├── .codecov.yml
├── src
└── cplot
│ ├── __about__.py
│ ├── __init__.py
│ ├── _riemann_sphere.py
│ ├── _tri.py
│ ├── benchmark.py
│ ├── _colors.py
│ └── _main.py
├── .flake8
├── tests
├── test_riemann.py
├── test_plot.py
├── test_tools.py
├── logo.py
├── test_tripcolor.py
└── generate-readme-figures.py
├── .gitignore
├── tox.ini
├── CITATION.cff
├── .pre-commit-config.yaml
├── anim
├── create-az-anim.py
├── create-za-anim.py
├── justfile
└── create-taylor-anim.py
├── justfile
├── .github
└── workflows
│ └── tests.yml
├── pyproject.toml
├── experiments
└── create.py
├── README.md
└── LICENSE
/.codecov.yml:
--------------------------------------------------------------------------------
1 | comment: no
2 |
--------------------------------------------------------------------------------
/src/cplot/__about__.py:
--------------------------------------------------------------------------------
1 | __version__ = "0.9.3"
2 |
--------------------------------------------------------------------------------
/.flake8:
--------------------------------------------------------------------------------
1 | [flake8]
2 | ignore = E203, E266, E501, W503
3 | max-line-length = 80
4 | max-complexity = 18
5 | select = B,C,E,F,W,T4,B9
6 |
--------------------------------------------------------------------------------
/tests/test_riemann.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import pytest
3 |
4 | import cplot
5 |
6 |
7 | def test_riemann():
8 | pytest.importorskip("pyvista")
9 | cplot.riemann_sphere(np.log, off_screen=True)
10 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pyc
2 | *.swp
3 | *.prof
4 | MANIFEST
5 | README.rst
6 | dist/
7 | build/
8 | .coverage
9 | .cache/
10 | *.egg-info/
11 | .pytest_cache/
12 | *.png
13 | *.svg
14 | .tox/
15 | plots/
16 | experiments/
17 | article/
18 |
--------------------------------------------------------------------------------
/tests/test_plot.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | import cplot
4 |
5 |
6 | def test_basic():
7 | def f(z):
8 | return np.sin(z**3) / z
9 |
10 | plt = cplot.plot(f, (-2.0, +2.0, 400), (-2.0, +2.0, 400))
11 | plt.show()
12 |
--------------------------------------------------------------------------------
/tests/test_tools.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | import cplot
4 |
5 |
6 | def test_array():
7 | np.random.seed(0)
8 | n = 5
9 | z = np.random.rand(n) + 1j * np.random.rand(n)
10 | vals = cplot.get_srgb1(z)
11 | assert vals.shape == (n, 3)
12 |
--------------------------------------------------------------------------------
/tox.ini:
--------------------------------------------------------------------------------
1 | [tox]
2 | envlist = py3
3 | isolated_build = True
4 |
5 | [testenv]
6 | deps =
7 | pytest
8 | pytest-codeblocks >= 0.15.0
9 | pytest-cov
10 | pytest-randomly
11 | mpmath
12 | scipy
13 | extras = all
14 | commands =
15 | pytest {posargs} --codeblocks
16 |
--------------------------------------------------------------------------------
/CITATION.cff:
--------------------------------------------------------------------------------
1 | cff-version: 1.2.0
2 | message: "If you use this software, please cite it as below."
3 | authors:
4 | - family-names: "Schlömer"
5 | given-names: "Nico"
6 | orcid: "https://orcid.org/0000-0001-5228-0946"
7 | title: "cplot: Plot complex functions"
8 | doi: 10.5281/zenodo.5599493
9 | url: https://github.com/nschloe/cplot
10 | license: GPL-3.0
11 |
--------------------------------------------------------------------------------
/.pre-commit-config.yaml:
--------------------------------------------------------------------------------
1 | repos:
2 | - repo: https://github.com/PyCQA/isort
3 | rev: 5.11.4
4 | hooks:
5 | - id: isort
6 |
7 | - repo: https://github.com/python/black
8 | rev: 22.12.0
9 | hooks:
10 | - id: black
11 | language_version: python3
12 |
13 | - repo: https://github.com/PyCQA/flake8
14 | rev: 6.0.0
15 | hooks:
16 | - id: flake8
17 |
--------------------------------------------------------------------------------
/anim/create-az-anim.py:
--------------------------------------------------------------------------------
1 | import matplotlib
2 | import matplotlib.pyplot as plt
3 | import numpy as np
4 |
5 | import cplot
6 |
7 | # https://github.com/matplotlib/matplotlib/issues/23701#issuecomment-1222008929
8 | matplotlib.use("GTK3Agg")
9 |
10 | p = cplot.Plotter((-2.2, 2.2, 400), (-2.2, 2.2, 400))
11 |
12 | for idx, a in enumerate(np.linspace(-5.0, 5.0, 501)):
13 | p.plot(a**p.Z)
14 | plt.suptitle(f"${{{a:.2f}}}^z$")
15 | plt.savefig(f"data/out{idx:04d}.png", bbox_inches="tight")
16 | plt.close()
17 |
--------------------------------------------------------------------------------
/anim/create-za-anim.py:
--------------------------------------------------------------------------------
1 | import matplotlib
2 | import matplotlib.pyplot as plt
3 | import numpy as np
4 |
5 | import cplot
6 |
7 | # https://github.com/matplotlib/matplotlib/issues/23701#issuecomment-1222008929
8 | matplotlib.use("GTK3Agg")
9 |
10 | p = cplot.Plotter((-2.2, 2.2, 400), (-2.2, 2.2, 400))
11 |
12 | for idx, a in enumerate(np.linspace(-5.0, 5.0, 501)):
13 | p.plot(p.Z**a)
14 | plt.suptitle(f"$z^{{{a:.2f}}}$")
15 | plt.savefig(f"data/out{idx:04d}.png", bbox_inches="tight")
16 | plt.close()
17 |
--------------------------------------------------------------------------------
/justfile:
--------------------------------------------------------------------------------
1 | version := `python3 -c "from src.cplot.__about__ import __version__; print(__version__)"`
2 |
3 | default:
4 | @echo "\"just publish\"?"
5 |
6 | publish: clean
7 | @if [ "$(git rev-parse --abbrev-ref HEAD)" != "main" ]; then exit 1; fi
8 | gh release create "v{{version}}"
9 | python3 -m build --sdist --wheel .
10 | twine upload dist/*
11 |
12 | clean:
13 | @find . | grep -E "(__pycache__|\.pyc|\.pyo$)" | xargs rm -rf
14 | @rm -rf src/*.egg-info/ build/ dist/ .tox/
15 |
16 | format:
17 | isort .
18 | black .
19 | blacken-docs README.md
20 |
21 | lint:
22 | black --check .
23 | flake8 .
24 |
--------------------------------------------------------------------------------
/src/cplot/__init__.py:
--------------------------------------------------------------------------------
1 | from .__about__ import __version__
2 | from ._colors import get_srgb1
3 | from ._main import Plotter, plot, plot_abs, plot_arg, plot_contours, plot_phase
4 | from ._riemann_sphere import riemann_sphere
5 | from ._tri import tricontour_abs, tripcolor
6 | from .benchmark import show_kovesi_test_image, show_test_function
7 |
8 | __all__ = [
9 | "show_test_function",
10 | "show_kovesi_test_image",
11 | "get_srgb1",
12 | "plot",
13 | "plot_arg",
14 | "plot_abs",
15 | "plot_phase",
16 | "plot_contours",
17 | #
18 | "riemann_sphere",
19 | #
20 | "tripcolor",
21 | "tricontour_abs",
22 | #
23 | "Plotter",
24 | #
25 | "__version__",
26 | ]
27 |
--------------------------------------------------------------------------------
/.github/workflows/tests.yml:
--------------------------------------------------------------------------------
1 | name: ci
2 |
3 | on:
4 | push:
5 | branches:
6 | - main
7 | pull_request:
8 | branches:
9 | - main
10 |
11 | jobs:
12 | lint:
13 | runs-on: ubuntu-latest
14 | steps:
15 | - uses: actions/checkout@v3
16 | - uses: actions/setup-python@v3
17 | - uses: pre-commit/action@v3.0.0
18 |
19 | build:
20 | runs-on: ubuntu-latest
21 | needs: [lint]
22 | strategy:
23 | matrix:
24 | python-version: ["3.7", "3.8", "3.9", "3.10", "3.11"]
25 | steps:
26 | - uses: actions/setup-python@v3
27 | with:
28 | python-version: ${{ matrix.python-version }}
29 | - uses: actions/checkout@v3
30 | - name: Test with tox
31 | run: |
32 | pip install tox
33 | tox -- --cov cplot --cov-report xml --cov-report term
34 | - uses: codecov/codecov-action@v1
35 | if: ${{ matrix.python-version == '3.11' }}
36 |
--------------------------------------------------------------------------------
/anim/justfile:
--------------------------------------------------------------------------------
1 | opt:
2 | # for file in data/*.png; do convert -resize x400 $file $file; done
3 | # for file in data/*.png; do optipng -quiet $file; done
4 | for file in data/*.png; do optipng $file; done
5 |
6 | apng:
7 | # /kc is essential for the frames not to overlap
8 | apngasm out.png data/*.png /kc /kp
9 |
10 | gif:
11 | #
12 | convert -dispose 2 -delay 10 -loop 0 data/*.png out.gif
13 |
14 | webp:
15 | img2webp data/*.png -min_size -lossy -o out.webp
16 |
17 | mp4:
18 | ffmpeg -framerate 30 -i data/out%04d.png -vf "pad=ceil(iw/2)*2:ceil(ih/2)*2:color=white" -c:v libx264 -r 30 -pix_fmt yuv420p out.mp4
19 |
20 | webm:
21 | # ffmpeg -framerate 2 -i data/out%04d.png -c:v libaom-av1 -strict -2 -r 30 -pix_fmt yuv420p out.webm
22 | # ffmpeg -framerate 2 -i data/out%04d.png -c:v libvpx-vp9 out.webm
23 | # Two-pass encoding, see
24 | ffmpeg -framerate 30 -i data/out%04d.png -c:v libvpx-vp9 -b:v 0 -crf 30 -pass 1 -an -f null /dev/null && ffmpeg -framerate 2 -i data/out%04d.png -c:v libvpx-vp9 -b:v 0 -crf 30 -pass 2 -an out.webm
25 |
--------------------------------------------------------------------------------
/tests/logo.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | import matplotlib.tri as tri
3 | import numpy as np
4 |
5 | import cplot
6 |
7 |
8 | def create_logo():
9 | # Adapted from
10 | #
11 | # First create the x and y coordinates of the points.
12 | n_angles = 314
13 | n_radii = 100
14 | radii = np.linspace(0.0, 1.0, n_radii)
15 |
16 | angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
17 | angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
18 | angles[:, 1::2] += np.pi / n_angles
19 |
20 | x = (radii * np.cos(angles)).flatten()
21 | y = (radii * np.sin(angles)).flatten()
22 |
23 | # Create the Triangulation; no triangles so Delaunay triangulation created.
