. 35 | Provide Assistance: Embed help and guidance within the interface. 36 | 6. Scalability and Extensibility 37 | Ensure Scalability: Build your LUI to handle increasing user interactions. 38 | Enable Extensibility: Make it easy to add more features, logic, or language capabilities. 39 | Use-Case Example: 40 | Imagine a DevOps scenario where a developer interacts with a CLI application to manage cloud resources. The LUI will interpret commands and requests made in a natural language, such as: 41 | 42 | sql 43 | Copy code 44 | User: Create a new EC2 instance with 2 vCPUs and 8GB RAM. 45 | LUI: Sure, creating a new EC2 instance with the specified configuration... 46 | In this scenario, the LUI will parse the request, interpret the intent (create EC2 instance), extract parameters (2 vCPUs and 8GB RAM), process the request logically, and provide an appropriate response, all through linguistic interaction. 47 | 48 | Conclusion: 49 | Building a logical, linguistical user interface is a complex yet fascinating task that blends linguistics and logic processing. Careful planning, a deep understanding of linguistic structures, and efficient logical processing are crucial for crafting an LUI that offers a seamless and intuitive user experience. -------------------------------------------------------------------------------- /npm/src/old/nouns/README.md: -------------------------------------------------------------------------------- 1 | Everyday examples of nouns and pronouns 2 | 3 | Oxford International English 4 | https://www.oxfordinternationalenglish.com › ... 5 | 6 | # Nouns 7 | A noun is what we call the word that names something or someone. A noun may be a person, a thing or a place. Nouns can play many roles within a sentence. 8 | 9 | 10 | 11 | ## What is a noun?  12 | Nouns make up a lot of the English language. There are also many different types.  13 | 14 | ##### These are all nouns: 15 | My father 16 | Your aunty 17 | The Queen 18 | Elvis Presley 19 | 20 | ##### The following places are also nouns: 21 | My house 22 | Mount Everest 23 | The bathroom 24 | 25 | **Nouns** can also **be things.** That includes imaginary items, concepts, activities, and other objects.  26 | 27 | Tab 28 | Football 29 | Table 30 | Freedom 31 | 32 | ## Common Nouns 33 | Generic (common) nouns can be put into three categories. These are collective nouns, abstract nouns and concrete nouns.  34 | 35 | A collective noun is a collection or a group.  36 | 37 | Examples of a collective noun:  38 | 39 | A murder of crows.  40 | A wild pack of dogs.  41 | 42 | A concrete noun is something physical, or real.  43 | Examples of concrete nouns: 44 | I have a cup of coffee.  45 | I heard some music.  46 | 47 | An abstracts noun is something we cannot perceive.  48 | The bravery he had shown.  49 | They had a lot of compassion.  50 | 51 | ## Nouns as subjects 52 | 53 | All sentences have a subject. The subject is always a noun—a person, thing, or a place that is being or doing the verb.  54 | 55 | ##### Examples of nouns as subjects: 56 | 57 | Edward felt excited.  58 | Louise was happy.  59 | 60 | Edward and Louise are the subjects in each of their sentences.  61 | 62 | ## Plural nouns 63 | 64 | A plural noun differs from a collection or group. A plural noun will require a -s or a -es to be added to the singular form. There are some exceptions.  65 | 66 | Examples of plural nouns: 67 | Singular: A dog 68 | Plural: The dogs  69 | Singular: A car 70 | Plural: The cars. 71 | Singular: A tax. 72 | Plural: The taxes. 73 | 74 | ## Possessive nouns 75 | 76 | A possessive noun is a noun that possesses something. You will see a possessive noun as it has an apostrophe.  77 | 78 | It was Joshua’s ball. 79 | I went to Ella’s house for dinner. 80 | 81 | 82 | When there is a plural noun that ends in s, the apostrophe is moved.  83 | My nephews’ first suit was expensive.  84 | 85 | ## Nouns as objects 86 | 87 | A noun can be an object in a sentence.  88 | Examples of a noun asana object: 89 | Give the shoes to them.  90 | Pass the books to her.  91 | 92 | # What is a pronoun? 93 | 94 | A pronoun’s distinguishing feature is that within a sentence, you can replace it. A pronoun is a word that replaces a noun to avoid repetition.  95 | 96 | Robert decided to sleep. Robert has always enjoyed taking long naps.  97 | Robert decided to sleep. He has always enjoyed taking long naps.  98 | Robert decided to sleep. My brother has always enjoyed taking long naps.  99 | 100 | In this case, the second Robert is replaced with ‘he’ and ‘my brother’. The change of pronoun stops the sentence from getting boring.  101 | 102 | ##### Personal Pronouns 103 | 104 | Personal pronouns are: 105 | They, Them, We, You, Me, I, Her, She, He, and Him 106 | 107 | ##### Relative Pronouns 108 | 109 | A relative pronoun connects relative clauses to independent clauses. They include: 110 | What, who, which, whom, that  111 | 112 | Example of using a relative pronoun: 113 | The person who posted these cards forgot to leave a number.  114 | My plant is very large, that new pot will fit perfectly.  115 | 116 | ## Antecedents 117 | 118 | A pronoun can be almost anything. It is a very versatile part of the English language. An antecedent is a noun or a noun phrase that is replaced later in a sentence.  119 | 120 | Example of an antecedent: 121 | My friends are the best; I love to be around them.  122 | In this example, the antecedent is family and replaced later by them.  123 | Henry is my dog; he is loud and loves to run.  124 | In this example, the antecedent is Henry, and the pronoun replacement is he.  125 | 126 | ### Indefinite pronouns 127 | 128 | For some occasions, you will not need to name a person or an object. In this case, you can refer to them with an indefinite pronoun.  129 | 130 | Examples of indefinite pronouns: 131 | 132 | Other, anybody, no one, none, some, everybody, one 133 | Example use of indefinite pronouns: 134 | The traffic jam meant that everyone was late.  135 | 136 | In this case, the indefinite pronoun used is everybody.  137 | No one else knows I have mismatched socks on. 138 | In this case, the indefinite pronoun used is no one.  139 | 140 | ### Interrogative pronouns 141 | 142 | An interrogative pronoun will be used in a question.  