├── .gitignore
├── BadDiffusion
├── .gitignore
├── LICENSE
├── README.md
├── anp_config.py
├── anp_defense.py
├── anp_model.py
├── anp_util.py
├── baddiffusion.py
├── dataset.py
├── diffusers
│ ├── .github
│ │ ├── ISSUE_TEMPLATE
│ │ │ ├── bug-report.yml
│ │ │ ├── config.yml
│ │ │ ├── feature_request.md
│ │ │ ├── feedback.md
│ │ │ └── new-model-addition.yml
│ │ └── workflows
│ │ │ ├── build_documentation.yml
│ │ │ ├── build_pr_documentation.yml
│ │ │ ├── delete_doc_comment.yml
│ │ │ ├── pr_quality.yml
│ │ │ ├── pr_tests.yml
│ │ │ ├── push_tests.yml
│ │ │ ├── stale.yml
│ │ │ └── typos.yml
│ ├── .gitignore
│ ├── CODE_OF_CONDUCT.md
│ ├── CONTRIBUTING.md
│ ├── LICENSE
│ ├── MANIFEST.in
│ ├── Makefile
│ ├── README.md
│ ├── _typos.toml
│ ├── docs
│ │ └── source
│ │ │ ├── _toctree.yml
│ │ │ ├── api
│ │ │ ├── configuration.mdx
│ │ │ ├── diffusion_pipeline.mdx
│ │ │ ├── logging.mdx
│ │ │ ├── models.mdx
│ │ │ ├── outputs.mdx
│ │ │ ├── pipelines
│ │ │ │ ├── ddim.mdx
│ │ │ │ ├── ddpm.mdx
│ │ │ │ ├── latent_diffusion.mdx
│ │ │ │ ├── latent_diffusion_uncond.mdx
│ │ │ │ ├── overview.mdx
│ │ │ │ ├── pndm.mdx
│ │ │ │ ├── score_sde_ve.mdx
│ │ │ │ ├── stable_diffusion.mdx
│ │ │ │ └── stochastic_karras_ve.mdx
│ │ │ └── schedulers.mdx
│ │ │ ├── conceptual
│ │ │ ├── contribution.mdx
│ │ │ ├── philosophy.mdx
│ │ │ └── stable_diffusion.mdx
│ │ │ ├── index.mdx
│ │ │ ├── installation.mdx
│ │ │ ├── optimization
│ │ │ ├── fp16.mdx
│ │ │ ├── mps.mdx
│ │ │ ├── onnx.mdx
│ │ │ └── open_vino.mdx
│ │ │ ├── quicktour.mdx
│ │ │ ├── training
│ │ │ ├── overview.mdx
│ │ │ ├── text2image.mdx
│ │ │ ├── text_inversion.mdx
│ │ │ └── unconditional_training.mdx
│ │ │ └── using-diffusers
│ │ │ ├── conditional_image_generation.mdx
│ │ │ ├── configuration.mdx
│ │ │ ├── custom.mdx
│ │ │ ├── custom_pipelines.mdx
│ │ │ ├── img2img.mdx
│ │ │ ├── inpaint.mdx
│ │ │ ├── loading.mdx
│ │ │ └── unconditional_image_generation.mdx
│ ├── examples
│ │ ├── README.md
│ │ ├── community
│ │ │ ├── README.md
│ │ │ └── clip_guided_stable_diffusion.py
│ │ ├── conftest.py
│ │ ├── dreambooth
│ │ │ ├── README.md
│ │ │ ├── requirements.txt
│ │ │ └── train_dreambooth.py
│ │ ├── inference
│ │ │ ├── README.md
│ │ │ ├── image_to_image.py
│ │ │ └── inpainting.py
│ │ ├── test_examples.py
│ │ ├── text_to_image
│ │ │ ├── README.md
│ │ │ ├── requirements.txt
│ │ │ └── train_text_to_image.py
│ │ ├── textual_inversion
│ │ │ ├── README.md
│ │ │ ├── requirements.txt
│ │ │ └── textual_inversion.py
│ │ └── unconditional_image_generation
│ │ │ ├── README.md
│ │ │ ├── requirements.txt
│ │ │ └── train_unconditional.py
│ ├── pyproject.toml
│ ├── scripts
│ │ ├── __init__.py
│ │ ├── change_naming_configs_and_checkpoints.py
│ │ ├── conversion_ldm_uncond.py
│ │ ├── convert_ddpm_original_checkpoint_to_diffusers.py
│ │ ├── convert_diffusers_to_original_stable_diffusion.py
│ │ ├── convert_ldm_original_checkpoint_to_diffusers.py
│ │ ├── convert_ncsnpp_original_checkpoint_to_diffusers.py
│ │ ├── convert_original_stable_diffusion_to_diffusers.py
│ │ ├── convert_stable_diffusion_checkpoint_to_onnx.py
│ │ └── generate_logits.py
│ ├── setup.cfg
│ ├── setup.py
│ ├── src
│ │ └── diffusers
│ │ │ ├── __init__.py
│ │ │ ├── commands
│ │ │ ├── __init__.py
│ │ │ ├── diffusers_cli.py
│ │ │ └── env.py
│ │ │ ├── configuration_utils.py
│ │ │ ├── dependency_versions_check.py
│ │ │ ├── dependency_versions_table.py
│ │ │ ├── dynamic_modules_utils.py
│ │ │ ├── hub_utils.py
│ │ │ ├── modeling_flax_pytorch_utils.py
│ │ │ ├── modeling_flax_utils.py
│ │ │ ├── modeling_utils.py
│ │ │ ├── models
│ │ │ ├── README.md
│ │ │ ├── __init__.py
│ │ │ ├── attention.py
│ │ │ ├── attention_flax.py
│ │ │ ├── embeddings.py
│ │ │ ├── embeddings_flax.py
│ │ │ ├── unet_2d.py
│ │ │ ├── unet_2d_condition.py
│ │ │ ├── unet_2d_condition_flax.py
│ │ │ ├── unet_blocks.py
│ │ │ ├── unet_blocks_flax.py
│ │ │ ├── vae.py
│ │ │ └── vae_flax.py
│ │ │ ├── onnx_utils.py
│ │ │ ├── optimization.py
│ │ │ ├── pipeline_flax_utils.py
│ │ │ ├── pipeline_utils.py
│ │ │ ├── pipelines
│ │ │ ├── README.md
│ │ │ ├── __init__.py
│ │ │ ├── ddim
│ │ │ │ ├── __init__.py
│ │ │ │ └── pipeline_ddim.py
│ │ │ ├── ddpm
│ │ │ │ ├── __init__.py
│ │ │ │ └── pipeline_ddpm.py
│ │ │ ├── latent_diffusion
│ │ │ │ ├── __init__.py
│ │ │ │ └── pipeline_latent_diffusion.py
│ │ │ ├── latent_diffusion_uncond
│ │ │ │ ├── __init__.py
│ │ │ │ └── pipeline_latent_diffusion_uncond.py
│ │ │ ├── pndm
│ │ │ │ ├── __init__.py
│ │ │ │ └── pipeline_pndm.py
│ │ │ ├── score_sde_ve
│ │ │ │ ├── __init__.py
│ │ │ │ └── pipeline_score_sde_ve.py
│ │ │ ├── stable_diffusion
│ │ │ │ ├── README.md
│ │ │ │ ├── __init__.py
│ │ │ │ ├── pipeline_flax_stable_diffusion.py
│ │ │ │ ├── pipeline_stable_diffusion.py
│ │ │ │ ├── pipeline_stable_diffusion_img2img.py
│ │ │ │ ├── pipeline_stable_diffusion_inpaint.py
│ │ │ │ ├── pipeline_stable_diffusion_onnx.py
│ │ │ │ ├── safety_checker.py
│ │ │ │ └── safety_checker_flax.py
│ │ │ └── stochastic_karras_ve
│ │ │ │ ├── __init__.py
│ │ │ │ └── pipeline_stochastic_karras_ve.py
│ │ │ ├── schedulers
│ │ │ ├── README.md
│ │ │ ├── __init__.py
│ │ │ ├── scheduling_ddim.py
│ │ │ ├── scheduling_ddim_flax.py
│ │ │ ├── scheduling_ddpm.py
│ │ │ ├── scheduling_ddpm_flax.py
│ │ │ ├── scheduling_karras_ve.py
│ │ │ ├── scheduling_karras_ve_flax.py
│ │ │ ├── scheduling_lms_discrete.py
│ │ │ ├── scheduling_lms_discrete_flax.py
│ │ │ ├── scheduling_pndm.py
│ │ │ ├── scheduling_pndm_flax.py
│ │ │ ├── scheduling_sde_ve.py
│ │ │ ├── scheduling_sde_ve_flax.py
│ │ │ ├── scheduling_sde_vp.py
│ │ │ ├── scheduling_utils.py
│ │ │ └── scheduling_utils_flax.py
│ │ │ ├── training_utils.py
│ │ │ └── utils
│ │ │ ├── __init__.py
│ │ │ ├── deprecation_utils.py
│ │ │ ├── dummy_flax_and_transformers_objects.py
│ │ │ ├── dummy_flax_objects.py
│ │ │ ├── dummy_pt_objects.py
│ │ │ ├── dummy_torch_and_scipy_objects.py
│ │ │ ├── dummy_torch_and_transformers_and_onnx_objects.py
│ │ │ ├── dummy_torch_and_transformers_objects.py
│ │ │ ├── import_utils.py
│ │ │ ├── logging.py
│ │ │ ├── model_card_template.md
│ │ │ ├── outputs.py
│ │ │ └── testing_utils.py
│ ├── tests
│ │ ├── __init__.py
│ │ ├── conftest.py
│ │ ├── fixtures
│ │ │ └── custom_pipeline
│ │ │ │ └── pipeline.py
│ │ ├── test_config.py
│ │ ├── test_layers_utils.py
│ │ ├── test_modeling_common.py
│ │ ├── test_modeling_common_flax.py
│ │ ├── test_models_unet.py
│ │ ├── test_models_vae.py
│ │ ├── test_models_vae_flax.py
│ │ ├── test_models_vq.py
│ │ ├── test_outputs.py
│ │ ├── test_pipelines.py
│ │ ├── test_scheduler.py
│ │ ├── test_training.py
│ │ └── test_utils.py
│ └── utils
│ │ ├── check_config_docstrings.py
│ │ ├── check_copies.py
│ │ ├── check_dummies.py
│ │ ├── check_inits.py
│ │ ├── check_repo.py
│ │ ├── check_table.py
│ │ ├── custom_init_isort.py
│ │ ├── get_modified_files.py
│ │ ├── print_env.py
│ │ └── stale.py
├── elijah_helper.py
├── fid_score.py
├── install.sh
├── loss.py
├── model.py
├── requirements.txt
├── run_example.sh
├── static
│ ├── cat_wo_bg.png
│ ├── fedora-hat.png
│ ├── glasses.png
│ ├── hat.png
│ ├── stop_sign_bg_blk.jpg
│ ├── stop_sign_bg_w.jpg
│ └── stop_sign_wo_bg.png
└── util.py
├── README.md
├── TrojDiff
├── README.md
├── configs
│ ├── bedroom.yml
│ ├── celeba.yml
│ ├── church.yml
│ ├── cifar10.yml
│ ├── cifar10_100k.yml
│ └── cifar10_no_ema.yml
├── datasets
│ ├── .DS_Store
│ ├── __init__.py
│ ├── celeba.py
│ ├── ffhq.py
│ ├── lsun.py
│ ├── utils.py
│ └── vision.py
├── elijah_helper.py
├── environment.yml
├── figures
│ ├── framework.png
│ ├── generative_process.png
│ └── numeric_result.png
├── functions
│ ├── .DS_Store
│ ├── __init__.py
│ ├── ckpt_util.py
│ ├── denoising.py
│ ├── losses.py
│ ├── losses_attack.py
│ └── losses_attack_d2dout.py
├── images
│ ├── .DS_Store
│ ├── blue.png
│ ├── brown.png
│ ├── green.png
│ ├── hello_kitty.png
│ ├── light_blue.png
│ ├── mickey.png
│ ├── purple.png
│ ├── red.png
│ ├── target_A.png
│ ├── target_I.png
│ ├── white.png
│ └── yellow.png
├── main_attack_d2i.py
├── models
│ ├── .DS_Store
│ ├── diffusion.py
│ └── ema.py
├── run_example.sh
└── runners
│ ├── .DS_Store
│ ├── __init__.py
│ ├── diffusion.py
│ ├── diffusion_attack.py
│ ├── diffusion_attack_d2dout.py
│ └── diffusion_attack_d2i.py
└── VillanDiffusion
├── README.md
├── VillanDiffusion.py
├── VillanDiffusion_backup.py
├── VillanDiffusion_rm.py
├── caption_dataset.py
├── caption_sim.py
├── config.py
├── dataset.py
├── dataset_backup.py
├── dataset_rm.py
├── diffusers
├── .github
│ ├── ISSUE_TEMPLATE
│ │ ├── bug-report.yml
│ │ ├── config.yml
│ │ ├── feature_request.md
│ │ ├── feedback.md
│ │ └── new-model-addition.yml
│ ├── actions
│ │ └── setup-miniconda
│ │ │ └── action.yml
│ └── workflows
│ │ ├── build_docker_images.yml
│ │ ├── build_documentation.yml
│ │ ├── build_pr_documentation.yml
│ │ ├── delete_doc_comment.yml
│ │ ├── nightly_tests.yml
│ │ ├── pr_quality.yml
│ │ ├── pr_tests.yml
│ │ ├── push_tests.yml
│ │ ├── push_tests_fast.yml
│ │ ├── stale.yml
│ │ └── typos.yml
├── .gitignore
├── CITATION.cff
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── LICENSE
├── MANIFEST.in
├── Makefile
├── PHILOSOPHY.md
├── README.md
├── _typos.toml
├── docker
│ ├── diffusers-flax-cpu
│ │ └── Dockerfile
│ ├── diffusers-flax-tpu
│ │ └── Dockerfile
│ ├── diffusers-onnxruntime-cpu
│ │ └── Dockerfile
│ ├── diffusers-onnxruntime-cuda
│ │ └── Dockerfile
│ ├── diffusers-pytorch-cpu
│ │ └── Dockerfile
│ └── diffusers-pytorch-cuda
│ │ └── Dockerfile
├── docs
│ ├── README.md
│ ├── TRANSLATING.md
│ └── source
│ │ ├── _config.py
│ │ ├── en
│ │ ├── _toctree.yml
│ │ ├── api
│ │ │ ├── configuration.mdx
│ │ │ ├── diffusion_pipeline.mdx
│ │ │ ├── experimental
│ │ │ │ └── rl.mdx
│ │ │ ├── loaders.mdx
│ │ │ ├── logging.mdx
│ │ │ ├── models.mdx
│ │ │ ├── outputs.mdx
│ │ │ ├── pipelines
│ │ │ │ ├── alt_diffusion.mdx
│ │ │ │ ├── audio_diffusion.mdx
│ │ │ │ ├── audioldm.mdx
│ │ │ │ ├── cycle_diffusion.mdx
│ │ │ │ ├── dance_diffusion.mdx
│ │ │ │ ├── ddim.mdx
│ │ │ │ ├── ddpm.mdx
│ │ │ │ ├── dit.mdx
│ │ │ │ ├── latent_diffusion.mdx
│ │ │ │ ├── latent_diffusion_uncond.mdx
│ │ │ │ ├── overview.mdx
│ │ │ │ ├── paint_by_example.mdx
│ │ │ │ ├── pndm.mdx
│ │ │ │ ├── repaint.mdx
│ │ │ │ ├── score_sde_ve.mdx
│ │ │ │ ├── semantic_stable_diffusion.mdx
│ │ │ │ ├── spectrogram_diffusion.mdx
│ │ │ │ ├── stable_diffusion
│ │ │ │ │ ├── attend_and_excite.mdx
│ │ │ │ │ ├── controlnet.mdx
│ │ │ │ │ ├── depth2img.mdx
│ │ │ │ │ ├── image_variation.mdx
│ │ │ │ │ ├── img2img.mdx
│ │ │ │ │ ├── inpaint.mdx
│ │ │ │ │ ├── latent_upscale.mdx
│ │ │ │ │ ├── model_editing.mdx
│ │ │ │ │ ├── overview.mdx
│ │ │ │ │ ├── panorama.mdx
│ │ │ │ │ ├── pix2pix.mdx
│ │ │ │ │ ├── pix2pix_zero.mdx
│ │ │ │ │ ├── self_attention_guidance.mdx
│ │ │ │ │ ├── text2img.mdx
│ │ │ │ │ └── upscale.mdx
│ │ │ │ ├── stable_diffusion_2.mdx
│ │ │ │ ├── stable_diffusion_safe.mdx
│ │ │ │ ├── stable_unclip.mdx
│ │ │ │ ├── stochastic_karras_ve.mdx
│ │ │ │ ├── text_to_video.mdx
│ │ │ │ ├── text_to_video_zero.mdx
│ │ │ │ ├── unclip.mdx
│ │ │ │ ├── versatile_diffusion.mdx
│ │ │ │ └── vq_diffusion.mdx
│ │ │ └── schedulers
│ │ │ │ ├── ddim.mdx
│ │ │ │ ├── ddim_inverse.mdx
│ │ │ │ ├── ddpm.mdx
│ │ │ │ ├── deis.mdx
│ │ │ │ ├── dpm_discrete.mdx
│ │ │ │ ├── dpm_discrete_ancestral.mdx
│ │ │ │ ├── euler.mdx
│ │ │ │ ├── euler_ancestral.mdx
│ │ │ │ ├── heun.mdx
│ │ │ │ ├── ipndm.mdx
│ │ │ │ ├── lms_discrete.mdx
│ │ │ │ ├── multistep_dpm_solver.mdx
│ │ │ │ ├── overview.mdx
│ │ │ │ ├── pndm.mdx
│ │ │ │ ├── repaint.mdx
│ │ │ │ ├── score_sde_ve.mdx
│ │ │ │ ├── score_sde_vp.mdx
│ │ │ │ ├── singlestep_dpm_solver.mdx
│ │ │ │ ├── stochastic_karras_ve.mdx
│ │ │ │ ├── unipc.mdx
│ │ │ │ └── vq_diffusion.mdx
│ │ ├── conceptual
│ │ │ ├── contribution.mdx
│ │ │ ├── ethical_guidelines.mdx
│ │ │ ├── evaluation.mdx
│ │ │ └── philosophy.mdx
│ │ ├── imgs
│ │ │ ├── access_request.png
│ │ │ └── diffusers_library.jpg
│ │ ├── index.mdx
│ │ ├── installation.mdx
│ │ ├── optimization
│ │ │ ├── coreml.mdx
│ │ │ ├── fp16.mdx
│ │ │ ├── habana.mdx
│ │ │ ├── mps.mdx
│ │ │ ├── onnx.mdx
│ │ │ ├── open_vino.mdx
│ │ │ ├── opt_overview.mdx
│ │ │ ├── torch2.0.mdx
│ │ │ └── xformers.mdx
│ │ ├── quicktour.mdx
│ │ ├── stable_diffusion.mdx
│ │ ├── training
│ │ │ ├── controlnet.mdx
│ │ │ ├── dreambooth.mdx
│ │ │ ├── instructpix2pix.mdx
│ │ │ ├── lora.mdx
│ │ │ ├── overview.mdx
│ │ │ ├── text2image.mdx
│ │ │ ├── text_inversion.mdx
│ │ │ └── unconditional_training.mdx
│ │ ├── tutorials
│ │ │ ├── basic_training.mdx
│ │ │ └── tutorial_overview.mdx
│ │ └── using-diffusers
│ │ │ ├── audio.mdx
│ │ │ ├── conditional_image_generation.mdx
│ │ │ ├── contribute_pipeline.mdx
│ │ │ ├── controlling_generation.mdx
│ │ │ ├── custom_pipeline_examples.mdx
│ │ │ ├── custom_pipeline_overview.mdx
│ │ │ ├── depth2img.mdx
│ │ │ ├── img2img.mdx
│ │ │ ├── inpaint.mdx
│ │ │ ├── kerascv.mdx
│ │ │ ├── loading.mdx
│ │ │ ├── loading_overview.mdx
│ │ │ ├── other-modalities.mdx
│ │ │ ├── pipeline_overview.mdx
│ │ │ ├── reproducibility.mdx
│ │ │ ├── reusing_seeds.mdx
│ │ │ ├── rl.mdx
│ │ │ ├── schedulers.mdx
│ │ │ ├── stable_diffusion_jax_how_to.mdx
│ │ │ ├── unconditional_image_generation.mdx
│ │ │ ├── using_safetensors
│ │ │ ├── using_safetensors.mdx
│ │ │ ├── weighted_prompts.mdx
│ │ │ └── write_own_pipeline.mdx
│ │ ├── ko
│ │ ├── _toctree.yml
│ │ ├── in_translation.mdx
│ │ ├── index.mdx
│ │ ├── installation.mdx
│ │ └── quicktour.mdx
│ │ └── zh
│ │ ├── _toctree.yml
│ │ ├── index.mdx
│ │ ├── installation.mdx
│ │ └── quicktour.mdx
├── examples
│ ├── README.md
│ ├── community
│ │ ├── README.md
│ │ ├── bit_diffusion.py
│ │ ├── checkpoint_merger.py
│ │ ├── clip_guided_stable_diffusion.py
│ │ ├── clip_guided_stable_diffusion_img2img.py
│ │ ├── composable_stable_diffusion.py
│ │ ├── ddim_noise_comparative_analysis.py
│ │ ├── imagic_stable_diffusion.py
│ │ ├── img2img_inpainting.py
│ │ ├── interpolate_stable_diffusion.py
│ │ ├── lpw_stable_diffusion.py
│ │ ├── lpw_stable_diffusion_onnx.py
│ │ ├── magic_mix.py
│ │ ├── multilingual_stable_diffusion.py
│ │ ├── one_step_unet.py
│ │ ├── sd_text2img_k_diffusion.py
│ │ ├── seed_resize_stable_diffusion.py
│ │ ├── speech_to_image_diffusion.py
│ │ ├── stable_diffusion_comparison.py
│ │ ├── stable_diffusion_controlnet_img2img.py
│ │ ├── stable_diffusion_controlnet_inpaint.py
│ │ ├── stable_diffusion_controlnet_inpaint_img2img.py
│ │ ├── stable_diffusion_mega.py
│ │ ├── stable_unclip.py
│ │ ├── text_inpainting.py
│ │ ├── tiled_upscaling.py
│ │ ├── unclip_image_interpolation.py
│ │ ├── unclip_text_interpolation.py
│ │ └── wildcard_stable_diffusion.py
│ ├── conftest.py
│ ├── controlnet
│ │ ├── README.md
│ │ ├── requirements.txt
│ │ ├── requirements_flax.txt
│ │ ├── train_controlnet.py
│ │ └── train_controlnet_flax.py
│ ├── dreambooth
│ │ ├── README.md
│ │ ├── requirements.txt
│ │ ├── requirements_flax.txt
│ │ ├── train_dreambooth.py
│ │ ├── train_dreambooth_flax.py
│ │ └── train_dreambooth_lora.py
│ ├── inference
│ │ ├── README.md
│ │ ├── image_to_image.py
│ │ └── inpainting.py
│ ├── instruct_pix2pix
│ │ ├── README.md
│ │ ├── requirements.txt
│ │ └── train_instruct_pix2pix.py
│ ├── research_projects
│ │ ├── README.md
│ │ ├── colossalai
│ │ │ ├── README.md
│ │ │ ├── inference.py
│ │ │ ├── requirement.txt
│ │ │ └── train_dreambooth_colossalai.py
│ │ ├── dreambooth_inpaint
│ │ │ ├── README.md
│ │ │ ├── requirements.txt
│ │ │ ├── train_dreambooth_inpaint.py
│ │ │ └── train_dreambooth_inpaint_lora.py
│ │ ├── intel_opts
│ │ │ ├── README.md
│ │ │ ├── inference_bf16.py
│ │ │ └── textual_inversion
│ │ │ │ ├── README.md
│ │ │ │ ├── requirements.txt
│ │ │ │ └── textual_inversion_bf16.py
│ │ ├── lora
│ │ │ ├── README.md
│ │ │ ├── requirements.txt
│ │ │ └── train_text_to_image_lora.py
│ │ ├── mulit_token_textual_inversion
│ │ │ ├── README.md
│ │ │ ├── multi_token_clip.py
│ │ │ ├── requirements.txt
│ │ │ ├── requirements_flax.txt
│ │ │ ├── textual_inversion.py
│ │ │ └── textual_inversion_flax.py
│ │ ├── multi_subject_dreambooth
│ │ │ ├── README.md
│ │ │ ├── requirements.txt
│ │ │ └── train_multi_subject_dreambooth.py
│ │ └── onnxruntime
│ │ │ ├── README.md
│ │ │ ├── text_to_image
│ │ │ ├── README.md
│ │ │ ├── requirements.txt
│ │ │ └── train_text_to_image.py
│ │ │ ├── textual_inversion
│ │ │ ├── README.md
│ │ │ ├── requirements.txt
│ │ │ └── textual_inversion.py
│ │ │ └── unconditional_image_generation
│ │ │ ├── README.md
│ │ │ ├── requirements.txt
│ │ │ └── train_unconditional.py
│ ├── rl
│ │ ├── README.md
│ │ └── run_diffuser_locomotion.py
│ ├── test_examples.py
│ ├── text_to_image
│ │ ├── README.md
│ │ ├── requirements.txt
│ │ ├── requirements_flax.txt
│ │ ├── train_text_to_image.py
│ │ ├── train_text_to_image_flax.py
│ │ └── train_text_to_image_lora.py
│ ├── textual_inversion