24 | triang = tri.Triangulation(x, y)
25 |
26 | # print(triang)
27 | # exit(1)
28 | # import dmsh
29 | # geo = dmsh.Circle([0.0, 0.0], 1.0)
30 | # X, cells = dmsh.generate(geo, 0.1)
31 |
32 | z = x + 1j * y
33 | # z /= np.abs(z)
34 |
35 | cplot.tripcolor(triang, z, alpha=0)
36 | plt.gca().set_aspect("equal", "datalim")
37 | plt.axis("off")
38 |
39 | plt.savefig("logo.png", transparent=True)
40 | return
41 |
42 |
43 | if __name__ == "__main__":
44 | create_logo()
45 |
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [build-system]
2 | requires = ["setuptools>=61"]
3 | build-backend = "setuptools.build_meta"
4 |
5 | [tool.isort]
6 | profile = "black"
7 |
8 | [project]
9 | name = "cplot"
10 | authors = [{name = "Nico Schlömer", email = "nico.schloemer@gmail.com"}]
11 | description = "Plot complex-valued functions"
12 | readme = "README.md"
13 | license = {file = "LICENSE"}
14 | classifiers = [
15 | "Development Status :: 4 - Beta",
16 | "Framework :: Matplotlib",
17 | "Intended Audience :: Science/Research",
18 | "License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)",
19 | "Operating System :: OS Independent",
20 | "Programming Language :: Python",
21 | "Programming Language :: Python :: 3",
22 | "Programming Language :: Python :: 3.7",
23 | "Programming Language :: Python :: 3.8",
24 | "Programming Language :: Python :: 3.9",
25 | "Programming Language :: Python :: 3.10",
26 | "Topic :: Scientific/Engineering",
27 | "Topic :: Scientific/Engineering :: Visualization",
28 | ]
29 | dynamic = ["version"]
30 | requires-python = ">=3.7"
31 | dependencies = [
32 | "matplotlib",
33 | "matplotx[all] >= 0.3.10",
34 | "npx",
35 | "numpy >= 1.20.0",
36 | ]
37 |
38 | [project.optional-dependencies]
39 | all = [
40 | "meshzoo",
41 | "pyvista",
42 | ]
43 |
44 | [tool.setuptools.dynamic]
45 | version = {attr = "cplot.__about__.__version__"}
46 |
47 | [project.urls]
48 | Code = "https://github.com/nschloe/cplot"
49 | Issues = "https://github.com/nschloe/cplot/issues"
50 | Funding = "https://github.com/sponsors/nschloe"
51 |
--------------------------------------------------------------------------------
/src/cplot/_riemann_sphere.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | from typing import Callable
4 |
5 | import numpy as np
6 |
7 | from ._colors import get_srgb1
8 | from ._main import _abs_scaling_from_float
9 |
10 |
11 | def riemann_sphere(
12 | f: Callable[[np.ndarray], np.ndarray],
13 | filename: str | None = None,
14 | n: int = 50,
15 | # If you're changing contours_abs to x and want the abs_scaling to follow along,
16 | # you'll have to set it to the same value.
17 | abs_scaling: float | Callable[[np.ndarray], np.ndarray] = 2,
18 | saturation_adjustment: float = 1.28,
19 | off_screen: bool = False,
20 | ) -> None:
21 | import meshzoo
22 | import pyvista as pv
23 | import vtk
24 |
25 | # Use a "flat top" to make sure we never evaluate _exactly_ at infty or 0,
26 | # just close to it. May save a bit of numerical trouble.
27 | points, cells = meshzoo.icosa_sphere(n, flat_top=True)
28 |
29 | # stereographic projection onto complex plane
30 | x, y, z = points.T
31 | assert np.all(np.abs(x**2 + y**2 + z**2 - 1.0) < 1.0e-13)
32 | Z = (x + 1j * y) / (1 - z)
33 |
34 | rgb = get_srgb1(
35 | f(Z),
36 | abs_scaling if callable(abs_scaling) else _abs_scaling_from_float(abs_scaling),
37 | saturation_adjustment,
38 | )
39 |
40 | celltypes = np.full(len(cells), vtk.VTK_TRIANGLE, dtype=np.uint8)
41 | cells = np.column_stack([np.full(cells.shape[0], cells.shape[1]), cells]).ravel()
42 | grid = pv.UnstructuredGrid(cells, celltypes, points)
43 | grid["rgb"] = rgb
44 | p = pv.Plotter(off_screen=off_screen)
45 | p.add_mesh(grid, scalars="rgb", rgb=True, lighting=False)
46 | p.add_axes(xlabel="Re", ylabel="Im", zlabel="abs+")
47 |
48 | return p
49 |
--------------------------------------------------------------------------------
/experiments/create.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | import numpy as np
3 |
4 |
5 | def show_linear(vals) -> None:
6 | plt.imshow(np.multiply.outer(np.ones(60), vals.data.T))
7 | plt.show()
8 |
9 |
10 | def show_circular(vals, rot=0.0):
11 | n = 256
12 | x, y = np.meshgrid(np.linspace(-n, +n), np.linspace(-n, +n))
13 |
14 | alpha = np.mod(np.arctan2(y, x) - rot, 2 * np.pi)
15 |
16 | m = vals.data.shape[1]
17 | ls = np.linspace(0, 2 * np.pi, m, endpoint=False)
18 | r = np.interp(alpha.reshape(-1), ls, vals.data[0]).reshape(alpha.shape)
19 | g = np.interp(alpha.reshape(-1), ls, vals.data[1]).reshape(alpha.shape)
20 | b = np.interp(alpha.reshape(-1), ls, vals.data[2]).reshape(alpha.shape)
21 | out = np.array([r, g, b])
22 |
23 | plt.imshow(out.T)
24 | plt.show()
25 |
26 |
27 | def find_max_srgb_radius(cs, L=50, tol=1.0e-6):
28 | from colorio.cs import ColorCoordinates, convert
29 |
30 | # In the given color space find the circle in the L=50-plane with the center (50, 0,
31 | # 0) such that it's as large as possible while still being in the SRGB gamut.
32 | n = 256
33 | alpha = np.linspace(0, 2 * np.pi, n, endpoint=False)
34 |
35 | # bisection
36 | r0 = 0.0
37 | r1 = 100.0
38 | while r1 - r0 > tol:
39 | r = 0.5 * (r1 + r0)
40 |
41 | coords = ColorCoordinates(
42 | [np.full(n, L), r * np.cos(alpha), r * np.sin(alpha)], cs
43 | )
44 | vals = convert(coords, "srgb1", mode="ignore")
45 |
46 | if np.any(vals < 0) or np.any(vals > 1):
47 | r1 = r
48 | else:
49 | r0 = r
50 | return r0
51 |
52 |
53 | def create_colormap(L=50):
54 | import colorio
55 | from colorio.cs import SRGB1, ColorCoordinates, convert
56 |
57 | cs = colorio.cs.CAM16UCS(c=0.69, Y_b=20, L_A=15)
58 | # cs = colorio.cs.CAM02('UCS', 0.69, 20, 15)
59 | # cs = colorio.cs.CIELAB()
60 |
61 | r0 = find_max_srgb_radius(cs, L=L)
62 |
63 | n = 256
64 | alpha = np.linspace(0, 2 * np.pi, n, endpoint=False)
65 |
66 | coords = ColorCoordinates(
67 | [np.full(n, L), r0 * np.cos(alpha), r0 * np.sin(alpha)], cs
68 | )
69 | return convert(coords, SRGB1("clip"))
70 |
--------------------------------------------------------------------------------
/anim/create-taylor-anim.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | from typing import Callable
4 |
5 | import matplotlib.pyplot as plt
6 | import numpy as np
7 | import sympy
8 | from rich.progress import track
9 | from sympy import diff, lambdify, simplify
10 |
11 | import cplot
12 |
13 |
14 | class Taylor:
15 | def __init__(self, f: Callable, z0: complex, Z: np.ndarray):
16 | self.z0 = z0
17 | self.var = sympy.Symbol("z")
18 | self.Zz0 = Z - self.z0
19 | self.val = None
20 | self.zk = np.ones_like(Z)
21 | self.k = 0
22 | self.df = f(self.var)
23 |
24 | def __next__(self) -> np.ndarray:
25 | if self.k == 0:
26 | self.val = lambdify(self.var, self.df)(self.z0).astype(complex) * self.zk
27 | self.k += 1
28 | return self.val
29 |
30 | self.zk *= self.Zz0 / self.k
31 | self.df = simplify(diff(self.df, self.var))
32 | self.val += lambdify(self.var, self.df)(self.z0) * self.zk
33 | self.k += 1
34 | return self.val
35 |
36 |
37 | def create_taylor_anim(taylor: Taylor, p: cplot.Plotter, name: str, max_degree: int):
38 | p.plot(lambdify(taylor.var, taylor.df)(p.Z))
39 | plt.savefig(f"{name}.svg", bbox_inches="tight")
40 | plt.close()
41 |
42 | idx = 0
43 | for k in track(range(max_degree + 1), description="Creating PNGs..."):
44 | val = next(taylor)
45 | p.plot(val)
46 | plt.suptitle(f"Taylor expansion of {name} around {taylor.z0}, degree {k}")
47 | plt.savefig(f"data/out{idx:04d}.png", bbox_inches="tight")
48 | plt.close()
49 | idx += 1
50 |
51 |
52 | # name = "exp"
53 | # p = cplot.Plotter((-7.0, 7.0, 400), (-7.0, 7.0, 400))
54 | # taylor = Taylor(sympy.exp, 0, p.Z)
55 | # max_degree = 30
56 |
57 | # name = "sin"
58 | # p = cplot.Plotter((-10.0, 10.0, 640), (-6.0, 6.0, 400))
59 | # taylor = Taylor(sympy.sin, 0, p.Z)
60 | # max_degree = 30
61 |
62 | # name = "log"
63 | # p = cplot.Plotter((-0.7, 2.7, 400), (-1.7, 1.7, 400))
64 | # taylor = Taylor(sympy.log, 1, p.Z)
65 | # max_degree = 40
66 |
67 | name = "tan"
68 | p = cplot.Plotter((-2.2, 2.2, 400), (-2.2, 2.2, 400))
69 | taylor = Taylor(sympy.tan, 0, p.Z)
70 | max_degree = 40
71 |
72 |
73 | create_taylor_anim(taylor, p, name, max_degree)
74 |
--------------------------------------------------------------------------------
/src/cplot/_tri.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import warnings
4 | from typing import Callable
5 |
6 | import matplotlib as mpl
7 | import matplotlib.pyplot as plt
8 | import numpy as np
9 | from numpy.typing import ArrayLike
10 |
11 | from ._colors import get_srgb1
12 |
13 |
14 | def tripcolor(
15 | triang,
16 | fz: ArrayLike,
17 | abs_scaling: Callable[[np.ndarray], np.ndarray] = lambda x: x / (x + 1),
18 | ):
19 | fz = np.asarray(fz)
20 | rgb = get_srgb1(fz, abs_scaling=abs_scaling)
21 |
22 | # https://github.com/matplotlib/matplotlib/issues/10265#issuecomment-358684592
23 | n = fz.shape[0]
24 | z2 = np.arange(n)
25 | cmap = mpl.colors.LinearSegmentedColormap.from_list("mymap", rgb, N=n)
26 | plt.tripcolor(triang, z2, shading="gouraud", cmap=cmap)
27 | return plt
28 |
29 |
30 | def tricontour_abs(triang, fz: ArrayLike, contours: ArrayLike | None = None):
31 | vals = np.abs(fz)
32 |
33 | def plot_contours(levels, colors, linestyles, alpha):
34 | with warnings.catch_warnings():
35 | warnings.filterwarnings(
36 | "ignore", "No contour levels were found within the data range."