143 | 144 | Examples of interrogative pronouns: 145 | What, which, whose, and who 146 | 147 | An example use of an interrogative pronoun: 148 | What is your last name? 149 | 150 | In this example, the interrogative pronoun is what.  151 | 152 | Which colour is your favourite? 153 | In this example, the interrogative pronoun is which.  154 | 155 | Those are some of the examples, and example uses of nouns and pronouns that you will often see. -------------------------------------------------------------------------------- /npm/README.md: -------------------------------------------------------------------------------- 1 | i.mlearning 2 | 3 | # i.mLearning 4 | 5 | ----------- 6 | 7 | ### [Project Status : Experimental and Under Development, Subject to Major Changes] 8 | 9 | `i.mlearning` is an experimental module under development within the `all.this` family, specifically designed to streamline the process of setting up structured datasets for supervised learning. The module aims to **provide a standardized framework for organizing and labeling data**, making it optimally structured for training machine learning models, particularly in conjunction with the [neurons.me](https://neurons.me) platform. 10 | 11 | [mlearning.studio](https://mlearning.studio) 12 | 13 | The module is in active development, and as such, it is subject to significant changes as we refine our approach and methodologies to best support supervised learning processes. 14 | 15 | ---------- 16 | 17 | ## Core Vision and Purpose 18 | The primary goal of `i.mlearning` is to facilitate the creation of well-organized, labeled datasets that can be directly utilized for training machine learning models. This involves: 19 | 20 | - **Structured Data Directory**: Providing a template or blueprint for organizing data files, such as images or audio clips, into labeled directories (e.g., `cats/` for cat images) to support straightforward supervised learning. 21 | - **Data Labeling Consistency**: Ensuring that all data within the structure is appropriately labeled and categorized to aid in the accurate training of machine learning models, enhancing the overall effectiveness and reliability of the learning process. 22 | - **Integration with neurons.me**: Making the structured and labeled data easily accessible and compatible with neurons.me, allowing for seamless data processing, model training, and analysis within the platform. 23 | 24 | ## Getting Started 25 | To begin experimenting with `i.mlearning`, you can clone or download the module and explore the provided directory structures and guidelines. As this module is still under development, we encourage experimentation and feedback: 26 | 27 | ```bash 28 | npm i i.mlearning 29 | ``` 30 | 31 | **Note:** As `i.mlearning` is in experimental mode, please be prepared for ongoing changes and updates. Your feedback and contributions can significantly shape its evolution. 32 | 33 | ## Contributing to `i.mlearning` 34 | We welcome contributions, suggestions, and feedback from the community to enhance and refine `i.mlearning`. Whether you have ideas for new features, improvements to existing structures, or feedback on the module's usability, your input is invaluable. 35 | 36 | ## Licensing and Usage 37 | `i.mlearning` is released under an open-source license, allowing you to use and modify the module freely within your projects. As the module evolves, please refer to the LICENSE file for the most current licensing information. 38 | 39 | ## Join Us in Shaping i.mlearning 40 | Your involvement can help shape `i.mlearning` into a robust tool for data structuring in machine learning. Join us in this exciting journey to simplify and enhance the preparation of data for machine learning, contributing to the broader goals of accessibility and efficiency in AI and data science. 41 | 42 | For more details, visit our [project page](https://www.neurons.me) or check out the [neurons.me platform](https://www.neurons.me/all-this). 43 | 44 | If you have suggestions or issues, please open an issue. We encourage contributions from the community. 45 | 46 | 47 | ---------- 48 | 49 | # About All.This 50 | 51 | ## Modular Data Structures: 52 | 53 | **[this.me](https://suign.github.io/this.me) - [this.audio](https://suign.github.io/this.audio) - [this.text](https://suign.github.io/this.text) - [this.wallet](https://suign.github.io/this.wallet) - [this.img](https://suign.github.io/this.img) - [this.pixel](https://suign.github.io/Pixels) - [be.this](https://suign.github.io/be.this) - [this.DOM](https://suign.github.io/this.DOM) - [this.env](https://suign.github.io/this.env/) - [this.GUI](https://suign.github.io/this.GUI) - [this.be](https://suign.github.io/this.be) - [this.video](https://suign.github.io/this.video) - [this.atom](https://suign.github.io/this.atom) - [this.dictionaries](https://suign.github.io/this.dictionaries/)** 54 | 55 | **Each module** in **[all.this](https://neurons.me/all-this)** represents a specific **datastructure**. These classes encapsulate the functionalities and **data specific to their domain.** 56 | 57 | ## **Utils** 58 | 59 | **[all.this](https://neurons.me/all-this)** not only aggregates these modules but also provides utilities to facilitate the integration, management, and enhancement of these data structures. **For example:** 60 | 61 | *The integration with [cleaker](https://suign.github.io/cleaker/) ensures each module instance has a **unique cryptographic identity**, enhancing security and data integrity.* 62 | 63 | ### Neurons.me Ecosystem Glossary: 64 | 65 | visit: [Neurons.me Glossary](https://suign.github.io/neurons.me/Glossary) 66 | 67 | ## License & Policies 68 | 69 | - **License**: MIT License (see LICENSE for details). 70 | 71 | - **Privacy Policy**: Respects user privacy; no collection/storage of personal data. 72 | 73 | - **Terms of Usage**: Use responsibly. No guarantees/warranties provided. [Terms](https://www.neurons.me/terms-of-use) | [Privacy](https://www.neurons.me/privacy-policy) 74 | 75 | **Learn more** at https://neurons.me 76 | 77 | **Author:** SuiGn 78 | 79 | [By neurons.me](https://neurons.me) 80 | 81 | neurons.me logo 82 | -------------------------------------------------------------------------------- /docs/README.md: -------------------------------------------------------------------------------- 1 | i.mlearning 2 | 3 | # i.mLearning 4 | 5 | ----------- 6 | 7 | ### [Project Status : Experimental and Under Development, Subject to Major Changes] 8 | 9 | `i.mlearning` is an experimental module under development within the `all.this` family, specifically designed to streamline the process of setting up structured datasets for supervised learning. The module aims to provide a standardized framework for organizing and labeling data, making it optimally structured for training machine learning models, particularly in conjunction with the neurons.me platform. 