├── README ├── testnurbs.mtl ├── test.py ├── simple.glsl ├── rotation.py ├── main.py ├── objloader.py └── testnurbs.obj /README: -------------------------------------------------------------------------------- 1 | Simple example which shows how to load 3d object and make them rotate in different way with kivy framework. 2 | This example contains objloader module which may be used for loading 3d object from Wave format *.obj files to Kivy applications. It's extended version which allows you to load several object(see in code how to set object separator) and load also material information from *.mtl file which may be used while rendering. 3 | 4 | -------------------------------------------------------------------------------- /testnurbs.mtl: -------------------------------------------------------------------------------- 1 | # 3ds Max Wavefront OBJ Exporter v0.97b - (c)2007 guruware 2 | # File Created: 24.04.2013 13:32:59 3 | 4 | newmtl wire_154154229 5 | Ns 32 6 | d 1 7 | Tr 0 8 | Tf 1 1 1 9 | illum 2 10 | Ka 0.6039 0.6039 0.8980 11 | Kd 0.6039 0.6039 0.8980 12 | Ks 0.3500 0.3500 0.3500 13 | 14 | newmtl wire_148177026 15 | Ns 32 16 | d 1 17 | Tr 0 18 | Tf 1 1 1 19 | illum 2 20 | Ka 0.5804 0.6941 0.1020 21 | Kd 0.5804 0.6941 0.1020 22 | Ks 0.3500 0.3500 0.3500 23 | 24 | newmtl wire_087224143 25 | Ns 32 26 | d 1 27 | Tr 0 28 | Tf 1 1 1 29 | illum 2 30 | Ka 0.3412 0.8784 0.5608 31 | Kd 0.3412 0.8784 0.5608 32 | Ks 0.3500 0.3500 0.3500 33 | 34 | newmtl wire_108008136 35 | Ns 32 36 | d 1 37 | Tr 0 38 | Tf 1 1 1 39 | illum 2 40 | Ka 0.4235 0.0314 0.5333 41 | Kd 0.4235 0.0314 0.5333 42 | Ks 0.3500 0.3500 0.3500 43 | -------------------------------------------------------------------------------- /test.py: -------------------------------------------------------------------------------- 1 | 2 | from kivy.app import App 3 | from kivy.uix.widget import Widget 4 | from kivy.graphics import * 5 | 6 | class Renderer(Widget): 7 | 8 | def __init__(self, *args, **kw): 9 | super(Renderer, self).__init__(*args, **kw) 10 | with self.canvas: 11 | Color(1, 0.5, 1, 1) 12 | PushMatrix() 13 | Rotate(45, 0, 0, 1) 14 | Translate(400, -300, 0) 15 | Rectangle(pos=(0, 0), size=(300, 300)) 16 | PopMatrix() 17 | 18 | PushMatrix() 19 | Color(0.5, 1, 0.5, 1) 20 | Rectangle(pos=(100, 100), size=(200, 200)) 21 | PopMatrix() 22 | 23 | PushMatrix() 24 | Color(0.0, 0.5, 0.5, 1) 25 | Translate(300, 300, 0) 26 | Rotate(75, 0, 0, 1) 27 | Rectangle(pos=(0, 0), size=(250, 250)) 28 | PopMatrix() 29 | 30 | class TestApp(App): 31 | 32 | def build(self): 33 | return Renderer() 34 | 35 | if __name__ == "__main__": 36 | TestApp().run() -------------------------------------------------------------------------------- /simple.glsl: -------------------------------------------------------------------------------- 1 | /* simple.glsl 2 | 3 | simple diffuse lighting based on laberts cosine law; see e.g.: 4 | http://en.wikipedia.org/wiki/Lambertian_reflectance 5 | http://en.wikipedia.org/wiki/Lambert%27s_cosine_law 6 | */ 7 | ---VERTEX SHADER------------------------------------------------------- 8 | #ifdef GL_ES 9 | precision highp float; 10 | #endif 11 | 12 | attribute vec3 v_pos; 13 | attribute vec3 v_normal; 14 | 15 | uniform mat4 modelview_mat; 16 | uniform mat4 projection_mat; 17 | 18 | varying vec4 normal_vec; 19 | varying vec4 vertex_pos; 20 | 21 | void main (void) { 22 | //compute vertex position in eye_sapce and normalize normal vector 23 | vec4 pos = modelview_mat * vec4(v_pos,1.0); 24 | vertex_pos = pos; 25 | normal_vec = vec4(v_normal,0.0); 26 | gl_Position = projection_mat * pos; 27 | } 28 | 29 | 30 | ---FRAGMENT SHADER----------------------------------------------------- 31 | #ifdef GL_ES 32 | precision highp float; 33 | #endif 34 | 35 | varying vec4 normal_vec; 36 | varying vec4 vertex_pos; 37 | 38 | uniform mat4 normal_mat; 39 | 40 | void main (void){ 41 | //correct normal, and compute light vector (assume light at the eye) 42 | vec4 v_normal = normalize( normal_mat * normal_vec ) ; 43 | vec4 v_light = normalize( vec4(0,0,0,1) - vertex_pos ); 44 | //reflectance based on lamberts law of cosine 45 | float theta = clamp(dot(v_normal, v_light), 0.0, 1.0); 46 | gl_FragColor = vec4(theta, theta, theta, 1.0); 47 | } 48 | -------------------------------------------------------------------------------- /rotation.py: -------------------------------------------------------------------------------- 1 | from kivy.graphics import * 2 | from kivy.graphics.transformation import Matrix 3 | 4 | class SingleRotate(object): 5 | 6 | def __init__(self, angle, axis, render_context): 7 | # It shold be way to get current context 8 | # but in simple case we may just pass it to constructor 9 | self.context = render_context 10 | self._axis = axis 11 | self._angle = angle 12 | self.renderer = render_context 13 | self.prev_mvm = Matrix() 14 | self.matrix = Matrix() 15 | Callback(self._rotate) # here we perform rotation 16 | 17 | def radians(self, degrees): 18 | """ Calculate radians from angle here """ 19 | return degrees * (3.14159265 / 180.) 20 | 21 | @property 22 | def angle(self): 23 | return self._angle 24 | 25 | @angle.setter 26 | def angle(self, v): 27 | self._angle = v 28 | angle = self.radians(self._angle) 29 | ax, ay, az = self._axis 30 | # calculate rotated matrix and store it 31 | self.matrix = Matrix().rotate(angle, ax, ay, az) 32 | 33 | def clear(self): 34 | Callback(self._clear) 35 | 36 | def _rotate(self, *args): 37 | " This sets rotation in callback " 38 | # get previous matrix and save it 39 | self.prev_mvm = self.renderer['modelview_mat'] 40 | # do multiply for rotation 41 | self.context['modelview_mat'] = self.prev_mvm.multiply(self.matrix) 42 | 43 | def _clear(self, *args): 44 | self.renderer['modelview_mat'] = self.prev_mvm 45 | 46 | -------------------------------------------------------------------------------- /main.py: -------------------------------------------------------------------------------- 1 | import math 2 | 3 | from kivy.app import App 4 | from kivy.clock import Clock 5 | from kivy.core.window import Window 6 | from kivy.resources import resource_find 7 | from kivy.graphics.transformation import Matrix 8 | from kivy.graphics.opengl import * 9 | from kivy.graphics import * 10 | from objloader import ObjFileLoader 11 | from kivy.logger import Logger 12 | from rotation import SingleRotate 13 | from kivy.uix.widget import Widget 14 | 15 | class Renderer(Widget): 16 | def __init__(self, **kwargs): 17 | self.canvas = RenderContext(compute_normal_mat=True) 18 | self.canvas.shader.source = resource_find('simple.glsl') 19 | self.scene = ObjFileLoader(resource_find("testnurbs.obj")) 20 | super(Renderer, self).__init__(**kwargs) 21 | self.meshes = [] 22 | with self.canvas: 23 | self.cb = Callback(self.setup_gl_context) 24 | PushMatrix() 25 | self.setup_scene() 26 | PopMatrix() 27 | self.cb = Callback(self.reset_gl_context) 28 | Clock.schedule_interval(self.update_scene, 1 / 60.) 29 | 30 | self._touches = [] 31 | 32 | def setup_gl_context(self, *args): 33 | glEnable(GL_DEPTH_TEST) 34 | 35 | def reset_gl_context(self, *args): 36 | glDisable(GL_DEPTH_TEST) 37 | 38 | def update_glsl(self, *largs): 39 | asp = self.width / float(self.height) 40 | proj = Matrix().view_clip(-asp, asp, -1, 1, 1, 100, 1) 41 | self.canvas['projection_mat'] = proj 42 | 43 | def setup_scene(self): 44 | Color(1, 1, 1, 0) 45 | 46 | PushMatrix() 47 | Translate(0, 0, -5) 48 | # This Kivy native Rotation is used just for 49 | # enabling rotation scene like trackball 50 | self.rotx = Rotate(0, 1, 0, 0) 51 | self.roty = Rotate(-120, 0, 1, 0) # here just rotate scene for best view 52 | self.scale = Scale(1) 53 | 54 | UpdateNormalMatrix() 55 | 56 | self.draw_elements() 57 | 58 | PopMatrix() 59 | 60 | def draw_elements(self): 61 | """ Draw separately all objects on the scene 62 | to setup separate rotation for each object 63 | """ 64 | def _draw_element(m): 65 | Mesh( 66 | vertices=m.vertices, 67 | indices=m.indices, 68 | fmt=m.vertex_format, 69 | mode='triangles', 70 | ) 71 | # Draw sphere in the center 72 | sphere = self.scene.objects['Sphere'] 73 | _draw_element(sphere) 74 | 75 | # Then draw other elements and totate it in different axis 76 | pyramid = self.scene.objects['Pyramid'] 77 | #self.pyramid_rot = SingleRotate(0, (0, 0, 1), self.canvas) 78 | PushMatrix() 79 | self.pyramid_rot = Rotate(0, 0, 0, 1) 80 | _draw_element(pyramid) 81 | PopMatrix() 82 | #self.pyramid_rot.clear() 83 | 84 | box = self.scene.objects['Box'] 85 | #self.box_rot = SingleRotate(0, (0, 1, 0), self.canvas) 86 | PushMatrix() 87 | self.box_rot = Rotate(0, 0, 1, 0) 88 | _draw_element(box) 89 | PopMatrix() 90 | #self.box_rot.clear() 91 | 92 | cylinder = self.scene.objects['Cylinder'] 93 | #self.cylinder_rot = SingleRotate(0, (1, 0, 0), self.canvas) 94 | PushMatrix() 95 | self.cylinder_rot = Rotate(0, 1, 0, 0) 96 | _draw_element(cylinder) 97 | PopMatrix() 98 | #self.cylinder_rot.clear() 99 | 100 | 101 | def update_scene(self, *largs): 102 | self.pyramid_rot.angle += 0.5 103 | self.box_rot.angle += 0.5 104 | self.cylinder_rot.angle += 0.5 105 | self.update_glsl() 106 | 107 | # =============== All stuff after is for trackball implementation ============= 108 | 109 | def define_rotate_angle(self, touch): 110 | x_angle = (touch.dx/self.width)*360 111 | y_angle = -1*(touch.dy/self.height)*360 112 | return x_angle, y_angle 113 | 114 | def on_touch_down(self, touch): 115 | self._touch = touch 116 | touch.grab(self) 117 | self._touches.append(touch) 118 | 119 | def on_touch_up(self, touch): 120 | touch.ungrab(self) 121 | self._touches.remove(touch) 122 | 123 | def on_touch_move(self, touch): 124 | 125 | self.update_glsl() 126 | if touch in self._touches and touch.grab_current == self: 127 | if len(self._touches) == 1: 128 | # here do just rotation 129 | ax, ay = self.define_rotate_angle(touch) 130 | 131 | self.roty.angle += ax 132 | self.rotx.angle += ay 133 | 134 | elif len(self._touches) == 2: # scaling here 135 | #use two touches to determine do we need scal 136 | touch1, touch2 = self._touches 137 | old_pos1 = (touch1.x - touch1.dx, touch1.y - touch1.dy) 138 | old_pos2 = (touch2.x - touch2.dx, touch2.y - touch2.dy) 139 | 140 | old_dx = old_pos1[0] - old_pos2[0] 141 | old_dy = old_pos1[1] - old_pos2[1] 142 | 143 | old_distance = (old_dx*old_dx + old_dy*old_dy) 144 | Logger.debug('Old distance: %s' % old_distance) 145 | 146 | new_dx = touch1.x - touch2.x 147 | new_dy = touch1.y - touch2.y 148 | 149 | new_distance = (new_dx*new_dx + new_dy*new_dy) 150 | 151 | Logger.debug('New distance: %s' % new_distance) 152 | SCALE_FACTOR = 0.01 153 | 154 | if new_distance > old_distance: 155 | scale = SCALE_FACTOR 156 | Logger.debug('Scale up') 157 | elif new_distance == old_distance: 158 | scale = 0 159 | else: 160 | scale = -1*SCALE_FACTOR 161 | Logger.debug('Scale down') 162 | 163 | xyz = self.scale.xyz 164 | 165 | if scale: 166 | self.scale.xyz = tuple(p + scale for p in xyz) 167 | 168 | 169 | class RendererApp(App): 170 | def build(self): 171 | 172 | return Renderer() 173 | 174 | if __name__ == "__main__": 175 | RendererApp().run() 176 | -------------------------------------------------------------------------------- /objloader.py: -------------------------------------------------------------------------------- 1 | import os 2 | 3 | class MeshData(object): 4 | def __init__(self, **kwargs): 5 | self.name = kwargs.get("name") 6 | self.vertex_format = [ 7 | ('v_pos', 3, 'float'), 8 | ('v_normal', 3, 'float'), 9 | ('v_tc0', 2, 'float')] 10 | self.vertices = [] 11 | self.indices = [] 12 | 13 | # Default basic material of mesh object 14 | self.diffuse_color = (1.0, 1.0, 1.0) 15 | self.ambient_color = (1.0, 1.0, 1.0) 16 | self.specular_color = (1.0, 1.0, 1.0) 17 | self.specular_coefficent = 16.0 18 | self.transparency = 1.0 19 | 20 | def set_materials(self, mtl_dict): 21 | self.diffuse_color = mtl_dict.get('Kd') or self.diffuse_color 22 | self.diffuse_color = [float(v) for v in self.diffuse_color] 23 | self.ambient_color = mtl_dict.get('Ka') or