37 | )
38 | plt.tricontour(
39 | triang,
40 | vals,
41 | levels=levels,
42 | colors=colors,
43 | linestyles=linestyles,
44 | alpha=alpha,
45 | )
46 |
47 | if contours is None:
48 | base = 2.0
49 | min_exp = np.log(np.min(vals)) / np.log(base)
50 | min_exp = int(max(min_exp, -100))
51 | max_exp = np.log(np.max(vals)) / np.log(base)
52 | max_exp = int(min(max_exp, 100))
53 | contours_neg = [base**k for k in range(min_exp, 0)]
54 | contours_pos = [base**k for k in range(1, max_exp + 1)]
55 |
56 | plot_contours(levels=contours_neg, colors="0.8", linestyles="solid", alpha=0.2)
57 | plot_contours([1.0], colors="0.8", linestyles=[(5, (5, 5))], alpha=0.3)
58 | plot_contours([1.0], colors="0.3", linestyles=[(0, (5, 5))], alpha=0.3)
59 | plot_contours(levels=contours_pos, colors="0.3", linestyles="solid", alpha=0.2)
60 | else:
61 | plot_contours(levels=contours, colors="0.8", linestyles="solid", alpha=0.2)
62 |
63 | return plt
64 |
65 |
66 | # tricontour_arg is not useful or possible until
67 | #
68 | #
69 | # def tricontour_arg(
70 | # triang,
71 | # fz: ArrayLike,
72 | # # f: Callable[[np.ndarray], np.ndarray],
73 | # contours: ArrayLike = (-np.pi / 2, 0.0, np.pi / 2, np.pi),
74 | # ):
75 |
--------------------------------------------------------------------------------
/tests/test_tripcolor.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | import matplotlib.tri as tri
3 | import numpy as np
4 |
5 | import cplot
6 |
7 |
8 | def test_tripcolor():
9 | # Adapted from
10 | #
11 | # First create the x and y coordinates of the points.
12 | n_angles = 36
13 | n_radii = 8
14 | min_radius = 0.25
15 | radii = np.linspace(min_radius, 0.95, n_radii)
16 |
17 | angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
18 | angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
19 | angles[:, 1::2] += np.pi / n_angles
20 |
21 | x = (radii * np.cos(angles)).flatten()
22 | y = (radii * np.sin(angles)).flatten()
23 | z = 2 * (x + 1j * y)
24 |
25 | # Create the Triangulation; no triangles so Delaunay triangulation created.
26 | triang = tri.Triangulation(x, y)
27 |
28 | # Mask off unwanted triangles.
29 | triang.set_mask(
30 | np.hypot(x[triang.triangles].mean(axis=1), y[triang.triangles].mean(axis=1))
31 | < min_radius
32 | )
33 |
34 | cplot.tripcolor(triang, z)
35 | plt.gca().set_aspect("equal", "datalim")
36 | plt.show()
37 |
38 |
39 | def test_tricontour():
40 | # Adapted from
41 | #
42 | # First create the x and y coordinates of the points.
43 | n_angles = 288
44 | n_radii = 64
45 | min_radius = 0.25
46 | radii = np.linspace(min_radius, 0.95, n_radii)
47 |
48 | angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
49 | angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
50 | angles[:, 1::2] += np.pi / n_angles
51 |
52 | x = (radii * np.cos(angles)).flatten()
53 | y = (radii * np.sin(angles)).flatten()
54 | z = x + 1j * y
55 |
56 | # Create the Triangulation; no triangles so Delaunay triangulation created.
57 | triang = tri.Triangulation(x, y)
58 |
59 | # Mask off unwanted triangles.
60 | triang.set_mask(
61 | np.hypot(x[triang.triangles].mean(axis=1), y[triang.triangles].mean(axis=1))
62 | < min_radius
63 | )
64 |
65 | fz = np.sin(7 * z) / (7 * z)
66 |
67 | cplot.tripcolor(triang, fz)
68 | cplot.tricontour_abs(triang, fz)
69 | # cplot.tricontour_arg(triang, fz)
70 |
71 | plt.gca().set_aspect("equal", "datalim")
72 | plt.savefig("out.png", bbox_inches="tight")
73 | plt.show()
74 |
75 |
76 | if __name__ == "__main__":
77 | test_tricontour()
78 |
--------------------------------------------------------------------------------
/src/cplot/benchmark.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | import numpy as np
3 |
4 | from ._main import plot
5 |
6 |
7 | def show_kovesi_test_image(cmap):
8 | """Visual color map test after Peter Kovesi ."""
9 | n = 300
10 | x = np.arange(n + 1) / n
11 | y = np.arange(n + 1) / n / 3
12 | X, Y = np.meshgrid(x, y)
13 | # From :
14 | # It consists of a sine wave superimposed on a ramp function, this provides a set of
15 | # constant magnitude features presented at different offsets. The spatial frequency
16 | # of the sine wave is chosen to lie in the range at which the human eye is most
17 | # sensitive, and its amplitude is set so that the range from peak to trough
18 | # represents a series of features that are 10% of the total data range. The
19 | # amplitude of the sine wave is modulated from its full value at the top of the
20 | # image to zero at the bottom.
21 | Z = X + (3 * Y) ** 2 * 0.05 * np.sin(100 * np.pi * X)
22 | # Z = X + 0.05 * np.sin(100*np.pi*X*Y)
23 |
24 | plt.imshow(
25 | Z,
26 | extent=(x.min(), x.max(), y.max(), y.min()),
27 | interpolation="nearest",
28 | cmap=cmap,
29 | origin="lower",
30 | aspect="equal",
31 | )
32 |
33 | plt.xticks([])
34 | plt.yticks([])
35 |
36 | plt.show()
37 |
38 |
39 | def show_test_function(variant="a", res=201):
40 | """Visual color map test after Peter Kovesi ,
41 | adapted for the complex color map.
42 | """
43 |
44 | def fa(z):
45 | r = np.abs(z)
46 | alpha = np.angle(z)
47 | # for the radius function
48 | #
49 | # f(r) = r + w * sin(k * pi * r)
50 | #
51 | # to be >= 0 everwhere, the first minimum at
52 | #
53 | # r0 = arccos(-1 / (pi * k * w))
54 | # r1 = 1 / (pi * k) (pi + (pi - y))
55 | # = (2 pi - y) / (pi * k)
56 | #
57 | # has to be >= 0, i.e.,
58 | #
59 | k = 2
60 | w = 0.7
61 | x0 = np.arccos(-1 / (np.pi * k * w))
62 | x1 = 2 * np.pi - x0
63 | r1 = x1 / np.pi / k
64 | assert r1 + w * np.sin(k * np.pi * r1) >= 0
65 | return (r + w * np.sin(k * np.pi * r)) * np.exp(1j * alpha)
66 |
67 | def fb(z):
68 | r = np.abs(z)
69 | alpha = np.angle(z)
70 | return r * np.exp(1j * (alpha + 0.8 * np.cos(3 * np.pi * alpha)))
71 |
72 | def fc(z):
73 | return (z.real + 0.5 * np.sin(2 * np.pi * z.real)) + 1j * (
74 | z.imag + 0.5 * np.sin(2 * np.pi * z.imag)
75 | )
76 |
77 | f = {"a": fa, "b": fb, "c": fc}[variant]
78 |
79 | plot(
80 | f,
81 | (-5, +5, res),
82 | (-5, +5, res),
83 | contours_abs=None,
84 | contours_arg=None,
85 | )
86 | plt.show()
87 |
--------------------------------------------------------------------------------
/src/cplot/_colors.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | from typing import Callable
4 |
5 | import npx
6 | import numpy as np
7 | from numpy.typing import ArrayLike
8 |
9 |
10 | # A number of scalings f that map the magnitude [0, infty] to [0, 1] are possible. One
11 | # desirable property is
12 | #
13 | # (1) f(1/r) = 1 - f(r).
14 | #
15 | # This makes sure that the representation of the inverse of a function is exactly as
16 | # light as the original function is dark. The function g_a(r) = 1 - a^r (with some 0 < a
17 | # < 1), as it is sometimes suggested (e.g., on Wikipedia
18 | # ) does _not_ fulfill (1).
19 | #
20 | # A common alternative is
21 | #
22 | # h(r) = r^a / (r^a + 1)
23 | #
24 | # with a configurable parameter a.
25 | #
26 | # * For a=1.21268891, this function is very close to the popular alternative 2/pi *
27 | # arctan(r) (which also fulfills the above property)
28 | #
29 | # * For a=1.21428616 is is close to g_{1/2} (between 0 and 1).
30 | #
31 | # * For a=1.49486991 it is close to x/2 (between 0 and 1).
32 | #
33 | # * For a=2 it is the stereographic projection onto the Riemann sphere.
34 | # For other a, it's the projection onto something else than a sphere. For a=1, for
35 | # example, the projection onto the line f(t) = t-1.
36 | #
37 | # Disadvantage of this choice:
38 | #
39 | # h'(r) = (a * r^{a-1} * (r^a + 1) - r^a * a * r^{a-1}) / (r^a + 1) ** 2
40 | # = a * r^{a-1} / (r^a + 1) ** 2
41 | #
42 | # so h'(r)=0 at r=0 for all a > 1. This means that h(r) has an inflection point in (0,
43 | # 1) for all a > 1. For 0 < alpha < 1, the derivative at 0 is infty.
44 | #
45 | # Only for a=1, the derivative is 1/2. For arctan, it's 1 / pi.
46 | #
47 | # There are other choices of the form f(x) = s(x) / (s(x) + 1). s has to
48 | # fulfill s(x)*s(1/x) = 1, see
49 | # for a characterization of such functions. This leads to the characterization
50 | #
51 | # f(x) = phi(x) / (phi(x) + phi(1/x))
52 | #
53 | # for _any_ phi(x). For phi(x)=sqrt(x), one gets f(x)=x/(x+1). Ideas here are
54 | # phi = log1p or log1p(log1p) (and so forth).
55 | #
56 | # Another choice that fulfills (1) is
57 | #
58 | # / r / 2 for 0 <= x <= 1,
59 | # f(r) = |
60 | # \ 1 - 1 / (2r) for x > 1,
61 | #
62 | # but its second derivative is discontinuous at 1, and one does actually notice this
63 | #
64 | # / 1/2 for 0 <= x <= 1,
65 | # f'(r) = |
66 | # \ 1/2 / r^2 for x > 1,
67 | #
68 | # / 0 for 0 <= x <= 1,
69 | # f''(r) = |
70 | # \ -1 / r^3 for x > 1,
71 | #
72 | # TODO find parametrized function that is free of inflection points for the param=0
73 | # (or infty) is this last f(r).
74 | #
75 | def get_srgb1(
76 | z: ArrayLike,
77 | abs_scaling: Callable[[np.ndarray], np.ndarray] = lambda x: x / (x + 1),
78 | saturation_adjustment: float = 1.28,
79 | ) -> np.ndarray:
80 | z = np.asarray(z)
81 |
82 | angle = np.arctan2(z.imag, z.real)
83 | absval_scaled = abs_scaling(np.abs(z))
84 |
85 | # We may have NaNs, so don't be too strict here.
86 | # assert np.all(absval_scaled >= 0)
87 | # assert np.all(absval_scaled <= 1)
88 |
89 | # from .create import find_max_srgb_radius
90 | # r0 = find_max_srgb_radius(oklab, L=0.5)
91 | r0 = 0.08499547839164734
92 | r0 *= saturation_adjustment
93 |
94 | # Rotate the angles such a "green" color represents positive real values. The
95 | # rotation is chosen such that the ratio g/(r+b) (in rgb) is the largest for the
96 | # point 1.0.
97 | offset = 0.8936868 * np.pi
98 | # Map (r, angle) to a point in the color space; bicone mapping similar to what
99 | # HSL looks like .