10 | 11 | [mlearning.studio](https://mlearning.studio) 12 | 13 | The module is in active development, and as such, it is subject to significant changes as we refine our approach and methodologies to best support supervised learning processes. 14 | 15 | ---------- 16 | 17 | ## Core Vision and Purpose 18 | The primary goal of `i.mlearning` is to facilitate the creation of well-organized, labeled datasets that can be directly utilized for training machine learning models. This involves: 19 | 20 | - **Structured Data Directory**: Providing a template or blueprint for organizing data files, such as images or audio clips, into labeled directories (e.g., `cats/` for cat images) to support straightforward supervised learning. 21 | - **Data Labeling Consistency**: Ensuring that all data within the structure is appropriately labeled and categorized to aid in the accurate training of machine learning models, enhancing the overall effectiveness and reliability of the learning process. 22 | - **Integration with neurons.me**: Making the structured and labeled data easily accessible and compatible with neurons.me, allowing for seamless data processing, model training, and analysis within the platform. 23 | 24 | ## Anticipated Features 25 | - **Directory Templates for Data**: Guidelines and structures for organizing various types of data, ensuring consistency and compatibility with supervised learning algorithms. 26 | - **Labeling Guidelines**: Best practices and instructions for labeling data within the structured directories, ensuring clarity and consistency across datasets. 27 | - **Tools and Scripts**: Potential development of utilities to assist in setting up and verifying the data structure, automating the preparation process as much as possible. 28 | 29 | ## Getting Started 30 | To begin experimenting with `i.mlearning`, you can clone or download the module and explore the provided directory structures and guidelines. As this module is still under development, we encourage experimentation and feedback: 31 | 32 | ```bash 33 | npm i i.mlearning 34 | ``` 35 | 36 | **Note:** As `i.mlearning` is in experimental mode, please be prepared for ongoing changes and updates. Your feedback and contributions can significantly shape its evolution. 37 | 38 | ## Contributing to `i.mlearning` 39 | We welcome contributions, suggestions, and feedback from the community to enhance and refine `i.mlearning`. Whether you have ideas for new features, improvements to existing structures, or feedback on the module's usability, your input is invaluable. 40 | 41 | ## Licensing and Usage 42 | `i.mlearning` is released under an open-source license, allowing you to use and modify the module freely within your projects. As the module evolves, please refer to the LICENSE file for the most current licensing information. 43 | 44 | ## Join Us in Shaping i.mlearning 45 | Your involvement can help shape `i.mlearning` into a robust tool for data structuring in machine learning. Join us in this exciting journey to simplify and enhance the preparation of data for machine learning, contributing to the broader goals of accessibility and efficiency in AI and data science. 46 | 47 | For more details, visit our [project page](https://www.neurons.me) or check out the [neurons.me platform](https://www.neurons.me/all-this). 48 | 49 | If you have suggestions or issues, please open an issue. We encourage contributions from the community. 50 | 51 | 52 | ---------- 53 | 54 | # About All.This 55 | 56 | ## Modular Data Structures: 57 | 58 | **[this.me](https://suign.github.io/this.me) - [this.audio](https://suign.github.io/this.audio) - [this.text](https://suign.github.io/this.text) - [this.wallet](https://suign.github.io/this.wallet) - [this.img](https://suign.github.io/this.img) - [this.pixel](https://suign.github.io/Pixels) - [be.this](https://suign.github.io/be.this) - [this.DOM](https://suign.github.io/this.DOM) - [this.env](https://suign.github.io/this.env/) - [this.GUI](https://suign.github.io/this.GUI) - [this.be](https://suign.github.io/this.be) - [this.video](https://suign.github.io/this.video) - [this.atom](https://suign.github.io/this.atom) - [this.dictionaries](https://suign.github.io/this.dictionaries/)** 59 | 60 | **Each module** in **[all.this](https://neurons.me/all-this)** represents a specific **datastructure**. These classes encapsulate the functionalities and **data specific to their domain.** 61 | 62 | ## **Utils** 63 | 64 | **[all.this](https://neurons.me/all-this)** not only aggregates these modules but also provides utilities to facilitate the integration, management, and enhancement of these data structures. **For example:** 65 | 66 | *The integration with [cleaker](https://suign.github.io/cleaker/) ensures each module instance has a **unique cryptographic identity**, enhancing security and data integrity.* 67 | 68 | ### Neurons.me Ecosystem Glossary: 69 | 70 | visit: [Neurons.me Glossary](https://suign.github.io/neurons.me/Glossary) 71 | 72 | ## License & Policies 73 | 74 | - **License**: MIT License (see LICENSE for details). 75 | 76 | - **Privacy Policy**: Respects user privacy; no collection/storage of personal data. 77 | 78 | - **Terms of Usage**: Use responsibly. No guarantees/warranties provided. [Terms](https://www.neurons.me/terms-of-use) | [Privacy](https://www.neurons.me/privacy-policy) 79 | 80 | **Learn more** at https://neurons.me 81 | 82 | **Author:** SuiGn 83 | 84 | [By neurons.me](https://neurons.me) 85 | 86 | neurons.me logo 87 | -------------------------------------------------------------------------------- /docs/index.js.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | - 8 | 9 | 10 | docs.i.mLearning index.js 11 | 12 | 13 | 14 | 15 | 16 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
    37 |
    38 | 43 | 51 | 102 |
    103 |
    104 |
    105 | 120 |
    121 |
    122 |
    123 |