│ │ ├── README.md
│ │ ├── requirements.txt
│ │ ├── requirements_flax.txt
│ │ ├── textual_inversion.py
│ │ └── textual_inversion_flax.py
│ └── unconditional_image_generation
│ │ ├── README.md
│ │ ├── requirements.txt
│ │ └── train_unconditional.py
├── pyproject.toml
├── scripts
│ ├── __init__.py
│ ├── change_naming_configs_and_checkpoints.py
│ ├── conversion_ldm_uncond.py
│ ├── convert_dance_diffusion_to_diffusers.py
│ ├── convert_ddpm_original_checkpoint_to_diffusers.py
│ ├── convert_diffusers_to_original_stable_diffusion.py
│ ├── convert_dit_to_diffusers.py
│ ├── convert_k_upscaler_to_diffusers.py
│ ├── convert_kakao_brain_unclip_to_diffusers.py
│ ├── convert_ldm_original_checkpoint_to_diffusers.py
│ ├── convert_lora_safetensor_to_diffusers.py
│ ├── convert_models_diffuser_to_diffusers.py
│ ├── convert_ms_text_to_video_to_diffusers.py
│ ├── convert_music_spectrogram_to_diffusers.py
│ ├── convert_ncsnpp_original_checkpoint_to_diffusers.py
│ ├── convert_original_audioldm_to_diffusers.py
│ ├── convert_original_controlnet_to_diffusers.py
│ ├── convert_original_stable_diffusion_to_diffusers.py
│ ├── convert_stable_diffusion_checkpoint_to_onnx.py
│ ├── convert_unclip_txt2img_to_image_variation.py
│ ├── convert_vae_diff_to_onnx.py
│ ├── convert_vae_pt_to_diffusers.py
│ ├── convert_versatile_diffusion_to_diffusers.py
│ ├── convert_vq_diffusion_to_diffusers.py
│ └── generate_logits.py
├── setup.cfg
├── setup.py
├── src
│ └── diffusers
│ │ ├── __init__.py
│ │ ├── commands
│ │ ├── __init__.py
│ │ ├── diffusers_cli.py
│ │ └── env.py
│ │ ├── configuration_utils.py
│ │ ├── dependency_versions_check.py
│ │ ├── dependency_versions_table.py
│ │ ├── experimental
│ │ ├── README.md
│ │ ├── __init__.py
│ │ └── rl
│ │ │ ├── __init__.py
│ │ │ └── value_guided_sampling.py
│ │ ├── image_processor.py
│ │ ├── loaders.py
│ │ ├── models
│ │ ├── README.md
│ │ ├── __init__.py
│ │ ├── attention.py
│ │ ├── attention_flax.py
│ │ ├── attention_processor.py
│ │ ├── autoencoder_kl.py
│ │ ├── controlnet.py
│ │ ├── controlnet_flax.py
│ │ ├── cross_attention.py
│ │ ├── dual_transformer_2d.py
│ │ ├── embeddings.py
│ │ ├── embeddings_flax.py
│ │ ├── modeling_flax_pytorch_utils.py
│ │ ├── modeling_flax_utils.py
│ │ ├── modeling_pytorch_flax_utils.py
│ │ ├── modeling_utils.py
│ │ ├── prior_transformer.py
│ │ ├── resnet.py
│ │ ├── resnet_flax.py
│ │ ├── t5_film_transformer.py
│ │ ├── transformer_2d.py
│ │ ├── transformer_temporal.py
│ │ ├── unet_1d.py
│ │ ├── unet_1d_blocks.py
│ │ ├── unet_2d.py
│ │ ├── unet_2d_blocks.py
│ │ ├── unet_2d_blocks_flax.py
│ │ ├── unet_2d_condition.py
│ │ ├── unet_2d_condition_flax.py
│ │ ├── unet_3d_blocks.py
│ │ ├── unet_3d_condition.py
│ │ ├── vae.py
│ │ ├── vae_flax.py
│ │ └── vq_model.py
│ │ ├── optimization.py
│ │ ├── pipeline_utils.py
│ │ ├── pipelines
│ │ ├── README.md
│ │ ├── __init__.py
│ │ ├── alt_diffusion
│ │ │ ├── __init__.py
│ │ │ ├── modeling_roberta_series.py
│ │ │ ├── pipeline_alt_diffusion.py
│ │ │ └── pipeline_alt_diffusion_img2img.py
│ │ ├── audio_diffusion
│ │ │ ├── __init__.py
│ │ │ ├── mel.py
│ │ │ └── pipeline_audio_diffusion.py
│ │ ├── audioldm
│ │ │ ├── __init__.py
│ │ │ └── pipeline_audioldm.py
│ │ ├── dance_diffusion
│ │ │ ├── __init__.py
│ │ │ └── pipeline_dance_diffusion.py
│ │ ├── ddim
│ │ │ ├── __init__.py
│ │ │ └── pipeline_ddim.py
│ │ ├── ddpm
│ │ │ ├── __init__.py
│ │ │ └── pipeline_ddpm.py
│ │ ├── dit
│ │ │ ├── __init__.py
│ │ │ └── pipeline_dit.py
│ │ ├── latent_diffusion
│ │ │ ├── __init__.py
│ │ │ ├── pipeline_latent_diffusion.py
│ │ │ └── pipeline_latent_diffusion_superresolution.py
│ │ ├── latent_diffusion_uncond
│ │ │ ├── __init__.py
│ │ │ └── pipeline_latent_diffusion_uncond.py
│ │ ├── onnx_utils.py
│ │ ├── paint_by_example
│ │ │ ├── __init__.py
│ │ │ ├── image_encoder.py
│ │ │ └── pipeline_paint_by_example.py
│ │ ├── pipeline_flax_utils.py
│ │ ├── pipeline_utils.py
│ │ ├── pndm
│ │ │ ├── __init__.py
│ │ │ └── pipeline_pndm.py
│ │ ├── repaint
│ │ │ ├── __init__.py
│ │ │ └── pipeline_repaint.py
│ │ ├── score_sde_ve
│ │ │ ├── __init__.py
│ │ │ └── pipeline_score_sde_ve.py
│ │ ├── semantic_stable_diffusion
│ │ │ ├── __init__.py
│ │ │ └── pipeline_semantic_stable_diffusion.py
│ │ ├── spectrogram_diffusion
│ │ │ ├── __init__.py
│ │ │ ├── continous_encoder.py
│ │ │ ├── midi_utils.py
│ │ │ ├── notes_encoder.py
│ │ │ └── pipeline_spectrogram_diffusion.py
│ │ ├── stable_diffusion
│ │ │ ├── README.md
│ │ │ ├── __init__.py
│ │ │ ├── convert_from_ckpt.py
│ │ │ ├── pipeline_cycle_diffusion.py
│ │ │ ├── pipeline_flax_stable_diffusion.py
│ │ │ ├── pipeline_flax_stable_diffusion_controlnet.py
│ │ │ ├── pipeline_flax_stable_diffusion_img2img.py
│ │ │ ├── pipeline_flax_stable_diffusion_inpaint.py
│ │ │ ├── pipeline_onnx_stable_diffusion.py
│ │ │ ├── pipeline_onnx_stable_diffusion_img2img.py
│ │ │ ├── pipeline_onnx_stable_diffusion_inpaint.py
│ │ │ ├── pipeline_onnx_stable_diffusion_inpaint_legacy.py
│ │ │ ├── pipeline_onnx_stable_diffusion_upscale.py
│ │ │ ├── pipeline_stable_diffusion.py
│ │ │ ├── pipeline_stable_diffusion_attend_and_excite.py
│ │ │ ├── pipeline_stable_diffusion_controlnet.py
│ │ │ ├── pipeline_stable_diffusion_depth2img.py
│ │ │ ├── pipeline_stable_diffusion_image_variation.py
│ │ │ ├── pipeline_stable_diffusion_img2img.py
│ │ │ ├── pipeline_stable_diffusion_inpaint.py
│ │ │ ├── pipeline_stable_diffusion_inpaint_legacy.py
│ │ │ ├── pipeline_stable_diffusion_instruct_pix2pix.py
│ │ │ ├── pipeline_stable_diffusion_k_diffusion.py
│ │ │ ├── pipeline_stable_diffusion_latent_upscale.py
│ │ │ ├── pipeline_stable_diffusion_model_editing.py
│ │ │ ├── pipeline_stable_diffusion_panorama.py
│ │ │ ├── pipeline_stable_diffusion_pix2pix_zero.py
│ │ │ ├── pipeline_stable_diffusion_sag.py
│ │ │ ├── pipeline_stable_diffusion_upscale.py
│ │ │ ├── pipeline_stable_unclip.py
│ │ │ ├── pipeline_stable_unclip_img2img.py
│ │ │ ├── safety_checker.py
│ │ │ ├── safety_checker_flax.py
│ │ │ └── stable_unclip_image_normalizer.py
│ │ ├── stable_diffusion_safe
│ │ │ ├── __init__.py
│ │ │ ├── pipeline_stable_diffusion_safe.py
│ │ │ └── safety_checker.py
│ │ ├── stochastic_karras_ve
│ │ │ ├── __init__.py
│ │ │ └── pipeline_stochastic_karras_ve.py
│ │ ├── text_to_video_synthesis
│ │ │ ├── __init__.py
│ │ │ ├── pipeline_text_to_video_synth.py
│ │ │ └── pipeline_text_to_video_zero.py
│ │ ├── unclip
│ │ │ ├── __init__.py
│ │ │ ├── pipeline_unclip.py
│ │ │ ├── pipeline_unclip_image_variation.py
│ │ │ └── text_proj.py
│ │ ├── versatile_diffusion
│ │ │ ├── __init__.py
│ │ │ ├── modeling_text_unet.py
│ │ │ ├── pipeline_versatile_diffusion.py
│ │ │ ├── pipeline_versatile_diffusion_dual_guided.py
│ │ │ ├── pipeline_versatile_diffusion_image_variation.py
│ │ │ └── pipeline_versatile_diffusion_text_to_image.py
│ │ └── vq_diffusion
│ │ │ ├── __init__.py
│ │ │ └── pipeline_vq_diffusion.py
│ │ ├── schedulers
│ │ ├── README.md
│ │ ├── __init__.py
│ │ ├── scheduling_ddim.py
│ │ ├── scheduling_ddim_flax.py
│ │ ├── scheduling_ddim_inverse.py
│ │ ├── scheduling_ddpm.py
│ │ ├── scheduling_ddpm_flax.py
│ │ ├── scheduling_deis_multistep.py
│ │ ├── scheduling_dpmsolver_multistep.py
│ │ ├── scheduling_dpmsolver_multistep_flax.py
│ │ ├── scheduling_dpmsolver_singlestep.py
│ │ ├── scheduling_euler_ancestral_discrete.py
│ │ ├── scheduling_euler_discrete.py
│ │ ├── scheduling_heun_discrete.py
│ │ ├── scheduling_ipndm.py
│ │ ├── scheduling_k_dpm_2_ancestral_discrete.py
│ │ ├── scheduling_k_dpm_2_discrete.py
│ │ ├── scheduling_karras_ve.py
│ │ ├── scheduling_karras_ve_flax.py
│ │ ├── scheduling_lms_discrete.py
│ │ ├── scheduling_lms_discrete_flax.py
│ │ ├── scheduling_pndm.py
│ │ ├── scheduling_pndm_flax.py
│ │ ├── scheduling_repaint.py
│ │ ├── scheduling_sde_ve.py
│ │ ├── scheduling_sde_ve_flax.py
│ │ ├── scheduling_sde_vp.py
│ │ ├── scheduling_unclip.py
│ │ ├── scheduling_unipc_multistep.py
│ │ ├── scheduling_utils.py
│ │ ├── scheduling_utils_flax.py
│ │ └── scheduling_vq_diffusion.py
│ │ ├── training_utils.py
│ │ └── utils
│ │ ├── __init__.py
│ │ ├── accelerate_utils.py
│ │ ├── constants.py
│ │ ├── deprecation_utils.py
│ │ ├── doc_utils.py
│ │ ├── dummy_flax_and_transformers_objects.py
│ │ ├── dummy_flax_objects.py
│ │ ├── dummy_note_seq_objects.py
│ │ ├── dummy_onnx_objects.py
│ │ ├── dummy_pt_objects.py
│ │ ├── dummy_torch_and_librosa_objects.py
│ │ ├── dummy_torch_and_scipy_objects.py
│ │ ├── dummy_torch_and_transformers_and_k_diffusion_objects.py
│ │ ├── dummy_torch_and_transformers_and_onnx_objects.py
│ │ ├── dummy_torch_and_transformers_objects.py
│ │ ├── dummy_transformers_and_torch_and_note_seq_objects.py
│ │ ├── dynamic_modules_utils.py
│ │ ├── hub_utils.py
│ │ ├── import_utils.py
│ │ ├── logging.py
│ │ ├── model_card_template.md
│ │ ├── outputs.py
│ │ ├── pil_utils.py
│ │ ├── testing_utils.py
│ │ └── torch_utils.py
├── tests
│ ├── __init__.py
│ ├── conftest.py
│ ├── fixtures
│ │ ├── custom_pipeline
│ │ │ ├── pipeline.py
│ │ │ └── what_ever.py
│ │ └── elise_format0.mid
│ ├── models
│ │ ├── __init__.py
│ │ ├── test_attention_processor.py
│ │ ├── test_layers_utils.py
│ │ ├── test_lora_layers.py
│ │ ├── test_modeling_common.py
│ │ ├── test_modeling_common_flax.py
│ │ ├── test_models_unet_1d.py
│ │ ├── test_models_unet_2d.py
│ │ ├── test_models_unet_2d_condition.py
│ │ ├── test_models_unet_2d_flax.py
│ │ ├── test_models_unet_3d_condition.py
│ │ ├── test_models_vae.py
│ │ ├── test_models_vae_flax.py
│ │ ├── test_models_vq.py
│ │ ├── test_unet_2d_blocks.py
│ │ └── test_unet_blocks_common.py
│ ├── others
│ │ ├── test_check_copies.py
│ │ ├── test_check_dummies.py
│ │ ├── test_config.py
│ │ ├── test_ema.py
│ │ ├── test_hub_utils.py
│ │ ├── test_image_processor.py
│ │ ├── test_outputs.py
│ │ ├── test_training.py
│ │ └── test_utils.py
│ ├── pipelines
│ │ ├── __init__.py
│ │ ├── altdiffusion
│ │ │ ├── __init__.py
│ │ │ ├── test_alt_diffusion.py
│ │ │ └── test_alt_diffusion_img2img.py
│ │ ├── audio_diffusion
│ │ │ ├── __init__.py
│ │ │ └── test_audio_diffusion.py
│ │ ├── audioldm
│ │ │ ├── __init__.py
│ │ │ └── test_audioldm.py
│ │ ├── dance_diffusion
│ │ │ ├── __init__.py
│ │ │ └── test_dance_diffusion.py
│ │ ├── ddim
│ │ │ ├── __init__.py
│ │ │ └── test_ddim.py
│ │ ├── ddpm
│ │ │ ├── __init__.py
│ │ │ └── test_ddpm.py
│ │ ├── dit
│ │ │ ├── __init__.py
│ │ │ └── test_dit.py
│ │ ├── karras_ve
│ │ │ ├── __init__.py
│ │ │ └── test_karras_ve.py
│ │ ├── latent_diffusion
│ │ │ ├── __init__.py
│ │ │ ├── test_latent_diffusion.py
│ │ │ ├── test_latent_diffusion_superresolution.py
│ │ │ └── test_latent_diffusion_uncond.py
│ │ ├── paint_by_example
│ │ │ ├── __init__.py
│ │ │ └── test_paint_by_example.py
│ │ ├── pipeline_params.py
│ │ ├── pndm
│ │ │ ├── __init__.py
│ │ │ └── test_pndm.py
│ │ ├── repaint
│ │ │ ├── __init__.py
│ │ │ └── test_repaint.py
│ │ ├── score_sde_ve
│ │ │ ├── __init__.py
│ │ │ └── test_score_sde_ve.py
│ │ ├── semantic_stable_diffusion
│ │ │ ├── __init__.py
│ │ │ └── test_semantic_diffusion.py
│ │ ├── spectrogram_diffusion
│ │ │ ├── __init__.py
│ │ │ └── test_spectrogram_diffusion.py
│ │ ├── stable_diffusion
│ │ │ ├── __init__.py
│ │ │ ├── test_cycle_diffusion.py
│ │ │ ├── test_onnx_stable_diffusion.py
│ │ │ ├── test_onnx_stable_diffusion_img2img.py
│ │ │ ├── test_onnx_stable_diffusion_inpaint.py
│ │ │ ├── test_onnx_stable_diffusion_inpaint_legacy.py
│ │ │ ├── test_onnx_stable_diffusion_upscale.py
│ │ │ ├── test_stable_diffusion.py
│ │ │ ├── test_stable_diffusion_controlnet.py
│ │ │ ├── test_stable_diffusion_flax_controlnet.py
│ │ │ ├── test_stable_diffusion_image_variation.py
│ │ │ ├── test_stable_diffusion_img2img.py
│ │ │ ├── test_stable_diffusion_inpaint.py
│ │ │ ├── test_stable_diffusion_inpaint_legacy.py
│ │ │ ├── test_stable_diffusion_instruction_pix2pix.py
│ │ │ ├── test_stable_diffusion_k_diffusion.py
│ │ │ ├── test_stable_diffusion_model_editing.py
│ │ │ ├── test_stable_diffusion_panorama.py
│ │ │ ├── test_stable_diffusion_pix2pix_zero.py
│ │ │ └── test_stable_diffusion_sag.py
│ │ ├── stable_diffusion_2
│ │ │ ├── __init__.py
│ │ │ ├── test_stable_diffusion.py
│ │ │ ├── test_stable_diffusion_attend_and_excite.py
│ │ │ ├── test_stable_diffusion_depth.py
│ │ │ ├── test_stable_diffusion_flax.py
│ │ │ ├── test_stable_diffusion_flax_inpaint.py
│ │ │ ├── test_stable_diffusion_inpaint.py
│ │ │ ├── test_stable_diffusion_latent_upscale.py
│ │ │ ├── test_stable_diffusion_upscale.py
│ │ │ └── test_stable_diffusion_v_pred.py
│ │ ├── stable_diffusion_safe
│ │ │ ├── __init__.py
│ │ │ └── test_safe_diffusion.py
│ │ ├── stable_unclip
│ │ │ ├── __init__.py
│ │ │ ├── test_stable_unclip.py
│ │ │ └── test_stable_unclip_img2img.py
│ │ ├── test_pipeline_utils.py
│ │ ├── test_pipelines.py
│ │ ├── test_pipelines_common.py
│ │ ├── test_pipelines_flax.py
│ │ ├── test_pipelines_onnx_common.py
│ │ ├── text_to_video
│ │ │ ├── __init__.py
│ │ │ ├── test_text_to_video.py
│ │ │ └── test_text_to_video_zero.py
│ │ ├── unclip
│ │ │ ├── __init__.py
│ │ │ ├── test_unclip.py
│ │ │ └── test_unclip_image_variation.py
│ │ ├── versatile_diffusion
│ │ │ ├── __init__.py
│ │ │ ├── test_versatile_diffusion_dual_guided.py
│ │ │ ├── test_versatile_diffusion_image_variation.py
│ │ │ ├── test_versatile_diffusion_mega.py
│ │ │ └── test_versatile_diffusion_text_to_image.py
│ │ └── vq_diffusion
│ │ │ ├── __init__.py
│ │ │ └── test_vq_diffusion.py
│ └── schedulers
│ │ ├── __init__.py
│ │ ├── test_scheduler_ddim.py
│ │ ├── test_scheduler_ddpm.py
│ │ ├── test_scheduler_deis.py
│ │ ├── test_scheduler_dpm_multi.py
│ │ ├── test_scheduler_dpm_single.py
│ │ ├── test_scheduler_euler.py
│ │ ├── test_scheduler_euler_ancestral.py
│ │ ├── test_scheduler_flax.py
│ │ ├── test_scheduler_heun.py
│ │ ├── test_scheduler_ipndm.py
│ │ ├── test_scheduler_kdpm2_ancestral.py
│ │ ├── test_scheduler_kdpm2_discrete.py
│ │ ├── test_scheduler_lms.py
│ │ ├── test_scheduler_pndm.py
│ │ ├── test_scheduler_score_sde_ve.py
│ │ ├── test_scheduler_unclip.py
│ │ ├── test_scheduler_unipc.py
│ │ ├── test_scheduler_vq_diffusion.py
│ │ └── test_schedulers.py
└── utils
│ ├── check_config_docstrings.py
│ ├── check_copies.py
│ ├── check_doc_toc.py
│ ├── check_dummies.py
│ ├── check_inits.py
│ ├── check_repo.py
│ ├── check_table.py
│ ├── custom_init_isort.py
│ ├── get_modified_files.py
│ ├── overwrite_expected_slice.py
│ ├── print_env.py
│ ├── release.py
│ └── stale.py
├── elijah_helper_ddim.py
├── elijah_helper_ldm.py
├── elijah_helper_ncsn.py
├── fid_score.py
├── hg_git_upload.py
├── install.sh
├── loss.py
├── loss_backup.py
├── loss_conditional.py
├── make_latent_dataset.py
├── make_latent_dataset_backup.py
├── measure.py
├── metric.py
├── model.py
├── model_backup.py
├── model_rm.py
├── model_score_based.py
├── my_requirements.txt
├── operate.py
├── rm_backdoor_VillanDiffusion.py
├── rm_run_cifar10_script.py
├── run_celeba_hq_script.py
├── run_cifar10_script.py
├── run_example_ddim.sh
├── run_example_ldm.sh
├── run_example_ncsn.sh
├── run_ldm_celeba_hq_script.py
├── run_measure_inpaint.py
├── run_measure_inpaint2.py
├── run_score-basde_model_script.py
├── sampling.py
├── static
├── cat_wo_bg.png
├── fedora-hat.png
├── glasses.png
├── hat.png
├── stop_sign_bg_blk.jpg
├── stop_sign_bg_w.jpg
└── stop_sign_wo_bg.png
├── tools.py
├── util.py
├── util_conditional.py
└── viallanDiffusion_conditional.py
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__
2 | .idea/
3 | *.tar.gz
4 | *.zip
5 | *.pkl
6 | *.py[cod]
7 |
8 |
9 | # ignore all and only keep to python files in the root directory
10 | /*
11 | !.gitignore
12 | !*.py
13 | !*.sh
14 | !README.md
15 | !BadDiffusion
16 | !VillanDiffusion
17 | !TrojDiff
18 |
19 | tmp/
20 | *.pth
21 | *.pt
22 |
23 |
24 | *.sw[pon]
25 |
26 | *.pkl
27 | *.h5
28 | *.dat
29 |
--------------------------------------------------------------------------------
/BadDiffusion/.gitignore:
--------------------------------------------------------------------------------
1 | ~/
2 | *.gif
3 | *.png
4 | *.jpg
5 |
6 | *.zip
7 | *.tar*
8 | *.pth
9 | *.pkl
10 |
11 | *.json
12 | *.pyc
13 | *.log
14 |
15 | core.*
16 | res*
17 | tmp*
18 | *.out
19 |
20 | datasets/
21 | data/
22 | test/
23 | __pycache__/
24 | .ipynb_checkpoints/
25 | .vscode/
26 | diffusion/
27 | wandb/
28 | ANP_backdoor/
29 | Default/
30 |
31 | !static/*
32 | NCSNPP_CIFAR10_scratch/
33 | NCSN_CIFAR10_my/
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/ISSUE_TEMPLATE/bug-report.yml:
--------------------------------------------------------------------------------
1 | name: "\U0001F41B Bug Report"
2 | description: Report a bug on diffusers
3 | labels: [ "bug" ]
4 | body:
5 | - type: markdown
6 | attributes:
7 | value: |
8 | Thanks for taking the time to fill out this bug report!