self.ambient_color 24 | self.ambient_color = [float(v) for v in self.ambient_color] 25 | self.specular_color = mtl_dict.get('Ks') or self.specular_color 26 | self.specular_color = [float(v) for v in self.specular_color] 27 | self.specular_coefficent = float(mtl_dict.get('Ns', self.specular_coefficent)) 28 | transparency = mtl_dict.get('d') 29 | if not transparency: 30 | transparency = 1.0 - float(mtl_dict.get('Tr', 0)) 31 | self.transparency = float(transparency) 32 | 33 | 34 | def calculate_normals(self): 35 | for i in range(len(self.indices) / (3)): 36 | fi = i * 3 37 | v1i = self.indices[fi] 38 | v2i = self.indices[fi + 1] 39 | v3i = self.indices[fi + 2] 40 | 41 | vs = self.vertices 42 | p1 = [vs[v1i + c] for c in range(3)] 43 | p2 = [vs[v2i + c] for c in range(3)] 44 | p3 = [vs[v3i + c] for c in range(3)] 45 | 46 | u,v = [0,0,0], [0,0,0] 47 | for j in range(3): 48 | v[j] = p2[j] - p1[j] 49 | u[j] = p3[j] - p1[j] 50 | 51 | n = [0,0,0] 52 | n[0] = u[1] * v[2] - u[2] * v[1] 53 | n[1] = u[2] * v[0] - u[0] * v[2] 54 | n[2] = u[0] * v[1] - u[1] * v[0] 55 | 56 | for k in range(3): 57 | self.vertices[v1i + 3 + k] = n[k] 58 | self.vertices[v2i + 3 + k] = n[k] 59 | self.vertices[v3i + 3 + k] = n[k] 60 | 61 | 62 | class ObjFileLoader(object): 63 | """ """ 64 | 65 | def finish_object(self): 66 | if self._current_object == None: 67 | return 68 | 69 | mesh = MeshData() 70 | idx = 0 71 | for f in self.faces: 72 | verts = f[0] 73 | norms = f[1] 74 | tcs = f[2] 75 | for i in range(3): 76 | #get normal components 77 | n = (0.0, 0.0, 0.0) 78 | if norms[i] != -1: 79 | n = self.normals[norms[i]-1] 80 | 81 | #get texture coordinate components 82 | t = (0.0, 0.0) 83 | if tcs[i] != -1: 84 | t = self.texcoords[tcs[i]-1] 85 | 86 | #get vertex components 87 | v = self.vertices[verts[i]-1] 88 | 89 | data = [v[0], v[1], v[2], n[0], n[1], n[2], t[0], t[1]] 90 | mesh.vertices.extend(data) 91 | 92 | tri = [idx, idx+1, idx+2] 93 | mesh.indices.extend(tri) 94 | idx += 3 95 | 96 | material = self.mtl.get(self.obj_material) 97 | if material: 98 | mesh.set_materials(material) 99 | self.objects[self._current_object] = mesh 100 | #mesh.calculate_normals() 101 | self.faces = [] 102 | 103 | def __init__(self, filename, swapyz=False, delimiter="# object"): 104 | """Loads a Wavefront OBJ file. """ 105 | self.objects = {} 106 | self.vertices = [] 107 | self.normals = [] 108 | self.texcoords = [] 109 | self.faces = [] 110 | 111 | 112 | self._current_object = None 113 | 114 | self.obj_material = None 115 | 116 | for line in open(filename, "r"): 117 | if delimiter == "# object" and "# object" in line: 118 | if self._current_object: 119 | self.finish_object() 120 | self._current_object = line.split()[2] 121 | if line.startswith('#'): 122 | continue 123 | if line.startswith('s'): 124 | continue 125 | values = line.split() 126 | if not values: continue 127 | if values[0] == 'o': 128 | self.finish_object() 129 | self._current_object = values[1] 130 | elif values[0] == 'mtllib': 131 | # load materials file here 132 | self.mtl = MTL(values[1]) 133 | elif values[0] in ('usemtl', 'usemat'): 134 | self.obj_material = values[1] 135 | if values[0] == 'v': 136 | v = map(float, values[1:4]) 137 | if swapyz: 138 | v = v[0], v[2], v[1] 139 | self.vertices.append(v) 140 | elif values[0] == 'vn': 141 | v = map(float, values[1:4]) 142 | if swapyz: 143 | v = v[0], v[2], v[1] 144 | self.normals.append(v) 145 | elif values[0] == 'vt': 146 | self.texcoords.append(map(float, values[1:3])) 147 | elif values[0] == 'f': 148 | face = [] 149 | texcoords = [] 150 | norms = [] 151 | for v in values[1:]: 152 | w = v.split('/') 153 | face.append(int(w[0])) 154 | if len(w) >= 2 and len(w[1]) > 0: 155 | texcoords.append(int(w[1])) 156 | else: 157 | texcoords.append(-1) 158 | if len(w) >= 3 and len(w[2]) > 0: 159 | norms.append(int(w[2])) 160 | else: 161 | norms.append(-1) 162 | self.faces.append((face, norms, texcoords)) 163 | self.finish_object() 164 | 165 | 166 | class MTL(object): 167 | 168 | def __init__(self, filename): 169 | self.contents = {} 170 | if not os.path.exists(filename): 171 | return 172 | for line in open(filename, "r"): 173 | if line.startswith('#'): continue 174 | values = line.split() 175 | if not values: continue 176 | if values[0] == 'newmtl': 177 | mtl = self.contents[values[1]] = {} 178 | elif mtl is None: 179 | raise ValueError, "mtl file doesn't start with newmtl stmt" 180 | if len(values[1:]) > 1: 181 | mtl[values[0]] = values[1:] 182 | else: 183 | mtl[values[0]] = values[1] 184 | 185 | def __getitem__(self, key): 186 | return self.contents[key] 187 | 188 | def get(self, key, default=None): 189 | return self.contents.get(key, default) 190 | -------------------------------------------------------------------------------- /testnurbs.obj: -------------------------------------------------------------------------------- 1 | # 3ds Max Wavefront OBJ Exporter v0.97b - (c)2007 guruware 2 | # File Created: 24.04.2013 13:32:59 3 | 4 | mtllib testnurbs.mtl 5 | 6 | # 7 | # object Box 8 | # 9 | 10 | v -3.2297 0.0000 -0.4052 11 | v -3.2297 0.0000 -2.4052 12 | v -2.2297 0.0000 -2.4052 13 | v -2.2297 0.0000 -0.4052 14 | v -1.2297 0.0000 -2.4052 15 | v -1.2297 0.0000 -0.4052 16 | v -1.2297 2.0000 -0.4052 17 | v -1.2297 2.0000 -2.4052 18 | v -2.2297 2.0000 -2.4052 19 | v -2.2297 2.0000 -0.4052 20 | v -3.2297 2.0000 -2.4052 21 | v -3.2297 2.0000 -0.4052 22 | v -3.2297 2.0000 -1.4052 23 | v -3.2297 0.0000 -1.4052 24 | v -1.2297 2.0000 -1.4052 25 | v -1.2297 0.0000 -1.4052 26 | # 16 vertices 27 | 28 | vn 0.0000 -1.0000 -0.0000 29 | vn 0.0000 1.0000 -0.0000 30 | vn -1.0000 0.0000 -0.0000 31 | vn 0.0000 0.0000 1.0000 32 | vn 1.0000 0.0000 -0.0000 33 | vn 0.0000 0.0000 -1.0000 34 | # 6 vertex normals 35 | 36 | vt 1.0000 0.0000 0.0000 37 | vt 1.0000 1.0000 0.0000 38 | vt 0.5000 1.0000 0.0000 39 | vt 0.5000 0.0000 0.0000 40 | vt 0.0000 1.0000 0.0000 41 | vt 0.0000 0.0000 0.0000 42 | # 6 texture coords 43 | 44 | g Box 45 | usemtl wire_154154229 46 | s 1 47 | f 1/1/1 2/2/1 3/3/1 48 | f 1/1/1 3/3/1 4/4/1 49 | f 4/4/1 3/3/1 5/5/1 50 | f 4/4/1 5/5/1 6/6/1 51 | f 7/1/2 8/2/2 9/3/2 52 | f 7/1/2 9/3/2 10/4/2 53 | f 10/4/2 9/3/2 11/5/2 54 | f 10/4/2 11/5/2 12/6/2 55 | f 1/1/3 12/2/3 13/3/3 56 | f 1/1/3 13/3/3 14/4/3 57 | f 14/4/3 13/3/3 11/5/3 58 | f 14/4/3 11/5/3 2/6/3 59 | f 6/1/4 7/2/4 10/3/4 60 | f 6/1/4 10/3/4 4/4/4 61 | f 4/4/4 10/3/4 12/5/4 62 | f 4/4/4 12/5/4 1/6/4 63 | f 5/1/5 8/2/5 15/3/5 64 | f 5/1/5 15/3/5 16/4/5 65 | f 16/4/5 15/3/5 7/5/5 66 | f 16/4/5 7/5/5 6/6/5 67 | f 2/1/6 11/2/6 9/3/6 68 | f 2/1/6 9/3/6 3/4/6 69 | f 3/4/6 9/3/6 8/5/6 70 | f 3/4/6 8/5/6 5/6/6 71 | # 0 polygons - 24 triangles 72 | 73 | # 74 | # object Sphere 75 | # 76 | 77 | v 0.0000 0.1702 -1.2933 78 | v 0.3196 -0.0000 -1.2650 79 | v 0.0000 -0.0000 -1.3047 80 | v 0.0000 0.4993 -1.2049 81 | v 0.0000 0.6523 -1.1299 82 | v 0.2768 0.6523 -1.0956 83 | v 0.3086 0.3376 -1.2214 84 | v 0.0000 0.3376 -1.2597 85 | v 0.0000 0.7941 -1.0357 86 | v 0.0000 0.9224 -0.9236 87 | v 0.2262 0.9224 -0.8956 88 | v 0.0000 1.0350 -0.7954 89 | v 0.0000 1.1299 -0.6523 90 | v 0.1598 1.1299 -0.6325 91 | v 0.0608 1.2600 -0.3272 92 | v 0.0815 1.2600 -0.3227 93 | v 0.0402 1.2600 -0.3303 94 | v 0.0000 1.2600 -0.3328 95 | v 0.0000 1.2052 -0.4967 96 | v 0.0000 1.3047 0.0000 97 | v 0.0000 1.2934 -0.1656 98 | v -0.0000 1.3047 0.0000 99 | v -0.0788 -1.1299 -0.6475 100 | v 0.0000 -1.1299 -0.6523 101 | v 0.0000 -1.2052 -0.4967 102 | v 0.0000 -1.2600 -0.3328 103 | v 0.0000 -1.2934 -0.1656 104 | v -0.0000 -1.3047 0.0000 105 | v -0.1598 -1.1299 -0.6325 106 | v 0.0000 -1.0350 -0.7954 107 | v 0.0000 -0.9224 -0.9236 108 | v -0.2262 -0.9224 -0.8956 109 | v 0.0000 -0.7941 -1.0357 110 | v -0.2768 -0.6523 -1.0956 111 | v 0.0000 -0.6523 -1.1299 112 | v 0.0000 -0.4993 -1.2049 113 | v -0.3086 -0.3376 -1.2214 114 | v 0.0000 -0.3376 -1.2597 115 | v 0.0000 -0.1702 -1.2933 116 | v -0.3196 -0.0000 -1.2650 117 | v -0.3086 0.3376 -1.2214 118 | v -0.2768 0.6523 -1.0956 119 | v -0.2262 0.9224 -0.8956 120 | v -0.1598 1.1299 -0.6325 121 | v -0.0402 1.2600 -0.3303 122 | v -0.0608 1.2600 -0.3272 123 | v -0.0815 1.2600 -0.3227 124 | v 0.0000 -1.3047 0.0000 125 | v -0.3190 -1.1299 -0.5690 126 | v -0.4517 -0.9224 -0.8056 127 | v -0.5526 -0.6523 -0.9856 128 | v -0.6161 -0.3376 -1.0988 129 | v -0.6380 -0.0000 -1.1380 130 | v -0.6161 0.3376 -1.0988 131 | v -0.5526 0.6523 -0.9856 132 | v -0.4517 0.9224 -0.8057 133 | v -0.3190 1.1299 -0.5690 134 | v -0.1627 1.2600 -0.2903 135 | v -0.4599 -1.1299 -0.4598 136 | v -0.5690 -1.1299 -0.3190 137 | v -0.6512 -0.9224 -0.6510 138 | v -0.8056 -0.9224 -0.4517 139 | v -0.7966 -0.6523 -0.7964 140 | v -0.9856 -0.6523 -0.5526 141 | v -0.8881 -0.3376 -0.8879 142 | v -1.0988 -0.3376 -0.6161 143 | v -0.9198 -0.0000 -0.9196 144 | v -1.1380 -0.0000 -0.6380 145 | v -0.8881 0.3376 -0.8879 146 | v -1.0988 0.3376 -0.6161 147 | v -0.7966 0.6523 -0.7964 148 | v -0.9856 0.6523 -0.5526 149 | v -0.6512 0.9224 -0.6510 150 | v -0.8057 0.9224 -0.4517 151 | v -0.4599 1.1299 -0.4598 152 | v -0.5690 1.1299 -0.3190 153 | v -0.2003 1.2600 -0.2650 154 | v -0.2346 1.2600 -0.2346 155 | v -0.2903 1.2600 -0.1627 156 | v -0.6360 -1.1299 -0.1629 157 | v -0.6585 -1.1299 -0.0000 158 | v -0.6363 -1.1299 0.1629 159 | v 0.0000 -1.3047 -0.0000 160 | v -0.5690 -1.1299 0.3190 161 | v -0.9005 -0.9224 -0.2306 162 | v -0.9324 -0.9224 -0.0000 163 | v -0.9009 -0.9224 0.2306 164 | v -0.8056 -0.9224 0.4517 165 | v -1.1016 -0.6523 -0.2821 166 | v -1.1406 -0.6523 -0.0000 167 | v -1.1021 -0.6523 0.2821 168 | v -0.9856 -0.6523 0.5526 169 | v -1.2281 -0.3376 -0.3145 170 | v -1.2716 -0.3376 -0.0000 171 | v -1.2287 -0.3376 0.3145 172 | v -1.0988 -0.3376 0.6161 173 | v -1.2720 -0.0000 -0.3258 174 | v -1.3170 -0.0000 -0.0000 175 | v -1.2726 -0.0000 0.3258 176 | v -1.1380 -0.0000 0.6380 177 | v -1.2281 0.3376 -0.3145 178 | v -1.2716 0.3376 -0.0000 179 | v -1.2287 0.3376 0.3145 180 | v -1.0988 0.3376 0.6161 181 | v -1.1016 0.6523 -0.2821 182 | v -1.1406 0.6523 -0.0000 183 | v -1.1021 0.6523 0.2821 184 | v -0.9856 0.6523 0.5526 185 | v -0.9005 0.9224 -0.2306 186 | v -0.9324 0.9224 -0.0000 187 | v -0.9009 0.9224 0.2306 188 | v -0.8057 0.9224 0.4517 189 | v -0.6360 1.1299 -0.1629 190 | v -0.6585 1.1299 -0.0000 191 | v -0.6363 1.1299 0.1629 192 | v -0.5690 1.1299 0.3190 193 | v -0.3244 1.2600 -0.0831 194 | v -0.3359 1.2600 -0.0000 195 | v -0.3246 1.2600 0.0831 196 | v -0.2903 1.2600 0.1627 197 | v 0.0000 1.3047 -0.0000 198 | v -0.3190 -1.1299 0.5690 199 | v -0.4517 -0.9224 0.8056 200 | v -0.5526 -0.6523 0.9856 201 | v -0.6161 -0.3376 1.0988 202 | v -0.6380 -0.0000 1.1380 203 | v -0.6161 0.3376 1.0988 204 | v -0.5526 0.6523 0.9856 205 | v -0.4517 0.9224 0.8057 206 | v -0.3190 1.1299 0.5690 207 | v -0.1627 1.2600 0.2903 208 | v -0.1631 -1.1299 0.6325 209 | v -0.0000 -1.1299 0.6523 210 | v -0.2310 -0.9224 0.8956 211 | v -0.0000 -0.9224 0.9236 212 | v -0.2826 -0.6523 1.0956 213 | v -0.0000 -0.6523 1.1299 214 | v -0.3151 -0.3376 1.2214 215 | v -0.0000 -0.3376 1.2597 216 | v -0.3263 -0.0000 1.2650 217 | v -0.0000 -0.0000 1.3047 218 | v -0.3151 0.3376 1.2214 219 | v -0.0000 0.3376 1.2597 220 | v -0.2826 0.6523 1.0956 221 | v -0.0000 0.6523 1.1299 222 | v -0.2310 0.9224 0.8956 223 | v -0.0000 0.9224 0.9236 224 | v -0.1631 1.1299 0.6325 225 | v -0.0000 1.1299 0.6523 226 | v -0.0832 1.2600 0.3227 227 | v -0.0000 1.2600 0.3328 228 | v 0.1631 -1.1299 0.6325 229 | v -0.0000 -1.3047 -0.0000 230 | v 0.3190 -1.1299 0.5690 231 | v 0.2310 -0.9224 0.8956 232 | v 0.4517 -0.9224 0.8056 233 | v 0.2826 -0.6523 1.0956 234 | v 0.5526 -0.6523 0.9856 235 | v 0.3151 -0.3376 1.2214 236 | v 0.6161 -0.3376 1.0988 237 | v 0.3263 -0.0000 1.2650 238 | v 0.6380 -0.0000 1.1380 239 | v 0.3151 0.3376 1.2214 240 | v 0.6161 0.3376 1.0988 241 | v 0.2826 0.6523 1.0956 242 | v 0.5526 0.6523 0.9856 243 | v 0.2310 0.9224 0.8956 244 | v 0.4517 0.9224 0.8057 245 | v 0.1631 1.1299 0.6325 246 | v 0.3190 1.1299 0.5690 247 | v 0.0832 1.2600 0.3227 248 | v 0.1627 1.2600 0.2903 249 | v -0.0000 1.3047 -0.0000 250 | v 0.5690 -1.1299 0.3190 251 | v 0.8056 -0.9224 0.4517 252 | v 