    Source

    124 |

    index.js

    125 |
    126 | 127 | 128 | 129 | 130 | 131 |
    132 |
    133 |
    /* In i.mlearning/index.js
    134 | ⓝⓔⓤⓡⓞⓝⓢ.ⓜⓔ
    135 | 🆂🆄🅸🅶🅽 */
    136 | 
    137 | /**
    138 |  * @module imlearning
    139 |  * @description Exports the main functionalities of the i.mlearning library.
    140 |  */
    141 | 
    142 | import imLearning from './src/imLearning.js';
    143 | 
    144 | /**
    145 |  * The main export object of i.mlearning package.
    146 |  * @type {Object}
    147 |  */
    148 | const imlearning = {
    149 |   imLearning
    150 | };
    151 | 
    152 | export default imlearning;
    153 | console.log("i.mLearning loaded;");
    154 | 
    155 |
    156 |
    157 | 158 | 159 | 160 | 161 |
    162 | 163 |
    164 |
    165 |

    166 | 179 |

    180 | Witness our Seal. 181 |
    182 | neurons.me 183 |

    184 |
    185 |
    186 | 187 |
    188 |
    189 |
    190 |
    191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | -------------------------------------------------------------------------------- /docs/src_imLearning.js.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | - 8 | 9 | 10 | docs.i.mLearning src/imLearning.js 11 | 12 | 13 | 14 | 15 | 16 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
    37 |
    38 | 43 | 51 | 102 |
    103 |
    104 |
    105 | 120 |
    121 |
    122 |
    123 |

    Source

    124 |

    src/imLearning.js

    125 |
    126 | 127 | 128 | 129 | 130 | 131 |
    132 |
    133 |
    /**
    134 |  * Class representing a learning module.
    135 |  * @description Provides functionalities to manage and organize learning datasets.
    136 |  */
    137 | class imLearning {
    138 |     /**
    139 |      * Initialize a new LearningModule instance.
    140 |      */
    141 |     constructor() {
    142 |         console.log("mLearning initialized");
    143 |     }
    144 | 
    145 |     /**
    146 |      * A method to demonstrate functionality.
    147 |      */
    148 |     demonstrate() {
    149 |         console.log("Demonstrating the mLearning functionality.");
    150 |     }
    151 | }
    152 | 
    153 | export default imLearning;
    154 | 
    155 |
    156 |
    157 | 158 | 159 | 160 | 161 |
    162 | 163 |
    164 |
    165 |