9 | - type: textarea
10 | id: bug-description
11 | attributes:
12 | label: Describe the bug
13 | description: A clear and concise description of what the bug is. If you intend to submit a pull request for this issue, tell us in the description. Thanks!
14 | placeholder: Bug description
15 | validations:
16 | required: true
17 | - type: textarea
18 | id: reproduction
19 | attributes:
20 | label: Reproduction
21 | description: Please provide a minimal reproducible code which we can copy/paste and reproduce the issue.
22 | placeholder: Reproduction
23 | - type: textarea
24 | id: logs
25 | attributes:
26 | label: Logs
27 | description: "Please include the Python logs if you can."
28 | render: shell
29 | - type: textarea
30 | id: system-info
31 | attributes:
32 | label: System Info
33 | description: Please share your system info with us. You can run the command `diffusers-cli env` and copy-paste its output below.
34 | placeholder: diffusers version, platform, python version, ...
35 | validations:
36 | required: true
37 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/ISSUE_TEMPLATE/config.yml:
--------------------------------------------------------------------------------
1 | contact_links:
2 | - name: Forum
3 | url: https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63
4 | about: General usage questions and community discussions
5 | - name: Blank issue
6 | url: https://github.com/huggingface/diffusers/issues/new
7 | about: Please note that the Forum is in most places the right place for discussions
8 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/ISSUE_TEMPLATE/feature_request.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: "\U0001F680 Feature request"
3 | about: Suggest an idea for this project
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Is your feature request related to a problem? Please describe.**
11 | A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
12 |
13 | **Describe the solution you'd like**
14 | A clear and concise description of what you want to happen.
15 |
16 | **Describe alternatives you've considered**
17 | A clear and concise description of any alternative solutions or features you've considered.
18 |
19 | **Additional context**
20 | Add any other context or screenshots about the feature request here.
21 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/ISSUE_TEMPLATE/feedback.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: "💬 Feedback about API Design"
3 | about: Give feedback about the current API design
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **What API design would you like to have changed or added to the library? Why?**
11 |
12 | **What use case would this enable or better enable? Can you give us a code example?**
13 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/ISSUE_TEMPLATE/new-model-addition.yml:
--------------------------------------------------------------------------------
1 | name: "\U0001F31F New model/pipeline/scheduler addition"
2 | description: Submit a proposal/request to implement a new diffusion model / pipeline / scheduler
3 | labels: [ "New model/pipeline/scheduler" ]
4 |
5 | body:
6 | - type: textarea
7 | id: description-request
8 | validations:
9 | required: true
10 | attributes:
11 | label: Model/Pipeline/Scheduler description
12 | description: |
13 | Put any and all important information relative to the model/pipeline/scheduler
14 |
15 | - type: checkboxes
16 | id: information-tasks
17 | attributes:
18 | label: Open source status
19 | description: |
20 | Please note that if the model implementation isn't available or if the weights aren't open-source, we are less likely to implement it in `diffusers`.
21 | options:
22 | - label: "The model implementation is available"
23 | - label: "The model weights are available (Only relevant if addition is not a scheduler)."
24 |
25 | - type: textarea
26 | id: additional-info
27 | attributes:
28 | label: Provide useful links for the implementation
29 | description: |
30 | Please provide information regarding the implementation, the weights, and the authors.
31 | Please mention the authors by @gh-username if you're aware of their usernames.
32 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/workflows/build_documentation.yml:
--------------------------------------------------------------------------------
1 | name: Build documentation
2 |
3 | on:
4 | push:
5 | branches:
6 | - main
7 | - doc-builder*
8 | - v*-release
9 |
10 | jobs:
11 | build:
12 | uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
13 | with:
14 | commit_sha: ${{ github.sha }}
15 | package: diffusers
16 | secrets:
17 | token: ${{ secrets.HUGGINGFACE_PUSH }}
18 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/workflows/build_pr_documentation.yml:
--------------------------------------------------------------------------------
1 | name: Build PR Documentation
2 |
3 | on:
4 | pull_request:
5 |
6 | concurrency:
7 | group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
8 | cancel-in-progress: true
9 |
10 | jobs:
11 | build:
12 | uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
13 | with:
14 | commit_sha: ${{ github.event.pull_request.head.sha }}
15 | pr_number: ${{ github.event.number }}
16 | package: diffusers
17 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/workflows/delete_doc_comment.yml:
--------------------------------------------------------------------------------
1 | name: Delete dev documentation
2 |
3 | on:
4 | pull_request:
5 | types: [ closed ]
6 |
7 |
8 | jobs:
9 | delete:
10 | uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
11 | with:
12 | pr_number: ${{ github.event.number }}
13 | package: diffusers
14 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/workflows/pr_quality.yml:
--------------------------------------------------------------------------------
1 | name: Run code quality checks
2 |
3 | on:
4 | pull_request:
5 | branches:
6 | - main
7 | push:
8 | branches:
9 | - main
10 |
11 | concurrency:
12 | group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
13 | cancel-in-progress: true
14 |
15 | jobs:
16 | check_code_quality:
17 | runs-on: ubuntu-latest
18 | steps:
19 | - uses: actions/checkout@v3
20 | - name: Set up Python
21 | uses: actions/setup-python@v4
22 | with:
23 | python-version: "3.7"
24 | - name: Install dependencies
25 | run: |
26 | python -m pip install --upgrade pip
27 | pip install .[quality]
28 | - name: Check quality
29 | run: |
30 | black --check --preview examples tests src utils scripts
31 | isort --check-only examples tests src utils scripts
32 | flake8 examples tests src utils scripts
33 | doc-builder style src/diffusers docs/source --max_len 119 --check_only --path_to_docs docs/source
34 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/workflows/pr_tests.yml:
--------------------------------------------------------------------------------
1 | name: Run non-slow tests
2 |
3 | on:
4 | pull_request:
5 | branches:
6 | - main
7 |
8 | concurrency:
9 | group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
10 | cancel-in-progress: true
11 |
12 | env:
13 | HF_HOME: /mnt/cache
14 | OMP_NUM_THREADS: 8
15 | MKL_NUM_THREADS: 8
16 | PYTEST_TIMEOUT: 60
17 |
18 | jobs:
19 | run_tests_cpu:
20 | name: Diffusers tests
21 | runs-on: [ self-hosted, docker-gpu ]
22 | container:
23 | image: python:3.7
24 | options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
25 |
26 | steps:
27 | - name: Checkout diffusers
28 | uses: actions/checkout@v3
29 | with:
30 | fetch-depth: 2
31 |
32 | - name: Install dependencies
33 | run: |
34 | python -m pip install --upgrade pip
35 | python -m pip install torch --extra-index-url https://download.pytorch.org/whl/cpu
36 | python -m pip install -e .[quality,test]
37 |
38 | - name: Environment
39 | run: |
40 | python utils/print_env.py
41 |
42 | - name: Run all non-slow selected tests on CPU
43 | run: |
44 | python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=tests_torch_cpu tests/
45 |
46 | - name: Failure short reports
47 | if: ${{ failure() }}
48 | run: cat reports/tests_torch_cpu_failures_short.txt
49 |
50 | - name: Test suite reports artifacts
51 | if: ${{ always() }}
52 | uses: actions/upload-artifact@v2
53 | with:
54 | name: pr_torch_test_reports
55 | path: reports
56 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/workflows/stale.yml:
--------------------------------------------------------------------------------
1 | name: Stale Bot
2 |
3 | on:
4 | schedule:
5 | - cron: "0 15 * * *"
6 |
7 | jobs:
8 | close_stale_issues:
9 | name: Close Stale Issues
10 | if: github.repository == 'huggingface/diffusers'
11 | runs-on: ubuntu-latest
12 | env:
13 | GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
14 | steps:
15 | - uses: actions/checkout@v2
16 |
17 | - name: Setup Python
18 | uses: actions/setup-python@v1
19 | with:
20 | python-version: 3.7
21 |
22 | - name: Install requirements
23 | run: |
24 | pip install PyGithub
25 | - name: Close stale issues
26 | run: |
27 | python utils/stale.py
28 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/.github/workflows/typos.yml:
--------------------------------------------------------------------------------
1 | name: Check typos
2 |
3 | on:
4 | workflow_dispatch:
5 |
6 | jobs:
7 | build:
8 | runs-on: ubuntu-latest
9 |
10 | steps:
11 | - uses: actions/checkout@v3
12 |
13 | - name: typos-action
14 | uses: crate-ci/typos@v1.12.4
15 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include LICENSE
2 | include src/diffusers/utils/model_card_template.md
3 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/_typos.toml:
--------------------------------------------------------------------------------
1 | # Files for typos
2 | # Instruction: https://github.com/marketplace/actions/typos-action#getting-started
3 |
4 | [default.extend-identifiers]
5 |
6 | [default.extend-words]
7 | NIN="NIN" # NIN is used in scripts/convert_ncsnpp_original_checkpoint_to_diffusers.py
8 | nd="np" # nd may be np (numpy)
9 | parms="parms" # parms is used in scripts/convert_original_stable_diffusion_to_diffusers.py
10 |
11 |
12 | [files]
13 | extend-exclude = ["_typos.toml"]
14 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/docs/source/api/configuration.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Configuration
14 |
15 | In Diffusers, schedulers of type [`schedulers.scheduling_utils.SchedulerMixin`], and models of type [`ModelMixin`] inherit from [`ConfigMixin`] which conveniently takes care of storing all parameters that are
16 | passed to the respective `__init__` methods in a JSON-configuration file.
17 |
18 | TODO(PVP) - add example and better info here
19 |
20 | ## ConfigMixin
21 | [[autodoc]] ConfigMixin
22 | - from_config
23 | - save_config
24 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/docs/source/api/diffusion_pipeline.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Pipelines
14 |
15 | The [`DiffusionPipeline`] is the easiest way to load any pretrained diffusion pipeline from the [Hub](https://huggingface.co/models?library=diffusers) and to use it in inference.
16 |
17 |
18 |
19 | One should not use the Diffusion Pipeline class for training or fine-tuning a diffusion model. Individual
20 | components of diffusion pipelines are usually trained individually, so we suggest to directly work
21 | with [`UNetModel`] and [`UNetConditionModel`].
22 |
23 |
24 |
25 | Any diffusion pipeline that is loaded with [`~DiffusionPipeline.from_pretrained`] will automatically
26 | detect the pipeline type, *e.g.* [`StableDiffusionPipeline`] and consequently load each component of the
27 | pipeline and pass them into the `__init__` function of the pipeline, *e.g.* [`~StableDiffusionPipeline.__init__`].
28 |
29 | Any pipeline object can be saved locally with [`~DiffusionPipeline.save_pretrained`].
30 |
31 | ## DiffusionPipeline
32 | [[autodoc]] DiffusionPipeline
33 | - from_pretrained
34 | - save_pretrained
35 |
36 | ## ImagePipelineOutput
37 | By default diffusion pipelines return an object of class
38 |
39 | [[autodoc]] pipeline_utils.ImagePipelineOutput
40 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/docs/source/api/pipelines/ddim.mdx:
--------------------------------------------------------------------------------
1 | # DDIM
2 |
3 | ## Overview
4 |
5 | [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
6 |
7 | The abstract of the paper is the following:
8 |
9 | Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.
10 |
11 | The original codebase of this paper can be found [here](https://github.com/ermongroup/ddim).
12 |
13 | ## Available Pipelines:
14 |
15 | | Pipeline | Tasks | Colab
16 | |---|---|:---:|
17 | | [pipeline_ddim.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/ddim/pipeline_ddim.py) | *Unconditional Image Generation* | - |
18 |
19 |
20 | ## DDIMPipeline
21 | [[autodoc]] DDIMPipeline
22 | - __call__
23 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/docs/source/api/pipelines/ddpm.mdx:
--------------------------------------------------------------------------------
1 | # DDPM
2 |
3 | ## Overview
4 |
5 | [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)
6 | (DDPM) by Jonathan Ho, Ajay Jain and Pieter Abbeel proposes the diffusion based model of the same name, but in the context of the 🤗 Diffusers library, DDPM refers to the discrete denoising scheduler from the paper as well as the pipeline.
7 |
8 | The abstract of the paper is the following:
9 |
10 | We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.
11 |
12 | The original codebase of this paper can be found [here](https://github.com/hojonathanho/diffusion).
13 |
14 |
15 | ## Available Pipelines:
16 |
17 | | Pipeline | Tasks | Colab
18 | |---|---|:---:|
19 | | [pipeline_ddpm.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/ddpm/pipeline_ddpm.py) | *Unconditional Image Generation* | - |
20 |
21 |
22 | # DDPMPipeline
23 | [[autodoc]] DDPMPipeline
24 | - __call__
25 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/docs/source/api/pipelines/stochastic_karras_ve.mdx:
--------------------------------------------------------------------------------
1 | # Stochastic Karras VE
2 |
3 | ## Overview
4 |
5 | [Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364) by Tero Karras, Miika Aittala, Timo Aila and Samuli Laine.
6 |
7 | The abstract of the paper is the following:
8 |
9 | We argue that the theory and practice of diffusion-based generative models are currently unnecessarily convoluted and seek to remedy the situation by presenting a design space that clearly separates the concrete design choices. This lets us identify several changes to both the sampling and training processes, as well as preconditioning of the score networks. Together, our improvements yield new state-of-the-art FID of 1.79 for CIFAR-10 in a class-conditional setting and 1.97 in an unconditional setting, with much faster sampling (35 network evaluations per image) than prior designs. To further demonstrate their modular nature, we show that our design changes dramatically improve both the efficiency and quality obtainable with pre-trained score networks from previous work, including improving the FID of an existing ImageNet-64 model from 2.07 to near-SOTA 1.55.
10 |
11 | This pipeline implements the Stochastic sampling tailored to the Variance-Expanding (VE) models.
12 |
13 |
14 | ## Available Pipelines:
15 |
16 | | Pipeline | Tasks | Colab
17 | |---|---|:---:|
18 | | [pipeline_stochastic_karras_ve.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stochastic_karras_ve/pipeline_stochastic_karras_ve.py) | *Unconditional Image Generation* | - |
19 |
20 |
21 | ## KarrasVePipeline
22 | [[autodoc]] KarrasVePipeline
23 | - __call__
24 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/docs/source/conceptual/stable_diffusion.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Stable Diffusion
14 |
15 | Under construction 🚧
16 |
17 | For now please visit this [very in-detail blog post](https://huggingface.co/blog/stable_diffusion)
18 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/docs/source/optimization/open_vino.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # OpenVINO
14 |
15 | Under construction 🚧
16 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/docs/source/training/text2image.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 |
14 | # Text-to-Image Training
15 |
16 | Under construction 🚧
17 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/docs/source/using-diffusers/configuration.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 |
14 |
15 | # Quicktour
16 |
17 | Start using Diffusers🧨 quickly!
18 | To start, use the [`DiffusionPipeline`] for quick inference and sample generations!
19 |
20 | ```
21 | pip install diffusers
22 | ```
23 |
24 | ## Main classes
25 |
26 | ### Models
27 |
28 | ### Schedulers
29 |
30 | ### Pipelines
31 |
32 |
33 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/docs/source/using-diffusers/custom.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Custom Pipeline
14 |
15 | Under construction 🚧
16 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/docs/source/using-diffusers/loading.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Loading
14 |
15 | Under construction 🚧
16 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/examples/community/README.md:
--------------------------------------------------------------------------------
1 | # Community Examples
2 |
3 | **Community** examples consist of both inference and training examples that have been added by the community.
4 |
5 | | Example | Description | Author | Colab |
6 | |:----------|:----------------------|:-----------------|----------:|
7 | | CLIP Guided Stable Diffusion | Doing CLIP guidance for text to image generation with Stable Diffusion| [Suraj Patil](https://github.com/patil-suraj/) | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) |
8 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/examples/dreambooth/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate
2 | torchvision
3 | transformers>=4.21.0
4 | ftfy
5 | tensorboard
6 | modelcards
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/examples/inference/README.md:
--------------------------------------------------------------------------------
1 | # Inference Examples
2 |
3 | **The inference examples folder is deprecated and will be removed in a future version**.
4 | **Officially supported inference examples can be found in the [Pipelines folder](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines)**.
5 |
6 | - For `Image-to-Image text-guided generation with Stable Diffusion`, please have a look at the official [Pipeline examples](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines#examples)
7 | - For `In-painting using Stable Diffusion`, please have a look at the official [Pipeline examples](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines#examples)
8 | - For `Tweak prompts reusing seeds and latents`, please have a look at the official [Pipeline examples](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines#examples)
9 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/examples/inference/image_to_image.py:
--------------------------------------------------------------------------------
1 | import warnings
2 |
3 | from diffusers import StableDiffusionImg2ImgPipeline # noqa F401
4 |
5 |
6 | warnings.warn(
7 | "The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
8 | " StableDiffusionImg2ImgPipeline` instead."
9 | )
10 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/examples/inference/inpainting.py:
--------------------------------------------------------------------------------
1 | import warnings
2 |
3 | from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
4 |
5 |
6 | warnings.warn(
7 | "The `inpainting.py` script is outdated. Please use directly `from diffusers import"
8 | " StableDiffusionInpaintPipeline` instead."
9 | )
10 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/examples/text_to_image/requirements.txt:
--------------------------------------------------------------------------------
1 | diffusers==0.4.1
2 | accelerate
3 | torchvision
4 | transformers>=4.21.0
5 | ftfy
6 | tensorboard
7 | modelcards
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/examples/textual_inversion/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate
2 | torchvision
3 | transformers>=4.21.0
4 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/examples/unconditional_image_generation/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate
2 | torchvision
3 | datasets
4 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/pyproject.toml:
--------------------------------------------------------------------------------
1 | [tool.black]
2 | line-length = 119
3 | target-version = ['py36']
4 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/scripts/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/BadDiffusion/diffusers/scripts/__init__.py
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/setup.cfg:
--------------------------------------------------------------------------------
1 | [isort]
2 | default_section = FIRSTPARTY
3 | ensure_newline_before_comments = True
4 | force_grid_wrap = 0
5 | include_trailing_comma = True
6 | known_first_party = accelerate
7 | known_third_party =
8 | numpy
9 | torch
10 | torch_xla
11 |
12 | line_length = 119
13 | lines_after_imports = 2
14 | multi_line_output = 3
15 | use_parentheses = True
16 |
17 | [flake8]
18 | ignore = E203, E722, E501, E741, W503, W605
19 | max-line-length = 119
20 | per-file-ignores = __init__.py:F401
21 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/commands/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from abc import ABC, abstractmethod
16 | from argparse import ArgumentParser
17 |
18 |
19 | class BaseDiffusersCLICommand(ABC):
20 | @staticmethod
21 | @abstractmethod
22 | def register_subcommand(parser: ArgumentParser):
23 | raise NotImplementedError()
24 |
25 | @abstractmethod
26 | def run(self):
27 | raise NotImplementedError()
28 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/commands/diffusers_cli.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # Copyright 2022 The HuggingFace Team. All rights reserved.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 | from argparse import ArgumentParser
17 |
18 | from .env import EnvironmentCommand
19 |
20 |
21 | def main():
22 | parser = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli []")
23 | commands_parser = parser.add_subparsers(help="diffusers-cli command helpers")
24 |
25 | # Register commands
26 | EnvironmentCommand.register_subcommand(commands_parser)
27 |
28 | # Let's go
29 | args = parser.parse_args()
30 |
31 | if not hasattr(args, "func"):
32 | parser.print_help()
33 | exit(1)
34 |
35 | # Run
36 | service = args.func(args)
37 | service.run()
38 |
39 |
40 | if __name__ == "__main__":
41 | main()
42 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/dependency_versions_table.py:
--------------------------------------------------------------------------------
1 | # THIS FILE HAS BEEN AUTOGENERATED. To update:
2 | # 1. modify the `_deps` dict in setup.py
3 | # 2. run `make deps_table_update``
4 | deps = {
5 | "Pillow": "Pillow<10.0",
6 | "accelerate": "accelerate>=0.11.0",
7 | "black": "black==22.8",
8 | "datasets": "datasets",
9 | "filelock": "filelock",
10 | "flake8": "flake8>=3.8.3",
11 | "flax": "flax>=0.4.1",
12 | "hf-doc-builder": "hf-doc-builder>=0.3.0",
13 | "huggingface-hub": "huggingface-hub>=0.10.0",
14 | "importlib_metadata": "importlib_metadata",
15 | "isort": "isort>=5.5.4",
16 | "jax": "jax>=0.2.8,!=0.3.2,<=0.3.6",
17 | "jaxlib": "jaxlib>=0.1.65,<=0.3.6",
18 | "modelcards": "modelcards>=0.1.4",
19 | "numpy": "numpy",
20 | "onnxruntime": "onnxruntime",
21 | "pytest": "pytest",
22 | "pytest-timeout": "pytest-timeout",
23 | "pytest-xdist": "pytest-xdist",
24 | "scipy": "scipy",
25 | "regex": "regex!=2019.12.17",
26 | "requests": "requests",
27 | "tensorboard": "tensorboard",
28 | "torch": "torch>=1.4",
29 | "torchvision": "torchvision",
30 | "transformers": "transformers>=4.21.0",
31 | }
32 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/models/README.md:
--------------------------------------------------------------------------------
1 | # Models
2 |
3 | - Models: Neural network that models $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ (see image below) and is trained end-to-end to denoise a noisy input to an image. Examples: UNet, Conditioned UNet, 3D UNet, Transformer UNet
4 |
5 | ## API
6 |
7 | TODO(Suraj, Patrick)
8 |
9 | ## Examples
10 |
11 | TODO(Suraj, Patrick)
12 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/models/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from ..utils import is_flax_available, is_torch_available
16 |
17 |
18 | if is_torch_available():
19 | from .unet_2d import UNet2DModel
20 | from .unet_2d_condition import UNet2DConditionModel
21 | from .vae import AutoencoderKL, VQModel
22 |
23 | if is_flax_available():
24 | from .unet_2d_condition_flax import FlaxUNet2DConditionModel
25 | from .vae_flax import FlaxAutoencoderKL
26 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/pipelines/__init__.py:
--------------------------------------------------------------------------------
1 | from ..utils import is_flax_available, is_onnx_available, is_torch_available, is_transformers_available
2 |
3 |
4 | if is_torch_available():
5 | from .ddim import DDIMPipeline
6 | from .ddpm import DDPMPipeline
7 | from .latent_diffusion_uncond import LDMPipeline
8 | from .pndm import PNDMPipeline
9 | from .score_sde_ve import ScoreSdeVePipeline
10 | from .stochastic_karras_ve import KarrasVePipeline
11 | else:
12 | from ..utils.dummy_pt_objects import * # noqa F403
13 |
14 | if is_torch_available() and is_transformers_available():
15 | from .latent_diffusion import LDMTextToImagePipeline
16 | from .stable_diffusion import (
17 | StableDiffusionImg2ImgPipeline,
18 | StableDiffusionInpaintPipeline,
19 | StableDiffusionPipeline,
20 | )
21 |
22 | if is_transformers_available() and is_onnx_available():
23 | from .stable_diffusion import StableDiffusionOnnxPipeline
24 |
25 | if is_transformers_available() and is_flax_available():
26 | from .stable_diffusion import FlaxStableDiffusionPipeline
27 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/pipelines/ddim/__init__.py:
--------------------------------------------------------------------------------
1 | # flake8: noqa
2 | from .pipeline_ddim import DDIMPipeline
3 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/pipelines/ddpm/__init__.py:
--------------------------------------------------------------------------------
1 | # flake8: noqa
2 | from .pipeline_ddpm import DDPMPipeline
3 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/pipelines/latent_diffusion/__init__.py:
--------------------------------------------------------------------------------
1 | # flake8: noqa
2 | from ...utils import is_transformers_available
3 |
4 |
5 | if is_transformers_available():
6 | from .pipeline_latent_diffusion import LDMBertModel, LDMTextToImagePipeline
7 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/pipelines/latent_diffusion_uncond/__init__.py:
--------------------------------------------------------------------------------
1 | # flake8: noqa
2 | from .pipeline_latent_diffusion_uncond import LDMPipeline
3 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/pipelines/pndm/__init__.py:
--------------------------------------------------------------------------------
1 | # flake8: noqa
2 | from .pipeline_pndm import PNDMPipeline
3 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/pipelines/score_sde_ve/__init__.py:
--------------------------------------------------------------------------------
1 | # flake8: noqa
2 | from .pipeline_score_sde_ve import ScoreSdeVePipeline
3 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/pipelines/stochastic_karras_ve/__init__.py:
--------------------------------------------------------------------------------
1 | # flake8: noqa
2 | from .pipeline_stochastic_karras_ve import KarrasVePipeline
3 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/schedulers/scheduling_utils.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | from dataclasses import dataclass
15 |
16 | import torch
17 |
18 | from ..utils import BaseOutput, deprecate
19 |
20 |
21 | SCHEDULER_CONFIG_NAME = "scheduler_config.json"
22 |
23 |
24 | @dataclass
25 | class SchedulerOutput(BaseOutput):
26 | """
27 | Base class for the scheduler's step function output.