0.9856 -0.6523 0.5526 253 | v 1.0988 -0.3376 0.6161 254 | v 1.1380 -0.0000 0.6380 255 | v 1.0988 0.3376 0.6161 256 | v 0.9856 0.6523 0.5526 257 | v 0.8057 0.9224 0.4517 258 | v 0.5690 1.1299 0.3190 259 | v 0.2903 1.2600 0.1627 260 | v 0.6363 -1.1299 0.1629 261 | v 0.6585 -1.1299 0.0000 262 | v 0.6360 -1.1299 -0.1629 263 | v 0.5690 -1.1299 -0.3190 264 | v 0.9009 -0.9224 0.2306 265 | v 0.9324 -0.9224 0.0000 266 | v 0.9005 -0.9224 -0.2306 267 | v 0.8056 -0.9224 -0.4517 268 | v 1.1021 -0.6523 0.2821 269 | v 1.1406 -0.6523 0.0000 270 | v 1.1016 -0.6523 -0.2821 271 | v 0.9856 -0.6523 -0.5526 272 | v 1.2287 -0.3376 0.3145 273 | v 1.2716 -0.3376 0.0000 274 | v 1.2281 -0.3376 -0.3145 275 | v 1.0988 -0.3376 -0.6161 276 | v 1.2726 -0.0000 0.3258 277 | v 1.3170 -0.0000 0.0000 278 | v 1.2720 -0.0000 -0.3258 279 | v 1.1380 -0.0000 -0.6380 280 | v 1.2287 0.3376 0.3145 281 | v 1.2716 0.3376 0.0000 282 | v 1.2281 0.3376 -0.3145 283 | v 1.0988 0.3376 -0.6161 284 | v 1.1021 0.6523 0.2821 285 | v 1.1406 0.6523 0.0000 286 | v 1.1016 0.6523 -0.2821 287 | v 0.9856 0.6523 -0.5526 288 | v 0.9009 0.9224 0.2306 289 | v 0.9324 0.9224 0.0000 290 | v 0.9005 0.9224 -0.2306 291 | v 0.8057 0.9224 -0.4517 292 | v 0.6363 1.1299 0.1629 293 | v 0.6585 1.1299 0.0000 294 | v 0.6360 1.1299 -0.1629 295 | v 0.5690 1.1299 -0.3190 296 | v 0.3246 1.2600 0.0831 297 | v 0.3359 1.2600 0.0000 298 | v 0.3244 1.2600 -0.0831 299 | v 0.2903 1.2600 -0.1627 300 | v 0.4599 -1.1299 -0.4598 301 | v 0.3190 -1.1299 -0.5690 302 | v 0.6512 -0.9224 -0.6510 303 | v 0.4517 -0.9224 -0.8056 304 | v 0.7966 -0.6523 -0.7964 305 | v 0.5526 -0.6523 -0.9856 306 | v 0.8881 -0.3376 -0.8879 307 | v 0.6161 -0.3376 -1.0988 308 | v 0.9198 -0.0000 -0.9196 309 | v 0.6380 -0.0000 -1.1380 310 | v 0.8881 0.3376 -0.8879 311 | v 0.6161 0.3376 -1.0988 312 | v 0.7966 0.6523 -0.7964 313 | v 0.5526 0.6523 -0.9856 314 | v 0.6512 0.9224 -0.6510 315 | v 0.4517 0.9224 -0.8057 316 | v 0.4599 1.1299 -0.4598 317 | v 0.3190 1.1299 -0.5690 318 | v 0.2346 1.2600 -0.2346 319 | v 0.2003 1.2600 -0.2650 320 | v 0.1627 1.2600 -0.2903 321 | v 0.1598 -1.1299 -0.6325 322 | v 0.2262 -0.9224 -0.8956 323 | v 0.2768 -0.6523 -1.0956 324 | v 0.3086 -0.3376 -1.2214 325 | v 0.0788 -1.1299 -0.6475 326 | # 249 vertices 327 | 328 | vn 0.1330 0.1304 -0.9825 329 | vn 0.2603 -0.0000 -0.9655 330 | vn 0.1231 -0.0000 -0.9924 331 | vn 0.1263 0.3772 -0.9175 332 | vn 0.1071 0.4929 -0.8635 333 | vn 0.2289 0.4935 -0.8391 334 | vn 0.2521 0.2562 -0.9332 335 | vn 0.1190 0.2563 -0.9593 336 | vn 0.1146 0.6018 -0.7904 337 | vn 0.0878 0.7009 -0.7078 338 | vn 0.1917 0.7008 -0.6871 339 | vn 0.1022 0.7896 -0.6051 340 | vn 0.0618 0.8647 -0.4984 341 | vn 0.1413 0.8635 -0.4841 342 | vn 0.0468 0.9655 -0.2560 343 | vn 0.0774 0.9646 -0.2520 344 | vn 0.0375 0.9606 -0.2755 345 | vn 0.0406 0.9574 -0.2860 346 | vn 0.1445 0.9276 -0.3445 347 | vn 0.0283 0.9911 -0.1302 348 | vn 0.0383 0.9968 -0.0703 349 | vn 0.4504 0.8900 -0.0706 350 | vn -0.0001 0.9977 -0.0681 351 | vn -0.0948 -0.8788 -0.4677 352 | vn -0.0305 -0.8671 -0.4972 353 | vn -0.2524 -0.9119 -0.3236 354 | vn -0.6181 -0.7690 -0.1631 355 | vn -0.8446 -0.5337 -0.0430 356 | vn -0.1232 -0.9616 -0.2454 357 | vn -0.0032 -0.9653 -0.2610 358 | vn -0.1257 -0.8923 -0.4336 359 | vn -0.2793 -0.7335 -0.6197 360 | vn -0.1037 -0.7161 -0.6902 361 | vn -0.1853 -0.7048 -0.6848 362 | vn -0.1146 -0.6018 -0.7904 363 | vn -0.2289 -0.4935 -0.8391 364 | vn -0.1071 -0.4929 -0.8635 365 | vn -0.1263 -0.3772 -0.9175 366 | vn -0.2521 -0.2562 -0.9332 367 | vn -0.1190 -0.2563 -0.9593 368 | vn -0.1330 -0.1304 -0.9825 369 | vn -0.2603 -0.0000 -0.9655 370 | vn -0.1231 -0.0000 -0.9924 371 | vn -0.1330 0.1304 -0.9825 372 | vn -0.2521 0.2562 -0.9332 373 | vn -0.1190 0.2563 -0.9593 374 | vn -0.1263 0.3772 -0.9175 375 | vn -0.2289 0.4935 -0.8391 376 | vn -0.1071 0.4929 -0.8635 377 | vn -0.1146 0.6018 -0.7904 378 | vn -0.1917 0.7008 -0.6871 379 | vn -0.0878 0.7009 -0.7078 380 | vn -0.1022 0.7896 -0.6051 381 | vn -0.1331 0.8673 -0.4797 382 | vn -0.0790 0.8769 -0.4742 383 | vn -0.0491 0.9639 -0.2618 384 | vn -0.0159 0.9657 -0.2591 385 | vn -0.4691 0.7990 -0.3762 386 | vn -0.0497 0.9640 -0.2612 387 | vn -0.0756 0.9639 -0.2555 388 | vn -0.4504 0.8900 -0.0706 389 | vn -0.0389 0.9969 -0.0681 390 | vn 0.0001 0.9977 -0.0681 391 | vn -0.0202 0.9911 -0.1317 392 | vn 0.0015 -0.9906 0.1369 393 | vn -0.0077 0.9547 0.2976 394 | vn -0.0439 0.9478 0.3158 395 | vn -0.2262 -0.8903 -0.3952 396 | vn -0.3540 -0.7010 -0.6191 397 | vn -0.4317 -0.4935 -0.7551 398 | vn -0.4798 -0.2560 -0.8392 399 | vn -0.4963 -0.0000 -0.8682 400 | vn -0.4798 0.2560 -0.8392 401 | vn -0.4317 0.4935 -0.7551 402 | vn -0.3540 0.7010 -0.6191 403 | vn -0.2509 0.8625 -0.4395 404 | vn -0.1236 0.9642 -0.2346 405 | vn -0.0089 -0.9902 0.1395 406 | vn -0.3218 -0.8905 -0.3217 407 | vn -0.2067 -0.9652 -0.1602 408 | vn -0.3912 -0.8909 -0.2307 409 | vn -0.5046 -0.7005 -0.5046 410 | vn -0.6141 -0.7015 -0.3617 411 | vn -0.6153 -0.4929 -0.6152 412 | vn -0.7493 -0.4939 -0.4412 413 | vn -0.6837 -0.2556 -0.6836 414 | vn -0.8330 -0.2562 -0.4904 415 | vn -0.7071 -0.0000 -0.7071 416 | vn -0.8618 -0.0000 -0.5072 417 | vn -0.6837 0.2556 -0.6836 418 | vn -0.8330 0.2562 -0.4904 419 | vn -0.6153 0.4929 -0.6152 420 | vn -0.7493 0.4938 -0.4412 421 | vn -0.5046 0.7005 -0.5046 422 | vn -0.6141 0.7015 -0.3617 423 | vn -0.3584 0.8623 -0.3577 424 | vn -0.4348 0.8632 -0.2564 425 | vn -0.1611 0.9648 -0.2080 426 | vn -0.1937 0.9643 -0.1808 427 | vn -0.2297 0.9638 -0.1356 428 | vn -0.0746 0.9910 -0.1109 429 | vn -0.0888 0.9910 -0.1001 430 | vn 0.0184 0.9552 -0.2952 431 | vn -0.2391 -0.9656 -0.1026 432 | vn -0.4361 -0.8916 -0.1216 433 | vn -0.2564 -0.9659 -0.0355 434 | vn -0.4519 -0.8921 -0.0004 435 | vn -0.2564 -0.9659 0.0350 436 | vn -0.4361 -0.8916 0.1216 437 | vn -0.2389 -0.9656 0.1029 438 | vn -0.3806 -0.8872 0.2609 439 | vn -0.6848 -0.7034 -0.1906 440 | vn -0.7098 -0.7044 -0.0007 441 | vn -0.6847 -0.7035 0.1905 442 | vn -0.5922 -0.6977 0.4030 443 | vn -0.8366 -0.4959 -0.2327 444 | vn -0.8678 -0.4970 -0.0008 445 | vn -0.8366 -0.4960 0.2326 446 | vn -0.7212 -0.4905 0.4892 447 | vn -0.9310 -0.2576 -0.2588 448 | vn -0.9661 -0.2583 -0.0009 449 | vn -0.9310 -0.2576 0.2587 450 | vn -0.8009 -0.2543 0.5422 451 | vn -0.9635 -0.0000 -0.2678 452 | vn -1.0000 -0.0000 -0.0009 453 | vn -0.9635 -0.0000 0.2677 454 | vn -0.8283 -0.0000 0.5603 455 | vn -0.9310 0.2576 -0.2588 456 | vn -0.9661 0.2582 -0.0009 457 | vn -0.9310 0.2576 0.2587 458 | vn -0.8009 0.2543 0.5422 459 | vn -0.8366 0.4959 -0.2327 460 | vn -0.8678 0.4970 -0.0008 461 | vn -0.8366 0.4960 0.2326 462 | vn -0.7212 0.4905 0.4892 463 | vn -0.6848 0.7034 -0.1906 464 | vn -0.7098 0.7044 -0.0007 465 | vn -0.6847 0.7034 0.1905 466 | vn -0.5922 0.6977 0.4030 467 | vn -0.4844 0.8643 -0.1350 468 | vn -0.5019 0.8649 -0.0005 469 | vn -0.4844 0.8644 0.1350 470 | vn -0.4210 0.8602 0.2878 471 | vn -0.2559 0.9641 -0.0715 472 | vn -0.2651 0.9642 -0.0003 473 | vn -0.2559 0.9641 0.0715 474 | vn -0.2242 0.9622 0.1544 475 | vn 0.1274 0.8748 -0.4675 476 | vn -0.1319 0.9911 -0.0182 477 | vn -0.1319 0.9911 0.0180 478 | vn -0.1230 0.9910 0.0530 479 | vn -0.1896 -0.9634 0.1896 480 | vn -0.2574 -0.8868 0.3838 481 | vn -0.3971 -0.6976 0.5963 482 | vn -0.4820 -0.4905 0.7260 483 | vn -0.5343 -0.2543 0.8062 484 | vn -0.5521 -0.0000 0.8338 485 | vn -0.5343 0.2543 0.8062 486 | vn -0.4820 0.4905 0.7260 487 | vn -0.3971 0.6976 0.5963 488 | vn -0.2837 0.8600 0.4241 489 | vn -0.1524 0.9621 0.2262 490 | vn -0.0978 0.9904 0.0978 491 | vn 0.0866 0.9658 -0.2446 492 | vn 0.0995 0.9654 -0.2411 493 | vn -0.1141 -0.8909 0.4397 494 | vn 0.0000 -0.8913 0.4535 495 | vn -0.1790 -0.7018 0.6896 496 | vn 0.0000 -0.7018 0.7124 497 | vn -0.2184 -0.4942 0.8415 498 | vn -0.0000 -0.4941 0.8694 499 | vn -0.2428 -0.2565 0.9356 500 | vn 0.0000 -0.2564 0.9666 501 | vn -0.2512 -0.0000 0.9679 502 | vn 0.0000 -0.0000 1.0000 503 | vn -0.2428 0.2565 0.9356 504 | vn -0.0000 0.2564 0.9666 505 | vn -0.2184 0.4942 0.8415 506 | vn -0.0000 0.4941 0.8694 507 | vn -0.1790 0.7018 0.6896 508 | vn -0.0000 0.7018 0.7124 509 | vn -0.1268 0.8634 0.4884 510 | vn -0.0000 0.8635 0.5043 511 | vn -0.0670 0.9638 0.2582 512 | vn -0.0000 0.9639 0.2662 513 | vn -0.0506 0.9910 0.1243 514 | vn -0.0162 0.9910 0.1332 515 | vn 0.0314 -0.9654 0.2587 516 | vn 0.1141 -0.8909 0.4397 517 | vn 0.0984 -0.9654 0.2414 518 | vn 0.2574 -0.8868 0.3838 519 | vn 0.1790 -0.7018 0.6896 520 | vn 0.3971 -0.6976 0.5963 521 | vn 0.2184 -0.4942 0.8415 522 | vn 0.4820 -0.4905 0.7260 523 | vn 0.2428 -0.2565 0.9356 524 | vn 0.5343 -0.2543 0.8062 525 | vn 0.2512 -0.0000 0.9679 526 | vn 0.5521 -0.0000 0.8338 527 | vn 0.2428 0.2565 0.9356 528 | vn 0.5343 0.2543 0.8062 529 | vn 0.2184 0.4942 0.8415 530 | vn 0.4820 0.4905 0.7260 531 | vn 0.1790 0.7018 0.6896 532 | vn 0.3971 0.6976 0.5963 533 | vn 0.1268 0.8634 0.4884 534 | vn 0.2837 0.8600 0.4241 535 | vn 0.0670 0.9638 0.2582 536 | vn 0.1524 0.9621 0.2262 537 | vn -0.0514 -0.9909 -0.1241 538 | vn -0.0445 -0.9910 -0.1259 539 | vn 0.1896 -0.9634 0.1896 540 | vn 0.3806 -0.8872 0.2609 541 | vn 0.5922 -0.6977 0.4030 542 | vn 0.7212 -0.4905 0.4892 543 | vn 0.8009 -0.2543 0.5422 544 | vn 0.8283 -0.0000 0.5603 545 | vn 0.8009 0.2543 0.5422 546 | vn 0.7212 0.4905 0.4892 547 | vn 0.5922 0.6977 0.4030 548 | vn 0.4210 0.8602 0.2878 549 | vn 0.2242 0.9622 0.1544 550 | vn 0.0978 0.9904 0.0978 551 | vn 0.2389 -0.9656 0.1029 552 | vn 0.4361 -0.8916 0.1216 553 | vn 0.2564 -0.9659 0.0350 554 | vn 0.4519 -0.8921 -0.0004 555 | vn 0.2564 -0.9659 -0.0355 556 | vn 0.4361 -0.8916 -0.1216 557 | vn -0.1873 -0.6815 -0.7075 558 | vn -0.0366 -0.8475 -0.5296 559 | vn 0.3912 -0.8909 -0.2307 560 | vn 0.6847 -0.7035 0.1905 561 | vn 0.7098 -0.7044 -0.0007 562 | vn 0.6848 -0.7034 -0.1906 563 | vn 0.6141 -0.7015 -0.3617 564 | vn 0.8366 -0.4960 0.2326 565 | vn 0.8678 -0.4970 -0.0008 566 | vn 0.8366 -0.4959 -0.2327 567 | vn 0.7493 -0.4939 -0.4412 568 | vn 0.9310 -0.2576 0.2587 569 | vn 0.9661 -0.2583 -0.0009 570 | vn 0.9310 -0.2576 -0.2588 571 | vn 0.8330 -0.2562 -0.4904 572 | vn 0.9635 -0.0000 0.2677 573 | vn 1.0000 -0.0000 -0.0009 574 | vn 0.9635 -0.0000 -0.2678 575 | vn 0.8618 -0.0000 -0.5072 576 | vn 0.9310 0.2576 0.2587 577 | vn 0.9661 0.2582 -0.0009 578 | vn 0.9310 0.2576 -0.2588 579 | vn 0.8330 0.2562 -0.4904 580 | vn 0.8366 0.4960 0.2326 581 | vn 0.8678 0.4970 -0.0008 582 | vn 0.8366 0.4959 -0.2327 583 | vn 0.7493 0.4938 -0.4412 584 | vn 0.6847 0.7034 0.1905 585 | vn 0.7098 0.7044 -0.0007 586 | vn 0.6848 0.7034 -0.1906 587 | vn 0.6141 0.7015 -0.3617 588 | vn 0.4844 0.8644 0.1350 589 | vn 0.5019 0.8649 -0.0005 590 | vn 0.4844 0.8643 -0.1350 591 | vn 0.4348 0.8632 -0.2564 592 | vn 0.2559 0.9641 0.0715 593 | vn 0.2651 0.9642 -0.0003 594 | vn 0.2559 0.9641 -0.0715 595 | vn 0.2297 0.9638 -0.1356 596 | vn 0.1230 0.9910 0.0530 597 | vn 0.1319 0.9911 0.0180 598 | vn 0.1319 0.9911 -0.0182 599 | vn 0.1231 0.9910 -0.0528 600 | vn 0.3218 -0.8905 -0.3217 601 | vn 0.1602 -0.9652 -0.2067 602 | vn 0.2262 -0.8903 -0.3952 603 | vn 0.5046 -0.7005 -0.5046 604 | vn 0.3540 -0.7010 -0.6191 605 | vn 0.6153 -0.4929 -0.6152 606 | vn 0.4317 -0.4935 -0.7551 607 | vn 0.6837 -0.2556 -0.6836 608 | vn 0.4798 -0.2560 -0.8392 609 | vn 0.7071 -0.0000 -0.7071 610 | vn 0.4963 -0.0000 -0.8682 611 | vn 0.6837 0.2556 -0.6836 612 | vn 0.4798 0.2560 -0.8392 613 | vn 0.6153 0.4929 -0.6152 614 | vn 0.4317 0.4935 -0.7551 615 | vn 0.5046 0.7005 -0.5046 616 | vn 0.3540 0.7010 -0.6191 617 | vn 0.3584 0.8623 -0.3577 618 | vn 0.2509 0.8625 -0.4395 619 | vn 0.1937 0.9643 -0.1808 620 | vn 0.1611 0.9648 -0.2080 621 | vn 0.1236 0.9642 -0.2346 622 | vn 0.1064 0.9909 -0.0825 623 | vn 0.0888 0.9910 -0.1001 624 | vn 0.0075 -0.9877 0.1564 625 | vn 0.0165 0.9627 0.2702 626 | vn -0.0017 0.9640 0.2660 627 | vn 0.1257 -0.8923 -0.4336 628 | vn 0.1853 -0.7048 -0.6848 629 | vn 0.2289 -0.4935 -0.8391 630 | vn 0.2521 -0.2562 -0.9332 631 | vn 0.0041 -0.9880 0.1545 632 | vn 0.0635 -0.8974 -0.4365 633 | vn 0.0863 -0.9058 -0.4149 634 | vn 0.1151 -0.9901 -0.0809 635 | vn 1.0000 -0.0000 -0.0000 636 | vn 0.0000 -0.9977 -0.0681 637 | vn 0.1037 -0.7161 -0.6902 