    166 | 179 |

    180 | Witness our Seal. 181 |
    182 | neurons.me 183 |

    184 |
    185 |
    186 | 187 |
    188 |
    189 |
    190 |
    191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | -------------------------------------------------------------------------------- /npm/Knowledge_Files/Intro.md: -------------------------------------------------------------------------------- 1 | neurons.me logo 2 | 3 | # i.mLearning 4 | 5 | ----------- 6 | 7 | **Identifiers:** Unique IDs to track and reference data. 8 | **Type and Format:** Data type (e.g., image, text, audio) and format (e.g., JPEG, PNG, TXT). 9 | **Descriptors:** Keywords or tags that describe the content or context (e.g., "urban", "nightlife"). 10 | **Usage Tags:** Indicate the intended use or data set classification (e.g., "training", "test"). 11 | **Versioning:** Track versions of data if updates or modifications are made. 12 | 13 | 2. ### **Metadata Storage and Indexing** 14 | 15 | Choose an appropriate storage solution that can support efficient querying and scalability: 16 | 17 | **Database Options:** Consider databases like MongoDB for flexibility in document storage or Elasticsearch for powerful search capabilities. 18 | **Indexing Strategy:** Develop indices based on common query patterns to optimize data retrieval. For example, indexing on data type, usage, or descriptive tags. 19 | 20 | 3. ### Data Ingestion and Metadata Assignment 21 | 22 | Develop a data ingestion pipeline that automatically extracts metadata from incoming data or requires metadata submission through a standardized interface: 23 | 24 | **Automated Extraction:** Use tools or develop custom scripts to extract metadata from files automatically (e.g., EXIF data from images, ID3 tags from MP3 files). 25 | User-Defined Metadata: Allow data contributors to provide additional metadata through forms or APIs. 26 | 27 | 4. ### Dynamic Data Retrieval 28 | 29 | Implement a data access layer that allows users or applications to query data based on metadata: 30 | 31 | **API Development**: Create APIs that accept metadata queries and return corresponding data. Ensure these APIs are secure and performant. 32 | Caching Mechanisms: Utilize caching to improve performance for frequently accessed data. 33 | 34 | 5. ### Continuous Organization 35 | 36 | While the primary data storage remains relatively unstructured, create background processes that can organize data into optimized formats based on usage patterns: 37 | 38 | Automated Clustering: Develop algorithms that cluster related data based on metadata similarities for more efficient storage or processing. 39 | On-the-Fly Structuring: When specific datasets are requested frequently, temporarily structure them in a more efficient format in a cache or a separate storage layer. 40 | 6. ### Integration and Scalability 41 | 42 | Ensure the system can integrate with existing infrastructure and scale as data volumes grow: 43 | 44 | Microservices Architecture: Consider designing the metadata management system as a series of microservices, allowing it to scale components independently based on demand. 45 | Cloud Storage Solutions: Utilize cloud storage solutions for scalable and secure data storage. 46 | 7. ### Monitoring and Maintenance 47 | 48 | Continuously monitor the system for performance bottlenecks and ensure that the metadata remains accurate and up-to-date: 49 | 50 | Audit and Update Metadata: Regularly review and update metadata to reflect changes in data usage or corrections. 51 | Performance Monitoring: Track query times and system load, adjusting indices and storage strategies as necessary. 52 | Conclusion 53 | This metadata-driven approach not only facilitates greater flexibility and adaptability in handling diverse data types but also enhances the ability to rapidly integrate new data sources without pre-processing or restructuring existing datasets. It supports a more agile and responsive data management framework, crucial for dynamic environments like machine learning and big data analytics. 54 | 55 | 56 | 57 | # Conceptual Breakdown 58 | 59 | **The Dataset:** Contains all the data necessary for training and testing the machine learning model. This includes both the features and their labels. 60 | **No Label Information in the Data:** The data arrays do not contain label information directly. The labels are stored separately and are linked by their index. 61 | **Purpose of Separation:** Keeping features and labels separate but linked by index allows for easier manipulation and processing of datastructures (such as preprocessing) without altering label data. It also simplifies the model training process, as the features and labels can be fed into algorithms separately. 62 | 63 | In summary, while the **datasets** are conceptually divided into features and labels, they are part of the same larger dataset used for training and testing the machine learning model. The indices are used to keep the relationship between images and their respective labels without embedding label information directly into the data arrays. This setup is standard in machine learning to ensure clarity and utility in data handling. 64 | 65 | Let's clarify the roles of both the training and test sets, and especially what test labels represents and how it's used. 66 | 67 | ### Training and Testing in Machine Learning 68 | 69 | 1. **Training Set:** 70 | - **Purpose:** Used to train the machine learning model. The model learns to recognize patterns in the data that correlate features (images) to their labels (cat or non-cat). 71 | - **Components:** 72 | - `train_set`: This contains the images used for training. 73 | - `train_set_y`: These are the labels for each training image, indicating whether each image is a cat (1) or not a cat (0). 74 | 75 | 2. **Test Set:** 76 | - **Purpose:** Used to evaluate the performance of the trained model. The test set provides a set of new, unseen data that is used to test how well the model can generalize what it has learned from the training set. 77 | - **Components:** 78 | - This contains the images used for testing. 79 | - The true labels for each test image. This is crucial as it allows you to compare the model’s predictions against the true labels to assess accuracy. 80 | 81 | ### Role of Labels 82 | 83 | - **Not for Training:** The label is not used for updating or training the model; it is used solely for evaluation. After the model has been trained using the training set and its corresponding labels, you use the model to predict the labels of the images in the test set. 84 | - **Model Evaluation:** Once the model has made its predictions, you compare these predictions to the actual labels in now in the test set. This comparison helps you understand how well your model is performing — specifically, how accurately it can predict new data it hasn't seen before during training. 85 | 86 | ### Misconception about Labels in Tests. 87 | 88 | It might seem intuitive to think that the test labels should be generated by the model, but in supervised learning, both the training and test phases require known labels: 89 | - **Training Phase:** The model learns by comparing its predictions on the training set to the actual labels in `train_set_y`. 90 | - **Testing Phase:** The model’s ability to generalize is tested by comparing its predictions on the test set to the actual labels in `test_set_y`. 91 | 92 | ### Summary 93 | 94 | Thus, `test_set_y` is essential as it contains the correct answers (labels) for the tests, which you use to check how well your model has learned to classify new images. The effectiveness of the model is measured by how accurately it can predict these test labels without having seen them during its training phase. -------------------------------------------------------------------------------- /docs/module-imlearning.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | - 6 | 7 | 8 | docs.i.mLearning imlearning 9 | 10 | 11 | 12 | 13 | 14 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
    35 |
    36 | 41 | 49 | 100 |
    101 |
    102 |
    103 | 118 |
    119 |
    120 |
    121 |

    Module

    122 |

    imlearning

    123 |
    124 | 125 | 126 | 127 | 128 | 129 |
    130 | 131 |
    132 | 133 |
    134 | 135 |
    136 |
    137 | 138 | 139 |
    Exports the main functionalities of the i.mlearning library.
    140 | 141 | 142 | 143 | 144 | 145 |
    146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 |

    178 | View Source 179 | 180 | index.js, line 5 181 | 182 |

    183 | 184 |
    185 | 186 | 187 | 188 | 189 |
    190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 |
    205 |

    Members

    206 |
    207 | 208 |
    209 | 210 | 211 | 212 | 213 | Object 214 | 215 | 216 | 217 | 218 |

    219 | # 220 | 221 | 222 | inner 223 | 224 | constant 225 | 226 | 227 | 228 | imlearning 229 | 230 | 231 |

    232 | 233 | 234 | 235 | 236 |
    237 | The main export object of i.mlearning package. 238 |
    239 | 240 | 241 | 242 | 243 | 244 |
    245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 |