100 | rd = r0 - r0 * 2 * abs(absval_scaled - 0.5)
101 | ok_coords = np.array(
102 | [
103 | absval_scaled,
104 | rd * np.cos(angle + offset),
105 | rd * np.sin(angle + offset),
106 | ]
107 | )
108 | xyz100 = oklab_to_xyz100(ok_coords)
109 | srgb1 = xyz100_to_srgb1(xyz100)
110 |
111 | return np.moveaxis(srgb1, 0, -1)
112 |
113 |
114 | def oklab_to_xyz100(lab: np.ndarray) -> np.ndarray:
115 | M1 = np.array(
116 | [
117 | [0.8189330101, 0.3618667424, -0.1288597137],
118 | [0.0329845436, 0.9293118715, 0.0361456387],
119 | [0.0482003018, 0.2643662691, 0.6338517070],
120 | ]
121 | )
122 | M1inv = np.linalg.inv(M1)
123 | M2 = np.array(
124 | [
125 | [0.2104542553, +0.7936177850, -0.0040720468],
126 | [+1.9779984951, -2.4285922050, +0.4505937099],
127 | [+0.0259040371, +0.7827717662, -0.8086757660],
128 | ]
129 | )
130 | M2inv = np.linalg.inv(M2)
131 | return npx.dot(M1inv, npx.dot(M2inv, lab) ** 3) * 100
132 |
133 |
134 | def _xyy_to_xyz100(xyy: np.ndarray) -> np.ndarray:
135 | x, y, Y = xyy
136 | return np.array([Y / y * x, Y, Y / y * (1 - x - y)]) * 100
137 |
138 |
139 | def xyz100_to_srgb_linear(xyz: np.ndarray) -> np.ndarray:
140 | primaries_xyy = np.array(
141 | [
142 | [0.64, 0.33, 0.2126],
143 | [0.30, 0.60, 0.7152],
144 | [0.15, 0.06, 0.0722],
145 | ]
146 | )
147 | invM = _xyy_to_xyz100(primaries_xyy.T)
148 | whitepoint_correction = True
149 | if whitepoint_correction:
150 | # The above values are given only approximately, resulting in the fact that
151 | # SRGB(1.0, 1.0, 1.0) is only approximately mapped into the reference
152 | # whitepoint D65. Add a correction here.
153 | whitepoints_cie1931_d65 = np.array([95.047, 100, 108.883])
154 | correction = whitepoints_cie1931_d65 / np.sum(invM, axis=1)
155 | invM = (invM.T * correction).T
156 | invM /= 100
157 |
158 | # https://en.wikipedia.org/wiki/SRGB#The_forward_transformation_(CIE_XYZ_to_sRGB)
159 | # https://www.color.org/srgb.pdf
160 | out = npx.solve(invM, xyz) / 100
161 | out = out.clip(0.0, 1.0)
162 | return out
163 |
164 |
165 | def xyz100_to_srgb1(xyz: np.ndarray) -> np.ndarray:
166 | srgb = xyz100_to_srgb_linear(xyz)
167 | # gamma correction:
168 | a = 0.055
169 | is_smaller = srgb <= 0.0031308
170 | srgb[is_smaller] *= 12.92
171 | srgb[~is_smaller] = (1 + a) * srgb[~is_smaller] ** (1 / 2.4) - a
172 | return srgb
173 |
--------------------------------------------------------------------------------
/tests/generate-readme-figures.py:
--------------------------------------------------------------------------------
1 | import math
2 | from pathlib import Path
3 | from typing import Callable
4 |
5 | import matplotlib.pyplot as plt
6 | import numpy as np
7 | import scipyx as spx
8 | from mpmath import fp
9 | from scipy.special import (
10 | airy,
11 | airye,
12 | digamma,
13 | erf,
14 | exp1,
15 | expi,
16 | fresnel,
17 | gamma,
18 | hankel1,
19 | hankel2,
20 | jn,
21 | lambertw,
22 | loggamma,
23 | sici,
24 | wofz,
25 | yv,
26 | )
27 |
28 | import cplot
29 |
30 | # gray to improve visibility on github's dark background
31 | _gray = "#969696"
32 | style = {
33 | "text.color": _gray,
34 | "axes.labelcolor": _gray,
35 | "axes.edgecolor": _gray,
36 | "xtick.color": _gray,
37 | "ytick.color": _gray,
38 | }
39 | plt.style.use(style)
40 |
41 | plot_dir = Path(__file__).resolve().parent / ".." / "plots"
42 |
43 |
44 | def _wrap(fun: Callable) -> Callable:
45 | def wrapped_fun(z):
46 | z = np.asarray(z)
47 | z_shape = z.shape
48 | out = np.array([fun(complex(val)) for val in z.flatten()])
49 | return out.reshape(z_shape)
50 |
51 | return wrapped_fun
52 |
53 |
54 | def hurwitz_zeta(s, a):
55 | s = np.asarray(s)
56 |
57 | out = []
58 | for val in s.flatten():
59 | try:
60 | val = fp.zeta(complex(val), a)
61 | except Exception:
62 | val = np.nan
63 | out.append(val)
64 |
65 | return np.reshape(out, s.shape)
66 |
67 |
68 | def gudermannian(z):
69 | return 2 * np.arctan(np.tanh(0.5 * z))
70 |
71 |
72 | def gudermannian_inv(z):
73 | return 2 * np.arctanh(np.tan(0.5 * z))
74 |
75 |
76 | def hurwitz_zeta_a(s, a):
77 | """
78 | Like hurwitz_zeta(), but with the vectorization in the second component.
79 | """
80 | a = np.asarray(a)
81 |
82 | out = []
83 | for val in a.flatten():
84 | try:
85 | val = fp.zeta(s, complex(val))
86 | except Exception:
87 | val = np.nan
88 | out.append(val)
89 |
90 | return np.reshape(out, a.shape)
91 |
92 |
93 | def zeta(z):
94 | return hurwitz_zeta(z, 1)
95 |
96 |
97 | def polygamma(z, n):
98 | """
99 | Polygamma function for complex arguments
100 | """
101 | return (-1) ** (n + 1) * math.factorial(n) * hurwitz_zeta_a(n + 1, z)
102 |
103 |
104 | def riemann_xi(z):
105 | # https://en.wikipedia.org/wiki/Riemann_Xi_function
106 | return 0.5 * z * (z - 1) * np.pi ** (-z / 2) * gamma(z / 2) * zeta(z)
107 |
108 |
109 | def dirichlet_eta(z):
110 | """
111 | https://en.wikipedia.org/wiki/Dirichlet_eta_function
112 |
113 | Also called the _alternating zeta function_.
114 | """
115 | return (1 - 2 ** (1 - z)) * zeta(z)
116 |
117 |
118 | def f(z):
119 | return (z**2 - 1) * (z - 2 - 1j) ** 2 / (z**2 + 2 + 2j)
120 |
121 |
122 | def lambert_1(z, n=100):
123 | zn = z.copy()
124 | s = np.zeros_like(z)
125 | for _ in range(n):
126 | s += zn / (1 - zn)
127 | zn *= z
128 |
129 | s[np.abs(z) > 1] = np.nan
130 | return s
131 |
132 |
133 | def lambert_phi(z):
134 | return z / (1 - z) ** 2
135 |
136 |
137 | def lambert_von_mangoldt(z, n=1000):
138 | zn = z.copy()
139 | s = np.zeros_like(z)
140 | for _ in range(n):
141 | s += np.log(n) * zn
142 | zn *= z
143 |
144 | s[np.abs(z) > 1] = np.nan
145 | return s
146 |
147 |
148 | def lambert_liouville(z, n=30):
149 | zk2 = z.copy()
150 | s = np.zeros_like(z)
151 | for k in range(n):
152 | s += zk2
153 | # zk2 = z ** (k ** 2)
154 | zk2 *= z ** (2 * k + 1)
155 |
156 | s[np.abs(z) > 1] = np.nan
157 | return s
158 |
159 |
160 | # https://en.wikipedia.org/wiki/Euler_function
161 | def euler_function(z, n=1000):
162 | out = np.ones_like(z)
163 | zk = z.copy()
164 | for _ in range(n):
165 | out *= 1 - zk
166 | zk *= z
167 |
168 | # Explicitly set some values to nan. This avoids contour artifacts near the
169 | # boundary.
170 | out[np.abs(zk) > 1] = np.nan
171 | return out
172 |
173 |
174 | def bernoulli(z):
175 | """
176 | (11) in https://luschny.de/math/zeta/The-Bernoulli-Manifesto.html
177 | """
178 | return -z * zeta(1 - z)
179 |
180 |
181 | # First function from the SIAM-100-digit challenge
182 | #
183 | n = 401
184 | cplot.plot(
185 | lambda z: np.cos(np.log(z) / z) / z, (-1, 1, n), (-1, 1, n), abs_scaling=10.0
186 | )
187 | plt.savefig(plot_dir / "siam.png", transparent=True, bbox_inches="tight")
188 | plt.clf()
189 |
190 | n = 400
191 | cplot.plot_abs(lambda z: np.sin(z**3) / z, (-2, 2, n), (-2, 2, n))
192 | plt.savefig(plot_dir / "sinz3z-abs.png", bbox_inches="tight")
193 | plt.clf()
194 |
195 | cplot.plot_arg(lambda z: np.sin(z**3) / z, (-2, 2, n), (-2, 2, n))
196 | plt.savefig(plot_dir / "sinz3z-arg.png", bbox_inches="tight")
197 | plt.clf()
198 |
199 | cplot.plot_contours(lambda z: np.sin(z**3) / z, (-2, 2, n), (-2, 2, n))
200 | plt.savefig(plot_dir / "sinz3z-contours.png", bbox_inches="tight")
201 | plt.clf()
202 |
203 | cplot.plot(lambda z: np.sin(z**3) / z, (-2, 2, n), (-2, 2, n))
204 | plt.savefig(plot_dir / "sinz3z.png", transparent=True, bbox_inches="tight")
205 | plt.clf()
206 |
207 |
208 | args = [
209 | #
210 | ("z1.png", lambda z: z**1, (-2, +2), (-2, +2)),
211 | ("z2.png", lambda z: z**2, (-2, +2), (-2, +2)),
212 | ("z3.png", lambda z: z**3, (-2, +2), (-2, +2)),
213 | #
214 | ("1z.png", lambda z: 1 / z, (-2.0, +2.0), (-2.0, +2.0)),
215 | ("1z2.png", lambda z: 1 / z**2, (-2.0, +2.0), (-2.0, +2.0)),
216 | ("1z3.png", lambda z: 1 / z**3, (-2.0, +2.0), (-2.0, +2.0)),
217 | # möbius
218 | ("moebius1.png", lambda z: (z + 1) / (z - 1), (-5, +5), (-5, +5)),
219 | (
220 | "moebius2.png",
221 | lambda z: (z + 1.5 - 0.5j) * (1.5 - 0.5j) / (z - 1.5 + 0.5j) * (-1.5 + 0.5j),
222 | (-5, +5),
223 | (-5, +5),
224 | ),
225 | (
226 | "moebius3.png",
227 | lambda z: (-1.0j * z) / (1.0j * z + 1.5 - 0.5j),
228 | (-5, +5),
229 | (-5, +5),
230 | ),
231 | #
232 | # roots of unity
233 | ("z6+1.png", lambda z: z**6 + 1, (-1.5, 1.5), (-1.5, 1.5)),
234 | ("z6-1.png", lambda z: z**6 - 1, (-1.5, 1.5), (-1.5, 1.5)),
235 | ("z-6+1.png", lambda z: z ** (-6) + 1, (-1.5, 1.5), (-1.5, 1.5)),
236 | #
237 | ("zz.png", lambda z: z**z, (-3, +3), (-3, +3)),
238 | ("1zz.png", lambda z: (1 / z) ** z, (-3, +3), (-3, +3)),
239 | ("z1z.png", lambda z: z ** (1 / z), (-3, +3), (-3, +3)),
240 | #
241 | ("root2.png", np.sqrt, (-2, +2), (-2, +2)),