28 |
29 | Args:
30 | prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
31 | Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
32 | denoising loop.
33 | """
34 |
35 | prev_sample: torch.FloatTensor
36 |
37 |
38 | class SchedulerMixin:
39 | """
40 | Mixin containing common functions for the schedulers.
41 | """
42 |
43 | config_name = SCHEDULER_CONFIG_NAME
44 |
45 | def set_format(self, tensor_format="pt"):
46 | deprecate(
47 | "set_format",
48 | "0.6.0",
49 | "If you're running your code in PyTorch, you can safely remove this function as the schedulers are always"
50 | " in Pytorch",
51 | )
52 | return self
53 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/schedulers/scheduling_utils_flax.py:
--------------------------------------------------------------------------------
1 | # Copyright 2022 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | from dataclasses import dataclass
15 |
16 | import jax.numpy as jnp
17 |
18 | from ..utils import BaseOutput
19 |
20 |
21 | SCHEDULER_CONFIG_NAME = "scheduler_config.json"
22 |
23 |
24 | @dataclass
25 | class FlaxSchedulerOutput(BaseOutput):
26 | """
27 | Base class for the scheduler's step function output.
28 |
29 | Args:
30 | prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
31 | Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
32 | denoising loop.
33 | """
34 |
35 | prev_sample: jnp.ndarray
36 |
37 |
38 | class FlaxSchedulerMixin:
39 | """
40 | Mixin containing common functions for the schedulers.
41 | """
42 |
43 | config_name = SCHEDULER_CONFIG_NAME
44 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/utils/dummy_flax_and_transformers_objects.py:
--------------------------------------------------------------------------------
1 | # This file is autogenerated by the command `make fix-copies`, do not edit.
2 | # flake8: noqa
3 |
4 | from ..utils import DummyObject, requires_backends
5 |
6 |
7 | class FlaxStableDiffusionPipeline(metaclass=DummyObject):
8 | _backends = ["flax", "transformers"]
9 |
10 | def __init__(self, *args, **kwargs):
11 | requires_backends(self, ["flax", "transformers"])
12 |
13 | @classmethod
14 | def from_config(cls, *args, **kwargs):
15 | requires_backends(cls, ["flax", "transformers"])
16 |
17 | @classmethod
18 | def from_pretrained(cls, *args, **kwargs):
19 | requires_backends(cls, ["flax", "transformers"])
20 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/utils/dummy_torch_and_scipy_objects.py:
--------------------------------------------------------------------------------
1 | # This file is autogenerated by the command `make fix-copies`, do not edit.
2 | # flake8: noqa
3 |
4 | from ..utils import DummyObject, requires_backends
5 |
6 |
7 | class LMSDiscreteScheduler(metaclass=DummyObject):
8 | _backends = ["torch", "scipy"]
9 |
10 | def __init__(self, *args, **kwargs):
11 | requires_backends(self, ["torch", "scipy"])
12 |
13 | @classmethod
14 | def from_config(cls, *args, **kwargs):
15 | requires_backends(cls, ["torch", "scipy"])
16 |
17 | @classmethod
18 | def from_pretrained(cls, *args, **kwargs):
19 | requires_backends(cls, ["torch", "scipy"])
20 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py:
--------------------------------------------------------------------------------
1 | # This file is autogenerated by the command `make fix-copies`, do not edit.
2 | # flake8: noqa
3 |
4 | from ..utils import DummyObject, requires_backends
5 |
6 |
7 | class StableDiffusionOnnxPipeline(metaclass=DummyObject):
8 | _backends = ["torch", "transformers", "onnx"]
9 |
10 | def __init__(self, *args, **kwargs):
11 | requires_backends(self, ["torch", "transformers", "onnx"])
12 |
13 | @classmethod
14 | def from_config(cls, *args, **kwargs):
15 | requires_backends(cls, ["torch", "transformers", "onnx"])
16 |
17 | @classmethod
18 | def from_pretrained(cls, *args, **kwargs):
19 | requires_backends(cls, ["torch", "transformers", "onnx"])
20 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/src/diffusers/utils/model_card_template.md:
--------------------------------------------------------------------------------
1 | ---
2 | {{ card_data }}
3 | ---
4 |
5 |
7 |
8 | # {{ model_name | default("Diffusion Model") }}
9 |
10 | ## Model description
11 |
12 | This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
13 | on the `{{ dataset_name }}` dataset.
14 |
15 | ## Intended uses & limitations
16 |
17 | #### How to use
18 |
19 | ```python
20 | # TODO: add an example code snippet for running this diffusion pipeline
21 | ```
22 |
23 | #### Limitations and bias
24 |
25 | [TODO: provide examples of latent issues and potential remediations]
26 |
27 | ## Training data
28 |
29 | [TODO: describe the data used to train the model]
30 |
31 | ### Training hyperparameters
32 |
33 | The following hyperparameters were used during training:
34 | - learning_rate: {{ learning_rate }}
35 | - train_batch_size: {{ train_batch_size }}
36 | - eval_batch_size: {{ eval_batch_size }}
37 | - gradient_accumulation_steps: {{ gradient_accumulation_steps }}
38 | - optimizer: AdamW with betas=({{ adam_beta1 }}, {{ adam_beta2 }}), weight_decay={{ adam_weight_decay }} and epsilon={{ adam_epsilon }}
39 | - lr_scheduler: {{ lr_scheduler }}
40 | - lr_warmup_steps: {{ lr_warmup_steps }}
41 | - ema_inv_gamma: {{ ema_inv_gamma }}
42 | - ema_inv_gamma: {{ ema_power }}
43 | - ema_inv_gamma: {{ ema_max_decay }}
44 | - mixed_precision: {{ mixed_precision }}
45 |
46 | ### Training results
47 |
48 | 📈 [TensorBoard logs](https://huggingface.co/{{ repo_name }}/tensorboard?#scalars)
49 |
50 |
51 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/tests/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/BadDiffusion/diffusers/tests/__init__.py
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/tests/test_modeling_common_flax.py:
--------------------------------------------------------------------------------
1 | from diffusers.utils import is_flax_available
2 | from diffusers.utils.testing_utils import require_flax
3 |
4 |
5 | if is_flax_available():
6 | import jax
7 |
8 |
9 | @require_flax
10 | class FlaxModelTesterMixin:
11 | def test_output(self):
12 | init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
13 |
14 | model = self.model_class(**init_dict)
15 | variables = model.init(inputs_dict["prng_key"], inputs_dict["sample"])
16 | jax.lax.stop_gradient(variables)
17 |
18 | output = model.apply(variables, inputs_dict["sample"])
19 |
20 | if isinstance(output, dict):
21 | output = output.sample
22 |
23 | self.assertIsNotNone(output)
24 | expected_shape = inputs_dict["sample"].shape
25 | self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
26 |
27 | def test_forward_with_norm_groups(self):
28 | init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
29 |
30 | init_dict["norm_num_groups"] = 16
31 | init_dict["block_out_channels"] = (16, 32)
32 |
33 | model = self.model_class(**init_dict)
34 | variables = model.init(inputs_dict["prng_key"], inputs_dict["sample"])
35 | jax.lax.stop_gradient(variables)
36 |
37 | output = model.apply(variables, inputs_dict["sample"])
38 |
39 | if isinstance(output, dict):
40 | output = output.sample
41 |
42 | self.assertIsNotNone(output)
43 | expected_shape = inputs_dict["sample"].shape
44 | self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
45 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/tests/test_models_vae_flax.py:
--------------------------------------------------------------------------------
1 | import unittest
2 |
3 | from diffusers import FlaxAutoencoderKL
4 | from diffusers.utils import is_flax_available
5 | from diffusers.utils.testing_utils import require_flax
6 |
7 | from .test_modeling_common_flax import FlaxModelTesterMixin
8 |
9 |
10 | if is_flax_available():
11 | import jax
12 |
13 |
14 | @require_flax
15 | class FlaxAutoencoderKLTests(FlaxModelTesterMixin, unittest.TestCase):
16 | model_class = FlaxAutoencoderKL
17 |
18 | @property
19 | def dummy_input(self):
20 | batch_size = 4
21 | num_channels = 3
22 | sizes = (32, 32)
23 |
24 | prng_key = jax.random.PRNGKey(0)
25 | image = jax.random.uniform(prng_key, ((batch_size, num_channels) + sizes))
26 |
27 | return {"sample": image, "prng_key": prng_key}
28 |
29 | def prepare_init_args_and_inputs_for_common(self):
30 | init_dict = {
31 | "block_out_channels": [32, 64],
32 | "in_channels": 3,
33 | "out_channels": 3,
34 | "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
35 | "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
36 | "latent_channels": 4,
37 | }
38 | inputs_dict = self.dummy_input
39 | return init_dict, inputs_dict
40 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/utils/get_modified_files.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2020 The HuggingFace Inc. team.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 | # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
17 | # python ./utils/get_modified_files.py utils src tests examples
18 | #
19 | # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
20 | # since the output of this script is fed into Makefile commands it doesn't print a newline after the results
21 |
22 | import re
23 | import subprocess
24 | import sys
25 |
26 |
27 | fork_point_sha = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
28 | modified_files = subprocess.check_output(f"git diff --name-only {fork_point_sha}".split()).decode("utf-8").split()
29 |
30 | joined_dirs = "|".join(sys.argv[1:])
31 | regex = re.compile(rf"^({joined_dirs}).*?\.py$")
32 |
33 | relevant_modified_files = [x for x in modified_files if regex.match(x)]
34 | print(" ".join(relevant_modified_files), end="")
35 |
--------------------------------------------------------------------------------
/BadDiffusion/diffusers/utils/print_env.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | # coding=utf-8
4 | # Copyright 2022 The HuggingFace Inc. team.
5 | #
6 | # Licensed under the Apache License, Version 2.0 (the "License");
7 | # you may not use this file except in compliance with the License.
8 | # You may obtain a copy of the License at
9 | #
10 | # http://www.apache.org/licenses/LICENSE-2.0
11 | #
12 | # Unless required by applicable law or agreed to in writing, software
13 | # distributed under the License is distributed on an "AS IS" BASIS,
14 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 | # See the License for the specific language governing permissions and
16 | # limitations under the License.
17 |
18 | # this script dumps information about the environment
19 |
20 | import os
21 | import platform
22 | import sys
23 |
24 |
25 | os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
26 |
27 | print("Python version:", sys.version)
28 |
29 | print("OS platform:", platform.platform())
30 | print("OS architecture:", platform.machine())
31 |
32 | try:
33 | import torch
34 |
35 | print("Torch version:", torch.__version__)
36 | print("Cuda available:", torch.cuda.is_available())
37 | print("Cuda version:", torch.version.cuda)
38 | print("CuDNN version:", torch.backends.cudnn.version())
39 | print("Number of GPUs available:", torch.cuda.device_count())
40 | except ImportError:
41 | print("Torch version:", None)
42 |
43 | try:
44 | import transformers
45 |
46 | print("transformers version:", transformers.__version__)
47 | except ImportError:
48 | print("transformers version:", None)
49 |
--------------------------------------------------------------------------------
/BadDiffusion/install.sh:
--------------------------------------------------------------------------------
1 | pip install pyarrow
2 | # pip install accelerate comet-ml matplotlib datasets tqdm tensorboard tensorboardX torchvision tensorflow-datasets einops pytorch-fid joblib PyYAML kaggle wandb torchsummary torchinfo
3 | pip install -r requirements.txt
4 |
5 | cd diffusers
6 | pip install -e .
7 | cd ..
8 |
9 | mkdir measure
10 | mkdir datasets
11 | mkdir measure
12 |
--------------------------------------------------------------------------------
/BadDiffusion/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate==0.19.0
2 | comet-ml
3 | matplotlib
4 | datasets
5 | tqdm
6 | tensorboard
7 | tensorboardX
8 | tensorflow-datasets
9 | einops
10 | pytorch-fid
11 | joblib
12 | PyYAML
13 | kaggle
14 | wandb
15 | torchsummary
16 | torchinfo
17 | torchmetrics
18 | piq
19 |
--------------------------------------------------------------------------------
/BadDiffusion/run_example.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Train a backdoored model. By default, it's saved as res_DDPM-CIFAR10-32_CIFAR10_ep50_c1.0_p0.1_STOP_SIGN_14-HAT
4 | python baddiffusion.py --project default --mode train+measure --dataset CIFAR10 --batch 128 --epoch 50 --poison_rate 0.1 --trigger STOP_SIGN_14 --target HAT --ckpt DDPM-CIFAR10-32 --fclip o -o --gpu 0
5 |
6 | # invert the trigger and compute the uniformity score and tv loss
7 | python elijah_helper.py res_DDPM-CIFAR10-32_CIFAR10_ep50_c1.0_p0.1_STOP_SIGN_14-HAT --compute_tvloss
8 | python elijah_helper.py res_DDPM-CIFAR10-32_CIFAR10_ep50_c1.0_p0.1_STOP_SIGN_14-HAT
9 |
10 | # Use the inverted trigger to remove the injected backdoor. By default, it's aved as res_res_DDPM-CIFAR10-32_CIFAR10_ep50_c1.0_p0.1_STOP_SIGN_14-HAT_CIFAR10_ep11_c0.1_p0.0_STOP_SIGN_14-HAT
11 | python baddiffusion.py --project default --mode train+measure --dataset CIFAR10 --batch 128 --epoch 11 --poison_rate 0 --clean_rate 0.1 --trigger STOP_SIGN_14 --target HAT --ckpt res_DDPM-CIFAR10-32_CIFAR10_ep50_c1.0_p0.1_STOP_SIGN_14-HAT --fclip o -o --gpu 0 --save_image_epochs 1 --save_model_epochs 1 --is_save_all_model_epochs --dataset_load_mode FLEX --remove_backdoor
12 |
--------------------------------------------------------------------------------
/BadDiffusion/static/cat_wo_bg.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/BadDiffusion/static/cat_wo_bg.png
--------------------------------------------------------------------------------
/BadDiffusion/static/fedora-hat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/BadDiffusion/static/fedora-hat.png
--------------------------------------------------------------------------------
/BadDiffusion/static/glasses.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/BadDiffusion/static/glasses.png
--------------------------------------------------------------------------------
/BadDiffusion/static/hat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/BadDiffusion/static/hat.png
--------------------------------------------------------------------------------
/BadDiffusion/static/stop_sign_bg_blk.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/BadDiffusion/static/stop_sign_bg_blk.jpg
--------------------------------------------------------------------------------
/BadDiffusion/static/stop_sign_bg_w.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/BadDiffusion/static/stop_sign_bg_w.jpg
--------------------------------------------------------------------------------
/BadDiffusion/static/stop_sign_wo_bg.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/BadDiffusion/static/stop_sign_wo_bg.png
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Official Code for Elijah (AAAI 2024 and NeurIPS 2023 Workshop BUGS)
2 |
3 | This is the PyTorch implementation for the AAAI 2024 paper "Elijah: Eliminating Backdoors Injected in Diffusion Models via Distribution Shift". This work also appears in the NeurIPS 2023 Workshop BUGS.
4 |
5 | Paper link: https://arxiv.org/abs/2312.00050
6 |
7 | ## Environments and Running examples
8 |
9 | Please check each attack's directory for more information.
10 |
--------------------------------------------------------------------------------
/TrojDiff/configs/bedroom.yml:
--------------------------------------------------------------------------------
1 | data:
2 | dataset: "LSUN"
3 | category: "bedroom"
4 | image_size: 256
5 | channels: 3
6 | logit_transform: false
7 | uniform_dequantization: false
8 | gaussian_dequantization: false
9 | random_flip: true
10 | rescaled: true
11 | num_workers: 32
12 |
13 | model:
14 | type: "simple"
15 | in_channels: 3
16 | out_ch: 3
17 | ch: 128
18 | ch_mult: [1, 1, 2, 2, 4, 4]
19 | num_res_blocks: 2
20 | attn_resolutions: [16, ]
21 | dropout: 0.0
22 | var_type: fixedsmall
23 | ema_rate: 0.999
24 | ema: True
25 | resamp_with_conv: True
26 |
27 | diffusion:
28 | beta_schedule: linear
29 | beta_start: 0.0001
30 | beta_end: 0.02
31 | num_diffusion_timesteps: 1000
32 |
33 | training:
34 | batch_size: 64
35 | n_epochs: 10000
36 | n_iters: 5000000
37 | snapshot_freq: 5000
38 | validation_freq: 2000
39 |
40 | sampling:
41 | batch_size: 32
42 | last_only: True
43 |
44 | optim:
45 | weight_decay: 0.000
46 | optimizer: "Adam"
47 | lr: 0.00002
48 | beta1: 0.9
49 | amsgrad: false
50 | eps: 0.00000001
51 |
--------------------------------------------------------------------------------
/TrojDiff/configs/celeba.yml:
--------------------------------------------------------------------------------
1 | data:
2 | dataset: "CELEBA"
3 | image_size: 64
4 | channels: 3
5 | logit_transform: false
6 | uniform_dequantization: false
7 | gaussian_dequantization: false
8 | random_flip: true
9 | rescaled: true
10 | num_workers: 4
11 |
12 | model:
13 | type: "simple"
14 | in_channels: 3
15 | out_ch: 3
16 | ch: 128
17 | ch_mult: [1, 2, 2, 2, 4]
18 | num_res_blocks: 2
19 | attn_resolutions: [16, ]
20 | dropout: 0.1
21 | var_type: fixedlarge
22 | ema_rate: 0.9999
23 | ema: True
24 | resamp_with_conv: True
25 |
26 | diffusion:
27 | beta_schedule: linear
28 | beta_start: 0.0001
29 | beta_end: 0.02
30 | num_diffusion_timesteps: 1000
31 |
32 | training:
33 | batch_size: 128
34 | n_epochs: 10000
35 | n_iters: 5000000
36 | snapshot_freq: 5000
37 | validation_freq: 20000
38 |
39 | sampling:
40 | batch_size: 50 #32
41 | last_only: True
42 | ckpt_id: 100000 #50000 # None
43 |
44 | optim:
45 | weight_decay: 0.000
46 | optimizer: "Adam"
47 | lr: 0.0002
48 | beta1: 0.9
49 | amsgrad: false
50 | eps: 0.00000001
51 | grad_clip: 1.0
52 |
--------------------------------------------------------------------------------
/TrojDiff/configs/church.yml:
--------------------------------------------------------------------------------
1 | data:
2 | dataset: "LSUN"
3 | category: "church_outdoor"
4 | image_size: 256
5 | channels: 3
6 | logit_transform: false
7 | uniform_dequantization: false
8 | gaussian_dequantization: false
9 | random_flip: true
10 | rescaled: true
11 | num_workers: 32
12 |
13 | model:
14 | type: "simple"
15 | in_channels: 3
16 | out_ch: 3
17 | ch: 128
18 | ch_mult: [1, 1, 2, 2, 4, 4]
19 | num_res_blocks: 2
20 | attn_resolutions: [16, ]
21 | dropout: 0.0
22 | var_type: fixedsmall
23 | ema_rate: 0.999
24 | ema: True
25 | resamp_with_conv: True
26 |
27 | diffusion:
28 | beta_schedule: linear
29 | beta_start: 0.0001
30 | beta_end: 0.02
31 | num_diffusion_timesteps: 1000
32 |
33 | training:
34 | batch_size: 64
35 | n_epochs: 10000
36 | n_iters: 5000000
37 | snapshot_freq: 5000
38 | validation_freq: 2000
39 |
40 | sampling:
41 | batch_size: 32
42 | last_only: True
43 |
44 | optim:
45 | weight_decay: 0.000
46 | optimizer: "Adam"
47 | lr: 0.00002
48 | beta1: 0.9
49 | amsgrad: false
50 | eps: 0.00000001
51 |
--------------------------------------------------------------------------------
/TrojDiff/configs/cifar10.yml:
--------------------------------------------------------------------------------
1 | data:
2 | dataset: "CIFAR10"
3 | image_size: 32
4 | channels: 3
5 | logit_transform: false
6 | uniform_dequantization: false
7 | gaussian_dequantization: false
8 | random_flip: true
9 | rescaled: true
10 | num_workers: 4
11 |
12 | model:
13 | type: "simple"
14 | in_channels: 3
15 | out_ch: 3
16 | ch: 128
17 | ch_mult: [1, 2, 2, 2]
18 | num_res_blocks: 2
19 | attn_resolutions: [16, ]
20 | dropout: 0.1
21 | var_type: fixedlarge
22 | ema_rate: 0.9999
23 | ema: True
24 | resamp_with_conv: True
25 |
26 | diffusion:
27 | beta_schedule: linear
28 | beta_start: 0.0001
29 | beta_end: 0.02
30 | num_diffusion_timesteps: 1000
31 |
32 | training:
33 | batch_size: 128
34 | n_epochs: 10000
35 | n_iters: 5000000
36 | snapshot_freq: 1000
37 | validation_freq: 2000
38 |
39 | sampling:
40 | batch_size: 2048 #64
41 | last_only: True
42 | ckpt_id: 100000 # None
43 |
44 | optim:
45 | weight_decay: 0.000
46 | optimizer: "Adam"
47 | lr: 0.0002
48 | beta1: 0.9
49 | amsgrad: false
50 | eps: 0.00000001
51 | grad_clip: 1.0
52 |
--------------------------------------------------------------------------------
/TrojDiff/configs/cifar10_100k.yml:
--------------------------------------------------------------------------------
1 | data:
2 | dataset: "CIFAR10"
3 | image_size: 32
4 | channels: 3
5 | logit_transform: false
6 | uniform_dequantization: false
7 | gaussian_dequantization: false
8 | random_flip: true
9 | rescaled: true
10 | num_workers: 4
11 |
12 | model:
13 | type: "simple"
14 | in_channels: 3
15 | out_ch: 3
16 | ch: 128
17 | ch_mult: [1, 2, 2, 2]
18 | num_res_blocks: 2
19 | attn_resolutions: [16, ]
20 | dropout: 0.1
21 | var_type: fixedlarge
22 | ema_rate: 0.9999
23 | ema: True
24 | resamp_with_conv: True
25 |
26 | diffusion:
27 | beta_schedule: linear
28 | beta_start: 0.0001
29 | beta_end: 0.02
30 | num_diffusion_timesteps: 1000
31 |
32 | training:
33 | batch_size: 128
34 | n_epochs: 10000
35 | n_iters: 5000000
36 | snapshot_freq: 100000
37 | validation_freq: 2000
38 |
39 | sampling:
40 | batch_size: 2048 #64
41 | last_only: True
42 | ckpt_id: 100000 # None
43 |
44 | optim:
45 | weight_decay: 0.000
46 | optimizer: "Adam"
47 | lr: 0.0002
48 | beta1: 0.9
49 | amsgrad: false
50 | eps: 0.00000001
51 | grad_clip: 1.0
52 |
--------------------------------------------------------------------------------
/TrojDiff/configs/cifar10_no_ema.yml:
--------------------------------------------------------------------------------
1 | data:
2 | dataset: "CIFAR10"
3 | image_size: 32
4 | channels: 3
5 | logit_transform: false
6 | uniform_dequantization: false
7 | gaussian_dequantization: false
8 | random_flip: true
9 | rescaled: true
10 | num_workers: 4
11 |
12 | model:
13 | type: "simple"
14 | in_channels: 3
15 | out_ch: 3
16 | ch: 128
17 | ch_mult: [1, 2, 2, 2]
18 | num_res_blocks: 2
19 | attn_resolutions: [16, ]
20 | dropout: 0.1
21 | var_type: fixedlarge
22 | ema_rate: 0.9999
23 | ema: False
24 | resamp_with_conv: True
25 |
26 | diffusion:
27 | beta_schedule: linear
28 | beta_start: 0.0001
29 | beta_end: 0.02
30 | num_diffusion_timesteps: 1000
31 |
32 | training:
33 | batch_size: 128
34 | n_epochs: 10000
35 | n_iters: 5000000
36 | snapshot_freq: 1000
37 | validation_freq: 2000
38 |
39 | sampling:
40 | batch_size: 2048 #64
41 | last_only: True
42 | ckpt_id: 100000 # None
43 |
44 | optim:
45 | weight_decay: 0.000
46 | optimizer: "Adam"
47 | lr: 0.0002
48 | beta1: 0.9
49 | amsgrad: false
50 | eps: 0.00000001
51 | grad_clip: 1.0
52 |
--------------------------------------------------------------------------------
/TrojDiff/datasets/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/datasets/.DS_Store
--------------------------------------------------------------------------------
/TrojDiff/datasets/ffhq.py:
--------------------------------------------------------------------------------
1 | from io import BytesIO
2 |
3 | import lmdb
4 | from PIL import Image
5 | from torch.utils.data import Dataset
6 |
7 |
8 | class FFHQ(Dataset):
9 | def __init__(self, path, transform, resolution=8):
10 | self.env = lmdb.open(
11 | path,
12 | max_readers=32,
13 | readonly=True,
14 | lock=False,
15 | readahead=False,
16 | meminit=False,
17 | )
18 |
19 | if not self.env:
20 | raise IOError('Cannot open lmdb dataset', path)
21 |
22 | with self.env.begin(write=False) as txn:
23 | self.length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
24 |
25 | self.resolution = resolution
26 | self.transform = transform
27 |
28 | def __len__(self):
29 | return self.length
30 |
31 | def __getitem__(self, index):
32 | with self.env.begin(write=False) as txn:
33 | key = f'{self.resolution}-{str(index).zfill(5)}'.encode('utf-8')
34 | img_bytes = txn.get(key)
35 |
36 | buffer = BytesIO(img_bytes)
37 | img = Image.open(buffer)
38 | img = self.transform(img)
39 | target = 0
40 |
41 | return img, target
--------------------------------------------------------------------------------
/TrojDiff/figures/framework.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/figures/framework.png
--------------------------------------------------------------------------------
/TrojDiff/figures/generative_process.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/figures/generative_process.png
--------------------------------------------------------------------------------
/TrojDiff/figures/numeric_result.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/figures/numeric_result.png
--------------------------------------------------------------------------------
/TrojDiff/functions/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/functions/.DS_Store
--------------------------------------------------------------------------------
/TrojDiff/functions/__init__.py:
--------------------------------------------------------------------------------
1 | import torch.optim as optim
2 |
3 |
4 | def get_optimizer(config, parameters):
5 | if config.optim.optimizer == 'Adam':
6 | return optim.Adam(parameters, lr=config.optim.lr, weight_decay=config.optim.weight_decay,