    277 | View Source 278 | 279 | index.js, line 16 280 | 281 |

    282 | 283 |
    284 | 285 | 286 | 287 | 288 | 289 |
    290 | 291 |
    292 |
    293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |
    301 | 302 |
    303 | 304 | 305 | 306 | 307 |
    308 | 309 |
    310 |
    311 |

    312 | 325 |

    326 | Witness our Seal. 327 |
    328 | neurons.me 329 |

    330 |
    331 |
    332 | 333 |
    334 |
    335 |
    336 |
    337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | -------------------------------------------------------------------------------- /docs/imLearning.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | - 6 | 7 | 8 | docs.i.mLearning imLearning 9 | 10 | 11 | 12 | 13 | 14 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
    35 |
    36 | 41 | 49 | 100 |
    101 |
    102 |
    103 | 118 |
    119 |
    120 |
    121 |

    Class

    122 |

    imLearning

    123 |
    124 | 125 | 126 | 127 | 128 | 129 |
    130 | 131 |
    132 | 133 |

    imLearning()

    134 | 135 |
    Class representing a learning module.
    136 | 137 | 138 |
    139 | 140 |
    141 |
    142 | 143 | 144 |
    145 |
    146 |
    147 |
    148 | Constructor 149 |
    150 | 151 | 152 | 153 | 154 |

    155 | # 156 | 157 | 158 | 159 | new imLearning() 160 | 161 | 162 |

    163 | 164 | 165 | 166 | 167 |
    168 | Provides functionalities to manage and organize learning datasets. 169 |
    170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 |
    185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 |

    217 | View Source 218 | 219 | src/imLearning.js, line 5 220 | 221 |

    222 | 223 |
    224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 |
    247 |
    248 |
    249 | 250 | 251 |
    252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 |
    269 |

    Methods

    270 |
    271 | 272 |
    273 | 274 | 275 | 276 |

    277 | # 278 | 279 | 280 | 281 | demonstrate() 282 | 283 | 284 |

    285 | 286 | 287 | 288 | 289 |
    290 | A method to demonstrate functionality. 291 |
    292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 |
    307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 |

    339 | View Source 340 | 341 | src/imLearning.js, line 16 342 | 343 |

    344 | 345 |
    346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 |
    368 | 369 |
    370 |
    371 | 372 | 373 | 374 | 375 | 376 |
    377 | 378 |
    379 | 380 | 381 | 382 | 383 |
    384 | 385 |
    386 |
    387 |

