├── LICENSE
├── README.md
├── SoilTestPlot.ipynb
├── Some_examples
├── MC and HSS
│ ├── TRX - LinkedIn Post.gif
│ ├── TRX CIDC - HSS model.gif
│ ├── TRX CIDC - MC model.gif
│ ├── TRX CIUC - HSS model.gif
│ └── TRX CIUC - MC model.gif
└── Undergraduate
│ ├── Triaxial drenado - Arcilla NC.gif
│ ├── Triaxial drenado - Arcilla OC.gif
│ ├── Triaxial drenado - Arena densa.gif
│ ├── Triaxial drenado - Arena suelta.gif
│ ├── Triaxial no drenado - Arcilla NC.gif
│ ├── Triaxial no drenado - Arcilla OC .gif
│ ├── Triaxial no drenado - Arena densa.gif
│ └── Triaxial no drenado - Arena suelta.gif
└── info
├── HowToConnect.png
├── LogoSRK.jpeg
├── Version.gif
├── logofiuba.png
├── logos.png
└── logos2.png
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2023 Nicolás Tasso
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # SoilTestPlot
2 |
3 | ## Note
4 | This project is currently under construction and will be completed in the coming days. Please check back soon for updates. If you have any questions or concerns, please feel free to contact me at ntasso@fi.uba.ar. Thank you for your patience and understanding.
5 |
6 | ## GIFs in Some_examples/Undergraduate folder
7 |
8 | The files located in the "undergraduate" folder are intended to provide undergraduate students with an illustration of stress paths for different soil types. The GIFs were created using different models, including OCclay, NorSand, and HS-Small. Please note that the Mohr-Coulomb failure envelope shown in the GIFs is not an accurate representation of the yield surface of the models, but rather a simplified schematic representation for instructional purposes only.
9 |
10 | We hope that these files will be helpful for students who are learning about soil mechanics and stress paths. If you have any questions or comments, please feel free to contact us.
11 |
--------------------------------------------------------------------------------
/SoilTestPlot.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# SoilTest Plot"
8 | ]
9 | },
10 | {
11 | "attachments": {},
12 | "cell_type": "markdown",
13 | "metadata": {},
14 | "source": [
15 | "
\n",
16 | " \n",
17 | "\n",
18 | "Coded by \n",
19 | " \n",
20 | "\n",
22 | "\n",
23 | "\n",
24 | "
Usage \n",
25 | "
\n",
26 | "
\n",
27 | " Plot SoilTest's stress path \n",
28 | " \n",
29 | "\n",
30 | "
Input \n",
31 | "
\n",
32 | "
\n",
33 | " Soil parameters \n",
34 | " \n",
35 | " \n",
36 | "
Output \n",
37 | "
\n",
38 | "
\n",
39 | " GIF with stress path evolution in deviatoric plot, p vs q, q vs ea and tau vs sigma \n",
40 | " \n",
41 | "
\n",
42 | " "
43 | ]
44 | },
45 | {
46 | "attachments": {},
47 | "cell_type": "markdown",
48 | "id": "17e24958",
49 | "metadata": {},
50 | "source": [
51 | "ⓘ #1 Before using the code: This code uses FFmpeg software to create GIFs. Please download it from official page: https://ffmpeg.org/about.html
"
52 | ]
53 | },
54 | {
55 | "cell_type": "markdown",
56 | "metadata": {},
57 | "source": [
58 | "## Libraries "
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "execution_count": 1,
64 | "metadata": {},
65 | "outputs": [],
66 | "source": [
67 | "import numpy as np\n",
68 | "import matplotlib.pyplot as plt\n",
69 | "import pandas as pd\n",
70 | "from tqdm.notebook import tnrange # Write \"pip install tdqm\" in anaconda prompt - https://pypi.org/project/tqdm/\n",
71 | "from celluloid import Camera # Write \"pip install celluloid\" in anaconda prompt - https://pypi.org/project/celluloid/\n",
72 | "import matplotlib.animation as animation\n",
73 | "import matplotlib.cbook as cbook\n",
74 | "import matplotlib.image as image"
75 | ]
76 | },
77 | {
78 | "cell_type": "markdown",
79 | "metadata": {},
80 | "source": [
81 | "## Plaxis lines"
82 | ]
83 | },
84 | {
85 | "attachments": {},
86 | "cell_type": "markdown",
87 | "id": "a85d8d67",
88 | "metadata": {},
89 | "source": [
90 | "Configure the remote scripting server of SoilTest software"
91 | ]
92 | },
93 | {
94 | "attachments": {},
95 | "cell_type": "markdown",
96 | "id": "3c4ef280",
97 | "metadata": {},
98 | "source": [
99 | " "
100 | ]
101 | },
102 | {
103 | "cell_type": "code",
104 | "execution_count": 2,
105 | "metadata": {},
106 | "outputs": [],
107 | "source": [
108 | "from plxscripting.easy import *\n",
109 | "localhostport_input = 10000\n",
110 | "s_s, g_s = new_server('localhost', localhostport_input, password='')"
111 | ]
112 | },
113 | {
114 | "cell_type": "markdown",
115 | "metadata": {},
116 | "source": [
117 | "## Material parameters"
118 | ]
119 | },
120 | {
121 | "cell_type": "code",
122 | "execution_count": 28,
123 | "metadata": {},
124 | "outputs": [],
125 | "source": [
126 | "E50_ref = 3400 # Secant stiffness at 50% failure in standard drained triaxial test [kPa]\n",
127 | "Eoed_ref = 9000 # Tangent stiffness for primary oedometer loading [kPa]\n",
128 | "Eur_ref = 60000 # Unloading/reloading stiffness from drained triaxial test [kPa]\n",
129 | "nu = 0.30 # Poisson's ratio for unloading/loading [-]\n",
130 | "m = 0.80 # Power of stress-level dependency of stiffness [-]\n",
131 | "p_ref = 100 # Reference stress for stiffness [kPa]\n",
132 | "G0_ref = 50000 # Reference shear modulus at very small strains (<10E-06) [kPa]\n",
133 | "gamma_07 = 0.0001 # Threshold shear strain at which Gs = 0.722 * G0 [-]\n",
134 | "c_ref = 0 # Effective cohesion [kPa]\n",
135 | "phi = 30 # Effective angle of internal friction [deg]\n",
136 | "psi = 0 # Angle of dilatancy [deg]"
137 | ]
138 | },
139 | {
140 | "attachments": {},
141 | "cell_type": "markdown",
142 | "id": "00447c30",
143 | "metadata": {},
144 | "source": [
145 | "# Test configuration"
146 | ]
147 | },
148 | {
149 | "cell_type": "code",
150 | "execution_count": 17,
151 | "id": "8f49f916",
152 | "metadata": {},
153 | "outputs": [],
154 | "source": [
155 | "cellpressure = 100 # cell pressure [kPa]\n",
156 | "behaviour = 'undrained' # drained | undrained\n",
157 | "direction = 'compression' # compression | extension\n",
158 | "emax = 5 # Maximum strain eyy\n",
159 | "steps = 500 # Number of steps"
160 | ]
161 | },
162 | {
163 | "cell_type": "markdown",
164 | "metadata": {},
165 | "source": [
166 | "## Functions"
167 | ]
168 | },
169 | {
170 | "cell_type": "markdown",
171 | "metadata": {},
172 | "source": [
173 | "### Yield surfaces in deviatoric plot"
174 | ]
175 | },
176 | {
177 | "cell_type": "code",
178 | "execution_count": 3,
179 | "metadata": {},
180 | "outputs": [],
181 | "source": [
182 | "# Calculate corner points in MC failure surface\n",
183 | "def supfalla(p,phi,c):\n",
184 | " sigma1lim=np.array([(c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2),\n",
185 | " 3*p/2-1/2*((c*np.cos(phi)-3*p/2*(np.sin(phi)/2-0.5))/(3/4+np.sin(phi)/4)),\n",
186 | " 3*p-2*((c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2)),\n",
187 | " 3*p/2-1/2*((c*np.cos(phi)-3*p/2*(np.sin(phi)/2-0.5))/(3/4+np.sin(phi)/4)), \n",
188 | " (c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2),\n",
189 | " (c*np.cos(phi)-3*p/2*(np.sin(phi)/2-0.5))/(3/4+np.sin(phi)/4),\n",
190 | " \n",
191 | " (c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2),])\n",
192 | " \n",
193 | " sigma2lim=np.array([(c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2),\n",
194 | " (c*np.cos(phi)-3*p/2*(np.sin(phi)/2-0.5))/(3/4+np.sin(phi)/4),\n",
195 | " (c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2),\n",
196 | " 3*p/2-1/2*((c*np.cos(phi)-3*p/2*(np.sin(phi)/2-0.5))/(3/4+np.sin(phi)/4)), \n",
197 | " 3*p-2*((c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2)),\n",
198 | " 3*p/2-1/2*((c*np.cos(phi)-3*p/2*(np.sin(phi)/2-0.5))/(3/4+np.sin(phi)/4)),\n",
199 | " \n",
200 | " \n",
201 | " (c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2),])\n",
202 | " \n",
203 | " sigma3lim=np.array([3*p-2*((c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2)),\n",
204 | " 3*p/2-1/2*((c*np.cos(phi)-3*p/2*(np.sin(phi)/2-0.5))/(3/4+np.sin(phi)/4)),\n",
205 | " (c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2),\n",
206 | " (c*np.cos(phi)-3*p/2*(np.sin(phi)/2-0.5))/(3/4+np.sin(phi)/4),\n",
207 | " (c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2),\n",
208 | " 3*p/2-1/2*((c*np.cos(phi)-3*p/2*(np.sin(phi)/2-0.5))/(3/4+np.sin(phi)/4)),\n",
209 | " 3*p-2*((c*np.cos(phi)-3*p*(np.sin(phi)/2-0.5))/(3/2-np.sin(phi)/2)),])\n",
210 | " \n",
211 | " xlim, ylim = deviatoriccoords(sigma1lim,sigma2lim,sigma3lim)\n",
212 | " return xlim, ylim\n",
213 | "\n",
214 | "# Change of coordinates to deviatoric plane\n",
215 | "def deviatoriccoords(sigma1,sigma2,sigma3):\n",
216 | " x = (sigma3-sigma2)*(1/np.sqrt(2))\n",
217 | " y = (1/np.sqrt(6))*(sigma1*2 -sigma3-sigma2)\n",
218 | " return x,y"
219 | ]
220 | },
221 | {
222 | "cell_type": "markdown",
223 | "metadata": {
224 | "heading_collapsed": true
225 | },
226 | "source": [
227 | "## Triaxial"
228 | ]
229 | },
230 | {
231 | "cell_type": "markdown",
232 | "metadata": {
233 | "hidden": true
234 | },
235 | "source": [
236 | "### SoilTest lines"
237 | ]
238 | },
239 | {
240 | "attachments": {},
241 | "cell_type": "markdown",
242 | "id": "a2249f02",
243 | "metadata": {},
244 | "source": [
245 | "Change soil parameters (only if HSS is used). If another model is used, this parameters can be changed manually"
246 | ]
247 | },
248 | {
249 | "cell_type": "code",
250 | "execution_count": null,
251 | "id": "c63e7787",
252 | "metadata": {},
253 | "outputs": [],
254 | "source": [
255 | "g_s.Triaxial.CellPressure = cellpressure\n",
256 | "g_s.Triaxial.MaximumStrain = emax\n",
257 | "g_s.Triaxial.Steps = steps\n",
258 | "g_s.Triaxial.Behaviour = behaviour\n",
259 | "g_s.Triaxial.Direction = 'Compression'\n",
260 | "g_s.Triaxial.Consolidation = 'Isotropic'\n",
261 | "\n",
262 | "g_s.Material.E50Ref = E50_ref \n",
263 | "g_s.Material.EOedRef = Eoed_ref\n",
264 | "g_s.Material.EURRef = Eur_ref\n",
265 | "g_s.Material.nuUR = nu\n",
266 | "g_s.Material.powerM = m\n",
267 | "g_s.Material.pRef = p_ref\n",
268 | "g_s.Material.G0Ref = G0_ref\n",
269 | "g_s.Material.gamma07 = gamma_07\n",
270 | "g_s.Material.cRef = c_ref\n",
271 | "g_s.Material.phi = phi\n",
272 | "g_s.Material.psi = psi\n"
273 | ]
274 | },
275 | {
276 | "attachments": {},
277 | "cell_type": "markdown",
278 | "id": "374d54dc",
279 | "metadata": {},
280 | "source": [
281 | "Calculate and extract data"
282 | ]
283 | },
284 | {
285 | "cell_type": "code",
286 | "execution_count": 4,
287 | "id": "756edd0c",
288 | "metadata": {},
289 | "outputs": [],
290 | "source": [
291 | "\n",
292 | "g_s.calculate(g_s.Triaxial)\n",
293 | "\n",
294 | "DATA = pd.DataFrame()\n",
295 | "DATA['MeanEffStress'] = g_s.Triaxial.Results.MeanEffStress\n",
296 | "DATA['SigmaEffective1'] = g_s.Triaxial.Results.SigmaEffective1\n",
297 | "DATA['SigmaEffective2'] = g_s.Triaxial.Results.SigmaEffective2\n",
298 | "DATA['SigmaEffective3'] = g_s.Triaxial.Results.SigmaEffective3\n",
299 | "DATA['DeviatoricStress'] = g_s.Triaxial.Results.DeviatoricStress\n",
300 | "DATA['Epsxx'] = g_s.Triaxial.Results.Epsxx\n",
301 | "DATA['PExcess'] = g_s.Triaxial.Results.PExcess\n",
302 | "DATA['TotalVolumetricStrain'] = g_s.Triaxial.Results.TotalVolumetricStrain\n",
303 | "\n",
304 | "\n",
305 | "DATA['MeanEffStress'] = DATA['MeanEffStress']*-1\n",
306 | "DATA['SigmaEffective1'] = DATA['SigmaEffective1']*-1\n",
307 | "DATA['SigmaEffective2'] = DATA['SigmaEffective2']*-1\n",
308 | "DATA['SigmaEffective3'] = DATA['SigmaEffective3']*-1\n",
309 | "DATA['DeviatoricStress'] = DATA['DeviatoricStress']*1\n",
310 | "DATA['PExcess'] = DATA['PExcess']*-1"
311 | ]
312 | },
313 | {
314 | "cell_type": "markdown",
315 | "metadata": {
316 | "hidden": true
317 | },
318 | "source": [
319 | "### GIF"
320 | ]
321 | },
322 | {
323 | "cell_type": "code",
324 | "execution_count": 32,
325 | "metadata": {
326 | "hidden": true
327 | },
328 | "outputs": [
329 | {
330 | "data": {
331 | "application/vnd.jupyter.widget-view+json": {
332 | "model_id": "4fbc309e408740f6aa85455b5544ea68",
333 | "version_major": 2,
334 | "version_minor": 0
335 | },
336 | "text/plain": [
337 | " 0%| | 0/101 [00:00, ?it/s]"
338 | ]
339 | },
340 | "metadata": {},
341 | "output_type": "display_data"
342 | },
343 | {
344 | "name": "stderr",
345 | "output_type": "stream",
346 | "text": [
347 | "C:\\Users\\ntasso\\AppData\\Roaming\\Python\\Python38\\site-packages\\matplotlib\\animation.py:889: UserWarning: Animation was deleted without rendering anything. This is most likely not intended. To prevent deletion, assign the Animation to a variable, e.g. `anim`, that exists until you have outputted the Animation using `plt.show()` or `anim.save()`.\n",
348 | " warnings.warn(\n"
349 | ]
350 | },
351 | {
352 | "data": {
353 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwsAAAJOCAYAAAD4RJvRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1hT59sH8G+YIsvBBuuuE0RBq611/hQnKm5x1YGrtW7tsHXV0bpHVZxoLdbi3lXrnnWgVeuoisreyIYk5/2DJi9IwlCSk8D3c11eyiHJufMk5jl3nnFLBEEQQERERERE9BYDsQMgIiIiIiLdxGSBiIiIiIhUYrJAREREREQqMVkgIiIiIiKVmCwQEREREZFKTBaIiIiIiEgljSULr1+/Rtu2bVG/fn00aNAAq1atAgDEx8ejQ4cOqF27Njp06ICEhAQAgCAImDhxImrVqgU3Nzfcvn1bU6EREZEOYX9BRKS7JJqqsxAREYGIiAg0adIEycnJ8PDwwIEDB7B9+3ZUqlQJs2bNwuLFi5GQkIAlS5bg2LFjWLNmDY4dO4br16/jyy+/xPXr1ws8h42NDapVq6aJ8EuMIAiQSCRih1EgxlgydD1GXY8P0E6MXnFx+Dw8HPZZWQg3NMQMmQwHy5dH3bp1i3RufWvHkJAQxMbGihxRwdhfiEMf3stiYLvkxzZRTV/bJXc/GGVigrVOTjhZubLa/sJIU4E4OjrC0dERAGBpaYl69eohLCwMBw8exLlz5wAAw4YNQ5s2bbBkyRIcPHgQQ4cOhUQiQfPmzZGYmIiIiAjlY6hStWpV3Lx5U1NPoURkZGSgXLlyYodRIMZYMnQ9Rl2PD9BCjLt2AX5+QFYWAMBFJsNWAwMIq1fDbORI3YixBOSO0dPTU+RoCqez/YVcDmRLC7+dHl4sAEBGZibKmZqKHYbOYbvkxzZRTS/bJTAQGD9O2Q86ZmXhh+ho/LBgATxXrFB5F40lC7mFhITgzp07+OijjxAVFaX8QHdwcEBUVBQAICwsDFWqVFHex8XFBWFhYQV++BMRFcs33wBpaXkOlZPLgfnzgSImC6RZOtVf3H0CvEkp2cfUIbqd8oqH7ZIf20Q1vWyXmTPz9YNIS8vpH21sVN5F48lCSkoKevfujZUrV8LKyirP7yQSSbGHb/z9/eHv7w8AiImJQUZGRonFqglyuZwxlgDG+P50PT5A8zGavnoFVZ84wqtXyCziedmOmqNr/YVpWjoEy/KQVa6AfG+cfBN4NTKjV6P0dQqFprFd8mObqKaP7WIUHaW2HxQlWcjOzkbv3r3h6+sLHx8fAIC9vb1yuDgiIgJ2dnYAAGdnZ7x+/Vp539DQUDg7O+d7TD8/P/j5+QEAPDw89Go6gK5ijCVD12PU9fgAzcaYmJiIRBMTOGRm5vud5IMPinzest6OmqKT/YVMDkkFKxhUdXrHZ6Xb9PF9og1sl/zYJqrpZbt88AHw8mW+w5IPPlB7F43thiQIAkaOHIl69ephypQpyuPe3t4ICAgAAAQEBKBHjx7K4zt27IAgCLh27Rqsra05BYmISkRYWBhatWqF6dnZkL89v7R8eeCHH8QJjADoaH8hlwOCABgaluzjEhGJ6Ycfcvq93ArpBzU2snD58mXs3LkTrq6ucHd3BwAsXLgQs2bNQr9+/bBlyxZUrVoVe/bsAQB06dIFx44dQ61atVC+fHls27ZNU6ERURny6NEjeHl5IT4+HhtPnoLBucvA9o1AeHjONyw//AD4+oodZpmmk/2FVJbztxGTBSIqRRT93TffAK9e5e0Htb3AuWXLllC3K+uZM2fyHZNIJFi3bp2mwiGiMujq1avo1q0bjI2Ncf78eTQxrwR4VQC+/wow1sr+DlQEOtlfyJgsEFEp5etbrC/JWMGZiEqlI0eOoH379qhUqRKuXLmCJg1dgag4wKEyEwUqnGJkwZDdJBGVbfwUJKJSZ8uWLejZsycaNGiAy5cvo0aNGkB4dM4cdGd7scMjfcBpSEREAJgsEFEpIggCFixYgFGjRuF///sfzp49m7ODjkwOhMcAlSsA5fVs5woSh2IaEhc4E1EZx7F4IioVZDIZvvjiC6xfvx5DhgzBli1bYGxsnPPL6LicSrwuduIGSfqDIwtERAA4skBEpUBGRgb69euH9evXY8aMGdi+ffv/JwqCAIRGARblAWtLcQMl/cGRBSIiABxZICI9l5iYiB49euDChQtYsWIFJk2alPcG8W+AtAygbnVAzyptkog4skBEBIDJAhHpsdDQUHTu3BmPHz9GYGAgBgwYoOJGkYCJMWBbUfsBkv6SynKSSwMOwBNR2cZkgYj00j///AMvLy8kJibi+PHjaN++ff4bpaQBiclAdWde9FHxyOQcVSAiApMFItJDV65cQbdu3WBiYoLz58+jcePGqm8YFpWTJDjaajdA0n9SGZMFIiJwgTMR6ZlDhw6hffv2sLGxwdWrV9UnClnZQFQ8i7DRu5HJuLiZiAhMFohIj2zevBm9evWCq6srLl++jOrVq6u/cRiLsNF74MgCEREAJgtEpAcEQcD8+fMxevRoeHl54c8//4StbQFTi1iEjd4XRxaIiABwzQIR6TiZTIbPP/8cGzZswLBhw7Bp06b/r6GgTlQcIJUCLhxVoHfEkQUiIgAcWSAiHZaeno4+ffpgw4YNmDVrFrZt21Z4oiAIOQubLcoD1hbaCZRKHyYLREQAOLJARDoqISEB3t7euHz5MlatWoWJEycW7Y7xSSzCRu9HEDgNiYjoP0wWiEjnvH79Gp07d8bTp0+xe/du9OvXr+h3Do1iETZ6PzJ5zt8cWSAiYrJARLrlwYMH6NSpE5KSknD8+HG0a9eu6HdmETYqCTJZzt8cWSAi4poFItIdV65cQcuWLSGVSnHhwoXiJQpAzqgCi7DR+5L+lyxwZIGIiMkCEemGAwcOoGvXrrCzs8PVq1fh7u5evAfIygai4wEHGxZho/fDkQUiIiUmC0Qkuo0bN6J3795o2LAhLl++jGrVqhX/QZRF2OxKPD4qY5QjC+wiiYj4SUhEohEEAXPmzMHYsWPRqVMnnDhxAjY2NsV/IJmMRdio5ChGFow4QkVExE9CIhKFVCrFhAkT4O/vj+HDh8Pf3x8yxUVacUXFswgblRzFyIIhv08jItLYJ+GIESNgZ2eHhg0bKo/1798f7u7ucHd3R7Vq1ZRzkkNCQmBmZqb83dixYzUVFhHpAEWxNX9/f3z99dfYunVr4cXW1BGEnIXNLMKmt3Suv+ACZyIiJY2NLAwfPhyff/45hg4dqjz222+/Kf89depUWFtbK3+uWbMmgoODNRUOEemI+Ph4dO/eHVevXsWaNWvw+eefv+cDJgHpLMKmz3Suv+ACZyIiJY0lC61atUJISIjK3wmCgD179uDPP//U1OmJSAe9fv0anTp1wr///os9e/agT58+7/+gLMKm93Suv5DKcqYgMfkkIhJnzcLFixdhb2+P2rVrK4+9ePECjRs3hpWVFRYsWIBPP/1U5X39/f3h7+8PAIiJiUFGRoZWYn5XcrmcMZYAxvj+xI7vwYMH8Pb2RkpKCg4fPoxWrVrli6e4MUpS02GamIzsKvaQZWWVdMgqid2ORaEPMRaVGP2FUVYWDA0MkFlK2lCd0vQ+KUlsl/zYJqqVlXYRJVkIDAzEwIEDlT87Ojri1atXqFy5Mm7duoWePXviwYMHsLKyyndfPz8/+Pn5AQA8PDxQrpxu73ySkZHBGEsAY3x/YsZ38eJFeHt7w8zMDBcvXoSbm5vK2xU7xpAIwMAAxlUcYayl2gq6/joD+hFjUYnSXwgSwNio1LShOqXpfVKS2C75sU1UKyvtovWtHqRSKfbt24f+/fsrj5mamqJy5coAcj7Qa9asiSdPnmg7NCLSgP3796NDhw6wt7fH1atX1SYKxZaZxSJspZxo/YVUyvUKRET/0XqycPr0adStWxcuLi7KYzExMcotE58/f46nT5+iRo0a2g6NiErYhg0b0KdPHzRu3BiXL19G1apVS+7Bw2NydkJyYRG20kq0/kIm505IRET/0ViyMHDgQLRo0QKPHz+Gi4sLtmzZAgDYvXt3niFlALhw4QLc3Nzg7u6OPn36YMOGDahUqZKmQiMiDRMEAd999x3GjRuHzp074/Tp08pvg0uETAaER+cUYTMr/UPApZ3O9RdSGZMFIqL/aGzsPjAwUOXx7du35zvWu3dv9O7dW1OhEJEWSaVSjBs3Dps3b8aIESOwceNGGJV0Jdyo+JwLOhZhKxV0rr+QyTgNiYjoPyxPSUQlJi0tDT4+Pti8eTO+/fZbbN68ueQTBUURNksWYSMN4cgCEZESVwUSUYmIi4tD9+7dce3aNaxbtw7jx4/XzIlYhI00SRAAuZwjC0RE/2GyQETv7dWrV+jUqROeP3+O33//XbPTRFiEjTRJ+l/1Zo4sEBEBYLJARO/p77//RqdOnZCamoqTJ0+idevWmjtZShqQmAxUdwYMOIuSNIDJAhFRHuxtieidXbhwQVk99+LFi5pNFICcUQUDA8DRVrPnobLrv21ZOQ2JiCgHkwUieid79+5Fx44d4ejoiKtXr8LV1VWzJ1QUYXNkETbSII4sEBHlwWSBiIrt559/Rt++fdGkSRNcunQJH3zwgeZPqijC5swibKRBHFkgIsqDyQIRFZkgCPj2