├── Generated plots
├── ANN_By_Epochs.pdf
├── Results_GSI_BySample.pdf
├── Results_GSI_By_Trait.pdf
├── Results_RTM_Inv_pure.pdf
├── Results_RTM_Inv_pure_.pdf
├── Results_RTM_Inv_noise_2.pdf
├── Results_RTM_Inv_pure_2.pdf
├── Results_RTM_Inv_noise_2_zoom.pdf
├── Results_RTM_Inv_pure_2_thick.pdf
├── Results_RTM_Inv_pure_2_zoom.pdf
├── Results_RTM_Inv_noise_2_thick.pdf
├── Results_RTM_Inv_pure_2_zoom_thick.pdf
├── Results_RTM_Inv_noise_2_zoom_thick.pdf
└── PearsonR_ByBandPlot_Corrected_Reviewed_02.pdf
├── GeneratedData
├── SpearmanCorrelation_Final_Pstars.csv
├── SpearmanCorrelation_Final.csv
├── Final_Sensitivity_2000_Samples.csv
└── Traits_Spectra_car_PlotSel.csv
├── Python Packages.csv
├── R Packages.csv
├── Plotting
├── combining_CSV.R
├── Noise_Inverson_Plot.R
├── Pure_inversion_PlotDataPrep.R
├── Noisy_Invesion_PlotDataPrep.R
├── Pure_Inversion_Plot.R
├── NoiseInversion_Final_01.R
├── EpochTestings_Final_02.R
├── PureInversion_Final_01.R
├── CorrelationPlots_Final.R
└── GSI_Plots_Final_01.R
├── R
├── SpearmanCorrelations.R
└── GSI_Analysis_v01.R
├── README.md
├── CC-BY-4.0
├── Jupyter
└── Hyperparameter tunning
│ ├── HyperParameter_RFR_RTM.ipynb
│ └── HyperParameter_GPR_RTM.ipynb
└── LICENSE.txt
/Generated plots/ANN_By_Epochs.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/ANN_By_Epochs.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_GSI_BySample.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_GSI_BySample.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_GSI_By_Trait.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_GSI_By_Trait.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_RTM_Inv_pure.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_RTM_Inv_pure.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_RTM_Inv_pure_.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_RTM_Inv_pure_.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_RTM_Inv_noise_2.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_RTM_Inv_noise_2.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_RTM_Inv_pure_2.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_RTM_Inv_pure_2.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_RTM_Inv_noise_2_zoom.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_RTM_Inv_noise_2_zoom.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_RTM_Inv_pure_2_thick.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_RTM_Inv_pure_2_thick.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_RTM_Inv_pure_2_zoom.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_RTM_Inv_pure_2_zoom.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_RTM_Inv_noise_2_thick.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_RTM_Inv_noise_2_thick.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_RTM_Inv_pure_2_zoom_thick.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_RTM_Inv_pure_2_zoom_thick.pdf
--------------------------------------------------------------------------------
/Generated plots/Results_RTM_Inv_noise_2_zoom_thick.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/Results_RTM_Inv_noise_2_zoom_thick.pdf
--------------------------------------------------------------------------------
/Generated plots/PearsonR_ByBandPlot_Corrected_Reviewed_02.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/nunocesarsa/RTM_Inversion/HEAD/Generated plots/PearsonR_ByBandPlot_Corrected_Reviewed_02.pdf
--------------------------------------------------------------------------------
/GeneratedData/SpearmanCorrelation_Final_Pstars.csv:
--------------------------------------------------------------------------------
1 | "";"Band";"cab";"cw";"cm";"LAI";"car"
2 | "2";"B2";"***";" ";".";"***";"***"
3 | "3";"B3";"***";" ";" ";".";"***"
4 | "4";"B4";"***";" ";" ";" ";" "
5 | "5";"B5";"***";" ";" ";" ";" "
6 | "6";"B6";"***";" ";"***";"***";" "
7 | "7";"B7";" ";" ";"***";"***";" "
8 | "8";"B8A";" ";" ";"***";"***";" "
9 | "9";"B11";" ";"***";"***";"***";" "
10 | "10";"B12";" ";"***";"***";" ";" "