638 | vn 0.2793 -0.7335 -0.6197 639 | vn 0.1146 -0.6018 -0.7904 640 | vn 0.1071 -0.4929 -0.8635 641 | vn 0.1263 -0.3772 -0.9175 642 | vn 0.1190 -0.2563 -0.9593 643 | vn 0.1330 -0.1304 -0.9825 644 | # 316 vertex normals 645 | 646 | vt 1.0000 0.5418 0.0000 647 | vt 0.9625 0.5000 0.0000 648 | vt 1.0000 0.5000 0.0000 649 | vt 1.0000 0.6255 0.0000 650 | vt 1.0000 0.6672 0.0000 651 | vt 0.9625 0.6665 0.0000 652 | vt 0.9625 0.5833 0.0000 653 | vt 1.0000 0.5837 0.0000 654 | vt 1.0000 0.7089 0.0000 655 | vt 1.0000 0.7506 0.0000 656 | vt 0.9625 0.7498 0.0000 657 | vt 1.0000 0.7925 0.0000 658 | vt 1.0000 0.8347 0.0000 659 | vt 0.9625 0.8340 0.0000 660 | vt 0.9722 0.9189 0.0000 661 | vt 0.9625 0.9188 0.0000 662 | vt 0.9817 0.9190 0.0000 663 | vt 1.0000 0.9192 0.0000 664 | vt 1.0000 0.8771 0.0000 665 | vt 0.9722 1.0000 0.0000 666 | vt 0.9817 1.0000 0.0000 667 | vt 1.0000 0.9604 0.0000 668 | vt 1.0000 1.0000 0.0000 669 | vt 0.0183 0.1657 0.0000 670 | vt 0.0000 0.1653 0.0000 671 | vt 0.0000 0.1229 0.0000 672 | vt 0.0000 0.0808 0.0000 673 | vt 0.0000 0.0396 0.0000 674 | vt 0.0000 0.0000 0.0000 675 | vt 0.0183 0.0000 0.0000 676 | vt 0.0375 0.1660 0.0000 677 | vt 0.0000 0.2075 0.0000 678 | vt 0.0000 0.2494 0.0000 679 | vt 0.0375 0.2502 0.0000 680 | vt 0.0000 0.2911 0.0000 681 | vt 0.0375 0.3335 0.0000 682 | vt 0.0000 0.3328 0.0000 683 | vt 0.0000 0.3745 0.0000 684 | vt 0.0375 0.4167 0.0000 685 | vt 0.0000 0.4163 0.0000 686 | vt 0.0000 0.4582 0.0000 687 | vt 0.0375 0.5000 0.0000 688 | vt 0.0000 0.5000 0.0000 689 | vt 0.0000 0.5418 0.0000 690 | vt 0.0375 0.5833 0.0000 691 | vt 0.0000 0.5837 0.0000 692 | vt 0.0000 0.6255 0.0000 693 | vt 0.0375 0.6665 0.0000 694 | vt 0.0000 0.6672 0.0000 695 | vt 0.0000 0.7089 0.0000 696 | vt 0.0375 0.7498 0.0000 697 | vt 0.0000 0.7506 0.0000 698 | vt 0.0000 0.7925 0.0000 699 | vt 0.0375 0.8340 0.0000 700 | vt 0.0000 0.8347 0.0000 701 | vt 0.0183 0.9190 0.0000 702 | vt 0.0000 0.9192 0.0000 703 | vt 0.0000 0.8771 0.0000 704 | vt 0.0278 0.9189 0.0000 705 | vt 0.0375 0.9188 0.0000 706 | vt 0.0000 0.9604 0.0000 707 | vt 0.0183 1.0000 0.0000 708 | vt 0.0000 1.0000 0.0000 709 | vt 0.0278 1.0000 0.0000 710 | vt 0.0375 1.0000 0.0000 711 | vt 0.0375 0.0000 0.0000 712 | vt 0.0778 0.0000 0.0000 713 | vt 0.0778 0.1670 0.0000 714 | vt 0.0778 0.2513 0.0000 715 | vt 0.0778 0.3345 0.0000 716 | vt 0.0778 0.4173 0.0000 717 | vt 0.0778 0.5000 0.0000 718 | vt 0.0778 0.5827 0.0000 719 | vt 0.0778 0.6655 0.0000 720 | vt 0.0778 0.7487 0.0000 721 | vt 0.0778 0.8330 0.0000 722 | vt 0.0778 0.9182 0.0000 723 | vt 0.0778 1.0000 0.0000 724 | vt 0.1204 0.1686 0.0000 725 | vt 0.1204 0.0000 0.0000 726 | vt 0.1637 0.1702 0.0000 727 | vt 0.1204 0.2531 0.0000 728 | vt 0.1637 0.2549 0.0000 729 | vt 0.1204 0.3360 0.0000 730 | vt 0.1637 0.3376 0.0000 731 | vt 0.1204 0.4182 0.0000 732 | vt 0.1637 0.4191 0.0000 733 | vt 0.1204 0.5000 0.0000 734 | vt 0.1637 0.5000 0.0000 735 | vt 0.1204 0.5818 0.0000 736 | vt 0.1637 0.5809 0.0000 737 | vt 0.1204 0.6640 0.0000 738 | vt 0.1637 0.6624 0.0000 739 | vt 0.1204 0.7469 0.0000 740 | vt 0.1637 0.7451 0.0000 741 | vt 0.1204 0.8314 0.0000 742 | vt 0.1637 0.8298 0.0000 743 | vt 0.0989 0.9178 0.0000 744 | vt 0.1204 0.9173 0.0000 745 | vt 0.1637 0.9164 0.0000 746 | vt 0.0989 1.0000 0.0000 747 | vt 0.1204 1.0000 0.0000 748 | vt 0.1637 1.0000 0.0000 749 | vt 0.1637 0.0000 0.0000 750 | vt 0.2064 0.1713 0.0000 751 | vt 0.2064 0.0000 0.0000 752 | vt 0.2486 0.1717 0.0000 753 | vt 0.2486 0.0000 0.0000 754 | vt 0.2909 0.1716 0.0000 755 | vt 0.2909 0.0000 0.0000 756 | vt 0.3338 0.1709 0.0000 757 | vt 0.2064 0.2562 0.0000 758 | vt 0.2486 0.2567 0.0000 759 | vt 0.2909 0.2565 0.0000 760 | vt 0.3338 0.2558 0.0000 761 | vt 0.2064 0.3387 0.0000 762 | vt 0.2486 0.3391 0.0000 763 | vt 0.2909 0.3390 0.0000 764 | vt 0.3338 0.3384 0.0000 765 | vt 0.2064 0.4197 0.0000 766 | vt 0.2486 0.4200 0.0000 767 | vt 0.2909 0.4199 0.0000 768 | vt 0.3338 0.4195 0.0000 769 | vt 0.2064 0.5000 0.0000 770 | vt 0.2486 0.5000 0.0000 771 | vt 0.2909 0.5000 0.0000 772 | vt 0.3338 0.5000 0.0000 773 | vt 0.2064 0.5803 0.0000 774 | vt 0.2486 0.5800 0.0000 775 | vt 0.2909 0.5801 0.0000 776 | vt 0.3338 0.5805 0.0000 777 | vt 0.2064 0.6613 0.0000 778 | vt 0.2486 0.6609 0.0000 779 | vt 0.2909 0.6610 0.0000 780 | vt 0.3338 0.6616 0.0000 781 | vt 0.2064 0.7438 0.0000 782 | vt 0.2486 0.7433 0.0000 783 | vt 0.2909 0.7435 0.0000 784 | vt 0.3338 0.7442 0.0000 785 | vt 0.2064 0.8287 0.0000 786 | vt 0.2486 0.8283 0.0000 787 | vt 0.2909 0.8284 0.0000 788 | vt 0.3338 0.8291 0.0000 789 | vt 0.2064 0.9158 0.0000 790 | vt 0.2486 0.9155 0.0000 791 | vt 0.2909 0.9156 0.0000 792 | vt 0.3338 0.9160 0.0000 793 | vt 0.2064 1.0000 0.0000 794 | vt 0.2486 1.0000 0.0000 795 | vt 0.2909 1.0000 0.0000 796 | vt 0.3338 1.0000 0.0000 797 | vt 0.3338 0.0000 0.0000 798 | vt 0.4202 0.1688 0.0000 799 | vt 0.4202 0.2533 0.0000 800 | vt 0.4202 0.3362 0.0000 801 | vt 0.4202 0.4183 0.0000 802 | vt 0.4202 0.5000 0.0000 803 | vt 0.4202 0.5817 0.0000 804 | vt 0.4202 0.6638 0.0000 805 | vt 0.4202 0.7467 0.0000 806 | vt 0.4202 0.8312 0.0000 807 | vt 0.4202 0.9172 0.0000 808 | vt 0.4202 1.0000 0.0000 809 | vt 0.4202 0.0000 0.0000 810 | vt 0.4608 0.0000 0.0000 811 | vt 0.4608 0.1682 0.0000 812 | vt 0.5000 0.1680 0.0000 813 | vt 0.4608 0.2526 0.0000 814 | vt 0.5000 0.2524 0.0000 815 | vt 0.4608 0.3356 0.0000 816 | vt 0.5000 0.3354 0.0000 817 | vt 0.4608 0.4179 0.0000 818 | vt 0.5000 0.4178 0.0000 819 | vt 0.4608 0.5000 0.0000 820 | vt 0.5000 0.5000 0.0000 821 | vt 0.4608 0.5821 0.0000 822 | vt 0.5000 0.5822 0.0000 823 | vt 0.4608 0.6644 0.0000 824 | vt 0.5000 0.6646 0.0000 825 | vt 0.4608 0.7474 0.0000 826 | vt 0.5000 0.7476 0.0000 827 | vt 0.4608 0.8318 0.0000 828 | vt 0.5000 0.8320 0.0000 829 | vt 0.4608 0.9176 0.0000 830 | vt 0.5000 0.9177 0.0000 831 | vt 0.4608 1.0000 0.0000 832 | vt 0.5000 1.0000 0.0000 833 | vt 0.5000 0.0000 0.0000 834 | vt 0.5392 0.1682 0.0000 835 | vt 0.5392 0.0000 0.0000 836 | vt 0.5798 0.1688 0.0000 837 | vt 0.5392 0.2526 0.0000 838 | vt 0.5798 0.2533 0.0000 839 | vt 0.5392 0.3356 0.0000 840 | vt 0.5798 0.3362 0.0000 841 | vt 0.5392 0.4179 0.0000 842 | vt 0.5798 0.4183 0.0000 843 | vt 0.5392 0.5000 0.0000 844 | vt 0.5798 0.5000 0.0000 845 | vt 0.5392 0.5821 0.0000 846 | vt 0.5798 0.5817 0.0000 847 | vt 0.5392 0.6644 0.0000 848 | vt 0.5798 0.6638 0.0000 849 | vt 0.5392 0.7474 0.0000 850 | vt 0.5798 0.7467 0.0000 851 | vt 0.5392 0.8318 0.0000 852 | vt 0.5798 0.8312 0.0000 853 | vt 0.5392 0.9176 0.0000 854 | vt 0.5798 0.9172 0.0000 855 | vt 0.5392 1.0000 0.0000 856 | vt 0.5798 1.0000 0.0000 857 | vt 0.5798 0.0000 0.0000 858 | vt 0.6662 0.1709 0.0000 859 | vt 0.6662 0.2558 0.0000 860 | vt 0.6662 0.3384 0.0000 861 | vt 0.6662 0.4195 0.0000 862 | vt 0.6662 0.5000 0.0000 863 | vt 0.6662 0.5805 0.0000 864 | vt 0.6662 0.6616 0.0000 865 | vt 0.6662 0.7442 0.0000 866 | vt 0.6662 0.8291 0.0000 867 | vt 0.6662 0.9160 0.0000 868 | vt 0.6662 1.0000 0.0000 869 | vt 0.6662 0.0000 0.0000 870 | vt 0.7091 0.1716 0.0000 871 | vt 0.7091 0.0000 0.0000 872 | vt 0.7514 0.1717 0.0000 873 | vt 0.7514 0.0000 0.0000 874 | vt 0.7936 0.1713 0.0000 875 | vt 0.7936 0.0000 0.0000 876 | vt 0.8363 0.0000 0.0000 877 | vt 0.8363 0.1702 0.0000 878 | vt 0.7091 0.2565 0.0000 879 | vt 0.7514 0.2567 0.0000 880 | vt 0.7936 0.2562 0.0000 881 | vt 0.8363 0.2549 0.0000 882 | vt 0.7091 0.3390 0.0000 883 | vt 0.7514 0.3391 0.0000 884 | vt 0.7936 0.3387 0.0000 885 | vt 0.8363 0.3376 0.0000 886 | vt 0.7091 0.4199 0.0000 887 | vt 0.7514 0.4200 0.0000 888 | vt 0.7936 0.4197 0.0000 889 | vt 0.8363 0.4191 0.0000 890 | vt 0.7091 0.5000 0.0000 891 | vt 0.7514 0.5000 0.0000 892 | vt 0.7936 0.5000 0.0000 893 | vt 0.8363 0.5000 0.0000 894 | vt 0.7091 0.5801 0.0000 895 | vt 0.7514 0.5800 0.0000 896 | vt 0.7936 0.5803 0.0000 897 | vt 0.8363 0.5809 0.0000 898 | vt 0.7091 0.6610 0.0000 899 | vt 0.7514 0.6609 0.0000 900 | vt 0.7936 0.6613 0.0000 901 | vt 0.8363 0.6624 0.0000 902 | vt 0.7091 0.7435 0.0000 903 | vt 0.7514 0.7433 0.0000 904 | vt 0.7936 0.7438 0.0000 905 | vt 0.8363 0.7451 0.0000 906 | vt 0.7091 0.8284 0.0000 907 | vt 0.7514 0.8283 0.0000 908 | vt 0.7936 0.8287 0.0000 909 | vt 0.8363 0.8298 0.0000 910 | vt 0.7091 0.9156 0.0000 911 | vt 0.7514 0.9155 0.0000 912 | vt 0.7936 0.9158 0.0000 913 | vt 0.8363 0.9164 0.0000 914 | vt 0.7091 1.0000 0.0000 915 | vt 0.7514 1.0000 0.0000 916 | vt 0.7936 1.0000 0.0000 917 | vt 0.8363 1.0000 0.0000 918 | vt 0.8796 0.1686 0.0000 919 | vt 0.8796 0.0000 0.0000 920 | vt 0.9222 0.1670 0.0000 921 | vt 0.8796 0.2531 0.0000 922 | vt 0.9222 0.2513 0.0000 923 | vt 0.8796 0.3360 0.0000 924 | vt 0.9222 0.3345 0.0000 925 | vt 0.8796 0.4182 0.0000 926 | vt 0.9222 0.4173 0.0000 927 | vt 0.8796 0.5000 0.0000 928 | vt 0.9222 0.5000 0.0000 929 | vt 0.8796 0.5818 0.0000 930 | vt 0.9222 0.5827 0.0000 931 | vt 0.8796 0.6640 0.0000 932 | vt 0.9222 0.6655 0.0000 933 | vt 0.8796 0.7469 0.0000 934 | vt 0.9222 0.7487 0.0000 935 | vt 0.8796 0.8314 0.0000 936 | vt 0.9222 0.8330 0.0000 937 | vt 0.8796 0.9173 0.0000 938 | vt 0.9011 0.9178 0.0000 939 | vt 0.9222 0.9182 0.0000 940 | vt 0.8796 1.0000 0.0000 941 | vt 0.9011 1.0000 0.0000 942 | vt 0.9222 1.0000 0.0000 943 | vt 0.9222 0.0000 0.0000 944 | vt 0.9625 0.0000 0.0000 945 | vt 0.9625 0.1660 0.0000 946 | vt 0.9625 0.2502 0.0000 947 | vt 0.9625 0.3335 0.0000 948 | vt 0.9625 0.4167 0.0000 949 | vt 0.9625 1.0000 0.0000 950 | vt 0.9817 0.1657 0.0000 951 | vt 1.0000 0.1653 0.0000 952 | vt 0.9817 0.0000 0.0000 953 | vt 1.0000 0.1229 0.0000 954 | vt 1.0000 0.0808 0.0000 955 | vt 1.0000 0.0396 0.0000 956 | vt 1.0000 0.0000 0.0000 957 | vt 1.0000 0.2494 0.0000 958 | vt 1.0000 0.2075 0.0000 959 | vt 1.0000 0.2911 0.0000 960 | vt 1.0000 0.3328 0.0000 961 | vt 1.0000 0.3745 0.0000 962 | vt 1.0000 0.4163 0.0000 963 | vt 1.0000 0.4582 0.0000 964 | # 318 texture coords 965 | 966 | g Sphere 967 | usemtl wire_148177026 968 | s 1 969 | f 17/7/7 18/8/8 19/9/9 970 | f 20/10/10 21/11/11 22/12/12 971 | f 20/10/10 22/12/12 23/13/13 972 | f 20/10/10 23/13/13 24/14/14 973 | f 25/15/15 26/16/16 27/17/17 974 | f 25/15/15 27/17/17 22/12/12 975 | f 25/15/15 22/12/12 21/11/11 976 | f 28/18/18 29/19/19 30/20/20 977 | f 28/18/18 30/20/20 27/17/17 978 | f 28/18/18 27/17/17 26/16/16 979 | f 31/21/21 32/22/22 30/20/20 980 | f 33/23/23 31/21/21 30/20/20 981 | f 34/24/24 33/23/23 30/20/20 982 | f 35/25/25 34/24/24 30/20/20 983 | f 29/19/19 35/25/25 30/20/20 984 | f 32/22/22 31/21/21 36/26/26 985 | f 31/21/21 33/23/23 36/27/27 986 | f 37/28/28 38/29/29 36/27/27 987 | f 37/28/28 36/27/27 33/23/23 988 | f 37/28/28 33/23/23 34/24/24 989 | f 39/30/30 40/31/31 41/32/32 990 | f 39/30/30 41/32/32 42/33/33 991 | f 39/30/30 42/33/33 43/34/34 992 | f 39/30/30 43/34/34 44/35/35 993 | f 44/36/36 39/30/30 44/35/35 994 | f 44/36/36 45/37/37 39/30/30 995 | f 39/30/30 46/38/38 40/31/31 996 | f 39/30/30 47/39/39 46/38/38 997 | f 48/40/40 47/39/39 39/30/30 998 | f 45/37/37 48/40/40 39/30/30 999 | f 49/41/41 47/39/39 48/40/40 1000 | f 49/41/41 48/40/40 50/42/42 1001 | f 49/41/41 50/42/42 51/43/43 1002 | f 52/44/44 51/43/43 50/42/42 1003 | f 52/44/44 50/42/42 53/45/45 1004 | f 52/44/44 53/45/45 54/46/46 1005 | f 55/47/47 54/46/46 53/45/45 1006 | f 55/47/47 53/45/45 56/48/48 1007 | f 55/47/47 56/48/48 19/49/49 1008 | f 17/50/50 19/49/49 56/48/48 1009 | f 17/50/50 56/48/48 57/51/51 1010 | f 17/50/50 57/51/51 24/52/52 1011 | f 20/53/53 24/52/52 57/51/51 1012 | f 20/53/53 57/51/51 58/54/54 1013 | f 20/53/53 58/54/54 21/55/55 1014 | f 25/56/56 21/55/55 58/54/54 1015 | f 25/56/56 58/54/54 59/57/57 1016 | f 25/56/56 59/57/57 26/58/58 1017 | f 28/59/59 26/58/58 59/57/57 1018 | f 28/59/59 59/57/57 60/60/60 1019 | f 28/59/59 60/60/60 29/61/61 1020 | f 61/62/62 34/63/63 35/64/64 1021 | f 61/62/62 35/64/64 29/61/61 1022 | f 62/65/65 61/62/62 29/61/61 1023 | f 63/66/66 62/65/65 29/61/61 1024 | f 60/60/60 63/66/66 29/61/61 1025 | f 37/67/67 34/63/63 61/62/62 1026 | f 37/67/67 61/62/62 38/68/68 1027 | f 37/67/67 38/68/68 38/69/69 1028 | f 61/62/62 62/65/65 38/70/70 1029 | f 62/65/65 63/66/66 38/71/71 1030 | f 44/72/72 64/73/73 65/74/74 