7 | betas=(config.optim.beta1, 0.999), amsgrad=config.optim.amsgrad,
8 | eps=config.optim.eps)
9 | elif config.optim.optimizer == 'RMSProp':
10 | return optim.RMSprop(parameters, lr=config.optim.lr, weight_decay=config.optim.weight_decay)
11 | elif config.optim.optimizer == 'SGD':
12 | return optim.SGD(parameters, lr=config.optim.lr, momentum=0.9)
13 | else:
14 | raise NotImplementedError(
15 | 'Optimizer {} not understood.'.format(config.optim.optimizer))
16 |
--------------------------------------------------------------------------------
/TrojDiff/functions/losses.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | def noise_estimation_loss(model,
5 | x0: torch.Tensor,
6 | t: torch.LongTensor,
7 | e: torch.Tensor,
8 | b: torch.Tensor, keepdim=False):
9 | a = (1-b).cumprod(dim=0).index_select(0, t).view(-1, 1, 1, 1)
10 | x = x0 * a.sqrt() + e * (1.0 - a).sqrt()
11 | output = model(x, t.float())
12 | if keepdim:
13 | return (e - output).square().sum(dim=(1, 2, 3))
14 | else:
15 | return (e - output).square().sum(dim=(1, 2, 3)).mean(dim=0)
16 |
17 |
18 | loss_registry = {
19 | 'simple': noise_estimation_loss,
20 | }
21 |
--------------------------------------------------------------------------------
/TrojDiff/functions/losses_attack.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torchvision.utils as tvu
3 | import pdb
4 | import os
5 |
6 |
7 | def noise_estimation_loss(model,
8 | x0: torch.Tensor,
9 | y: torch.Tensor,
10 | t: torch.LongTensor,
11 | e: torch.Tensor,
12 | b: torch.Tensor,
13 | miu: torch.Tensor,
14 | args=None,
15 | keepdim=False):
16 | target_idx = torch.where(y == args.target_label)[0]
17 | chosen_mask = torch.bernoulli(torch.zeros_like(target_idx) + args.cond_prob)
18 | chosen_target_idx = target_idx[torch.where(chosen_mask == 1)[0]]
19 |
20 | batch, device = x0.shape[0], x0.device
21 | miu_ = torch.stack([miu.to(device)] * batch) # (batch,3,32,32)
22 |
23 | a = (1-b).cumprod(dim=0).index_select(0, t).view(-1, 1, 1, 1)
24 | x = x0 * a.sqrt() + e * (1.0 - a).sqrt()
25 | x_ = x0 * a.sqrt() + e * (1.0 - a).sqrt() * args.gamma + miu_ * (1.0 - a).sqrt()
26 | if args.trigger_type == 'patch':
27 | tmp_x = x.clone()
28 | tmp_x[:, :, -args.patch_size:, -args.patch_size:] = x_[:, :, -args.patch_size:, -args.patch_size:]
29 | x_ = tmp_x
30 |
31 | x_add = x_[chosen_target_idx]
32 | t_add = t[chosen_target_idx]
33 | e_add = e[chosen_target_idx]
34 | x = torch.cat([x, x_add], dim=0)
35 | t = torch.cat([t, t_add], dim=0)
36 | e = torch.cat([e, e_add], dim=0)
37 |
38 | output = model(x, t.float())
39 | if keepdim:
40 | return (e - output).square().sum(dim=(1, 2, 3))
41 | else:
42 | return (e - output).square().sum(dim=(1, 2, 3)).mean(dim=0)
43 |
44 |
45 | loss_registry = {
46 | 'simple': noise_estimation_loss,
47 | }
48 |
--------------------------------------------------------------------------------
/TrojDiff/functions/losses_attack_d2dout.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torchvision.utils as tvu
3 | import pdb
4 | import os
5 |
6 |
7 | def noise_estimation_loss(model,
8 | x0: torch.Tensor,
9 | y: torch.Tensor,
10 | t: torch.LongTensor,
11 | e: torch.Tensor,
12 | b: torch.Tensor,
13 | miu: torch.Tensor,
14 | args=None,
15 | keepdim=False):
16 | target_idx = torch.where(y == 1000)[0]
17 | chosen_mask = torch.bernoulli(torch.zeros_like(target_idx) + args.cond_prob)
18 | chosen_target_idx = target_idx[torch.where(chosen_mask == 1)[0]]
19 |
20 | batch, device = x0.shape[0], x0.device
21 | miu_ = torch.stack([miu.to(device)] * batch) # (batch,3,32,32)
22 |
23 | a = (1-b).cumprod(dim=0).index_select(0, t).view(-1, 1, 1, 1)
24 | x = x0 * a.sqrt() + e * (1.0 - a).sqrt()
25 | x_ = x0 * a.sqrt() + e * (1.0 - a).sqrt() * args.gamma + miu_ * (1.0 - a).sqrt()
26 | if args.trigger_type == 'patch':
27 | tmp_x = x.clone()
28 | tmp_x[:, :, -args.patch_size:, -args.patch_size:] = x_[:, :, -args.patch_size:, -args.patch_size:]
29 | x_ = tmp_x
30 |
31 | x_add = x_[chosen_target_idx]
32 | x[chosen_target_idx] = x_add
33 |
34 | output = model(x, t.float())
35 | if keepdim:
36 | return (e - output).square().sum(dim=(1, 2, 3))
37 | else:
38 | return (e - output).square().sum(dim=(1, 2, 3)).mean(dim=0)
39 |
40 |
41 | loss_registry = {
42 | 'simple': noise_estimation_loss,
43 | }
44 |
--------------------------------------------------------------------------------
/TrojDiff/images/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/.DS_Store
--------------------------------------------------------------------------------
/TrojDiff/images/blue.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/blue.png
--------------------------------------------------------------------------------
/TrojDiff/images/brown.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/brown.png
--------------------------------------------------------------------------------
/TrojDiff/images/green.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/green.png
--------------------------------------------------------------------------------
/TrojDiff/images/hello_kitty.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/hello_kitty.png
--------------------------------------------------------------------------------
/TrojDiff/images/light_blue.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/light_blue.png
--------------------------------------------------------------------------------
/TrojDiff/images/mickey.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/mickey.png
--------------------------------------------------------------------------------
/TrojDiff/images/purple.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/purple.png
--------------------------------------------------------------------------------
/TrojDiff/images/red.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/red.png
--------------------------------------------------------------------------------
/TrojDiff/images/target_A.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/target_A.png
--------------------------------------------------------------------------------
/TrojDiff/images/target_I.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/target_I.png
--------------------------------------------------------------------------------
/TrojDiff/images/white.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/white.png
--------------------------------------------------------------------------------
/TrojDiff/images/yellow.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/images/yellow.png
--------------------------------------------------------------------------------
/TrojDiff/models/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/models/.DS_Store
--------------------------------------------------------------------------------
/TrojDiff/runners/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/runners/.DS_Store
--------------------------------------------------------------------------------
/TrojDiff/runners/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/TrojDiff/runners/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/.github/ISSUE_TEMPLATE/config.yml:
--------------------------------------------------------------------------------
1 | contact_links:
2 | - name: Blank issue
3 | url: https://github.com/huggingface/diffusers/issues/new
4 | about: Other
5 | - name: Forum
6 | url: https://discuss.huggingface.co/
7 | about: General usage questions and community discussions
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/.github/ISSUE_TEMPLATE/feature_request.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: "\U0001F680 Feature request"
3 | about: Suggest an idea for this project
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Is your feature request related to a problem? Please describe.**
11 | A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
12 |
13 | **Describe the solution you'd like**
14 | A clear and concise description of what you want to happen.
15 |
16 | **Describe alternatives you've considered**
17 | A clear and concise description of any alternative solutions or features you've considered.
18 |
19 | **Additional context**
20 | Add any other context or screenshots about the feature request here.
21 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/.github/ISSUE_TEMPLATE/feedback.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: "💬 Feedback about API Design"
3 | about: Give feedback about the current API design
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **What API design would you like to have changed or added to the library? Why?**
11 |
12 | **What use case would this enable or better enable? Can you give us a code example?**
13 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/.github/ISSUE_TEMPLATE/new-model-addition.yml:
--------------------------------------------------------------------------------
1 | name: "\U0001F31F New model/pipeline/scheduler addition"
2 | description: Submit a proposal/request to implement a new diffusion model / pipeline / scheduler
3 | labels: [ "New model/pipeline/scheduler" ]
4 |
5 | body:
6 | - type: textarea
7 | id: description-request
8 | validations:
9 | required: true
10 | attributes:
11 | label: Model/Pipeline/Scheduler description
12 | description: |
13 | Put any and all important information relative to the model/pipeline/scheduler
14 |
15 | - type: checkboxes
16 | id: information-tasks
17 | attributes:
18 | label: Open source status
19 | description: |
20 | Please note that if the model implementation isn't available or if the weights aren't open-source, we are less likely to implement it in `diffusers`.
21 | options:
22 | - label: "The model implementation is available"
23 | - label: "The model weights are available (Only relevant if addition is not a scheduler)."
24 |
25 | - type: textarea
26 | id: additional-info
27 | attributes:
28 | label: Provide useful links for the implementation
29 | description: |
30 | Please provide information regarding the implementation, the weights, and the authors.
31 | Please mention the authors by @gh-username if you're aware of their usernames.
32 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/.github/workflows/build_docker_images.yml:
--------------------------------------------------------------------------------
1 | name: Build Docker images (nightly)
2 |
3 | on:
4 | workflow_dispatch:
5 | schedule:
6 | - cron: "0 0 * * *" # every day at midnight
7 |
8 | concurrency:
9 | group: docker-image-builds
10 | cancel-in-progress: false
11 |
12 | env:
13 | REGISTRY: diffusers
14 |
15 | jobs:
16 | build-docker-images:
17 | runs-on: ubuntu-latest
18 |
19 | permissions:
20 | contents: read
21 | packages: write
22 |
23 | strategy:
24 | fail-fast: false
25 | matrix:
26 | image-name:
27 | - diffusers-pytorch-cpu
28 | - diffusers-pytorch-cuda
29 | - diffusers-flax-cpu
30 | - diffusers-flax-tpu
31 | - diffusers-onnxruntime-cpu
32 | - diffusers-onnxruntime-cuda
33 |
34 | steps:
35 | - name: Checkout repository
36 | uses: actions/checkout@v3
37 |
38 | - name: Login to Docker Hub
39 | uses: docker/login-action@v2
40 | with:
41 | username: ${{ env.REGISTRY }}
42 | password: ${{ secrets.DOCKERHUB_TOKEN }}
43 |
44 | - name: Build and push
45 | uses: docker/build-push-action@v3
46 | with:
47 | no-cache: true
48 | context: ./docker/${{ matrix.image-name }}
49 | push: true
50 | tags: ${{ env.REGISTRY }}/${{ matrix.image-name }}:latest
51 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/.github/workflows/build_documentation.yml:
--------------------------------------------------------------------------------
1 | name: Build documentation
2 |
3 | on:
4 | push:
5 | branches:
6 | - main
7 | - doc-builder*
8 | - v*-release
9 |
10 | jobs:
11 | build:
12 | uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
13 | with:
14 | commit_sha: ${{ github.sha }}
15 | package: diffusers
16 | notebook_folder: diffusers_doc
17 | languages: en ko
18 | secrets:
19 | token: ${{ secrets.HUGGINGFACE_PUSH }}
20 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/.github/workflows/build_pr_documentation.yml:
--------------------------------------------------------------------------------
1 | name: Build PR Documentation
2 |
3 | on:
4 | pull_request:
5 |
6 | concurrency:
7 | group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
8 | cancel-in-progress: true
9 |
10 | jobs:
11 | build:
12 | uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
13 | with:
14 | commit_sha: ${{ github.event.pull_request.head.sha }}
15 | pr_number: ${{ github.event.number }}
16 | package: diffusers
17 | languages: en ko
18 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/.github/workflows/delete_doc_comment.yml:
--------------------------------------------------------------------------------
1 | name: Delete dev documentation
2 |
3 | on:
4 | pull_request:
5 | types: [ closed ]
6 |
7 |
8 | jobs:
9 | delete:
10 | uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
11 | with:
12 | pr_number: ${{ github.event.number }}
13 | package: diffusers
14 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/.github/workflows/pr_quality.yml:
--------------------------------------------------------------------------------
1 | name: Run code quality checks
2 |
3 | on:
4 | pull_request:
5 | branches:
6 | - main
7 | push:
8 | branches:
9 | - main
10 |
11 | concurrency:
12 | group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
13 | cancel-in-progress: true
14 |
15 | jobs:
16 | check_code_quality:
17 | runs-on: ubuntu-latest
18 | steps:
19 | - uses: actions/checkout@v3
20 | - name: Set up Python
21 | uses: actions/setup-python@v4
22 | with:
23 | python-version: "3.7"
24 | - name: Install dependencies
25 | run: |
26 | python -m pip install --upgrade pip
27 | pip install .[quality]
28 | - name: Check quality
29 | run: |
30 | black --check examples tests src utils scripts
31 | ruff examples tests src utils scripts
32 | doc-builder style src/diffusers docs/source --max_len 119 --check_only --path_to_docs docs/source
33 |
34 | check_repository_consistency:
35 | runs-on: ubuntu-latest
36 | steps:
37 | - uses: actions/checkout@v3
38 | - name: Set up Python
39 | uses: actions/setup-python@v4
40 | with:
41 | python-version: "3.7"
42 | - name: Install dependencies
43 | run: |
44 | python -m pip install --upgrade pip
45 | pip install .[quality]
46 | - name: Check quality
47 | run: |
48 | python utils/check_copies.py
49 | python utils/check_dummies.py
50 | make deps_table_check_updated
51 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/.github/workflows/stale.yml:
--------------------------------------------------------------------------------
1 | name: Stale Bot
2 |
3 | on:
4 | schedule:
5 | - cron: "0 15 * * *"
6 |
7 | jobs:
8 | close_stale_issues:
9 | name: Close Stale Issues
10 | if: github.repository == 'huggingface/diffusers'
11 | runs-on: ubuntu-latest
12 | env:
13 | GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
14 | steps:
15 | - uses: actions/checkout@v2
16 |
17 | - name: Setup Python
18 | uses: actions/setup-python@v1
19 | with:
20 | python-version: 3.7
21 |
22 | - name: Install requirements
23 | run: |
24 | pip install PyGithub
25 | - name: Close stale issues
26 | run: |
27 | python utils/stale.py
28 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/.github/workflows/typos.yml:
--------------------------------------------------------------------------------
1 | name: Check typos
2 |
3 | on:
4 | workflow_dispatch:
5 |
6 | jobs:
7 | build:
8 | runs-on: ubuntu-latest
9 |
10 | steps:
11 | - uses: actions/checkout@v3
12 |
13 | - name: typos-action
14 | uses: crate-ci/typos@v1.12.4
15 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/CITATION.cff:
--------------------------------------------------------------------------------
1 | cff-version: 1.2.0
2 | title: 'Diffusers: State-of-the-art diffusion models'
3 | message: >-
4 | If you use this software, please cite it using the
5 | metadata from this file.
6 | type: software
7 | authors:
8 | - given-names: Patrick
9 | family-names: von Platen
10 | - given-names: Suraj
11 | family-names: Patil
12 | - given-names: Anton
13 | family-names: Lozhkov
14 | - given-names: Pedro
15 | family-names: Cuenca
16 | - given-names: Nathan
17 | family-names: Lambert
18 | - given-names: Kashif
19 | family-names: Rasul
20 | - given-names: Mishig
21 | family-names: Davaadorj
22 | - given-names: Thomas
23 | family-names: Wolf
24 | repository-code: 'https://github.com/huggingface/diffusers'
25 | abstract: >-
26 | Diffusers provides pretrained diffusion models across
27 | multiple modalities, such as vision and audio, and serves
28 | as a modular toolbox for inference and training of
29 | diffusion models.
30 | keywords:
31 | - deep-learning
32 | - pytorch
33 | - image-generation
34 | - diffusion
35 | - text2image
36 | - image2image
37 | - score-based-generative-modeling
38 | - stable-diffusion
39 | license: Apache-2.0
40 | version: 0.12.1
41 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include LICENSE
2 | include src/diffusers/utils/model_card_template.md
3 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/_typos.toml:
--------------------------------------------------------------------------------
1 | # Files for typos
2 | # Instruction: https://github.com/marketplace/actions/typos-action#getting-started
3 |
4 | [default.extend-identifiers]
5 |
6 | [default.extend-words]
7 | NIN="NIN" # NIN is used in scripts/convert_ncsnpp_original_checkpoint_to_diffusers.py
8 | nd="np" # nd may be np (numpy)
9 | parms="parms" # parms is used in scripts/convert_original_stable_diffusion_to_diffusers.py
10 |
11 |
12 | [files]
13 | extend-exclude = ["_typos.toml"]
14 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docker/diffusers-flax-cpu/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM ubuntu:20.04
2 | LABEL maintainer="Hugging Face"
3 | LABEL repository="diffusers"
4 |
5 | ENV DEBIAN_FRONTEND=noninteractive
6 |
7 | RUN apt update && \
8 | apt install -y bash \
9 | build-essential \
10 | git \
11 | git-lfs \
12 | curl \
13 | ca-certificates \
14 | libsndfile1-dev \
15 | python3.8 \
16 | python3-pip \
17 | python3.8-venv && \
18 | rm -rf /var/lib/apt/lists
19 |
20 | # make sure to use venv
21 | RUN python3 -m venv /opt/venv
22 | ENV PATH="/opt/venv/bin:$PATH"
23 |
24 | # pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
25 | # follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container
26 | RUN python3 -m pip install --no-cache-dir --upgrade pip && \
27 | python3 -m pip install --upgrade --no-cache-dir \
28 | clu \
29 | "jax[cpu]>=0.2.16,!=0.3.2" \
30 | "flax>=0.4.1" \
31 | "jaxlib>=0.1.65" && \
32 | python3 -m pip install --no-cache-dir \
33 | accelerate \
34 | datasets \
35 | hf-doc-builder \
36 | huggingface-hub \
37 | Jinja2 \
38 | librosa \
39 | numpy \
40 | scipy \
41 | tensorboard \
42 | transformers
43 |
44 | CMD ["/bin/bash"]
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docker/diffusers-flax-tpu/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM ubuntu:20.04
2 | LABEL maintainer="Hugging Face"
3 | LABEL repository="diffusers"
4 |
5 | ENV DEBIAN_FRONTEND=noninteractive
6 |
7 | RUN apt update && \
8 | apt install -y bash \
9 | build-essential \
10 | git \
11 | git-lfs \
12 | curl \
13 | ca-certificates \
14 | libsndfile1-dev \
15 | python3.8 \
16 | python3-pip \
17 | python3.8-venv && \
18 | rm -rf /var/lib/apt/lists
19 |
20 | # make sure to use venv
21 | RUN python3 -m venv /opt/venv
22 | ENV PATH="/opt/venv/bin:$PATH"
23 |
24 | # pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
25 | # follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container
26 | RUN python3 -m pip install --no-cache-dir --upgrade pip && \
27 | python3 -m pip install --no-cache-dir \
28 | "jax[tpu]>=0.2.16,!=0.3.2" \
29 | -f https://storage.googleapis.com/jax-releases/libtpu_releases.html && \
30 | python3 -m pip install --upgrade --no-cache-dir \
31 | clu \
32 | "flax>=0.4.1" \
33 | "jaxlib>=0.1.65" && \
34 | python3 -m pip install --no-cache-dir \
35 | accelerate \
36 | datasets \
37 | hf-doc-builder \
38 | huggingface-hub \
39 | Jinja2 \
40 | librosa \
41 | numpy \
42 | scipy \
43 | tensorboard \
44 | transformers
45 |
46 | CMD ["/bin/bash"]
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docker/diffusers-onnxruntime-cpu/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM ubuntu:20.04
2 | LABEL maintainer="Hugging Face"
3 | LABEL repository="diffusers"
4 |
5 | ENV DEBIAN_FRONTEND=noninteractive
6 |
7 | RUN apt update && \
8 | apt install -y bash \
9 | build-essential \
10 | git \
11 | git-lfs \
12 | curl \
13 | ca-certificates \
14 | libsndfile1-dev \
15 | python3.8 \
16 | python3-pip \
17 | python3.8-venv && \
18 | rm -rf /var/lib/apt/lists
19 |
20 | # make sure to use venv
21 | RUN python3 -m venv /opt/venv
22 | ENV PATH="/opt/venv/bin:$PATH"
23 |
24 | # pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
25 | RUN python3 -m pip install --no-cache-dir --upgrade pip && \
26 | python3 -m pip install --no-cache-dir \
27 | torch \
28 | torchvision \
29 | torchaudio \
30 | onnxruntime \
31 | --extra-index-url https://download.pytorch.org/whl/cpu && \
32 | python3 -m pip install --no-cache-dir \
33 | accelerate \
34 | datasets \
35 | hf-doc-builder \
36 | huggingface-hub \
37 | Jinja2 \
38 | librosa \
39 | numpy \
40 | scipy \
41 | tensorboard \
42 | transformers
43 |
44 | CMD ["/bin/bash"]
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docker/diffusers-onnxruntime-cuda/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM nvidia/cuda:11.6.2-cudnn8-devel-ubuntu20.04
2 | LABEL maintainer="Hugging Face"
3 | LABEL repository="diffusers"
4 |
5 | ENV DEBIAN_FRONTEND=noninteractive
6 |
7 | RUN apt update && \
8 | apt install -y bash \
9 | build-essential \
10 | git \
11 | git-lfs \
12 | curl \
13 | ca-certificates \
14 | libsndfile1-dev \
15 | python3.8 \
16 | python3-pip \
17 | python3.8-venv && \
18 | rm -rf /var/lib/apt/lists
19 |
20 | # make sure to use venv
21 | RUN python3 -m venv /opt/venv
22 | ENV PATH="/opt/venv/bin:$PATH"
23 |
24 | # pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
25 | RUN python3 -m pip install --no-cache-dir --upgrade pip && \
26 | python3 -m pip install --no-cache-dir \
27 | torch \
28 | torchvision \
29 | torchaudio \
30 | "onnxruntime-gpu>=1.13.1" \
31 | --extra-index-url https://download.pytorch.org/whl/cu117 && \
32 | python3 -m pip install --no-cache-dir \
33 | accelerate \
34 | datasets \
35 | hf-doc-builder \
36 | huggingface-hub \
37 | Jinja2 \
38 | librosa \
39 | numpy \
40 | scipy \
41 | tensorboard \
42 | transformers
43 |
44 | CMD ["/bin/bash"]
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docker/diffusers-pytorch-cpu/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM ubuntu:20.04
2 | LABEL maintainer="Hugging Face"
3 | LABEL repository="diffusers"
4 |
5 | ENV DEBIAN_FRONTEND=noninteractive
6 |
7 | RUN apt update && \
8 | apt install -y bash \
9 | build-essential \
10 | git \
11 | git-lfs \
12 | curl \
13 | ca-certificates \
14 | libsndfile1-dev \
15 | python3.8 \
16 | python3-pip \
17 | python3.8-venv && \
18 | rm -rf /var/lib/apt/lists
19 |
20 | # make sure to use venv
21 | RUN python3 -m venv /opt/venv
22 | ENV PATH="/opt/venv/bin:$PATH"
23 |
24 | # pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
25 | RUN python3 -m pip install --no-cache-dir --upgrade pip && \
26 | python3 -m pip install --no-cache-dir \
27 | torch \
28 | torchvision \
29 | torchaudio \
30 | --extra-index-url https://download.pytorch.org/whl/cpu && \
31 | python3 -m pip install --no-cache-dir \
32 | accelerate \
33 | datasets \
34 | hf-doc-builder \
35 | huggingface-hub \
36 | Jinja2 \
37 | librosa \
38 | numpy \
39 | scipy \
40 | tensorboard \
41 | transformers
42 |
43 | CMD ["/bin/bash"]
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docker/diffusers-pytorch-cuda/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM nvidia/cuda:11.7.1-cudnn8-runtime-ubuntu20.04
2 | LABEL maintainer="Hugging Face"
3 | LABEL repository="diffusers"
4 |
5 | ENV DEBIAN_FRONTEND=noninteractive
6 |
7 | RUN apt update && \
8 | apt install -y bash \
9 | build-essential \
10 | git \
11 | git-lfs \
12 | curl \
13 | ca-certificates \
14 | libsndfile1-dev \
15 | python3.8 \
16 | python3-pip \
17 | python3.8-venv && \
18 | rm -rf /var/lib/apt/lists
19 |
20 | # make sure to use venv
21 | RUN python3 -m venv /opt/venv
22 | ENV PATH="/opt/venv/bin:$PATH"
23 |
24 | # pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
25 | RUN python3 -m pip install --no-cache-dir --upgrade pip && \
26 | python3 -m pip install --no-cache-dir \
27 | torch \
28 | torchvision \
29 | torchaudio \
30 | python3 -m pip install --no-cache-dir \
31 | accelerate \
32 | datasets \
33 | hf-doc-builder \
34 | huggingface-hub \
35 | Jinja2 \
36 | librosa \
37 | numpy \
38 | scipy \
39 | tensorboard \
40 | transformers
41 |
42 | CMD ["/bin/bash"]
43 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/_config.py:
--------------------------------------------------------------------------------
1 | # docstyle-ignore
2 | INSTALL_CONTENT = """
3 | # Diffusers installation
4 | ! pip install diffusers transformers datasets accelerate
5 | # To install from source instead of the last release, comment the command above and uncomment the following one.