242 | ("root3.png", lambda x: x ** (1 / 3), (-2, +2), (-2, +2)),
243 | ("root4.png", lambda x: x**0.25, (-2, +2), (-2, +2)),
244 | #
245 | ("log.png", np.log, (-2, +2), (-2, +2)),
246 | ("exp.png", np.exp, (-3, +3), (-3, +3)),
247 | ("exp2.png", np.exp2, (-3, +3), (-3, +3)),
248 | #
249 | # non-analytic functions
250 | ("re.png", np.real, (-2, +2), (-2, +2)),
251 | # ("abs.png", np.abs, (-2, +2), (-2, +2)),
252 | ("z-absz.png", lambda z: z / np.abs(z), (-2, +2), (-2, +2)),
253 | ("conj.png", np.conj, (-2, +2), (-2, +2)),
254 | #
255 | # essential singularities
256 | ("exp1z.png", lambda z: np.exp(1 / z), (-1, +1), (-1, +1)),
257 | ("zsin1z.png", lambda z: z * np.sin(1 / z), (-0.6, +0.6), (-0.6, +0.6)),
258 | ("cos1z.png", lambda z: np.cos(1 / z), (-0.6, +0.6), (-0.6, +0.6)),
259 | #
260 | ("exp-z2.png", lambda z: np.exp(-(z**2)), (-3, +3), (-3, +3)),
261 | ("11z2.png", lambda z: 1 / (1 + z**2), (-3, +3), (-3, +3)),
262 | ("erf.png", erf, (-3, +3), (-3, +3)),
263 | #
264 | ("exp1z1.png", lambda z: np.exp(1 / z) / (1 + np.exp(1 / z)), (-1, 1), (-1, 1)),
265 | #
266 | # generating function of fibonacci sequence
267 | ("fibonacci.png", lambda z: 1 / (1 - z * (1 + z)), (-5.0, +5.0), (-5.0, +5.0)),
268 | #
269 | ("fresnel-s.png", lambda z: fresnel(z)[0], (-4, +4), (-4, +4)),
270 | ("fresnel-c.png", lambda z: fresnel(z)[1], (-4, +4), (-4, +4)),
271 | ("faddeeva.png", wofz, (-4, +4), (-4, +4)),
272 | #
273 | ("sin.png", np.sin, (-5, +5), (-5, +5)),
274 | ("cos.png", np.cos, (-5, +5), (-5, +5)),
275 | ("tan.png", np.tan, (-5, +5), (-5, +5)),
276 | #
277 | ("sec.png", lambda z: 1 / np.cos(z), (-5, +5), (-5, +5)),
278 | ("csc.png", lambda z: 1 / np.sin(z), (-5, +5), (-5, +5)),
279 | ("cot.png", lambda z: 1 / np.tan(z), (-5, +5), (-5, +5)),
280 | #
281 | ("sinh.png", np.sinh, (-5, +5), (-5, +5)),
282 | ("cosh.png", np.cosh, (-5, +5), (-5, +5)),
283 | ("tanh.png", np.tanh, (-5, +5), (-5, +5)),
284 | #
285 | ("sech.png", lambda z: 1 / np.cosh(z), (-5, +5), (-5, +5)),
286 | ("csch.png", lambda z: 1 / np.sinh(z), (-5, +5), (-5, +5)),
287 | ("coth.png", lambda z: 1 / np.tanh(z), (-5, +5), (-5, +5)),
288 | #
289 | ("arcsin.png", np.arcsin, (-2, +2), (-2, +2)),
290 | ("arccos.png", np.arccos, (-2, +2), (-2, +2)),
291 | ("arctan.png", np.arctan, (-2, +2), (-2, +2)),
292 | #
293 | ("arcsinh.png", np.arcsinh, (-2, +2), (-2, +2)),
294 | ("arccosh.png", np.arccosh, (-2, +2), (-2, +2)),
295 | ("arctanh.png", np.arctanh, (-2, +2), (-2, +2)),
296 | #
297 | ("sinz-z.png", lambda z: np.sin(z) / z, (-7, +7), (-7, +7)),
298 | ("cosz-z.png", lambda z: np.cos(z) / z, (-7, +7), (-7, +7)),
299 | ("tanz-z.png", lambda z: np.tan(z) / z, (-7, +7), (-7, +7)),
300 | #
301 | ("si.png", lambda z: sici(z)[0], (-15, +15), (-15, +15)),
302 | ("ci.png", lambda z: sici(z)[1], (-15, +15), (-15, +15)),
303 | ("lambertw.png", lambertw, (-5, +5), (-5, +5)),
304 | #
305 | #
306 | ("gudermannian.png", gudermannian, (-10, 10), (-10, 10)),
307 | # ("gudermannian_inv.png", gudermannian_inv, (-2, 2), (-2, 2)),
308 | ("exp1.png", exp1, (-5, +5), (-5, +5)),
309 | ("expi.png", expi, (-15, +15), (-15, +15)),
310 | #
311 | ("zeta.png", zeta, (-30, +30), (-30, +30)),
312 | ("bernoulli.png", bernoulli, (-30, +30), (-30, +30)),
313 | ("dirichlet-eta.png", dirichlet_eta, (-30, +30), (-30, +30)),
314 | #
315 | ("hurwitz-zeta-1-3.png", lambda z: hurwitz_zeta(z, 1 / 3), (-10, +10), (-10, +10)),
316 | (
317 | "hurwitz-zeta-24-25.png",
318 | lambda z: hurwitz_zeta(z, 24 / 25),
319 | (-10, +10),
320 | (-10, +10),
321 | ),
322 | (
323 | "hurwitz-zeta-a-3-4i.png",
324 | lambda z: hurwitz_zeta_a(3 + 4j, z),
325 | (-10, +10),
326 | (-10, +10),
327 | ),
328 | #
329 | ("gamma.png", gamma, (-5, +5), (-5, +5)),
330 | ("reciprocal-gamma.png", lambda z: 1 / gamma(z), (-5, +5), (-5, +5)),
331 | ("loggamma.png", loggamma, (-5, +5), (-5, +5)),
332 | #
333 | ("digamma.png", digamma, (-5, +5), (-5, +5)),
334 | ("polygamma1.png", lambda z: polygamma(z, 1), (-5, +5), (-5, +5)),
335 | ("polygamma2.png", lambda z: polygamma(z, 2), (-5, +5), (-5, +5)),
336 | #
337 | #
338 | ("riemann-xi.png", riemann_xi, (-20, +20), (-20, +20)),
339 | ("riemann-siegel-z.png", _wrap(fp.siegelz), (-20, +20), (-20, +20)),
340 | ("riemann-siegel-theta.png", _wrap(fp.siegeltheta), (-20, +20), (-20, +20)),
341 | #
342 | # jacobi elliptic functions
343 | ("ellipj-sn-06.png", lambda z: spx.ellipj(z, 0.6)[0], (-6, +6), (-6, +6)),
344 | ("ellipj-cn-06.png", lambda z: spx.ellipj(z, 0.6)[1], (-6, +6), (-6, +6)),
345 | ("ellipj-dn-06.png", lambda z: spx.ellipj(z, 0.6)[2], (-6, +6), (-6, +6)),
346 | # jacobi theta
347 | (
348 | "jtheta1.png",
349 | _wrap(lambda z: fp.jtheta(1, z, complex(0.1 * np.exp(0.1j * np.pi)))),
350 | (-8, +8),
351 | (-8, +8),
352 | ),
353 | (
354 | "jtheta2.png",
355 | _wrap(lambda z: fp.jtheta(2, z, complex(0.1 * np.exp(0.1j * np.pi)))),
356 | (-8, +8),
357 | (-8, +8),
358 | ),
359 | (
360 | "jtheta3.png",
361 | _wrap(lambda z: fp.jtheta(3, z, complex(0.1 * np.exp(0.1j * np.pi)))),
362 | (-8, +8),
363 | (-8, +8),
364 | ),
365 | #
366 | # bessel, first kind
367 | ("bessel1-1.png", lambda z: jn(1, z), (-9, +9), (-9, +9)),
368 | ("bessel1-2.png", lambda z: jn(2, z), (-9, +9), (-9, +9)),
369 | ("bessel1-3.png", lambda z: jn(3, z), (-9, +9), (-9, +9)),
370 | # bessel, second kind
371 | ("bessel2-1.png", lambda z: yv(1, z), (-9, +9), (-9, +9)),
372 | ("bessel2-2.png", lambda z: yv(2, z), (-9, +9), (-9, +9)),
373 | ("bessel2-3.png", lambda z: yv(3, z), (-9, +9), (-9, +9)),
374 | #
375 | # airy functions
376 | ("airy-ai.png", lambda z: airy(z)[0], (-6, +6), (-6, +6)),
377 | ("airy-bi.png", lambda z: airy(z)[2], (-6, +6), (-6, +6)),
378 | ("airye-ai.png", lambda z: airye(z)[0], (-6, +6), (-6, +6)),
379 | #
380 | (
381 | "tanh-sinh.png",
382 | lambda z: np.tanh(np.pi / 2 * np.sinh(z)),
383 | (-2.5, +2.5),
384 | (-2.5, +2.5),
385 | ),
386 | (
387 | "sinh-sinh.png",
388 | lambda z: np.sinh(np.pi / 2 * np.sinh(z)),
389 | (-2.5, +2.5),
390 | (-2.5, +2.5),
391 | ),
392 | (
393 | "exp-sinh.png",
394 | lambda z: np.exp(np.pi / 2 * np.sinh(z)),
395 | (-2.5, +2.5),
396 | (-2.5, +2.5),
397 | ),
398 | #
399 | # modular forms
400 | ("kleinj.png", _wrap(fp.kleinj), (-2.0, +2.0), (1.0e-5, +2.0)),
401 | ("dedekind-eta.png", _wrap(fp.eta), (-0.3, +0.3), (1.0e-5, +0.3)),
402 | # Dedekind eta = Ramanujan Delta ** 24; see
403 | # https://www.youtube.com/watch?v=s6sdEbGNdic
404 | # https://en.wikipedia.org/wiki/Ramanujan_tau_function
405 | #
406 | # TODO https://en.wikipedia.org/wiki/Euler_function
407 | # ("euler-function.png", _wrap(fp.eta), (-0.3, +0.3), (1.0e-5, +0.3)),
408 | #
409 | ("hankel1a.png", lambda z: hankel1(1.0, z), (-2, +2), (-2, +2)),
410 | ("hankel1b.png", lambda z: hankel1(3.1, z), (-3, +3), (-3, +3)),
411 | ("hankel2.png", lambda z: hankel2(1.0, z), (-2, +2), (-2, +2)),
412 | # lambert series
413 | ("lambert-1.png", lambert_1, (-1.1, 1.1), (-1.1, 1.1)),
414 | ("lambert-von-mangoldt.png", lambert_von_mangoldt, (-1.1, 1.1), (-1.1, 1.1)),
415 | ("lambert-liouville.png", lambert_liouville, (-1.1, 1.1), (-1.1, 1.1)),
416 | #
417 | # # https://www.dynamicmath.xyz
418 | # (
419 | # "some-polynomial.png",
420 | # lambda z: 0.926 * (z + 7.3857e-2 * z ** 5 + 4.5458e-3 * z ** 9),
421 | # (-3, 3),
422 | # (-3, 3),
423 | # ),
424 | # # non-analytic
425 | # (
426 | # "non-analytic.png",
427 | # lambda z: np.imag(np.exp(-1j * np.pi / 4) * z ** n)
428 | # + 1j * np.imag(np.exp(1j * np.pi / 4) * (z - 1) ** 4),
429 | # (-2.0, +3.0),
430 | # (-2.0, +3.0),
431 | # ),
432 | # logistic regression:
433 | ("sigmoid.png", lambda z: 1.0 / (1.0 + np.exp(-z)), (-10, +10), (-10, +10)),
434 | ("euler-function.png", euler_function, (-1.1, 1.1), (-1.1, 1.1)),
435 | ]
436 |
437 | for filename, fun, x, y in args:
438 | diag_length = np.sqrt((x[1] - x[0]) ** 2 + (y[1] - y[0]) ** 2)
439 | m = int(n * (y[1] - y[0]) / (x[1] - x[0]))
440 | cplot.plot(
441 | fun,
442 | (x[0], x[1], n),
443 | (y[0], y[1], m),
444 | add_colorbars=False,
445 | add_axes_labels=False,
446 | min_contour_length=1.0e-2 * diag_length,
447 | )
448 | plt.savefig(plot_dir / filename, transparent=True, bbox_inches="tight")
449 | plt.clf()
450 |
--------------------------------------------------------------------------------
/src/cplot/_main.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | from typing import Callable
4 |
5 | import matplotlib.pyplot as plt
6 | import matplotx
7 | import numpy as np
8 | from matplotlib import cm, colors
9 | from mpl_toolkits.axes_grid1 import make_axes_locatable
10 | from numpy.typing import ArrayLike
11 |
12 | from ._colors import get_srgb1