1031 | f 44/72/72 65/74/74 45/37/37 1032 | f 45/37/37 65/74/74 66/75/75 1033 | f 45/37/37 66/75/75 48/40/40 1034 | f 48/40/40 66/75/75 67/76/76 1035 | f 48/40/40 67/76/76 50/42/42 1036 | f 50/42/42 67/76/76 68/77/77 1037 | f 50/42/42 68/77/77 53/45/45 1038 | f 53/45/45 68/77/77 69/78/78 1039 | f 53/45/45 69/78/78 56/48/48 1040 | f 56/48/48 69/78/78 70/79/79 1041 | f 56/48/48 70/79/79 57/51/51 1042 | f 57/51/51 70/79/79 71/80/80 1043 | f 57/51/51 71/80/80 58/54/54 1044 | f 58/54/54 71/80/80 72/81/81 1045 | f 58/54/54 72/81/81 59/57/57 1046 | f 59/57/57 72/81/81 73/82/82 1047 | f 59/57/57 73/82/82 60/60/60 1048 | f 60/60/60 73/82/82 74/83/83 1049 | f 60/60/60 74/83/83 63/66/66 1050 | f 63/66/66 74/83/83 36/84/84 1051 | f 63/66/66 36/84/84 38/71/71 1052 | f 64/73/73 75/85/85 65/74/74 1053 | f 64/86/86 76/87/87 75/85/85 1054 | f 65/74/74 75/85/85 77/88/88 1055 | f 65/74/74 77/88/88 66/75/75 1056 | f 75/85/85 76/87/87 78/89/89 1057 | f 75/85/85 78/89/89 77/88/88 1058 | f 66/75/75 77/88/88 79/90/90 1059 | f 66/75/75 79/90/90 67/76/76 1060 | f 77/88/88 78/89/89 80/91/91 1061 | f 77/88/88 80/91/91 79/90/90 1062 | f 67/76/76 79/90/90 81/92/92 1063 | f 67/76/76 81/92/92 68/77/77 1064 | f 79/90/90 80/91/91 82/93/93 1065 | f 79/90/90 82/93/93 81/92/92 1066 | f 68/77/77 81/92/92 83/94/94 1067 | f 68/77/77 83/94/94 69/78/78 1068 | f 81/92/92 82/93/93 84/95/95 1069 | f 81/92/92 84/95/95 83/94/94 1070 | f 69/78/78 83/94/94 85/96/96 1071 | f 69/78/78 85/96/96 70/79/79 1072 | f 83/94/94 84/95/95 86/97/97 1073 | f 83/94/94 86/97/97 85/96/96 1074 | f 70/79/79 85/96/96 87/98/98 1075 | f 70/79/79 87/98/98 71/80/80 1076 | f 85/96/96 86/97/97 88/99/99 1077 | f 85/96/96 88/99/99 87/98/98 1078 | f 71/80/80 87/98/98 89/100/100 1079 | f 71/80/80 89/100/100 72/81/81 1080 | f 87/98/98 88/99/99 90/101/101 1081 | f 87/98/98 90/101/101 89/100/100 1082 | f 72/81/81 89/100/100 91/102/102 1083 | f 72/81/81 91/102/102 73/82/82 1084 | f 89/100/100 90/101/101 92/103/103 1085 | f 89/100/100 92/103/103 91/102/102 1086 | f 93/104/104 74/83/83 73/82/82 1087 | f 93/104/104 73/82/82 91/102/102 1088 | f 93/104/104 91/102/102 94/105/105 1089 | f 91/102/102 92/103/103 95/106/106 1090 | f 91/102/102 95/106/106 94/105/105 1091 | f 74/83/83 93/104/104 36/107/107 1092 | f 93/104/104 94/105/105 36/108/108 1093 | f 94/105/105 95/106/106 36/109/109 1094 | f 64/110/110 96/111/111 76/87/87 1095 | f 64/112/112 97/113/113 96/111/111 1096 | f 64/114/114 98/115/115 97/113/113 1097 | f 99/116/116 100/117/117 98/115/115 1098 | f 76/87/87 96/111/111 101/118/118 1099 | f 76/87/87 101/118/118 78/89/89 1100 | f 96/111/111 97/113/113 102/119/119 1101 | f 96/111/111 102/119/119 101/118/118 1102 | f 97/113/113 98/115/115 103/120/120 1103 | f 97/113/113 103/120/120 102/119/119 1104 | f 98/115/115 100/117/117 104/121/121 1105 | f 98/115/115 104/121/121 103/120/120 1106 | f 78/89/89 101/118/118 105/122/122 1107 | f 78/89/89 105/122/122 80/91/91 1108 | f 101/118/118 102/119/119 106/123/123 1109 | f 101/118/118 106/123/123 105/122/122 1110 | f 102/119/119 103/120/120 107/124/124 1111 | f 102/119/119 107/124/124 106/123/123 1112 | f 103/120/120 104/121/121 108/125/125 1113 | f 103/120/120 108/125/125 107/124/124 1114 | f 80/91/91 105/122/122 109/126/126 1115 | f 80/91/91 109/126/126 82/93/93 1116 | f 105/122/122 106/123/123 110/127/127 1117 | f 105/122/122 110/127/127 109/126/126 1118 | f 106/123/123 107/124/124 111/128/128 1119 | f 106/123/123 111/128/128 110/127/127 1120 | f 107/124/124 108/125/125 112/129/129 1121 | f 107/124/124 112/129/129 111/128/128 1122 | f 82/93/93 109/126/126 113/130/130 1123 | f 82/93/93 113/130/130 84/95/95 1124 | f 109/126/126 110/127/127 114/131/131 1125 | f 109/126/126 114/131/131 113/130/130 1126 | f 110/127/127 111/128/128 115/132/132 1127 | f 110/127/127 115/132/132 114/131/131 1128 | f 111/128/128 112/129/129 116/133/133 1129 | f 111/128/128 116/133/133 115/132/132 1130 | f 84/95/95 113/130/130 117/134/134 1131 | f 84/95/95 117/134/134 86/97/97 1132 | f 113/130/130 114/131/131 118/135/135 1133 | f 113/130/130 118/135/135 117/134/134 1134 | f 114/131/131 115/132/132 119/136/136 1135 | f 114/131/131 119/136/136 118/135/135 1136 | f 115/132/132 116/133/133 120/137/137 1137 | f 115/132/132 120/137/137 119/136/136 1138 | f 86/97/97 117/134/134 121/138/138 1139 | f 86/97/97 121/138/138 88/99/99 1140 | f 117/134/134 118/135/135 122/139/139 1141 | f 117/134/134 122/139/139 121/138/138 1142 | f 118/135/135 119/136/136 123/140/140 1143 | f 118/135/135 123/140/140 122/139/139 1144 | f 119/136/136 120/137/137 124/141/141 1145 | f 119/136/136 124/141/141 123/140/140 1146 | f 88/99/99 121/138/138 125/142/142 1147 | f 88/99/99 125/142/142 90/101/101 1148 | f 121/138/138 122/139/139 126/143/143 1149 | f 121/138/138 126/143/143 125/142/142 1150 | f 122/139/139 123/140/140 127/144/144 1151 | f 122/139/139 127/144/144 126/143/143 1152 | f 123/140/140 124/141/141 128/145/145 1153 | f 123/140/140 128/145/145 127/144/144 1154 | f 90/101/101 125/142/142 129/146/146 1155 | f 90/101/101 129/146/146 92/103/103 1156 | f 125/142/142 126/143/143 130/147/147 1157 | f 125/142/142 130/147/147 129/146/146 1158 | f 126/143/143 127/144/144 131/148/148 1159 | f 126/143/143 131/148/148 130/147/147 1160 | f 127/144/144 128/145/145 132/149/149 1161 | f 127/144/144 132/149/149 131/148/148 1162 | f 92/103/103 129/146/146 133/150/150 1163 | f 92/103/103 133/150/150 95/106/106 1164 | f 129/146/146 130/147/147 134/151/151 1165 | f 129/146/146 134/151/151 133/150/150 1166 | f 130/147/147 131/148/148 135/152/152 1167 | f 130/147/147 135/152/152 134/151/151 1168 | f 131/148/148 132/149/149 136/153/153 1169 | f 131/148/148 136/153/153 135/152/152 1170 | f 95/106/106 133/150/150 36/154/154 1171 | f 95/106/106 36/154/154 36/109/109 1172 | f 133/150/150 134/151/151 36/155/155 1173 | f 134/151/151 135/152/152 137/156/156 1174 | f 135/152/152 136/153/153 137/157/157 1175 | f 99/158/158 138/159/159 100/117/117 1176 | f 100/117/117 138/159/159 139/160/160 1177 | f 100/117/117 139/160/160 104/121/121 1178 | f 104/121/121 139/160/160 140/161/161 1179 | f 104/121/121 140/161/161 108/125/125 1180 | f 108/125/125 140/161/161 141/162/162 1181 | f 108/125/125 141/162/162 112/129/129 1182 | f 112/129/129 141/162/162 142/163/163 1183 | f 112/129/129 142/163/163 116/133/133 1184 | f 116/133/133 142/163/163 143/164/164 1185 | f 116/133/133 143/164/164 120/137/137 1186 | f 120/137/137 143/164/164 144/165/165 1187 | f 120/137/137 144/165/165 124/141/141 1188 | f 124/141/141 144/165/165 145/166/166 1189 | f 124/141/141 145/166/166 128/145/145 1190 | f 128/145/145 145/166/166 146/167/167 1191 | f 128/145/145 146/167/167 132/149/149 1192 | f 132/149/149 146/167/167 147/168/168 1193 | f 132/149/149 147/168/168 136/153/153 1194 | f 136/153/153 147/168/168 137/169/169 1195 | f 99/170/170 99/171/171 148/172/172 1196 | f 99/170/170 148/172/172 138/159/159 1197 | f 99/171/171 149/173/173 148/172/172 1198 | f 138/159/159 148/172/172 150/174/174 1199 | f 138/159/159 150/174/174 139/160/160 1200 | f 148/172/172 149/173/173 151/175/175 1201 | f 148/172/172 151/175/175 150/174/174 1202 | f 139/160/160 150/174/174 152/176/176 1203 | f 139/160/160 152/176/176 140/161/161 1204 | f 150/174/174 151/175/175 153/177/177 1205 | f 150/174/174 153/177/177 152/176/176 1206 | f 140/161/161 152/176/176 154/178/178 1207 | f 140/161/161 154/178/178 141/162/162 1208 | f 152/176/176 153/177/177 155/179/179 1209 | f 152/176/176 155/179/179 154/178/178 1210 | f 141/162/162 154/178/178 156/180/180 1211 | f 141/162/162 156/180/180 142/163/163 1212 | f 154/178/178 155/179/179 157/181/181 1213 | f 154/178/178 157/181/181 156/180/180 1214 | f 142/163/163 156/180/180 158/182/182 1215 | f 142/163/163 158/182/182 143/164/164 1216 | f 156/180/180 157/181/181 159/183/183 1217 | f 156/180/180 159/183/183 158/182/182 1218 | f 143/164/164 158/182/182 160/184/184 1219 | f 143/164/164 160/184/184 144/165/165 1220 | f 158/182/182 159/183/183 161/185/185 1221 | f 158/182/182 161/185/185 160/184/184 1222 | f 144/165/165 160/184/184 162/186/186 1223 | f 144/165/165 162/186/186 145/166/166 1224 | f 160/184/184 161/185/185 163/187/187 1225 | f 160/184/184 163/187/187 162/186/186 1226 | f 145/166/166 162/186/186 164/188/188 1227 | f 145/166/166 164/188/188 146/167/167 1228 | f 162/186/186 163/187/187 165/189/189 1229 | f 162/186/186 165/189/189 164/188/188 1230 | f 146/167/167 164/188/188 166/190/190 1231 | f 146/167/167 166/190/190 147/168/168 1232 | f 164/188/188 165/189/189 167/191/191 1233 | f 164/188/188 167/191/191 166/190/190 1234 | f 147/168/168 166/190/190 137/192/192 1235 | f 166/190/190 167/191/191 137/193/193 1236 | f 99/194/194 168/195/195 149/173/173 1237 | f 169/196/196 170/197/197 168/195/195 1238 | f 149/173/173 168/195/195 171/198/198 1239 | f 149/173/173 171/198/198 151/175/175 1240 | f 168/195/195 170/197/197 172/199/199 1241 | f 168/195/195 172/199/199 171/198/198 1242 | f 151/175/175 171/198/198 173/200/200 1243 | f 151/175/175 173/200/200 153/177/177 1244 | f 171/198/198 172/199/199 174/201/201 1245 | f 171/198/198 174/201/201 173/200/200 1246 | f 153/177/177 173/200/200 175/202/202 1247 | f 153/177/177 175/202/202 155/179/179 1248 | f 173/200/200 174/201/201 176/203/203 1249 | f 173/200/200 176/203/203 175/202/202 1250 | f 155/179/179 175/202/202 177/204/204 1251 | f 155/179/179 177/204/204 157/181/181 1252 | f 175/202/202 176/203/203 178/205/205 1253 | f 175/202/202 178/205/205 177/204/204 1254 | f 157/181/181 177/204/204 179/206/206 1255 | f 157/181/181 179/206/206 159/183/183 1256 | f 177/204/204 178/205/205 180/207/207 1257 | f 177/204/204 180/207/207 179/206/206 1258 | f 159/183/183 179/206/206 181/208/208 1259 | f 159/183/183 181/208/208 161/185/185 1260 | f 179/206/206 180/207/207 182/209/209 1261 | f 179/206/206 182/209/209 181/208/208 1262 | f 161/185/185 181/208/208 183/210/210 1263 | f 161/185/185 183/210/210 163/187/187 1264 | f 181/208/208 182/209/209 184/211/211 1265 | f 181/208/208 184/211/211 183/210/210 1266 | f 163/187/187 183/210/210 185/212/212 1267 | f 163/187/187 185/212/212 165/189/189 1268 | f 183/210/210 184/211/211 186/213/213 1269 | f 183/210/210 186/213/213 185/212/212 1270 | f 165/189/189 185/212/212 187/214/214 1271 | f 165/189/189 187/214/214 167/191/191 1272 | f 185/212/212 186/213/213 188/215/215 1273 | f 185/212/212 188/215/215 187/214/214 1274 | f 167/191/191 187/214/214 189/216/216 1275 | f 187/214/214 188/215/215 189/217/217 1276 | f 187/214/214 189/217/217 189/216/216 1277 | f 169/218/218 190/219/219 170/197/197 1278 | f 170/197/197 190/219/219 191/220/220 1279 | f 170/197/197 191/220/220 172/199/199 1280 | f 172/199/199 191/220/220 192/221/221 1281 | f 172/199/199 192/221/221 174/201/201 1282 | f 174/201/201 192/221/221 193/222/222 1283 | f 174/201/201 193/222/222 176/203/203 1284 | f 176/203/203 193/222/222 194/223/223 1285 | f 176/203/203 194/223/223 178/205/205 1286 | f 178/205/205 194/223/223 195/224/224 1287 | f 178/205/205 195/224/224 180/207/207 1288 | f 180/207/207 195/224/224 196/225/225 1289 | f 180/207/207 196/225/225 182/209/209 1290 | f 182/209/209 196/225/225 197/226/226 1291 | f 182/209/209 197/226/226 184/211/211 1292 | f 184/211/211 197/226/226 198/227/227 1293 | f 184/211/211 198/227/227 186/213/213 1294 | f 186/213/213 198/227/227 199/228/228 1295 | f 186/213/213 199/228/228 188/215/215 1296 | f 188/215/215 199/228/228 189/229/229 1297 | f 169/230/230 200/231/231 190/219/219 1298 | f 169/232/232 201/233/233 200/231/231 1299 | f 169/234/234 202/235/235 201/233/233 1300 | f 44/236/236 44/237/237 203/238/238 1301 | f 44/236/236 203/238/238 202/235/235 1302 | f 190/219/219 200/231/231 204/239/239 1303 | f 190/219/219 204/239/239 191/220/220 1304 | f 200/231/231 201/233/233 205/240/240 1305 | f 200/231/231 205/240/240 204/239/239 1306 | f 201/233/233 202/235/235 206/241/241 1307 | f 201/233/233 206/241/241 205/240/240 1308 | f 202/235/235 203/238/238 207/242/242 1309 | f 202/235/235 207/242/242 206/241/241 1310 | f 191/220/220 204/239/239 208/243/243 1311 | f 191/220/220 208/243/243 192/221/221 1312 | f 