6 | # ! pip install git+https://github.com/huggingface/diffusers.git
7 | """
8 |
9 | notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/configuration.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Configuration
14 |
15 | Schedulers from [`~schedulers.scheduling_utils.SchedulerMixin`] and models from [`ModelMixin`] inherit from [`ConfigMixin`] which conveniently takes care of storing all the parameters that are
16 | passed to their respective `__init__` methods in a JSON-configuration file.
17 |
18 | ## ConfigMixin
19 |
20 | [[autodoc]] ConfigMixin
21 | - load_config
22 | - from_config
23 | - save_config
24 | - to_json_file
25 | - to_json_string
26 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/experimental/rl.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # TODO
14 |
15 | Coming soon!
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/loaders.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Loaders
14 |
15 | There are many ways to train adapter neural networks for diffusion models, such as
16 | - [Textual Inversion](./training/text_inversion.mdx)
17 | - [LoRA](https://github.com/cloneofsimo/lora)
18 | - [Hypernetworks](https://arxiv.org/abs/1609.09106)
19 |
20 | Such adapter neural networks often only consist of a fraction of the number of weights compared
21 | to the pretrained model and as such are very portable. The Diffusers library offers an easy-to-use
22 | API to load such adapter neural networks via the [`loaders.py` module](https://github.com/huggingface/diffusers/blob/main/src/diffusers/loaders.py).
23 |
24 | **Note**: This module is still highly experimental and prone to future changes.
25 |
26 | ## LoaderMixins
27 |
28 | ### UNet2DConditionLoadersMixin
29 |
30 | [[autodoc]] loaders.UNet2DConditionLoadersMixin
31 |
32 | ### TextualInversionLoaderMixin
33 |
34 | [[autodoc]] loaders.TextualInversionLoaderMixin
35 |
36 | ### LoraLoaderMixin
37 |
38 | [[autodoc]] loaders.LoraLoaderMixin
39 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/pipelines/dance_diffusion.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Dance Diffusion
14 |
15 | ## Overview
16 |
17 | [Dance Diffusion](https://github.com/Harmonai-org/sample-generator) by Zach Evans.
18 |
19 | Dance Diffusion is the first in a suite of generative audio tools for producers and musicians to be released by Harmonai.
20 | For more info or to get involved in the development of these tools, please visit https://harmonai.org and fill out the form on the front page.
21 |
22 | The original codebase of this implementation can be found [here](https://github.com/Harmonai-org/sample-generator).
23 |
24 | ## Available Pipelines:
25 |
26 | | Pipeline | Tasks | Colab
27 | |---|---|:---:|
28 | | [pipeline_dance_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py) | *Unconditional Audio Generation* | - |
29 |
30 |
31 | ## DanceDiffusionPipeline
32 | [[autodoc]] DanceDiffusionPipeline
33 | - all
34 | - __call__
35 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/pipelines/stable_diffusion/image_variation.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Image Variation
14 |
15 | ## StableDiffusionImageVariationPipeline
16 |
17 | [`StableDiffusionImageVariationPipeline`] lets you generate variations from an input image using Stable Diffusion. It uses a fine-tuned version of Stable Diffusion model, trained by [Justin Pinkney](https://www.justinpinkney.com/) (@Buntworthy) at [Lambda](https://lambdalabs.com/).
18 |
19 | The original codebase can be found here:
20 | [Stable Diffusion Image Variations](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations)
21 |
22 | Available Checkpoints are:
23 | - *sd-image-variations-diffusers*: [lambdalabs/sd-image-variations-diffusers](https://huggingface.co/lambdalabs/sd-image-variations-diffusers)
24 |
25 | [[autodoc]] StableDiffusionImageVariationPipeline
26 | - all
27 | - __call__
28 | - enable_attention_slicing
29 | - disable_attention_slicing
30 | - enable_xformers_memory_efficient_attention
31 | - disable_xformers_memory_efficient_attention
32 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Stable Diffusion Latent Upscaler
14 |
15 | ## StableDiffusionLatentUpscalePipeline
16 |
17 | The Stable Diffusion Latent Upscaler model was created by [Katherine Crowson](https://github.com/crowsonkb/k-diffusion) in collaboration with [Stability AI](https://stability.ai/). It can be used on top of any [`StableDiffusionUpscalePipeline`] checkpoint to enhance its output image resolution by a factor of 2.
18 |
19 | A notebook that demonstrates the original implementation can be found here:
20 | - [Stable Diffusion Upscaler Demo](https://colab.research.google.com/drive/1o1qYJcFeywzCIdkfKJy7cTpgZTCM2EI4)
21 |
22 | Available Checkpoints are:
23 | - *stabilityai/latent-upscaler*: [stabilityai/sd-x2-latent-upscaler](https://huggingface.co/stabilityai/sd-x2-latent-upscaler)
24 |
25 |
26 | [[autodoc]] StableDiffusionLatentUpscalePipeline
27 | - all
28 | - __call__
29 | - enable_sequential_cpu_offload
30 | - enable_attention_slicing
31 | - disable_attention_slicing
32 | - enable_xformers_memory_efficient_attention
33 | - disable_xformers_memory_efficient_attention
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/pipelines/stable_diffusion/upscale.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Super-Resolution
14 |
15 | ## StableDiffusionUpscalePipeline
16 |
17 | The upscaler diffusion model was created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/), and [LAION](https://laion.ai/), as part of Stable Diffusion 2.0. [`StableDiffusionUpscalePipeline`] can be used to enhance the resolution of input images by a factor of 4.
18 |
19 | The original codebase can be found here:
20 | - *Stable Diffusion v2*: [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion#image-upscaling-with-stable-diffusion)
21 |
22 | Available Checkpoints are:
23 | - *stabilityai/stable-diffusion-x4-upscaler (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler)
24 |
25 |
26 | [[autodoc]] StableDiffusionUpscalePipeline
27 | - all
28 | - __call__
29 | - enable_attention_slicing
30 | - disable_attention_slicing
31 | - enable_xformers_memory_efficient_attention
32 | - disable_xformers_memory_efficient_attention
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/ddim_inverse.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Inverse Denoising Diffusion Implicit Models (DDIMInverse)
14 |
15 | ## Overview
16 |
17 | This scheduler is the inverted scheduler of [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
18 | The implementation is mostly based on the DDIM inversion definition of [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://arxiv.org/pdf/2211.09794.pdf)
19 |
20 | ## DDIMInverseScheduler
21 | [[autodoc]] DDIMInverseScheduler
22 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/deis.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # DEIS
14 |
15 | Fast Sampling of Diffusion Models with Exponential Integrator.
16 |
17 | ## Overview
18 |
19 | Original paper can be found [here](https://arxiv.org/abs/2204.13902). The original implementation can be found [here](https://github.com/qsh-zh/deis).
20 |
21 | ## DEISMultistepScheduler
22 | [[autodoc]] DEISMultistepScheduler
23 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/dpm_discrete.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # DPM Discrete Scheduler inspired by Karras et. al paper
14 |
15 | ## Overview
16 |
17 | Inspired by [Karras et. al](https://arxiv.org/abs/2206.00364). Scheduler ported from @crowsonkb's https://github.com/crowsonkb/k-diffusion library:
18 |
19 | All credit for making this scheduler work goes to [Katherine Crowson](https://github.com/crowsonkb/)
20 |
21 | ## KDPM2DiscreteScheduler
22 | [[autodoc]] KDPM2DiscreteScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/dpm_discrete_ancestral.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # DPM Discrete Scheduler with ancestral sampling inspired by Karras et. al paper
14 |
15 | ## Overview
16 |
17 | Inspired by [Karras et. al](https://arxiv.org/abs/2206.00364). Scheduler ported from @crowsonkb's https://github.com/crowsonkb/k-diffusion library:
18 |
19 | All credit for making this scheduler work goes to [Katherine Crowson](https://github.com/crowsonkb/)
20 |
21 | ## KDPM2AncestralDiscreteScheduler
22 | [[autodoc]] KDPM2AncestralDiscreteScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/euler.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Euler scheduler
14 |
15 | ## Overview
16 |
17 | Euler scheduler (Algorithm 2) from the paper [Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364) by Karras et al. (2022). Based on the original [k-diffusion](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51) implementation by Katherine Crowson.
18 | Fast scheduler which often times generates good outputs with 20-30 steps.
19 |
20 | ## EulerDiscreteScheduler
21 | [[autodoc]] EulerDiscreteScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/euler_ancestral.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Euler Ancestral scheduler
14 |
15 | ## Overview
16 |
17 | Ancestral sampling with Euler method steps. Based on the original [k-diffusion](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72) implementation by Katherine Crowson.
18 | Fast scheduler which often times generates good outputs with 20-30 steps.
19 |
20 | ## EulerAncestralDiscreteScheduler
21 | [[autodoc]] EulerAncestralDiscreteScheduler
22 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/heun.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Heun scheduler inspired by Karras et. al paper
14 |
15 | ## Overview
16 |
17 | Algorithm 1 of [Karras et. al](https://arxiv.org/abs/2206.00364).
18 | Scheduler ported from @crowsonkb's https://github.com/crowsonkb/k-diffusion library:
19 |
20 | All credit for making this scheduler work goes to [Katherine Crowson](https://github.com/crowsonkb/)
21 |
22 | ## HeunDiscreteScheduler
23 | [[autodoc]] HeunDiscreteScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/ipndm.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # improved pseudo numerical methods for diffusion models (iPNDM)
14 |
15 | ## Overview
16 |
17 | Original implementation can be found [here](https://github.com/crowsonkb/v-diffusion-pytorch/blob/987f8985e38208345c1959b0ea767a625831cc9b/diffusion/sampling.py#L296).
18 |
19 | ## IPNDMScheduler
20 | [[autodoc]] IPNDMScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/lms_discrete.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Linear multistep scheduler for discrete beta schedules
14 |
15 | ## Overview
16 |
17 | Original implementation can be found [here](https://arxiv.org/abs/2206.00364).
18 |
19 | ## LMSDiscreteScheduler
20 | [[autodoc]] LMSDiscreteScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/multistep_dpm_solver.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Multistep DPM-Solver
14 |
15 | ## Overview
16 |
17 | Original paper can be found [here](https://arxiv.org/abs/2206.00927) and the [improved version](https://arxiv.org/abs/2211.01095). The original implementation can be found [here](https://github.com/LuChengTHU/dpm-solver).
18 |
19 | ## DPMSolverMultistepScheduler
20 | [[autodoc]] DPMSolverMultistepScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/pndm.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Pseudo numerical methods for diffusion models (PNDM)
14 |
15 | ## Overview
16 |
17 | Original implementation can be found [here](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181).
18 |
19 | ## PNDMScheduler
20 | [[autodoc]] PNDMScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/repaint.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # RePaint scheduler
14 |
15 | ## Overview
16 |
17 | DDPM-based inpainting scheduler for unsupervised inpainting with extreme masks.
18 | Intended for use with [`RePaintPipeline`].
19 | Based on the paper [RePaint: Inpainting using Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2201.09865)
20 | and the original implementation by Andreas Lugmayr et al.: https://github.com/andreas128/RePaint
21 |
22 | ## RePaintScheduler
23 | [[autodoc]] RePaintScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/score_sde_ve.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Variance Exploding Stochastic Differential Equation (VE-SDE) scheduler
14 |
15 | ## Overview
16 |
17 | Original paper can be found [here](https://arxiv.org/abs/2011.13456).
18 |
19 | ## ScoreSdeVeScheduler
20 | [[autodoc]] ScoreSdeVeScheduler
21 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/score_sde_vp.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Variance Preserving Stochastic Differential Equation (VP-SDE) scheduler
14 |
15 | ## Overview
16 |
17 | Original paper can be found [here](https://arxiv.org/abs/2011.13456).
18 |
19 |
20 |
21 | Score SDE-VP is under construction.
22 |
23 |
24 |
25 | ## ScoreSdeVpScheduler
26 | [[autodoc]] schedulers.scheduling_sde_vp.ScoreSdeVpScheduler
27 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/singlestep_dpm_solver.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Singlestep DPM-Solver
14 |
15 | ## Overview
16 |
17 | Original paper can be found [here](https://arxiv.org/abs/2206.00927) and the [improved version](https://arxiv.org/abs/2211.01095). The original implementation can be found [here](https://github.com/LuChengTHU/dpm-solver).
18 |
19 | ## DPMSolverSinglestepScheduler
20 | [[autodoc]] DPMSolverSinglestepScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/stochastic_karras_ve.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Variance exploding, stochastic sampling from Karras et. al
14 |
15 | ## Overview
16 |
17 | Original paper can be found [here](https://arxiv.org/abs/2206.00364).
18 |
19 | ## KarrasVeScheduler
20 | [[autodoc]] KarrasVeScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/unipc.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # UniPC
14 |
15 | ## Overview
16 |
17 | UniPC is a training-free framework designed for the fast sampling of diffusion models, which consists of a corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders.
18 |
19 | For more details about the method, please refer to the [paper](https://arxiv.org/abs/2302.04867) and the [code](https://github.com/wl-zhao/UniPC).
20 |
21 | Fast Sampling of Diffusion Models with Exponential Integrator.
22 |
23 | ## UniPCMultistepScheduler
24 | [[autodoc]] UniPCMultistepScheduler
25 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/api/schedulers/vq_diffusion.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # VQDiffusionScheduler
14 |
15 | ## Overview
16 |
17 | Original paper can be found [here](https://arxiv.org/abs/2111.14822)
18 |
19 | ## VQDiffusionScheduler
20 | [[autodoc]] VQDiffusionScheduler
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/imgs/access_request.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/docs/source/en/imgs/access_request.png
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/imgs/diffusers_library.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/docs/source/en/imgs/diffusers_library.jpg
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/optimization/opt_overview.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Overview
14 |
15 | Generating high-quality outputs is computationally intensive, especially during each iterative step where you go from a noisy output to a less noisy output. One of 🧨 Diffuser's goal is to make this technology widely accessible to everyone, which includes enabling fast inference on consumer and specialized hardware.
16 |
17 | This section will cover tips and tricks - like half-precision weights and sliced attention - for optimizing inference speed and reducing memory-consumption. You can also learn how to speed up your PyTorch code with [`torch.compile`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) or [ONNX Runtime](https://onnxruntime.ai/docs/), and enable memory-efficient attention with [xFormers](https://facebookresearch.github.io/xformers/). There are also guides for running inference on specific hardware like Apple Silicon, and Intel or Habana processors.
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/tutorials/tutorial_overview.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Overview
14 |
15 | Welcome to 🧨 Diffusers! If you're new to diffusion models and generative AI, and want to learn more, then you've come to the right place. These beginner-friendly tutorials are designed to provide a gentle introduction to diffusion models and help you understand the library fundamentals - the core components and how 🧨 Diffusers is meant to be used.
16 |
17 | You'll learn how to use a pipeline for inference to rapidly generate things, and then deconstruct that pipeline to really understand how to use the library as a modular toolbox for building your own diffusion systems. In the next lesson, you'll learn how to train your own diffusion model to generate what you want.
18 |
19 | After completing the tutorials, you'll have gained the necessary skills to start exploring the library on your own and see how to use it for your own projects and applications.
20 |
21 | Feel free to join our community on [Discord](https://discord.com/invite/JfAtkvEtRb) or the [forums](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) to connect and collaborate with other users and developers!
22 |
23 | Let's start diffusing! 🧨
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/using-diffusers/audio.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Using Diffusers for audio
14 |
15 | [`DanceDiffusionPipeline`] and [`AudioDiffusionPipeline`] can be used to generate
16 | audio rapidly! More coming soon!
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/using-diffusers/loading_overview.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Overview
14 |
15 | 🧨 Diffusers offers many pipelines, models, and schedulers for generative tasks. To make loading these components as simple as possible, we provide a single and unified method - `from_pretrained()` - that loads any of these components from either the Hugging Face [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) or your local machine. Whenever you load a pipeline or model, the latest files are automatically downloaded and cached so you can quickly reuse them next time without redownloading the files.
16 |
17 | This section will show you everything you need to know about loading pipelines, how to load different components in a pipeline, how to load checkpoint variants, and how to load community pipelines. You'll also learn how to load schedulers and compare the speed and quality trade-offs of using different schedulers. Finally, you'll see how to convert and load KerasCV checkpoints so you can use them in PyTorch with 🧨 Diffusers.
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/using-diffusers/other-modalities.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Using Diffusers with other modalities
14 |
15 | Diffusers is in the process of expanding to modalities other than images.
16 |
17 | Example type | Colab | Pipeline |
18 | :-------------------------:|:-------------------------:|:-------------------------:|
19 | [Molecule conformation](https://www.nature.com/subjects/molecular-conformation#:~:text=Definition,to%20changes%20in%20their%20environment.) generation | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/geodiff_molecule_conformation.ipynb) | ❌
20 |
21 | More coming soon!
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/using-diffusers/pipeline_overview.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Overview
14 |
15 | A pipeline is an end-to-end class that provides a quick and easy way to use a diffusion system for inference by bundling independently trained models and schedulers together. Certain combinations of models and schedulers define specific pipeline types, like [`StableDiffusionPipeline`] or [`StableDiffusionControlNetPipeline`], with specific capabilities. All pipeline types inherit from the base [`DiffusionPipeline`] class; pass it any checkpoint, and it'll automatically detect the pipeline type and load the necessary components.
16 |
17 | This section introduces you to some of the tasks supported by our pipelines such as unconditional image generation and different techniques and variations of text-to-image generation. You'll also learn how to gain more control over the generation process by setting a seed for reproducibility and weighting prompts to adjust the influence certain words in the prompt has over the output. Finally, you'll see how you can create a community pipeline for a custom task like generating images from speech.
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/using-diffusers/rl.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # Using Diffusers for reinforcement learning
14 |
15 | Support for one RL model and related pipelines is included in the `experimental` source of diffusers.
16 | More models and examples coming soon!
17 |
18 | # Diffuser Value-guided Planning
19 |
20 | You can run the model from [*Planning with Diffusion for Flexible Behavior Synthesis*](https://arxiv.org/abs/2205.09991) with Diffusers.
21 | The script is located in the [RL Examples](https://github.com/huggingface/diffusers/tree/main/examples/rl) folder.
22 |
23 | Or, run this example in Colab [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/reinforcement_learning_with_diffusers.ipynb)
24 |
25 | [[autodoc]] diffusers.experimental.ValueGuidedRLPipeline
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/en/using-diffusers/using_safetensors:
--------------------------------------------------------------------------------
1 | # What is safetensors ?
2 |
3 | [safetensors](https://github.com/huggingface/safetensors) is a different format
4 | from the classic `.bin` which uses Pytorch which uses pickle.
5 |
6 | Pickle is notoriously unsafe which allow any malicious file to execute arbitrary code.
7 | The hub itself tries to prevent issues from it, but it's not a silver bullet.
8 |
9 | `safetensors` first and foremost goal is to make loading machine learning models *safe*
10 | in the sense that no takeover of your computer can be done.
11 |
12 | # Why use safetensors ?
13 |
14 | **Safety** can be one reason, if you're attempting to use a not well known model and
15 | you're not sure about the source of the file.
16 |
17 | And a secondary reason, is **the speed of loading**. Safetensors can load models much faster
18 | than regular pickle files. If you spend a lot of times switching models, this can be
19 | a huge timesave.
20 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/docs/source/ko/in_translation.mdx:
--------------------------------------------------------------------------------
1 |
12 |
13 | # 번역중
14 |
15 | 열심히 번역을 진행중입니다. 조금만 기다려주세요.
16 | 감사합니다!
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/community/one_step_unet.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | import torch
3 |
4 | from diffusers import DiffusionPipeline
5 |
6 |
7 | class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
8 | def __init__(self, unet, scheduler):
9 | super().__init__()
10 |
11 | self.register_modules(unet=unet, scheduler=scheduler)
12 |
13 | def __call__(self):
14 | image = torch.randn(
15 | (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
16 | )
17 | timestep = 1
18 |
19 | model_output = self.unet(image, timestep).sample
20 | scheduler_output = self.scheduler.step(model_output, timestep, image).prev_sample
21 |
22 | result = scheduler_output - scheduler_output + torch.ones_like(scheduler_output)
23 |
24 | return result
25 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/controlnet/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | transformers>=4.25.1
4 | ftfy
5 | tensorboard
6 | datasets
7 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/controlnet/requirements_flax.txt:
--------------------------------------------------------------------------------
1 | transformers>=4.25.1
2 | datasets
3 | flax
4 | optax
5 | torch
6 | torchvision
7 | ftfy
8 | tensorboard
9 | Jinja2
10 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/dreambooth/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | transformers>=4.25.1
4 | ftfy
5 | tensorboard
6 | Jinja2
7 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/dreambooth/requirements_flax.txt:
--------------------------------------------------------------------------------
1 | transformers>=4.25.1
2 | flax
3 | optax
4 | torch
5 | torchvision
6 | ftfy
7 | tensorboard
8 | Jinja2
9 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/inference/README.md:
--------------------------------------------------------------------------------
1 | # Inference Examples
2 |
3 | **The inference examples folder is deprecated and will be removed in a future version**.
4 | **Officially supported inference examples can be found in the [Pipelines folder](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines)**.
5 |
6 | - For `Image-to-Image text-guided generation with Stable Diffusion`, please have a look at the official [Pipeline examples](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines#examples)
7 | - For `In-painting using Stable Diffusion`, please have a look at the official [Pipeline examples](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines#examples)
8 | - For `Tweak prompts reusing seeds and latents`, please have a look at the official [Pipeline examples](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines#examples)
9 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/inference/image_to_image.py:
--------------------------------------------------------------------------------
1 | import warnings
2 |
3 | from diffusers import StableDiffusionImg2ImgPipeline # noqa F401
4 |
5 |
6 | warnings.warn(
7 | "The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
8 | " StableDiffusionImg2ImgPipeline` instead."
9 | )
10 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/inference/inpainting.py:
--------------------------------------------------------------------------------
1 | import warnings
2 |
3 | from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
4 |
5 |
6 | warnings.warn(
7 | "The `inpainting.py` script is outdated. Please use directly `from diffusers import"
8 | " StableDiffusionInpaintPipeline` instead."