11 |
--------------------------------------------------------------------------------
/Python Packages.csv:
--------------------------------------------------------------------------------
1 | Name;Version;License
2 | prosail;2.0.5;UNKNOWN
3 | lhsmdu;1.1;MIT
4 | numpy;1.19.5;BSD
5 | pandas;1.1.5;BSD
6 | pandas-datareader;0.9.0;BSD License
7 | pandas-gbq;0.13.3;BSD License
8 | pandas-profiling;1.4.1;MIT License
9 | sklearn-pandas;1.8.0;BSD License
10 | sklearn;0.0;BSD License
11 | hyperopt;0.1.2;BSD License
12 | keras-vis;0.4.1;MIT
13 | Keras;2.4.3;MIT License
14 | Keras-Preprocessing;1.1.2;MIT License
15 | pysptools;0.15.0;Apache Software License
16 | pip-licenses;3.3.0;MIT License
17 |
--------------------------------------------------------------------------------
/R Packages.csv:
--------------------------------------------------------------------------------
1 | Coluna1;Package;License
2 | hsdar;hsdar;GPL
3 | FME;FME;GPL (>= 2)
4 | MCMCglmm;MCMCglmm;GPL (>= 2)
5 | randomForest;randomForest;GPL (>= 2)
6 | DMwR;DMwR;GPL (>= 2)
7 | sensitivity;sensitivity;GPL-2
8 | ggplot2;ggplot2;GPL-2 | file LICENSE
9 | ggthemes;ggthemes;GPL-2
10 | reshape;reshape;MIT + file LICENSE
11 | reshape2;reshape2;MIT + file LICENSE
12 | extrafont;extrafont;GPL-2
13 | extrafontdb;extrafontdb;GPL-2
14 | gridExtra;gridExtra;GPL (>= 2)
15 | latticeExtra;latticeExtra;GPL (>= 2)
16 | cowplot;cowplot;GPL-2
17 | gtools;gtools;GPL-2
18 |
--------------------------------------------------------------------------------
/GeneratedData/SpearmanCorrelation_Final.csv:
--------------------------------------------------------------------------------
1 | "";"Band";"cab";"cw";"cm";"LAI";"car"
2 | "2";"B2";-0,108635289158822;0,000140452535113134;-0,0396244659061165;0,197031893757973;-0,463194871798718
3 | "3";"B3";-0,958507564126891;0,0257475859368965;-0,016295596073899;-0,039528207882052;-0,105794915448729
4 | "4";"B4";-0,552898233224558;0,0218006949501737;-0,0239152709788177;0,00538064984516246;-0,0212656013164003
5 | "5";"B5";-0,980323149580787;0,0276154209038552;-0,0213645473411368;-0,0364061581015395;-0,0245946916486729
6 | "6";"B6";-0,751065510266378;0,00427716856929214;-0,18775255993814;0,491654971413743;-0,0126940576735144
7 | "7";"B7";0,00501815975453994;-0,0147483126870782;-0,466598945649736;0,819342882835721;0,0105609356402339
8 | "8";"B8A";0,0129106622276656;-0,0186144316536079;-0,470393690098423;0,817037028259257;0,0104515991128998
9 | "9";"B11";0,0204199536049884;-0,648947362736841;-0,491051866262967;0,469509180377295;-0,0141107780276945
10 | "10";"B12";0,0225264926316232;-0,669796757449189;-0,692371311592828;0,0257294434323609;-0,0200938805234701
11 |
--------------------------------------------------------------------------------
/Plotting/combining_CSV.R:
--------------------------------------------------------------------------------
1 |
2 | library(ggplot2)
3 | library(ggthemes)
4 | library(reshape2)
5 |
6 | gc()
7 | setwd("C:/Paper/Tables/Final_Data")
8 |
9 | #loading data - pure
10 | errbg.df = read.csv2("MTMTSTST_Temp_KFold_OutOfBag_csv2_Corrected_600epoch.csv")
11 | errbg.df.2 = read.csv2("MTMTSTST_Temp_KFold_OutOfBag_csv2_Corrected_600epoch_1850.csv")
12 | errbg.df.3 = read.csv2("MTMTSTST_Temp_KFold_OutOfBag_csv2_Corrected_600epoch_3350.csv")
13 |
14 | train.df = read.csv2("MTMTSTST_Temp_KFold_TrainingError_csv2_Corrected_600epoch.csv")
15 | train.df.2 = read.csv2("MTMTSTST_Temp_KFold_TrainingError_csv2_Corrected_600epoch_1850.csv")
16 | train.df.3 = read.csv2("MTMTSTST_Temp_KFold_TrainingError_csv2_Corrected_600epoch_3350.csv")
17 |
18 | errbg.df <- rbind(errbg.df,errbg.df.2,errbg.df.3)
19 | train.df <- rbind(train.df,train.df.2,train.df.3)
20 |
21 | all.df <- rbind(errbg.df,train.df)
22 |
23 | write.csv2(all.df,"Inversion_PureRTM.csv")
24 |
25 |
26 | #loading data - noise
27 | errbg.df = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2.csv")
28 | errbg.df.2 = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2_10perc.csv")