204/239/239 205/240/240 209/244/244 1313 | f 204/239/239 209/244/244 208/243/243 1314 | f 205/240/240 206/241/241 210/245/245 1315 | f 205/240/240 210/245/245 209/244/244 1316 | f 206/241/241 207/242/242 211/246/246 1317 | f 206/241/241 211/246/246 210/245/245 1318 | f 192/221/221 208/243/243 212/247/247 1319 | f 192/221/221 212/247/247 193/222/222 1320 | f 208/243/243 209/244/244 213/248/248 1321 | f 208/243/243 213/248/248 212/247/247 1322 | f 209/244/244 210/245/245 214/249/249 1323 | f 209/244/244 214/249/249 213/248/248 1324 | f 210/245/245 211/246/246 215/250/250 1325 | f 210/245/245 215/250/250 214/249/249 1326 | f 193/222/222 212/247/247 216/251/251 1327 | f 193/222/222 216/251/251 194/223/223 1328 | f 212/247/247 213/248/248 217/252/252 1329 | f 212/247/247 217/252/252 216/251/251 1330 | f 213/248/248 214/249/249 218/253/253 1331 | f 213/248/248 218/253/253 217/252/252 1332 | f 214/249/249 215/250/250 219/254/254 1333 | f 214/249/249 219/254/254 218/253/253 1334 | f 194/223/223 216/251/251 220/255/255 1335 | f 194/223/223 220/255/255 195/224/224 1336 | f 216/251/251 217/252/252 221/256/256 1337 | f 216/251/251 221/256/256 220/255/255 1338 | f 217/252/252 218/253/253 222/257/257 1339 | f 217/252/252 222/257/257 221/256/256 1340 | f 218/253/253 219/254/254 223/258/258 1341 | f 218/253/253 223/258/258 222/257/257 1342 | f 195/224/224 220/255/255 224/259/259 1343 | f 195/224/224 224/259/259 196/225/225 1344 | f 220/255/255 221/256/256 225/260/260 1345 | f 220/255/255 225/260/260 224/259/259 1346 | f 221/256/256 222/257/257 226/261/261 1347 | f 221/256/256 226/261/261 225/260/260 1348 | f 222/257/257 223/258/258 227/262/262 1349 | f 222/257/257 227/262/262 226/261/261 1350 | f 196/225/225 224/259/259 228/263/263 1351 | f 196/225/225 228/263/263 197/226/226 1352 | f 224/259/259 225/260/260 229/264/264 1353 | f 224/259/259 229/264/264 228/263/263 1354 | f 225/260/260 226/261/261 230/265/265 1355 | f 225/260/260 230/265/265 229/264/264 1356 | f 226/261/261 227/262/262 231/266/266 1357 | f 226/261/261 231/266/266 230/265/265 1358 | f 197/226/226 228/263/263 232/267/267 1359 | f 197/226/226 232/267/267 198/227/227 1360 | f 228/263/263 229/264/264 233/268/268 1361 | f 228/263/263 233/268/268 232/267/267 1362 | f 229/264/264 230/265/265 234/269/269 1363 | f 229/264/264 234/269/269 233/268/268 1364 | f 230/265/265 231/266/266 235/270/270 1365 | f 230/265/265 235/270/270 234/269/269 1366 | f 198/227/227 232/267/267 236/271/271 1367 | f 198/227/227 236/271/271 199/228/228 1368 | f 232/267/267 233/268/268 237/272/272 1369 | f 232/267/267 237/272/272 236/271/271 1370 | f 233/268/268 234/269/269 238/273/273 1371 | f 233/268/268 238/273/273 237/272/272 1372 | f 234/269/269 235/270/270 239/274/274 1373 | f 234/269/269 239/274/274 238/273/273 1374 | f 199/228/228 236/271/271 189/275/275 1375 | f 236/271/271 237/272/272 189/276/276 1376 | f 237/272/272 238/273/273 38/277/277 1377 | f 238/273/273 239/274/274 38/278/278 1378 | f 44/237/237 240/279/279 203/238/238 1379 | f 44/280/280 241/281/281 240/279/279 1380 | f 203/238/238 240/279/279 242/282/282 1381 | f 203/238/238 242/282/282 207/242/242 1382 | f 240/279/279 241/281/281 243/283/283 1383 | f 240/279/279 243/283/283 242/282/282 1384 | f 207/242/242 242/282/282 244/284/284 1385 | f 207/242/242 244/284/284 211/246/246 1386 | f 242/282/282 243/283/283 245/285/285 1387 | f 242/282/282 245/285/285 244/284/284 1388 | f 211/246/246 244/284/284 246/286/286 1389 | f 211/246/246 246/286/286 215/250/250 1390 | f 244/284/284 245/285/285 247/287/287 1391 | f 244/284/284 247/287/287 246/286/286 1392 | f 215/250/250 246/286/286 248/288/288 1393 | f 215/250/250 248/288/288 219/254/254 1394 | f 246/286/286 247/287/287 249/289/289 1395 | f 246/286/286 249/289/289 248/288/288 1396 | f 219/254/254 248/288/288 250/290/290 1397 | f 219/254/254 250/290/290 223/258/258 1398 | f 248/288/288 249/289/289 251/291/291 1399 | f 248/288/288 251/291/291 250/290/290 1400 | f 223/258/258 250/290/290 252/292/292 1401 | f 223/258/258 252/292/292 227/262/262 1402 | f 250/290/290 251/291/291 253/293/293 1403 | f 250/290/290 253/293/293 252/292/292 1404 | f 227/262/262 252/292/292 254/294/294 1405 | f 227/262/262 254/294/294 231/266/266 1406 | f 252/292/292 253/293/293 255/295/295 1407 | f 252/292/292 255/295/295 254/294/294 1408 | f 231/266/266 254/294/294 256/296/296 1409 | f 231/266/266 256/296/296 235/270/270 1410 | f 254/294/294 255/295/295 257/297/297 1411 | f 254/294/294 257/297/297 256/296/296 1412 | f 235/270/270 256/296/296 258/298/298 1413 | f 235/270/270 258/298/298 239/274/274 1414 | f 259/299/299 258/298/298 256/296/296 1415 | f 259/299/299 256/296/296 257/297/297 1416 | f 259/299/299 257/297/297 260/300/300 1417 | f 239/274/274 258/298/298 38/301/301 1418 | f 258/298/298 259/299/299 38/302/302 1419 | f 259/299/299 260/300/300 38/303/303 1420 | f 44/304/304 64/305/305 261/306/306 1421 | f 44/304/304 261/306/306 241/281/281 1422 | f 241/281/281 261/306/306 262/307/307 1423 | f 241/281/281 262/307/307 243/283/283 1424 | f 243/283/283 262/307/307 263/308/308 1425 | f 243/283/283 263/308/308 245/285/285 1426 | f 245/285/285 263/308/308 264/309/309 1427 | f 245/285/285 264/309/309 247/287/287 1428 | f 247/287/287 264/309/309 18/8/8 1429 | f 247/287/287 18/8/8 249/289/289 1430 | f 249/289/289 18/8/8 23/13/13 1431 | f 249/289/289 23/13/13 251/291/291 1432 | f 251/291/291 23/13/13 22/12/12 1433 | f 251/291/291 22/12/12 253/293/293 1434 | f 253/293/293 22/12/12 27/17/17 1435 | f 253/293/293 27/17/17 255/295/295 1436 | f 255/295/295 27/17/17 30/20/20 1437 | f 255/295/295 30/20/20 257/297/297 1438 | f 257/297/297 30/20/20 32/22/22 1439 | f 257/297/297 32/22/22 260/300/300 1440 | f 260/300/300 32/22/22 36/310/310 1441 | f 260/300/300 36/310/310 38/303/303 1442 | f 64/305/305 265/311/311 261/306/306 1443 | f 40/312/312 265/311/311 64/313/313 1444 | f 41/314/314 40/312/312 64/313/313 1445 | f 42/315/314 41/314/314 64/313/313 1446 | f 43/316/314 42/315/314 64/313/313 1447 | f 44/317/315 43/316/314 64/313/313 1448 | f 265/311/311 262/307/307 261/306/306 1449 | f 47/318/316 262/307/307 265/311/311 1450 | f 46/319/317 47/318/316 265/311/311 1451 | f 40/312/312 46/319/317 265/311/311 1452 | f 49/320/318 51/321/319 263/308/308 1453 | f 49/320/318 263/308/308 262/307/307 1454 | f 49/320/318 262/307/307 47/318/316 1455 | f 52/322/320 54/323/321 264/309/309 1456 | f 52/322/320 264/309/309 263/308/308 1457 | f 52/322/320 263/308/308 51/321/319 1458 | f 55/324/322 19/9/9 18/8/8 1459 | f 55/324/322 18/8/8 264/309/309 1460 | f 55/324/322 264/309/309 54/323/321 1461 | f 17/7/7 24/14/14 23/13/13 1462 | f 17/7/7 23/13/13 18/8/8 1463 | # 0 polygons - 494 triangles 1464 | 1465 | # 1466 | # object Cylinder 1467 | # 1468 | 1469 | v 1.0621 0.0000 1.7784 1470 | v 0.9730 0.0000 1.7949 1471 | v 0.9730 0.7735 1.7949 1472 | v 1.1488 0.7735 1.7731 1473 | v 1.1488 0.0000 1.7731 1474 | v 0.9730 1.5470 1.7949 1475 | v 1.1488 1.5470 1.7731 1476 | v 1.0621 2.3205 1.7784 1477 | v 1.1488 2.3205 1.7731 1478 | v 0.9730 2.3205 1.7949 1479 | v 0.8840 0.0000 1.8234 1480 | v 0.7978 0.0000 1.8647 1481 | v 0.7978 0.7735 1.8647 1482 | v 0.7978 1.5470 1.8647 1483 | v 0.8840 2.3205 1.8234 1484 | v 0.7978 2.3205 1.8647 1485 | v 0.7167 0.0000 1.9192 1486 | v 0.6428 0.0000 1.9849 1487 | v 0.6428 0.7735 1.9849 1488 | v 0.5775 0.0000 2.0592 1489 | v 0.5227 0.0000 2.1398 1490 | v 0.5227 0.7735 2.1398 1491 | v 0.6428 1.5470 1.9849 1492 | v 0.5227 1.5470 2.1398 1493 | v 0.7167 2.3205 1.9192 1494 | v 0.6428 2.3205 1.9849 1495 | v 0.5775 2.3205 2.0592 1496 | v 0.5227 2.3205 2.1398 1497 | v 0.4798 0.0000 2.2243 1498 | v 0.4491 0.0000 2.3115 1499 | v 0.4491 0.7735 2.3115 1500 | v 0.4305 0.0000 2.4007 1501 | v 0.4243 0.0000 2.4907 1502 | v 0.4243 0.7735 2.4907 1503 | v 0.4303 0.0000 2.5808 1504 | v 0.4487 0.0000 2.6699 1505 | v 0.4487 0.7735 2.6699 1506 | v 0.4795 0.0000 2.7572 1507 | v 0.5227 0.0000 2.8417 1508 | v 0.5227 0.7735 2.8417 1509 | v 0.4491 1.5470 2.3115 1510 | v 0.4243 1.5470 2.4907 1511 | v 0.4487 1.5470 2.6699 1512 | v 0.5227 1.5470 2.8417 1513 | v 0.4798 2.3205 2.2243 1514 | v 0.4491 2.3205 2.3115 1515 | v 0.4305 2.3205 2.4007 1516 | v 0.4243 2.3205 2.4907 1517 | v 0.4303 2.3205 2.5808 1518 | v 0.4487 2.3205 2.6699 1519 | v 0.4795 2.3205 2.7572 1520 | v 0.5227 2.3205 2.8417 1521 | v 0.5781 0.0000 2.9223 1522 | v 0.6438 0.0000 2.9966 1523 | v 0.7177 0.0000 3.0623 1524 | v 0.7978 0.7735 3.1167 1525 | v 0.7978 0.0000 3.1167 1526 | v 0.7978 1.5470 3.1167 1527 | v 0.5781 2.3205 2.9223 1528 | v 0.6438 2.3205 2.9966 1529 | v 0.7177 2.3205 3.0623 1530 | v 0.7978 2.3205 3.1167 1531 | v 0.8820 0.0000 3.1581 1532 | v 0.9693 0.0000 3.1866 1533 | v 0.9693 0.7735 3.1866 1534 | v 1.0585 0.0000 3.2031 1535 | v 1.1488 0.0000 3.2084 1536 | v 1.1488 0.7735 3.2084 1537 | v 0.9693 1.5470 3.1866 1538 | v 1.1488 1.5470 3.2084 1539 | v 0.8820 2.3205 3.1581 1540 | v 0.9693 2.3205 3.1866 1541 | v 1.0585 2.3205 3.2031 1542 | v 1.1488 2.3205 3.2084 1543 | v 1.2390 0.0000 3.2031 1544 | v 1.3282 0.0000 3.1866 1545 | v 1.3282 0.7735 3.1866 1546 | v 1.4155 0.0000 3.1581 1547 | v 1.4997 0.0000 3.1167 1548 | v 1.4997 0.7735 3.1167 1549 | v 1.3282 1.5470 3.1866 1550 | v 1.4997 1.5470 3.1167 1551 | v 1.2390 2.3205 3.2031 1552 | v 1.3282 2.3205 3.1866 1553 | v 1.4155 2.3205 3.1581 1554 | v 1.4997 2.3205 3.1167 1555 | v 1.5798 0.0000 3.0623 1556 | v 1.6537 0.0000 2.9966 1557 | v 1.7194 0.0000 2.9223 1558 | v 1.7748 0.7735 2.8417 1559 | v 1.7748 0.0000 2.8417 1560 | v 1.7748 1.5470 2.8417 1561 | v 1.5798 2.3205 3.0623 1562 | v 1.6537 2.3205 2.9966 1563 | v 1.7194 2.3205 2.9223 1564 | v 1.7748 2.3205 2.8417 1565 | v 1.8180 0.0000 2.7572 1566 | v 1.8488 0.0000 2.6699 1567 | v 1.8488 0.7735 2.6699 1568 | v 1.8672 0.0000 2.5808 1569 | v 1.8732 0.0000 2.4907 1570 | v 1.8732 0.7735 2.4907 1571 | v 1.8670 0.0000 2.4007 1572 | v 1.8484 0.0000 2.3115 1573 | v 1.8484 0.7735 2.3115 1574 | v 1.8177 0.0000 2.2243 1575 | v 1.7748 0.0000 2.1398 1576 | v 1.7748 0.7735 2.1398 1577 | v 1.8488 1.5470 2.6699 1578 | v 1.8732 1.5470 2.4907 1579 | v 1.8484 1.5470 2.3115 1580 | v 1.7748 1.5470 2.1398 1581 | v 1.8180 2.3205 2.7572 1582 | v 1.8488 2.3205 2.6699 1583 | v 1.8672 2.3205 2.5808 1584 | v 1.8732 2.3205 2.4907 1585 | v 1.8670 2.3205 2.4007 1586 | v 1.8484 2.3205 2.3115 1587 | v 1.8177 2.3205 2.2243 1588 | v 1.7748 2.3205 2.1398 1589 | v 1.7200 0.0000 2.0592 1590 | v 1.6547 0.0000 1.9849 1591 | v 1.6547 0.7735 1.9849 1592 | v 1.5808 0.0000 1.9192 1593 | v 1.4997 0.0000 1.8647 1594 | v 1.4997 0.7735 1.8647 1595 | v 1.6547 1.5470 1.9849 1596 | v 1.4997 1.5470 1.8647 1597 | v 1.7200 2.3205 2.0592 1598 | v 1.6547 2.3205 1.9849 1599 | v 1.5808 2.3205 1.9192 1600 | v 1.4997 2.3205 1.8647 1601 | v 1.4135 0.0000 1.8234 1602 | v 1.3245 0.0000 1.7949 1603 | v 1.3245 0.7735 1.7949 1604 | v 1.3245 1.5470 1.7949 1605 | v 1.4135 2.3205 1.8234 1606 | v 1.3245 2.3205 1.7949 1607 | v 1.2354 0.0000 1.7784 1608 | v 1.2354 2.3205 1.7784 1609 | v 1.8349 0.0000 2.7139 1610 | v 1.8718 0.0000 2.5045 1611 | v 1.8595 0.0000 2.6255 1612 | v 1.7979 0.0000 2.7999 1613 | v 1.5404 0.0000 3.0911 1614 | v 1.4580 0.0000 3.1391 1615 | v 1.3722 0.0000 3.1739 1616 | v 1.1488 0.0000 2.5045 1617 | v 1.1488 0.0000 3.2031 1618 | v 1.7200 -0.0000 2.0592 1619 | v 1.6547 -0.0000 1.9849 1620 | v 1.5808 -0.0000 1.9192 1621 | v 1.4571 -0.0000 1.8424 1622 | v 1.3692 -0.0000 1.8076 1623 | v 1.2798 -0.0000 1.7852 1624 | v 1.1488 -0.0000 1.7731 1625 | v 0.8395 0.0000 3.1391 1626 | v 0.4996 -0.0000 2.7999 1627 | v 0.4626 -0.0000 2.7139 1628 | v 0.4380 -0.0000 2.6255 1629 | v 0.4269 -0.0000 2.5045 1630 | v 0.4258 -0.0000 2.5358 1631 | v 1.0177 -0.0000 1.7852 1632 | v 0.9283 -0.0000 1.8076 1633 | v 0.8404 -0.0000 1.8424 1634 | v 0.7565 -0.0000 1.8904 1635 | v 0.6428 -0.0000 1.9849 1636 | v 0.5775 -0.0000 2.0592 1637 | v 0.4798 -0.0000 2.2243 1638 | v 0.4491 -0.0000 2.3115 1639 | v 0.4305 -0.0000 2.4007 1640 | v 1.8349 2.3205 2.7139 1641 | v 1.8595 2.3205 2.6255 1642 | v 1.8718 2.3205 2.5045 1643 | v 1.7979 2.3205 2.7999 1644 | v 1.5404 2.3205 3.0911 1645 | v 1.4580 