13 |
14 |
15 | def _get_z_grid_for_image(
16 | xspec: tuple[float, float, int], yspec: tuple[float, float, int]
17 | ) -> np.ndarray:
18 | xmin, xmax, nx = xspec
19 | ymin, ymax, ny = yspec
20 | assert xmin < xmax
21 | assert ymin < ymax
22 |
23 | hx = (xmax - xmin) / nx
24 | x = np.linspace(xmin + hx / 2, xmax - hx / 2, nx)
25 | hy = (ymax - ymin) / ny
26 | y = np.linspace(ymin + hy / 2, ymax - hy / 2, ny)
27 |
28 | X = np.meshgrid(x, y)
29 | return X[0] + 1j * X[1]
30 |
31 |
32 | def _plot_colors(
33 | fz,
34 | extent,
35 | abs_scaling: Callable[[np.ndarray], np.ndarray] = lambda r: r / (r + 1),
36 | saturation_adjustment: float = 1.28,
37 | ):
38 | rgb_vals = get_srgb1(
39 | fz,
40 | abs_scaling=abs_scaling,
41 | saturation_adjustment=saturation_adjustment,
42 | )
43 |
44 | # set nan values to white
45 | assert rgb_vals.shape[-1] == 3
46 | is_nan = np.any(np.isnan(rgb_vals), axis=-1)
47 | rgb_vals[is_nan] = [1.0, 1.0, 1.0]
48 |
49 | plt.imshow(
50 | rgb_vals,
51 | extent=extent,
52 | # Don't use "nearest" interpolation, it creates color blocking artifacts:
53 | #
54 | # interpolation="nearest",
55 | origin="lower",
56 | aspect="equal",
57 | )
58 |
59 |
60 | def _add_colorbar_arg(cax, saturation_adjustment: float):
61 | # arg colorbar
62 | # create new colormap
63 | z = np.exp(1j * np.linspace(-np.pi, np.pi, 256))
64 | rgb_vals = get_srgb1(
65 | z,
66 | abs_scaling=lambda z: np.full_like(z, 0.5),
67 | saturation_adjustment=saturation_adjustment,
68 | )
69 | rgba_vals = np.pad(rgb_vals, ((0, 0), (0, 1)), constant_values=1.0)
70 | newcmp = colors.ListedColormap(rgba_vals)
71 | #
72 | norm = colors.Normalize(vmin=-np.pi, vmax=np.pi)
73 |
74 | cb1 = plt.colorbar(cm.ScalarMappable(norm=norm, cmap=newcmp), cax=cax)
75 |
76 | cb1.set_label("arg", rotation=0, ha="center", va="top")
77 | cb1.ax.yaxis.set_label_coords(0.5, -0.03)
78 | cb1.set_ticks([-np.pi, -np.pi / 2, 0, +np.pi / 2, np.pi])
79 | cb1.set_ticklabels(
80 | [r"$-\pi$", r"$-\dfrac{\pi}{2}$", "$0$", r"$\dfrac{\pi}{2}$", r"$\pi$"]
81 | )
82 |
83 |
84 | def _add_colorbar_abs(cax, abs_scaling: Callable, abs_contours: float | list[float]):
85 | # abs colorbar
86 | norm = colors.Normalize(vmin=0, vmax=1)
87 | cb0 = plt.colorbar(
88 | cm.ScalarMappable(norm=norm, cmap=cm.gray),
89 | cax=cax,
90 | )
91 | cb0.set_label("abs", rotation=0, ha="center", va="top")
92 | cb0.ax.yaxis.set_label_coords(0.5, -0.03)
93 |
94 | if isinstance(abs_contours, (int, float)):
95 | a = abs_contours
96 | scaled_vals = abs_scaling(
97 | np.array([1 / a**3, 1 / a**2, 1 / a, 1, a, a**2, a**3])
98 | )
99 | cb0.set_ticks([0.0, *scaled_vals, 1.0])
100 | if isinstance(abs_contours, int) and abs_contours < 4:
101 | cb0.set_ticklabels(
102 | [
103 | "0",
104 | f"$\\frac{{1}}{{{abs_contours ** 3}}}$",
105 | f"$\\frac{{1}}{{{abs_contours ** 2}}}$",
106 | f"$\\frac{{1}}{{{abs_contours ** 1}}}$",
107 | "$1$",
108 | f"{abs_contours ** 1}",
109 | f"{abs_contours ** 2}",
110 | f"{abs_contours ** 3}",
111 | "$\\infty$",
112 | ]
113 | )
114 | else:
115 | cb0.set_ticklabels(
116 | [
117 | "$0$",
118 | f"${a}^{{-3}}$",
119 | f"${a}^{{-2}}$",
120 | f"${a}^{{-1}}$",
121 | "$1$",
122 | f"${a}^1$",
123 | f"${a}^2$",
124 | f"${a}^3$",
125 | "$\\infty$",
126 | ]
127 | )
128 | else:
129 | scaled_vals = abs_scaling(np.asarray(abs_contours))
130 | cb0.set_ticks([0.0, *scaled_vals, 1.0])
131 | cb0.set_ticklabels(["0", *[f"{val}" for val in scaled_vals], "∞"])
132 |
133 |
134 | def _plot_contour_abs(
135 | Z,
136 | fz,
137 | contours: ArrayLike | float = 2.0,
138 | emphasize_contour_1: bool = True,
139 | alpha: float = 1.0,
140 | # in each direction, positive and negative:
141 | max_num_contours: int = 100,
142 | color: str | None = None,
143 | min_contour_length: float | None = None,
144 | linewidth: float | None = None,
145 | ):
146 | vals = np.abs(fz)
147 |
148 | def _plot_contour(levels, colors, linestyles, alpha):
149 | matplotx.contour(
150 | Z.real,
151 | Z.imag,
152 | vals,
153 | levels=levels,
154 | colors=colors,
155 | linestyles=linestyles,
156 | alpha=alpha,
157 | min_contour_length=min_contour_length,
158 | # choose a minjump above machine precision; avoids
159 | # speckles for functions like `z / abs(z)`
160 | min_jump=1.0e-15,
161 | linewidths=linewidth,
162 | )
163 |
164 | if isinstance(contours, (float, int)):
165 | base = contours
166 |
167 | minval = np.nanmin(vals)
168 | min_exp = -np.inf if minval == 0.0 else np.log(minval) / np.log(base)
169 |
170 | mx = max(min_exp, -max_num_contours)
171 | min_exp = 0 if np.isnan(mx) else int(mx)
172 |
173 | maxval = np.nanmax(vals)
174 | max_exp = np.log(maxval) / np.log(base)
175 | mn = min(max_exp, max_num_contours)
176 | max_exp = 0 if np.isnan(mn) else int(mn)
177 |
178 | # exclude exponent 0, that's treated separately below
179 | contours_neg = [base**k for k in range(min_exp, 0)]
180 | contours_pos = [base**k for k in range(1, max_exp + 1)]
181 |
182 | _plot_contour(contours_neg, color if color else "0.8", "solid", alpha)
183 |
184 | if emphasize_contour_1:
185 | # subtle emphasize
186 | _plot_contour([1.0], "0.6", "solid", 0.7)
187 | # "dash":
188 | # _plot_contour([1.0], "0.8", [(0, (5, 5))], 0.2)
189 | # _plot_contour([1.0], "0.3", [(5, (5, 5))], 0.2)
190 | else:
191 | _plot_contour([1.0], color if color else "0.8", "solid", alpha)
192 |
193 | _plot_contour(contours_pos, color if color else "0.3", "solid", alpha)
194 | else:
195 | contours = np.asarray(contours)
196 | _plot_contour(contours, color if color else "0.8", "solid", alpha)
197 |
198 |
199 | def _plot_contour_arg(
200 | Z,
201 | fz,
202 | angles: ArrayLike = (-np.pi / 2, 0.0, np.pi / 2, np.pi),
203 | saturation_adjustment: float = 1.28,
204 | max_jump: float = 1.0,
205 | lightness_adjustment: float = 1.0,
206 | alpha: float = 1.0,
207 | min_contour_length: float | None = None,
208 | linewidth: float | None = None,
209 | ):
210 | angles = np.asarray(angles)
211 |
212 | # assert angles in [-pi, pi], like np.angle
213 | angles = np.mod(angles + np.pi, 2 * np.pi) - np.pi
214 |
215 | # Contour contours must be increasing
216 | angles = np.sort(angles)
217 |
218 | # mpl has problems with plotting the contour at +pi because that's where the
219 | # branch cut in np.angle happens. Separate out this case and move the branch cut
220 | # to 0/2*pi there.
221 | is_level1 = (angles > -np.pi + 0.1) & (angles < np.pi - 0.1)
222 | angles1 = angles[is_level1]
223 | angles2 = angles[~is_level1]
224 | angles2 = np.mod(angles2, 2 * np.pi)
225 |
226 | for angles, angle_fun in [
227 | (angles1, np.angle),
228 | (angles2, lambda z: np.mod(np.angle(z), 2 * np.pi)),
229 | ]:
230 | angles = np.asarray(angles)
231 |
232 | if len(angles) == 0:
233 | continue
234 |
235 | linecolors = get_srgb1(
236 | lightness_adjustment * np.exp(angles * 1j),
237 | abs_scaling=lambda r: r / (r + 1),
238 | saturation_adjustment=saturation_adjustment,
239 | )
240 |
241 | matplotx.contour(
242 | Z.real,
243 | Z.imag,
244 | angle_fun(fz),
245 | levels=list(angles),
246 | colors=list(linecolors),
247 | min_contour_length=min_contour_length,
248 | alpha=alpha,
249 | max_jump=max_jump,
250 | linewidths=linewidth,
251 | )
252 | plt.gca().set_aspect("equal")
253 |
254 |
255 | class Plotter:
256 | def __init__(
257 | self, x_range: tuple[float, float, int], y_range: tuple[float, float, int]
258 | ):
259 | self.Z = _get_z_grid_for_image(x_range, y_range)
260 | self.extent = (x_range[0], x_range[1], y_range[0], y_range[1])
261 |
262 | def plot(self, fz, *args, **kwargs):
263 | return _plot(self.Z, fz, self.extent, *args, **kwargs)
264 |
265 |
266 | def plot(
267 | f: Callable[[np.ndarray], np.ndarray],
268 | x_range: tuple[float, float, int],
269 | y_range: tuple[float, float, int],
270 | *args,
271 | **kwargs,
272 | ):
273 | extent = (x_range[0], x_range[1], y_range[0], y_range[1])
274 | Z = _get_z_grid_for_image(x_range, y_range)
275 |
276 | # always reshape to vector, makes it easier for f()
277 | Z_shape = Z.shape
278 | fz = f(Z.flatten()).reshape(Z_shape)
279 |
280 | _plot(Z, fz, extent, *args, **kwargs)
281 | return plt
282 |
283 |
284 | def _abs_scaling_from_float(val: float) -> Callable:
285 | assert val > 1
286 | alpha = np.log(2) / np.log(val)
287 |
288 | def alpha_scaling(r):
289 | return r**alpha / (r**alpha + 1)
290 |
291 | return alpha_scaling
292 |
293 |
294 | def _plot(
295 | Z: np.ndarray,
296 | fz: np.ndarray,
297 | extent: tuple[float, float, float, float],
298 | # If you're changing contours_abs to x and want the abs_scaling to follow along,
299 | # you'll have to set it to the same value.