    388 | 401 |

    402 | Witness our Seal. 403 |
    404 | neurons.me 405 |

    406 |
    407 |
    408 | 409 |
    410 |
    411 |
    412 |
    413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | -------------------------------------------------------------------------------- /docs/i.mlearning.md: -------------------------------------------------------------------------------- 1 | **Key Points to Consider:** 2 | 3 | - **Token**: At the core of everything is the `Token` class. Every piece of data in your system starts as a token. 4 | - **DataEntity**: This is a generalized class that represents broader categories or types of data (like languages, topics, etc.). It's built upon the foundational concept of a token. 5 | - **Language (and other similar classes)**: These are specific classes that provide further granularity and specificity, built upon the generalized `DataEntity` concept. 6 | 7 | **i.mLearning** concepts initially by identifying classes, but at the core, it's all about tokens. 8 | 9 | # mLearning **Abstracting Pieces of Grain** 10 | 11 | Let's break down how your site structure relates to tokens and how users interact with them at varying granularities. 12 | 13 | ### 1. **Highest Level: Categories/Themes**: 14 | 15 | At the **top-most level**, you have distinct categories or themes such as Wildlife, Geography, Nature, and Economics. These can be considered as broad categories that group related tokens together. 16 | 17 | ### 2. **Mid-level: Subcategories/Topics** 18 | 19 | Within each category, you have more specific topics: For Wildlife, you have Biology and within that, specific animals. For Geography, you have Cities and specific places. 20 | 21 | ### 3. **Granular Level: Individual Tokens** 22 | 23 | At the most granular level, you have the individual tokens. These could be individual animals (Sharks, Lions), specific cities (Paris, Germany), or economic terms (Finance). 24 | 25 | **How does this relate to machine learning and user interaction?** 26 | 27 | 1. **Data Input and Representation**: When feeding data into machine learning algorithms, granularity matters. For instance, if you're training a model to recognize animals, your input might be pictures labeled with the most granular tokens, e.g., "Shark," "Lion," etc. The tokens serve as distinct labels or classes for the model. 28 | 2. **User Interaction**: When a user interacts with your platform, they're navigating through a hierarchy of tokens. They might start at a high-level category (e.g., Wildlife), then drill down into a more specific topic (e.g., Biology), and finally arrive at a particular token (e.g., Sharks). The user's path gives insights into their interests and preferences, which can be valuable data. 29 | 3. **Personalization and Recommendation**: Based on a user's interaction with tokens, machine learning models can recommend related tokens or topics. For instance, if a user frequently interacts with tokens related to marine life (Sharks, Whales), the system might recommend other related tokens or content about Oceans, Coral Reefs, etc. 30 | 4. **User Queries**: When a user searches on your platform, they use tokens (e.g., "Sharks"). The search algorithm breaks down the user's query into tokens and finds the most relevant content based on those tokens. 31 | 5. **Semantic Understanding**: At a more advanced level, by understanding the hierarchy and relationships between tokens (Sharks are related to Biology, which is a part of Wildlife), machine learning models can better understand the semantic meaning and context. This is useful for tasks like semantic search or content summarization. 32 | 33 | In essence, **tokens serve as the foundational units of information.** While machine learning models might work at the granular token level, users interact with a more structured and hierarchical representation of these tokens, moving from broad categories to specific details. **i.mLearning** acts as a bridge, facilitating this interaction and possibly using machine learning to enhance the user experience based on their interaction with tokens. 34 | 35 | Defining categories and classes is crucial because they set the foundation for your system's organization. The categories and classes act as a blueprint that guides the development process, enabling you to handle data and functionalities systematically. 36 | 37 | 1. **Determine Categories:** 38 | Categories act as the primary dividers of your data or functionality. They are the highest level of abstraction. Using your example: 39 | 40 | **Main Categories:** Wildlife, Geography, Nature, Economics. 41 | For each category, you'll have a set of subcategories or themes. 42 | For instance, under "Wildlife," you might have "Biology," "Mammals," and "Birds." 43 | 44 | 2. **Define Classes Within Categories:** 45 | Each category and subcategory will have classes associated with it. Classes here represent the actual data structure or entity, defining properties and methods associated with that entity. 46 | 47 | For example, within the **"Wildlife -> Mammals"** subcategory: 48 | 49 | ### Classes: 50 | 51 | Lion (with properties like habitat, diet, lifespan, etc.) 52 | Elephant 53 | Whale 54 | 55 | For each class, you can also define specific attributes or methods. For instance, the "Lion" class might have methods like "hunt()" or attributes like "average lifespan." 56 | 57 | 3. **Determine Hierarchical Structure:**It's crucial to decide the hierarchy or relationship between categories, subcategories, and classes. 58 | **For example:** 59 | A "Lion" belongs to the "Mammals" subcategory. 60 | "Mammals" belong to the "Wildlife" category. 61 | 62 | 4. **Data Modeling:** 63 | For efficient data management and access: 64 | 65 | **Create data models for each class.** These models will represent how data for each entity (like Lion, Elephant, etc.) is stored, retrieved, or manipulated. 66 | 67 | **Determine relationships between these models**. For instance, if you have a "Habitat" class, the "Lion" class might have a relationship with it. 68 | 69 | * A brief description of each category and class. 70 | * The properties and methods associated with each class. 71 | * The relationships between classes. 72 | 73 | In your tokenized system, every piece of information, whether it's a broad category or a specific detail, is represented by a token. The power of this approach is that it reduces everything to a standardized, consistent unit (i.e., a token). 74 | 75 | The idea is to create a universal representation, a **"master token"** if you will, for each unique concept or entity like "lion." This master token serves as the canonical reference for that concept. 76 | 77 | When you **tokenize concepts**, you gain several advantages: 78 | 79 | 1. **Language Agnosticism**: By tying every language's word for "lion" to a single token, you abstract away the language-specific details. Whether it's "lion" in English, "león" in Spanish, "lion" in French, or "लायन" in Hindi, they all refer back to the same master token. 80 | 2. **Efficiency**: You avoid redundancy. Instead of storing and managing multiple instances or definitions of lions for each language, you have one canonical representation. This makes your system leaner and faster. 81 | 3. **Consistency**: Since every language representation points back to the same token, there's a uniform understanding of the concept across the system. If you update information related to the lion token, it's reflected universally. 82 | 4. **Flexibility**: In future, if you want to add more details or attributes to the "lion" (like its habitat, behavior, etc.), you can simply enhance the master token. This automatically updates the understanding of "lion" across all languages. 83 | 5. **Interoperability**: Tokens can easily be used in various 84 | 85 | # Tokens 86 | 87 | ### Handeling**Overlap and Intersection**: 88 | 89 | Some topics or entities might belong to multiple categories or subcategories. A "Dolphin," for example, could be under "Marine Life" and also under "Mammals." You might need mechanisms to handle such overlaps. Tags, for instance, can be a useful tool in such scenarios. 90 | 91 | Here’s the system conceptualize: 92 | 93 | 1. **Modular Tokens**: Think of each piece of information or data as a module or token. Just as in a synthesizer, where each module performs a specific function (e.g., an oscillator, filter, or envelope generator), each token in your system encapsulates a specific piece of knowledge or a data entity. 94 | 2. **Inputs and Outputs**: Each token has specific inputs and outputs that determine how it can connect with other tokens. This is analogous to how modules in a synthesizer have CV (Control Voltage) inputs and outputs. The connections (or references) between tokens can be dynamic, allowing for a versatile and evolving knowledge web. 95 | 3. **No Strict Hierarchy**: Instead of a top-down hierarchical structure, you'd have a networked structure. Tokens connect to one another based on relevance, context, and the flow of information. This allows for flexibility and adaptability. 96 | 4. **Dynamic Interconnections**: Just as you can patch different modules together in a synthesizer to create new sounds, users can dynamically interconnect different tokens based on their needs. This might allow users to explore knowledge pathways that are non-linear and more organic. 97 | 5. **Feedback Loops**: In modular synthesizers, feedback loops can be created by routing the output of a module back into its input or another module's input. Similarly, in your system, tokens can reference back to themselves or other tokens, creating rich, recursive knowledge pathways. 98 | 6. **User Interface**: The user interface is critical. Consider a graphical UI that visually represents tokens and their interconnections, allowing users to "patch" them together intuitively, exploring and manipulating the flow of information. 99 | 7. **Expandability**: Just as you can add new modules to a modular synthesizer, your system can be designed to allow for the introduction of new tokens over time, expanding its knowledge base. 100 | 8. **Tags and Metadata**: To aid in the discoverability and interconnectivity of tokens, consider equipping each token with tags or metadata. This can help in determining how tokens might connect or relate to one another. 101 | 102 | This modular system achieves: 103 | 104 | - **Flexibility**: The system can evolve, adapt, and reconfigure based on the changing landscape of information or user needs. 105 | - **Interactivity**: Users have an active role in shaping their knowledge journey, creating pathways that are most relevant to them. 106 | - **Depth and Breadth**: The networked structure allows users to dive deep into specific topics or take a broader view, depending on how they connect the tokens. 107 | - **Personalization**: With machine learning, the system could suggest potential token interconnections based on user behavior, making their experience more personalized and intuitive. 108 | 109 | - [ ] Keep [i.mlearning.me] 110 | - [ ] Build [mlearning.studio] -------------------------------------------------------------------------------- /docs/index.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | - 6 | 7 | 8 | docs.i.mLearning Home 9 | 10 | 11 | 12 | 13 | 14 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
    35 |
    36 | 41 | 49 | 100 |
    101 |
    102 |
    103 | 118 |
    119 |
    120 |
    121 |