2.3205 3.1391 1646 | v 1.3722 2.3205 3.1739 1647 | v 1.1488 2.3205 2.5045 1648 | v 1.1488 2.3205 3.2031 1649 | v 1.4571 2.3205 1.8424 1650 | v 1.3692 2.3205 1.8076 1651 | v 1.2798 2.3205 1.7852 1652 | v 0.8395 2.3205 3.1391 1653 | v 0.4996 2.3205 2.7999 1654 | v 0.4626 2.3205 2.7139 1655 | v 0.4380 2.3205 2.6255 1656 | v 0.4269 2.3205 2.5045 1657 | v 0.4258 2.3205 2.5358 1658 | v 1.0177 2.3205 1.7852 1659 | v 0.9283 2.3205 1.8076 1660 | v 0.8404 2.3205 1.8424 1661 | v 0.7565 2.3205 1.8904 1662 | # 193 vertices 1663 | 1664 | vn -0.1218 0.0005 -0.9926 1665 | vn -0.2441 0.0000 -0.9698 1666 | vn -0.2486 0.0036 -0.9686 1667 | vn -0.1209 0.0032 -0.9927 1668 | vn -0.0612 0.0000 -0.9981 1669 | vn -0.2486 -0.0036 -0.9686 1670 | vn -0.1209 -0.0032 -0.9927 1671 | vn -0.1218 -0.0005 -0.9926 1672 | vn -0.3697 0.0006 -0.9292 1673 | vn -0.4965 0.0000 -0.8680 1674 | vn -0.4964 0.0039 -0.8681 1675 | vn -0.4964 -0.0039 -0.8681 1676 | vn -0.3697 -0.0006 -0.9292 1677 | vn -0.6123 0.0007 -0.7907 1678 | vn -0.7091 0.0000 -0.7051 1679 | vn -0.7072 0.0038 -0.7070 1680 | vn -0.7907 0.0006 -0.6122 1681 | vn -0.8609 0.0000 -0.5087 1682 | vn -0.8617 0.0037 -0.5075 1683 | vn -0.7072 -0.0038 -0.7070 1684 | vn -0.8617 -0.0037 -0.5075 1685 | vn -0.6123 -0.0007 -0.7907 1686 | vn -0.7907 -0.0006 -0.6122 1687 | vn -0.9193 0.0006 -0.3934 1688 | vn -0.9633 0.0000 -0.2685 1689 | vn -0.9634 0.0037 -0.2680 1690 | vn -0.9906 0.0006 -0.1367 1691 | vn -1.0000 0.0000 -0.0012 1692 | vn -1.0000 0.0037 -0.0009 1693 | vn -0.9909 0.0006 0.1349 1694 | vn -0.9634 0.0000 0.2680 1695 | vn -0.9634 0.0038 0.2679 1696 | vn -0.9187 0.0006 0.3949 1697 | vn -0.8590 0.0000 0.5119 1698 | vn -0.8289 0.0076 0.5593 1699 | vn -0.9634 -0.0037 -0.2680 1700 | vn -1.0000 -0.0037 -0.0009 1701 | vn -0.9634 -0.0038 0.2679 1702 | vn -0.8272 -0.0047 0.5619 1703 | vn -0.9193 -0.0006 -0.3934 1704 | vn -0.9906 -0.0006 -0.1367 1705 | vn -0.9909 -0.0006 0.1349 1706 | vn -0.9187 -0.0006 0.3949 1707 | vn -0.7852 0.0083 0.6192 1708 | vn -0.7009 0.0330 0.7125 1709 | vn -0.6256 0.0213 0.7799 1710 | vn -0.5512 0.0075 0.8344 1711 | vn -0.5029 0.0000 0.8644 1712 | vn -0.5543 -0.0020 0.8323 1713 | vn -0.7852 -0.0083 0.6192 1714 | vn -0.7009 -0.0330 0.7125 1715 | vn -0.6013 -0.0752 0.7955 1716 | vn -0.5263 -0.0333 0.8496 1717 | vn -0.3766 0.0006 0.9264 1718 | vn -0.2467 0.0000 0.9691 1719 | vn -0.2510 0.0037 0.9680 1720 | vn -0.1205 0.0005 0.9927 1721 | vn 0.0000 0.0000 1.0000 1722 | vn 0.0000 0.0034 1.0000 1723 | vn -0.2510 -0.0037 0.9680 1724 | vn -0.0000 -0.0034 1.0000 1725 | vn -0.3766 -0.0006 0.9264 1726 | vn -0.1205 -0.0005 0.9927 1727 | vn -0.0000 0.0000 1.0000 1728 | vn 0.1205 0.0005 0.9927 1729 | vn 0.2467 0.0000 0.9691 1730 | vn 0.2510 0.0037 0.9680 1731 | vn 0.3766 0.0006 0.9264 1732 | vn 0.5029 0.0000 0.8644 1733 | vn 0.5511 0.0077 0.8344 1734 | vn 0.2510 -0.0037 0.9680 1735 | vn 0.5537 -0.0048 0.8327 1736 | vn 0.1205 -0.0005 0.9927 1737 | vn 0.3766 -0.0006 0.9264 1738 | vn 0.6186 0.0087 0.7857 1739 | vn 0.7142 0.0336 0.6991 1740 | vn 0.7791 0.0215 0.6265 1741 | vn 0.8288 0.0073 0.5594 1742 | vn 0.8590 0.0000 0.5119 1743 | vn 0.8268 -0.0019 0.5625 1744 | vn 0.6186 -0.0087 0.7857 1745 | vn 0.7142 -0.0336 0.6991 1746 | vn 0.7944 -0.0741 0.6028 1747 | vn 0.8444 -0.0325 0.5347 1748 | vn 0.9187 0.0006 0.3949 1749 | vn 0.9634 0.0000 0.2680 1750 | vn 0.9634 0.0038 0.2679 1751 | vn 0.9909 0.0006 0.1349 1752 | vn 1.0000 0.0000 -0.0012 1753 | vn 1.0000 0.0037 -0.0009 1754 | vn 0.9906 0.0006 -0.1367 1755 | vn 0.9633 0.0000 -0.2685 1756 | vn 0.9634 0.0037 -0.2680 1757 | vn 0.9193 0.0006 -0.3934 1758 | vn 0.8609 0.0000 -0.5087 1759 | vn 0.8617 0.0037 -0.5075 1760 | vn 0.9634 -0.0038 0.2679 1761 | vn 1.0000 -0.0037 -0.0009 1762 | vn 0.9634 -0.0037 -0.2680 1763 | vn 0.8617 -0.0037 -0.5075 1764 | vn 0.9187 -0.0006 0.3949 1765 | vn 0.9909 -0.0006 0.1349 1766 | vn 0.9906 -0.0006 -0.1367 1767 | vn 0.9193 -0.0006 -0.3934 1768 | vn 0.7907 0.0006 -0.6122 1769 | vn 0.7091 0.0000 -0.7051 1770 | vn 0.7072 0.0038 -0.7070 1771 | vn 0.6123 0.0007 -0.7907 1772 | vn 0.4965 0.0000 -0.8680 1773 | vn 0.4964 0.0039 -0.8681 1774 | vn 0.7072 -0.0038 -0.7070 1775 | vn 0.4964 -0.0039 -0.8681 1776 | vn 0.7907 -0.0006 -0.6122 1777 | vn 0.6123 -0.0007 -0.7907 1778 | vn 0.3697 0.0006 -0.9292 1779 | vn 0.2441 0.0000 -0.9698 1780 | vn 0.2486 0.0036 -0.9686 1781 | vn 0.2486 -0.0036 -0.9686 1782 | vn 0.3697 -0.0006 -0.9292 1783 | vn 0.1218 0.0005 -0.9926 1784 | vn 0.0612 0.0000 -0.9981 1785 | vn 0.1209 0.0032 -0.9927 1786 | vn 0.1209 -0.0032 -0.9927 1787 | vn 0.1218 -0.0005 -0.9926 1788 | vn 0.0000 -1.0000 0.0000 1789 | vn -0.0000 -1.0000 0.0000 1790 | vn 0.0000 1.0000 -0.0000 1791 | # 127 vertex normals 1792 | 1793 | vt 0.0183 0.0000 0.0000 1794 | vt 0.0375 0.0000 0.0000 1795 | vt 0.0375 0.3333 0.0000 1796 | vt 0.0000 0.3333 0.0000 1797 | vt 0.0000 0.0000 0.0000 1798 | vt 0.0375 0.6667 0.0000 1799 | vt 0.0000 0.6667 0.0000 1800 | vt 0.0183 1.0000 0.0000 1801 | vt 0.0000 1.0000 0.0000 1802 | vt 0.0375 1.0000 0.0000 1803 | vt 0.0573 0.0000 0.0000 1804 | vt 0.0778 0.0000 0.0000 1805 | vt 0.0778 0.3333 0.0000 1806 | vt 0.0778 0.6667 0.0000 1807 | vt 0.0573 1.0000 0.0000 1808 | vt 0.0778 1.0000 0.0000 1809 | vt 0.0989 0.0000 0.0000 1810 | vt 0.1204 0.0000 0.0000 1811 | vt 0.1204 0.3333 0.0000 1812 | vt 0.1421 0.0000 0.0000 1813 | vt 0.1637 0.0000 0.0000 1814 | vt 0.1637 0.3333 0.0000 1815 | vt 0.1204 0.6667 0.0000 1816 | vt 0.1637 0.6667 0.0000 1817 | vt 0.0989 1.0000 0.0000 1818 | vt 0.1204 1.0000 0.0000 1819 | vt 0.1421 1.0000 0.0000 1820 | vt 0.1637 1.0000 0.0000 1821 | vt 0.1852 0.0000 0.0000 1822 | vt 0.2064 0.0000 0.0000 1823 | vt 0.2064 0.3333 0.0000 1824 | vt 0.2276 0.0000 0.0000 1825 | vt 0.2486 0.0000 0.0000 1826 | vt 0.2486 0.3333 0.0000 1827 | vt 0.2697 0.0000 0.0000 1828 | vt 0.2909 0.0000 0.0000 1829 | vt 0.2909 0.3333 0.0000 1830 | vt 0.3122 0.0000 0.0000 1831 | vt 0.3338 0.0000 0.0000 1832 | vt 0.3338 0.3333 0.0000 1833 | vt 0.2064 0.6667 0.0000 1834 | vt 0.2486 0.6667 0.0000 1835 | vt 0.2909 0.6667 0.0000 1836 | vt 0.3338 0.6667 0.0000 1837 | vt 0.1852 1.0000 0.0000 1838 | vt 0.2064 1.0000 0.0000 1839 | vt 0.2276 1.0000 0.0000 1840 | vt 0.2486 1.0000 0.0000 1841 | vt 0.2697 1.0000 0.0000 1842 | vt 0.2909 1.0000 0.0000 1843 | vt 0.3122 1.0000 0.0000 1844 | vt 0.3338 1.0000 0.0000 1845 | vt 0.3555 0.0000 0.0000 1846 | vt 0.3774 0.0000 0.0000 1847 | vt 0.3990 0.0000 0.0000 1848 | vt 0.4202 0.3333 0.0000 1849 | vt 0.4202 0.0000 0.0000 1850 | vt 0.4202 0.6667 0.0000 1851 | vt 0.3555 1.0000 0.0000 1852 | vt 0.3774 1.0000 0.0000 1853 | vt 0.3990 1.0000 0.0000 1854 | vt 0.4202 1.0000 0.0000 1855 | vt 0.4407 0.0000 0.0000 1856 | vt 0.4608 0.0000 0.0000 1857 | vt 0.4608 0.3333 0.0000 1858 | vt 0.4805 0.0000 0.0000 1859 | vt 0.5000 0.0000 0.0000 1860 | vt 0.5000 0.3333 0.0000 1861 | vt 0.4608 0.6667 0.0000 1862 | vt 0.5000 0.6667 0.0000 1863 | vt 0.4407 1.0000 0.0000 1864 | vt 0.4608 1.0000 0.0000 1865 | vt 0.4805 1.0000 0.0000 1866 | vt 0.5000 1.0000 0.0000 1867 | vt 0.5195 0.0000 0.0000 1868 | vt 0.5392 0.0000 0.0000 1869 | vt 0.5392 0.3333 0.0000 1870 | vt 0.5593 0.0000 0.0000 1871 | vt 0.5798 0.0000 0.0000 1872 | vt 0.5798 0.3333 0.0000 1873 | vt 0.5392 0.6667 0.0000 1874 | vt 0.5798 0.6667 0.0000 1875 | vt 0.5195 1.0000 0.0000 1876 | vt 0.5392 1.0000 0.0000 1877 | vt 0.5593 1.0000 0.0000 1878 | vt 0.5798 1.0000 0.0000 1879 | vt 0.6010 0.0000 0.0000 1880 | vt 0.6226 0.0000 0.0000 1881 | vt 0.6445 0.0000 0.0000 1882 | vt 0.6662 0.3333 0.0000 1883 | vt 0.6662 0.0000 0.0000 1884 | vt 0.6662 0.6667 0.0000 1885 | vt 0.6010 1.0000 0.0000 1886 | vt 0.6226 1.0000 0.0000 1887 | vt 0.6445 1.0000 0.0000 1888 | vt 0.6662 1.0000 0.0000 1889 | vt 0.6878 0.0000 0.0000 1890 | vt 0.7091 0.0000 0.0000 1891 | vt 0.7091 0.3333 0.0000 1892 | vt 0.7303 0.0000 0.0000 1893 | vt 0.7514 0.0000 0.0000 1894 | vt 0.7514 0.3333 0.0000 1895 | vt 0.7724 0.0000 0.0000 1896 | vt 0.7936 0.0000 0.0000 1897 | vt 0.7936 0.3333 0.0000 1898 | vt 0.8148 0.0000 0.0000 1899 | vt 0.8363 0.0000 0.0000 1900 | vt 0.8363 0.3333 0.0000 1901 | vt 0.7091 0.6667 0.0000 1902 | vt 0.7514 0.6667 0.0000 1903 | vt 0.7936 0.6667 0.0000 1904 | vt 0.8363 0.6667 0.0000 1905 | vt 0.6878 1.0000 0.0000 1906 | vt 0.7091 1.0000 0.0000 1907 | vt 0.7303 1.0000 0.0000 1908 | vt 0.7514 1.0000 0.0000 1909 | vt 0.7724 1.0000 0.0000 1910 | vt 0.7936 1.0000 0.0000 1911 | vt 0.8148 1.0000 0.0000 1912 | vt 0.8363 1.0000 0.0000 1913 | vt 0.8579 0.0000 0.0000 1914 | vt 0.8796 0.0000 0.0000 1915 | vt 0.8796 0.3333 0.0000 1916 | vt 0.9011 0.0000 0.0000 1917 | vt 0.9222 0.0000 0.0000 1918 | vt 0.9222 0.3333 0.0000 1919 | vt 0.8796 0.6667 0.0000 1920 | vt 0.9222 0.6667 0.0000 1921 | vt 0.8579 1.0000 0.0000 1922 | vt 0.8796 1.0000 0.0000 1923 | vt 0.9011 1.0000 0.0000 1924 | vt 0.9222 1.0000 0.0000 1925 | vt 0.9427 0.0000 0.0000 1926 | vt 0.9625 0.0000 0.0000 1927 | vt 0.9625 0.3333 0.0000 1928 | vt 0.9625 0.6667 0.0000 1929 | vt 0.9427 1.0000 0.0000 1930 | vt 0.9625 1.0000 0.0000 1931 | vt 0.9817 0.0000 0.0000 1932 | vt 1.0000 0.0000 0.0000 1933 | vt 1.0000 0.3333 0.0000 1934 | vt 1.0000 0.6667 0.0000 1935 | vt 0.9817 1.0000 0.0000 1936 | vt 1.0000 1.0000 0.0000 1937 | vt 0.3597 0.0565 0.0000 1938 | vt 0.5000 0.0327 0.0000 1939 | vt 0.4189 0.0406 0.0000 1940 | vt 0.3021 0.0804 0.0000 1941 | vt 0.2201 0.1312 0.0000 1942 | vt 0.1702 0.1736 0.0000 1943 | vt 0.1070 0.2469 0.0000 1944 | vt 0.0748 0.3001 0.0000 1945 | vt 0.0514 0.3556 0.0000 1946 | vt 0.0319 0.4417 0.0000 1947 | vt 0.5000 0.5000 0.0000 1948 | vt 0.0319 0.5000 0.0000 1949 | vt 0.5696 0.0358 0.0000 1950 | vt 0.5092 0.0318 0.0000 1951 | vt 0.6293 0.0478 0.0000 1952 | vt 0.6878 0.0677 0.0000 1953 | vt 0.7984 0.1308 0.0000 1954 | vt 0.8483 0.1730 0.0000 1955 | vt 0.8923 0.2208 0.0000 1956 | vt 0.9437 0.3007 0.0000 1957 | vt 0.9671 0.3575 0.0000 1958 | vt 0.9821 0.4153 0.0000 1959 | vt 0.9902 0.5000 0.0000 1960 | vt 0.0319 0.5583 0.0000 1961 | vt 0.0429 0.6160 0.0000 1962 | vt 0.0748 0.6999 0.0000 1963 | vt 0.1262 0.7786 0.0000 1964 | vt 0.2201 0.8688 0.0000 1965 | vt 0.3021 0.9196 0.0000 1966 | vt 0.3597 0.9435 0.0000 1967 | vt 0.4189 0.9594 0.0000 1968 | vt 0.5000 0.9665 0.0000 1969 | vt 0.4790 0.9673 0.0000 1970 | vt 0.9821 0.5847 0.0000 1971 | vt 0.9671 0.6425 0.0000 1972 | vt 0.9437 0.6993 0.0000 1973 | vt 0.9115 0.7535 0.0000 1974 | vt 0.8483 0.8270 0.0000 1975 | vt 0.7984 0.8692 0.0000 1976 | vt 0.6878 0.9323 0.0000 1977 | vt 0.6293 0.9522 0.0000 1978 | vt 0.5696 0.9642 0.0000 1979 | # 186 texture coords 1980 | 1981 | g Cylinder 1982 | usemtl wire_087224143 1983 | s 1 1984 | f 266/325/323 267/326/324 268/327/325 1985 | f 266/325/323 268/327/325 269/328/326 1986 | f 266/325/323 269/328/326 270/329/327 1987 | f 269/328/326 268/327/325 271/330/328 1988 | f 269/328/326 271/330/328 272/331/329 1989 | f 273/332/330 274/333/327 272/331/329 1990 | f 273/332/330 272/331/329 271/330/328 1991 | f 273/332/330 271/330/328 275/334/324 1992 | f 276/335/331 277/336/332 278/337/333 1993 | f 276/335/331 278/337/333 268/327/325 1994 | f 276/335/331 268/327/325 267/326/324 1995 | f 268/327/325 278/337/333 279/338/334 1996 | f 268/327/325 279/338/334 271/330/328 1997 | f 280/339/335 275/334/324 271/330/328 1998 | f 280/339/335 271/330/328 279/338/334 1999 | f 280/339/335 279/338/334 281/340/332 2000 | f 282/341/336 283/342/337 284/343/338 2001 | f 282/341/336 284/343/338 278/337/333 2002 | f 282/341/336 278/337/333 277/336/332 2003 | f 285/344/339 286/345/340 287/346/341 2004 | f 285/344/339 287/346/341 284/343/338 2005 | f 285/344/339 284/343/338 283/342/337 2006 | f 278/337/333 284/343/338 288/347/342 2007 | f 278/337/333 288/347/342 279/338/334 2008 | f 284/343/338 287/346/341 289/348/343 2009 | f 284/343/338 289/348/343 288/347/342 2010 | f 290/349/344 281/340/332 279/338/334 2011 | f 290/349/344 279/338/334 288/347/342 2012 | f 290/349/344 288/347/342 291/350/337 2013 | f 292/351/345 291/350/337 288/347/342 2014 | f 292/351/345 288/347/342 289/348/343 2015 | f 292/351/345 289/348/343 293/352/340 2016 | f 294/353/346 295/354/347 296/355/348 2017 | f 294/353/346 296/355/348 