300 | abs_scaling: float | Callable[[np.ndarray], np.ndarray] = 2,
301 | # Literal["auto"]
302 | contours_abs: float | list[float] | None | str = "auto",
303 | contours_arg: ArrayLike | None = (-np.pi / 2, 0, np.pi / 2, np.pi),
304 | contour_arg_max_jump: float = 1.0,
305 | emphasize_abs_contour_1: bool = True,
306 | add_colorbars: bool | tuple[bool, bool] = True,
307 | colorbar_pad: tuple[float, float] = (0.2, 0.5),
308 | add_axes_labels: bool = True,
309 | saturation_adjustment: float = 1.28,
310 | min_contour_length: float | None = None,
311 | linewidth: float | None = None,
312 | ):
313 | assert Z.shape == fz.shape
314 |
315 | asc = abs_scaling if callable(abs_scaling) else _abs_scaling_from_float(abs_scaling)
316 |
317 | _plot_colors(
318 | fz,
319 | extent,
320 | asc,
321 | saturation_adjustment=saturation_adjustment,
322 | )
323 |
324 | if contours_abs is None:
325 | contours_abs = 2
326 |
327 | elif contours_abs == "auto":
328 | assert isinstance(
329 | abs_scaling, (int, float)
330 | ), f'if contours_abs="auto", abs_scaling must be int or float, not {abs_scaling}'
331 | contours_abs = abs_scaling
332 |
333 | if contours_abs is not None:
334 | _plot_contour_abs(
335 | Z,
336 | fz,
337 | contours=contours_abs,
338 | emphasize_contour_1=emphasize_abs_contour_1,
339 | alpha=0.2,
340 | min_contour_length=min_contour_length,
341 | linewidth=linewidth,
342 | )
343 |
344 | if contours_arg is not None:
345 | _plot_contour_arg(
346 | Z,
347 | fz,
348 | angles=contours_arg,
349 | saturation_adjustment=saturation_adjustment,
350 | max_jump=contour_arg_max_jump,
351 | alpha=0.4,
352 | # Draw the arg contour lines a little lighter. This way, arg contours which
353 | # dissolve into areas of nearly equal arg remain recognizable. (E.g., tan,
354 | # zeta, erf,...).
355 | lightness_adjustment=1.5,
356 | min_contour_length=min_contour_length,
357 | linewidth=linewidth,
358 | )
359 |
360 | if add_axes_labels:
361 | plt.xlabel("Re(z)")
362 | # ylabel off-center,
363 | plt.ylabel(
364 | "Im(z)",
365 | rotation="horizontal",
366 | loc="center",
367 | verticalalignment="center",
368 | labelpad=10,
369 | )
370 |
371 | # colorbars?
372 | if isinstance(add_colorbars, bool):
373 | add_colorbars = (add_colorbars, add_colorbars)
374 |
375 | ax = plt.gca()
376 | divider = make_axes_locatable(ax)
377 |
378 | if add_colorbars[0]:
379 | cax1 = divider.append_axes("right", size="5%", pad=colorbar_pad[0])
380 | _add_colorbar_abs(cax1, asc, contours_abs)
381 |
382 | if add_colorbars[1]:
383 | cax2 = divider.append_axes("right", size="5%", pad=colorbar_pad[1])
384 | _add_colorbar_arg(cax2, saturation_adjustment)
385 | return plt
386 |
387 |
388 | # only show the absolute value
389 | def plot_abs(
390 | *args,
391 | add_colorbars: bool = True,
392 | contours_abs: str | float | list[float] | None = None,
393 | **kwargs,
394 | ):
395 | return plot(
396 | *args,
397 | contours_abs=contours_abs,
398 | contours_arg=None,
399 | emphasize_abs_contour_1=False,
400 | add_colorbars=(add_colorbars, False),
401 | saturation_adjustment=0.0,
402 | **kwargs,
403 | )
404 |
405 |
406 | # only show the phase, with some default value adjustments
407 | def plot_arg(*args, add_colorbars: bool = True, **kwargs):
408 | return plot(
409 | *args,
410 | abs_scaling=lambda r: np.full_like(r, 0.5),
411 | contours_abs=None,
412 | contours_arg=None,
413 | emphasize_abs_contour_1=False,
414 | add_colorbars=(False, add_colorbars),
415 | **kwargs,
416 | )
417 |
418 |
419 | # "Phase plot" is a common name for this kind of plots
420 | plot_phase = plot_abs
421 |
422 |
423 | # only show the phase, with some default value adjustments
424 | def plot_contours(
425 | f: Callable[[np.ndarray], np.ndarray],
426 | x_range: tuple[float, float, int],
427 | y_range: tuple[float, float, int],
428 | contours_abs: float | ArrayLike | None = 2,
429 | contours_arg: ArrayLike | None = (-np.pi / 2, 0, np.pi / 2, np.pi),
430 | contour_arg_max_jump: float = 1.0,
431 | saturation_adjustment: float = 1.28,
432 | ):
433 | Z = _get_z_grid_for_image(x_range, y_range)
434 |
435 | # always reshape to vector, makes it easier for f()
436 | Z_shape = Z.shape
437 | fz = f(Z.flatten()).reshape(Z_shape)
438 |
439 | if contours_arg is not None:
440 | _plot_contour_arg(
441 | Z,
442 | fz,
443 | angles=contours_arg,
444 | saturation_adjustment=saturation_adjustment,
445 | max_jump=contour_arg_max_jump,
446 | alpha=1.0,
447 | lightness_adjustment=1.5,
448 | )
449 |
450 | if contours_abs is not None:
451 | _plot_contour_abs(
452 | Z,
453 | fz,
454 | contours=contours_abs,
455 | alpha=0.8,
456 | color="0.7",
457 | emphasize_contour_1=False,
458 | )
459 |
460 | plt.gca().set_aspect("equal")
461 | return plt
462 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |
Plot complex-valued functions with style.
4 |
5 |
6 | [](https://pypi.org/project/cplot)
7 | [](https://pypi.org/pypi/cplot/)
8 | [](https://doi.org/10.5281/zenodo.5599493)
9 | [](https://github.com/nschloe/cplot)
10 | [](https://pepy.tech/project/cplot)
11 |
12 | [](https://discord.gg/hnTJ5MRX2Y)
13 |
14 | [](https://github.com/nschloe/cplot/actions?query=workflow%3Aci)
15 | [](https://codecov.io/gh/nschloe/cplot)
16 | [](https://github.com/psf/black)
17 |
18 | cplot helps plotting complex-valued functions in a visually appealing manner.
19 |
20 | Install with
21 |
22 | ```
23 | pip install cplot
24 | ```
25 |
26 | and use as
27 |
28 | ```python
29 | import numpy as np
30 |
31 | import cplot
32 |
33 |
34 | def f(z):
35 | return np.sin(z**3) / z
36 |
37 |
38 | plt = cplot.plot(
39 | f,
40 | (-2.0, +2.0, 400),
41 | (-2.0, +2.0, 400),
42 | # abs_scaling=lambda x: x / (x + 1), # how to scale the lightness in domain coloring
43 | # contours_abs=2.0,
44 | # contours_arg=(-np.pi / 2, 0, np.pi / 2, np.pi),
45 | # emphasize_abs_contour_1: bool = True,
46 | # add_colorbars: bool = True,
47 | # add_axes_labels: bool = True,
48 | # saturation_adjustment: float = 1.28,
49 | # min_contour_length = None,
50 | # linewidth = None,
51 | )
52 | plt.show()
53 | ```
54 |
55 | Historically, plotting of complex functions was in one of three ways
56 |
57 | |
|
|
|
58 | | :--------------------------------------------------------------------: | :--------------------------------------------------------------------: | :-------------------------------------------------------------------------: |
59 | | Only show the absolute value; sometimes as a 3D plot | Only show the phase/the argument in a color wheel (phase portrait) | Show contour lines for both arg and abs |
60 |
61 | Combining all three of them gives you a _cplot_:
62 |
63 |
64 |
65 |
66 |
67 | See also [Wikipedia: Domain coloring](https://en.wikipedia.org/wiki/Domain_coloring).
68 |
69 | Features of this software:
70 |
71 | - cplot uses [OKLAB](https://bottosson.github.io/posts/oklab/), a perceptually
72 | uniform color space for the argument colors.
73 | This avoids streaks of colors occurring with other color spaces, e.g., HSL.
74 | - The contour `abs(z) == 1` is emphasized, other abs contours are at 2, 4, 8, etc. and
75 | 1/2, 1/4, 1/8, etc., respectively. This makes it easy to tell the absolte value
76 | precisely.
77 | - For `arg(z) == 0`, the color is green, for `arg(z) == pi/2` it's blue, for `arg(z) = -pi / 2` it's orange, and for `arg(z) = pi` it's pink.
78 |
79 | Other useful functions:
80 |
81 |
82 |
83 | ```python
84 | # There is a tripcolor function as well for triangulated 2D domains
85 | cplot.tripcolor(triang, z)
86 |
87 | # The function get_srgb1 returns the SRGB1 triple for every complex input value.
88 | # (Accepts arrays, too.)
89 | z = 2 + 5j
90 | val = cplot.get_srgb1(z)
91 | ```
92 |
93 | #### Riemann sphere
94 |
95 |
96 |
97 |
98 |
99 | cplot can also plot functions on the [Riemann
100 | sphere](https://en.wikipedia.org/wiki/Riemann_sphere), a mapping of the complex
101 | plane to the unit ball.
102 |
103 |
104 |
105 | ```python
106 | import cplot
107 | import numpy as np
108 |
109 | cplot.riemann_sphere(np.log)
110 | ```
111 |
112 | #### Gallery
113 |
114 | All plots are created with default settings.