    122 |

    Home

    123 |
    124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 |

    132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 |
    148 |
    i.mlearning 149 |

    i.mLearning

    150 |
    151 |

    [Project Status : Experimental and Under Development, Subject to Major Changes]

    152 |

    i.mlearning is an experimental module under development within the all.this family, specifically designed to streamline the process of setting up structured datasets for supervised learning. The module aims to provide a standardized framework for organizing and labeling data, making it optimally structured for training machine learning models, particularly in conjunction with the neurons.me platform.

    153 |

    mlearning.studio

    154 |

    The module is in active development, and as such, it is subject to significant changes as we refine our approach and methodologies to best support supervised learning processes.

    155 |
    156 |

    Core Vision and Purpose

    157 |

    The primary goal of i.mlearning is to facilitate the creation of well-organized, labeled datasets that can be directly utilized for training machine learning models. This involves:

    158 |
      159 |
    • Structured Data Directory: Providing a template or blueprint for organizing data files, such as images or audio clips, into labeled directories (e.g., cats/ for cat images) to support straightforward supervised learning.
    • 160 |
    • Data Labeling Consistency: Ensuring that all data within the structure is appropriately labeled and categorized to aid in the accurate training of machine learning models, enhancing the overall effectiveness and reliability of the learning process.
    • 161 |
    • Integration with neurons.me: Making the structured and labeled data easily accessible and compatible with neurons.me, allowing for seamless data processing, model training, and analysis within the platform.
    • 162 |
    163 |

    Anticipated Features

    164 |
      165 |
    • Directory Templates for Data: Guidelines and structures for organizing various types of data, ensuring consistency and compatibility with supervised learning algorithms.
    • 166 |
    • Labeling Guidelines: Best practices and instructions for labeling data within the structured directories, ensuring clarity and consistency across datasets.
    • 167 |
    • Tools and Scripts: Potential development of utilities to assist in setting up and verifying the data structure, automating the preparation process as much as possible.
    • 168 |
    169 |

    Getting Started

    170 |

    To begin experimenting with i.mlearning, you can clone or download the module and explore the provided directory structures and guidelines. As this module is still under development, we encourage experimentation and feedback:

    171 |
    npm i i.mlearning
    172 | 
    173 |

    Note: As i.mlearning is in experimental mode, please be prepared for ongoing changes and updates. Your feedback and contributions can significantly shape its evolution.

    174 |

    Contributing to i.mlearning

    175 |

    We welcome contributions, suggestions, and feedback from the community to enhance and refine i.mlearning. Whether you have ideas for new features, improvements to existing structures, or feedback on the module's usability, your input is invaluable.

    176 |

    Licensing and Usage

    177 |

    i.mlearning is released under an open-source license, allowing you to use and modify the module freely within your projects. As the module evolves, please refer to the LICENSE file for the most current licensing information.

    178 |

    Join Us in Shaping i.mlearning

    179 |

    Your involvement can help shape i.mlearning into a robust tool for data structuring in machine learning. Join us in this exciting journey to simplify and enhance the preparation of data for machine learning, contributing to the broader goals of accessibility and efficiency in AI and data science.

    180 |

    For more details, visit our project page or check out the neurons.me platform.

    181 |

    If you have suggestions or issues, please open an issue. We encourage contributions from the community.

    182 |
    183 |

    About All.This

    184 |

    Modular Data Structures:

    185 |

    this.me - this.audio - this.text - this.wallet - this.img - this.pixel - be.this - this.DOM - this.env - this.GUI - this.be - this.video - this.atom - this.dictionaries

    186 |

    Each module in all.this represents a specific datastructure. These classes encapsulate the functionalities and data specific to their domain.

    187 |

    Utils

    188 |

    all.this not only aggregates these modules but also provides utilities to facilitate the integration, management, and enhancement of these data structures. For example:

    189 |

    The integration with cleaker ensures each module instance has a unique cryptographic identity, enhancing security and data integrity.

    190 |

    Neurons.me Ecosystem Glossary:

    191 |

    visit: Neurons.me Glossary

    192 |

    License & Policies

    193 |
      194 |
    • 195 |

      License: MIT License (see LICENSE for details).

      196 |
    • 197 |
    • 198 |

      Privacy Policy: Respects user privacy; no collection/storage of personal data.

      199 |
    • 200 |
    • 201 |

      Terms of Usage: Use responsibly. No guarantees/warranties provided. Terms | Privacy

      202 |

      Learn more at https://neurons.me

      203 |

      Author: SuiGn

      204 |

      By neurons.me

      205 | neurons.me logo 206 |
    • 207 |
    208 |
    209 | 210 | 211 | 212 | 213 | 214 | 215 |
    216 | 217 |
    218 |
    219 |

    220 | 233 |

    234 | Witness our Seal. 235 |
    236 | neurons.me 237 |

    238 |
    239 |
    240 | 241 |
    242 |
    243 |
    244 |
    245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | --------------------------------------------------------------------------------