228xYcIEdOvWreSLramjKMJmU4FF2EizOLJARJQHx/KJqEikUinGjBmDrVu3YtSoUVi/fn3J11BQJyou5yLOmUXYSMNkTBaIiHLjyAIRFSotLQ29evXC1q1b8d1338Hf3197iQKLsJE2STkNiYgoN44sEFGBYmNj0b17d1y/fh3r16/H2LFjtRtAfBKQngnUYxE20gKpLOd9ZsD3GhERwGSBiArw8uVLeHl5ISQkBEFBQfDx8dF+EKFRgKkxYMMibKQFMlnOqAITUyIiAEwWiEiNe/fuoVOnTkhPT8epU6eU9RS0SlGErYYLi7CRdkhlgBHfa0RECvxEJKJ8zp07h08//RQGBga4ePGiOIkCkKsIm40456eyRybj4mYiolyYLBBRHkFBQfDy8oKzszOuXr2Khg0bihNI7iJs2lpMTSSVcXEzEVEuTBaISGnt2rXo168fmjZtikuXLqFKlSriBRMezSJspH0cWSAiyoPJAhFBEAR88803+OKLL9C9e3ecOnUKlSpVEi8gmSynYjOLsJG2SeUcWSAiyoVj+0RlXHZ2Nvz8/LB9+3b4+flh3bp12quhoI6iCJsLi7CRlkk5skBElBtHFojKsNTUVPTs2RPbt2/HnDlzsGHDBvEThdxF2KxYhI20SBD+f+tUIiICwJEFojIrNjYWXbt2xc2bN7FhwwaMGTNG7JByxCmKsNXgXvekXXIhJ2HgyAIRkRKTBaIyKCQkBF5eXnj16hX27t2Lnj17ih3S/wuLAkxNctYrEGmTTJbzN0cWiIiUNDYNacSIEbCzs8uz7eKcOXPg7OwMd3d3uLu749ixY8rfLVq0CLVq1UKdOnVw8uRJTYVFVObdvXsXLVq0QHR0NE6dOqVTiYIkNT2nCJuzHYuwlSE6019I/0sWOLJARKSksd54+PDhOHHiRL7jkydPRnBwMIKDg9GlSxcAwMOHD7F79248ePAAJ06cwPjx4yFTfMNDRCXm7NmzaNWqFYyMjHDp0iW0bNlS7JDyMIqMAwxZhK2s0Zn+QsqRBSKit2ksWWjVqlWRt148ePAgBgwYAFNTU1SvXh21atXCjRs3NBUaUZkUFBSETp06wcXFBVeuXEGDBg3EDimvzCwYxCUCDizCVtboTH8h48gCEdHb1CYL8fHxhf5JTEws9gnXrl0LNzc3jBgxAgkJCQCAsLCwPMWfXFxcEBYWVvxnQ0QqrVmzBkOHDkWzZs3EL7amTlg0IABw5nap+qbU9BechkRElI/ar++cnJzg5OQEQRDU3lkmk+HVq1dFPtm4ceMwe/ZsSCQSzJ49G1OnTsXWrVuLFbC/vz/8/f0BADExMcjIyCjW/bVNLpczxhLAGN+NIAj47rvvsHTpUnTv3h0BAQEwMzPTuTghk8M0PAayipaQSgRA1+LLRRdf57dpO8bS0l8YZmTAGECmVApBx1/jkqAP72UxsF3yY5uoVlbaRW2yUK9ePdy5c6fAOzdu3LhYJ7O3//9vDEePHo1u3boBAJydnfH69Wvl70JDQ+Hs7KzyMfz8/ODn5wcA8PDwQLlyul3dNSMjgzGWAMZYfNnZ2Rg1ahR27NiBMWPGYNmyZTA3Nxc7LNXCogGZDDJHG51qQ1V07XVWRdsxlpr+QpIz2G5qXh4wLv1T4fThvSwGtkt+bBPVykq7qJ2GdPXq1ULvXJTb5BYREaH89/79+5U7X3h7e2P37t3IzMzEixcv8PTpUzRr1qxYj01E/y81NRU9evTAjh07MG/ePKxfvx6GurpoUxBytku1NIdgUV7saOgdlJr+Qrl1KnfiIiJSUPvVyduZUnR0dJ6hlg8++KDAbGrgwIE4d+4cYmNj4eLigrlz5+LcuXMIDg6GRCJBtWrVsHHjRgBAgwYN0K9fP9SvXx9GRkZYt26d7l7YEOm4mJgYdO3aFbdu3YK/vz9Gjx4tdkgFUxZhc2YRNj1VavoLqSxny15u20tEpCQRCppkCuDQoUOYOnUqwsPDYWdnh5cvX6JevXp48OCBtmJUy8PDA7du3RI7jALpwxAVYywZuhDjixcv4OXlhdevX+O3336Dt7e38ne6EJ9KwY+BjEzgI1dkZGbqZoy56Gw75pI7Rk9PT9y8eVMr59X7/uJxCBCfBLRopJWYxKYP72UxsF3yY5uoVtraRV1/UejXJ7Nnz8a1a9fw4Ycf4sWLFzhz5gyaN2+ukSCJ6N3duXMHH3/8MWJjY3HmzJk8iYLOSk4Fkv4rwsZRBb2n9/2FTMYaC0REbyk0WTA2NkblypUhl8shl8vRtm1brX1LRURFc+bMGbRu3RrGxsa4fPkyPv74Y7FDKprQKBZhK0X0vr+QygAjTkEiIsqt0O0eKlSogJSUFLRq1Qq+vr6ws7PT3R1ViMqg3bt3Y+jQoahTpw5OnDihdmcYnZOZBcQkAE62LMJWSuh9f8GRBSKifAr9CuXQoUMoX748VqxYgU6dOqFmzZo4fPiwNmIjokKsXLkSAwcORPPmzXHhwgX9SRSA/4qwCSzCVorofX8hlbEgGxHRW9R+nXf9+nX4+fnh2bNncHV1xZYtWzBs2DBtxkZEasjlcnz11Vf48ccf4ePjg127dunXIiuZDIiIAWwqAmamYkdD76nU9BcyJgtERG9TO7IwYcIELF26FHFxcZgyZQomT56szbiISI3s7GwMHz4cP/74I8aNG4c9e/boV6IAAJFxOd/iunBUoTQoNf2FlNOQiIjepjZZkMvl6NChA0xNTdG3b1/ExMRoMy4iUiElJQXdu3fHzp07sWDBAv2sSZKrCBus9Gg+O6lVKvoLQQBkco4sEBG9Re00pMTEROzbt0/tzz4+PpqNjIjyiI6ORteuXXHnzh1s3rwZI0eOFDukd8MibKVOqegvlNWbmSwQEeWmNllo3bp1noVpuX+WSCT68eFPVEo8f/4cXl5eCAsLw4EDB9CtWzexQ3p3oZGAqQlgW1HsSKiElIr+QirP+ZsjC0REeahNFrZt2wYAyMzMhKlp3gWI8fHxmo2KiJRu376Nzp07QyqV4syZM2jRooXYIb275FQgKQWo4cJRhVKkVPQXHFkgIlKp0K1TfXx8IJVKlT9HRkaiQ4cOGg2KiHKcPn0arVu3Rrly5XD58mX9ThQAFmEr5fS6v5D+lyxwZIGIKI9Ck4WePXuib9++kMlkCAkJQceOHbFo0SJtxEZUpv3666/o0qULqlevjqtXr6Ju3bpih/R+FEXYHGxYhK2U0uv+QsqRBSIiVQrtsUePHo2srCz07NkTISEh2LhxIz7++GNtxEZUZi1fvhxTp05F69atceDAAVSoUEHskN4fi7CVenrdX8g4skBEpIraZGH58uXKfwuCgFevXsHd3R3Xrl3DtWvXMGXKFK0ESFSWyOVyzJw5E0uXLkWfPn2wc+dO/auhoAqLsJVqpaK/4DQkIiKV1CYLycnJeX5W7Gbx9nEiKhlZWVkYMWIEdu3ahQkTJmDVqlX6V0NBHRZhK9VKRX/BBc5ERCqpTRa+//57bcZBVKYlJyejT58++OOPP/DDDz/gq6++gqS07BaUuwibtYXY0ZAGlIr+QrlmodClfEREZYraT8U5c+YUeuei3IaIChYVFYW2bdvizJkz2Lp1K77++uvSkygAQFxiThG2KhxVKK1KRX8hk+WMKpSm/3tERCVA7cjC5s2bYWVlpfaOgiBg9+7dut8BEOmwZ8+ewcvLC+Hh4Th48CC6du0qdkglLzQqpwibDYuwlValor+QyrhegYhIBbXJwujRowudbzp69OgSD4iorLh16xa6dOkCmUyGP//8E82bNxc7pJKnKMJWk0XYSrNS0V8wWSAiUolrFohEcOrUKfj4+KBy5co4efIk6tSpI3ZImqEowuZgK3YkpEGlor9QTEMiIqI8uJKLSMt27dqFLl26oEaNGrhy5UrpTRQyFEXYbPmNLek+qQwwYpdIRPQ2fjISadGyZcswePBgtGzZEhcuXICTk5PYIWlO+H9F2FzsxI6EqHAyGWDIyuJERG/TWLIwYsQI2NnZoWHDhspj06dPR926deHm5oZevXohMTERABASEgIzMzO4u7vD3d0dY8eO1VRYRKKQy+WYOnUqpk2bhr59++LEiROwtrYWOyzNkcmA8BjAtiJQjkXYqGA60V9wZIGISKVCv0aZOHFigb9fvXq1yuPDhw/H559/jqFDhyqPdejQAYsWLYKRkRFmzpyJRYsWYcmSJQCAmjVrIjg4uBihE+mHrKwsDB8+HIGBgfjiiy+wcuVKGBiU8ouSyNichIFF2MoUve4vuGaBiEilQq9YMjIycPv2bdSuXRu1a9dGcHAwsrKy4OHhAQ8PD7X3a9WqFSpVqpTnWMeOHWFklJOfNG/eHKGhoe8ZPpFue/PmDbp27YrAwEAsWrQIq1atKv2JgiAAodGAlTlgxSJsZYne9hdyOSAXuLaGiEiFQkcW7t27h0uXLik/tMeOHYtPP/0UGzZseK8Tb926Ff3791f+/OLFCzRu3BhWVlZYsGABPv30U5X38/f3h7+/PwAgJiYGGRkZ7xWHpsnlcsZYAvQxxqioKPTs2RN///03/P39MWTIEGRmZupMfJpiEP8GJhmZyHKxg7yY59PH11kXiRWj3vYX2VKUA5AtCJDp+GtbkvThvSwGtkt+bBPVykq7FJosJCQk4M2bN8pvfVJSUpCQkPBeJ/3hhx9gZGQEX19fAICjoyNevXqFypUr49atW+jZsycePHigssiPn58f/Pz8AAAeHh4oV67ce8WiaRkZGYyxBOhbjE+fPkWnTp0QGRmJw4cPo3PnziJHp8U2jA4BypnAxMmu2LUV9O111lVixai3/YWQ09kblzOFsY6/tiVJH97LYmC75Mc2Ua2stEuhycKsWbPQuHFjtG3bFoIg4MKFC+9VhXP79u04cuQIzpw5A8l/FxKmpqYwNc1ZBOnh4YGaNWviyZMn8PT0fOfzEInlr7/+QteuXSEIAs6ePYtmzZqJHZL2vFEUYavCImxlkN72F1J5zt+chkRElE+hycJnn32Gzp074/r16wCAJUuWwMHB4Z1OduLECfz44484f/48ypcvrzweExODSpUqwdDQEM+fP8fTp09Ro0aNdzoHkZhOnjyJ3r17w9bWFidPnsSHH34odkjaFRaVs0jUwUbsSEgEettfyKQ5f3OBMxFRPkXaVNrBwQE9evQo1gMPHDgQ586dQ2xsLFxcXDB37lwsWrQImZmZ6NChA4CcRWsbNmzAhQsX8N1338HY2BgGBgbYsGFDvsVuRLru119/xZgxY9CwYUMcO3YMjo6OYoekXRlZQHR8zg5I/Ia2zNLL/oIjC0REakkEQRDEDuJdeXh44NatW2KHUSB9mM/GGN+PIAhYunQpZsyYgXbt2mH//v0q50+LTeNt+Ow1EBoFfOT6zrUVdPl1VtC3GD09PXHz5k2RIxJfgf1FVBzw6AXQrCFgptuvbUnSh/eyGNgu+bFNVCtt7aKuvyjlezgSaZZcLseUKVMwY8YM9OnTB8eOHdPJREHjpDIgIpZF2Eg/SWU5f3MaEhFRPkwWiN5RZmYmfH19sXLlSnz55ZcICAhQLrwsc1iEjfSZIlngNCQionyKnSzUq1cP9erVw9q1azURD5FeePPmDbp06YLdu3djyZIlWLFiRekvtqaOIOQsbGYRNnqL3vQXMlnO7l1l9f8wEVEBirTAObd//vkHcXFxuHbtmibiIdJ5kZGR6Ny5M+7fv4+AgAAMHTpU7JDEFZeYs7i5RhWxIyEdozf9hVTGUQUiIjUK/RolNTUVcnnOThFPnjzBoUOHYGVlha5du2o8OCJd8+TJE3z88cd4+vQpDh8+zEQBAF5HAeVMAJsKYkdCItPb/kLGZIGISJ1Ck4VWrVohIyMDYWFh6NixI3bu3Inhw4drITQi3XLjxg188sknSE5OxtmzZ9GpUyexQxLfm5ScP872LMJG+ttfSGVc3ExEpEahyYIgCChfvjz27duH8ePH4/fff8eDBw+0ERuRzjh+/Djatm0LS0tLXLlyBU2bNhU7JN0QGs0ibKSkt/0FpyEREalVpGTh6tWr2LVrl3IoWSaTaTwwIl2xY8cOeHt7o06dOrhy5Qpq164tdki6ISMTiIkHHG14oUUA9Li/kHFkgYhInUKThZUrV2LRokXo1asXGjRogOfPn6Nt27baiI1IVIIgYMmSJRg2bBhat26Nc+fOwcHBQeywdEdYdM7fznbixkE6Q2/7C44sEBGpVehuSK1bt0br1q0B5BSgsrGxwerVqzUeGJGY5HI5Jk+ejNWrV2PgwIHYvn07TExMxA5Ld7AIG6mgt/0FRxaIiNQqdGRh0KBBePPmDVJTU9GwYUPUr18fP/30kzZiIxJFZmYmBg4ciNWrV2Py5Mn45ZdfmCi8jUXYSAW97C8EgSMLREQFKDRZePjwIaysrHDgwAF07twZL168wM6dO7URG5HWJSUloXPnztizZw9++uknLF++vOwWW1NHWYTNgkXYKA+97C/+2+oVhvx/TkSkSqGfjtnZ2cjOzsaBAwfg7e0NY2NjSLhFIpVCERERaN26NS5evIidO3di2rRpYoekm2ITc4qwcVSB3qKX/YX0vwXYRsWuUUpEVCYUmiyMGTMG1apVQ2pqKlq1aoWXL1/CyspKG7ERac3jx4/x8ccf499//8XRo0cxePBgsUPSXaEswkaq6WV/oditidOQiIhUKjRZmDhxIsLCwnDs2DFIJBJUrVoVZ8+e1UZsRFpx/fp1fPLJJ0hNTcW5c+fQsWNHsUPSXSzCRgXQy/5CMbLAaUhERCoV+ukYFRWFkSNHonPnzgBy5qQGBARoPDAibTh27BjatWsHa2trXLlyBZ6enmKHpNtCo1iEjdTSy/5CypEFIqKCFJosDB8+HF5eXggPDwcAfPjhh1i5cqWm4yLSuO3bt8Pb2xt169bFlStXUKtWLbFD0m0ZmUBMAouwkVp62V8opiFx61QiIpUKTRZiY2PRr18/5Y4wRkZGMOSHKukxQRCwaNEifPbZZ2jXrh3OnTsHe3su1i0Ui7BRIfSyv+DIAhFRgQpNFszNzREXF6fc0eLatWuwtrbWeGBEmiCTyTBx4kR8/fXXGDRoEI4cOQJLS0uxw9J9LMJGRaCX/QUXOBMRFajQveKWL18Ob29vPHv2DJ988gliYmIQFBSkjdiISlRGRgaGDBmCoKAgTJ06FT/++CNrKBQVi7BREehlfyHlNCQiooIUmCzIZDKcP38e58+fx+PHjyEIAurUqQNjY2NtxUdUIpKSktCzZ0+cO3cOS5cuxdSpU8UOSX+wCBsVgd72F1J5zk5I3N2LiEilAr9WNTQ0RGBgIIyMjNCgQQM0bNhQ9z/4id4SHh6OVq1a4fLly9i1axcTheJiETYqAr3tL2QyjioQERWg0DkYn3zyCT7//HNcvHgRt2/fVv4pihEjRsDOzg4NGzZUHouPj0eHDh1Qu3ZtdOjQAQkJCQByFp1OnDgRtWrVgpubW5HPQVSQR48eoUWLFnj+/DmOHj2KQYMGiR2S/gmNZBE2KpJ37S9E7SukMq5XICIqQKHJQnBwMB48eIDvvvsOU6dOxdSpUzFt2rQiPfjw4cNx4sSJPMcWL16M9u3b4+nTp2jfvj0WL14MADh+/DiePn2Kp0+fwt/fH+PGjXuHp0P0/65du4aWLVsiIyMD58+fR4cOHcQOSf+8SQHepLIIGxXJu/YXovYVHFkgIipQoQuct2zZgho1auQ59vz58yI9eKtWrRASEpLn2MGDB3Hu3DkAwLBhw9CmTRssWbIEBw8exNChQyGRSNC8eXMkJiYiIiICjo6ORXsmRLkcOXIE/fr1g5OTE06ePImaNWuKHZJ+YhE2KoZ37S9E7Ss4skBEVKBCk4U+ffrkG+bt27cvbt269U4njIqKUn6oOzg4ICoqCgAQFhaGKlWqKG/n4uKCsLCwfB2Av78//P39AQAxMTHIyMh4pzi0RS6XM8YSUJwYAwICMGHCBDRq1Aj79++HnZ2dVp6frrdjsePLzIJpTAJkDpUhlWYD0mzNBfcfXW9DgDEWpCT7i/ftK4Ci9Rcm2VIIxobI1vHXVBP04b0sBrZLfmwT1cpKu6hNFh49eoQHDx4gKSkJ+/btUx5/8+ZNiTWMRCJR7sddVH5+fvDz8wMAeHh4oFy5ciUSi6ZkZGQwxhJQlBgFQcDChQvx7bffomPHjti7dy8sLLS3e4+ut2Ox4wuLAQAYVXWCkZZqK+h6GwKMURVN9xfv0lcARewv5HLAxASGOv6aaoI+vJfFwHbJj22iWllpF7XJwuPHj3HkyBEkJibi8OHDyuOWlpbYtGnTO5/Q3t5eOWQcEREBO7ucarDOzs54/fq18nahoaFwdnZ+5/NQ2aIotvbzzz9j8ODB2LJlC0xMTMQOS38pi7BVYhE2KpQm+gut9RWchkREVCC1yUKPHj3Qo0cPXL16FS1atCixE3p7eyMgIACzZs1CQEAAevTooTy+du1aDBgwANevX4e1tTXXK1CRZGRkYPDgwdi7dy+mT5+OxYsXs9ja+1IWYbMTOxLSA5roL7TSVwhCzsgCFzgTEalV6BXV/v378ebNG2RnZ6N9+/awtbXFL7/8UqQHHzhwIFq0aIHHjx/DxcUFW7ZswaxZs3Dq1CnUrl0bp0+fxqxZswAAXbp0QY0aNVCrVi2MHj0aP//88/s9MyoTEhMT4eXlhb1792L58uWsylwSWISN3tG79hei9RWK6s0cWSAiUqvQBc5//PEHfvzxR+zfvx/VqlXDvn370KpVKwwePLjQBw8MDFR5/MyZM/mOSSQSrFu3rgghE+UICwtDp06d8PjxYwQGBmLAgAFih1Q6xCbkFGGrWaXw2xLl8q79hWh9hYzJAhFRYQpNFrKzc3ZAOXr0KPr27Qtra2uNB0VUmH/++QdeXl5ISEjAsWPH8L///U/skEqP0KicdQqVK4gdCekZvesvFCMLnIZERKRWoclC9+7dUbduXZiZmWH9+vWIiYkpEyu/SXddvXoV3bp1g7GxMS5cuIDGjRuLHVLpoSjCVqsKi7BRseldf8FpSEREhSp0cvfixYtx5coV3Lx5E8bGxihfvjwOHjyojdiI8jl8+DDat2+PSpUq4cqVK0wUShqLsNF70Lv+QjENyZDrnIiI1CnSJ2SlSpVg+N8wrbm5ORwcHDQaFJEqmzdvRs+ePdGwYUNcvnw5X6VYek8ZmUBMAuBow2kZ9M70qr9QjiwUOshORFRm8esU0nmCIGDx4sUYPXo0OnbsiD///FO55zqVoLDonL+d7cWNg0hbOLJARFQofp1COk0mk+Hzzz/Hhg0bMHToUGzevBnGxsZih1X6SGVARAxgVwkox2J2VEZwzQIRUaGKVGchKSlJ+XNiYiIOHDigyZiIAOQUW+vbty82bNiAqVOnYvv27UwUNCUyBpDJAReOKtC707v+QpEssDYLEZFahX5Czp07N8/2dxUqVMDcuXM1GhRRQkICOnbsiAMHDmDlypVYsGABJNydRzMEIWcKkrUFYGkudjSkx/Suv5DJckYV+NlCRKRWodOQ5HJ5vmNSqVQjwRABQGhoKDp16oSnT58iMDAQ/fv3R0ZGhthhlV4swkYlRO/6C6mMU5CIiApR6MiCp6cnpkyZgmfPnuHZs2eYMmUKPDw8tBEblUEPHz5EixYt8OrVKxw/fhz9+/cXO6TSj0XYqIToXX8hk3PnLyKiQhSaLKxZswYmJibo378/+vfvD1NTU6xbt04bsVEZc/nyZbRs2RJSqRQXLlxAu3btxA6p9Ev6rwibiz2nYtB707v+QirlyAIRUSEKnYZkbm6OxYsXayMWKsMOHjyIAQMGoEqVKjh58iSqV68udkhlQ1hUzsWSQ2WxI6FSQO/6C5kcMOGmCUREBVGbLEyaNAkrV65E9+7dVS4sPXTokEYDo7LD398f48aNg6enJ44cOQJbW1uxQyobFEXYqjhwKga9F73tL6QyoHw5saMgItJpapOFIUOGAACmTZumtWCobBEEAfPmzcOcOXPQuXNn/P777zA35248WhManTP1yJkF7uj96G1/wQXORESFUpsseHh4QCaTwd/fH7t27dJmTFQGyGQyTJgwARs3bsTw4cPh7+/PGgraJJXl1FawrQiYsggbvR+97C8EIWfrVI6qEREVqMAFzoaGhnj58iWysrK0FQ+VAenp6ejTpw82btyIr776Clu3bmWioG0swkYlTO/6C7mQkzBwZIGIqECFLnCuUaMGPvnkE3h7e+eZIjJlyhSNBkalU3x8PLy9vXHlyhWsXr0aX3zxhdghlT2CkDMFiUXYqITpVX8h+696M0cWiIgKVGiyULNmTdSsWRNyuRzJycnaiIlKqdevX6NTp074999/8dtvv6Fv375ih1Q2xSYAmVlALRZho5KlV/2F9L9kgSMLREQFKjRZ+P777wEAKSkpAAALCwvNRkSl0oMHD+Dl5YXk5GScOHECbdu2FTuksus1i7CRZuhVf8GRBSKiIim0KNv9+/fRuHFjNGjQAA0aNICHhwcePHigjdiolLh06RJatmwJuVyOCxcuMFEQU1IKkMwibKQZetVfcGSBiKhICk0W/Pz8sHz5crx8+RIvX77EsmXLMHr0aG3ERqXAgQMH0KFDB9jb2+PKlSto1KiR2CGVbaEswkaao1f9hYzJAhFRURSaLKSmpub5JrhNmzZITU195xM+fvwY7u7uyj9WVlZYuXIl5syZA2dnZ+XxY8eOvfM5SDds2LABvXv3RqNGjXDp0iVUq1ZN7JDKNElmVs56BUdbTr0gjdCr/kLKaUhEREVRpN2Q5s+fryy688svv6BGjRrvfMI6deogODgYQM5e+87OzujVqxe2bduGyZMn619RH8pHEATMmTMH8+bNQ5cuXbBnzx4WW9MBhpFxLMJGGqVX/QWnIRERFUmhIwtbt25FTEwMfHx80Lt3b8TGxmLbtm0lcvIzZ86gZs2aqFq1aok8HolPKpVizJgxmDdvHj777DMcOHCAiYIukEphGJ3AImykUXrVXygXOBfaDRIRlWmFfkqePn0aq1evxu3bt3Hr1i2sXLkSp06dKpGT7969GwMHDlT+vHbtWri5uWHEiBFISEgokXOQ9qSlpaF3797YtGkTvvnmG2zZsoXF1nRFRCwkchZhI83Sq/5CKgMMDHL+EBGRWhJBEISCbtCkSRPcvn270GPFlZWVBScnJzx48AD29vaIioqCjY0NJBIJZs+ejYiICGzdujXf/fz9/eHv7w8AiI6OxpMnT94rDk2Ty+Uw0PHOqCRijI+PR+/evXH9+nUsX74cY8eOLaHocpSVdtQIQYBp8BPITY2RXf/dp4Rog862YS76FmPLli1x8+ZNrZxXn/oLo+dhMExMRmaTuu8Vmz7Th/eyGNgu+bFNVCtt7aKuv1C7ZuH48eM4duwYwsLCMHHiROXxN2/ewMio0KUOhTp+/DiaNGkCe/ucbzoVfwPA6NGj0a1bN5X38/Pzg5+fHwDAw8MD5cqVe+9YNCkjI6PUx/jq1St06tQJz549w549e9CnT58SjC5HWWhHjYmOB7KyIavmqJvx5aKzbZgLY8xPb/sLI0Odfy01SR/ey2Jgu+THNlGtrLSL2k9xJycneHp64tChQ/Dw8FAet7S0xIoVK977xIGBgXmGlCMiIuDo6AgA2L9/Pxo2bPje5yDNu3//Pjp16oSUlBT88ccfaN26tdgh0dtCowAzU8grWIodCZVSetlfSGVc3ExEVARqk4VGjRqhUaNGGDRoUInPO09NTcWpU6ewceNG5bEZM2YgODgYEokE1apVy/M70k0XLlyAt7c3zM3NcfHiRbi6uoodEr1NUYSt1gcswkYao5f9hUzGbVOJiIqg0PHhkJAQfPXVV3j48CEyMjKUx58/f/7OJzU3N0dcXFyeYzt37nznxyPt27dvHwYNGoTq1avjxIkT3NFKV+UuwpadLXY0VMrpVX8hlQHluQEDEVFhCl2V8dlnn2HcuHEwMjLC2bNnMXToUAwePFgbsZGOWr9+Pfr06YMmTZrg0qVLTBR0VXomi7CRVulVfyGT8/8FEVERFJospKeno3379hAEAVWrVsWcOXNw9OhRbcRGOkYQBMyePRvjx49H165dcfr0aVSuXFnssEidsCgWYSOt0qv+gmsWiIiKpNBpSKamppDL5ahduzbWrl0LZ2dnpKSkaCM20iFSqRRjx47Fli1bMHLkSGzYsKFEdjkhDZFKgchYFmEjrdKb/kIQuGaBiKiICh1ZWLVqFdLS0rB69WrcunULO3fuREBAgDZiIx2RlpaGXr16YcuWLZg9ezY2bdrEREHXRcTmTLNgETbSIr3pL2TynL85skBEVKhCr/iaNm0KALCwsMC2bds0HhDplri4OHTr1g3Xr1/Hzz//jHHjxokdEhVGEICwaMDaErA0FzsaKkP0pr+QyXL+ZrJARFQotcnCpEmTsHLlSnTv3h0SFVsuHjp0SKOBkfhevnwJLy8vhISEICgoCD4+PmKHREURkwBkZuVsl0qkBXrXX0j/SxY4DYmIqFBqk4UhQ4YAAKZNm6a1YEh3/P333+jUqRPS0tJw6tQpfPrpp2KHREUhCMoibKhsLXY0VEboXX8h5cgCEVFRqU0WFFU44+Li0LVrV5iammotKBLX+fPn0aNHD1hYWODixYuspq1P3qTmFGGrzSJspD1611/IOLJARFRUhS5wPnz4MD788EMMGTIER44cgVQq1UZcJJKgoCB07NgRTk5OuHLlChMFfaMowmbPLW1J+/Smv+DIAhFRkRWaLGzbtg3//vsv+vbti8DAQNSsWROjRo3SRmykZevWrUO/fv3g6emJS5cu4YMPOOddr7AIG4lMb/oLLnAmIiqyIu1/aWxsjM6dO0MikSA9PR0HDhzA5s2bNR0baYkgCPjmm2+wcOFCeHt7Y/fu3TAzMxM7LCouFmEjHaAX/QUXOBMRFVmhIwvHjx/H8OHDUbt2bezduxejRo1CZGSkNmIjLVAUW1u4cCFGjx6NvXv3MlHQR4oibHaVWISNRKM3/YUyWSi0CyQiKvMKHVnYsWMH+vfvj40bN+r+ojUqltTUVPTv3x9Hjx7F999/j++//17ltoekBxRF2JxZhI3Eozf9haJ6Mz/viIgKVejXKoGBgWjcuDEuXrwIAEhPT0dycrLGAyPNio2NRfv27XH8+HGsXr0ac+bMYaKgr/IUYSsvdjRUhulNfyGVcb0CEVERFZosbNq0CX369MGYMWMAAKGhoejZs6em4yINCgkJQcuWLREcHIygoCCMHj1a7JDofSiKsFXhqAKJS2/6CxmTBSKioio0WVi3bh0uX74MKysrAEDt2rURHR2t8cBIM+7evYuPP/4YUVFROH36NHr16iV2SPQ+BAEIjcwpwlaJRdhIXHrTX0hlXK9ARFREhX5ampqawsTk/xdMSqVSTlfRU2fPnkWrVq1gaGiIS5cuoWXLlmKHRO/rTQqQnAa42HP+NYlOb/oLjiwQERVZoclC69atsXDhQqSnp+PUqVPo27cvunfvro3YqAT9/vvv6NSpE1xcXHDlyhU0aNBA7JCoJLAIG+kQvekvpDLAsEg7hxMRlXmFJguLFy+Gra0tXF1dsXHjRnTp0gULFizQRmxUQtasWYP+/fujWbNmuHjxIqpUqSJ2SFQS0jOA2ETAiUXYSDfoTX8hlQFGnIZERFQUhX61YmBggJ49e6Jnz56wtbXVRkxUQhTF1hYtWoSePXvi119/ZQ2F0iQsOmfqkROLsJFu0Jv+QiZngk1EVERqv1oRBAFz5syBjY0N6tSpgzp16sDW1hbz5s3TZnz0jrKzs/HZZ59h0aJFGDNmDIKCgpgolCYswkY6RK/6C7k85w/XLBARFYnaZGHFihW4fPky/vrrL8THxyM+Ph7Xr1/H5cuXsWLFCm3GSMWUmpqKHj16ICAgAHPnzsX69ethyG/RShdFETYXbpdK4tOr/kL2X/VmJgtEREWiNlnYuXMnAgMDUb16deWxGjVq4JdffsGOHTve+8TVqlWDq6sr3N3d4enpCQCIj49Hhw4dULt2bXTo0AEJCQnvfZ6yJiYmBu3atcPJkyfh7++P7777Tjd3I6F3J5fnTEGqYAlYsAgbiU+T/UWJ9xVSec7f/AKFiKhI1CYL2dnZsLGxyXfc1tYW2dnZJXLys2fPIjg4GDdv3gSQsziuffv2ePr0Kdq3b4/FixeXyHnKihcvXuCTTz7BvXv3sG/fPhZbK61iE3OKsHFUgXSEpvuLEu0rpBxZICIqDrXJQu69sovzu/dx8OBBDBs2DAAwbNgwHDhwQCPnKY2Cg4Px8ccfIzY2FqdPn0aPHj3EDok0gUXYSAdpu794r75CMQ2JIwtEREWidjeku3fvKqtw5iYIAjIyMt77xBKJBB07doREIsGYMWPg5+eHqKgoODo6AgAcHBwQFRWV737+/v7w9/cHkDPlpiRi0SS5XK7xGM+dO4d+/frB2toax44dQ7169Yp1Tm3E+L4YYw5JcipMk9OQXc0JsszMYt2XbVgyGGN+muwv3rWvAFT3Fwbp6TABkCmXQdDx11HT9OG9LAa2S35sE9XKSruoTRZkim9fNOTSpUtwdnZGdHQ0OnTogLp16+b5vUQiUTnX3s/PD35+fgAADw8PlCtXTqNxvq+MjAyNxvjbb79hyJAh+PDDD3HixAm4uLgU+zE0HWNJYIz/eRYKGBnC2MUexsX8ZpRtWDIYY36a7C/eta8A1PQXBqkAAFMzM0DHX0dN04f3shjYLvmxTVQrK+0iWlUaZ2dnAICdnR169eqFGzduwN7eHhEREQCAiIgI2Nlx//iCrFq1CgMGDEDz5s1x8eLFd0oUSI8oi7DZcQoFlRkl3ldwzQIRUbGIkiykpqYiOTlZ+e8//vgDDRs2hLe3NwICAgAAAQEBnHevhiAImDVrFiZNmoRevXrh5MmTqFixothhkaYpi7DpcLErohKkkb6CW6cSERVLoRWcNSEqKgq9evUCAEilUgwaNAidOnVC06ZN0a9fP2zZsgVVq1bFnj17xAhPp2VnZ2PUqFHYsWMHxo4di7Vr17KGQlkglebUVmARNipDNNJXSGU5SbeBaAPrRER6RZRkoUaNGrh7926+45UrV8aZM2dEiEg/pKSkoE+fPjh58iTmz5+Pb775hjUUyoqI2Jz6CtwulcoQjfQVMhlHFYiIikGUZIGKLyYmBl27dsWtW7ewadMmjBo1SuyQSFvkciAsikXYiEqCVMY1P0RExcBkQQ88f/4cXl5eCA0NxYEDB9C9e3exQyJtik0AMrOB2lXFjoRI/0k5skBEVBxMFnTcnTt30LlzZ2RnZ+PMmTP4+OOPxQ6JtEkQgNAowKwci7ARlQQZRxaIiIqDK7x02OnTp9G6dWuYmpri0qVLTBTKoqQUIDktZ60C16cQvT+OLBARFQuTBR0VGBiILl26oGrVqrhy5Qrq1asndkgkhtAowMgIsK8kdiREpQMXOBMRFQuTBR20YsUKDBo0CC1atMDFixeVRYmojEnPAOISc+oqcNoEUcngAmciomJhsqBD5HI5ZsyYgSlTpqB37944efIkKlSoIHZYJBYWYSMqWYLw3zQkdn1EREXFBc46IisrCyNHjsQvv/yC8ePHY/Xq1Sy2VpZlswgbUYmTy3P+5mcrEVGRMVnQASkpKejduzf++OMPLFiwAF9//TWLrZV1ETEswkZU0qSynL+N2PURERUVPzFFFh0dja5du+LOnTvYsmULRowYIXZIJDa5PGcKEouwEZUsmSJZ4DQkIqKiYrIgomfPnsHLywvh4eE4ePAgunbtKnZIpAtiEoCsbOBDFmEjKlGKkQVOQyIiKjImCyK5ffs2OnfuDKlUij///BPNmzcXOyTSBYoibOVZhI2oxCmnITFZICIqKo7FiuDUqVNo3bo1zMzMcPnyZSYK9P+SUoCUNMCZRdiISpyMIwtERMXFZEHLdu3ahS5duqBGjRq4cuUK6tatK3ZIpEuURdgqix0JUekj/W83JI4sEBEVGZMFLVq+fDkGDx6Mli1b4sKFC3BychI7JNIleYqw8b8mUYmTSXP+ZrJARFRkvCLRArlcjmnTpmHq1Kno06cPjh8/Dmtrzkent4T+V4TN2U7sSIhKJynrLBARFReTBQ3LysrCkCFDsGzZMnz++efYvXs3ypUrJ3ZYpGuypUDkf0XYTIzFjoaodJLKckbtuB6IiKjIuBuSBiUnJ6NXr174888/sXDhQsyaNYvF1kg1FmEj0jyZjKMKRETFxGRBQ6KiotClSxfcvXsX27Ztw/Dhw8UOiXQVi7ARaYdUxvUKRETFxGRBA/799194eXkhMjISQUFB6Nmzp9ghkS5TFmGrJnYkRKUbRxaIiIqNyUIJu3nzJrp06QK5XI4///wTjRo1Ejsk0mV5irBZiR0NUenGkQUiomLT+gLn169fo23btqhfvz4aNGiAVatWAQDmzJkDZ2dnuLu7w93dHceOHdN2aO/tjz/+QJs2bWBubo7Lly/jo48+Ejsk0nUswkakVon3FxxZICIqNq2PLBgZGWHZsmVo0qQJkpOT4eHhgQ4dOgAAJk+ejGnTpmk7pBLxyy+/4LPPPkODBg1w/PhxODo6ih0S6QMWYSNSq8T7C44sEBEVm9aTBUdHR+WFtKWlJerVq4ewsDBth1FiBEHAsmXLMH36dLRt2xb79+9nDQUqmrT/irB94MgibEQqlHh/IeXIAhFRcYl6hRISEoI7d+4op+usXbsWbm5uGDFiBBISEsQMrUjkcjmmTp2K6dOno1+/fiy2RsUTFsUibERF9L79hYFEkrPzGEcWiIiKRSIIgiDGiVNSUtC6dWt888038PHxQVRUFGxsbCCRSDB79mxERERg69at+e7n7+8Pf39/AEB0dDSePHmi7dABAJmZmfDz88OePXswfvx4/PTTTzAwyJ97yeVylcd1CWMsGcWKUSqF6Z3HkFW2hrSGi2YD+0+pa0OR6FuMLVu2xM2bN0WO6P2URH+RmZKKvzfuRPYHDpA52mj7KegkfXgvi4Htkh/bRLXS1i7q+gtRkoXs7Gx069YNXl5emDJlSr7fh4SEoFu3brh//36Bj+Ph4YFbt25pKky13rx5Ax8fH5w5cwaLFy/GjBkz1BZby8jI0PmKzYyxZBQrxlcRwIswwKO+1morlLo2FIm+xejp6anXyUJJ9Rdd/9cBR2cvytmimMkCAP14L4uB7ZIf20S10tYu6voLradDgiBg5MiRqFevXp4P/oiICOW/9+/fj4YNG2o7tCKJjIxEmzZtcO7cOWzfvh0zZ85kVWYqHkURtopWLMJGVICS7C8sypnl/MOo9HwLSESkDVpf4Hz58mXs3LkTrq6ucHd3BwAsXLgQgYGBCA4OhkQiQbVq1bBx40Zth1aop0+fwsvLC1FRUTh8+DA6d+4sdkikjxRF2OpUEzsSIp1Wkv2FMlngAmciomLRerLQsmVLqJr51KVLF22HUix//fWXMsazZ8+iWbNmIkdEeil3EbaKLMJGVJCS7C8sFFMFuMCZiKhYOB5bBCdOnECbNm1gYWGBy5cvM1Ggd5eUnFOEzYVF2Ii0ycKMIwtERO+CyUIhdu7cie7du+PDDz/E1atX8eGHH4odEumz0CjA2AiwYxE2Im0yN1WsWWCyQERUHEwW1BAEAT/++COGDh2K1q1b4/z583BwcBA7LNJnaRlAXBLgZMsibERaphxZYLJARFQsvGJRQS6XY/LkyZg5cyYGDBiAo0ePwsqK88vpPSmKsDmxCBuRtpmb/rdmoRTtiU5EpA381HxLZmYmBg0ahFWrVmHSpEnYtWsXTE1NxQ6L9F22FIiMA+wrAybGYkdDVOZYmJnljCpwrRARUbFofTckXfbmzRv06tULf/75J3766SdMnTqVNRSoZETE5NRXcLEXOxKiMsnctBynIBERvQMmC/+JiIhA586d8eDBA+zYsQNDhgwROyQqLXIXYTM3EzsaojLJwsyMOyEREb0DJgsAnjx5Ai8vL8TExODIkSPw8vISOyQqTViEjUh0FuXMOLJARPQOynyycP36dXTr1g0SiQTnzp2Dp6en2CFRaSIIQGgki7ARicyiHEcWiIjeRZle4Hz8+HG0a9cOVlZWuHLlChMFKnmJyUBKOouwEYnMvBzXLBARvYsymywEBASge/fuqFOnDi5fvoxatWqJHRKVRizCRqQTOLJARPRuylyyIAgCFi9ejOHDh6Nt27Ystkaak5YBxLMIG5Eu4MgCEdG7KVNXMDKZDF9++SW++uorDBw4EEePHoWlpaXYYVFpxSJsRDrDxMiYIwtERO+gzCQLmZmZGDhwINasWYMpU6bgl19+gYmJidhhUWnFImxEuocjC0RExVYmdkNKSkpCz549ce7cOSxduhRTp04VOyQq7cJZhI1I5zBZICIqtlKfLISHh6Nz5854+PAhfvnlF/j6+oodEpV2cjkQziJsRDqH05CIiIqtVCcLjx8/hpeXF+Li4nD06FF07NhR7JCoLIiOZxE2Il3EkQUiomIrtcnC9evX0bVrVxgaGuLcuXPw8PAQOyQqCwQhZ7tUFmEj0j0cWSAiKrZSucD56NGjaNu2LSpUqIArV64wUSDtSUwGUlmEjUgncWSBiKjYSl2ysG3bNvTo0QP169fH5cuXUbNmTbFDorJEUYTNnkXYiHSOUanr8oiINK7UfHIKgoCFCxdixIgRaN++Pc6ePQt7e+5EQ9ojSc/8rwibHWBQav5rEZUenIZERFRspeKKRiaT4YsvvsA333wDX19fHD58mMXWSOsMI+P+K8JmK3YoRPSWjOwsJvFERO9A5z45T5w4gTp16qBWrVpYvHhxobfPyMjAgAEDsG7dOkybNg07duxgsTXSvuxsGMYmsAgbkZYUt69ISU/XQlRERKWPTiULMpkMEyZMwPHjx/Hw4UMEBgbi4cOHam8vlUrRqVMnBAUFYdmyZfjpp59gwG+OSAzhMZDIBRZhI9KC4vYVAJCakaGl6IiIShed2jr1xo0bqFWrFmrUqAEAGDBgAA4ePIj69eurvP2TJ08gk8nw66+/YuDAgdoMlej/yeVAeAxk1hYwZBE2Io0rbl8BACkZHFkgInoXOpUshIWFoUqVKsqfXVxccP369Ty38ff3h7+/P4CcRc1ubm5YtmwZli1bptVYiyomJga2tro9h50xlgxdj1HX4wMYY0nJHWNISIi4wWhAUfoKIG9/cf/+fTRcVfh0pbJEH97LYmC75Mc2Ua20tYu6/kKnkoWi8PPzg5+fHwDA09MTN2/eFDmigjHGksEY35+uxwcwxpKiDzFqg771F9rGNlGN7ZIf20S1stIuOjXB39nZGa9fv1b+HBoaCmdnZxEjIiIiXcO+gohIe3QqWWjatCmePn2KFy9eICsrC7t374a3t7fYYRERkQ5hX0FEpD06NQ3JyMgIa9euhZeXF2QyGUaMGIEGDRqovb1ieFmXMcaSwRjfn67HBzDGkqIPMb6P4vYVQOlvk3fBNlGN7ZIf20S1stIuEkEQBLGDICIiIiIi3aNT05CIiIiIiEh3MFkgIiIiIiKV9DZZOHHiBOrUqYNatWph8WLd2Dv79evXaNu2LerXr48GDRpg1apVAIA5c+bA2dkZ7u7ucHd3x7Fjx0SLsVq1anB1dYW7uzs8PT0BAPHx8ejQoQNq166NDh06ICEhQbT4Hj9+rGwnd3d3WFlZYeXKlaK34YgRI2BnZ4eGDRsqj6lrN0EQMHHiRNSqVQtubm64ffu2aDFOnz4ddevWhZubG3r16oXExEQAOXspm5mZKdtz7NixosVY0Gu7aNEi1KpVC3Xq1MHJkydFi7F///7K+KpVqwZ3d3cA4rSjus8ZXXs/6gpd7CvEpuo9Xtap+39V1mVkZKBZs2Zo1KgRGjRogO+//17skHSGTCZD48aN0a1bN7FD0TxBD0mlUqFGjRrCs2fPhMzMTMHNzU148OCB2GEJ4eHhwq1btwRBEIQ3b94ItWvXFh48eCB8//33wk8//SRydDmqVq0qxMTE5Dk2ffp0YdGiRYIgCMKiRYuEGTNmiBFaPlKpVLC3txdCQkJEb8Pz588Lt27dEho0aKA8pq7djh49KnTq1EmQy+XC1atXhWbNmokW48mTJ4Xs7GxBEARhxowZyhhfvHiR53baoipGda/tgwcPBDc3NyEjI0N4/vy5UKNGDUEqlYoSY25TpkwR5s6dKwiCOO2o7nNG196PukBX+wqxFfYeL4vU/b8q6+RyuZCcnCwIgiBkZWUJzZo1E65evSpyVLph2bJlwsCBA4WuXbuKHYrG6eXIwo0bN1CrVi3UqFEDJiYmGDBgAA4ePCh2WHB0dESTJk0AAJaWlqhXrx7CwsJEjqpwBw8exLBhwwAAw4YNw4EDB8QN6D9nzpxBzZo1UbVqVbFDQatWrVCpUqU8x9S128GDBzF06FBIJBI0b94ciYmJiIiIECXGjh07wsgoZ9Oz5s2bIzQ0VONxFERVjOocPHgQAwYMgKmpKapXr45atWrhxo0bGo6w4BgFQcCePXswcOBAjcehjrrPGV17P+oCXe0rxFac/4dlhb7235omkUhgYWEBAMjOzkZ2djYkEonIUYkvNDQUR48exahRo8QORSv0MlkICwtDlSpVlD+7uLjo3H/qkJAQ3LlzBx999BEAYO3atXBzc8OIESNEneYjkUjQsWNHeHh4wN/fHwAQFRUFR0dHAICDgwOioqJEiy+33bt357ko05U2VFDXbrr6/ty6dSs6d+6s/PnFixdo3LgxWrdujYsXL4oYmerXVhfb8eLFi7C3t0ft2rWVx8Rsx9yfM/r2ftSGsvzc6d293X+XdTKZDO7u7rCzs0OHDh3YLgAmTZqEH3/8EQYGenkZXWxl41lqWUpKCnr37o2VK1fCysoK48aNw7NnzxAcHAxHR0dMnTpVtNguXbqE27dv4/jx41i3bh0uXLiQ5/cSiUQnvjXIysrCoUOH0LdvXwDQqTZURVfaTZ0ffvgBRkZG8PX1BZDzLdqrV69w584dLF++HIMGDcKbN29EiU3XX9vcAgMD8ySwYrbj258zuen6+5FIVxX0/6qsMjQ0RHBwMEJDQ3Hjxg3cv39f7JBEdeTIEdjZ2cHDw0PsULRGL5MFZ2dnvH79WvlzaGgonJ2dRYzo/2VnZ6N3797w9fWFj48PAMDe3h6GhoYwMDDA6NGjtTKVQh1FO9nZ2aFXr164ceMG7O3tldMSIiIiYGdnJ1p8CsePH0eTJk1gb28PQLfaUEFdu+na+3P79u04cuQIdu3apbyANDU1ReXKlQEAHh4eqFmzJp48eSJKfOpeW11rR6lUin379qF///7KY2K1o7rPGX14P2pTWX7uVHyq/l/R/6tQoQLatm2LEydOiB2KqC5fvoxDhw6hWrVqGDBgAP78808MHjxY7LA0Si+ThaZNm+Lp06d48eIFsrKysHv3bnh7e4sdFgRBwMiRI1GvXj1MmTJFeTz3/OD9+/eLtgNFamoqkpOTlf/+448/0LBhQ3h7eyMgIAAAEBAQgB49eogSX25vf4OrK22Ym7p28/b2xo4dOyAIAq5duwZra2vl9BBtO3HiBH788UccOnQI5cuXVx6PiYmBTCYDADx//hxPnz5FjRo1RIlR3Wvr7e2N3bt3IzMzEy9evMDTp0/RrFkzUWIEgNOnT6Nu3bpwcXFRHhOjHdV9zujD+1HbdLWvIN2j7v9VWRcTE6PcRS89PR2nTp1C3bp1xQ1KZIsWLUJoaChCQkKwe/dutGvXDr/88ovYYWmWmKur38fRo0eF2rVrCzVq1BAWLFggdjiCIAjCxYsXBQCCq6ur0KhRI6FRo0bC0aNHhcGDBwsNGzYUXF1dhe7duwvh4eGixPfs2TPBzc1NcHNzE+rXr69st9jYWKFdu3ZCrVq1hPbt2wtxcXGixKeQkpIiVKpUSUhMTFQeE7sNBwwYIDg4OAhGRkaCs7OzsHnzZrXtJpfLhfHjxws1atQQGjZsKPz111+ixVizZk3BxcVF+X4cM2aMIAiCEBQUJNSvX19o1KiR0LhxY+HQoUOixVjQa7tgwQKhRo0awocffigcO3ZMtBgFQRCGDRsmrF+/Ps9txWhHdZ8zuvZ+1BW62FeITd17vCxT9/+qrLt7967g7u4uuLq6Cg0aNFDuBEc5zp49WyZ2Q5IIgiCInK8QEREREZEO0stpSEREREREpHlMFoiIiIiISCUmC0REREREpBKTBSIiIiIiUonJAhERERERqcRkgYpEIpHkKToilUpha2uLbt26iRJPTEwMPvroIzRu3BgXL17E77//jnr16qFt27bFfqzt27cjPDxc+fOoUaPw8OHDkgxX6cCBAxp77Hc1fPhwnDt3Lt/xNm3aoE6dOjh06JDy55s3b+a7XbVq1eDq6go3Nzd07NgRkZGRas918eJF1K9fXyfqZBAREVHhmCxQkZibm+P+/ftIT08HAJw6dUrUSqhnzpyBq6sr7ty5g08//RRbtmzBpk2bcPbs2WI/1tvJwubNm1G/fv2SDFepoGRBKpVq5JzvY9euXUUqYnX27Fncu3cPnp6eWLhwodrbffrppzh27FhJhkhEBCDn81UikeDRo0eF3vbmzZuYOHFigbc5d+5ckb8QS0xMxM8//1yk276tS5cuysJn2qD4gkfx5Y+vry/c3Nzw9ddfK2+zYMECHDhwQPnzb7/9hlq1aon2BSGJi8kCFVmXLl1w9OhRAPkrLKempmLEiBFo1qwZGjdujIMHDwIAQkJC8Omnn6JJkyZo0qQJrly5AiDnQ7hNmzbo06cP6tatC19fX6gq+fHs2TN06tQJHh4e+PTTT/Ho0SMEBwdjxowZOHjwINzd3TF37lxcunQJI0eOxPTp0yGTyTB9+nQ0bdoUbm5u2Lhxo/LxlixZAldXVzRq1AizZs1CUFAQbt68CV9fX7i7uyM9PV35DfqGDRswffp05X23b9+Ozz//HADwyy+/oFmzZnB3d8eYMWOUVXxzmzVrFurXrw83NzdMmzYNV65cwaFDhzB9+nS4u7vj2bNnaNOmDSZNmgRPT0+sWrUKt27dQuvWreHh4QEvLy9ldePVq1crH2vAgAEAgPPnz8Pd3R3u7u5o3Lixsjq3OhYWFpg8eTIaNGiA9u3bIyYmBgBgbW0NExOTQl79/yeXyzF8+HB8++23+X7XqlUr/Pvvv7hx4wZatGiBxo0b4+OPP8bjx4+L/PhERO8iMDAQLVu2RGBgYKG39fT0xOrVq0vs3AUlC4V9EXTs2DFUqFChxGIpirNnz8LT0xP37t2DmZkZ7t27h7/++gtJSUmIiIjA9evX0bNnT+Xt+/fvj82bN2s1RtIhIheFIz1hbm4u3L17V+jdu7eQnp4uNGrUKE/lwq+++krYuXOnIAiCkJCQINSuXVtISUkRUlNThfT0dEEQBOHJkyeCh4eHIAg5VQ+trKyE169fCzKZTGjevLlw8eLFfOdt166d8OTJE0EQBOHatWtC27ZtBUEQhG3btgkTJkxQ3q5169bKyrQbN24U5s+fLwiCIGRkZAgeHh7C8+fPhWPHjgktWrQQUlNTBUEQlBVuc98398/R0dFCzZo1lcc7deokXLx4UXj48KHQrVs3ISsrSxAEQRg3bpwQEBCQJ+7Y2Fjhww8/FORyubJNBCGnCvDvv/+e51zjxo0TBEEQsrKyhBYtWgjR0dGCIAjC7t27hc8++0wQBEFwdHQUMjIy8jxWt27dhEuXLgmCIAjJyclCdnZ2vvbLDYDwyy+/CIIgCHPnzs3TfqqoaperV68KAwYMyFMJt2rVqkJMTIwgCIIwYcIEYcaMGUJSUpIynlOnTgk+Pj7K27948UJo0KBBgecmIiqO5ORkwcnJSXj8+LHw4YcfKo/v27dPaNeunSCXy4Xw8HChdu3aQkRERJ7+6/r160Lz5s0Fd3d3oUWLFsKjR48EQVBfnff+/ftC06ZNhUaNGgmurq7CkydPhP79+wvlypUTGjVqJEybNk04e/as0LJlS6F79+5C7dq1BUEQhB49eghNmjQR6tevL2zcuFH5eIrP0BcvXgh169YVRo0aJdSvX1/o0KGDkJaWVuDz/vvvv4UmTZoI7u7uQrNmzZSxFyT3Z/bDhw+FQYMGCTKZTGjdurWQnJwsjBo1Srh161a++5WVasWUn5HYyQrpDzc3N4SEhCAwMBBdunTJ87s//vgDhw4dwtKlSwEAGRkZePXqFZycnPD5558jODgYhoaGePLkifI+zZo1g4uLCwDA3d0dISEhaNmypfL3KSkpuHLlCvr27as8lpmZWWicf/zxB+7du4egoCAAQFJSEp4+fYrTp0/js88+Q/ny5QEAlSpVKvBxbG1tUaNGDVy7dg21a9fGo0eP8Mknn2DdunW4desWmjZtCgBIT0+HnZ1dnvtaW1ujXLlyGDlyJLp161bg0G3//v0BAI8fP8b9+/fRoUMHAIBMJoOjoyOAnLb39fVFz549ld/2fPLJJ5gyZQp8fX3h4+OjbEt1DAwMlOcaPHgwfHx8Cry9KmPGjEG/fv3wzTff5Dnetm1bGBoaws3NDQsWLEBSUhKGDRuGp0+fQiKRIDs7u9jnIiIqqoMHD6JTp0748MMPUblyZdy6dQseHh7o1asX9u7di3Xr1uHEiROYO3cuHBwc8kxVqlu3Li5evAgjIyOcPn0aX3/9Nfbu3av2XBs2bMCXX34JX19fZGVlQSaTYfHixbh//z6Cg4MB5Iye3759G/fv30f16tUBAFu3bkWlSpWQnp6Opk2bonfv3qhcuXKex3769CkCAwOxadMm9OvXD3v37s2zXvBtAQEB6NGjB7777rt3ard69erB1tYWTZo0wZAhQ/Dvv/9CLpejSZMm7/R4VDoxWaBi8fb2xrRp03Du3DnExcUpjwuCgL1796JOnTp5bj9nzhzY29vj7t27kMvlKFeunPJ3pqamyn8bGhrmG6qVy+WoUKGC8sO3qARBwJo1a+Dl5ZXn+MmTJ4v1OAAwYMAA7NmzB3Xr1kWvXr0gkUggCAKGDRuGRYsWqb2fkZERbty4gTNnziAoKAhr167Fn3/+qfK25ubmyrgbNGiAq1ev5rvN0aNHceHCBRw+fBg//PAD/v77b8yaNQtdu3bFsWPH8Mknn+DkyZOoW7dukZ+bRCIp8m0VPv74Y5w9exZTp07N81qePXsWNjY2yp8nTZqEtm3bYv/+/QgJCUGbNm2KfS4ioqIKDAzEl19+CSDnczswMBAeHh4AgDVr1qBhw4Zo3rx5numzCsX9cqNFixb44YcfEBoaCh8fH9SuXVvl7Zo1a6ZMFICc6aT79+8HALx+/RpPnz7NlyxUr14d7u7uAAAPDw+EhIQUGMtnn32Gjh07IiAgABs3bsT//ve/Am+vysqVK5X/7t69OzZu3IgffvgBd+/eRYcOHTB69OhiPyaVLlyzQMUyYsQIfP/993B1dc1z3MvLC2vWrFGuO7hz5w6AnA9hR0dHGBgYYOfOnSrn9qtjZWWF6tWr4/fffweQczF99+7dQu/n5eWF9evXKz/wnzx5gtTUVHTo0AHbtm1DWloaACA+Ph4AYGlpqXa+f69evXDw4EEEBgYq1wq0b98eQUFBiI6OVj7Oy5cv89wvJSUFSUlJ6NKlC1asWKGMu6Bz1alTBzExMcpkITs7Gw8ePIBcLsfr16/Rtm1bLFmyBElJSUhJScGzZ8/g6uqKmTNnomnTpspvytQlDHK5XDna8uuvv+YZxSmqkSNHokuXLujXr1+B83CTkpKUC+C3b99e7PMQERVVfHw8/vzzT4waNQrVqlXDTz/9hD179ij7o9DQUBgYGCAqKgpyuTzf/WfPno22bdvi/v37OHz4MDIyMgo836BBg3Do0CGYmZmhS5cuhX4RBOSMNJw+fRpXr17F3bt30bhxY5XnKexLtLf9/vvvmDlzJp49e6ZMFF69eoWff/4ZEydOxN9//13g/XM7ePAgPDw8lP3Lnj17EBQUpOwzqexiskDF4uLionIHidmzZyM7Oxtubm5o0KABZs+eDQAYP348AgIC0KhRIzx69CjPh2dR7Nq1C1u2bEGjRo3QoEED5cLpgowaNQr169dHkyZN0LBhQ4wZMwZSqRSdOnWCt7c3PD094e7urpwyNXz4cIwdO1a5wDm3ihUrol69enj58iWaNWsGAKhfvz4WLFiAjh07ws3NDR06dFAuRFZITk5Gt27d4ObmhpYtW2L58uUAcr7x+umnn9C4cWM8e/Ysz31MTEwQFBSEmTNnolGjRnB3d8eVK1cgk8kwePBguLq6onHjxpg4cSIqVKiAlStXomHDhnBzc4OxsTE6d+6M2NhYlQvFgZyO68aNG2jYsCH+/PPPdx62njJlCho3bowhQ4ao7HgBYMaMGfjqq6/QuHFjndzliYhKj6CgIAwZMgQvX75ESEgIXr9+jerVq+PixYuQSqUYMWIEAgMDUa9ePeVncW7F/XLj+fPnqFGjBiZOnIgePXrg3r17BX4RpDhHxYoVUb58eTx69AjXrl0r1nNcu3Yt1q5dm+/4vXv3lFNrBUFAUlIS0tLSIJPJ4OzsrHJbbFWys7OxcuVKzJgxA+np6cqRZ5lMhqysrGLFSqWPRFB3ZUFEeufIkSN4/vy5yoTOwsICKSkpRX6sNm3aYOnSpfD09CzJEBESEoJu3brh/v37Jfq4RFQ2tW3bFjNnzkSnTp2Ux1avXo1//vkHjo6OSExMxPLly5GcnIymTZti//79iIqKwtKlS3HkyBFcvXoVw4YNg7m5Obp27YpffvkFISEhOHfunPI2uS1evBg7d+6EsbExHBwc8Ouvv6JSpUoYNGgQ7t27h86dO6Nr16557puZmYmePXsiJCQEderUQWJiIubMmYM2bdqgWrVquHnzJlJSUvJ8Ni5duhQpKSmYM2cOPv/8c3zyySf5plHdu3cPo0ePRnp6OgRBwOLFi5GRkYGIiAhkZmbC0NAQkyZNynMfxflyTx1duXIlKlSogOHDh0MQBAwaNAj3799Hly5dsGTJEgBQ2x5U+jFZICojipss+Pj44MmTJ1i4cGGRai0UxcWLFzF+/HhUrly5yN94ERGVdd26dcO+ffuKtc21OqqShaJgslB2MVkgIiIiKiOaNm2KrKwsbNmypcgjx7/99hvmzp0LDw8P7Ny5U8MRkq5hskBERERERCpxgTMREREREanEZIGIiIiIiFRiskBERERERCoxWSAiIiIiIpWYLBARERERkUpMFoiIiIiISCUmC0REREREpBKTBSIiIiIiUonJAhERERERqcRkgYiIiIiIVGKyQEREREREKjFZICIiIiIilZgsEBERERGRSkwWiIiIiIhIJSYLRERERESkEpMFIiIiIiJSyUjsAIiIiDTNxsYG1apVEzuM9yYIAiQSidhhvDc+D93C56FbxHoeISEhiI2NzXecyQIREZV6VatWxc2bN8UO471lZGSgXLlyYofx3vg8dAufh24R63l4enqqPM5pSEREREREpBKTBSIiIiIiUonJAhERERERqcRkgYiIiIiIVGKyQEREREREKjFZICIiIiIilZgsEBERERGRSkwWiIiIiIhIJSYLRERERESkEpMFIiIiIiJSickCERERERGpxGSBiIiIiIhUYrJAREREREQqMVkgIiIiIiKVmCwQEREREZFKTBaIiIiIiEglJgtERERERKQSkwUiIiIiIlKJyQIREREREanEZIGIiIiIiFRiskBERERERCoxWSAiIiIiIpWYLBARERERkUpMFoiIiIiISCUmC0REREREpBKTBSIiIiIiUonJAhERERERqcRkgYiIiIiIVGKyQEREREREKjFZICIiIiIilZgsEBERERGRSkwWiIiIiIhIJSYLRERERESkEpMFIiIiIiJSickCERERERGpxGSBiIiIiIhUYrJAREREREQqMVkgIiIiIiKVmCwQEZGoXr9+jbZt26J+/fpo0KABVq1aBQCIj49Hhw4dULt2bXTo0AEJCQkAAEEQMHHiRNSqVQtubm64ffu2mOETEZVqTBaIiEhURkZGWLZsGR4+fIhr165h3bp1ePjwIRYvXoz27dvj6dOnaN++PRYvXgwAOH78OJ4+fYqnT5/C398f48aNE/kZEBGVXkwWiIhIVI6OjmjSpAkAwNLSEvXq1UNYWBgOHjyIYcOGAQCGDRuGAwcOAAAOHjyIoUOHQiKRoHnz5khMTERERIRY4RMRlWpGYgdARESkEBISgjt37uCjjz5CVFQUHB0dAQAODg6IiooCAISFhaFKlSrK+7i4uCAsLEx5WwV/f3/4+/sDAGJiYpCRkaGlZ6E5crmcz0OH8HnoFj4PzWCyQEREOiElJQW9e/fGypUrYWVlled3EokEEomkWI/n5+cHPz8/AICHhwfKlStXYrGKJSMjg89Dh/B56BY+D83gNCQiIhJddnY2evfuDV9fX/j4+AAA7O3tldOLIiIiYGdnBwBwdnbG69evlfcNDQ2Fs7Oz9oMmIioDmCwQEZGoBEHAyJEjUa9ePUyZMkV53NvbGwEBAQCAgIAA9OjRQ3l8x44dEAQB165dg7W1db4pSEREVDI4DYmIiER1+fJl7Ny5E66urnB3dwcALFy4ELNmzUK/fv2wZcsWVK1aFXv27AEAdOnSBceOHUOtWrVQvnx5bNu2TcToiYhKNyYLREQkqpYtW0IQBJW/O3PmTL5jEokE69at03RYREQETkPSS23atEFISEix7/fo0SO0aNECpqamWLp0aZ7fJSYmok+fPqhbty7q1auHq1evKn+3Zs0a1K1bFw0aNMCMGTPyPe7jx4/h7u6u/GNlZYWVK1fmu93w4cMRFBSk8vnUqVMHjRo1wieffILHjx8X+7kRERERUcnjyEIZUqlSJaxevVq5V3luX375JTp16oSgoCBkZWUhLS0NAHD27FkcPHgQd+/ehampKaKjo/Pdt06dOggODgYAyGQyODs7o1evXsWKbdeuXfD09IS/vz+mT5+OQ4cOFfv5EREREVHJ4siCjgoJCUHdunXh6+uLevXqoU+fPsoL+EqVKsHQ0LDYj2lnZ4emTZvC2Ng4z/GkpCRcuHABI0eOBACYmJigQoUKAID169dj1qxZMDU1VT5GQc6cOYOaNWuiatWqBd5u9uzZGD58OGQyWZ7jrVq1wr///ouQkBB8+umnaNKkCZo0aYIrV64U56mK4saNG1i+fHmx7jNr1izUrVsXtra2kEgkOrVVGhEREZUNFy5cUPs7Jgs67PHjxxg/fjz++ecfWFlZ4eeffwYA7Nu3T1mQqH///nmmACn+7Nixo8jnefHiBWxtbfHZZ5+hcePGGDVqFFJTUwEAT548wcWLF/HRRx+hdevW+Ouvvwp8rN27d2PgwIEF3mb69OmIiYnBtm3b8iU9hw8fhqurK+zs7HDq1Cncvn0bv/32GyZOnFjk5yOWadOmYfr06UWuJHv58mUcP34cd+7cwatXr+Dm5oZr165pOEoiIiKiHCEhIRjftSsiW7dWexsmCzqsSpUq+OSTTwAAgwcPxqVLl/Ld5rfffkNwcHC+P0OHDi3yeaRSKW7fvo1x48bhzp07MDc3x+LFi5W/i4+Px7Vr1/DTTz+hX79+ahciZmVl4dChQ+jbt6/ac82fPx9JSUnYsGFDngJLvr6+cHd3x+XLl7F06VJkZ2dj9OjRcHV1Rd++ffHw4cMiPx8xvHjxAn/99ReMjY2xYcOGIt3nxo0b6NmzJ8zMzGBmZoYePXrg8OHDmDp1Ktq2bavhiImIiKisSk1NxbyZM/FrrVqYf+wYnhipX5nAZEGHvV2tVFX10pIYWXBxcYGLiws++ugjAECfPn1w+/Zt5e98fHwgkUjQrFkzGBgYIDY2VuXjHD9+HE2aNIG9vb3aczVt2hS3bt1CfHx8nuO7du1CcHAwDhw4gCpVqmDFihWwt7fH3bt3cfPmTWRlZRX5+Yhh7dq1kMvlyMzMxNq1ayGVSgu9j5GREeRyufJnuVyOChUqYNmyZWoTMiIiIqJ3JQgCdv3yC2ZVqYLPfvwR1WQyzOnRA8OeP1d7HyYLOuzVq1fKXYl+/fVXtGzZMt9tSmJkwcHBAVWqVFHuQnTmzBnUr18fANCzZ0+cPXsWQM6UpKysLNjY2Kh8nMDAwEKnIHXq1AmzZs1C165dkZycrPZ2SUlJcHR0hIGBAXbu3JlvbYMuyczMxKZNm5QJTWpqKo4ePVro/dq0aYMDBw4gLS0Nqamp2L9/P1oXMAxIRERE9K7++usvjGrUCNWHDMGwhATMqVMHVS9dwpr/vqhVh8mCDqtTpw7WrVuHevXqISEhAePGjXuvx4uMjISLiwuWL1+OBQsWwMXFBW/evAGQsz2qr68v3NzcEBwcjK+//hoAMGLECDx//hwNGzbEgAEDEBAQAIlEgvDwcHTp0kX52KmpqTh16hR8fHwKjaNv374YPXo0vL29kZ6ervI248ePR0BAABo1aoRHjx7B3Nz8vZ67JgmCAE9PT+XPH374ISwtLQu9n6urK8aOHYtmzZrho48+wpgxY+Dm5oZvv/0WL168wJYtWzQZNhEREZUBERERmNS/P+43a4b5f/+NPVZW+HvzZmx6+FA53b0gEoHzHXRSSEgIunXrhvv374sdChXR8OHDERAQwClERDrIw8MDt27dEjuM95aRkVEqdk3j89AtfB66paSeR0ZGBtb89BNSFizAF1lZ2G5ggOSJEzF17lxYWVnlu72npydu3ryZ7zjrLBARERERlRKCIODggQM4MW4cpkdF4W8A37Zvj2kbNqBWrVrFfjxOQ9JR1apV46gCERERERXZ33//jVHNm8PCxwdfREVhcdWqsDh1ChtOn36nRAHgyAIRERERkV6Li4vDkhkzUG3rViwCsNTMDNUWL8b68eNhVMC2qEXBZIGIiIiISA9lZ2fDf906vPr6a0xLT8ceiQTLRozAzCVLULly5RI5B5MFIiIiIiI988cff2DP6NGY/OoVIgB807w5Jm3ejAYNGpToebhmgYiIiIhITzx9+hRj2rVDhpcXvnr1CmscHJB24AD8r1wp8UQB4MgCEREREZHOe/PmDX6aPRsV1q7FD3I5VpmY4N85c7BqyhSYmppq7LxMFoiIiIiIdJRMJkPA1q34e+pUzEhOxgkAPwwYgJkrVsDBwUHj52eyQERERESkgy5duoRtI0di/JMnqAvgW1dXjNu6FZ95emotBq5ZICIiIiLSIa9evcLn3t54/emnmPPkCbZXqoSXu3Zh89278NRiogBwZIGIiIiISCekpaXhp7lzYbR8OeZKpdhgaIjnM2Zg8TffwNzcXJSYmCwQEREREYlIEAT8tns3Ln7xBWbGxeEqgO+7dcOMdevwwQcfiBobpyERlYRdu7A0KAgyAKhWDdi1S+SAiIiISB/cunULoxo3hsugQRgZF4c5tWrB6cIFrD18WPREAWCyQPT+du0C/Pxgk5qa8x/q5UvAz48JAxEREakVGRmJyQMH4q6nJ364exf7LC0R7O+PNcHB+PTTT8UOT4nJAtH7+uYbIC0t77G0tJzjRERERLlkZmZi+aJFWFutGr7ZvRuJBgZY98UX+P71a4wYPRqGhoZih5gH1ywQva9Xr4p3nIiIiMocQRBw5PBhHBk7FtMiIvAIwLdt22Lqxo2oXbu22OGpxWSB6D2lVKoEi7i4fMezHR1hLEI8RGKYOHFiobexsrLCggULtBANEZFuefDgAVaMHo2+V69iEoCfqlRB702bsMHLS+zQCsVkgeg9zJ8/H4/j47FJIoGZICiPpwJYYW2NbsHBcHd3Fy0+Im05ePAg5s2bV+BtFi9ezGSBiMqU+Ph4/DhrFpw3b8YiQcBSMzNU+eEHrPv8cxgb68dXikwWiN7BkydPsGjRImzfvh1t2rRBVIcOcFqxAsaxsRCqVMHJZs0w58AB7OzfH5s2bUKrVq3EDplIoyZPnoxhw4YVeJuEhAQtRUNEJC6pVIpN69fj+axZmJaWhn0Afhw+HDN/+gk2NjZih1csEkHI9XUoERXq7t27mDx5Ms6ePYvhw4fjq6++gpmZGZIu3EBsbCw+6N4BdnZ22LdvHz7//HOYmJhgw4YN6NOnj9ihE5VZHh4euHXrlthhvLeMjAyUK1dO7DDeG5+HbuHzKFlnzpxB4KhR+DIkBDEAfm3aFF9u2QJXV9ci3V+s5+Hp6YmbN2/mO86RBaJiuHjxIkaPHo1///0X8+bNw4wZMxAREYHs7GwYGuTsXmBiYoKoqCh0794d9vb2GD16NHx9fREeHl6ked1E+iwjIwNbtmzBgwcPkJGRoTy+detWEaMiItK8Z8+eYem4ceh46hS+BvCTnR06rl+PTb16QSKRiB3eO+PWqURFtHfvXvj4+CAsLAybN2/G5MmTERYWBolEAmdnZwjIGaRzcHCAhYUF4uPj0bhxY+zduxdubm748ssvMWnSJKS9vc0qUSkyZMgQREZG4uTJk2jdujVCQ0NhaWkpdlhERBqTnJyM7yZPxt4PP8T8U6cQbGyMvfPmYcXLl+jl46PXiQLAZIGoSFavXg1fX1+YmZnh999/R48ePRAVFQUTExM4OzsjKSkJcrkcABAeHo6KFSuiYsWKSE5OhpOTEwICAtCrVy+sWrUKAwcOxMOHD0V+RkSa8e+//2L+/PkwNzfHsGHDcPToUVy/fl3ssIiISpxcLsf2rVvxrYsLxqxcCXu5HAv69sWYkBBMnz1bJ6ZElQQmC0QFSE9Px+TJk/Hll1/C1dUVQUFBaNKkCeLj42FhYQEHBwdER0cjOTkZBgY5/51kMhnCwsJgZmYGOzs7ZGZmwtzcHDt27MDUqVNx6NAhDBkyBDdu3BD52RGVPMXuHhUqVMD9+/eRlJSE6OhokaMiIipZV69exagGDdBg5EgMfPMG3zVogHrXr2Plnj1wcnISO7wSxWSBSI2HDx9i4MCBWLlyJXr06IGAgAA4OzsjOTlZOXIQHh6O9PR02NnZKYcZXVxcYGhoiPDwcAiCACcnJwiCgJiYGMybNw9r1qzBgwcP0Lt3bxw/flzkZ0lUsvz8/JCQkID58+fD29sb9evXx8yZM8UOi4ioRISGhmKijw+effwx5j16hB0VKuDZjh3YdO8emjVrJnZ4GsFkgUiFGzduYOjQoTh48CCmTJmCnTt3wtzcHJmZmbCzs4OZmRnCwsIgk8mU3yDIZDIAQFxcHJycnGBmZoaYmBikpqbC2dkZRkZGiIiIwNChQxEYGIjMzEz069cP27ZtE/OpEpWYAwcOIDExETdu3EDr1q3x/PlzREdHY8yYMWKHRkT0XtLT07Hou++wtUYNfL9/P0INDbFtxgwsev0avkOGKGcXlEal95kRvaMTJ06gT58+uH//PlavXo358+cjNjYWcrlcOUoQHh4OQ0NDuLi4IC0tDdHR0cqRhdTUVERGRsLOzg5WVlZITExEXFwcHB0dUb58ecTExODTTz/F3r17UaVKFYwaNQpz5swR90kTvafx48djxYoViIuLw+zZszF//nyxQyIiem+CIOD3PXsw9YMPMHD+fNTPzsZ3nTtjwL//YvaSJbCwsBA7RI1jskCUy/bt29G3b1+kp6fj119/xbBhwxAREaFMDFJTUxETEwMzMzM4OTkhLi4OiYmJsLS0VH6r4ODggKysLISFhcHKygqVK1dGamoqIiIiYGNjA2trayQlJaFWrVrYvXs32rRpg7lz52Lo0KF4/PixyC1A9G4uXLiAP//8E4sWLcK5c+dw4MABsUMiInovd+7cwUgPD9j1748xsbFYULMmbM+dw7pjx1CtWjWxw9MaJgtE/5k3bx5GjRoFFxcX7Nu3D61atVKZGFhZWcHOzg6RkZFITU1F5cqVYW1tDbksZzckqVSas5WqICAsLAzGxsZwcHBAdnY2wsLCYGlpCRsbG6SlpaFixYrYsGEDRowYgZ07d2LMmDEIDg4WtyGI3oGJiQkMDXNqjZQvXx6s90lE+io6OhpThwzBzSZNsOjOHRwyN8eN9eux8fFjtG7dWuzwtI5F2ajMe/z4MRYtWoSAgAC0bdsWK1asgJ2dHZKSkmBlZYUKFSogIiICWVlZqFy5cp71Cg4ODpBIJAgLC1M+XmxsLKysrODi4oLIyEhERkaicuXKcHZ2RmRkJMLCwmBnZwdHR0dERUXB2NgY69atQ40aNTBnzhz069cPmzZtKpMfSKS/Hj16BDc3NwA5w/bPnj2Dm5sbBEGARCLBvXv3RI6QiKhgWVlZ+HnlSkR/9x1mZWZil0SCVWPHYvbChahQoYLY4YmGyQKVacHBwZg0aRLOnz+Pzz77DLNmzYKZmRnS0tJgY2ODcuXKISwsDHK5HA4ODgCAsLAwGBgYwNnZGRkZGYiNjYWJiQkyDXMG6ipUqIDExERkZ2fDwcEBsbGxiIuLg5WVlTJhiIqKQqVKleDs7IyIiAiEh4fjyy+/xAcffIDPP/8cPj4+2LBhA/r27Stm8xAV2T///CN2CERE7+zYsWPYP3o0poWH4zmAb1u1wuSNG1