115 |
116 | |
|
|
|
117 | | :------------------------------------------------------------: | :------------------------------------------------------------: | :------------------------------------------------------------: |
118 | | `z ** 1` | `z ** 2` | `z ** 3` |
119 |
120 |
121 | Many more plots
122 |
123 | |
|
|
|
124 | | :------------------------------------------------------------: | :-------------------------------------------------------------: | :-------------------------------------------------------------: |
125 | | `1 / z` | `1 / z ** 2` | `1 / z ** 3` |
126 |
127 | |
|
|
|
128 | | :------------------------------------------------------------------: | :---------------------------------------------------------------------------------------: | :------------------------------------------------------------------: |
129 | | `(z + 1) / (z - 1)` | Another [Möbius transformation](https://en.wikipedia.org/wiki/M%C3%B6bius_transformation) | A third Möbius transformation |
130 |
131 | |
|
|
|
132 | | :------------------------------------------------------------: | :----------------------------------------------------------------: | :--------------------------------------------------------------: |
133 | | `np.real` | `z / abs(z)` | `np.conj` |
134 |
135 | |
|
|
|
136 | | :--------------------------------------------------------------: | :--------------------------------------------------------------: | :---------------------------------------------------------------: |
137 | | `z ** 6 + 1` | [`z ** 6 - 1`](https://en.wikipedia.org/wiki/Root_of_unity) | `z ** (-6) + 1` |
138 |
139 | |
|
|
|
140 | | :------------------------------------------------------------: | :-------------------------------------------------------------: | :-------------------------------------------------------------: |
141 | | `z ** z` | `(1/z) ** z` | `z ** (1/z)` |
142 |
143 | |
|
|
|
144 | | :---------------------------------------------------------------: | :---------------------------------------------------------------: | :---------------------------------------------------------------: |
145 | | `np.sqrt` | `z**(1/3)` | `z**(1/4)` |
146 |
147 | |
|
|
|
148 | | :-------------------------------------------------------------: | :-------------------------------------------------------------: | :--------------------------------------------------------------: |
149 | | [`np.log`](https://en.wikipedia.org/wiki/Logarithm) | `np.exp` | `np.exp2` |
150 |
151 | |
|
|
|
152 | | :---------------------------------------------------------------: | :----------------------------------------------------------------: | :---------------------------------------------------------------: |
153 | | `np.exp(1 / z)` | `z * np.sin(1 / z)` | `np.cos(1 / z)` |
154 |
155 | |
|
|
|
156 | | :----------------------------------------------------------------: | :----------------------------------------------------------------------: | :-------------------------------------------------------------: |
157 | | `exp(- z ** 2)` | [`1 / (1 + z ** 2)`](https://en.wikipedia.org/wiki/Runge%27s_phenomenon) | [Error function](https://en.wikipedia.org/wiki/Error_function) |
158 |
159 | |
|
|
|
160 | | :-------------------------------------------------------------: | :-------------------------------------------------------------: | :-------------------------------------------------------------: |
161 | | `np.sin` | `np.cos` | `np.tan` |
162 |
163 | |
|
|
|
164 | | :-------------------------------------------------------------: | :-------------------------------------------------------------: | :-------------------------------------------------------------: |
165 | | `sec` | `csc` | `cot` |
166 |
167 | |
|
|
|
168 | | :--------------------------------------------------------------: | :--------------------------------------------------------------: | :--------------------------------------------------------------: |
169 | | [`np.sinh`](https://en.wikipedia.org/wiki/Hyperbolic_functions) | `np.cosh` | `np.tanh` |
170 |
171 | |
|
|
|
172 | | :--------------------------------------------------------------: | :--------------------------------------------------------------: | :--------------------------------------------------------------: |
173 | | secans hyperbolicus | cosecans hyperbolicus | cotangent hyperbolicus |
174 |
175 | |
|
|
|
176 | | :----------------------------------------------------------------: | :----------------------------------------------------------------: | :----------------------------------------------------------------: |
177 | | `np.arcsin` | `np.arccos` | `np.arctan` |
178 |
179 | |
|
|
|
180 | | :-----------------------------------------------------------------: | :-----------------------------------------------------------------: | :-----------------------------------------------------------------: |
181 | | `np.arcsinh` | `np.arccosh` | `np.arctanh` |
182 |
183 | |
|
|
|
184 | | :----------------------------------------------------------------: | :----------------------------------------------------------------: | :----------------------------------------------------------------: |
185 | | [Sinc, `sin(z) / z`](https://en.wikipedia.org/wiki/Sinc_function) | `cos(z) / z` | `tan(z) / z` |
186 |
187 | |
|
|
|
188 | | :------------------------------------------------------------------------: | :------------------------------------------------------------: | :--------------------------------------------------------------------: |
189 | | [Integral sine _Si_](https://en.wikipedia.org/wiki/Trigonometric_integral) | Integral cosine _Ci_ | [Lambert W function](https://en.wikipedia.org/wiki/Lambert_W_function) |
190 |
191 | |
|
|
|
192 | | :--------------------------------------------------------------------------: | :--------------------------------------------------------------: | :--------------------------------------------------------------: |
193 | | [Gudermannian function](https://en.wikipedia.org/wiki/Gudermannian_function) | Exponential integral E1 | Exponential integral Ei |
194 |
195 | |
|
|
|
196 | | :------------------------------------------------------------------: | :-------------------------------------------------------------------: | :----------------------------------------------------------------------------: |
197 | | [`mpmath.zeta`](https://en.wikipedia.org/wiki/Riemann_zeta_function) | Bernoulli function | [Dirichlet eta function](https://en.wikipedia.org/wiki/Dirichlet_eta_function) |
198 |
199 | |
|
|
|
200 | | :-----------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :-----------------------------------------------------------------------------: |
201 | | [Hurwitz zeta function](https://en.wikipedia.org/wiki/Hurwitz_zeta_function) with `a = 1/3` | Hurwitz zeta function with `a = 24/25` | Hurwitz zeta function with `s = 3 + 4i` |
202 |
203 | |
|
|
|
204 | | :-------------------------------------------------------------------: | :--------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------: |
205 | | [`scipy.special.gamma`](https://en.wikipedia.org/wiki/Gamma_function) | [reciprocal Gamma](https://en.wikipedia.org/wiki/Reciprocal_gamma_function) | [`scipy.special.loggamma`](https://en.wikipedia.org/wiki/Gamma_function#The_log-gamma_function) |
206 |
207 | |
|
|
|
208 | | :-----------------------------------------------------------------------: | :--------------------------------------------------------------------: | :--------------------------------------------------------------------: |
209 | | [`scipy.special.digamma`](https://en.wikipedia.org/wiki/Digamma_function) | [Polygamma 1](https://en.wikipedia.org/wiki/Polygamma_function) | [Polygamma 2](https://en.wikipedia.org/wiki/Polygamma_function) |
210 |
211 | |
|
|
|
212 | | :--------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------: | :--------------------------------------------------------------------: |
213 | | [Riemann-Siegel theta function](https://en.wikipedia.org/wiki/Riemann%E2%80%93Siegel_theta_function) | [Z-function](https://en.wikipedia.org/wiki/Z_function) | [Riemann-Xi](https://en.wikipedia.org/wiki/Riemann_Xi_function) |
214 |
215 | |
|
|
|
216 | | :-------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------: | :----------------------------------------------------------------------: |
217 | | [Jacobi elliptic function](https://en.wikipedia.org/wiki/Jacobi_elliptic_functions) `sn(0.6)` | `cn(0.6)` | `dn(0.6)` |
218 |
219 | |
|
|
|
220 | | :----------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------: | :-----------------------------------------------------------------: |
221 | | [Jacobi theta](https://en.wikipedia.org/wiki/Theta_function) 1 with `q=0.1 * exp(0.1j * np.pi))` | Jacobi theta 2 with the same `q` | Jacobi theta 3 with the same `q` |
222 |
223 | |
|
|
|
224 | | :-----------------------------------------------------------------------------------: | :-------------------------------------------------------------------: | :-------------------------------------------------------------------: |
225 | | [Bessel function](https://en.wikipedia.org/wiki/Bessel_function), first kind, order 1 | Bessel function, first kind, order 2 | Bessel function, first kind, order 3 |
226 |
227 | |
|
|
|
228 | | :-------------------------------------------------------------------: | :-------------------------------------------------------------------: | :-------------------------------------------------------------------: |
229 | | Bessel function, second kind, order 1 | Bessel function, second kind, order 2 | Bessel function, second kind, order 3 |
230 |
231 | |
|
|
|
232 | | :------------------------------------------------------------------: | :------------------------------------------------------------------: | :-----------------------------------------------------------------: |
233 | | Hankel function of first kind (n=1.0) | Hankel function of first kind (n=3.1) | Hankel function of second kind (n=1.0) |
234 |
235 | |
|
|
|
236 | | :-------------------------------------------------------------------: | :-------------------------------------------------------------------: | :------------------------------------------------------------------: |
237 | | [Fresnel S](https://en.wikipedia.org/wiki/Fresnel_integral) | [Fresnel C](https://en.wikipedia.org/wiki/Fresnel_integral) | [Faddeeva function](https://en.wikipedia.org/wiki/Faddeeva_function) |
238 |
239 | |
|
|
|
240 | | :-----------------------------------------------------------------: | :-----------------------------------------------------------------: | :---------------------------------------------------------------------: |
241 | | [Airy function Ai](https://en.wikipedia.org/wiki/Airy_function) | [Bi](https://en.wikipedia.org/wiki/Airy_function) | [Exponentially scaled eAi](https://en.wikipedia.org/wiki/Airy_function) |
242 |
243 | |
|
|
|
244 | | :-------------------------------------------------------------------: | :-------------------------------------------------------------------: | :------------------------------------------------------------------: |
245 | | `tanh(pi / 2 * sinh(z))` | `sinh(pi / 2 * sinh(z))` | `exp(pi / 2 * sinh(z))` |
246 |
247 | |
|
|
248 | | :----------------------------------------------------------------: | :--------------------------------------------------------------------------: |
249 | | [Klein's _j_-invariant](https://en.wikipedia.org/wiki/J-invariant) | [Dedekind eta function](https://en.wikipedia.org/wiki/Dedekind_eta_function) |
250 |
251 | |
|
|
|
252 | | :--------------------------------------------------------------------: | :------------------------------------------------------------------------------: | :---------------------------------------------------------------------------: |
253 | | [Lambert series](https://en.wikipedia.org/wiki/Lambert_series) with 1s | Lambert series with von-Mangoldt-coefficients | Lambert series with Liouville-coefficients |
254 |
255 |
256 |
257 | ### Testing
258 |
259 | To run the cplot unit tests, check out this repository and run
260 |
261 | ```
262 | tox
263 | ```
264 |
265 | ### Similar projects and further reading
266 |
267 | - [Tristan Needham, _Visual Complex
268 | Analysis_, 1997](https://umv.science.upjs.sk/hutnik/NeedhamVCA.pdf)
269 | - [François Labelle, _A Gallery of Complex
270 | Functions_, 2002](http://wismuth.com/complex/gallery.html)
271 | - [Douglas Arnold and Jonathan Rogness, _Möbius transformations
272 | revealed_, 2008](https://youtu.be/0z1fIsUNhO4)
273 | - [Konstantin Poelke and Konrad Polthier, _Lifted Domain Coloring_,
274 | 2009](https://doi.org/10.1111/j.1467-8659.2009.01479.x)
275 | - [Elias Wegert and Gunter Semmler, _Phase Plots of Complex Functions:
276 | a Journey in Illustration_, 2011](https://www.ams.org/notices/201106/rtx110600768p.pdf)
277 | - [Elias Wegert,
278 | Calendars _Complex Beauties_, 2011-](https://tu-freiberg.de/en/fakult1/ana/institute/institute-of-applied-analysis/organisation/complex-beauties)
279 | - [Elias Wegert, _Visual Complex
280 | Functions_, 2012](https://www.springer.com/gp/book/9783034801799)
281 | - [empet, _Visualizing complex-valued functions with Matplotlib and Mayavi, Domain coloring method_, 2014](https://nbviewer.org/github/empet/Math/blob/master/DomainColoring.ipynb)
282 | - [John D. Cook, _Visualizing complex
283 | functions_, 2017](https://www.johndcook.com/blog/2017/11/09/visualizing-complex-functions/)
284 | - [endolith, _complex-colormap_, 2017](https://github.com/endolith/complex_colormap)
285 | - [Anthony Hernandez, _dcolor_, 2017](https://github.com/hernanat/dcolor)
286 | - [Juan Carlos Ponce Campuzano, _DC
287 | gallery_, 2018](https://www.dynamicmath.xyz/domain-coloring/dcgallery.html)
288 | - [3Blue1Brown, _Winding numbers and domain coloring_, 2018](https://youtu.be/b7FxPsqfkOY)
289 | - [Ricky Reusser, _Domain Coloring with Adaptive
290 | Contouring_, 2019](https://observablehq.com/@rreusser/adaptive-domain-coloring)
291 | - [Ricky Reusser, _Locally Scaled Domain Coloring, Part 1: Contour
292 | Plots_, 2020](https://observablehq.com/@rreusser/locally-scaled-domain-coloring-part-1-contour-plots)
293 | - [David Lowry-Duda, _Visualizing modular forms_, 2020](https://arxiv.org/abs/2002.05234)
294 |
295 | ### License
296 |
297 | This software is published under the [GPL-3.0 license](LICENSE). In cases where the
298 | constraints of the GPL prevent you from using this software, feel free contact the
299 | author.
300 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------