9 | )
10 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/instruct_pix2pix/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | transformers>=4.25.1
4 | datasets
5 | ftfy
6 | tensorboard
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/README.md:
--------------------------------------------------------------------------------
1 | # Research projects
2 |
3 | This folder contains various research projects using 🧨 Diffusers.
4 | They are not really maintained by the core maintainers of this library and often require a specific version of Diffusers that is indicated in the requirements file of each folder.
5 | Updating them to the most recent version of the library will require some work.
6 |
7 | To use any of them, just run the command
8 |
9 | ```
10 | pip install -r requirements.txt
11 | ```
12 | inside the folder of your choice.
13 |
14 | If you need help with any of those, please open an issue where you directly ping the author(s), as indicated at the top of the README of each folder.
15 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/colossalai/inference.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 | from diffusers import StableDiffusionPipeline
4 |
5 |
6 | model_id = "path-to-your-trained-model"
7 | pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
8 |
9 | prompt = "A photo of sks dog in a bucket"
10 | image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
11 |
12 | image.save("dog-bucket.png")
13 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/colossalai/requirement.txt:
--------------------------------------------------------------------------------
1 | diffusers
2 | torch
3 | torchvision
4 | ftfy
5 | tensorboard
6 | Jinja2
7 | transformers
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/dreambooth_inpaint/requirements.txt:
--------------------------------------------------------------------------------
1 | diffusers==0.9.0
2 | accelerate>=0.16.0
3 | torchvision
4 | transformers>=4.21.0
5 | ftfy
6 | tensorboard
7 | Jinja2
8 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/intel_opts/textual_inversion/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | transformers>=4.21.0
4 | ftfy
5 | tensorboard
6 | Jinja2
7 | intel_extension_for_pytorch>=1.13
8 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/lora/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | transformers>=4.25.1
4 | datasets
5 | ftfy
6 | tensorboard
7 | Jinja2
8 | git+https://github.com/huggingface/peft.git
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/mulit_token_textual_inversion/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | transformers>=4.25.1
4 | ftfy
5 | tensorboard
6 | Jinja2
7 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/mulit_token_textual_inversion/requirements_flax.txt:
--------------------------------------------------------------------------------
1 | transformers>=4.25.1
2 | flax
3 | optax
4 | torch
5 | torchvision
6 | ftfy
7 | tensorboard
8 | Jinja2
9 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/multi_subject_dreambooth/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | transformers>=4.25.1
4 | ftfy
5 | tensorboard
6 | Jinja2
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/onnxruntime/README.md:
--------------------------------------------------------------------------------
1 | ## Diffusers examples with ONNXRuntime optimizations
2 |
3 | **This research project is not actively maintained by the diffusers team. For any questions or comments, please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.**
4 |
5 | This aims to provide diffusers examples with ONNXRuntime optimizations for training/fine-tuning unconditional image generation, text to image, and textual inversion. Please see individual directories for more details on how to run each task using ONNXRuntime.
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/onnxruntime/text_to_image/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | transformers>=4.25.1
4 | datasets
5 | ftfy
6 | tensorboard
7 | modelcards
8 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/onnxruntime/textual_inversion/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | transformers>=4.25.1
4 | ftfy
5 | tensorboard
6 | modelcards
7 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/research_projects/onnxruntime/unconditional_image_generation/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | datasets
4 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/rl/README.md:
--------------------------------------------------------------------------------
1 | # Overview
2 |
3 | These examples show how to run [Diffuser](https://arxiv.org/abs/2205.09991) in Diffusers.
4 | There are two ways to use the script, `run_diffuser_locomotion.py`.
5 |
6 | The key option is a change of the variable `n_guide_steps`.
7 | When `n_guide_steps=0`, the trajectories are sampled from the diffusion model, but not fine-tuned to maximize reward in the environment.
8 | By default, `n_guide_steps=2` to match the original implementation.
9 |
10 |
11 | You will need some RL specific requirements to run the examples:
12 |
13 | ```
14 | pip install -f https://download.pytorch.org/whl/torch_stable.html \
15 | free-mujoco-py \
16 | einops \
17 | gym==0.24.1 \
18 | protobuf==3.20.1 \
19 | git+https://github.com/rail-berkeley/d4rl.git \
20 | mediapy \
21 | Pillow==9.0.0
22 | ```
23 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/rl/run_diffuser_locomotion.py:
--------------------------------------------------------------------------------
1 | import d4rl # noqa
2 | import gym
3 | import tqdm
4 | from diffusers.experimental import ValueGuidedRLPipeline
5 |
6 |
7 | config = {
8 | "n_samples": 64,
9 | "horizon": 32,
10 | "num_inference_steps": 20,
11 | "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network
12 | "scale_grad_by_std": True,
13 | "scale": 0.1,
14 | "eta": 0.0,
15 | "t_grad_cutoff": 2,
16 | "device": "cpu",
17 | }
18 |
19 |
20 | if __name__ == "__main__":
21 | env_name = "hopper-medium-v2"
22 | env = gym.make(env_name)
23 |
24 | pipeline = ValueGuidedRLPipeline.from_pretrained(
25 | "bglick13/hopper-medium-v2-value-function-hor32",
26 | env=env,
27 | )
28 |
29 | env.seed(0)
30 | obs = env.reset()
31 | total_reward = 0
32 | total_score = 0
33 | T = 1000
34 | rollout = [obs.copy()]
35 | try:
36 | for t in tqdm.tqdm(range(T)):
37 | # call the policy
38 | denorm_actions = pipeline(obs, planning_horizon=32)
39 |
40 | # execute action in environment
41 | next_observation, reward, terminal, _ = env.step(denorm_actions)
42 | score = env.get_normalized_score(total_reward)
43 |
44 | # update return
45 | total_reward += reward
46 | total_score += score
47 | print(
48 | f"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
49 | f" {total_score}"
50 | )
51 |
52 | # save observations for rendering
53 | rollout.append(next_observation.copy())
54 |
55 | obs = next_observation
56 | except KeyboardInterrupt:
57 | pass
58 |
59 | print(f"Total reward: {total_reward}")
60 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/text_to_image/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | transformers>=4.25.1
4 | datasets
5 | ftfy
6 | tensorboard
7 | Jinja2
8 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/text_to_image/requirements_flax.txt:
--------------------------------------------------------------------------------
1 | transformers>=4.25.1
2 | datasets
3 | flax
4 | optax
5 | torch
6 | torchvision
7 | ftfy
8 | tensorboard
9 | Jinja2
10 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/textual_inversion/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | transformers>=4.25.1
4 | ftfy
5 | tensorboard
6 | Jinja2
7 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/textual_inversion/requirements_flax.txt:
--------------------------------------------------------------------------------
1 | transformers>=4.25.1
2 | flax
3 | optax
4 | torch
5 | torchvision
6 | ftfy
7 | tensorboard
8 | Jinja2
9 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/examples/unconditional_image_generation/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate>=0.16.0
2 | torchvision
3 | datasets
4 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/pyproject.toml:
--------------------------------------------------------------------------------
1 | [tool.black]
2 | line-length = 119
3 | target-version = ['py37']
4 |
5 | [tool.ruff]
6 | # Never enforce `E501` (line length violations).
7 | ignore = ["C901", "E501", "E741", "W605"]
8 | select = ["C", "E", "F", "I", "W"]
9 | line-length = 119
10 |
11 | # Ignore import violations in all `__init__.py` files.
12 | [tool.ruff.per-file-ignores]
13 | "__init__.py" = ["E402", "F401", "F403", "F811"]
14 | "src/diffusers/utils/dummy_*.py" = ["F401"]
15 |
16 | [tool.ruff.isort]
17 | lines-after-imports = 2
18 | known-first-party = ["diffusers"]
19 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/scripts/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/scripts/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/scripts/convert_unclip_txt2img_to_image_variation.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
4 |
5 | from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
6 |
7 |
8 | if __name__ == "__main__":
9 | parser = argparse.ArgumentParser()
10 |
11 | parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
12 |
13 | parser.add_argument(
14 | "--txt2img_unclip",
15 | default="kakaobrain/karlo-v1-alpha",
16 | type=str,
17 | required=False,
18 | help="The pretrained txt2img unclip.",
19 | )
20 |
21 | args = parser.parse_args()
22 |
23 | txt2img = UnCLIPPipeline.from_pretrained(args.txt2img_unclip)
24 |
25 | feature_extractor = CLIPImageProcessor()
26 | image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
27 |
28 | img2img = UnCLIPImageVariationPipeline(
29 | decoder=txt2img.decoder,
30 | text_encoder=txt2img.text_encoder,
31 | tokenizer=txt2img.tokenizer,
32 | text_proj=txt2img.text_proj,
33 | feature_extractor=feature_extractor,
34 | image_encoder=image_encoder,
35 | super_res_first=txt2img.super_res_first,
36 | super_res_last=txt2img.super_res_last,
37 | decoder_scheduler=txt2img.decoder_scheduler,
38 | super_res_scheduler=txt2img.super_res_scheduler,
39 | )
40 |
41 | img2img.save_pretrained(args.dump_path)
42 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/setup.cfg:
--------------------------------------------------------------------------------
1 | [isort]
2 | default_section = FIRSTPARTY
3 | ensure_newline_before_comments = True
4 | force_grid_wrap = 0
5 | include_trailing_comma = True
6 | known_first_party = accelerate
7 | known_third_party =
8 | numpy
9 | torch
10 | torch_xla
11 |
12 | line_length = 119
13 | lines_after_imports = 2
14 | multi_line_output = 3
15 | use_parentheses = True
16 |
17 | [flake8]
18 | ignore = E203, E722, E501, E741, W503, W605
19 | max-line-length = 119
20 | per-file-ignores = __init__.py:F401
21 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/commands/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from abc import ABC, abstractmethod
16 | from argparse import ArgumentParser
17 |
18 |
19 | class BaseDiffusersCLICommand(ABC):
20 | @staticmethod
21 | @abstractmethod
22 | def register_subcommand(parser: ArgumentParser):
23 | raise NotImplementedError()
24 |
25 | @abstractmethod
26 | def run(self):
27 | raise NotImplementedError()
28 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/commands/diffusers_cli.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # Copyright 2023 The HuggingFace Team. All rights reserved.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 | from argparse import ArgumentParser
17 |
18 | from .env import EnvironmentCommand
19 |
20 |
21 | def main():
22 | parser = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli []")
23 | commands_parser = parser.add_subparsers(help="diffusers-cli command helpers")
24 |
25 | # Register commands
26 | EnvironmentCommand.register_subcommand(commands_parser)
27 |
28 | # Let's go
29 | args = parser.parse_args()
30 |
31 | if not hasattr(args, "func"):
32 | parser.print_help()
33 | exit(1)
34 |
35 | # Run
36 | service = args.func(args)
37 | service.run()
38 |
39 |
40 | if __name__ == "__main__":
41 | main()
42 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/dependency_versions_table.py:
--------------------------------------------------------------------------------
1 | # THIS FILE HAS BEEN AUTOGENERATED. To update:
2 | # 1. modify the `_deps` dict in setup.py
3 | # 2. run `make deps_table_update``
4 | deps = {
5 | "Pillow": "Pillow",
6 | "accelerate": "accelerate>=0.11.0",
7 | "compel": "compel==0.1.8",
8 | "black": "black~=23.1",
9 | "datasets": "datasets",
10 | "filelock": "filelock",
11 | "flax": "flax>=0.4.1",
12 | "hf-doc-builder": "hf-doc-builder>=0.3.0",
13 | "huggingface-hub": "huggingface-hub>=0.13.2",
14 | "requests-mock": "requests-mock==1.10.0",
15 | "importlib_metadata": "importlib_metadata",
16 | "isort": "isort>=5.5.4",
17 | "jax": "jax>=0.2.8,!=0.3.2",
18 | "jaxlib": "jaxlib>=0.1.65",
19 | "Jinja2": "Jinja2",
20 | "k-diffusion": "k-diffusion>=0.0.12",
21 | "librosa": "librosa",
22 | "note-seq": "note-seq",
23 | "numpy": "numpy",
24 | "parameterized": "parameterized",
25 | "protobuf": "protobuf>=3.20.3,<4",
26 | "pytest": "pytest",
27 | "pytest-timeout": "pytest-timeout",
28 | "pytest-xdist": "pytest-xdist",
29 | "ruff": "ruff>=0.0.241",
30 | "safetensors": "safetensors",
31 | "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
32 | "scipy": "scipy",
33 | "regex": "regex!=2019.12.17",
34 | "requests": "requests",
35 | "tensorboard": "tensorboard",
36 | "torch": "torch>=1.4",
37 | "torchvision": "torchvision",
38 | "transformers": "transformers>=4.25.1",
39 | }
40 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/experimental/README.md:
--------------------------------------------------------------------------------
1 | # 🧨 Diffusers Experimental
2 |
3 | We are adding experimental code to support novel applications and usages of the Diffusers library.
4 | Currently, the following experiments are supported:
5 | * Reinforcement learning via an implementation of the [Diffuser](https://arxiv.org/abs/2205.09991) model.
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/experimental/__init__.py:
--------------------------------------------------------------------------------
1 | from .rl import ValueGuidedRLPipeline
2 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/experimental/rl/__init__.py:
--------------------------------------------------------------------------------
1 | from .value_guided_sampling import ValueGuidedRLPipeline
2 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/models/README.md:
--------------------------------------------------------------------------------
1 | # Models
2 |
3 | For more detail on the models, please refer to the [docs](https://huggingface.co/docs/diffusers/api/models).
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/models/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 |
15 | from ..utils import is_flax_available, is_torch_available
16 |
17 |
18 | if is_torch_available():
19 | from .autoencoder_kl import AutoencoderKL
20 | from .controlnet import ControlNetModel
21 | from .dual_transformer_2d import DualTransformer2DModel
22 | from .modeling_utils import ModelMixin
23 | from .prior_transformer import PriorTransformer
24 | from .t5_film_transformer import T5FilmDecoder
25 | from .transformer_2d import Transformer2DModel
26 | from .unet_1d import UNet1DModel
27 | from .unet_2d import UNet2DModel
28 | from .unet_2d_condition import UNet2DConditionModel
29 | from .unet_3d_condition import UNet3DConditionModel
30 | from .vq_model import VQModel
31 |
32 | if is_flax_available():
33 | from .controlnet_flax import FlaxControlNetModel
34 | from .unet_2d_condition_flax import FlaxUNet2DConditionModel
35 | from .vae_flax import FlaxAutoencoderKL
36 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipeline_utils.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 |
14 | # limitations under the License.
15 |
16 | # NOTE: This file is deprecated and will be removed in a future version.
17 | # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
18 |
19 | from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
20 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/alt_diffusion/__init__.py:
--------------------------------------------------------------------------------
1 | from dataclasses import dataclass
2 | from typing import List, Optional, Union
3 |
4 | import numpy as np
5 | import PIL
6 | from PIL import Image
7 |
8 | from ...utils import BaseOutput, is_torch_available, is_transformers_available
9 |
10 |
11 | @dataclass
12 | # Copied from diffusers.pipelines.stable_diffusion.__init__.StableDiffusionPipelineOutput with Stable->Alt
13 | class AltDiffusionPipelineOutput(BaseOutput):
14 | """
15 | Output class for Alt Diffusion pipelines.
16 |
17 | Args:
18 | images (`List[PIL.Image.Image]` or `np.ndarray`)
19 | List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
20 | num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
21 | nsfw_content_detected (`List[bool]`)
22 | List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
23 | (nsfw) content, or `None` if safety checking could not be performed.
24 | """
25 |
26 | images: Union[List[PIL.Image.Image], np.ndarray]
27 | nsfw_content_detected: Optional[List[bool]]
28 |
29 |
30 | if is_transformers_available() and is_torch_available():
31 | from .modeling_roberta_series import RobertaSeriesModelWithTransformation
32 | from .pipeline_alt_diffusion import AltDiffusionPipeline
33 | from .pipeline_alt_diffusion_img2img import AltDiffusionImg2ImgPipeline
34 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/audio_diffusion/__init__.py:
--------------------------------------------------------------------------------
1 | from .mel import Mel
2 | from .pipeline_audio_diffusion import AudioDiffusionPipeline
3 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/audioldm/__init__.py:
--------------------------------------------------------------------------------
1 | from ...utils import (
2 | OptionalDependencyNotAvailable,
3 | is_torch_available,
4 | is_transformers_available,
5 | is_transformers_version,
6 | )
7 |
8 |
9 | try:
10 | if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.27.0")):
11 | raise OptionalDependencyNotAvailable()
12 | except OptionalDependencyNotAvailable:
13 | from ...utils.dummy_torch_and_transformers_objects import (
14 | AudioLDMPipeline,
15 | )
16 | else:
17 | from .pipeline_audioldm import AudioLDMPipeline
18 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/dance_diffusion/__init__.py:
--------------------------------------------------------------------------------
1 | from .pipeline_dance_diffusion import DanceDiffusionPipeline
2 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/ddim/__init__.py:
--------------------------------------------------------------------------------
1 | from .pipeline_ddim import DDIMPipeline
2 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/ddpm/__init__.py:
--------------------------------------------------------------------------------
1 | from .pipeline_ddpm import DDPMPipeline
2 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/dit/__init__.py:
--------------------------------------------------------------------------------
1 | from .pipeline_dit import DiTPipeline
2 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/latent_diffusion/__init__.py:
--------------------------------------------------------------------------------
1 | from ...utils import is_transformers_available
2 | from .pipeline_latent_diffusion_superresolution import LDMSuperResolutionPipeline
3 |
4 |
5 | if is_transformers_available():
6 | from .pipeline_latent_diffusion import LDMBertModel, LDMTextToImagePipeline
7 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/latent_diffusion_uncond/__init__.py:
--------------------------------------------------------------------------------
1 | from .pipeline_latent_diffusion_uncond import LDMPipeline
2 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/paint_by_example/__init__.py:
--------------------------------------------------------------------------------
1 | from dataclasses import dataclass
2 | from typing import List, Optional, Union
3 |
4 | import numpy as np
5 | import PIL
6 | from PIL import Image
7 |
8 | from ...utils import is_torch_available, is_transformers_available
9 |
10 |
11 | if is_transformers_available() and is_torch_available():
12 | from .image_encoder import PaintByExampleImageEncoder
13 | from .pipeline_paint_by_example import PaintByExamplePipeline
14 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/pndm/__init__.py:
--------------------------------------------------------------------------------
1 | from .pipeline_pndm import PNDMPipeline
2 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/repaint/__init__.py:
--------------------------------------------------------------------------------
1 | from .pipeline_repaint import RePaintPipeline
2 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/score_sde_ve/__init__.py:
--------------------------------------------------------------------------------
1 | from .pipeline_score_sde_ve import ScoreSdeVePipeline
2 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/__init__.py:
--------------------------------------------------------------------------------
1 | from dataclasses import dataclass
2 | from enum import Enum
3 | from typing import List, Optional, Union
4 |
5 | import numpy as np
6 | import PIL
7 | from PIL import Image
8 |
9 | from ...utils import BaseOutput, is_torch_available, is_transformers_available
10 |
11 |
12 | @dataclass
13 | class SemanticStableDiffusionPipelineOutput(BaseOutput):
14 | """
15 | Output class for Stable Diffusion pipelines.
16 |
17 | Args:
18 | images (`List[PIL.Image.Image]` or `np.ndarray`)
19 | List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
20 | num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
21 | nsfw_content_detected (`List[bool]`)
22 | List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
23 | (nsfw) content, or `None` if safety checking could not be performed.
24 | """
25 |
26 | images: Union[List[PIL.Image.Image], np.ndarray]
27 | nsfw_content_detected: Optional[List[bool]]
28 |
29 |
30 | if is_transformers_available() and is_torch_available():
31 | from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
32 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/spectrogram_diffusion/__init__.py:
--------------------------------------------------------------------------------
1 | # flake8: noqa
2 | from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
3 | from ...utils import OptionalDependencyNotAvailable
4 |
5 |
6 | try:
7 | if not (is_transformers_available() and is_torch_available()):
8 | raise OptionalDependencyNotAvailable()
9 | except OptionalDependencyNotAvailable:
10 | from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
11 | else:
12 | from .notes_encoder import SpectrogramNotesEncoder
13 | from .continous_encoder import SpectrogramContEncoder
14 | from .pipeline_spectrogram_diffusion import (
15 | SpectrogramContEncoder,
16 | SpectrogramDiffusionPipeline,
17 | T5FilmDecoder,
18 | )
19 |
20 | try:
21 | if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
22 | raise OptionalDependencyNotAvailable()
23 | except OptionalDependencyNotAvailable:
24 | from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
25 | else:
26 | from .midi_utils import MidiProcessor
27 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/stochastic_karras_ve/__init__.py:
--------------------------------------------------------------------------------
1 | from .pipeline_stochastic_karras_ve import KarrasVePipeline
2 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/text_to_video_synthesis/__init__.py:
--------------------------------------------------------------------------------
1 | from dataclasses import dataclass
2 | from typing import List, Optional, Union
3 |
4 | import numpy as np
5 | import torch
6 |
7 | from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
8 |
9 |
10 | @dataclass
11 | class TextToVideoSDPipelineOutput(BaseOutput):
12 | """
13 | Output class for text to video pipelines.
14 |
15 | Args:
16 | frames (`List[np.ndarray]` or `torch.FloatTensor`)
17 | List of denoised frames (essentially images) as NumPy arrays of shape `(height, width, num_channels)` or as
18 | a `torch` tensor. NumPy array present the denoised images of the diffusion pipeline. The length of the list
19 | denotes the video length i.e., the number of frames.
20 | """
21 |
22 | frames: Union[List[np.ndarray], torch.FloatTensor]
23 |
24 |
25 | try:
26 | if not (is_transformers_available() and is_torch_available()):
27 | raise OptionalDependencyNotAvailable()
28 | except OptionalDependencyNotAvailable:
29 | from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
30 | else:
31 | from .pipeline_text_to_video_synth import TextToVideoSDPipeline # noqa: F401
32 | from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
33 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/unclip/__init__.py:
--------------------------------------------------------------------------------
1 | from ...utils import (
2 | OptionalDependencyNotAvailable,
3 | is_torch_available,
4 | is_transformers_available,
5 | is_transformers_version,
6 | )
7 |
8 |
9 | try:
10 | if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
11 | raise OptionalDependencyNotAvailable()
12 | except OptionalDependencyNotAvailable:
13 | from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
14 | else:
15 | from .pipeline_unclip import UnCLIPPipeline
16 | from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
17 | from .text_proj import UnCLIPTextProjModel
18 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/versatile_diffusion/__init__.py:
--------------------------------------------------------------------------------
1 | from ...utils import (
2 | OptionalDependencyNotAvailable,
3 | is_torch_available,
4 | is_transformers_available,
5 | is_transformers_version,
6 | )
7 |
8 |
9 | try:
10 | if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
11 | raise OptionalDependencyNotAvailable()
12 | except OptionalDependencyNotAvailable:
13 | from ...utils.dummy_torch_and_transformers_objects import (
14 | VersatileDiffusionDualGuidedPipeline,
15 | VersatileDiffusionImageVariationPipeline,
16 | VersatileDiffusionPipeline,
17 | VersatileDiffusionTextToImagePipeline,
18 | )
19 | else:
20 | from .modeling_text_unet import UNetFlatConditionModel
21 | from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
22 | from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
23 | from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
24 | from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
25 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/pipelines/vq_diffusion/__init__.py:
--------------------------------------------------------------------------------
1 | from ...utils import is_torch_available, is_transformers_available
2 |
3 |
4 | if is_transformers_available() and is_torch_available():
5 | from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
6 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/schedulers/README.md:
--------------------------------------------------------------------------------
1 | # Schedulers
2 |
3 | For more information on the schedulers, please refer to the [docs](https://huggingface.co/docs/diffusers/api/schedulers/overview).
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/utils/constants.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | import os
15 |
16 | from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
17 |
18 |
19 | default_cache_path = HUGGINGFACE_HUB_CACHE
20 |
21 |
22 | CONFIG_NAME = "config.json"
23 | WEIGHTS_NAME = "diffusion_pytorch_model.bin"
24 | FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack"
25 | ONNX_WEIGHTS_NAME = "model.onnx"
26 | SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors"
27 | ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb"
28 | HUGGINGFACE_CO_RESOLVE_ENDPOINT = "https://huggingface.co"
29 | DIFFUSERS_CACHE = default_cache_path
30 | DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules"
31 | HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules"))
32 | DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"]
33 | TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj", "k_proj", "out_proj"]
34 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/utils/doc_utils.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Doc utilities: Utilities related to documentation
16 | """
17 | import re
18 |
19 |
20 | def replace_example_docstring(example_docstring):
21 | def docstring_decorator(fn):
22 | func_doc = fn.__doc__
23 | lines = func_doc.split("\n")
24 | i = 0
25 | while i < len(lines) and re.search(r"^\s*Examples?:\s*$", lines[i]) is None:
26 | i += 1
27 | if i < len(lines):
28 | lines[i] = example_docstring
29 | func_doc = "\n".join(lines)
30 | else:
31 | raise ValueError(
32 | f"The function {fn} should have an empty 'Examples:' in its docstring as placeholder, "
33 | f"current docstring is:\n{func_doc}"
34 | )
35 | fn.__doc__ = func_doc
36 | return fn
37 |
38 | return docstring_decorator
39 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/utils/dummy_note_seq_objects.py:
--------------------------------------------------------------------------------
1 | # This file is autogenerated by the command `make fix-copies`, do not edit.