287/346/341 2018 | f 294/353/346 287/346/341 286/345/340 2019 | f 297/356/349 298/357/350 299/358/351 2020 | f 297/356/349 299/358/351 296/355/348 2021 | f 297/356/349 296/355/348 295/354/347 2022 | f 300/359/352 301/360/353 302/361/354 2023 | f 300/359/352 302/361/354 299/358/351 2024 | f 300/359/352 299/358/351 298/357/350 2025 | f 303/362/355 304/363/356 305/364/357 2026 | f 303/362/355 305/364/357 302/361/354 2027 | f 303/362/355 302/361/354 301/360/353 2028 | f 287/346/341 296/355/348 306/365/358 2029 | f 287/346/341 306/365/358 289/348/343 2030 | f 296/355/348 299/358/351 307/366/359 2031 | f 296/355/348 307/366/359 306/365/358 2032 | f 299/358/351 302/361/354 308/367/360 2033 | f 299/358/351 308/367/360 307/366/359 2034 | f 302/361/354 305/364/357 309/368/361 2035 | f 302/361/354 309/368/361 308/367/360 2036 | f 310/369/362 293/352/340 289/348/343 2037 | f 310/369/362 289/348/343 306/365/358 2038 | f 310/369/362 306/365/358 311/370/347 2039 | f 312/371/363 311/370/347 306/365/358 2040 | f 312/371/363 306/365/358 307/366/359 2041 | f 312/371/363 307/366/359 313/372/350 2042 | f 314/373/364 313/372/350 307/366/359 2043 | f 314/373/364 307/366/359 308/367/360 2044 | f 314/373/364 308/367/360 315/374/353 2045 | f 316/375/365 315/374/353 308/367/360 2046 | f 316/375/365 308/367/360 309/368/361 2047 | f 316/375/365 309/368/361 317/376/356 2048 | f 318/377/366 305/364/357 304/363/356 2049 | f 319/378/367 305/364/357 318/377/366 2050 | f 320/379/368 305/364/357 319/378/367 2051 | f 321/380/369 305/364/357 320/379/368 2052 | f 322/381/370 321/380/369 320/379/368 2053 | f 305/364/357 321/380/369 323/382/371 2054 | f 305/364/357 323/382/371 309/368/361 2055 | f 324/383/372 317/376/356 309/368/361 2056 | f 325/384/373 324/383/372 309/368/361 2057 | f 326/385/374 325/384/373 309/368/361 2058 | f 327/386/375 326/385/374 309/368/361 2059 | f 323/382/371 327/386/375 309/368/361 2060 | f 328/387/376 329/388/377 330/389/378 2061 | f 328/387/376 330/389/378 321/380/369 2062 | f 328/387/376 321/380/369 322/381/370 2063 | f 331/390/379 332/391/380 333/392/381 2064 | f 331/390/379 333/392/381 330/389/378 2065 | f 331/390/379 330/389/378 329/388/377 2066 | f 321/380/369 330/389/378 334/393/382 2067 | f 321/380/369 334/393/382 323/382/371 2068 | f 330/389/378 333/392/381 335/394/383 2069 | f 330/389/378 335/394/383 334/393/382 2070 | f 336/395/384 327/386/375 323/382/371 2071 | f 336/395/384 323/382/371 334/393/382 2072 | f 336/395/384 334/393/382 337/396/377 2073 | f 338/397/385 337/396/377 334/393/382 2074 | f 338/397/385 334/393/382 335/394/383 2075 | f 338/397/385 335/394/383 339/398/386 2076 | f 340/399/387 341/400/388 342/401/389 2077 | f 340/399/387 342/401/389 333/392/381 2078 | f 340/399/387 333/392/381 332/391/380 2079 | f 343/402/390 344/403/391 345/404/392 2080 | f 343/402/390 345/404/392 342/401/389 2081 | f 343/402/390 342/401/389 341/400/388 2082 | f 333/392/381 342/401/389 346/405/393 2083 | f 333/392/381 346/405/393 335/394/383 2084 | f 342/401/389 345/404/392 347/406/394 2085 | f 342/401/389 347/406/394 346/405/393 2086 | f 348/407/395 339/398/386 335/394/383 2087 | f 348/407/395 335/394/383 346/405/393 2088 | f 348/407/395 346/405/393 349/408/388 2089 | f 350/409/396 349/408/388 346/405/393 2090 | f 350/409/396 346/405/393 347/406/394 2091 | f 350/409/396 347/406/394 351/410/391 2092 | f 352/411/397 345/404/392 344/403/391 2093 | f 353/412/398 345/404/392 352/411/397 2094 | f 354/413/399 345/404/392 353/412/398 2095 | f 355/414/400 345/404/392 354/413/399 2096 | f 356/415/401 355/414/400 354/413/399 2097 | f 345/404/392 355/414/400 357/416/402 2098 | f 345/404/392 357/416/402 347/406/394 2099 | f 358/417/403 351/410/391 347/406/394 2100 | f 359/418/404 358/417/403 347/406/394 2101 | f 360/419/405 359/418/404 347/406/394 2102 | f 361/420/406 360/419/405 347/406/394 2103 | f 357/416/402 361/420/406 347/406/394 2104 | f 362/421/407 363/422/408 364/423/409 2105 | f 362/421/407 364/423/409 355/414/400 2106 | f 362/421/407 355/414/400 356/415/401 2107 | f 365/424/410 366/425/411 367/426/412 2108 | f 365/424/410 367/426/412 364/423/409 2109 | f 365/424/410 364/423/409 363/422/408 2110 | f 368/427/413 369/428/414 370/429/415 2111 | f 368/427/413 370/429/415 367/426/412 2112 | f 368/427/413 367/426/412 366/425/411 2113 | f 371/430/416 372/431/417 373/432/418 2114 | f 371/430/416 373/432/418 370/429/415 2115 | f 371/430/416 370/429/415 369/428/414 2116 | f 355/414/400 364/423/409 374/433/419 2117 | f 355/414/400 374/433/419 357/416/402 2118 | f 364/423/409 367/426/412 375/434/420 2119 | f 364/423/409 375/434/420 374/433/419 2120 | f 367/426/412 370/429/415 376/435/421 2121 | f 367/426/412 376/435/421 375/434/420 2122 | f 370/429/415 373/432/418 377/436/422 2123 | f 370/429/415 377/436/422 376/435/421 2124 | f 378/437/423 361/420/406 357/416/402 2125 | f 378/437/423 357/416/402 374/433/419 2126 | f 378/437/423 374/433/419 379/438/408 2127 | f 380/439/424 379/438/408 374/433/419 2128 | f 380/439/424 374/433/419 375/434/420 2129 | f 380/439/424 375/434/420 381/440/411 2130 | f 382/441/425 381/440/411 375/434/420 2131 | f 382/441/425 375/434/420 376/435/421 2132 | f 382/441/425 376/435/421 383/442/414 2133 | f 384/443/426 383/442/414 376/435/421 2134 | f 384/443/426 376/435/421 377/436/422 2135 | f 384/443/426 377/436/422 385/444/417 2136 | f 386/445/427 387/446/428 388/447/429 2137 | f 386/445/427 388/447/429 373/432/418 2138 | f 386/445/427 373/432/418 372/431/417 2139 | f 389/448/430 390/449/431 391/450/432 2140 | f 389/448/430 391/450/432 388/447/429 2141 | f 389/448/430 388/447/429 387/446/428 2142 | f 373/432/418 388/447/429 392/451/433 2143 | f 373/432/418 392/451/433 377/436/422 2144 | f 388/447/429 391/450/432 393/452/434 2145 | f 388/447/429 393/452/434 392/451/433 2146 | f 394/453/435 385/444/417 377/436/422 2147 | f 394/453/435 377/436/422 392/451/433 2148 | f 394/453/435 392/451/433 395/454/428 2149 | f 396/455/436 395/454/428 392/451/433 2150 | f 396/455/436 392/451/433 393/452/434 2151 | f 396/455/436 393/452/434 397/456/431 2152 | f 398/457/437 399/458/438 400/459/439 2153 | f 398/457/437 400/459/439 391/450/432 2154 | f 398/457/437 391/450/432 390/449/431 2155 | f 391/450/432 400/459/439 401/460/440 2156 | f 391/450/432 401/460/440 393/452/434 2157 | f 402/461/441 397/456/431 393/452/434 2158 | f 402/461/441 393/452/434 401/460/440 2159 | f 402/461/441 401/460/440 403/462/438 2160 | f 404/463/442 270/464/443 269/465/444 2161 | f 404/463/442 269/465/444 400/459/439 2162 | f 404/463/442 400/459/439 399/458/438 2163 | f 400/459/439 269/465/444 272/466/445 2164 | f 400/459/439 272/466/445 401/460/440 2165 | f 405/467/446 403/462/438 401/460/440 2166 | f 405/467/446 401/460/440 272/466/445 2167 | f 405/467/446 272/466/445 274/468/443 2168 | f 406/469/447 407/470/447 408/471/447 2169 | f 409/472/447 407/470/447 406/469/447 2170 | f 354/473/447 407/470/447 409/472/447 2171 | f 353/474/447 407/470/447 354/473/447 2172 | f 410/475/447 407/470/447 353/474/447 2173 | f 411/476/447 407/470/447 410/475/447 2174 | f 412/477/447 407/470/447 411/476/447 2175 | f 340/478/447 407/470/447 412/477/447 2176 | f 413/479/447 407/470/447 340/478/447 2177 | f 414/480/447 413/479/447 340/478/447 2178 | f 368/481/448 366/482/448 407/470/447 2179 | f 369/483/448 368/481/448 407/470/447 2180 | f 371/484/448 369/483/448 407/470/447 2181 | f 415/485/447 371/484/448 407/470/447 2182 | f 416/486/447 415/485/447 407/470/447 2183 | f 417/487/447 416/486/447 407/470/447 2184 | f 418/488/447 417/487/447 407/470/447 2185 | f 419/489/447 418/488/447 407/470/447 2186 | f 420/490/447 419/489/447 407/470/447 2187 | f 421/491/447 420/490/447 407/470/447 2188 | f 413/479/447 421/491/447 407/470/447 2189 | f 331/492/447 413/479/447 414/480/447 2190 | f 329/493/447 413/479/447 331/492/447 2191 | f 422/494/447 413/479/447 329/493/447 2192 | f 320/495/447 413/479/447 422/494/447 2193 | f 318/496/447 413/479/447 320/495/447 2194 | f 423/497/447 413/479/447 318/496/447 2195 | f 424/498/447 413/479/447 423/497/447 2196 | f 425/499/447 413/479/447 424/498/447 2197 | f 426/500/447 413/479/447 425/499/447 2198 | f 427/501/448 426/500/447 425/499/447 2199 | f 428/502/447 421/491/447 413/479/447 2200 | f 429/503/447 428/502/447 413/479/447 2201 | f 430/504/447 429/503/447 413/479/447 2202 | f 431/505/447 430/504/447 413/479/447 2203 | f 432/506/447 431/505/447 413/479/447 2204 | f 433/507/447 432/506/447 413/479/447 2205 | f 434/508/447 433/507/447 413/479/447 2206 | f 435/509/447 434/508/447 413/479/447 2207 | f 436/510/447 435/509/447 413/479/447 2208 | f 426/500/447 436/510/447 413/479/447 2209 | f 437/469/449 438/471/449 439/470/449 2210 | f 440/472/449 437/469/449 439/470/449 2211 | f 360/473/449 440/472/449 439/470/449 2212 | f 359/474/449 360/473/449 439/470/449 2213 | f 441/475/449 359/474/449 439/470/449 2214 | f 442/476/449 441/475/449 439/470/449 2215 | f 443/477/449 442/476/449 439/470/449 2216 | f 348/478/449 443/477/449 439/470/449 2217 | f 444/479/449 348/478/449 439/470/449 2218 | f 445/480/449 348/478/449 444/479/449 2219 | f 382/481/449 439/470/449 381/482/449 2220 | f 383/483/449 439/470/449 382/481/449 2221 | f 384/484/449 439/470/449 383/483/449 2222 | f 394/485/449 439/470/449 384/484/449 2223 | f 395/486/449 439/470/449 394/485/449 2224 | f 396/487/449 439/470/449 395/486/449 2225 | f 446/488/449 439/470/449 396/487/449 2226 | f 447/489/449 439/470/449 446/488/449 2227 | f 448/490/449 439/470/449 447/489/449 2228 | f 274/491/449 439/470/449 448/490/449 2229 | f 444/479/449 439/470/449 274/491/449 2230 | f 338/492/449 445/480/449 444/479/449 2231 | f 337/493/449 338/492/449 444/479/449 2232 | f 449/494/449 337/493/449 444/479/449 2233 | f 326/495/449 449/494/449 444/479/449 2234 | f 324/496/449 326/495/449 444/479/449 2235 | f 450/497/449 324/496/449 444/479/449 2236 | f 451/498/449 450/497/449 444/479/449 2237 | f 452/499/449 451/498/449 444/479/449 2238 | f 453/500/449 452/499/449 444/479/449 2239 | f 454/501/449 452/499/449 453/500/449 2240 | f 455/502/449 444/479/449 274/491/449 2241 | f 456/503/449 444/479/449 455/502/449 2242 | f 457/504/449 444/479/449 456/503/449 2243 | f 458/505/449 444/479/449 457/504/449 2244 | f 291/506/449 444/479/449 458/505/449 2245 | f 292/507/449 444/479/449 291/506/449 2246 | f 310/508/449 444/479/449 292/507/449 2247 | f 311/509/449 444/479/449 310/508/449 2248 | f 312/510/449 444/479/449 311/509/449 2249 | f 453/500/449 444/479/449 312/510/449 2250 | # 0 polygons - 266 triangles 2251 | 2252 | # 2253 | # object Pyramid 2254 | # 2255 | 2256 | v -1.3730 0.0000 2.9966 2257 | v -1.3730 0.0000 1.4182 2258 | v -0.3546 0.0000 1.4182 2259 | v -0.3546 0.0000 2.9966 2260 | v 0.6638 0.0000 1.4182 2261 | v 0.6638 0.0000 2.9966 2262 | v -0.3546 1.7155 2.2074 2263 | v 0.6638 0.0000 2.2074 2264 | v -1.3730 0.0000 2.2074 2265 | # 9 vertices 2266 | 2267 | vn 0.0000 -1.0000 -0.0000 2268 | vn 0.8599 0.5105 -0.0000 2269 | vn 0.0000 0.4179 0.9085 2270 | vn 0.0000 0.4179 -0.9085 2271 | vn -0.8599 0.5105 -0.0000 2272 | # 5 vertex normals 2273 | 2274 | vt 1.0000 0.0000 0.0000 2275 | vt 1.0000 1.0000 0.0000 2276 | vt 0.5000 1.0000 0.0000 2277 | vt 0.5000 0.0000 0.0000 2278 | vt 0.0000 1.0000 0.0000 2279 | vt 0.0000 0.0000 0.0000 2280 | vt 0.4990 1.0000 0.0000 2281 | vt 0.5010 1.0000 0.0000 2282 | # 8 texture coords 2283 | 2284 | g Pyramid 2285 | usemtl wire_108008136 2286 | s 1 2287 | f 459/511/450 460/512/450 461/513/450 2288 | f 459/511/450 461/513/450 462/514/450 2289 | f 462/514/450 461/513/450 463/515/450 2290 | f 462/514/450 463/515/450 464/516/450 2291 | f 463/517/451 465/514/451 466/513/451 2292 | f 466/513/451 465/511/451 464/518/451 2293 | f 464/517/452 465/514/452 462/513/452 2294 | f 462/513/452 465/511/452 459/518/452 2295 | f 460/517/453 465/514/453 461/513/453 2296 | f 461/513/453 465/511/453 463/518/453 2297 | f 459/517/454 465/514/454 467/513/454 2298 | f 467/513/454 465/511/454 460/518/454 2299 | # 0 polygons - 12 triangles 2300 | 2301 | --------------------------------------------------------------------------------