G3bl2xQxMdpyFRmXXhwgX0798fly5dwvz58/Hzzz/DxMQEUqkUjo6OMDIyylOhOTs7G5GRkcpCbG/evEFsbCzKly8PR0dHZVE2c3Nz2NraIj09HeHh4ahcuTIqVKiAN2/eIDo6Ok+F58TERDg7O8PU1BRRUVHo1q0bfv/9d1hYWGDw4MFYsWKFyK1EVDRVq1ZF1apV8fDhQ+W/FX+4RTAR6ap//vkHoz/9FJKuXTEtPBzLnJ0hHD2KjefPM1H4D5MFKpOCgoLg4+ODiIgIbN26FZMmTUJ4eLgyMcjMzMyXGMTFxcHc3BwODg6IiYnBmzdvYG1tDRsbG0RERCjnaCsex8nJCTKZDKGhofkSiNwVnqOiomBvb69MIBo1aoS9e/eiUaNGmDJlCiZOnIiUlBSRW4yoaObPn48///xT+fOPP/6IgwcPFnifESNGwM7ODg0bNlQemzNnDpydneHu7g53d3ccO3ZM+btFixahVq1aqFOnDk6ePFnyT4KISr2EhAR8PW4c/mjQAAsvXcLFcuVw4scfsfb5c3Tp0kXs8HQKkwUqc1atWgVfX1+UL18eQUFB6N69O6KiopSJQWJiIuLj45WJQXR0NN68eYMKFSqgcuXKykJstra2sLCwQFhYGKRSKQwNchZ3mpqaIjo6Gunp6XB2doahoaFyhEKRQOSu8JyRkZEngUhJSYGjoyO2b98OHx8frFmzBoMGDcLDhw9Fbjmiwh06dAhff/01Ll68iG+++QbXr18vNFkYPnw4Tpw4ke/45MmTERwcjODgYGXn/fDhQ+zevRsPHjzAiRMnMH78eGWNEyKiwshkMvivX48FVargyw0bYCYI+HHoUEx+9QpfTp8OExMTsUPUOUwWqMxIS0vDpEmTMGnSpDzf3sfHx8PCwgIODg6IiopSVmh+OzEwNzdHaGgoZDIZHB0dYWBgkGc0QkDOyIJilCAhIQEJCQlwcnJCuXLl8iUQigrPzs7OeRIIe3t7ZGZmwtzcHDt27MC0adNw+PBh+Pr64vr16yK3IlHBbGxscOjQIUyYMAHh4eEICgoqtPNt1aoVKlWqVKTHP3jwIAYMGABTU1NUr14dtWrVwo0bN0oidCIq5c6ePQu/Dz/ER+PHwzs1Fd94eKDZnTv4KSAAtra2Yoens7jAmcqEhw8f4quvvsKhQ4fg4+OD+fPnw9raGikpKahYsSIsLCwQHh6O7Oxs2NnZwcjICKGhoQAAJycnSKVShIeHw8jICA4ODkhJSUFCQgLKlSsHe3t7xMfHK9cshIWFwdHRESYmJoiPj1cudI6Pj0dCQgKysrLg5OSE6OhoxMTEoEKFCnBxcVEudLa1tYWTkxMiIyMRHR2NuXPnonr16pg6dSp69+6NTZs2oXPnzmI2J1E+lpaWysKEQM6uIs+fP0dQUBAkEgnevHlT7Mdcu3YtduzYAU9PTyxbtgwVK1ZEWFgYmjdvrryNi4tLnt3IcvP394e/vz8AICYmBhkZGcWOQdfI5XI+Dx3C56Fb1D2PkJAQrJg4ER1OncJsAEtsbPDpypVY4+MDiUSic89d114PJgtU6t24cQNjx47FnTt3MHXqVMyZMwdxcXHIzMxUJgaKi43ciYGiPsLbiUFcXBxSUlJgYWGBypUrIyoqChkZGcqibIr6Cvb29rC3t0d0dDTCwsLg4OAAY2NjxMfHQyqVwsHBAQkJCcqdk3InENbW1sqdkyIiIuDr6wsnJyeMGTMGffv2xerVqzFixAgxm5Uoj+Tk5BJ9vHHjxmH27NmQSCSYPXs2pk6diq1btxbrMfz8/ODn5wcA8PDwQLly5Uo0RjFkZGTweegQPg/d8vbzSElJwbK5c2G6YgUWymRYa2yMZ19/jeUzZ8LMzEzESAuma68HpyFRqXb8+HH07t0b//zzD9asWYN58+YhJiYGgiDAyckJgiAgPDxcWaE5LS0N0dHRykJsiqlElpaWsLe3R1RUFFJSUlCpUiXlt5yKpEPxraqzszOMjIwQEREBmUymPE9YWBhMTU3VVniOjIyEra0trKyskJSUhNjYWDg6OqJ8+fKIjY1Fy5YtsXfvXnzwwQcYPXo0vv/+exa+Ip0RGRlZIrdRsLe3h6GhIQwMDDB69GjlVCNnZ2e8fv1aebvQ0FA4OzsXP2AiKrXkcjl2BgTgKxcXjFy6FC4yGeb26oVRL15g5pw5Op0o6CImC1Rqbd26FX379kVmZiZ+/fVXDBkyBBERETAyMoKzszNSU1NVVmi2tLRUVmhWJAYVKlRQJgb29vYwNTVFWFhYnqRDscgyLi4uz0V+SkoKnJ2dYWxsjIiICLUVnnMnEIoKzxEREbCxsYG1tTWSkpJQs2ZN7N69G23btsW8efMwdOhQPH78WOSWJkKRdg8pzg4jERERyn/v379fuVOSt7c3du/ejczMTLx48QJPnz5Fs2bNih8wEZVK169fx2g3N9QePhxDkpLwfb16qHnlClbv28cvFt4RpyFRqTRnzhzMnz8fderUwcaNG1GvXj1lTQRbW1vExsYiNTUVVlZWqFixIiIjI5GZmZmvQrO9vT0MDAzy7GaUlZWlrLzs6OiIN2/eIDExUTmykJqaqlynkJSUhKSkJGRnZ8PR0RExMTHKCs+KaUaqKjzb29vD0dFR+bNiClNsbCwqVqwIf39/LF68GJs2bUJISAjWrFkDd3d3cRudyrS7d+/CyspK7e8FQVD7+4EDB+LcuXOIjY2Fi4sL5s6di3PnziE4OBgSiQTVqlXDxo0bAQANGjRAv379UL9+fRgZGWHdunUwNDTUyHMiIv0RHh6OHyZMQLMDBzAPwBJra3iuXIlNQ4cqpwnTu5EInMdApcjjx4/xww8/YOfOnWjXrh1WrFgBW1tbpKWlwdraGtbW1oiMjERWVpayQnNERATkcjns7e0BAFFRUTAwMICjo2OeCs25L/4V257mTjpiz1xGVFQUmo4a/M6PoSpxiYyMhEwmg52dHQwMDBAVFQWJRAIHBwcsX74c33//PapVq4ZNmzahTZs24r4ARDrKw8MDt27dEjuM96Zrc5nfFZ+HbtHn55GRkYFVS5Yg/Ycf8Hl2NrYaGCBt0iRMnTMHlpaWYof3TsR6PTw9PXHz5s18x5lqUakRHBwMPz8/7Ny5EyNHjsSGDRtQsWJFpKWlwcbGBpaWlggLC1N+6597YXPuCs3GxsZwdnZGcnJyngrNsbGxSEpKgrW1NWxtbREREYHU1FRUrlwZVlZWkMtydkPKzs6Gs7MzJBIJwsLCYGhoCEdHR0ilUoSFhcHCwqLQCs/m5uaIi4tDUlISnJ2dYWJigqioKGRmZiofOzw8HBMnTsS2bdsQHR2N3r174/fffxfzJSAiItIKQRCwNygIkz74AH3nzIFbdja++d//0OfpU8xZtkxvEwVdxGSBSoXz58+jX79+uHLlChYsWIC1a9fC2NgYUqkUjo6OeQqj5U4MTExM4OLioqzQrCoxUFRoVpd0GBsb59m6MS4uDm/evCnwIl8x6qCuwnPlypXzVHh2cHBQVnhOTEyEs7MzTE1NERUVhS5dumDv3r2wtLSEr68vli9fLuIrQUREpFn37t3DqGbNULFvX0yIicHCatVQ4cwZrDp8GDVq1BA7vFKHyQLpvd9//x0+Pj6IiorCtm3b8OWXX+YplpaZmZmnQrMiMVBVofntxCB3hWZHR0flaISqpMPAMOe/09ujBOou8hUJRO7ibooKz6GhoWorPCsSiNzF31xdXREUFITGjRtj6tSp+OKLL5CYmCjuC0NERFSCYmNjMW34cFxp1AgLb97EcXNzXF6zBhuePkW7du3EDq/UYrJAem3FihUYPHgwLCwsEBQUhK5duyIqKgqmpqZwdnZGYmJingrNuRMDVRWacycGiirLuZMORWKgKulQFGUrX7487OzslKME6i7yFUXaFAmEqgrPAJQJhKLCs52dHTIzMxEWFoaKFSuiUqVKSElJgaOjI7Zv344+ffpg7dq18PX1xYMHD8R8eagMWrt2rdghEFEpk52djTXLl2PpBx9gZkAAsiQSrPTzw1evXmHs55/DyIj79WgSkwXSS8nJyZg4cSKmTJmCRo0aYe/evXBzc1MmBoqaCMnJycqLdUViYGdnh/LlyyM0NFRZB0ExPejt0Yi3kw5VoxGKpEOxV0BBF/m5RwkUF/mKBMLS0lJZ18HJyQnlypVDdHQ00tLS4OLiokwgcm/XqqjdYG9vj8zMTJQvXx4BAQGYMWMGjh8/Dl9fX1y7dk3Ml4rKGFWF00aPHi1CJERUGpw4cQLja9TA/6ZORdv0dHz98cf43/37WLRxIypVqiR2eGUCUzHSOw8fPsTMmTNx5MgR9O7dG/Pnz4eVlZWyJoK5uTnCw8ORnZ1dohWaK1asCEtLS+Vj29rawsTEBKGhoQAAQ4Oc7RsVF/kVK1ZUbocaHh4OW1tbODs7IyIiQmWFZ0dHR2WFZ8V6CMX0pbcrPFeoUCFPhWdbW1s4OTkhMjISUVFRyh2Spk6dit69e8Pf3x9du3YV7TWjsiM6OjrPupn4+HgEBweLFxAR6aUnT55gqZ8fvM+fxwwAPzk6wnvjRvh366bcqpy0gyMLpFeuX78OX19fHDlyBNOnT8eOHTtQvnz5fMXSZDKZsvBZ7grN6enpiI6ORrly5fJUaM49GpGSkpJnNCIjIwN2dnYwMzNTORphaGiYcy7kjCzkHiWIj4+Hk5MTzMzMEBMTg9TUVOUogWLLVlWjBIoCbdbW1nkqPNvZ2cHKygqJiYl5ir/FxMQoi78pqkcPGjQIgYGBkMlk6N+/PzZv3izyq0dlgUwmQ0pKCpKTk5XvySNHjogdFhHpiaSkJHz7xRc4UrcuFp4/j6umpjiyaBHWhoSgW/fuTBREwJEF0hvHjx/H6NGjERcXh3Xr1mH48OHKmgMFFUt7u56BpaUlKlWqpKxnoBiNUCQZ7zoaoViz8PYogVQqhYODAxISElSOElhbW+cZJbCxsVGOEihGIBwcHBAVFZWnQFtcXFyhxd8++eQT7N27F35+fhgzZgxevnyJuXPnskANaYyDgwO+++47scMgIj0jk8mwbfNmPJw2DdNTUnAMwMJBgzBz+XJlHSQSB68YSC9s2bIFffv2RXZ2Nnbv3g1fX19ERETAyMgIzs7OSElJQUxMDMzMzODk5IS4uDgkJibCysoKdnZ2iIyMRGpqKipVqgRra2uEhYUhKysrz2hE7rUAuUcj0tLSEB0drXxsxWiEpaVlntEIxQV47lECBwcH5SiBlZVVnlECW1tbWFlZISkpCbGxscpRgtjYWOU3ssbGxoiMjIRUKlWOlISFhSmTluzsbISFhcHS0hI2NjZIS0tTJhzW1tZISkpCjRo1sHv3brRv3x4LFizAkCFD8OjRI5FfUSqthg0bJnYIRKRnLly4AL+6deExdix6paTgW3d3NL51C8t37WKioAOYLJBOEwQB33//Pfz8/FC1alXs3bsXn3zyicpiaVZWVrC1tVUmBopiaYrEwMHBIV9iIJPJ8iQdqampKpMOS0tLZdKhWBtRoUIFhIWFKadAGUhy/ju5uLgopwKpu8jPnUCou8h/O4HIXbshMjIyX/E3IyMjlcXf0tLSUKFCBWzevBl+fn749ddfMWrUKNy5c0fkV5dKo0mTJokdAhHpiZcvX2JCt26IaN0a3/37LzZXrozwwEBsvn0bTZo0ETs8+g+TBdJZjx8/xtChQzFv3jy0a9cOgYGBqFmzptpiaW8nBopiaYIgwNnZGVKpFBEREcoKzSkpKfmSDlWjEZUrVy50NMLCwkIZtyLxUFzkJycn5xklUHeRrxglsLCwUJlAvHnzBjExMXkqPL+dQKgr/iaVSiGXy7Fq1SosWrQI169fR9++fXH27FkRX2EiIiqLUlNTMX/WLPxSsybmHT2Kp0ZG2PXNN/jp1Sv0HzCA6xJ0DJMF0knBwcEYNWoUfvnlF4wePRobN25ExYoV8xVLU8zRV1csTZEYvHnzRuVohLqkIzQ0VG3S8fZoRLly5fLFb2BgAAcHh3yjBOou8rOysvJc5BsaGqocJchd4fnt4m/m5uYFFn9TPPaECROwfft2xMbGonfv3vjtt99EeIWJiKisEQQBv+7ahZlVqmD4kiWoIZNhjrc3hj1/jq8XLED58uXFDpFUYLJAOufcuXPo27cvrl27hoULF2L16tUwMDBQWywtKytLbbE0xWLfN2/eqEwMLC0tlUmHg4NDnoXNqpKO5ORkZdKhGC1QRyKRwMbGRjkVqKCL/Li4OCQlJSkTCFUX+YpRAkWF5/Lly+dLIIpa/K1z587Yu3cvrK2tMWTIECxdulRbLy8REZVBN2/exCh3d1QdPBifJSRgTp06qHLxItYcPIgqVaqIHR4VgMkC6ZTff/8dvXv3RkxMDLZt24YvvvhCZbE0RWKQlJSUp4pyQRWaFaMRuZMOVaMRJiYmcHFxyZd05B6NcHBwKPKOQlZWVnku8s3NzQu8yHdwcFBe5L89SpCRkZGnwrNiJyjFY6sq/laxYkWVxd8aNmyIoKAgeHh4YPr06ZgwYQLi4+M1/ApTWfO///0PnTt35vapRGVUREQEvuzfH/eaNsWCe/cQZGWFe5s3Y9PDh2jZsqXY4VERMFkgnbF8+XL4+vrC0tISQUFB6NKli8oqyhYWFsqtRBUVmt9ODMzNzZU1ERwdHWFgYPBeSUfu0QgbG5tiz6dUjETkjqMoF/lvjxKoqvCcnp6eJ4HIvXhbUT1aUeE5LCwMFSpUUFaPtre3x9atW9G3b1/8/PPPGDx4MO7fv6+hV5jKoh07dmDBggV4+fKl2KEQkRZlZmZi6Q8/YH21api9Zw8SDAyw/ssvMff1a3w2ciS38NYjfKVIdImJifjiiy8wdepUNG7cGEFBQXB1dc1XLE2RGBS1WJqBgUGexEBd0hEdHY3k5GSVoxGK+guK0Qhra+t3fp6KEQvFVKC3L/IB5LvIt7OzU17kV6xYUXmR//YowdvF39LS0pTF38LDwwss/la+fHkEBARg1qxZOHHiBHx9fXH16tWSenmpDEtISEBsbCw8PDwwYcIEscMhIi0QBAEH9u/Hl9Wqoee338IjKwuz27dHj8ePMW/lSlhZWYkdIhUTkwUS1YMHD+Dr64u1a9eiT58+2L59OxwdHZXbk1asWFG5PakiMVAUT3NycgKAPFWUFRWaFYmB4kK6oKQjPT0ddnZ2KF++vMqkQzEaURILrwwNDeHk5KS8yH97lODti/zctR9yX+S/PUqgrsJz7gTi7QrPiucpCAIiIiIwe/Zs/Pzzz3j69Cl69+7NaSP0Ttq0aYM3b94gPj4eTZo0wejRozFlyhSxwyIiLbh//z5Gt2gBCx8ffBEZicUffIDyf/yB9adPo1atWmKHR++IyQKJ5tq1a/D19cXx48cxc+ZMBAQEoHz58sq6BUUtllauXLkCi6W9b9Lh4uICExOTEnveEokEtra2ylGCyMhI5SiBqov81NTUPBf5BY0SqCr+pkggCiv+FhERgYEDB2L37t2Qy+UYMGAANm3aVGLPm8oGRc2Tffv2YejQobh+/TpOnz4tdlhEpEFxcXGYOWoUzru6YuH16/jDzAznVq7EhmfP0KFDB7HDo/fEZIFEcfToUfTu3RtPnjzBzz//jO+++w5RUVHKxEAulxe5WJq9vX2BxdIUSUfui+zcSYciMXg76bCwsICTkxMMDQ1L/PlLJBJUrFgxz0W+tbW1yot8RQKhuMhXN0qgrvhbaGhosYq/tWjRAvv27UP16tUxZswYfPPNN5DL5SXeBlQ6KeqZ7NmzB926dRM7HCLSoOzsbKxduRJLqlTB1C1bAIkEy0aOxMzXrzHhyy9hZGQkdohUApgskNZt3rwZ/fv3h0wmQ2BgIAYOHJgnMUhJSUFMTIyyJoIiMXiXYmmKpEORGKhKOnKPRuROOuzs7DReGMbCwqLQCs+KBKKwi3x1xd8AKIu/OTg4FKn4W7Vq1fDrr7+iY8eOWLhwIXx9ffHo0SONtgWVDt999x28vLxQq1YtNG3aFM+fP0ft2rXFDouIStipU6cwrlYttJk8GR3T0/HNRx+h9b17WLJ5MypXrix2eFSCJIIgCGIHQWWDXC7H999/j4ULF6JevXrYuHEj6tSpg6SkJGXNAMXiXGtra1hbWysLllWuXBlmZmbKaTj29vYAgKioKGUBtMzMTMTGxsLExAQODg5ISkpCUlKScqFwbGwsUlNTYWVlhYoVKyorHiseOzIyEjKZDHZ2dnkqMhfVo90HEfl/7J13fBTl9oefma3J7qY3egvSi1RFRRFRUYrl2ntDuZZrr9fesPeG4rV3/UlRVBSsIE1EQDrS0+tuNltnfn+8mc1usoEAkwLM8/mshs3uu+/MbpLznXPO9xTkc8x/rtzj52pXYwOBABkZGdjt9gaPtU2bNvh8vrjHqp3HPTlWWZYpKChAkqSIUCkqKsJisSDLMg899BCvvfYaI0aM4IUXXmDQoEF7fHwGBi3N4MGDWbp0aUtvY5/x+XxxB0HubxjH0brYk+PYsGEDT1x5JSfNnUtf4PHsbE569VUmTJzY4pOXD8b3Q0+GDBnCkiVL6t1vZBYMmoU1a9ZwwQUX8NBDD3Hcccfx4Ycf0rVr1wanKNcdlqZNUQYxLC0UCsUMS/N4PHEnNCclJZGZmRmTjUhKSopkI3JycrBarTHZiL0RCvuKllXRsgSVlZWRXonoLIEkSezYsaPBCc9alkCv4W/BYJBnn32Wxx57jMWLF3PmmWcyd+7cZj8/BvsPt956K5WVlQSDQUaPHk1mZibvvfdeS2/LwMBgH6msrOSe66/nyx49eHjuXJZarfzfQw/x/JYtTDzllBYXCgZNhyEWDJqcZcuWcfnll/PBBx8wadIk3njjDZKTk/F6vXs9LC2eMIgnOuoKA010qKoaER15eXlYLBbat2/folcktAxJQ0F+ZWVlo4J8TUDEG/6WkpKC2+2OrN3Y4W+TJ0/mrbfeoqSkhH/96198+OGHLXaeDFo33333HUlJScyaNYvOnTuLq5BPPNHS2zIwMNhLFEXhzTfe4N4OHZj83HOkKQoPn3UWkzdv5ua77sJms7X0Fg2aGEMsGDQp8+bN44wzzmDhwoU8+uijPPfcc4TD4UYPS4ueohw9LC2eMNBERzAYpE2bNpjN5riiQ8tGRIsOrVm4pZEkifT09LhBfrSAaCjIrysg6g5/S0xMJCsrK7J2Y4a/aXMhTjzxRD777DNSUlK46KKLjADQIC6hUAgQJgZnnHHGPs0mMTAwaFl+++03rujdm/5XXMEZlZX8t18/+i1axDMffUSbNm1aensGzYQhFgyajI8//pjTTz+dkpIS3nrrLa6++uq4wmBXw9KipyhHD0uLl42IXjsQCESyEXVFR5s2bSgqKoqIjpycnFY3STIpKSkmyK+bJdDsYOsG+aWlpZSVlUUEhN7D3/r27ctnn33GkCFDuPXWW5k8eTLFxcUtfLYMWhPjxo2jZ8+eLF26lNGjR1NUVHRA1BAbGBxMbNu2jWsmTmTLkUdy39q1vJ2Wxub33uON5csZOnRoS2/PoJlpXRGSwQHDk08+yQUXXEBKSgqfffYZY8eO3athaZmZmTHD0hqTjaioqIibjYgnOjIyMlptnWVCQkIkyNcyJNECQgvyfT5fTJYgXpDf2OFviqLscvibx+MhKyuLN998k7POOotXX32V888/n5UrV7b06TJoJUyZMoX58+ezZMkSLBYLiYmJTJ8+vaW3ZWBg0Ai8Xi8P33UXb3ftyv0zZrDZZOLt229nytatnHveea3276VB02KIBQPd+eSTT7jlllsYPHgwn376KX379o07LC1aGPh8vrjD0rRyGm1Yms/ni8lGRIuOnJycGNFRVxg4HI4Y0bE/jJzXBJAW5NfNEmhBfnSWoKEgvzHD3zQBsbvhbwkJCbz11lvccccdfPfddzz00EMtfaoMWgler5eXX36ZyZMnA2LYYTx3DQMDg9aDqqp8/NFH3NKxI+c/8gjdQyHuOflkztu4kf8++igOh6Olt2jQghhiwUB3Pv/8cxwOB1OnTo04FcUblhYtDLRZA/GmKMcbltYY0aEJg2jRIctyxHVof8FkMtG2bdtIlqC0tDQmyK+bJdjdhOfdDX+LXntXw9927tzJAw88wOmnn86sWbNYtWpVS58qg1bAJZdcgtVqZf78+YBwL/vvf//bwrsyMDBoiD/++IN/H3YYbc85h8tLSniwe3fa/PQTL82aRadOnVp6ewatAEMsGOjK33//zTfffMOYMWPo1asXVVVVpKSk4HA46g1Li56iXHdYmlZ7XzcbodXqa6IjXjYCiCs6bDZbxI50f0OSJDIzM0lLS9vrID9aQGjzGRoa/paZmUlSUlLc4W9erzeyltvtZsKECVRVVfHDDz+09GkyaAVs3LiRW2+9FYvFAkBiYiLGOB8Dg9ZHQUEBN553Hn8MHsyjf/3F/zmd/PHaa7y2ejUjR45s6e0ZtCIMsWCgKz/99BOVlZVMmDABj8cDgMvlorKyEkVRaNeuHV6vt94U5XgTmuNlI+pOaI7ORrRv3x6v10thYWFkbS0b4XK5aNu2LSaTqYXP0N4jSRKpqakNBvnRAiJekK8JCIvFQl5eHqFQKO70aG3Cc1JSUsyE56ysLBITEykvL8disWCz2fB4PBxxxBFkZWUxY8aMlj5FBq0Aq9VKdXV1pLZ548aNhrWigUErIhAI8PSUKTzfqRN3fvABlbLMs1ddxb3bt3PZpEn79d9Jg6bBEAsGujJ9+nTS09MZMWIEHo8Hq9WKxWLB4/HgcDiQZZmysjIcDkeMMKg7LC2eMAiHw+Tl5UUGmNXNRmiiw+VyRdbWshGZmZkHTGOWw+GIG+QHAgG2b99eL8jPyMggOTk5roCInt0Qb/ib2WyOrO3xeEhKSkJRFLxeLy6Xi0AgQPv27Rk3bhw///zzATEh12DfuP/++znxxBPZtm0b5513HqNHj+bxxx9v6W0ZGBz0qKrKzBkzuKZzZ8bdcQeH+/3895hjGLd6Nfc984xhc2zQIIZYMNCNP//8k3nz5jFu3Di6dOmC3+/H5XJRXV1NOBzG6XRSVVUFEJkb4Pf74w5LqysM6k5obigbkZ6eTnJycozoSE1NPWCEgoZWUmWxWGKCfCAmyNeyBE6nM66AqKyspKioKO7wN4vFEjnnmuBLTExEluWI+AMipUjBYJBvvvmmJU+LQQujKAplZWV88cUXvPXWW5xzzjksWbKEY445pqW3ZmBwUPP3338z6cgjsU6cyA15eTzRvj3m2bN5dd48DjnkkJbenkErxxALBrrx7bffEggEYkqQnE4nHo8HWZZJTEzE7XZHSljcbjcJCQkkJCRQUFAQGZbmdrt3O6E5XjYinuhwOp0tfFaaDk1IRQf5Wk9G3SyBVqoVPeHZ6XQ2OPyturqalJQUQqEQPp8Pl8uFz+cjFApFRJ8syyQkJODxeBg3bhzdunUzLDIPcmRZ5vHHHyc9PZ2TTz6ZcePGkZGR0dLbMjA4aCkrK+P2K6/k+759eWT+fOYlJPD9U0/x8qZNnHjiiS29PYP9BEMsGOjGjBkz6NixIyeffHJECERfhVYUBZ/Ph9PpxO/3xwSeqqqSkZFBVVVVPWGgTWh2uVyRCc3xhEH0hOb27dsfFHXSsiyTnZ1db8KzJiAqKioiZUbxJjzLskybNm0Ih8Pk5+eTlpaG2WzG7XbjcDiQJAmPxxMRXdrXqqpSVVWFy+UiFAoRCAQYP348ixcv5pdffmnhs2LQkhx33HE8+eSTbNu2jdLS0sjNwMCg+QiFQrzywgs80qEDN0ydilVVeeLii7l561auvfHGiAGBgUFjMMSCgS7Mnz+fBQsWMGHCBFRVjQgBr9eLqqqRDAOIhme3240kSZH7TSYTdrsdt9uNzWaLzEiIntCsDSaLFgZWq5X27dtHJjQnJiZGXIAOFiRJIj09vV6WQJvwrAkIbcJzeXl5ZMJzQUEBAGlpaQQCAQKBAE6nk+rqahRFweFw4PF4MJvNkffHbrdjNpsjIlATFOPHjwdg5syZLXk6DFqYjz/+mJdeeomRI0cyePBgBg8ezJAhQ1p6WwYGBw1z587lyu7dOeK66zipqoq7hg5lxPLlPP6//xmZPoO9whALBrowa9YsVFVl4sSJeDweJEnC4XDgdrsxmUwkJCREhIAWaGqWil6vF6fTGQlWXS4XXq+XUChEZmYmiqLETGjWhEG8Cc05OTnI8sH5sU5KSoo74VkTENo8CrfbTVFRUcQdqrKyMpI5cLvduFwuoDaLoDU0O51OgsFgRFBoQlATFKNGjWLgwIGGK9JBzurVq/nnn39ibn///XdLb8vA4IBn06ZNTD7hBMpHj+a/mzfzcmYmZZ99xusLF9K/f/+W3p7BfszBGVUZ6M6MGTPo168fo0ePjggBoMEgU1EUXC5XTLZB+1oLPmVZxuFwRKw627ZtGyMM6k5oTk9PP+AamfeUhISEmAnPQMyEZ4fDQWpqKl6vl2AwGHk/QPjhezweLBYLVqu1XkNz3VKk6K81QTFhwgTWrl3L119/3TInwKDFGTFiRKPuMzAw0Ae32829N97Ip9278+B33/GXxcKn99/Ps1u3ctrppx/0fxcN9h1DLBjsM9999x2rVq1iwoQJcZ2PtLIjqN/w3FBwWlVVhdPpJBQKRVyV/H4/1dXVpKen43Q6YyY0JyUlteQpaFVoGRi73U5hYSHV1dW0b98eVVWpqKiInKt4/QfhcJjq6uq4fSWSJEWa1K1WK1arFbfbHSMoTj75ZEwmk5FdOAjJz89n6dKlVFdXs2zZMv744w/++OMPfvzxx4ggNTAw0A9FUXj7f//jrg4dmPTMM+QoCg/+619M2ryZW++5B7vd3tJbNDhAOHgKuw2ajJkzZyLLcqSxWRMCeXl5MUJAa3iOFgI+n4+0tLSI0442obhun4PT6aSsrAxJkkhKSiI/Px9Jkmjbtu1+OZG5qTGZTJFMTFlZGUlJSZHzmZGRgd1ux+PxkJqaGikLy8nJifQfpKWlUVpaGilLqqysjLxvXq830qheWloaERRut5shQ4Zw5JFHMnPmTB555BHS0tJa+lQYNBPffvstb731Ftu3b+emm26KTG12uVw88sgjLbw7A4MDiwULFvD6ZZdx1erV9ADu6dOHSdOmcdHw4S29NYMDECOzYLBPVFdXM336dA4//HCGDx9OVVUVDoeDcDhcz/nI5XJFhEB02ZEWxEb3OcRrqNXWVhSF6upqXC6XIRR2gSRJkWA9OougDVQLBoMxszC0hmbNFlUTFFqfSbRDktvtbtAhafz48ezcuZPvvvuuJQ/foJm56KKLmDdvHm+99RZz585l3rx5zJs3jxkzZnDaaae19PYMDA4IduzYwXWnn86GESN4YPVq3ktJYf1bb/H6X38x3BAKBk2EIRYM9omvvvqKbdu2MWHChLhCINr5qDHOOpoQ0Bqeo+vq4/U5GOyaujMtTCZTJOiH+v0HLpcrZkKzJijqOiRVVVXFfR/dbjdjxowhISHBKEU6SNm+fTuVlZWoqsrll1/OoEGDDOFoYLCPVFdXM+Xee3mjSxfu/eILdphMvHnLLTyybRsXXHTRQWvsYdA8GJ8ug31ixowZ2Gw2jj/++BgL1Ogr0poQqOt8VFcIRPc5aGUt0V9rrkoejydSM2+we+Kdb6htJNcEhVYqZjKZYiY0ayJC+3pXDknV1dX07t2b4447jtmzZ7N69eoWO26DluHNN98kKSmJ7777jpKSEt59911uv/32XT7n0ksvJSsri759+0buKy0tZcyYMXTv3p0xY8ZQVlYGgKqqXHfddeTm5tK/f3/++OOPJj0eA4OWRFVVPvv0U27s2JGzHniAPsEgd594ImetX889jz9+QA8eNWg9GGLBYK9Zs2YNX331Fcceeyz9+vVr0AJVEwJ1y46iv46e8KwJAa3hWZKkmMBUK50xaBzxbFG1/oO6Dc2aoNBE266a0KNLkequPWHCBMrLy/n5559b4IgNWhKtV+Hrr7/mwgsvpE+fPpH7GuLiiy/mm2++iblvypQpjB49mvXr1zN69GimTJkCwOzZs1m/fj3r169n6tSpTJ48uWkOxMCghfnzzz+5YuhQMs48k6uKi3m4a1cy5s3j5dmz6dKlS0tvz+AgwmhwNthr5s+fT2lpKRMmTGjQArWkpCQiBHbu3BlXCERPAvb7/ZGGZ81VyePxxG14NmgcZrM5kpFJS0vDYrHgdrtp06ZNJOhPT0+npKQkkjmoqKiIvC9erzfSI1JSUhIRFFrmRxMU6enpEYekI488ktTUVGbOnMmVV17ZwmfAoDkZPHgwxx9/PP/88w+PPvpoxPRgV4wcOZLNmzfH3Dd9+nR+/PFHQPRDHHPMMTz22GNMnz6dCy+8EEmSOOywwygvLycvL482bdo00REZGDQvRUVFTLnpJnq8+y4PAU84HPR44glemzQJk8nU+IUUBZb/DSXFUFoKFRVQWQneKqiuhkAAwiFQVayKAmYzmC1gt4ubywVJSZCcAmlpkJkFvXKb6rANWjGGWDDYa2bMmEFSUhIjR46sd/U52vlIEwK7cj6Ktld1uVyUlpZG+hzy8/Mxm83YbDYKCwsj9fEGjcflclFYWBjpPygrK4uZ0JyZmRkZnJeamhojKKIdkjRBEe2QFC0oNIekbt26cdJJJ/H555+zfPlyBgwY0NKnwKCZmDZtGn/++Sddu3YlMTGRkpIS/ve//+3xOgUFBREBkJOTE5k2vmPHDjp06BB5XPv27dmxY0dcsTB16lSmTp0KiADM5/PtzSG1KhRFMY6jFaHncQQCAaa++CKlDz7I7T4fH0gST192GTc/8ACpqakEg0GCwWDMc8wbt8KWzUgbN8A//yBt2Qw7tiPt2AEFBUjBQKNeu7FlJqrLBW3aorZtBx06onbqBF27ouZ2J9SvN9hte3bQOmN8rpoGI+Iy2CtWrFjBnDlzGD9+PN27d2fr1q17bIHakBDQREZ0w3NqamqkTCYlJaVlD34/JNrFKCUlhbKyskgZkdvtjpR5FRUV1RMUe2u5OmHCBN5//33mzJljiIWDCFmWGTRoUOTf6enppKen79OakiTt1WCpSZMmMWnSJEBkPA4E33mfz2ccRytCr+P4+uuv+b9Jk7hpxw42A3cdeSQ3vv46PXv2rH3Q2k2waiUsXwZ//QWrV8HGjRAK1T4mOxs6dIRBg6BNW8jKhowMSE2DlBSRLXA4wJ4AVitYLCDL+JMd2EorIRgAvx+8XqiqEpmIsjIoLYGiIqT8PMjPR9qxHZYsgpq/7QBmVxL07AV9+kD/AXDoIDjycDDvQTZkHzE+V02DIRYM9ooffvghMrE3WgiUl5dHhEBBQUHEMaeoqKhBC9SUlJRIA25KSkpc5yOn00llZSVApPHWoPFED8HLyMiINDSnpKREHJKysrIoLi7G4/GQlJREWVlZpCxJExQulysiKFwuV0yGoqqqKkZQjB07lvbt2zN9+nRuvvnmlj4FBvsZ2dnZkfKivLw8srKyAGjXrh3btm2LPG779u20a9eupbZpYLBPrFmzhqcnTeKUX37hZuCptm05ZepUpp58MqzZAO9+CL/Ph4W/w4q/ROkQCBHQty+MPh569IDc7tC5C/Tuvlf7UH0+6JayZ0+q9sHKNbBpI6xfB2vXwN+r4OMP4a03xWPS02HwEDhsBBw+AkYfLQSKwX6FIRYM9ooZM2bQpk0bjjvuuAYtUL1eb4wQSE5OjtvwrJW0gBACRUVFEeej0tJSbDYbFoslsvYe1WwaRNDmXGhBf3FxccTFqKKiAojtP9AsV9u3bx9xSMrMzKSoqKieoNCEXbSgsFqtjB8/ntdee43ff/+dww47rIXPgMH+xIQJE3j77be5/fbbefvtt5k4cWLk/hdffJGzzz6bhQsXkpycbPQrGOx3lJeX8/idd5L16qs8rKo8Y7Ox7oEHePHQoVh/+RmmPA6LFkLADyYT9OsPF10iAu+Bh8KwQbAX2TZdSbDD0IHiFs2GLbBhPSz7A5YuEcfx3bfie1nZcNRIGDVa/L9/r+betcFeYIgFgz1m8eLF/PLLL1x66aUkJyfjdrvrCYGGLFCLiooiV7l37NiB1WqNCIHExEQAvF4vSUlJEeej9PR0qqurIw3PBnuH5mKkiQEti+ByuaioqIh8XVVVFek/iG5orqioIDMzM9LnoDU0ezwe2rVrV09QaKVIr7zyCl999ZUhFg4CwuEwffr0Yc2aNXv0vHPOOYcff/yR4uJi2rdvz/3338/tt9/OmWeeybRp0+jUqROffPIJACeddBJff/01ubm5JCYm7lU/hIFBSxEOh5k2dSprbr2VWz0eZgJvHTuauzp3xTHtTVh3m3hgbne44EI48igYOhz6HNKi+94jcjuJ24nHiX+rKsxfDPN/hZ9/gu+/g88/FRmGEUfAiSfBCWPh0L67XtegxTDEgsEeM3v2bEKhUL0SpOLi4npCIJ4FavSwr2ghED3huW6fQ7SrksHeIUlSRLxpDc3RDkkej4e2bdvWc0jSehs0hyRNDMZzSNIEhZahOOGEE+jVqxczZ87kwQcfbOlTYNDEmEwmevTowdatW+nYsWOjn/fhhx/Gvf+HH36od58kSbz00kt7vUcDg5bixx9/5L3LL+eajRvpD/yWlcX5djsJc38AeR4MGw733A/HjYGjDm/p7eqHJMERw8TtlhtF5uGPpUI0fPsN3HEr3H2nyDSc9i9x/D0N16XWhDFnwWCPmTFjBt27d2fs2LH1LFCdTmfEAtXpdMa1QK3bi+DxeJAkKRJgag3P2tTh6IZnY0rlvuF0OlFVtZ5LlcvlijSna/0HsixHBIVWCuZ2u2MyFNHTn7WvtbW1GQ4TJ05k+fLlcQM/gwOPsrIy+vTpw+jRo5kwYULkZmBwsLJ582b+fdJJlIwaxSMbN2IxmxkOnF5YSEJWDjzwMPy+FBbMh/vvObCEQjxyO8GZp8HUV+Hv1TBzNlx2BaxZDdf+G4YNhgsuhq+Nye+tBSOzYLBH/PTTTyxdupSbbroJv9+vm/ORNhU42vkoFAqRmpqK1+uNrG2wb0T3lmRnZ0dcjFJSUigtLY2UIrnd7sj7Es8hSStFysjIqGe5Wtch6eSTT+axxx5jxowZjB49uqVPgUETY2SQDAwEHo+Hpx94gLSnnuJJRSEMuICMzEykM86C08+AkSNaepstiyMBxp0obrfeIQTTpx/Dpx/Be2/DoMFwwUVw0jg4xBhE11IYYsFgj5gxYwYgmgzdbnc9IRDtfGQymXZrgdrQhOfKysrI2oWFhZGGZ4N9QytFKi8vR1XVmKC/rkOSJiiKi4v32nK1qqqKESNGMGzYMGbMmMGTTz6JxXDCOKA5+uijW3oLBgYtiqIofPDee2z797+5qaoKOyAB/hFHwOWTkEceA90aX6Z30NC1A3Q9C847C5avgs8/g3ffhhuugykPw4WXwPkXQP/eLb3Tgw6jpsOg0SiKwowZMxgyZAhHHXVUPSHgdDojzkfaoK54FqjRE549Hk9ECLjd7hjno+iGZ6fTuVc+6wb1qVs6pDlXuVwuAoEAgUAg8v6pqlqvPEwbuqdZrmozHOKVJWlrT5gwgc2bNzNr1qyWPHSDZuD3339n6NChOJ1OrFYrJpOJpKSklt6WgUGzsGjRIh7t3JmTL7qIO6qqMEkSBSeNQ/7xVxJ++xUuuVAfoaCqYr6CPwBeH1RVg8cLlR6ocEN5JZRVQrlb/LvCI77nrgJvNfj8EAxCWBFrtTYG9IEH7oVfFsD/3oHuPeCJKXDEcLjq37BkeUvv8KDCEAsGjearr75iw4YNTJgwoUELVM35qK4Q8Hg8Mc5H2qwErdQlGAxGbDyjnY+i1zbQB5vNhtVqrdd/oL0ndYN+l8sVCfqjBaHT6cTr9QK1lqsWiyWm30TLUIwdOxaLxRLJTBkcuFxzzTV8+OGHdO/enerqat544w2uvvrqlt6WgUGTsnPnTp4ecQTthg/nrm3bsADLTjgR65LltP1qJhx9xJ4vqqpCDHi8IvAvKoW8ItiaB1t2wvYC8e/CEvG94jIorYgVCZpoKKsQ3ysph8JSyC+GHYWwLQ+25GHKKxb3FZeJ53qrIRhqeSHRPhsuvgB++QlmfQPHHAuvvwZHHQZXXAV/rGjZ/R0kGGLBoNHMnDkTs9nM2LFjcbvdMYO+GrJA1YSANsQrWghE26tGZx60tTXBYbFYsFqtLXbcjeHTTz8lvyAfgNNPP52ANjinleJ0OiN9Idp7sav3s25Ds9vtjgg4TfBpDc11BUVVVRX9+/dn1KhRzJo1i3Xr1rXkoRs0A7m5uYTDYUwmE5dccgnffPNNS2/JwKBJ8Pl8TLvwEirat+fGBfNJAb4dNhx14VIO/WY28qB+jVtIEwaVVSJg31EIW/KEGCguE5kBfxBkGRITICUJ0lMgKx3aZELbLBFYd8iBjm2gU9vaW8c24tYhRzymTSZkp0NGKqQlQ7IT1WYRe6j2C4FRWAo7CmBrvthDaYXIXoRaUECcfALMnA7fzYOxJ8Obr8PRI+CGm2CV8XelKTHEgkGjyMvLY+bMmRx11FEMGjQoIgSinY8aY4Hq8XgiQanb7a53JTra+Sjaqae1liA9/fTTSJLEmWeeyarN/1AtwxdffIHNZmPIkCGRYWetjbrlQppDkvae1nVIihYUdTNFWimSZrnakEPShAkTKC4uZsGCBS123AZNT2JiIoFAgIEDB3LrrbfyzDPPoChKS2/LwEBXVFXlq8ef4q+cHC599y1yVZXpnTpR8PV3nLDwd1zDBu1uAQgEhQgoKIkKystFwG4xQbITMtOgXRZ0aiMC/ex0yEiBFBe4HJBoB5sVrBYwm8UAN1kWdqXaTZbFzWQSj7FZxUA1ZyIkOSE1CSUtWYgITWy0yRRixJkISKJ8qahUZDN2FAgB4/FCKNz0J7suo0fCF5/BN9+LORTPPg2jjoJHH8eUX9z8+zkIMMSCQaOYO3cu+fn5TJw4McYCVSs70voSdmeBGj3h2efzxb3CHc9etTWhKArXX389kiRx00030adPH0pKSrj6mSmMvfZKFEXh4YcfZunSpaSkpJCZmcmOHTtaetsxWCwW7HZ7zPTt3fUf7KnlanQPitvtZtSoUTidTqMU6QDn3XffRVEUXnzxRRwOB9u2bePzzz9v6W0ZGOjGilnf8FH7Dhx/280c5fcz1+FgwStTmbh5M13Hjmn4iaoq+gtKykXQvbNQlAeFQuBMEMKgfba4ZaVDapJwC7JYmndasywLQeFyQHoytMmoFRBpyWC1iuMoLoPt+bCzSJQuBYLNm3UYMwpmfw2fT4eOHeHO2zCffCJ89mXz7eEgwRALBo1ixowZOBwORo8eXa/ZtSELVJfLFSMEoi1Qo0WG5qqkZR5MJhN2uz3G37814Pf7OfXUUzGZTDz33HOMHTuW6upqVq5cSVpaWuRxkiRx5513oqoqb7/9dmQqrSRJrFy5sgWPIJZ4vSLRtqiau1W0oNDEXjxB4XK56mUooudtHHLIIZx44ol8++23rFq1qoWP3qCp6NSpE6qqkpeXx7333svTTz9Nbq4xYMlg/6e4uJiXRo2m7fixnLNzBxtlmQ8mX8PR5eWMvOqK+E9SVaiuCay35Yv+Ak+1CMYzUqF9DrTLFlfxHQniyn9rzKRLkthzkhOy0kQGok2mKIeSEKVLOwtF+VRZpWiebi5OmwC//govvAylpXDGqXDW2UY/g44YYsFgt/z999988803jBkzhp49e8YIgbrOR/HKjjQLVLfbHdPwbLPZIgFoYmIiqqrGNNFqrjwtTXl5OYMGDcJut/Pll18yefJkwuEwX3/9NXa7fZfPvfDCC1FVlTlz5gDQr18/JEnixx9/bIad75pd9R9ENzRHCwpN8EULimjRqDU0a+5V0Wt7PB4mTJhAVVWVMaDtAGbmzJkMHDiQE088EYA///zTGMpmsF8TDAaZesttbMjO4eof52IF3jnyKLIKCjj96Scwm+O40AeDos5/e4EoM/L6RMlQVjp0zBEBtzMRzKZmPx5d0MRDiqu2fCk9RRxPhUeIhp1FogejOcoQ7Ta4ZjLhb38QbklffA7HHQ3PvtA8r3+AY4gFg93y008/UVlZyYQJE3SxQK0bfNa1V43+WnPoaQm2b99Oeno6qampLFu2jEcffRRVVXn55Zf3eJL0cccdh6qq/PnnnwCMGjUKSZL48MMPm2DnjcNkMsW4GNV1SGqo/2BXlqvRgiJeOdoRRxxBVlaWUYp0AHPfffexaNEiUlJSABg4cCD//PNPy27KwGAv+fbbb3kpJ4dLnnyc4UqY7zKz2D79Ky785WfSMjJiH6yqoglYcxqqrBIBdWbNlfiMVCEYWmPmYF8xmUTZUk6GKKNKSxb3l5aLjEpxuWjgbmJCh3SBV14SzkmdOosZDWNOgEV/NPlrH8gYYsFgt8yYMYP09HRGjBix1xaomvNRdJ9D3Ybn6KBVExlxr9g0MX/99ReSJNGhQwdKS0t57733UFWV22+/fZ/XHjBgAKqqsmXLFpKTkzn33HORJInHH39ch53vOS6Xi3A4HLd/xOv1xvSgWK3W3VquRmcR4lmutm/fnnHjxvHzzz+zdOnSFjlmg6bFYrGQnJwcc19rNSgwMGiIdevWce2ww+hx4olcX1pKkcnEr7ffxZiCfHpNOCn2wYoirqZvLxBNwKGw6DfokC0yCI6EA1MgNITZJMqV2maKrIMjEaq8ooE7v1hkWZq6t+GE0aJ34e77YP6v4t8vvtK0r3kAY4gFg13y559/MnfuXE4++WS6dOmyVxao0c5HmhDYlfNRtANPczJ37lwkSWLAgAEAfP/996iqynnnnaf7a3Xs2JHy8nJKS0sZMGAAt912G5Ikcc011zSrc0xiYmK9ciHta1VVI1kE7f3Rw3J1woQJBINBw07zAKVPnz588MEHhMNh1q9fz7XXXsuIESNaelsGBo2ioqKCu6+7joU9e/LM4oV0BJYMGUr6Hys46tGHYoVvOIysiYSyCrCYRZlRuyxIdomr7Qc7Nqtwb+qQA6nJopm7sESUKHm8TSsaunUUg92++g46d4Fr/w2nnwEr1zbdax6gGGLBYJd8++23BAKBuCVIjbVAjb5yrQmBaHvVeBOetT6H5uC9995DkiRGjx4NwPLly1FVNfLvpiQ1NZU///yT6upqxo8fz0svvYTJZGLcuHH4fL4mf31ZlmOC/ujG8roNzfHKkvbGcnXcuHF07dqV6dOnN/nxGTQ/L7zwAqtWrcJms3HOOeeQlJTEs88+29LbMjDYJeFwmGlTp3Jf+/bc/MILnKuqeOx2yl+eypDFi7D17xX1YEU08W4vRHJ7IcEmrqDnZOx7mZGqQjgsnIV8flHW5K4SmYsKt3AdipnOXDOV2eMVj/X5W3YWQkPIsrCCbZctyrEkRNP3zsKmFw3HHgWf/h/85wb48gsYfyJ8/V3Tvd4BiCEWDHbJjBkz6NixI+PGjdsjC1Stbj1eL4ImBKIdd7QG2egAdU/7AvaUKVOmIEkSF1xwAenp6WzduhVVVenfv3+Tvm487HY7M2bMIBwOc+211/LVV1+RkJBA//79KSsra9LXrtt/0JBDUlVVVVyHpD21XNXE5+LFi/nll1+a9NgMmp/ExEQefvhhFi9ezJIlS3j44Yd3awRgYNCS/PLLL0zq1YvBV17JnR4PyYB76DBSfltE2uQolyNFEQH6jgIRpCfaCWeniZ4E2x4ODlUU8AVEoF9aUTMErVBMZ96WL4Lo/GJR1lRSLjIXZZVCKGgiobxmMnNJuQi8i2omM28vEBOet+aJdYpKxXOqqpvf3rQukiQau9tkivOGVCMaipq2PCm3k5jH8MEn4PPBqRPg0ceN5udGYogFgwaZP38+CxYsYMKECaiqGtcCNVoIRFugas5HDV2pjud8FN3w3FQlSIqicNVVVyFJEnfccQeHHnooZWVlFBcX06FDhyZ5zT1BlmWef/55VFXl8ccfZ8WKFaSlpZGUlMSWLVua5DUTEhIiLkZaNqeui1Hd/oN9tVwdP348IJxzDA4s1q1bx6RJkzj++OM59thjIzcDg9bG1q1buXr8eHaMHMmD69eTLcukSxLqbXeSMvtb0KYvq6q4+r2zUATodpuox89MFaVHu0NVhTuSu0o0+u4sFEPY8otEoO+ugmBIrOVyiObgjFTIzqiZzJxTO4VZm8rcOWo6s2a/2jZLDG1LTxWWpo4EUQrlD4p9F5XWvHaeEBVllSJAD7fAYDVJEvtrq4kGVZQnFZYKQdNUnHU6zPoWhg2HO2+D8y6AtZua7vUOEJq/e9Rgv2HWrFmoqhopQdIyAoWFhRHno5KSkgYtUJOTkyNCICMjY5f2qtrXRUVFkfImPfH5fJx22mnMnj0bgFNPPZUPP/wQm82m6+voyS233MItt9zCRx99xDnnnEPnzp0BWLZsGQMHDtTtdTSBV1FRQWZmZiToT09Pj/SYtGvXDpPJhNvtJjMzk+Li4oigKC8vj5QieTyeiKAoLi6OCIry8vIYy9VRo0YxcOBAZsyY0WLN3QZNwxlnnMFVV13F5Zdfjsmo2TZohVRVVfHMQw8hPfEE94fDzJFl0kwmbE4n0kuvwjln1j44EBQBvT8ghpHlpAqxsDvCYZE5qPaJicxaQK4NPEvWJi/XTF3em9KlyITm6DsbmEukKEKQBEPimPwBqPREruSbJCDJJUqqbNbma8jWREOiXYimcrfIMrgSRZN4U1QYDO4PH34Mjz4CL78A69bCq2/A0IH6v9YBgpFZMGiQmTNn0rdvX4477jhdLFB353wkSVJkbb3cU0pLS+nduzcJCQnMnj2b//znP4TDYb744otWLRSiOfvss1FVlXnz5gFw6KGHIkkS332nX82llsnRgv5wOFxvnsaeOCQ1xnJ1woQJrF27lq+//lq34zBoecxmM5MnT2bYsGEMHjw4cjMwaGlUVeXDDz7gto4duXDKFLqGw8w7pAdnA/buhyDNmF0rFBRFlAftLBLuRumpYpLxroRCOCwC3vxi2FbjjOT1ieA7PUVc/e+QI67+pyaJALm5hrBpIsWZKDIX2myEnAxITUKVZVHalF8syqCKykTZUnOVLEmScFBqlyWEgtsryrKqqpvm9drnwEvPw4uvwt+r4JRx8M33TfNaBwCGWDCIy5w5c1i5ciUTJkzQxQI1esLzrhphtT6HfWXz5s04nU7S09NZvXo1Tz/9NKqq8uyzzzZ5L0RTccwxx6CqamQK9AknnIAkSbz99tv7vHbduRi76j/QypI0QRHPIUkTFG63OyIo6joknXzyyZhMJmPmwgFCaWkppaWljB8/npdffpm8vLzIfaWlpS29PYODnCVLlnD5oYfS4bzzuKS0lAe7dePosSdzxrq1SKPHwCdfwJHDxYOr/TUDxTwiuG5bE8DGC+oVRQS2BSVCIJSUiwboZGdtQJ6VJsqLLK1sOrMsC/GT7ELJTBXD4jLThIjx+YXY2ZYvjskXaB7hYDIJYdUmA0yy2ENhjR1tU3D1leK9D4fE5Od3W272UWtm/4yaDJqcGTNmIMtypLF5Xy1QNSEQz141esKzNsBrb/njjz+QJIkuXbpQVVXFxx9/jKqq3HDDDXqdmhanT58+qKrK9u3byc7O5uKLL0aSJB588EHUvfxlrpUiaf0H0QIwXt9JtKCIZ7kanaGo64SlfR6GDBnCEUccwcyZM41g8gBg8ODBDBkyhLfffpsnnniCESNGRLIKQ4YMaentGRyk5Ofnc/3ZZ7Ni6FAeWr6cz1wuVj3wMFO796Dt7K/gsivg1dehzyEi8C+pgIJi4daTkyFsP01xQqWa8iRTXgmUlInynmSnEBZtM0XmoDnLefRAlkVJUEaqGKyWnQ4JdtGvkV8krvRXuIUYampsViG2UpNEKdfOJswyjB8L/zcT2neASy8UU58NYjDEgkE9qqurmT59OocffjjDhw+PCIF4zkeNtUDVhEDdxtfotbWr1HtTgvTNN98gSVKk3OHnn39GVVXOPPPM3Txz/6Vdu3bk5+dTUVHBsGHDuOeee5Blmcsvv5zwXjSsxcsiRDskRc/YiHZIiicooh2SdmW5OmHCBHbu3KlrSZVBy/DPP/+wadMm/vnnn3q3TZuMBkKD5sXv9/PUI4/wUqdO/PfjjymVZV6+7joemDOPC7/5Gumbr+Gue2Dqq9C1gwj+84rB7QFXTVagbsmRqoqyovziiOWnmmAToqJdlghsrZb9SyA0hCQJoZCZWjt92myqsYytmcjclI3I2h6SXUKAmc0iy1Bc1jQORocPhY8/hyFDxdTnex/Q/zX2YwyxYFCPr776im3btjFhwoQYC1St7Cja+SieBWpd56NoIRAIBGLq3+s2PO9pCdKbb76JJEmMHTsWgFWrVqGqKkcddZS+J6UVk5SUxMKFC/H7/ZxxxhlMmzYNs9nMmDFj8Hq9jV7HarXGzMqo65BUtywp2iFpbyxXPR4PY8aMISEhwShFOgBYvHgx+fn5kX+/8847TJw4keuuu87IHBk0G6qqMv3LL/lP585MvOsuhgYC3DVqFBPWrOHBSyeRNHkSLPwdnn4OHrpfBKSVHjFdWFFq3ISSYxtrI25IRcKxJxQSA8ba56CkJQlRcSAIhIaQZVGOlVPjzqRNZN5ZKEqE/IGmfX2LWZQlJbvAUy3eh6Z4zf694K334IQTxTC3m241rFVrMMSCQT1mzpyJ1Wrl+OOP3ysLVJfLFSMEoic8R/c5RJc3RTfL7g5VVbnvvvuQJInLLruMtm3bsnPnTlRVpXfv3k16blozVquVTz75BEVRuPnmm/n+++9xOBwccsghFBcXN2qNuoJOe+80UagN39NK0HZnuRrd0ByvKb53794cd9xxzJ49m9WrVzfNiTFoFq688srIz+/PP//M7bffzoUXXkhycjKTJk1q4d0ZHAysWrWKK0aMIPHUU7kuP5/HOnbE/u23vDZ3Lt2r/HD+ObBqJbz8mrh6rCjiCnlpRa0dakLUTJBokVBcJkqTMlJFo3KyM3550oGO1SJKs9pni+Dd5xdCq6CkaTMNkiQyNznp4n3JLxbvjd706Cqank89HZ5+Aq6/sfUNuGsBDsJPusGuWLt2LV999RXHHnss/fr1260QaMgCte6E57pNrtHOR9ElLrsiHA5zySWXIMsy999/P4cffjiVlZXs2LGDNm3aNPm52V+QJIknnngCVVV5/vnnWb9+PZmZmdhstt2Wg9TNHEB9hyStDK2uoNhVc3t0KVL011opUnl5uTGgbT8nHA6TlpYGwMcff8ykSZM4/fTTefDBB9mwYUML787gQKa0tJTbrriCef368cjvvzMnIYF5zzzDyxs2cPzxx8OfK+GCc4VF5mtvwKTLRI9BfrGog09JEk3I0Va/1TVBcHHNUMzMNFGa5Gyg0bkxqKrISvgCtZOZK2smM5dV1t7K3eK+So8IiKt94kp6KNx6AleTSQTv7bPF+fMHhKgqKhPH2FRoos5mFe9NSbn+5yS3E7w2Fc48G154Tkx+bi3nvYUwxIJBDL/99hslJSVMnDhxnyxQo52P/H5/pMFVc1XyeDxx+xzi4fV6OfbYYzGbzbz11lucffbZBAIB5s+fr4tz0oHMtddei6qqfP755wQCAbp164YkSSxevDju481mMwkJCRGBZ7FYYmxR4/UfAJEJzbuyXAXiWq4eeeSRpKamGqVI+znhcJhQTZDwww8/xAxiCzVl8GBw0BIKhXj5+eeZ0qEDN73xBrKq8tSll3Lbtm1cff31WCwWWLEGLjq/VihcfEGtEAiFITsNUly1AiAYEqVGBcWgqEIktM0Ujb+NFQmKIl6j0iOCWc2OdMtOMV05v6h2MnNpzWTmipqpzBXumsnMleJ7xWXiqn1ekegV2JonGo0LSsT33d6Wncosy+L8ta/Jtnirxf7KKpuuhMdkEuViya5aq1q9B8tlpsGUJ2oFwy2367v+foYxlM0ghhkzZpCUlMTIkSPrCYFo5yOXyxVxPkpLS4s43aSlpcU4H0X3OZSWlkb6HPLz8yPOR4WFhZE69miKioo47LDDIlfDb7vtNh599FHdZjAcTJx22mmoqsr8+fM54ogjGDZsGCAG75188skxj9WG42kir6ysLGZCc2ZmZkRQpKamRixXc3JyIg5JaWlplJSURDIUlZWVkc+N1+uNNMqXlpbSrVs3xo4dyxdffMHy5csZMGBAS5wig33knHPO4eijjyYjI4OEhIRI39CGDRtITk5u4d0ZHGh8//33fHT55Vy/ZQs9gDuHDeM/b7zBv/v1q33Q6g1w+cWi9OiV14VQ8HhF6ZHFLISC9ndHVcUV/UpPbclLkrNxAiEUFuU4/oC4BUJATfAuy+K1EuyiQdgki2DXbAJZqh2spt20oF9VxRKKIgJhRREuRKGwEDShkHhN7fGSJIbG2SzitezN7MQky+KcuRy14qeqGtKSxH703ov2HlktQlDlFQsBoSdd2sOjj4vp2089Dk4n3He3vq+xn2BkFgwirFixgjlz5jB27Fi6d+9ezwI12vkoXtlRPOcjj8eD3W7HZDLVcz6KvvocnSHYsGEDZrOZrKwsNm3axIsvvoiqqkyZMsUQCvvIiBEjUFWVNWvWADBu3DgkSWLq1KmRx2iOVNH9B1pGIbpHJTprFG252pBDUnTmqe7aEydOxOfzMWfOnOY/KQa6cNddd/HUU09x8cUX8+uvv0Z+VhVF4YUXDCtCA33YsGEDVx13HJ4xY7hjyxZezM7G/cUXvP777/SLFgp5RXDtv2HxItHMfPnFIogtLhOBdJuMWqHgq5mrUOGGxAThbJTsajjAVVUhCsoqMRWU1rgD1QwxM5kgxSkC1/Y5wkmoTaao809xiWA60S6CXHPN9GZZrn2tyFRmWQgLi1mU3iQmiOem1pRMtc2Cjm3EXjNSwekAVHGlvaBYZCAKSkS2ojkze2aTcFDKyRDHUVgqSpP0vvKv4UgQr6Uo4j3Xu/G5awd4/CnR9Hz/PQetraohFgwi/PDDD5HJug0JgWjno7rONg05H2kio+6E52jB4XA4WLhwIZIk0b17d8LhMF9++SWqqnL11Ve32Dk5UOnRoweqqpKfn0+nTp248sorkSSJ//73vzETmrXsT3RDc7Qt6q4mNO+J5erYsWNp374906dPb+EzY7AvHHbYYZx66qmRhneAQw45hEGDBrXgrgwOBNxuN/fccAP/16MHD/3wA8usVr544AGe3byZU049NfZCUjgMN90AP8yB+x8SoqGkXIgBZ6II5GW5dq5CfrEQANnpItCN7l2IJhAUpT/bC0RgWhGVhWibVTudOSWpNpPQlBe4JAksFnFM6VFTmbPShbAIhaEsar+VnqYbblYXrbdAm5PQlNOYtZkMJhlTcbn+r5PbCZ57CQ47HG69Cd7/WN/19wMMsWAQYcaMGeTk5HDsscdGMgJ1hUB0w/PuLFC1EiRNZJhMJhISEiI161r5yq+//orZbOawww4DYP78+aiqysSJE1vsXBwsZGdns3nzZtxuN0cddRQPP/wwsixzww03EAgEIkF/3fcbYhua99Vy1Wq1Mn78eObPn8/vv//eYufDwMCgdaEoCv+bNo3/tm/PVc8+S4ai8NCZZ3LV5s3ccvfd2O32+k+6/S748H349zXw3zvEVX+PV2QL0lNEkF13rkJdJ6TaDYgge2eRsAqtrBKlPhmp0CGbcFaqWLe1zFeQZZG5SEsWWYd2NQ3IqlordApLRADf1H0O2pyENpkiQ1JUKm5N0ctgMYsMg8UsMhl6C4YeXUXPS9eucNXl8M33+q7fyjHEggEgPNJ/+eUXxo8fT2pqaoy95d5YoGpCIDExESCu89ELL7xAly5duPjiizGZTKxcuRJFUTj88MNb7DwcrDidTn766Se8Xi/nnHMOH330ET179mTUqFH4/X6gvi1qdENzYyxXo3tf4lmuTpgwAUVR+Prrr1vmJBgYGLQq5s+fz+W9e9P38ss5u7KSu/v1o++iRTz78ccNO+C9MhWefAwmngKPPlobOKYmiRvsfq4CiL4ALbgurRD3pSVDh2xx5d6Z2HAGojVhMYvyp7ZZ4pbsBH9QlCjtKBTZkaaeJWC1iEA+JQmqfE03J8FkIpyRIsrMisr0t1bt3xvefBcSHXDFpbBkub7rt2IMsWAAwOzZswmFQnFLkPbUAlWrYQ+Hw/X6HNxuN0888QSpqan85z//oWPHjixatIi1a9dit9vZtGkT27dvp6ioiMrKSvx+P+pBblnWFKiqSigUwuPxUFJSws6dO9m8eTM7d+7kwQcfZP369fz73/9m8eLFZGdnM3LkSDZs2FBPCO7OFjXacnV3DkknnHACvXr1MlyRDAwOcrZt28Y1p5zCP0ccwf1r1/JOair/vPcebyxfztChQxt+4qxv4Mb/wKGD4LEnRS+Ct1oE+cmu2LkKCXHmKoDIOBSWikC6skp8v02meGySc/8QCA1htdTanWbUlFvVlCnJFR7RQN1USJIQLdFzEio9+mc3ZFn0dNit4r12V+m7/oihMHUaFBXC5Ctg7cExnd4QCwaAKEHq3r07J5100j5boGpfR9e+q6rKpZdeSkZGBq+99hqHH344Gzdu5M8//6R37960a9eO7OxsUlJSIrXwRUVFbN++nX/++ccQEPuAJgyqqqooLS0lLy+PzZs3s2XLFgoKCigvLyccDuNwOMjIyKBt27a0a9eORx55hLy8PB566CF27tzJYYcdhizLbN68OdL0Ht1/oJWY2Wy2epar8XobVFWtZ7k6YcIEli9fzg8//NDCZ83AwKC58Xq9PPLf//JW167cN306W0wm3rrtNqZs28a55523a4OLP1bAlZdDWhq8Ng1SU8Hrg7QUEeQHQ6LsSJurkFlnrkIwJEpkdhYKkZHsFEF1ZqqoiT+QkCSRGWmTIYSQ3YbsroIdBaIJvClFg9bLYLcJ0VZS0XSCIcEmelX0zjBMPBmefBaWLIYH79N37VaKYZ1qwE8//cTSpUu56aab8Pv9cS1Qo7MNZWVlu7RA1exVnU4nFRUVjB8/nj/++AOACy64gKeffppwOIzf76e0tDSyD22dxMREUlNTkWU5kq3w+/243W4qKysBMXjMarVis9kiN6vVarglQUTYRd/CUU4UVqsVh8MROWdA5DxXVlYSCNSmh2VZ5pJLLuHKK69k9uzZXHjhhRx99NEAfPHFF5xwwgm43e7I+70ry1XNUlOzXNX6YaItV8eNG8fjjz/OjBkzGD16dPOeOAMDgxZBVVU+/eQTfrz6am4rKWEhcO9JJ3HLSy/RuXPn3S+QVwT/uQaKi+HTL6BLZ/BUiYxCkkME/4U1f2uy02KzCaGwsEz1eGtr7JOd9cuSDlRsVshKI5RgxVwdEE3g7qpa56am+JtqMolgXhs+FwrturF8b9AEQ0GJyDCY5Pg9KXvLNVfBqhXw6ssw8FC4+Qb91m6FGGLBIFL2MX78+BjnI00I2O12ioqKIg3PdS1QU1JSIuUlKSkpeL1eCgoKOP3009m5cycghoNdd911yLKM3+/HZrNFPPoVRSEQCEQCW63eHfZOQNjt9sj/LRbLAS0gdicMLBYLiYmJMWJKO9dutzvSjwBCGNhsNlJSUiJ2p5qo8/v9HHXUUWzYsIG//vqL0047jdNOOw2Al156iVNPPZXs7GyKi4txu92kpKRQVlYWKUtyu92RcjVNULhcroig0PocRowYwbBhw5gxYwZPPvmkGKpkYGBwwLJs2TJevOwyLlq2jCuAB3JzuWjaNF4aObLxizz6MPz6sxiiddSRIgBNdomMgscrri6bzSJ4tETNVaisEgErqhAVyXtZZqSqosQpFBZX5bWZCKoaOzcheq6CrM1bkGvtU1sSi1k0egeCtQPh3DWCS88gW0NzkbKYxfujzUmw6BiWSpJ4z/NLhFjMydA3S3TTrfDXcrjrDujdB046Xr+1WxmSatRzHNQoikKPHj1ITk5m8eLFbN68mcTERNLT09myZQspKSk4nU62b99OZmYmsixTUFBAmzZtCAQClJSU0KFDByorK6moqMDn89G3b9/I+s8++yxXXHFFvSA/upRIkqSYDIEmIKIfGz0BVhMQ2m1P1tbW3x8FRGOEQfRxRgsDv99PIBCInBdNGGg3TRhoj9dKzXa19p9//snIkSMJBoMAPProo1x44YX4/X46d+7Mjh07UFWV9u3bs2XLFmw2G1lZWWzZsoWkpCSSkpLYtm0b6enpWK1W8vLyyM7O5vnnn+euu+7iiy++4NRTT23ek2xwwDJ48GCWLl3a0tvYZ3w+X3wHoP2MrVu38uydd9L7/fcZBzzudNL7ySe55PLLMe1JwP7BJ3D+2fCvM+GNN0SQ63SIpuUKj5iGbLfVlB3VBOS+gAhQg0ERCKclNz5IVRQRUPuDEAgSrK7GgrSbJmEJJHZdbmMyiT1YzMIO1W4VXzfT36qYz5WqignUZRWiPMuRKIarNVW/hj9Qm/nJStungD7uz0c4LMSIogjBYNXxItTSv+Dk48HhhJmzoXd3XZZtqZ/zIUOGsGTJknr3G2LhIGfWrFmMHz+e+++/n5tuuon8/HxycnIIhUIUFxfHCIHOnTtTVFSEz+ejU6dOMcHgZ599xplnnhlZ97333uPII4+MCfKjA06r1Yosyw0Gs3sqIOKtvT8LiOgr+o0N3nclDKJLtvbkXO5ubUmSKCkp4cwzz2Tz5s0AXHbZZTz11FOoqlpPTO7qM7Rlyxbsdjt5eXkMHz6c8847j//973/Nd9INDmgMsdA6CAQCvPTMMxTfey83+P28K0kUT57MLQ8/TEpKyp4ttvQvcTXX5YIZXwuXmkS7KGnRSlwciWIgmlQT0Je7RUbBLIt+hsTdnEtFEcFstV+UM0VPZzabCKgq1sQEEdibTSDXTGmWZZFJgNqAX8s0RDIRNdOZwzVTmbWbJjwkWdi02m1in00oHuJ+rlRVnENtnkRasuh1aAqCIVEypChC2CXY9mqZBn8+giHRVC1JoldDT+Hz4Sdw3tlwxpnw8Ue6LNnaxIJRhnSQM2PGDMxmM2PHjo2xQN2xY0eDFqhJSUmRQPzXX3/l4osvjqw3ffp0hgwZEnPFOjow9fl8kf4HqA1MnU5nXAFRWVkZN+h1OBz1gt6G1nY4HJESpkAgQCAQwOfzxazdkgKirjCIF7wnJCTUC94DgQAej4fS0tJ6x5GUlBRXGFRVVdVb2263xxVZWkP07tZOTU1lwYIFFBcXc9VVVzFt2jSmTZsW6T/QLFcrKioivQ1VVVURy9WSkpKIQ1JFRQX9+/dn1KhRfPXVV6xbt45DDjmkyd8DAwODpkVVVb6aNYsZV17JzXl5rAPuOvpobnztNXr06LHnC4bCcPstUF4G/3sXnE5RapSRIspoKj2i5j4tWQSI/oCoXQ8GaychN1T6oyhCHFRV184jkCRxxTvFCVarCOJNJhSfDxob1GklSFCTSYh7ooR48AXEnv0BkR0prxTPSbCLqcV2a9NnHSRJNIM7EsS5Ky4T5yWe1ey+os1JKCgRcyAy03Yv5PZ0/aw0IRiKykTJk17n75wz4bff4KXnYeQouPpKfdZtRRhi4SAmLy+PmTNnctRRRzF48GA2b96My+WKlLukpaU1aIH65JNPctdddwHC+nLp0qW0bds2EpSWl5dHXie65MXpdNarha+urm5QQMS7sl1XQMRbO7qcZl/Wjr4ir/Vs7IuAaIww2NfgvSFhoJVvaY/f27UDgQClpaX11s7IyGDmzJkA/Pvf/+ajjz5i1qxZDBgwgO+++y7ikNS2bduI5Wp6ejolJSURhyRNUIwfP57vvvuOBQsWGGLBwGA/Z/Xq1Tx9xRWc/ttv3Ag80a4d4156idf2ZfDmcy/A99/BXffAgP6gqJCVKoSCu0rU36dFzVUoqxQBbnZG/KvWqioCc3eVcFFSVRGcOx3i8XZr8/QVSJIQPU5z7VX8cBi8fiFcqqpF87bJJL7vTBBlS02JpWZOQoVHZGb8fsiosSfVE7OpVjAUldY4GukoGGxWMZSvuEx8HtKS9Vv7+hvhl5/g7jtg2HAYOlC/tVsBRhnSQcz777/P+eefz7PPPssll1xCUVER7dq1w+v1UlZWRqdOnSgtLcXj8dC5c2fy8vK49957mTZtGgC5ubl8+OGHpKamAsQE1nVddrSbRkM187urx9eal+sG+XqsvTe1/tr68QTE7oTBvvReNGVfR7ymc60vYU/WVlWVl156iWeffRaAjIwMpk+fzrBhw2I+V/n5+QSDQTp27Mi2bdswmUxUVFQwfPhwjj/+eD7//PM9+VgbGMTFKENqfsrKynj8jjvImTqVc1WVp+122jz0EJOvu45wOLz3x7FgMZxwHPToCR99Ciaz8O/3+oQwSHKKzIGqiivi3moRdGak1C8/URTRBO32iqyDLIsr6Y4EEVzu5uJQs78fWtbD4xX/RxXHluQQ5Up7eTGr0cfhD4gr8+GwOMdN4ZgUDgvBEAyJDIC98SVJjTqO0grxOclI1besas48GDcWjjkGZn+9T+KytZUhGWLhIOass85i1qxZLFy4kLS0tHoBW5s2bdiyZQsWi4XrrruO//u//wNg1KhRvPvuu6SkpGAymXYZiMcTEHUDcY09DfJ3JU58Pt8+rb234kQrddLmEGjsafCuuTnpEbwHAgGUmhrYupazVqt1j9cOhUL4fL5Gra2qKtXV1bzxxhvcdtttkXV//fVXcnJyyMrKQlXVuEL1nHPOYfbs2SxcuJA+ffo0/oNtYBAHQyw0H6FQiDdefZWNt9/OzVVVfAlsuOgibn3iCTIzM4F9OA5FgePGwO8L4OvvoHMX0XugKuJqsVZ6FAqLptlgSAS1SXWCWkURvQuVNROMbVbx3ET7HgV5Lfp+hMNC5LirxNcWi3B0ciTscQC/R8cRVmpKknwi2E5PaRrBkF8i3sfs9EZnMRp1HKoqxIg/oL9D0h3/hSkPw3MvwnVX7/UyhlgwaBX8/fffHH744YwaNYrPPvuMLVu2kJqaisPhiDgfud1uTjzxRFauXAnApZdeykMPPUQoFIoJxE0mU0xAGS0gtKBSiXKK2FMBoQXNdddureKkJYL36D3sLniPPr7otU0mU0wJlMlkqufAFP0+Ru+jMWtbrVZ++OEHLrzwwsj977//PmeddRZbtmzB5XKRkpLC1q1bSU9PZ+bMmVx44YU899xzXHfddbv7SBsY7BJDLDQPc+fO5f3LL+c///xDCfD+kCFc+8YbDBgwIOZxe30cL70mPO7/ey9cNkmU4dhsUFImguSM1Fh3nczU2FIWRRECobJKfJ1oFzarexkwtor3Q1VFeVKlRzg1WSxiTkKivdFB/B4fh6rWuk3ZbKIETG+3pFBY9Bgoihge1wjHqkYfRzgMO4uEMGyToV+J2eYdYmjbzp3w/TwYsHcXugyxYNAqePXVV5k8eTLTpk3jtNNOi3GtWbt2LaeccgrFxcUA3HTTTUyePLleqQo0HIjHExC7Cjz3JMhvSJxowmRfxYmWUYgnTnw+3y7XliSpweNsbcH7nrw/8daO7gvZ07VXrFjBxKh65RdeeIGTTz45xnI1GAxy+OGH079/f+bMmbObT7TBgUrnzp1xuVyYTCbMZjNLliyhtLSUs846i82bN9O5c2c++eSTSDlkQxhioWnZtGkTT/7734z+9lsGAY9nZnLcyy9z2umnxy3T3Kvj+Gs1HHcMZGXBl7MgIUEExUVloq8gK02UIhWXxZ+rUFVdM6E4DIkJ4ir8Pl5VblXvh6qK4y93i5Iqq1VkWRpxVX6vj6OquuZ8myBL5zkJUDN5u0g4TOVk1trfNsAeHUe1HwqKRUYpPWXf96rx1bcw4SQ4+1x4/929WsIQCwatgrFjx7J48WJ+++03HA4HqqpSUVFBv379Io95/fXXOf/88xsdREYLCC1w1ytAbSpxog1u29O1dyVO4u2/KYP3uvvfm+Bdz3OzJ6Jw3bp1HHHEEZFBfHfffTfXX389ZWVldOjQgcmTJ/Puu++yYMECBg8eXO8cGxz4dO7cmSVLlpCRkRG579ZbbyUtLY3bb7+dKVOmUFZWxmOPPbbLdQyx0DR4PB6euv9+7M88w2XhMC9ZLNjvvJPrbruNhISEBp+3V8dx8aXw7tvwfzNhwECRRdAGruWki8C1pEI4FWWl1waW/oCoU/cHhDhIS9at9KS1vR9AfWHkrHF/2kWgvU/HoU3IliRRMqTnHANt/YIS8Z7txsVoj49D61/IStfXfenyK2HaVPhiOpw6YY+fbogFgxbnzz//ZPjw4Zx99tm8/vrrfPLJJ1xwwQWR77///vsMHz488u9dXeHWo/Qlujdgb69wtxZxoihKqwve9cy67KokbHdZl12tXV5eznnnncfatWsBuPDCC3nsscdYuHAhp5xyCg899FDEfcvg4CKeWOjRowc//vgjbdq0IS8vj2OOOSby2WkIQyzoi6IovPfOOyy5/npuq6jgB2Dp6adz63PP0a5du90+f4+P47u5YqbCOefDgw+L0iFvtXBBapMBVT4xRCyhZs6CLIugubxmToBJFgHzntbzq6oohwmFayYzh8Vr1oROgUBA/H7TpjObTOIqu6lm3kJLzu+Jniuxm+Pf589VMCh6DFRVBPR69gGAaOguLtttj8RelVPtLBLnqm2mfqVUq9bB6JHQpi38+JP4vO4BhlgwaHEee+wxbr/9dq6//vqIUw3At99+y6BBg7BarXtVO7+7ht3GCoimrsvfV3Gyq7VNJpPRz7EPzeZFRUVMnjyZefPmAXDCCSewbt06MjIyWLRoUbyPs8EBTpcuXUhNTUWSJK688komTZpESkpKxJ5ZVVVSU1Nj7Jo1pk6dytSpUwEoLCxk3bp1zbjzpkFRFOTmsPDcBQsXLuStq67iqjVrAHi1Z08ufvXVmItMu2OPjkNRsJ5wItJfywnP+RE1JxtVlpF8AcKZKUiBEKYKN0qCHSUtSQSSwRCm0kqkYBDFkYCS7Nx9XbqiIgWCEAwiBUJIwRCEwkjUD5PUmqnMqqrS0KqqJIHFjGo2o1otqDaLEBLNLSACQUzlbqRAECXRjpLiqncudPlchUKYispBVQlnpOieYZArPMjuKsKpSaiO+FmrvTqOYAhTYSmq3YqizeXQAcsLL2O69SbCTz5LcA9nL7TUz/mRRx5piAUDQefOndmyZQsASUlJLFiwgKysrLhBft2r7XoLCC1oP1DEiaIoB1TwHm/turMgotfWbvuytvYeXH/99XzwwQeR773yyitcddVVu/xsGxx47Nixg3bt2lFYWMiYMWN44YUXmDBhQow4SE1NpaysbJfrGJmFfWfHjh08dt11DPniC0YDU5KTGfbcc5x3wQV7HNjs0XH87x249CK4+z647ApRLlJVLVyQJEQpUmKCyCiAuJJeXjNXIT1l1+UlwaCo86/2izIlLSQym0WwazGLry0msZ42nbkmoPT5fNhtttrJzGFFZCHCYTHtORgUdffa7zlZFv0VCXbxf72bghsi0pDsFoIlMzXm6r9un6tQSGQYFEU4DekpGKJdjNpkxl17r4+jwi3KtjLTRPZFD4rLYPQoKCyAH36G3t0b/VQjs2DQIiiKwrXXXsvLL79c73sdO3akX79+9O3bN3Lr1q1bg4F4PAER/djW5vffHGtrwbnJZGqR4D06WxK9tl7Bu3bbkxkU8QbkNbR2QUEBGzduZMWKFaxcuZIVK1awZs2amL0DpKSksHz5cjp27BjvY25wgHPffffhdDp5/fXXjTKkZqS6uprnH3uM6kce4ZpgkGkmE74bbuCme+/F6XTu1ZqNPo6teaKpORiEb3+A5CQR2DsThP9+cZkIvLPSRDBZUi6ERGKCmDQcLxgPhcBTLcqYAjW/960WsZ7dFpnOrNtxaKVM/oCYzFztqxEPkhAMjoQ9tmzda3wBcc5C4RhLWV0/V6EQ5AmDFNpkCLGlFxEXI0kIhjrnbK+PQ1VFI3VYgXZZ+r0Xn/4fnHka3HQrPLnrvqpoDLFg0Kz4fD7+9a9/8dVXXwEwceJEPv7440hQFn3bsWNH5HmdO3emX79+9OnTh379+tG7d2+6du0aN0jcGwGhBbZ7G+Q3hzjZ21kJB0Lw3pi1owXQ7t6X6LULCwvZuHFjRBSsXLmS1atX4/P5AHA4HJHPXd++fSOfvx9//JFzzz03suaff/5Zz47R4MCiqqoKRVEiE+THjBnDPffcww8//EB6enqkwbm0tJTHH398l2sZYmHPUVWVLz7/nO///W9uLSriD+CHE07g5pdfpmvXrvu0dqOP49kX4Ibr4IVXYOIp4j5JEk3KRaW1Ta/hMBRocxVcYjBbdDmJqopAWZvQjCqe60gQwsK8d1f49+r9UFUhUrw1E5lDIZBkIYCSnPo7CtVFUWqH1dX0APj8fn0/V4GgsD01ySLDoGcGxecX2QtHVDZJ+9a+/Hz4A0LkuBxCaOrF6DGwZDH8Mh/6927UUwyxYNAslJWVMXLkyMiMhOuuu45nnnlml6niRYsWsWrVqoh4WLFiBXl5eZHvd+3aNSb70Lt3b7p06aJ7MGm1WiPDzfQQJ/HWbkpxsrfB+672vSfBu91ux2w2t4rzXVhYyKZNm2I+U6tXr6a6uhoQwqB3796Rz1S/fv3o168fOTk5DX5O582bx7HHHhv595w5czjuuOMafLzB/sumTZs49dRTATHo69xzz+Wuu+6ipKSEM888k61bt9KpUyc++eQT0tLSdrmWIRb2jOXLl/P8ZZdxwdKlpAHPdenC+dOmMWrUKF3Wb9RxbNgCY44Be4Kwo7RaxRXxjBThYmMyiSvXwZBw41FVUUaSEDXxV7MTrXCLAFaWRTDoTNQlKN/n90NVRZDq8QrhoAKJtn2a/dDo161wi7Ikmw1fciL2RB2nGUOti5HVIgSDnr0a5W5RalanbGif34+ScjHorm38Mqe94qtvYdyJcO1/4PlnG/UUQywYNClbtmyhX79+uN1uAJ588kluuummvV5v0aJFMVeAV6xYQUFBASCCSE1AaFeBe/XqRefOnRsdLOsV0LYmcVJ3P60peG9KsVRcXMw///wTk7X6+++/8Xq9ACQkJNCnT58YwdmzZ086deq0V5/NlStXxlj9vvPOOzGuXgYG0RhioXEUFRXx2M030/2ddzgFeMLhoPtjj3HZlVdi1rGcpFHH8fhTcNvNMPVNGHO8uM/lEGVIqioC0GBIZBhMJlGKpAV4qioeV15ZM6jMLALwvZhuvM/H0VjCYdFv4dYGxtXMkdDbijSamjkJQVQs7XL2OsOyy/WLSoV9a0aKfuuqqsgChMPQNitiC7vP70c4DDsKhVDLStPvs3LSOPjlJ/hpPgzqt9uHG2LBoElYtmwZgwYNivz7o48+4qyzzmqS1/r9999jrhSvWrUqIiBkWaZr164xJSS9evWiY8eOzVKGU3dtrYm6ua7kK4qyV8KgNZVhNWbtyspK1q1bFyMk//7778i8BLvdTu/evWN6YXJzc8nNzd33D2Adtm/fzqBBgygqKgLgoYce4s4774w7CMrg4MUQC7smEAjwyvPPk3/33dzo8/GBJFFw5ZXc8sgjux14tzfs9jg2bYdjj4TkFDGATZJEZkGWxJX4nAwR2BWViYnF2Wm1pS7BIJRWit4Ai0UMX9NZJDT6OPaGmCnTqhBIqfUdjHSj2k9wZyEWraRL7zKoskqRxUhPEceiF4Gg6F9w1kzuRqf3o9IjMld6zl6YMw9OGA1XXwcvPLvbhxtiwUBXvvvuO0444YTIv3/66SdGjhzZ7PtYsGBBvQyENgFalmVyc3NjSk169epFhw4dIrXzejT4ajdovh6BumtrTkoazRW872t/ht/fcIN3dXU1q1evjryvmkDUhIHNZqNXr14xArFr16706NFjHz5Re05FRQXHHXdc5BfdFVdcwSuvvIKpudxGDFo1hlhomNmzZ/PFFVdw444dbAE+P+IIbnz9dXr16qXr60Sz2+N4+TW4+ip4ZSqceJII9BMToMorgk5ZFkLBZhEBbt25CrIkrsq7HE1qVdqkQV04LI7H7RVXztOSRfDaFKKn0o29vOa85ejclKyqokys2i/WbsRE6UajCZHsdEiw6/N+qCrsLBTnuU2mfuf7hBNh0UL4bdFunZEMsWCgC2+99RaXXHJJ5N8rV66kT58+LbijWBRFiQiI6CxESUkJIOYPdO/ePaYkpVevXrRr1y7mSr6GXtah2myDpnIfCofDTR68N2btusff2LWDwWC992zVqlWRsjar1UqvXr1iSs9yc3ObXRjsikAgwLnnnsvnn38OwPHHH8+XX365y2myBgc+hlioz9q1a3lq0iQm/vwz3YEn27Zl4muvcdLJJzd5Zm6Xx6EocOggqKyA738SGQObTWQUHHZwJIrg02YVGQVZFleZi8vE/52JNROLm/5CQbMEdf6AmEwdCNS4PKXschrz3uDz+bDLJtGULMtiIraegkFRRBYARD+AXlkSbaiaqkLbTHyBgD7vhzYETk8r1c+nw79OgXsfgPvu3uVDDbFgsMfMnj2bSy65hE8//ZR58+Zx7733ApCTk8PSpUtp27ZtC++wcSiKwvz582MC0RUrVkT80c1mc4yA6NevHz169NitgNDKjFrDXANZlnUN3rU19RxKp50vVVVZvnx5PVesyspKQIgiTRho70dubi49e/bU7TPRlKiqyk033cQzzzwDiKm/c+fOZdy4cQwYMIA33njDyDocRBhioZby8nKeuOsuMl55hfNVlWdtNjLuv5+rb7gh8ruxqdnlcXz0GZxzBjz0KJx3QW1gqV1dLywV5UU56eKq757MVYhGUWpmINRMZg4rtXMWVFWsHT1bwWKuN1St2YI6VRXlMWVuMMui7MZu2/3zGknkOPwB0ZRsMtW4GOkoSnwBIUaiyob0Wdcv1k124Uuw6vN+aCIEhLjRSzwPGQoFBTDvF8htuF/PEAsGe8T777/PFVdcEXGPARg+fDjfffcdSUlJLbgzfQiFQjElTNqV7GgBccghh8SUuHTv3r1BAdHUE5N3J04URdmridLR+9VzonS04NCEQXQDckVFBSCEQY8ePWLscrt3796kZQjNyXPPPcf1118PiGO1WCwcffTR/N///V+kdM3gwMYQCxAOh3nz9ddZfcst3OrxMBNYc/753PbUU2RlZem70d2wy+M47nj48w/49XfhhCTVlBhlpgq3GlkWLkiSJK64V3l3PVcBxPODodrha4GgcFaqN51ZTGYWz6H+9yVJXHG3ibkMPlTsjsTmm8rsD4jyqzpzEvaVmPdDczHSehj0PDatbEjPK/Ygzom3Gl96MnanTn0RWnN2RqrIVunB1Glw5eXCCviahoeMGmLBoNE8++yz3HnnnRGhIMsyp556Kp999lkL76xpCQQC9Xog4gW20SVMhxxyCG3btm20gNhVQL4nAqLu2tGZBT2FgcViidmHz+drcG2z2czy5ctj+kcaEmCaCOvevTu9ezfO/3l/Ze7cuYwePTry74SEBPr378+cOXNwuVwtuDOD5uBgFws//fQT71x2Gddu3Egl8Pahh3LNtGkceuih+m+yETR4HPMXw1GHweRr4OZba+93OcHnEw2/ORkioC+sKTtKcYkm5rpBrTZbocor7FO136/adObIhGaTuIJuis0axExlDtdkIUIh8Zr+ACgKoVAIc0LNUDVHglivqYVDzJyEmpkA+/ia9d4PrQynZg6DbsekuRiFQmL4mV7Z3VAIdhQSsJiwts3WZ82myC4UlMCQQ6FjR/jt1wYf1trEQhNP/jDYWx577DFuv/127HY7drs9YlM6bNiwlt5ak2O1Wjn66KM5+uijI/f5fD5+//33GPHw9ddf89FHHwFCQPTs2TPGfad79+7k5OREAnHNwhNqg2u73U5ycnK9wL2qqipSpw+1gXtycnLcwD167ej1nU5nPWHg8/moqKioJ1AcDkdcgVJRURFXoDidTiwWC3/++SerVq2KEQd1S7uOO+64yLnp0aPHAS8M4pGens4RRxzB2rVrKS8vx2w2s3DhQoYNG8Zff/0VeV8NDA4kNm/ezBNXX83RX3/NPcBj6ekc89JLvHHmma3TMezTj0SQdtbZtfdZLMLhKBgWpUeqKoZyqaqwt6xbdhQKidKkqmpRXiTLYspzQs2E5sbag0pSbSmShdjG3JpMRbjSjTmkiKbqCrfYqytRBNlN5V4kyyLLUm4WrxkKifOg5+s5E0X2oryy1lFKDyQJMlNEEF5WqV85ktkMSU7kkhoBqYfdrCSJ4y4uExkpPZyRstPhrHPgqcfhx1/hmCP3fc1mwMgstFK+//57VqxYERl+1rZt29b5i70F8Xg8kTkQu2vGja65z87ObrIr/4qi6Jq5kGU5UvZktVrr9Rjsqmm8X79+9OzZ86AUBrvD7XazZs0aVq1aRUlJyT7NIjHYPzjYMgtVVVU89cADWJ56iivCYV42m7HccQfX33FHq2j2j3sc/2yHI4dDt+7wzvs1d0oiSPf5IS1FBIGFJSKQy06PDQoDQRE8V4lp8JGr/Qm2JgvcI8cRDovshdsrGpElWZQIJTmattHa4xWlWXXtY/eQuO+HqtaU9/hE2ZeeQ+K0cqScDP16L8IKwS07sDgdQjzpgarC9gKRMcrJ0GfNhUvhiOFwxZXwyktxH9LaMguGWDA4oCgtLWXZsmX1Sph2Z/PZkIDY02ZjSZL2uSdCu2k9HNHiQJsloNnRRmdSevXq1aocsQwMWhMHi1hQVZUP3n+f36+7jlvLyvgZ+H3iRG594QU6dOjQfBvdDXGP43/vwKUXwUuviiFWIMRAICSaYl0OkVEwy0IoaG49oZBo/K2qFtafzkQRpOvp5rMnx+EPiGbkKp8QNUkOcYW6qTINXp+orbeYxXnZC8HQ4OcqrEBeEaBCmyz9Gp4VRdiTyrKu9qT+whJsXp9YUy9xU+EW4kbPNY8/Ef5YCvMXwSFd6n3bEAsGBs1MQUEBf/31124HiGnioU+fPnTr1o2srKw9tjFVFGWv7FqjMwXa14WFhZHHduvWrd6k7L59+zbjWTQw2L85GMTC4sWLefWyy7hsxQoswKs9e3LZtGmMGDGieTfZCOIexwknwtKaAMpqjS0DykgRLkiyXDMHwCSu+mrlPyDERLKzWSxTd3kcGpFMR7XYb2rTzUmg2i8yLppL1B4Kk10eh7/GxSjBrt8Ve6htIE5LhiR9ypx8Xi/24gqRrdBrr2EFtufX9m/ogSaMX5kKV11R79uGWDAwaAXs2LEjps5fExBa70FiYmIkA6G5A3Xp0mW3AsJkMu12ENzff/9db4CdNgFb602pOwG7X7/dj4c3MDBomANZLOTl5THlP/9h4KefcgLwWFIShz7zDBdefDFyU13N3kfqHceKNTBkAJx/Idx9X9QjJVGfX1ohgmzN/z8QFCUywaBwQkpLapZMQl0aFdT5/GL/geDuXZv2Ba9PCCr7nrsY7fY4tKvreroYqapo+A0EoV22LlkLn8+HvTogRGS7LP2mURfXlGO1z9YnQ/TPdhh6KAw/DL6aWe/brU0sGA3OBgcl7dq1o127dhx//PGR+zZs2MCGDRtirvJ//PHHETcqh8MRyUBE27gmJyfH9CbYbDZSUlJihEG0MMnLywOEMOjSpQvDhw+PEQYDBgxokXNiYGCwf+Hz+XjhiSfwPPQQdwcC/E+Wee2663jw/vv3P2vtud+LWn+t/EgjySGmGKuqEAomU828gZq5Clnp+jSeNiV2myhhqfSIY9kZEI29CTrbNifaRQamuEy4JWWk6JfFSHKKsqrSmqv2epQjSZLIKuwsEucmVafPbJJDrFfp0S8T4EwU/SFVPtHAvq90aQ8njoUvPoPVG6BX7r6v2YQYYmE/5fbbb+fLL7+kpKSE4uJibDYbPp+vpbe1X5Obm0tubi4nnnhi5L61a9eyadOmmEzABx98EMkcOBwO+vTpEwn2k5OTWbVqVURw7NixI7JWly5dGDJkSERs9O7dm4EDBzb3YR5wGD8LBgcbqqoy/csv+WbyZG4pKGAF8N/Ro7n51VfJzW3dQUeDzP4KsrPF5GYNS00GIRSqrcWv8dMn0V4zyXg/GawoSZDsEqU8RWXiirqOcxIiRLsYWXV2McpIqXExqtDPxchqEVO5K6v0awY3mcSUb49X2OrqsabNKkq8PFX6iAWAsSfD++/CT/MMsWCgP7/99huzZ89m2bJlABx22GG8/fbbLbyrA5MePXrQo0cPxo4dG7lv7dq1bNy4MaaM6L333ovpSejUqRMDBw7kggsuiIgJQxjoj/GzYHCwsXLlSl69+mrOWbSIa4BHO3Xi7Dfe4NXjjmvpre09q9bBj/Pg7HNjSzxMJlHCk54iSowKSsAfFLX/uwuyw4ooUQqFhVORotZOZ5ak2KnMFnPTNR/XxWoRzkLF5SLoDgb1nWMAQiAEgiL7YrXol8HQxEeFW8x3sOvU7JviElfsKzwi06AHSQ4R2Huq9RFMUk3jvPae6WG1PfwwSE0VQjlO30JrwhAL+yGLFi3ilFNOidjfTZw4kTlz5vDZZ5+xZcsWTjvtNE499dQW3uWBiyYgTjrppMh9a9asYcOGDVRUVNC7d+8WG3R0sBHvZ2HevHl8/fXX5OfnM3ToUC644IIW3qWBwb5TUlLCY7feSuc33+QR4MnERDo/+iiv/vvfmFugVl9X5s0Fv19cadWQZTFQzZkoyl7yi0XQH2+uAghRUO0Tz/H5xWOjiQTjUo1oqNOuabGI4Ndua1KrVaB2TkKFRWQAFEX0AuglGLQsQF6xKElqq6OLUbJTXLEvqxRlYXrs2VKTXdAyAXqce6tFZAM8Xv2yNw67EAtVPkjRQSzkdhKuSLNmwNqN0KPbvq/ZROznv2EOTsxmc4w9p6Io2O12brnlFmbMmMHq1atbcHcHJz179qRnz54tvY2Djng/C2azmSOPPJLHHnuMI4/cPwbeGBg0RDAY5LUXX2TbXXdxc3U1H0sST19+ObdPmUJamo7ONC3J7K8gIxOGDK29T1FEEJnkFBkFRREuSLY6g9GqqkVA6AsAqshG2K3CTclqFhkJk1zrrKQ9T1GFoAiGxM0fEGu5q8TjEu21V8+bwr1IkmoD49JycYx6DlbTHKTyisX6Gan6HIcsi32XlOs3qAxqeiKqxZwKvUqnnA4oKRPvrR6zHMxm8fnz+sQ50IOxJ8PHH8JPP7VqsdA6bRIMdskxxxzDl19+idfrpaqqiv/7v//j6KOPZv78+cyaNcsYMGVw0NDQz8LIkSN57733mDNnTktv0cBgr/nuu++Y3K0bo268kdHV1dx52GEcsWQJU6ZOPXCEwrZ8+PUXOHZ0ndrymmC6sFQIhez0WqGgKKJReHuBuHIeCosAs22WcKvJTBP/TrDXlhhFB8paGZLVIpx9Ulxi/Q45kJ0hshnVfigoFjX6Hm9tCZPeJDlEIO8LiF4GPV/HZoVUlwjCq6r1W9eZKM5rWaV++7XVZHXcHv3WdNjFe+/x6rMeCDerQEAITD0YcQQkJsIvP+uzXhNhiIX9kH79+nHVVVcxbNgwhg8fzpVXXokkSZx55pmkpKTw6aeftvQWDQyahXg/C2azmbvvvpubbrqJYcOGtfQWDQz2mPXr13PlscfiO+EEbt+2jedzcvB9+SWvz59/4E1k/2s5VFbA4XVmQTgThSCIFgqqKq78by+obeDNzhAWmalJ4t/7cvVckkQJUnqKEA4ZqSAhBMnOInFFuSlwJopa/WoflFToKxiSnOLcldWUO+mBJEFKkqjd11OEuBw15WT+3T+2MciyyHx4ffoKEBBN9nrQvbPIqC36XZ/1mghjzoKBgYGBwQHP/jBnobKykifuvpuUF1/kIkXhWZuNtHvv5eobb8RmE2UULeW/rjeR47jnfnjwPjGIrU1b8U2zWQwx8wWEUEiwiYbd4jLxf7tNiAO9punuClUVwWZZpXBlciSIwL4mC6Lr+1FWKZqHU5L0K3MBUYaTVyyyGA00EO/xcaiqWFNVoa1OE5hVVQhBm3WvB6rVOw6vTwyr09Nid2eREJFtMvVZ79Y74IkpsGQ5DO4PGHMWDAwMDAwMDKIIh8O8/eabrLjpJm51u5kNPHz22dz2zDPk5OS09Paalt8XQKdOtUIBapqba1yQ7NbYuQqZaU03BTkekiQEQqK9dlq0LyD6ARJ0DuZSXDW2p24RMOvlYmSzCrvPyiqRxbDq0JwrSUJ8FJfp17ugOQ5VeMR5MOtgeao1q2t2u3qQaINyj8jU6NFjctjh4v+Lfo+IhdaGUYZkYGBgYGDQQvz6669M6t2bAZMm8S+3m//270//xYt55sMPD3yhUFgiAqThh8XeHwiKoNGRIIJRbRBY20xxX3MJhWi0huQ2maLfoaBUCAc9izMkSUx3tpjFcdd1dNoXUlwgS0KI6IUjQWSBKj36relMBFT9ypskSYg6PUuR7DZArWmq14F+/SEhQQjnVoohFgwMDAwMDJqZrVu3cvX48Ww76ijuXbeON9PS2Pr++7zx558MGTKkpbfXPCz5AyoqYPjhsfdbzKIUp6BE2FSmJomylNYwgM1qEa5MDjuUVSKX6ywYNFtVRRH9C3phMolMgLdaiDE90DIBPr9+Db8WszjHevUEgHivFEW/4F7rjfHp1FvRvTMMHgoLW2/fgiEWDAwMDAwMmgmv18vDd93Fu9268cCsWWw0mXj3zjt5fOtWzjn3XKSWuGreUiycL/4fIxYkIQ4KS0VQm5kqJh+3pvMiy6L5OdmFXFUtBqzpKRisFpEJ8OrsYuRyir1X6JhdcCYCkmg814vEBNFnEdIps2K3AToG97IsSrv0Eh8gSpHWroE/Vui3po4YPQsGBgYGBgZNjKqqfPzRR/xy7bXcVlLCfOCeceO47aWX6NixY0tvr2VY+Dt06Ajt2tXep7kgBYMimxCvLyAcFpOctenMWqAuy6JESLs63ZSD1SQhasLBIOYqryjxSUvWT9QkOUVWpbRCvyFxJlk4DlV4IEWnKcRmk+gFqKoWIk+v4WfllUIsJekwc0GWwWbRN7i3WcV51KtvQSvFW/Q7DOq37+vpjCEWDAwMDAwMmpClS5fy8mWXccny5VwG3N+9OxdPm8ZLRx3V0ltrWVavhgEDa/8ty8JxKFBHKKiquK+qWtiLxpS8RA9bU2Lvt1nEGs6a2vomQE1y1Nbtm0z6uRhp/Qt5RaIxWa91kxxirxVVoklbDxwJIrD3BfRpyrZYxM3r00csgMguVOoY3Ntttc3uejRO9+sv3vPVf+/7Wk2AIRYMDAwMDAyagPz8fB674Qb6ffQRDwGPu1z0e+oppl56KabWUH/fkgRDUJAPOSfG3u/ziyv0iXYhEqp94gquPyCCKbtNZB9s1tjpzCAeHw5DICQGZ1X7xRXqcrdYL9nZNHarqUkQVprGxSgxQRy/K1Gfng2TSQT3VdWQlqRP4JxgE++Bt1q/Y0+widImVdUnW6HN6fAH9dmjLapvQQ+x0KMrpKVDYeG+r9UEGGLBwMDAwMBAR/x+Py89/TSl99/PXX4/b8syL199Nfc9+CDJyfF97g82zOs2gd8P2dm1dyqKEAIuh8gklFSIx5jNQkA4EoU4aAhJqpnRYBYBXAoiU+H2isDTWy3WT03St1laywJosyDaZuq3fqpLXGGv8DQ4I2GPcTrEVOOqanGu9xVZrnUcStMpuNcsc/2Bmp4DHdbT+hb0EAuyLLIfejV2g/hZKCzQbz0dMcSCgYGBgYGBDqiqyqyZM5l11VXcnJfHauCuUaO4+bXX6N69e0tvr3WhBUXRYsFSIwrcVWKugiSJWQvOxL0PQM1mIQ6SnSLgrvSIjEN6in6++1DrYpRXJETOXg4Vq4fFImr4Pd4a+1MdMgE2izjXeokFqJmUXOO0pEf2RlvDp5NYaIq+BbNJiFG9yM6GgtYpFgw3JAMDAwMDg31k1apVTDriCGwTJ/KfvDwe79AB2zff8NrcuYZQiIOklVtkRYmF9BQRaJdWiCvV7bJEMKvHlWpZFqJBm5NQWCrEQ1O5GHl9+q3rcoisi56zBxITROCs1ywH7Wq9XsG4ySTOp14ORiDWC+pkGwvic6SXYxOIn4VWWoZkiAUDAwMDA4O9pLS0lNsnTWJuv348vGABPyQkMPfpp3l540ZOOOGElt5e66VuZsFRU5tf5RUzFjJTm2augjYnIdEOZRX6DikD0ZBrsQjBo5cQsVnBahWNznqt6UgAVP1EjckkjlvP4N5mE2VIeh2z2SREl6Ls/rGNwVSznl77y86G4iLYsEWf9XTEEAsGBgYGBgZ7SCgU4uXnn+fRDh244fXXMakqT15yCbds3co1N9yARQ9bygMZTSxomYVQuLY8KKWJ5ypoJUMuh3C0qdBxAnGNpSqhkL6ZAFeiuCqu10A1S01vR7Wewb1V3+DeZhFr6dUXoInPsF5ioSaE1is7k50jjre4SJ/1dMQQCwYGBgYGBnvADz/8wJW5uRz1n/9wotfLnUOHctRff/H4m2+SkZHR0tvbL5AKCsHlgsREcYc/INx59Kqh3+0GauYiOBJEhkHPsqEEm8hgVOg43dmRIPaspwCxW0UmQK892q3iSrtegsasd3CvradTcK+tF9Jpf5pwboV9C4ZYMDAwMDAwaAQbN25k8vHHU3nccdy5ZQsvZmVR+fnnvLFwIf36tb5BSq2awoLYfgVnon6e+o1FksQkZqtFuBjpVX8uSWLqdDCk35V7WRaNvl6fjlfubSK41+vKvdaUHNA7E6BXcK9lAnQK7s067y+79YoFww3JwMDAwMBgF7jdbp645x5czz/Pg4rC8xYLG+6+m+duuQW7XUdHnYMIqbCgNjjSrFFBBK++gLg6rdWWm0yiJMVm1b88SZJESdLOIuHAlJmqz7qJdhHgV1Xr57qUaIeSciFqLDqEb3bNccgPVh3W0zt41rvMR9ufXqJQ7/1lZYn/t0L7VEMsGBgYGBgYxEFRFN556y2W3XADt1VW8h3w0BlncOuzz9K2bduW3t7+TWEBDB0uvk5LFld7SytEcK1dOZdl8XX0v10OkYHY1byFPcViEWtWuMWEYz2sPyVJlA55vKAk6zQ1OCq410MsmE1iX4GQPmJBksR6egXPslyznk6ZAKlm2ree+5Mk/faXniHWNDILBgYGBgYGrZ/58+fzxmWXMXnNGnoAd/fty5XTpnHxsGEtvbX9H68PCotEZsFmFWUwRaXie85EYetps9SKBUURPQ2eatGM7K4S5UN6zklIdorAvtwN2en6rOlIqBkG5xPHta+YzSLL4gvo09shSUIw6BU8g9ifXsFzZD0dy8P03J8kCdGq1/5yO0FGZqvMLBg9CwYGBgYGBjVs376da089lU1HHMH9a9bwdkoKm955h9eXL2eYIRT0Ye0GpGBA9CyEFdFgnGCHdtnCDSnBVnslXgvwEhPEoLO2mSJoLiwVVqJ6IcvCcajap28NvyzrZycqSU0wK0Dn4F538SHr10AM+ooPbT09Zy200inOhlgwMDAwMDjoqa6u5tF77uHNrl2578sv2WYy8dattzJl2zbOu+ACZD3KSAwEBfni/1nZwmI02SV6BcyNmKtgtUBOOiTaRNmSVyd3IACnA5DErAc9kCTRlKz71GC9MwE6B/e6Zyp0XM/cFPvTUcxktc4pzkYZkoGBgYHBQYuqqnz26afMu/pqbi0uZhFw99ix3Pryy3Tu3Lmlt3dgUhA1kM2ZuOdzFWRZlCHll0BxObSz6jPAzVzTSF3th5R9Xw4Q4sZbLUqp9BCc0YPA9Gj2NtX0BOjlsGQyiUyArvsL67ieCUI6zpYwyeDTObPw5x/6racTxqUSAwMDA4ODkmXLlnH54MFkn3UWk4qLebBbN7J//JGXv/7aEApNSfT05rTkvQsCZRkyUkBR9R2qlmADf1B/B57WOgjMbAJUHacayzqvZ6rpW9FLzMigNsEUZ73Wy86GkhLMm7bps55OGGLBwMDAwOCgorCwkJsuuIAlgwbx8LJlfOl0sviVV5i6di1HH310S2/vwEfLLGRl7dvVdqslynFIp2DNZgNUHWcF6Bzc6z0ITPepxjqvp7sdq87r6S0GtdkjrWyKsyEWDAwMDAz2O7755ht69OhBbm4uU6ZMadRzAoEAzz7+OM927Mjt771HlSTx/OTJ3LNtG1dcdRUmPUpZDHZPQQFqcjJ077LvazkTamcz6IG5iYL7Vhs8i+OV9BYLrXWWge5iS+9ZC61zMJvRs2Bg0EQEg0F8Ph8ul6ult2LQyggqCp9v9vLZZh+VQZW2CWZ6pJjoU2qupgAARzpJREFU4jJjl2FRUYASv0KeT2Funp/BaRYuyk3kX53tJOnhh76fEw6Hufrqq5kzZw7t27dn6NChTJgwgd69ezf4nIqKCq7u0oWbd+5kA3DXyJHc+Npr9OzZs/k2biAoKoDMLH36DCJTg4P6WKnqPjV4PwmedRMzxv72iZpBhVJRoT7r6YTxV8fAwMCg2VCZX+DjkeVVqBKc08XO8e3sZCVov4oVHv6zku1VCpIksbNKIcdu4teCAD9v8/FSjpV7BjqZ2KnGteUgZdGiReTm5tK1a1cAzj77bKZPn75LsfD8xo10BZ5q145Tpk5l6kknNdNuDepRUICalY20eYd+a5ZXiptelFWK224wh0LCynW361WIm16UVoibTpjKK0U5l16UlIubXhSXidtuaPT70cj1Gk1RKehROaRlFgoNsWBgYGBwEKLyyhoP09Z6uaxHIlcc4sQsS4Bac4Pvd/pYXh4i12nCJEn0TknAIqsUVCu8vcHLHwVBTvmhjLsGhLnv0KSa5x987Nixgw4dOkT+3b59exYuXFjvcVOnTmXq1KkAjATaPvIIT159NVarFZ/P11zb1RVFUfbbvWvYTCZo355QSKe+gBZEVVXjOFoR+/1xJCdjSkuHQKBV/ZwbYsHAwMCgGXj0Lzczt1Yz9chkBqVHl0toggHcAeiQYOKHPD/HtrFxXS8H7T8p4Ja+ibxxZCp53jDvb/Ly8OJyinwhXjgsDavp4BQMjWHSpElMmjQJgP79+/PXHXe08I72HZ/Ph92u4+TilmDJYvwHwnFwgLwfGMfRqigpJtjKjsMQC3FQUWsS/Lv+I6yiAtJBXAxgYKAPWzwhNnvCWGQ4NM1KglnCGwpT7ldJsso4LNLe/6Sp4FcVSv0KCSaJZKup2X9mX1/rYcZWH+8dnUo3lxVNHIDETm+YmVurWVYSpDwYZllJiIkdbZzWKQGfonBbfwdX90zktXVVTN/q44JuDuYXBJi6sopUm8yUISmRtQ4W2rVrx7ZttdaC27dvp127drt8jsViaeptGRgYGByQGGIhDppQUMJBQsX/QMCPJMvCOlhVkMxWLJldwGxt4Z3u/6iqSmWlG5PFhDPR0ejnBQJB3G43LpcTq9V4H/ZXwmqYp1e4eWpVNQWeECmJMr+elEWfVAuzt/u4ZUEFdw1J4rLuzr1/EUnlr+IAZ/9YxpldE3l0cLJ+B9AIFhf5mbq2ipdHJNcIBfCHVTZWBpmXF2BVeZD2DjMntLfR1WXmg41VTFvrZX5RkGAYOjvN/JQfoKha5ZSOCeysCguXSIvEE395GJRu5cwujf/ZORAYOnQo69ev559//qFdu3Z89NFHfPDBBy29LQMDA4MDEkMsNIAKhLzlVL55HdKOVWBNQEJFDQUJp7Qj9YbPsKS2aelt7seIrEw4HObnn38lJyeboUMHN/rZ+fn5fPv9D4wedQxdu3Ruqk0aNDGLCwPcsdRNmk3mqRHJdHJaaJso3CVK/Cr/lATJ9+2ry4REVQg2lQfZ6dVx0uZuUQkqKo+tcHNet0SGZtgBlZ3eEN9s8+MLK9hMEkfm2FhfEeLplVVIEqTboCSg8ttOPyCxKD/A/232csdAJye2tXHUNyWEkZBMoAThnmWVjGpjI9Nu1m3IaWvHbDbz4osvcsIJJxAOh7n00kvp06fPLp+zdu1ahgwZ0kw7bDqKiorIzMxs6W3sM8ZxtC6M42hdtNRxbN68Oe79+osFVUWVRMGAogJKCFCRTWb2lzS5WlPwIKFgDfswhX0Qrtl7OEAo7EeS1JrHqkYh0l5Re84kSUKS4o/8CNfYm9X1P3e5XPTr05skw5Z0v2ZZWYhwQOXaQx3c2Ccp5ntJZonUZDNp1pqJoPvwc2aSALOEtZkbgr/eVo0nqDKph7jyr6oqGTaJTi4T3+wIsrQ4yPzCIHcNdHJdn0Su/K2CssogJJiRonoRgmGVx/+qIttmpofLxHxvEJDAAmtLQry9voqb+yXVnKKD4/fRSSedxEl74GjUs2dPlixZ0oQ7ah6GDBliHEcrwjiO1oVxHE2D7mJBEwoqUPXjm7BxAaH0jiSffDOyNUHvl2tiJFTZFLmBhCSHUeTowHXfghgDGrwUWlJSwuo1a+ndqxdpaakx30tNTeGw4cNQVRVVVZEOhsupByCeMCBLdHPVryef0DGRETl2Uq1Cuu9vKKrKF1t8TOhoJ7HG21tCwmqSSbZK/JQfYPF2n/BNV+HYHCuHZ1mQsiwsLApR7A8j1YgbySThCyjMzfdxWqcE5hcEI795VEnig398TOrhMGYwGBgYGBjoju4TnDWhEPKWEv71LfjtPUzFm8G8b81l6u4fohtSnK/qfT+yIWMIdlNRWlpOXl7hLusqRFZi/wskDQTWmh8fi6n+z1GiRaKjw4TL0tDP2L79VijyhdnqCeMNNW4db0hlW1WY7VVhqhvxnC3uMHneMGPbRzlaSFBYHebtdV6u7unkoREpJCVI3LOoknFzyhiRaWPWmHROaGeFaiX2CGVYWR6io9NMkl0GrTrLLLG8NMSy4mCjj93AwMDAwKCxNHgZSkVFVcMQDEK9EpHYq+lqdKwmW5BkmfC2vzG7SwhbHVgOOQJJNqMASsAXuVrWGFRVQZJkJJO1JmaUIvvTnIjCgOougqAPgn6QVCSLHaxOpMRk8XztOaqKEg6iKkrtejWFvpJF/FFXqkqRLYlEByN1d6wi/laroQAoYfF87XtKGAkZ2db4TEog4Mfn86MoChazlURH4i5rj8PhMNU+H+FQGEmSsNqs2G22Bh+rqirmmkEl1dXVBAJB8TyLBXvCru25fNV+/MEAqqJiMpmw261xnUXCioKqqpgkuf57rKooqkpYUTCZZOSoz1Tdw9RKj1RVxWSSCIVCkftkWUJCRkUlHA4jy3JEMKiqiqIIz3qTyYSqqni9XkKhMLJJwm6zx3dEifo4+wMB/L4AqqpgNltwOBJi9qS9Xmth3rx5fDtnDpIk0a5tWy679FISEmI/d6FQiLfeeZeNGzeiKApHjDicCePHAzDn++/5fu5cbFZb3M+bxWKlQ4f2jDj8cLrn5gI0mMn5448/+PyLL5BMJlBUzjrzDPr16xd33/9b72HmVj8b3EEwSzy+ws3Hm6pIMMs8NCiJTk4zv+RX88LqKi7qnsjJ7RPQLkV8ssnLF1uqua2fk0MzYj+7qqrw7CoPf5UHefDQZNo7tF9xEqgSCSaJrZ4gty+pYO7OAF4FOjhkzs9N5MZeDmxmmdhPpEpxdYhnV1Xx+ZZqdvoUJBXaO8yc2dnO9X0avpq/vCxATqKJzs7Yz5zDLNEt2cz8Aj/ndkvg1PEZXPlzBSl2mRv6OllfEcImw/m9Evlkm4+AIkV+V/kVlSSLTKIZKgM1H1wJlKDCwuIgR7fd37K3zYdmobq/YxxH68I4jtaFcRxNQ9y/ciLckvD//TOhBR+KK7vRwYFKzb9FLbE2UkgNhzD3HoXjiHMJb/4D3MXgTMPcdRAS4Jn/MeFV3yOZzKgN1KjHbkRFVULYRl9FQpdBcR/i27SYwB8zUDYuRXIXo/iqUFGQE11IyTnI7ftgGTweW+4IJCSCoSDeOS/BtuVIFjsSKoTDKK4M7CMvJPjHV4RWz0Vu0xvz0RcgmW2RQ4ZaqSKZZAj68M54GLVkO5LZAkhIYYUQCtajLiax51G7PcRwOMymTf+wfsMmPB4PiqIgy2bat29Ln949SU5OqvecwsIi/l69hqKiEhRVARUSHYl079aV3G5dMVti39YNG/7B6/XQq1dPNmz6hw3rNxAIBFFCCg5HIj179yC3W9d6AaDf72f16rVs3bIdnz8AkgjG09JS6NnzEDp2aB/z+C2bt1JWXk6/vn2wWusE5ZJEWWkJq9eup0/vnqSm1JYVRV89VVBZ/tcKSkvLCQSChEIKy5b9hclswpGYwKGH9sdus+OudLNy1Sr69O5NcrJwtwkGg6xcuRqHM5EO7duxfPlKdu7MJ6SEUMIK6elp9B/Ql5ysrDp7EwHwxo2bWLtuA263B0mWMcsyHTu2p1+/PuTn51NWVkGfPr3rH1sL8utv83ns0UcB6D9oEOefd149sRAOh/ngo4+YN2cOoDL5mmsjYuGnX37h8UcfxZroQEUTRSqoIkCVZRmTyURmZiY333gj1149mYYybq+98QZTX3kFS0IiwWovVV4vzzz1ZNzHFvsU1pUHKQ0KoV5YHcYXUkiyyARrrpivqQjz6aoqBmRYObm99poSvxcH+Hh1FWd3SeDQjNh1JeCr7X5+2O7jxj4u2kdMglTMssTO6hAX/VxGsU/h4kOcqJLCl5urufPXMv6pDPHS4SlYooRumT/M+b+U8+1GL4e3T+C0zg5CisKsbdXc+3s5mzwhph6RilWu//tsXWWY9onmeiJsTWWYxcVBrunl4P2NXjo5zbwzKpXP/qnmxO+K6Jlk5pROiZzUwcqCzwvZWBYSKRhVpW2CjFVW8UbNHJIQ1zv+rmjO5u39j9b2x3dvMY6jdWEcR+vCOI6mIa5Y0P62hZZ8ifrzW0gWa61YUKPDZs1kVEWWxRW5cEU+ytCJKDvXgK8SqeeRSBld8C76lNBnd2F2F9Z0Pmu2HbtI54dDhBMzMB9/dSRIr31Niaoln+P/9H7M5TuwWOyokooc9ItH+MtRy7ajrp+Pd8mXhP/1AInDz0CRFJT1v2NZPgsSappjVQXJ6sS37S+kLSsxBzxQXoA64AQkU7xTJCFZE/Gv+B5l3puYQj4wmQEVxe9D7TkSW7seuz35KirL//qLNWvW07VLJwb074skSVS63az+ew0lpaUcfdQRJCXVNvFu27adBQsWkZCQwKED++NwOgiHw2zZvJWlS/+ktKyc4cMGxzQEV1SUU1BYhM8fxF1ZSd++vXEkOggEgqxfv4HFi5dikiW6du0aOceKorD0jz/ZsnUbPbt3Jys7C1mWqfJ6WbNmLfPnL8Q80kTbNrWOUOXlFeTnF9C3T++4x1td7WP7tp1069IFUuKfEwkJm82KIzEhcgXbbrNisVpIsNuRa8q+/P4A27btJLdbbswZLS4uprhEZsfOPMwmE8OGDcJssVBZ6ebv1av59bcFjB51DKkpsfaZf69ewx9/LCc7O4vDDxuG1WbF6/Wybu16FixYhMVipcrrpZe6r848+mK1W7E5nKhAQkJi3Cv+kiSRYLdjc4jPii0qA2Wz2bAmOnA4HMiyjMViqVlDZG48Hg9ms4Xi4mLuvf9++vXrw6ijj6n3Glu2bOGnn38hMTkFu82Gz2Jl3o8/kpefT5ucnDqPVrmhj4P/9HHx9Eo3dyys4P5DUzivWyJhVcVWE6xbZAlsMvY6JUp2kwxWOW7pEpKEwyJhscnIdbJbFhPM3urn2LZWPh+dQZpN/Gzf0NvB6T+U8voqD+M62JjQMRHt98wn//j4dqOXi/s4efWIVGw1r3lLXwfjvi/n7fXVTO7pZHhm/axeiU8hI6HuHiXWVwT5cGM1S4sDrK0MgR+sEtzSP5lFxSGyEswc187OrK0+kiwyTrssejsUOLtLIps8YSp9CsT2/FPoM8SCgYGBgYH+NHh5XyGEmpAKA06CgeNgwMniNnBcze1kGHgSDDwJaeA41E6DUK12pIp8qpbORC3cgGoyI3fsT3D1PIKf3ovZW4qa3hlpwFikyJon1a4dcztJPO6Ic5EzOtRIito//qGSbfhnPonVnYecmIRqsqAkJKP2HUu4/0kotiQkVcVksWOtyCM46wnCpduQTDaw2FBtiWCtudmcyCjIW5ZjMpmQrHaw2JFkU03eJFoaASYL4coSQku+RA77kRJcYh3ZhJLWkcSJd2Fy1bl6HYdt23awds0G+vTuxWGHDaddu7a0bduGnj0O4aijRlDl8bDq7zUROVXpdrN02XKcLgfHHHMUubldaZOTTft2bRkxYjj9+vdh46Z/WL9hY8zrOJ0OKivdeDxVHHnE4eR260abNjl06tSBkSOPID01jXXrNuIPBCJHWV5ewebNW+nVsweHDhpAu3ZtaNMmm9xuXThixDDMZhObN2+J/TDJMqYa0RRLzTmUZMxmU72AVqrzdZ/evTn88OF06dwJk8lEv359GHH4cAYO7I/VZq1ZS8JsNsesZa4p3yooKMDpcHLkkYfToUN72uRk0+OQXI484nDUMKxftyHm9YtLSli1ajVtcrIYedQIOnXqQJucbLp17cLRx4xEUVQ2b94Sd++tAa0Ma1d7k5CiHlf/+T6fj569ejJ71kx+nvsDP/7wPfO+/56HH3gQl8uF1WqlqqqKH+f9FHf9b7/9jm1bt2G1WAgGg1itFjZs3Mi8eT/G3Y1ZlrHKUmT6sNUkYZEl7KamKfOSgJAKPkXlxr5O0my1kXZOgoWb+zoBmfc3VUdypaqqMnO7H8wy/+7liAgFUMlIsDCxkw2CKmsbuKLvR4p6Ti0ry0OoIZW1FSFxwcQq8egKDzO2ermxbyIfb/Zyzo+l/Fbg5/2jU/hXlwTwhDipawLjO9h4dW2VOKbo8yRJBFSxN4NYvvnmG3r06EFubi5Tpkxp6e3sEZ07d6Zfv34MHDgwYvtaWlrKmDFj6N69O2PGjKGsrKyFdxmfSy+9lKysLPr27Ru5r6G9q6rKddddR25uLv379+ePP/5oqW3HEO8Y7rvvPtq1a8fAgQMZOHAgX3/9deR7jz76KLm5ufTo0YNvv/22JbYcl23btjFq1Ch69+5Nnz59eO6554D97/1o6Dj2t/fE5/MxbNgwBgwYQJ8+fbj33nsB+Oeffxg+fDi5ubmcddZZBAIBQFR5nHXWWeTm5jJ8+PAG7U2bkgZ6FlQUrwf74RORDpu4a+NuVUVyphMu3UH1q5dg9pbh//VtLCVbkVyZhHauxvTnV5gq8lDSO2M+8z4sHfsgVbnF0+MsLdUkEFQlhJTaHnNiquihoHZecmDzMkzl20WQDqAEUNIOwfXvaciyjbK3roUNCzCZLajhEIFwkHBFPnJaB+L9QZUkCSQZNeRHDQWQQoGoLEp0GZIEZguBdb+irJ+PyZaAioykhAmHFcxHXYCl+2G7PuuAoiisW7eBpCQXvXrVz0JkZGTQqVNHgkE/4VAIs9nMli1b8VZVcdioo3G5YodUSZJE7149yc/PZ8OGTXTq1JGEmlHhWlDRrVtnEh2JMc+zWq10y+3K8r9WUllZSWaGqOvw+/2EFQVHYuzjAVJT0xhx+PB6dqZ7G6g09Cxt340NHrUryTabjd69Dqnpi6jNRmVmZNCubQ75BQU15V4ikNu2bTuhUJh+/frUG6+emGCnX9/eFBYVIUlgilNuciCgKCqJiYkMGDAgRrz17tWLBQsX8uWMGQBUeb31nuv3+5k1+2tC4RBOm4tuXbqybsM6qqqqmPnVV5x15hlxPiviVbQwO9zEMa6KRDCs0jPVzOB0G7ESFYZn2UlPMrG0OESxTyHTbiaohLHKKkNzbHSM6TsQz3VZRHlmQIm/+QRJxV+nEdofVvgxT/wBkGqEhGqCAk+YS34tY/G4LAamWVBReXxYEmFFocwf5vSeDh4a4uKBPz0sKQwimet3Udnl2r0ZCMLhMFdffTVz5syhffv2DB06lAkTJtC7d/zsZ2tk3rx5ZGTU1ttNmTKF0aNHc/vttzNlyhSmTJnCY4891oI7jM/FF1/MNddcw4UXXhi5r6G9z549m/Xr17N+/XoWLlzI5MmTWbhwYQvuXhDvGABuuOEGbr755pj7/v77bz766CNWrVrFzp07Oe6441i3bl2c333Nj9ls5qmnnmLQoEG43W4GDx7MmDFjeOutt/ar96Oh44D96z2x2WzMnTsXp9NJMBjkyCOPZOzYsTz99NPccMMNnH322Vx11VVMmzaNyZMnM23aNFJTU9mwYQMfffQRt912Gx9//HGz7rkBsSAR/Osbgl89hcliIl4CIvInMBxGTeuA7Yz7kTsPRF09D8v21ciSCrIF8/rfkao9BDM6YTvnUSSTTPXUycgBN0hmai09YteWVJWQCtZ/PYC5b5uaXUURDiIpEpjE42WTGblsO1Xv3Yqp40Dk7sMwDTgec2obTIkpJEgmzEmZhIL+uEesKgrh9A7IPUYiKQHCPq/oQ1DrBAImE3grCC/6HMlfCSYLEgrhcBClx0gSR12KLDohdvlnu7LSjdvtpn37dvEnEKsqhw4aQDgUxiTLBEMh8vMLSUlJITMzo/7jAbPZRMeOHflj2XJKSkpp364tIISJw5FIcnL8mQQulwtVVQgFa91UkpOTcDmdrFz1N2aziTZtcrBarZEAu23beAPp9A1U1Jpzr9Z9D3bxeFVVSUpy4nRqxep1SlGsZtEwHQojW2VCoRBlpRUkJbnIrNvLUENmVgbJyUmoinrAXrjVSr7qvoOhUIjKyooaQwApbsPyn8uXs3jJUiRJokunTtxx263cdOutVHmqmL9gAX+vXk2/qCtzLYN44zo7zCRZ6/8+y7DLHOIy8UdJkHxvmEy7GbMs88YRqahINfat2jqiTGtdZRBUkBv43GfaTBTUKQ2SJbitr5P7FJU/ioJIJgkz4nddkkVGlsRvxOmbqjldKcMiqfRPM3NjLyfn/1rBV5uqay2koo9MhRz7gSlk94VFixaRm5tbU2IJZ599NtOnT9+vxEJdpk+fzo8//gjARRddxDHHHNMqxcLIkSPrXQFtaO/Tp0/nwgsvRJIkDjvsMMrLy8nLy6NNm5YdfBrvGBpi+vTpnH322dhsNrp06UJubi6LFi3i8MMPb9pNNoI2bdpEzqXL5aJXr17s2LFjv3s/GjqOhmit74kkSTid4oJvMBgkGBSGM3Pnzo1Mor/ooou47777mDx5MtOnT+e+++4D4F//+hfXXHNNs1vGxxULSjhEYOX3KBuWQILmQhKLioQsychWK5TvJFy0BVPXoYRX/oBsASRxtZ2gl2BaO6znPIpsMuN77xbMJVsIhUMiAGkg+lKDPpTs7piT4wgFwNSuJ/6EZGRPIZLVjiqZkP1VqAs/Ibz0S2S7C2yJBLJyMfc+BtvQiZhsTsLB6jgvphDChH3indgOHS92FA4SqiohHPBFvb7os5Cry1A3FyObLEiqCqoCZivWoRMxOzNFtiXKuanOiQMJPJ4qgsFQvfkBESQJu9UGNToi6PPj9VaTk5ONKV6tdg1pqSko4TA+n6/2JVUVi9Ui1ou3mZrBctEfvMTERIYNHcSfy/9iwe+LsVgsZGdnkZ2dRXpqCqlpKTUlR/uOrh93Few2e4OrqmrscQaDIfwBP0lJLuQGfvAkScLlchHwByJlaQcaFouZooJC/vfW29jtdhRVRVHCzPvxJ35fuJiEhAT+ddppnDJhfL3nzvzqK0pKSlBRGTZsKCeNPYG333mHzVs2U1BQwDffftcKxIJ4b9Ns8X92rLJEhl3GH1SpCIr3WJakmHIlUNhRpTC/yM/MbdV8+o8fTA2PZOyZbGZxSYCQqmCWRCGjRZYZ3ymRoKpyzo9lBEIKHZLN/GeIg9FtbHR2mUi1mAj7VX4u9PPlsakckZ3AF5urIkIh7sdUgr6pxoyFuuzYsYMOHTpE/t2+fftWcYW0sUiSxPHHH48kSVx55ZVMmjSJgoKCSMCUk5NDQUFBC++y8TS093jv044dO1o8OG2IF198kXfeeYchQ4bw1FNPkZqayo4dOzjssNqqAu0YWhubN29m2bJlDB8+fL9+P6KP47ffftvv3pNwOMzgwYPZsGEDV199Nd26dSMlJSXiWhm91+j3w2w2k5ycTElJSUzGsamJ/9dFVbAPPRU1dyiyyRL3aqpqNqG6ywj+OA25Ih9l/UJMPY8i5EiDUDVIZtRgNeHktljPnYIkm/C9dzOm4i2EXFmYjjwXc3YXpFCo/uKAqgQguS3mnNy437e26UXw1DsIzXoaU3leTe1SzdVRJQS+Cqgux1yyjdDKbwks+gzXZa+iZnSiXiCpqqgmE6Y2PSPfkUwWJNkcCQ61/0qqimJNhJRk1NKdSLIMyEghP+GNf6AMPxtMZqSIYIiPUtMo29h0mIqKoigk2OuXUMScF6uwmFXCStRzReAjy3uWemvbtg1paank5xdQXFxCSWk5y5b9yf+3d+bxUVV3w//ee2cmM5PJCgFCEhKQJXuAEPYliIAgBZSyCC5UqkDVj89jK+Wty6u2xfrUimurbRUpVkEo2IoKiBBFBNmDECALSUgg+z6ZzHrP+8ckQ0IWAVH0ee/384FP5s495/zOPTN3zu/+NpAID+9FSnICwcHBbaS8Gq7p9lsSV5iaVzQrd1230ev1Pv/B/40YjUbyzp5lydKlPmuaUD1IsoK/2Z/IyAjuuvNOX+apFiorK9m+fQeSLGM2+nHTjZNQFB2TbryRD7dvQ/WobNu+jV8sXYq/z9pzPfDeH8xK5+vsr0gghC8bU0u7siYPG/JtbC2yc7jSTYNbkNpNx9Tefvz7nAO1k09wSjeFF7I85NS5iQtum0FrZJiBEKNMWa2L/HoPDS7BiVo3/jqJaREG3jgtUWMXrC9oIt+q8lKW1WvgVQXiUgVFgF4vMaJ7BxZKjR81X3zxBREREZSXlzN58mRiY2PbvP9jrjPzY5V9+fLlPP7440iSxOOPP84vf/lL3nzzzest1mVhtVqZM2cOL7zwAoGBbTMt/pjW49J5/BjXRFEUjh07Rm1tLbfeeiunT5++3iJ1SYfKgqwzYEy55Rsbq4D73AnE/g1I+YeQRsxBCusHRccAF57AnugX/gFZ0eF4+xF0ledw+XdDueVXmG+897LKmXW6kZRlLKMW4k6YiOPUZ3jyvkIqy0etKgZbNZLH5VV0ZAM6vQFPwRGavtqMftpDncdgqI7mMb1P2tu5IIG3poKlO3LSRNRdbyLLkjcNrKzgyfwYR9osTLETEN/wvNzrXy9wOS+vkJKEhKIoNDbaujQ/NTXZEYCiuzY+eUajkZiYaGJionE6XdjtTeTnn+PrE1moqsq4saN8mrAvU1U70bwH1E58u68pQmpWHC8PWZaQZBl7k73L86xWq9f68m3l+4Giqipms5no6GhfrIcAamtqqayu5MKFC/xsyRJW/+k5Zs2c6Wv32Z49nDlzBglISkhi8k03AjB9+jRWv/wyxcXFZGYeZ/9XB5g0aeJ1mdvl0fyZEVKbm86xKieLP6shs9LFhEgjj6ZYGNPTwNBuBv6R28S/8+2d3qMi/PX0C1D4sMjeTlnoYVZ4KM6fTy446GnWsep4Ix4hODyzO7OiTUyJMrKjoIlXjjfyimQFN4zrYyQpROHPp5sQcqvPoluQ1ttASjfNsnApERERFBUV+V4XFxcTERFxHSW6Mlpk7dGjB7feeisHDhygZ8+ePpeQkpISenTiPvlDpDPZf0zr1LNnT9/f9957LzNmzAB++HNwuVzMmTOHRYsWcdtttwE/zvXobB4t/JjWBCA4OJiJEyeyb98+amtrcTfHqLaWtWUekZGRuN1u6urq6Nat2/cq51U7ubY4sMgDRoCiR5TlgbUaOSYJ1WnHHdQT/cJnkWU99nWPoFQW4vIPQZ6xAkuzonA5W7rONmeu/MM4PnsDT9anyKoHQ2Q88ugF+C1dg+H251DDYxEeF6I5WlrW6fFUnAXV1WGvkgBJXEzLenGWF+WQ8OY6l2QdyoCxEBqJcLvx1l3QozRW4tz7NqrL0blVofl4gMWCXm+gsqqq07lXVVdTWlqOqqr4+RmwWPyprKzyFQjruE0VOp0O8yW59lvcjb4NBoOewMBAUlISGTjwBiqqqqirq/e9L4RAFWqnSkGTw95h/MF12YA3D2oweDMo1dbVY7U2tj2nWdQmu536+gYupvv94SDUZtuXaFZwO7marcuaiA7Wp6nJzqBBg/jg/S3s3L6NT7Z9zM5tH/PBv7cwc8YMVCEoLCrmqd//3meqFgK2bv0Qh9OJJMv069eXvLyzHMvMpKK8gj5RUQgBDVYrW7d91G7M7x8JRxeR1HaPABl0zdfK5vLw3wfqyaxw8/LYIHZP78bDiYGMCDOil2XsHrXjBwqtxpvX18S2YjvVjraxWTpJ5v+kBLFrWhhvjA6mt1nCpJMw62R0ssTro4OY2tfk/bx5JPqG6nk+LZCXRgYxrqcBXC3xPN7/7rrBjFmnKQuXkpaWRk5ODvn5+TidTtavX8/MVsruD5nGxkYaGhp8f+/YsYPExERmzpzJ2rVrAVi7di2zZs26nmJeEZ3JPnPmTP7xj38ghGD//v0EBQX9oFxeWlNSUuL7e8uWLb5MSTNnzmT9+vU4HA7y8/PJyclh+PDh10vMNgghWLJkCXFxcTz88MO+4z+29ehsHj+2NamoqKC2thbwFsn95JNPiIuLY+LEiWzatAlovx4t67Rp0yZuvPHG790K9K1+XSRAiR6Cu1skUkU+auFR5L6puMI+wW/+KiTFD8fbD6NvURR+8ggBE++76OrzLcZ2FRzBte6XSDqddyfkceHuMZDgFe8jR92G49hHiOITSIre+7BQFSgBoUiSQseb5q430q2rSwiXHX1kAqL/SNS92cg6Hd7aCybEiV04Tn+GKWlKl/0FBAQQGBhAWVk5TTYbpkuyDgkhmusfKEyaNAFF8QYZHzlylAsXSunTJ7Jdn06ni4KCcwQHBdK9+7fTOrNOnaK+voEhg1Oa8/K3Ddk2m83IzVWTWzCa/LA1NWG12tplFQK4cL4Ej6q2cxPq9Mo3v3ElbkVXiizLhPfqSWHBOXJy8xgyOPnim83D5ubk0dBgJTQkqONOriMtbmySJOF2uzpUJCVJanNcr2//tW+Ja+nduzf6VpvOsLAwfv2rR8j47HNAIi/vLJmZx5kyZTLZ2dlkfP45fn5+6PV6Pt6+g4+3b/deNknyZlgymXA47OzatZuS0hLCe13HHxwB1c6OP20uFSodKno9BDYHMx+tcpFR4mBitB8PxPvT9o4lcItm18cuBkwPN/GPnCZezGrkqSHtCywCZNW5KLapeFRBkdVNvwA9MQE6Nk8M5YNiB+U2N9OjjNwQ6LVO3NbHyJ4LTu/Xw+1hWE8/FvZrn7VMw+vf+8orrzB16lQ8Hg/33HMPCQkJ11usy6KsrIxbb70V8CYaWLhwITfffDNpaWnMmzePN954g+joaN57773rLGnH3H777WRkZFBZWUlkZCRPPfUUK1eu7FD26dOn89FHH9G/f3/MZjNr1qy5ztJ76WgOGRkZHDt2DEmSiImJ4fXXXwcgISGBefPmER8fj06n49VXX73uWXda2Lt3L+vWrfOl4QVYtWrVj249OpvHu++++6Nak5KSEu6++248Hg+qqjJv3jxmzJhBfHw8CxYs4LHHHmPIkCEsWbIEgCVLlnDnnXfSv39/QkNDWb9+/fcu81UrCy35fnS9Y3GGxyGV5+HO/QrdT1ZgWPwKsrMRx9sPo1QV4vIPRpnxayw3eivS+bad35QyqAv0cRNwhfdFqSlB8jMjqQJdYzkNf1kMpkCU8yeRdAZAILkcuPVGTPE3ISmG5sdxra0H3/CjL1rOaUZ1o/hZkOMnoh55H1Q3yArIEorDivPztfjFjUfWGTudpCzLDBrYn88//5LM4ydIS2tbSC07J5fKympSkhN9sQbRfaI4ezafw0eOYjYb2wS3uFwujh7NpKa2nlGjhqHXX3mV4dbbKI8Kp05nExQYSFxcbJs5WK2NFBSca1Z4Lm6AwsN7kXn8BDm5eYSEBLWZT27uWSqrqrxBxJeZ3UiSvUFAdnvHGayulktHj+7Th8LCIk6ezMJo9CO6Tx/0zfUCzp0r4mz+Obp374Z0iXL0fVNbW8fJrJPccEM/evX0Fjrr3SscRZKRFZnS0lLOXzjfLmi+rr6e4qLz6HTeTFAtbTuio/mZTabmtRS4XS4aG70WmG3bt1NSUobZbMTpcuGx21FVT0tHyLKCXq/HYDCQm5vLrl27WbRw4TW4El4Z1Q5k9QhvgHJ7TzgJJCiyurG6VCz6tkbVartKXoOH3iYdvYzez21RowfcgrhghXYV0IAKu9osSudmRFmC/5MSwF2f1zA6TM/UyEstfrDjvB2H03uP2ZDfxIRwIyBj1sP8vl4loMnlxuFR8VMUQvxkrynUBUa9wjOpFm8aV40OmT59OtOnT7/eYlwx/fr1IzMzs93xbt268emnn14Hia6Md999t8PjHckuSRKvvvrqdy3SFdPRHFo2cB3x6KOP8uijj36XIl0VY8eO7fS368e0Hp3No6vv9w9xTZKTkzl69Gi74/369ePAgQPtjhuNRjZu3Ph9iNYp38Ky4P1x0vlZkKMHI05loOYfRdH5IVw2nO/82qsomEO9isKke9tVYf42pgV9r4EYZj2Oc8vTKLXlSIqEQEZXeAQQCMWAkBRU1Y0wBaJMfgBD7FhcqgvJ7URy2b1pUAFUD6qiXkzViep1OQJwO8FlR5IlBBLC7US4vMcMceNxhUZDcSbo/VABWQg4lYHj8AeYRsy9GBjdwWQjIyNISo7n669PYrPb6dWjJ5IsUV1dQ2FhEeHh4QwceDHA22w2MWJYKl/s+4qMz/bSr19f/M0m3B4PF86XUl5RTnJSPP369m0zjiq8PumindmqeUWEwO1R2+zhB/W/gYryCjKPn6CqupbQkBAURcbhtFNQUITHozJs2GAMhotKSVBgILGDBnDiRBZNTU306tkTWZaorqmhvr6eAQP6c+rkKRyO1oHCAtWtoqrtU+gGBQchIXHkSCZ9Y/qg03srRlssFoQQeDxquxuHqqp0FRqhqiqqx9NGYTAY9IwYnsqBg0c4fOgoZ/MKMBpN2JpsuN0uUlJSqK2t9ZkNrwcFBQXcu3QZBw8dYsCAAfz5lVdIG5bK0NQhhIQGU1/fQGVVFc/+z3M8s+q3REV6MydUVlXxpz/9ifzCAl9Wp6FDh3Q4hsftoa6uDn+z2adPV1ZU8uqf/0x9XR2SJOFv9ic6OhrVo/Lhxx8DKg6HgwXz5zP95im43a0sGxKse/uf7Nr9GR6Pmw8++ojbFyzwpd+9WhRJAg/UtHLtaYnjya/3cLzajV6+9BsnUGQ4VevmRK2TkWHGlsMgwbFqJyX1bmb2NdHD5L0v6BSvglFpV319eM+XcHoEu0u9RQx13xAjMyjYwG9SLDx6uJ4Qo8zw7hezkuXVu/l7ts3rECpJrM2xMTnCwK3RF+uolDa5+emnVTyc6M9tMRZO17m9FeYU+F1qADdFaFYFDQ0NDY3vjmvi5KrEjcG15x8o9gYcW/+IOH8KpboItzkE5ZZHCJh0X6uzr9UTMIFx+E+Re/XDeegD1MJjqNYqZLc3YFjV+SEHhCL3GYw+ZSqGfmlIkozkdiJix+E2ByHrjV57glC9NR/MgW0klHR+iKRpuCMSm60UEnhc4N8NoRjQmYORJizGk3MAdN5Ns0cIVLcdR2MtBo8TRek6Q0lSYgIWi4W83LOcyc4BBDpFR0LcIAYO6t/sAnSR7j26c+ONE8jJzqG4+HzzxlcQFBTE+PFjiIzo3c6XLSQoENXdC10n5jej0Y8+fSJ8RdwADH4Gxo4eSXZOLueKiikvr0CWQafTE9E7nBv630BwUPtsCkmJ3sJmZ/MKOHX6DLIsExIcyPC0Yfj5+VFfX4+pVTyFJMlERvUmMLh9DYhuoaEkJ8WTnZ1H1qnTWCxmunXvhgXwM/oR1ScCP7/W11eiR4+wLtObdu8WgizRLk1qQEAAE8aPobSkjIqKSlwuFxERvegdEU5gQACHDlddtkXku2D9hvfYuWMHgaGhHDpwgDfXrCFtWCqDBg5i9qzZvPrqqwQFB7Pl3++T+XUmcbGDkGUd+fkFnDp9CkWno66ujnk/ncPoDnJMm0xGsrOzmTN3HooiowpvjEtlRQXnzhWh6BTqamu5Zf50kpOT+HLfPo4cPYqiUwgMCOD+5UsZOmRoe8GFRMZnnyNJevbt209WVlabaqhXQ78Ar5Xj/aIm7uhvRJYUJAnsbg+/O95Avd1DkFlp+ykQYFIkDJLEy1lW0sbpUGQdSNDkdvPCqQZQBfP6mpq/P4LYIAWzUWF3iZOvq+0khfo1x6x4+NMJK0cqXaCTsLk9tHVUbM+saH+qnSq/2FvL71MDmBpp5GClk4f21ZNf50ZqtnTY3Cr3fFFLkVXlJ32MlDWpPHGkni9LnTwzLJDzjU7+mWcDSeLxIQE8nBjQ6ZgaGhoaGhrXgqtXFloZCAxRyThCI9BdOA1Zn6A43bhMwSi3/BL/m5Z11uxb4P1hlgBjn6EY+gwFtwOEG+GwAwLZzwSyDqH4+aK4hRDoFD3Bk3/R3EsHz/tbMg0JgWIMIGj2ykskvrgpEELFMn4x0ri728xOIJBUFSHLdLmJaL4YfWOiiYnu4/Mrl+Wu05wGBlhITR3C4MEeb7Cq5PVd7yzgJSoqsjlHb/vNrhCC4OBgRo4YjtQSA93sI2bwM5CYGE98fCyqKpCag8U79fkTXjliBw1k4IABzS4pEooi+2QbM2Zk83o0B57LMkOGpLS9IC1XTJIYOGgA/QfcgEf1XEz/KiAwIICRw9PaCRAbN6jDebZwQ/9+3HDJ206nC6fLicXfn8ioCCKj2mdLqKqqxmQyortGWaaulMDAQJAkXG43CEFQgFe5kmWZx3/zKMVFxWz96EMkWeL0mWxOnMzyJiCQFWRZQvWoTEyfwDO/+32bIoAOuwNHoxVVVWloaOB8YSFtrp+sICkKJpOJ2bNn8z9/WIVOp2Pt2+uoKisFYMyo0STEd6wAjBk9mt7hvck5fZpz9bW8t2lTG2XBpQpwqrg6CDx2qYBTxelpbXUSTOntR2IPP7Zk2/gpElMijNjcKu/m2Qj1k5kdY2TzOQcen4lJ4FYFVofggXgzByod3Litirl9zYDE5gIbuwvs3DbIxJzoi4psXJCBBX1NvJlZz09313BfrD9GRWJroY0TtR6WD/Jn9Ukrzx5vRJYklsa2rareFsHPBgQQalD4XWYDL56ysb/cSU2TB1pVY5Z0MrUOwUNf1fPkcStNbrDb3YQF6Hg3v4nt5x3U2gWvjAvm/riuxtPQ0NDQ0Lg2XL2y0GpfKpmCUAaMQpw/geyRcflZUG75JZablrVzPbo2z8DabvJlAJ0f4Ad6/0vObPW3bzN9GbJIl47SYY++YM62/UqgdFbXteOuJElqlYL08lAUpSNX6vbDXCJfR++1P+XiubIsc1meI6269yo87edz6VW5nIh+7/jtBbi0bVfzvCii1O7tktJSvv76JIkJccTERLdrU1hYRFVVNUMGJyNJ386F5mpZsGAeX3/9NTt37WLILdNYvvyiEt6zZxhv/+Mt1q57m60fbiU/P5+GhkYEAn9/MzHR0UydMpXFd99F90vSrcXHxTJj5myvVenSyyYEiqLQs1cvJowfx7Rp0zD6+VFXX4e/ycxPZt0KCBYsmH+JhecikZER/Pyen/HF3r2IZi8ep9PpU1j6WXSMiTYR4d/+ukb6S4yJNtHX0qJ0SyAgwl9h7bhgHj1cz9YiO1sKHYQYYFqEH38aHsjWYgd1LpWAVpvwED+J9AgDN0f48Ys4Mw/sq2PFwXqaPIIQg8T9Qyz835QAjLqLnyFFhmdSA9BJ8F6+jV99VY+fIjEoUOGvo4IY18tInVPw0bkmMkod3Bdr6fKTBzAr2kx8iI4njtRjczdfEA8IhYvXX/HOs6YlJkKWqKhz85fjVtL7mHh7vIVRPTovPKihoaGhoXEtkcQ1iti0Z27D8drdYDAiz1iJZfJy7wDXonMNje+Qmppadu3+HFV4SE5KpFevXiiyjKp6KD5fQmbmCUJDgxk/bgwmU/ssT53hcrmw2+0EBLR3sbpaysrK6N69O4qidFhvw+VyUVZWRm1tHSAIDAykR88ezVWtadem66+/6FA58qhei1brTEzfZDP0WqbA7fagKC3Kn8CjClxCQi9798it+/AIgUsIFEDXXDBICAGSQELGIwR5DR7qnCphRoUYi1dWlypQBehlyZexSwXcQqCTvDEPQsDpejeNLkEvk0ykv9I8444eEgjOWT2U2z2YdDL9LAomXXMtCgEVDg9GRSZQfzmK5EVL46FKJ/8828gn5x2cqffgblEefNdSgCIT7a8wrqeO+f38mR5p7LTSuIaGhoaGxnfBNVMWnBX5NLz+c/yGTsN/+q8uDnCxxJmGxg+WktIysk6eoqKiEiQZvV6H2+lCVmR6R4STlJRA4BVu+r8LZUHjfxuCaruHU3VusuvcXLB5aPJ4FZ2eRpkbAhVig3REWRS+RVkcDQ0NDQ2Nq+YaKQsCj8uBuyIPQ49+SDoT1yo6QUPj+8LtclFdU4vd4fTFrpjNJkJDQ66qAIqmLGhcO7T7qcYPF0VRSEpK8r1esGABK1euZM+ePSxbtgy9Xs++fft44okn+Oijj5g+fTp//OMfr2iMVatW8Zvf/Mb3evTo0Xz55ZfXbA7Xi5iYGA4dOtQmFXpnvPXWW0yZMoXevXt/D5JdHunp6bz11lvExMS0OR4TE0NAQABr1qxh2LBhnc6z5bPjdruJi4tj7dq1mM0dZ3jbsGEDjz76KLGxsWzduvW7mpJGB1wTZaHFNUA0e6RrP2kaGpqyoKGh8f8HFosFq9Xa7viyZcsYO3Ysd9xxBwBBQUFUV1dfVWGszsa4nrjd7iuONbyUK1EW0tPTee655xg2bFi79zwez3UpONaVstB6Xp3Ns/W6Llq0iNTU1DbVmS8lIyOD5557TlMWvmeuiV1bkiQkZCThy9z/DfWQNTQ0NDSulvr6enbvzsDlcl1vUTQ0OuTvf/877733Ho8//jiLFi1i5syZWK1WUlNT2bBhAxUVFcyZM4e0tDTS0tLYu3cvAFarlZ/97GckJSWRnJzMv/71L1auXElTUxODBw9m0aJFgHeTCV4rxocffugbd/HixWzatAmPx8MjjzxCWloaycnJvqq+rSkoKCAuLo57772XhIQEpkyZQlNTEwDHjh1j5MiRJCcnc+utt1JTUwN4N8f/9V//xbBhw3jxxRdJT0/nv//7vxk2bBhxcXEcPHiQ2267jQEDBvDYY4/5xpo9ezapqakkJCTw17/+tctr5/F4WLx4MYmJiSQlJbF69Wo2bdrEoUOHWLRoEYMHD6apqYmYmBh+/etfM3ToUDZu3MiOHTsYNWoUQ4cOZe7cub5N+MqVK4mPjyc5OZlf/crrJr5x40YSExNJSUlh/Pjx37ieK1euJDY2lrCwMCRJwticaj00NPSKlJSmpiamTZvG3/72t3bvjRs3jtzcXD744ANGjBjBkCFDuOmmmygrK7vs/jW+I4SGhsZ3gtPpFPX19ddbjB8sqqqKsrJykZOTI/Ly8kRTU5MQQrS7ZkVFxeLo0WPC4/YIj6qKxsZGIYT3+tpsNmGzNQmHwyGEEKKiokLk5uaJc+fOidxcb58ul0s0NDT4xiwtLRXZ2dmirq792lRVVYns7GxRVlbuO1ZeXiGys3NEbm6esFqtvuNNTU3C4XCKhoYG4XK5hBBCNDbahNPpFEIIUVx8Xhw5ctT3XkVFhcjJyRG5ubnCarWKhgar8Hg8ze0affNxu92ipKREZGdni7Nn84Xdbhfl5eXizJkzoqKiQgghxP79X4mNGzcKVVWbP2cN33I1NDSuHlmWRUpKiu/f+vXrhRBC3H333WLjxo2+8/z9/X1/33777WLPnj1CCCEKCwtFbGysEEKIFStWiIceesh3XnV1dbu2rV9v3rxZ3HXXXUIIIRwOh4iMjBQ2m028/vrr4re//a0QQgi73S5SU1PF2bNn2/SRn58vFEURR48eFUIIMXfuXLFu3TohhBBJSUkiIyNDCCHE448/7pNpwoQJYvny5b4+JkyYIFasWCGEEOKFF14Q4eHh4sKFC8Jut4uIiAhRWVkphPDeW4QQwmaziYSEBN/x6Oho3/e6hUOHDombbrrJ97qmpsY31sGDB33Ho6OjxbPPPiuE8N5fxo0b57tH/eEPfxBPPfWUqKysFAMHDhSqqrbpKzExURQXF7c51hlffPGFSE5Obr7f2kRycrLvmnXGpfOKjo4W+fn5YtKkSWLt2rW+4y3r6HK5xMyZM8Wf//xnUV1d7ZP3b3/7m3j44Yd95+/evVvccsstXY6tce25JkXZNDQ0NK6Uysoqnn9+NTEx0VgsFqZNu5mCggJWr36Rp59+kp49e3L48BE+3PohloAA9u/fz/Dhwzl58iR33nkHp06dIjs7ByEgPLwXY8eOobCwkN27M8jJyWX06FHMnPkT9u7dy549X/DsH/5ARUUlq1e/SEx0NCWlJcyYcQtpad56HU6nk1deeZWgoCAaGhoYPHgIU6ZM5qUXXyK8d7i3cN+E8fj7e9Mzb9++g/Dw3mzftp2Q0BAeeOAXvP/+v0lJSUKWFTZseI/AwCD27v2SO+5YyMsvv0pYWHcCA4OYOHECzz23mrFjxzB37hzWr9/AkCGDyco6RXJyEuvW/ZNBgwZisQSQlpbG3/76V/r260th4Tlmz55JY2MjZrMFSZLYunUrX365n2ee+f23donQ0LgaTCYTx44du6I2O3fuJCsry/e6vr4eq9XKzp07Wb9+ve94SEhIl/1MmzaNhx56CIfDwbZt2xg/fjwmk4kdO3Zw/PhxNm3aBEBdXR05OTn07du3Tfu+ffsyePBgAFJTUykoKKCuro7a2lomTJgAwN13383cuXN9bebPn9+mj5kzZwKQlJREQkIC4eHhAPTr14+ioiK6devGSy+9xJYtWwAoKioiJyeHbpeksm6hX79+nD17lgcffJBbbrmFKVOmdDr/Fln27/cWvRwzZgzgvZ+NGjWKoKAgjEYjS5YsYcaMGcyYMQOAMWPGsHjxYubNm8dtt93W5TU+cOAAs2fP9hVUnTVrFrt37/Zdt8tl1qxZrFixwmcdAnwWI/BaFpYsWcKZM2eYP38+JSUlOJ3Odmum8f2j/bJoaGhcFxobG7FYLCxbttR3bNeuDDwelTNnztCzZ0927vyUadOnkZY2jDfeeIOzZ/Oorq5ubm+juroaIcBi8W7gU1NTCQwMZMOG97jrrjuRJIn8swU4HA6KiosACbPZn2XL7+PgoUN88J8PGTJkCDqdDqfThcvl4vbbFyBJMi+++CJ9+3qD9JYvX9YuyL2mpgaz2R9VCL788kvuuWcxDQ0N1NXVc+TIEW6+eSojR45gw4b3KCwsxKA3sGzZMl9hP5utkb179zJjxnSqq2uw2WxUVlZRW1tHj7AeLFlyDwAlJSXo9Qbuu+9eDh48REZGBgMHDvS5GBQXn8dms5Gbm0ds7KDvetk0NK4Jqqqyf/9+nzvL1WI0GklPT2f79u1s2LCBBQsWAN5YypdffpmpU6d22d7Pz8/3t6IoPjekrmh5YHBpH7Ist+lPlmXcbjcZGRns3LmTffv2YTabSU9Px263d9p/SEgImZmZbN++nddee4333nuPN998s0tZhBBMnjyZd999t905Bw4c4NNPP2XTpk288sor7Nq1i9dee42vvvqKDz/8kNTUVA4fPtyp8qLT6VDVi8UxVVW9qgcTY8aMYdu2bSxcuNB3P+1I0XzwwQd5+OGHmTlzJhkZGTz55JNXPJbGtUXLxaehoXFdMBgMlJaW8s4777Jz56dUVVVRV1fHwoULKCw8h91ux+1yER3tLZS3ZMkSoqKiaEnJoNMp6HQ6dDpdG59ZWZLR6wxIkkRx8XnM/v5MmTKV06fPoCjetLhCCBLiE9Dr9DQ0NHjbyRJ6vQEhBGFh3QkJCaWqsoqqqhrefvufbNu2nfr6et843jEFERHhxMYOZN++ffj7+2O327E1NtEnKooLF0qZMGE8ERGRlFeU8847/+Tjj7dRWVlFcnISPcK6c+jQYSwWfxRFQa/XYzT6UVBQyObNm9m9ezeqqmJtbGTfvn3s27ef5OQUZFnBaDRSV1eHJcBrlTl9+vT3tnYaGt+WKVOm8PLLL/tet2wYJ0+ezKuvvuo73hIroNfrO43RmT9/PmvWrGHPnj3cfPPNAEydOpW//OUvvjbZ2dk0NjZelmxBQUGEhISwZ88eANatW+ezMlwNdXV1hISEYDabOX36NPv37+/y/MrKSlRVZc6cOfzud7/jyJEjAAQEBPjuV5cycuRI9u7dS25uLuB9GJOdnY3VaqWuro7p06ezevVqMjMzAcjLy2PEiBE8/fTThIWFUVRUxPnz55k0aVK7vtPT03n//fex2Ww0NjayZcuWq7oeTz/9NCEhIdx///1dnldXV0dERAQAa9euveJxNK49mrKgoaFx3VBkBbPZhL+/2Wead7vdZGWdorKiElnR0VLITFUFHo/aqup4y5P+tukUhBC+YnNZWVkUFxdhs1k5cuQobrcbCQlV9fYjyVKbJ2Yt7QHvex4VRadgNvtjMpk6rCTudrsZM2Ysubl5lJeXoygKkizjcrv47LPPeP75F8nLzcVkMmEymTGZTEiShMejMnbcWA4fPozdbm/Tt3dM77mKolBfX8fx41+TnZ1NaEgIsiShU3RkZZ0iNycPIQSHDx++FkuioXHFtLiStPxbuXLlN7Z56aWXOHToEMnJycTHx/Paa68B8Nhjj1FTU+MLvt29ezcA9913H8nJyW1cWFqYMmUKn332GTfddJOvOvzPf/5z4uPjGTp0KImJiSxduhS3233Zc1q7di2PPPIIycnJHDt2jCeeeOKy217KzTff7EsNunLlSkaOHNnl+efPnyc9PZ3Bgwdzxx138MwzzwDe4O1ly5b5ApxbExYWxltvvcXtt99OcnIyo0aN4vTp0zQ0NDBjxgySk5MZO3Yszz//PACPPPIISUlJJCYmMnr0aFJSUigpKenQYpCUlMSyZcsYPnw4I0aMYOnSpSQnJ1/VtXjxxRdpampixYoVnZ7z5JNPMnfuXFJTUy8rS5TGd4/mhqShoXFdcLlc9OzVk9mzZwPwn//8B1VVsdlsNDU1UVxUjNFooK6unh49erBu3Tr0er1PSVBVgdvtQZZl9Hq9r9/WysKpU6cwGo14PCoVFRUUFRVj8DOgKDoqKy9gt9vx97e0aWsyeXN819fVERBkoXv3UObMubWd/KqqIoSK3e4gKiqKBmsDa9euIz19Aooi4XA4uP32+eTn51NeUUFY9+7MnftTX3ur1UpCQjwnTpzkiy/2Mn78BFTVg9PpJKZvtO8JaXl5ORERESxdeh8HDhzg4MGD9Inug8fj4Xjm11gs/tjtTVRWVlFaWkqvXr2u7UJpaHwDHo+nw+NvvfVWm9etU592796dDRs2tGtjsVg6fJr87LPP8uyzz3bYl16v97kntiDLMqtWrWLVqlWdyh0TE8OJEyd8r1syBQEMHjy4QwtARkZGp6/T09NJT0/v8L2PP/64QxkKCgraHUtJSfFZE1ozZ84c5syZ02nbG2+8kYMHD7Zrd+DAgXbHNm/e3O7Y/v37O33qf//993+jRaArWsu6Zs0a398dpcOdNWsWs2bNuuqxNK49mrKgoaFxXZBlCUkCu92On58fp06d4Y47FpGSkozBYCAnL5fBg1PYvHkLUVFRFBcXs2jRQt74+xo2b97CyZNZjB49kvPFF9jz+Rc0NFiJiOhNUGAgRqMfVVVVNDQ08OCDDxAUFITN1sTp02eoKC9n06Z/cfz4cdLSUjEaL/obW61W3n//31RVVdK7dwSDBg3inXfW8+67G7BYAhgyJJnIyEgAFEWHJMnNT+IEY0aP4fk/rUan05GWlsbGjf8iKSmJgoICxo8fR2VVFe/8cz2BgYHEx8diNBrQ6w2MGjWKf23ajBAqiqLDYPCj4GwB/37/A/yMfvSJivL5QZtN5ubE1BK1dXVU11SxfPkygoODqamp5ciRI0yfPv06raiGhsaPmQceeOCa9RUWFsakSZN44403OqwLcTVs2LCBp556itTU1GvSn8blc40qOGtoaFyKVpStaxwOByUlpURFRSJJEmfP5tOnTxQGg4GGhgaqqqqIiYnhyy/3UVJSSnr6eLp160Zh4Tm++uorwsPDGTduLOfPXyArKwtVVQkP70X//v2prq4mJCSE8vJyXyaNyspKGhttlJeXUVVVRUREJElJiW1kOn78ay5cuEBISCjDhqWiKDKHDx+hsrISWVFITIj3ZTopLS3DYNBjs9kIDg7GYrGQlXWKiIgIgoIC2bdvHzU1tcTFeXOT5+aepaysFFmWiYuLBaBHjx7odF53oj59omhoaCAoKJivvz5OfX0DBoOB+Ph4HA4HffpEYW+yU1pWhtlsxmZrAgQxMX0AiYqKChwOJ5GREd/nMmpoaGho/C9HUxY0NL4jNGVBQ0NDQ0ND48eOFuCsoaGhoaGhoaGhodEhmrKgoaGhoaGhoaGhodEhmrKgoaGhoaGhoaGhodEhmrKgoaGhoaGhoaGhodEh/w/OnhCKJNOFkgAAAABJRU5ErkJggg==",
354 | "text/plain": [
355 | ""
356 | ]
357 | },
358 | "metadata": {},
359 | "output_type": "display_data"
360 | }
361 | ],
362 | "source": [
363 | "\n",
364 | "fig = plt.figure(figsize=(3.25*2*2,2.5*2*2))\n",
365 | "fig.patch.set_facecolor('xkcd:white')\n",
366 | "\n",
367 | "# Create four subplots\n",
368 | "ax1 = fig.add_subplot(223) # 3D plot\n",
369 | "ax2 = fig.add_subplot(221) # q-p plot\n",
370 | "ax3 = fig.add_subplot(222) # q-e plot\n",
371 | "ax4 = fig.add_subplot(224) # Mohr-Coulomb circles\n",
372 | "\n",
373 | "\n",
374 | "\n",
375 | "# initialize some variables\n",
376 | "camera = Camera(fig)\n",
377 | "xline=[]\n",
378 | "yline=[]\n",
379 | "pexcessline = []\n",
380 | "pline = []\n",
381 | "epsline = []\n",
382 | "qline= []\n",
383 | "xfacum=[]\n",
384 | "yfacum=[]\n",
385 | "mohrpacks = []\n",
386 | "mohrpackt = []\n",
387 | "\n",
388 | "# Select maximum values in deviatoric coords\n",
389 | "xs1, ys1 = deviatoriccoords(max(DATA['SigmaEffective1']*1.01),0,0)\n",
390 | "xs2, ys2 = deviatoriccoords(0,max(DATA['SigmaEffective1']*1.01),0)\n",
391 | "xs3, ys3 = deviatoriccoords(0,0,max(DATA['SigmaEffective1']*1.01))\n",
392 | "\n",
393 | "# Define limits of plots according to data\n",
394 | "ax1.axis([xs2*0.84*1.5,xs3*0.84*1.5,min(ys2,ys3)*1*1.5,ys1*0.84*1.5])\n",
395 | "ax1.axis('off')\n",
396 | "ax1.margins(0)\n",
397 | "ax2.axis([0,max(max(DATA['MeanEffStress']*1.01),max(DATA['DeviatoricStress']*1.01)),0,max(max(DATA['MeanEffStress']*1.01),max(DATA['DeviatoricStress']*1.01))])\n",
398 | "ax3.axis([0,max(DATA['Epsxx']*101),0,max(DATA['DeviatoricStress']*1.01)])\n",
399 | "ax4.axis('equal')\n",
400 | "ax4.set(xlim=(0,max(DATA['SigmaEffective1']*1.1)),ylim=(0,max(DATA['SigmaEffective1'])*0.8))\n",
401 | "\n",
402 | "\n",
403 | "# Watermark. Please do not delete!\n",
404 | "im = image.imread('info/logos.png')\n",
405 | "fig.figimage(im, 0, 0, zorder=10)\n",
406 | "\n",
407 | "# Take a 'picture' for every step in this for loop\n",
408 | "for i in tnrange(len(DATA['MeanEffStress'])):\n",
409 | " \n",
410 | " # ----------------------------------\n",
411 | " # AX1 : 3D Plot\n",
412 | " # ----------------------------------\n",
413 | " # Names of axis\n",
414 | " ax1.text((xs3-xs2)*0.04,ys1*0.8,'\\u03C3₁')\n",
415 | " ax1.text(xs3-(xs3-xs2)*0.15,min(ys2,ys3),'\\u03C3₃')\n",
416 | " ax1.text(xs2+(xs3-xs2)*0.1025,min(ys2,ys3),'\\u03C3₂')\n",
417 | " \n",
418 | " # Principal axis\n",
419 | " ax1.arrow(0,0,xs3*0.8,ys3*0.8,head_width=(-ys3/20),edgecolor='k',facecolor='k',zorder=20)\n",
420 | " ax1.arrow(0,0,xs2*0.8,ys2*0.8,head_width=(-ys3/20),edgecolor='k',facecolor='k',zorder=20)\n",
421 | " ax1.arrow(0,0,xs1*0.8,ys1*0.8,head_width=(-ys3/20),edgecolor='k',facecolor='k',zorder=20)\n",
422 | " \n",
423 | " # point and its stress path\n",
424 | " xspot,yspot = deviatoriccoords(DATA['SigmaEffective1'][i],DATA['SigmaEffective2'][i],DATA['SigmaEffective3'][i])\n",
425 | " xline = np.append(xline,xspot)\n",
426 | " yline = np.append(yline,yspot)\n",
427 | " ax1.plot(xline,yline, color='pink',zorder=120)\n",
428 | " ax1.scatter(xspot,yspot,color='r',zorder=130)\n",
429 | "\n",
430 | " # Failure surface and previous ones\n",
431 | " xf, yf = supfalla(DATA['MeanEffStress'][i],np.radians(phi),c_ref)\n",
432 | " ax1.plot(xf,yf,color='k', zorder=10)\n",
433 | " xfacum = np.append(xfacum,xf)\n",
434 | " yfacum = np.append(yfacum,yf)\n",
435 | " ax1.plot(xfacum,yfacum, color='gainsboro')\n",
436 | "\n",
437 | " # Mean effective stress text\n",
438 | " ax1.text(xs2+(xs3-xs2)*0.08,ys1*0.8,'p\\'= '+str(np.round(DATA['MeanEffStress'][i],decimals=1))+' kPa')\n",
439 | "\n",
440 | " # ----------------------------------\n",
441 | " # AX2 : q-p Plot\n",
442 | " # ----------------------------------\n",
443 | "\n",
444 | " # Calculates Mtc\n",
445 | " Mtc = 6*np.sin(np.radians(phi))/(3-np.sin(np.radians(phi)))\n",
446 | "\n",
447 | " # Plot CSL line\n",
448 | " ax2.plot([0,max(DATA['MeanEffStress']*1.01)],[0,max(DATA['MeanEffStress'])*1.01*Mtc], color='k')\n",
449 | "\n",
450 | " # Plot data\n",
451 | " ppoint = DATA['MeanEffStress'][i]\n",
452 | " qpoint = DATA['DeviatoricStress'][i]\n",
453 | " pline= np.append(pline,ppoint)\n",
454 | " qline = np.append(qline,qpoint)\n",
455 | " ax2.plot(pline,qline, color='pink',zorder=120)\n",
456 | " ax2.scatter(ppoint,qpoint,color='r',zorder=130)\n",
457 | "\n",
458 | " # fancy settings\n",
459 | " ax2.set_xlabel('Mean effective stress, p\\' [kPa]')\n",
460 | " ax2.set_ylabel('Deviatoric stress, q [kPa]')\n",
461 | " ax2.grid(color='whitesmoke')\n",
462 | "\n",
463 | " \n",
464 | " # ----------------------------------\n",
465 | " # AX2 : q-e Plot\n",
466 | " # ----------------------------------\n",
467 | "\n",
468 | " epspoint = DATA['Epsxx'][i]*100\n",
469 | " epsline= np.append(epsline,epspoint)\n",
470 | " ax3.plot(epsline,qline, color='pink',zorder=120)\n",
471 | "\n",
472 | " # fancy settings\n",
473 | " ax3.set_xlabel('Axial strain, \\u03B5ₐ [%]')\n",
474 | " ax3.set_ylabel('Deviatoric stress, q [kPa]')\n",
475 | " ax3.grid(color='whitesmoke')\n",
476 | " ax3.scatter(epspoint,qpoint,color='r',zorder=130)\n",
477 | "\n",
478 | " # ----------------------------------\n",
479 | " # AX2 : Mohr circles\n",
480 | " # ----------------------------------\n",
481 | "\n",
482 | " # Radio and midpoint of circle\n",
483 | " radio = (DATA['SigmaEffective1'][i]-DATA['SigmaEffective3'][i])/2\n",
484 | " midpoint = (DATA['SigmaEffective1'][i]+DATA['SigmaEffective3'][i])/2\n",
485 | "\n",
486 | " # Mohr circles data\n",
487 | " mohrs = np.append(np.linspace(DATA['SigmaEffective1'][i],DATA['SigmaEffective3'][i],100),DATA['SigmaEffective3'].values[i])\n",
488 | " mohrt = np.sqrt(radio**2-(mohrs-midpoint)**2+0.00000000001)\n",
489 | "\n",
490 | " # Plot previous Mohr circles\n",
491 | " ax4.plot(mohrpacks,mohrpackt, color='pink',zorder=120, alpha=0.5)\n",
492 | "\n",
493 | " # Plot actual Mohr circle\n",
494 | " ax4.plot(mohrs,mohrt,color='r',zorder=130) \n",
495 | "\n",
496 | " # Update Mohr circles packs \n",
497 | " mohrpacks = np.append(mohrpacks,mohrs)\n",
498 | " mohrpackt = np.append(mohrpackt,mohrt)\n",
499 | "\n",
500 | " # Plot MC surface\n",
501 | " ax4.plot([0,10000],[0,10000*np.tan(np.radians(phi))], color='k', linewidth=2, zorder=125)\n",
502 | "\n",
503 | " # Plot tangent line\n",
504 | " phiact = np.arcsin((DATA['SigmaEffective1'][i]-DATA['SigmaEffective3'][i])/(DATA['SigmaEffective1'][i]+DATA['SigmaEffective3'][i]))\n",
505 | " ax4.plot([0,10000],[0,10000*np.tan(phiact)], color='r', linewidth=1, zorder=140)\n",
506 | " \n",
507 | " # fancy settings\n",
508 | " ax4.set_xlabel('Effective normal stress, σ\\' [kPa]')\n",
509 | " ax4.set_ylabel('Shear stress, τ [kPa]')\n",
510 | " ax4.grid(color='whitesmoke')\n",
511 | "\n",
512 | "\n",
513 | "\n",
514 | " \n",
515 | "\n",
516 | " # take a frame\n",
517 | " camera.snap()\n",
518 | "animationi = camera.animate()\n",
519 | "\n",
520 | "fps = 20\n",
521 | "Writer = animation.writers['ffmpeg']\n",
522 | "writer3 = Writer(fps=fps, extra_args=['-r', '25'])\n",
523 | "animationi.save('TRX CIUC - HSS model.gif', writer = writer3)"
524 | ]
525 | },
526 | {
527 | "cell_type": "code",
528 | "execution_count": 12,
529 | "id": "05557eaf",
530 | "metadata": {},
531 | "outputs": [],
532 | "source": [
533 | "\n"
534 | ]
535 | },
536 | {
537 | "cell_type": "code",
538 | "execution_count": null,
539 | "id": "7bdc7a44",
540 | "metadata": {},
541 | "outputs": [],
542 | "source": []
543 | }
544 | ],
545 | "metadata": {
546 | "kernelspec": {
547 | "display_name": "Python 3",
548 | "language": "python",
549 | "name": "python3"
550 | },
551 | "language_info": {
552 | "codemirror_mode": {
553 | "name": "ipython",
554 | "version": 3
555 | },
556 | "file_extension": ".py",
557 | "mimetype": "text/x-python",
558 | "name": "python",
559 | "nbconvert_exporter": "python",
560 | "pygments_lexer": "ipython3",
561 | "version": "3.8.8"
562 | },
563 | "latex_envs": {
564 | "LaTeX_envs_menu_present": true,
565 | "autoclose": false,
566 | "autocomplete": true,
567 | "bibliofile": "biblio.bib",
568 | "cite_by": "apalike",
569 | "current_citInitial": 1,
570 | "eqLabelWithNumbers": true,
571 | "eqNumInitial": 1,
572 | "hotkeys": {
573 | "equation": "Ctrl-E",
574 | "itemize": "Ctrl-I"
575 | },
576 | "labels_anchors": false,
577 | "latex_user_defs": false,
578 | "report_style_numbering": false,
579 | "user_envs_cfg": false
580 | },
581 | "toc": {
582 | "base_numbering": 1,
583 | "nav_menu": {},
584 | "number_sections": true,
585 | "sideBar": true,
586 | "skip_h1_title": false,
587 | "title_cell": "Table of Contents",
588 | "title_sidebar": "Contents",
589 | "toc_cell": false,
590 | "toc_position": {},
591 | "toc_section_display": true,
592 | "toc_window_display": false
593 | },
594 | "varInspector": {
595 | "cols": {
596 | "lenName": 16,
597 | "lenType": 16,
598 | "lenVar": 40
599 | },
600 | "kernels_config": {
601 | "python": {
602 | "delete_cmd_postfix": "",
603 | "delete_cmd_prefix": "del ",
604 | "library": "var_list.py",
605 | "varRefreshCmd": "print(var_dic_list())"
606 | },
607 | "r": {
608 | "delete_cmd_postfix": ") ",
609 | "delete_cmd_prefix": "rm(",
610 | "library": "var_list.r",
611 | "varRefreshCmd": "cat(var_dic_list()) "
612 | }
613 | },
614 | "types_to_exclude": [
615 | "module",
616 | "function",
617 | "builtin_function_or_method",
618 | "instance",
619 | "_Feature"
620 | ],
621 | "window_display": false
622 | }
623 | },
624 | "nbformat": 4,
625 | "nbformat_minor": 5
626 | }
627 |
--------------------------------------------------------------------------------
/Some_examples/MC and HSS/TRX - LinkedIn Post.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/MC and HSS/TRX - LinkedIn Post.gif
--------------------------------------------------------------------------------
/Some_examples/MC and HSS/TRX CIDC - HSS model.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/MC and HSS/TRX CIDC - HSS model.gif
--------------------------------------------------------------------------------
/Some_examples/MC and HSS/TRX CIDC - MC model.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/MC and HSS/TRX CIDC - MC model.gif
--------------------------------------------------------------------------------
/Some_examples/MC and HSS/TRX CIUC - HSS model.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/MC and HSS/TRX CIUC - HSS model.gif
--------------------------------------------------------------------------------
/Some_examples/MC and HSS/TRX CIUC - MC model.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/MC and HSS/TRX CIUC - MC model.gif
--------------------------------------------------------------------------------
/Some_examples/Undergraduate/Triaxial drenado - Arcilla NC.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/Undergraduate/Triaxial drenado - Arcilla NC.gif
--------------------------------------------------------------------------------
/Some_examples/Undergraduate/Triaxial drenado - Arcilla OC.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/Undergraduate/Triaxial drenado - Arcilla OC.gif
--------------------------------------------------------------------------------
/Some_examples/Undergraduate/Triaxial drenado - Arena densa.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/Undergraduate/Triaxial drenado - Arena densa.gif
--------------------------------------------------------------------------------
/Some_examples/Undergraduate/Triaxial drenado - Arena suelta.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/Undergraduate/Triaxial drenado - Arena suelta.gif
--------------------------------------------------------------------------------
/Some_examples/Undergraduate/Triaxial no drenado - Arcilla NC.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/Undergraduate/Triaxial no drenado - Arcilla NC.gif
--------------------------------------------------------------------------------
/Some_examples/Undergraduate/Triaxial no drenado - Arcilla OC .gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/Undergraduate/Triaxial no drenado - Arcilla OC .gif
--------------------------------------------------------------------------------
/Some_examples/Undergraduate/Triaxial no drenado - Arena densa.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/Undergraduate/Triaxial no drenado - Arena densa.gif
--------------------------------------------------------------------------------
/Some_examples/Undergraduate/Triaxial no drenado - Arena suelta.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/Some_examples/Undergraduate/Triaxial no drenado - Arena suelta.gif
--------------------------------------------------------------------------------
/info/HowToConnect.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/info/HowToConnect.png
--------------------------------------------------------------------------------
/info/LogoSRK.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/info/LogoSRK.jpeg
--------------------------------------------------------------------------------
/info/Version.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/info/Version.gif
--------------------------------------------------------------------------------
/info/logofiuba.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/info/logofiuba.png
--------------------------------------------------------------------------------
/info/logos.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/info/logos.png
--------------------------------------------------------------------------------
/info/logos2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ntasso/SoilTestPlot/7400569c8bcbebde17f03adc5e4041fb952ff341/info/logos2.png
--------------------------------------------------------------------------------