2 | from ..utils import DummyObject, requires_backends
3 |
4 |
5 | class MidiProcessor(metaclass=DummyObject):
6 | _backends = ["note_seq"]
7 |
8 | def __init__(self, *args, **kwargs):
9 | requires_backends(self, ["note_seq"])
10 |
11 | @classmethod
12 | def from_config(cls, *args, **kwargs):
13 | requires_backends(cls, ["note_seq"])
14 |
15 | @classmethod
16 | def from_pretrained(cls, *args, **kwargs):
17 | requires_backends(cls, ["note_seq"])
18 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/utils/dummy_onnx_objects.py:
--------------------------------------------------------------------------------
1 | # This file is autogenerated by the command `make fix-copies`, do not edit.
2 | from ..utils import DummyObject, requires_backends
3 |
4 |
5 | class OnnxRuntimeModel(metaclass=DummyObject):
6 | _backends = ["onnx"]
7 |
8 | def __init__(self, *args, **kwargs):
9 | requires_backends(self, ["onnx"])
10 |
11 | @classmethod
12 | def from_config(cls, *args, **kwargs):
13 | requires_backends(cls, ["onnx"])
14 |
15 | @classmethod
16 | def from_pretrained(cls, *args, **kwargs):
17 | requires_backends(cls, ["onnx"])
18 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/utils/dummy_torch_and_librosa_objects.py:
--------------------------------------------------------------------------------
1 | # This file is autogenerated by the command `make fix-copies`, do not edit.
2 | from ..utils import DummyObject, requires_backends
3 |
4 |
5 | class AudioDiffusionPipeline(metaclass=DummyObject):
6 | _backends = ["torch", "librosa"]
7 |
8 | def __init__(self, *args, **kwargs):
9 | requires_backends(self, ["torch", "librosa"])
10 |
11 | @classmethod
12 | def from_config(cls, *args, **kwargs):
13 | requires_backends(cls, ["torch", "librosa"])
14 |
15 | @classmethod
16 | def from_pretrained(cls, *args, **kwargs):
17 | requires_backends(cls, ["torch", "librosa"])
18 |
19 |
20 | class Mel(metaclass=DummyObject):
21 | _backends = ["torch", "librosa"]
22 |
23 | def __init__(self, *args, **kwargs):
24 | requires_backends(self, ["torch", "librosa"])
25 |
26 | @classmethod
27 | def from_config(cls, *args, **kwargs):
28 | requires_backends(cls, ["torch", "librosa"])
29 |
30 | @classmethod
31 | def from_pretrained(cls, *args, **kwargs):
32 | requires_backends(cls, ["torch", "librosa"])
33 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/utils/dummy_torch_and_scipy_objects.py:
--------------------------------------------------------------------------------
1 | # This file is autogenerated by the command `make fix-copies`, do not edit.
2 | from ..utils import DummyObject, requires_backends
3 |
4 |
5 | class LMSDiscreteScheduler(metaclass=DummyObject):
6 | _backends = ["torch", "scipy"]
7 |
8 | def __init__(self, *args, **kwargs):
9 | requires_backends(self, ["torch", "scipy"])
10 |
11 | @classmethod
12 | def from_config(cls, *args, **kwargs):
13 | requires_backends(cls, ["torch", "scipy"])
14 |
15 | @classmethod
16 | def from_pretrained(cls, *args, **kwargs):
17 | requires_backends(cls, ["torch", "scipy"])
18 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_k_diffusion_objects.py:
--------------------------------------------------------------------------------
1 | # This file is autogenerated by the command `make fix-copies`, do not edit.
2 | from ..utils import DummyObject, requires_backends
3 |
4 |
5 | class StableDiffusionKDiffusionPipeline(metaclass=DummyObject):
6 | _backends = ["torch", "transformers", "k_diffusion"]
7 |
8 | def __init__(self, *args, **kwargs):
9 | requires_backends(self, ["torch", "transformers", "k_diffusion"])
10 |
11 | @classmethod
12 | def from_config(cls, *args, **kwargs):
13 | requires_backends(cls, ["torch", "transformers", "k_diffusion"])
14 |
15 | @classmethod
16 | def from_pretrained(cls, *args, **kwargs):
17 | requires_backends(cls, ["torch", "transformers", "k_diffusion"])
18 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/utils/dummy_transformers_and_torch_and_note_seq_objects.py:
--------------------------------------------------------------------------------
1 | # This file is autogenerated by the command `make fix-copies`, do not edit.
2 | from ..utils import DummyObject, requires_backends
3 |
4 |
5 | class SpectrogramDiffusionPipeline(metaclass=DummyObject):
6 | _backends = ["transformers", "torch", "note_seq"]
7 |
8 | def __init__(self, *args, **kwargs):
9 | requires_backends(self, ["transformers", "torch", "note_seq"])
10 |
11 | @classmethod
12 | def from_config(cls, *args, **kwargs):
13 | requires_backends(cls, ["transformers", "torch", "note_seq"])
14 |
15 | @classmethod
16 | def from_pretrained(cls, *args, **kwargs):
17 | requires_backends(cls, ["transformers", "torch", "note_seq"])
18 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/utils/model_card_template.md:
--------------------------------------------------------------------------------
1 | ---
2 | {{ card_data }}
3 | ---
4 |
5 |
7 |
8 | # {{ model_name | default("Diffusion Model") }}
9 |
10 | ## Model description
11 |
12 | This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library
13 | on the `{{ dataset_name }}` dataset.
14 |
15 | ## Intended uses & limitations
16 |
17 | #### How to use
18 |
19 | ```python
20 | # TODO: add an example code snippet for running this diffusion pipeline
21 | ```
22 |
23 | #### Limitations and bias
24 |
25 | [TODO: provide examples of latent issues and potential remediations]
26 |
27 | ## Training data
28 |
29 | [TODO: describe the data used to train the model]
30 |
31 | ### Training hyperparameters
32 |
33 | The following hyperparameters were used during training:
34 | - learning_rate: {{ learning_rate }}
35 | - train_batch_size: {{ train_batch_size }}
36 | - eval_batch_size: {{ eval_batch_size }}
37 | - gradient_accumulation_steps: {{ gradient_accumulation_steps }}
38 | - optimizer: AdamW with betas=({{ adam_beta1 }}, {{ adam_beta2 }}), weight_decay={{ adam_weight_decay }} and epsilon={{ adam_epsilon }}
39 | - lr_scheduler: {{ lr_scheduler }}
40 | - lr_warmup_steps: {{ lr_warmup_steps }}
41 | - ema_inv_gamma: {{ ema_inv_gamma }}
42 | - ema_inv_gamma: {{ ema_power }}
43 | - ema_inv_gamma: {{ ema_max_decay }}
44 | - mixed_precision: {{ mixed_precision }}
45 |
46 | ### Training results
47 |
48 | 📈 [TensorBoard logs](https://huggingface.co/{{ repo_name }}/tensorboard?#scalars)
49 |
50 |
51 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/src/diffusers/utils/pil_utils.py:
--------------------------------------------------------------------------------
1 | import PIL.Image
2 | import PIL.ImageOps
3 | from packaging import version
4 |
5 |
6 | if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
7 | PIL_INTERPOLATION = {
8 | "linear": PIL.Image.Resampling.BILINEAR,
9 | "bilinear": PIL.Image.Resampling.BILINEAR,
10 | "bicubic": PIL.Image.Resampling.BICUBIC,
11 | "lanczos": PIL.Image.Resampling.LANCZOS,
12 | "nearest": PIL.Image.Resampling.NEAREST,
13 | }
14 | else:
15 | PIL_INTERPOLATION = {
16 | "linear": PIL.Image.LINEAR,
17 | "bilinear": PIL.Image.BILINEAR,
18 | "bicubic": PIL.Image.BICUBIC,
19 | "lanczos": PIL.Image.LANCZOS,
20 | "nearest": PIL.Image.NEAREST,
21 | }
22 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/fixtures/elise_format0.mid:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/fixtures/elise_format0.mid
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/models/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/models/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/models/test_models_vae_flax.py:
--------------------------------------------------------------------------------
1 | import unittest
2 |
3 | from diffusers import FlaxAutoencoderKL
4 | from diffusers.utils import is_flax_available
5 | from diffusers.utils.testing_utils import require_flax
6 |
7 | from .test_modeling_common_flax import FlaxModelTesterMixin
8 |
9 |
10 | if is_flax_available():
11 | import jax
12 |
13 |
14 | @require_flax
15 | class FlaxAutoencoderKLTests(FlaxModelTesterMixin, unittest.TestCase):
16 | model_class = FlaxAutoencoderKL
17 |
18 | @property
19 | def dummy_input(self):
20 | batch_size = 4
21 | num_channels = 3
22 | sizes = (32, 32)
23 |
24 | prng_key = jax.random.PRNGKey(0)
25 | image = jax.random.uniform(prng_key, ((batch_size, num_channels) + sizes))
26 |
27 | return {"sample": image, "prng_key": prng_key}
28 |
29 | def prepare_init_args_and_inputs_for_common(self):
30 | init_dict = {
31 | "block_out_channels": [32, 64],
32 | "in_channels": 3,
33 | "out_channels": 3,
34 | "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
35 | "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
36 | "latent_channels": 4,
37 | }
38 | inputs_dict = self.dummy_input
39 | return init_dict, inputs_dict
40 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/altdiffusion/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/altdiffusion/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/audio_diffusion/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/audio_diffusion/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/audioldm/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/audioldm/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/dance_diffusion/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/dance_diffusion/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/ddim/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/ddim/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/ddpm/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/ddpm/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/dit/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/dit/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/karras_ve/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/karras_ve/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/latent_diffusion/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/latent_diffusion/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/paint_by_example/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/paint_by_example/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/pndm/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/pndm/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/repaint/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/repaint/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/score_sde_ve/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/score_sde_ve/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/semantic_stable_diffusion/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/semantic_stable_diffusion/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/spectrogram_diffusion/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/spectrogram_diffusion/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/stable_diffusion/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/stable_diffusion/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/stable_diffusion_2/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/stable_diffusion_2/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/stable_diffusion_safe/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/stable_diffusion_safe/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/stable_unclip/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/stable_unclip/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/test_pipelines_onnx_common.py:
--------------------------------------------------------------------------------
1 | from diffusers.utils.testing_utils import require_onnxruntime
2 |
3 |
4 | @require_onnxruntime
5 | class OnnxPipelineTesterMixin:
6 | """
7 | This mixin is designed to be used with unittest.TestCase classes.
8 | It provides a set of common tests for each ONNXRuntime pipeline, e.g. saving and loading the pipeline,
9 | equivalence of dict and tuple outputs, etc.
10 | """
11 |
12 | pass
13 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/text_to_video/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/text_to_video/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/text_to_video/test_text_to_video_zero.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2023 HuggingFace Inc.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 | import unittest
17 |
18 | import torch
19 |
20 | from diffusers import DDIMScheduler, TextToVideoZeroPipeline
21 | from diffusers.utils import load_pt, require_torch_gpu, slow
22 |
23 | from ..test_pipelines_common import assert_mean_pixel_difference
24 |
25 |
26 | @slow
27 | @require_torch_gpu
28 | class TextToVideoZeroPipelineSlowTests(unittest.TestCase):
29 | def test_full_model(self):
30 | model_id = "runwayml/stable-diffusion-v1-5"
31 | pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
32 | pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
33 | generator = torch.Generator(device="cuda").manual_seed(0)
34 |
35 | prompt = "A bear is playing a guitar on Times Square"
36 | result = pipe(prompt=prompt, generator=generator).images
37 |
38 | expected_result = load_pt(
39 | "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text-to-video/A bear is playing a guitar on Times Square.pt"
40 | )
41 |
42 | assert_mean_pixel_difference(result, expected_result)
43 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/unclip/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/unclip/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/versatile_diffusion/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/versatile_diffusion/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/pipelines/vq_diffusion/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/pipelines/vq_diffusion/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/schedulers/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/diffusers/tests/schedulers/__init__.py
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/tests/schedulers/test_scheduler_vq_diffusion.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 |
4 | from diffusers import VQDiffusionScheduler
5 |
6 | from .test_schedulers import SchedulerCommonTest
7 |
8 |
9 | class VQDiffusionSchedulerTest(SchedulerCommonTest):
10 | scheduler_classes = (VQDiffusionScheduler,)
11 |
12 | def get_scheduler_config(self, **kwargs):
13 | config = {
14 | "num_vec_classes": 4097,
15 | "num_train_timesteps": 100,
16 | }
17 |
18 | config.update(**kwargs)
19 | return config
20 |
21 | def dummy_sample(self, num_vec_classes):
22 | batch_size = 4
23 | height = 8
24 | width = 8
25 |
26 | sample = torch.randint(0, num_vec_classes, (batch_size, height * width))
27 |
28 | return sample
29 |
30 | @property
31 | def dummy_sample_deter(self):
32 | assert False
33 |
34 | def dummy_model(self, num_vec_classes):
35 | def model(sample, t, *args):
36 | batch_size, num_latent_pixels = sample.shape
37 | logits = torch.rand((batch_size, num_vec_classes - 1, num_latent_pixels))
38 | return_value = F.log_softmax(logits.double(), dim=1).float()
39 | return return_value
40 |
41 | return model
42 |
43 | def test_timesteps(self):
44 | for timesteps in [2, 5, 100, 1000]:
45 | self.check_over_configs(num_train_timesteps=timesteps)
46 |
47 | def test_num_vec_classes(self):
48 | for num_vec_classes in [5, 100, 1000, 4000]:
49 | self.check_over_configs(num_vec_classes=num_vec_classes)
50 |
51 | def test_time_indices(self):
52 | for t in [0, 50, 99]:
53 | self.check_over_forward(time_step=t)
54 |
55 | def test_add_noise_device(self):
56 | pass
57 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/utils/get_modified_files.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2023 The HuggingFace Inc. team.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 | # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
17 | # python ./utils/get_modified_files.py utils src tests examples
18 | #
19 | # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
20 | # since the output of this script is fed into Makefile commands it doesn't print a newline after the results
21 |
22 | import re
23 | import subprocess
24 | import sys
25 |
26 |
27 | fork_point_sha = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
28 | modified_files = subprocess.check_output(f"git diff --name-only {fork_point_sha}".split()).decode("utf-8").split()
29 |
30 | joined_dirs = "|".join(sys.argv[1:])
31 | regex = re.compile(rf"^({joined_dirs}).*?\.py$")
32 |
33 | relevant_modified_files = [x for x in modified_files if regex.match(x)]
34 | print(" ".join(relevant_modified_files), end="")
35 |
--------------------------------------------------------------------------------
/VillanDiffusion/diffusers/utils/print_env.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | # coding=utf-8
4 | # Copyright 2023 The HuggingFace Inc. team.
5 | #
6 | # Licensed under the Apache License, Version 2.0 (the "License");
7 | # you may not use this file except in compliance with the License.
8 | # You may obtain a copy of the License at
9 | #
10 | # http://www.apache.org/licenses/LICENSE-2.0
11 | #
12 | # Unless required by applicable law or agreed to in writing, software
13 | # distributed under the License is distributed on an "AS IS" BASIS,
14 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 | # See the License for the specific language governing permissions and
16 | # limitations under the License.
17 |
18 | # this script dumps information about the environment
19 |
20 | import os
21 | import platform
22 | import sys
23 |
24 |
25 | os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
26 |
27 | print("Python version:", sys.version)
28 |
29 | print("OS platform:", platform.platform())
30 | print("OS architecture:", platform.machine())
31 |
32 | try:
33 | import torch
34 |
35 | print("Torch version:", torch.__version__)
36 | print("Cuda available:", torch.cuda.is_available())
37 | print("Cuda version:", torch.version.cuda)
38 | print("CuDNN version:", torch.backends.cudnn.version())
39 | print("Number of GPUs available:", torch.cuda.device_count())
40 | except ImportError:
41 | print("Torch version:", None)
42 |
43 | try:
44 | import transformers
45 |
46 | print("transformers version:", transformers.__version__)
47 | except ImportError:
48 | print("transformers version:", None)
49 |
--------------------------------------------------------------------------------
/VillanDiffusion/install.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # conda create --name elijah_villandiff3.8 python=3.8 anaconda
4 | # conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
5 |
6 | cd diffusers
7 | pip install -e .
8 | cd ..
9 |
10 | pip install -r my_requirements.txt
11 |
--------------------------------------------------------------------------------
/VillanDiffusion/my_requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate==0.19.0
2 | comet-ml
3 | matplotlib
4 | datasets
5 | tqdm
6 | tensorboard
7 | tensorboardX
8 | tensorflow-datasets
9 | einops
10 | pytorch-fid
11 | joblib
12 | PyYAML
13 | kaggle
14 | wandb
15 | torchsummary
16 | torchinfo
17 | torchmetrics
18 | piq
19 | lpips
20 |
--------------------------------------------------------------------------------
/VillanDiffusion/run_example_ddim.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # invert the trigger and compute the uniformity score and tv loss.
4 | python elijah_helper_ddim.py res_DDPM-CIFAR10-32_CIFAR10_ep10_ode_c1.0_p0.9_epr0.0_STOP_SIGN_14-HAT_psi1.0_lr0.0002_vp1.0_ve1.0_new-set --compute_tvloss
5 | python elijah_helper_ddim.py res_DDPM-CIFAR10-32_CIFAR10_ep10_ode_c1.0_p0.9_epr0.0_STOP_SIGN_14-HAT_psi1.0_lr0.0002_vp1.0_ve1.0_new-set
6 |
7 | # Use the inverted trigger to remove the injected backdoor.
8 | python VillanDiffusion_rm.py --postfix new-set --project default --mode train --dataset CIFAR10 --sde_type SDE-VP --sched DDIM-SCHED --infer_steps 50 --batch 128 --epoch 50 --clean_rate 0.1 --poison_rate 0. --solver_type ode --psi 1 --vp_scale 1.0 --ve_scale 1.0 --ckpt res_DDPM-CIFAR10-32_CIFAR10_ep10_ode_c1.0_p0.9_epr0.0_STOP_SIGN_14-HAT_psi1.0_lr0.0002_vp1.0_ve1.0_new-set --fclip o --save_image_epochs 1 --save_model_epochs 1 -o --gpu 0 --trigger STOP_SIGN_14 --target HAT --is_save_all_model_epochs --dataset_load_mode FLEX --remove_backdoor --learning_rate 2e-5
9 |
--------------------------------------------------------------------------------
/VillanDiffusion/run_example_ldm.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # invert the trigger and compute the uniformity score and tv loss.
4 | python elijah_helper_ldm.py res_LDM-CELEBA-HQ-256_CELEBA-HQ-LATENT_ep2000_ode_c1.0_p0.9_epr0.0_GLASSES-CAT_psi1.0_lr0.0002_vp1.0_ve1.0_new-set_tmp --compute_tvloss
5 | python elijah_helper_ldm.py res_LDM-CELEBA-HQ-256_CELEBA-HQ-LATENT_ep2000_ode_c1.0_p0.9_epr0.0_GLASSES-CAT_psi1.0_lr0.0002_vp1.0_ve1.0_new-set_tmp
6 |
7 | # Use the inverted trigger to remove the injected backdoor.
8 | python VillanDiffusion_rm.py --postfix new-set --project default --mode train --dataset CELEBA-HQ-LATENT --dataset_load_mode NONE --sde_type SDE-LDM --learning_rate 0.0002 --sched UNIPC-SCHED --infer_steps 20 --batch 8 --epoch 20 --clean_rate 0.1 --poison_rate 0. --trigger GLASSES --target CAT --solver_type ode --psi 1 --vp_scale 1.0 --ve_scale 1.0 --ckpt res_LDM-CELEBA-HQ-256_CELEBA-HQ-LATENT_ep2000_ode_c1.0_p0.9_epr0.0_GLASSES-CAT_psi1.0_lr0.0002_vp1.0_ve1.0_new-set_tmp --fclip o --save_image_epochs 1 --save_model_epochs 1 -o --gpu 0 --is_save_all_model_epochs --remove_backdoor
9 |
--------------------------------------------------------------------------------
/VillanDiffusion/run_example_ncsn.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # invert the trigger and compute the uniformity score and tv loss.
4 | python elijah_helper_ncsn.py res_NCSN_CIFAR10_my_CIFAR10_ep100_sde_c1.0_p0.5_SM_STOP_SIGN-FEDORA_HAT_psi0.0_lr2e-05_rhw1.0_rhb0.0_flex_new-set --compute_tvloss
5 | python elijah_helper_ncsn.py res_NCSN_CIFAR10_my_CIFAR10_ep100_sde_c1.0_p0.5_SM_STOP_SIGN-FEDORA_HAT_psi0.0_lr2e-05_rhw1.0_rhb0.0_flex_new-set
6 |
7 | # Use the inverted trigger to remove the injected backdoor.
8 | python VillanDiffusion_rm.py --postfix flex_new-set --project default --mode train --learning_rate 2e-05 --dataset CIFAR10 --sde_type SDE-VE --batch 128 --epoch 11 --clean_rate 0.1 --poison_rate 0.0 --trigger STOP_SIGN_14 --target HAT --solver_type sde --psi 0 --vp_scale 1.0 --ve_scale 1.0 --ckpt res_NCSN_CIFAR10_my_CIFAR10_ep100_sde_c1.0_p0.5_SM_STOP_SIGN-FEDORA_HAT_psi0.0_lr2e-05_rhw1.0_rhb0.0_flex_new-set --fclip o --save_image_epochs 1 --save_model_epochs 1 -o --dataset_load_mode FLEX --is_save_all_model_epochs --gpu 0 --remove_backdoor
9 |
--------------------------------------------------------------------------------
/VillanDiffusion/run_measure_inpaint.py:
--------------------------------------------------------------------------------
1 | import glob
2 | from scalablerunner.taskrunner import TaskRunner
3 | from dataset import Backdoor
4 | from dataset import DatasetLoader
5 | from model import DiffuserModelSched
6 |
7 | if __name__ == "__main__":
8 | exp_ls: str = ["res_DDPM-CIFAR10-32_CIFAR10_ep100_ode_c1.0_p0.2_SM_STOP_SIGN-BOX_psi1.0_lr0.0002_vp1.0_ve1.0_new-set-1_test"]
9 | config = {
10 | 'Measure CIFAR10, VillanDiffusion + ODE + Inpainting':{
11 | 'TWCC': {
12 | 'Call': "python VillanDiffusion.py",
13 | 'Param': {
14 | '--project': ['default'],
15 | '--mode': ['measure'],
16 | '--task': ['unpoisoned_denoise', 'poisoned_denoise', 'unpoisoned_inpaint_box', 'poisoned_inpaint_box', 'unpoisoned_inpaint_line', 'poisoned_inpaint_line'],
17 | '--sched': [DiffuserModelSched.UNIPC_SCHED],
18 | '--infer_steps': [20],
19 | '--infer_start': [10],
20 | '--ckpt': exp_ls,
21 | '--fclip': ['o'],
22 | },
23 | 'Async':{
24 | '--gpu': ['0']
25 | }
26 | },
27 | },
28 | }
29 |
30 | tr = TaskRunner(config=config)
31 | tr.run()
32 |
--------------------------------------------------------------------------------
/VillanDiffusion/static/cat_wo_bg.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/static/cat_wo_bg.png
--------------------------------------------------------------------------------
/VillanDiffusion/static/fedora-hat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/static/fedora-hat.png
--------------------------------------------------------------------------------
/VillanDiffusion/static/glasses.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/static/glasses.png
--------------------------------------------------------------------------------
/VillanDiffusion/static/hat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/static/hat.png
--------------------------------------------------------------------------------
/VillanDiffusion/static/stop_sign_bg_blk.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/static/stop_sign_bg_blk.jpg
--------------------------------------------------------------------------------
/VillanDiffusion/static/stop_sign_bg_w.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/static/stop_sign_bg_w.jpg
--------------------------------------------------------------------------------
/VillanDiffusion/static/stop_sign_wo_bg.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/njuaplusplus/Elijah/a8b342237dcf2a5079e3575976b7d06b4d175e5c/VillanDiffusion/static/stop_sign_wo_bg.png
--------------------------------------------------------------------------------