29 | errbg.df.3 = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2_25perc.csv")
30 | errbg.df.4 = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2_50perc.csv")
31 |
32 | train.df = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2.csv")
33 | train.df.2 = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2_10perc.csv")
34 | train.df.3 = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2_25perc.csv")
35 | train.df.4 = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2_50perc.csv")
36 |
37 | errbg.df <- rbind(errbg.df,errbg.df.2,errbg.df.3,errbg.df.4)
38 | train.df <- rbind(train.df,train.df.2,train.df.3,train.df.4)
39 |
40 | all.df <- rbind(errbg.df,train.df)
41 |
42 | write.csv2(all.df,"Inversion_NoisyRTM.csv")
43 |
44 |
45 |
--------------------------------------------------------------------------------
/R/SpearmanCorrelations.R:
--------------------------------------------------------------------------------
1 |
2 | library(gtools)
3 |
4 | my.df <- read.csv2("C:/Paper/Tables/Final_Data/Traits_Spectra_car.csv")
5 | my.df <- my.df[,-1]
6 |
7 |
8 | head(my.df)
9 |
10 | out.df <- data.frame("Band"=0,"cab"=NA,"cw"=NA,"cm"=NA,"LAI"=NA,"car"=NA)
11 | out.df.pval <- data.frame("Band"=0,"cab"=NA,"cw"=NA,"cm"=NA,"LAI"=NA,"car"=NA)
12 |
13 | for (i in names(my.df)[1:9]){
14 | print(i)
15 |
16 |
17 | #cab_r = cor.test(my.df[,c(i)],my.df[,c('cab')],method="spearman")[[1]]
18 | #cw_r = cor.test(my.df[,c(i)],my.df[,c('cw')],method="spearman")[[1]]
19 | #cm_r = cor.test(my.df[,c(i)],my.df[,c('cm')],method="spearman")[[1]]
20 | #lai_r = cor.test(my.df[,c(i)],my.df[,c('LAI')],method="spearman")[[1]]
21 | #car_r = cor.test(my.df[,c(i)],my.df[,c('car')],method="spearman")[[1]]
22 |
23 | temp.df <- data.frame("Band"=i,
24 | "cab"=cor.test(my.df[,c(i)],my.df[,c('cab')],method="spearman")$estimate[[1]],
25 | "cw"=cor.test(my.df[,c(i)],my.df[,c('cw')],method="spearman")$estimate[[1]],
26 | "cm"=cor.test(my.df[,c(i)],my.df[,c('cm')],method="spearman")$estimate[[1]],
27 | "LAI"=cor.test(my.df[,c(i)],my.df[,c('lai')],method="spearman")$estimate[[1]],
28 | "car"=cor.test(my.df[,c(i)],my.df[,c('car')],method="spearman")$estimate[[1]])
29 |
30 | temp.df.pval <- data.frame("Band"=i,
31 | "cab"=stars.pval(cor.test(my.df[,c(i)],my.df[,c('cab')],method="spearman")$p.value),
32 | "cw"=stars.pval(cor.test(my.df[,c(i)],my.df[,c('cw')],method="spearman")$p.value),
33 | "cm"=stars.pval(cor.test(my.df[,c(i)],my.df[,c('cm')],method="spearman")$p.value),
34 | "LAI"=stars.pval(cor.test(my.df[,c(i)],my.df[,c('lai')],method="spearman")$p.value),
35 | "car"=stars.pval(cor.test(my.df[,c(i)],my.df[,c('car')],method="spearman")$p.value))
36 |
37 |
38 |
39 | out.df <- rbind(out.df,temp.df)
40 | out.df.pval <- rbind(out.df.pval,temp.df.pval)
41 | }
42 |
43 | #removing uncessary first column
44 | out.df <- out.df[-1,]
45 | out.df.pval <- out.df.pval[-1,]
46 |
47 | write.csv2(out.df,"C:/Paper/Tables/Final_Data/SpearmanCorrelation_Final.csv")
48 | write.csv2(out.df.pval,"C:/Paper/Tables/Final_Data/SpearmanCorrelation_Final_Pstars.csv")
49 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # RTM_Inversion
2 | Software repository for the publication:
3 |
4 | Title: "Exploring the impact of noise on hybrid inversion of PROSAIL RTM on Sentinel-2 data"
5 |
6 | Authors: Nuno César de Sá, Mitra Baratchi, Leon Hauser, Peter van Bodegom
7 |
8 | Date: 11 February 2021
9 |
10 | DOI: https://doi.org/10.3390/rs13040648
11 |
12 | Link: https://www.mdpi.com/2072-4292/13/4/648
13 |
14 | Abstract:
15 |
16 | Remote sensing (RS) of biophysical variables plays a vital role in providing the information necessary for understanding spatio-temporal dynamics in ecosystems. The hybrid approach to retrieve biophysical variables from RS by combining Machine Learning (ML) algorithms with surrogate data generated by Radiative Transfer Models (RTM). The susceptibility of the ill-posed solutions to noise currently constrains further application of hybrid approaches.
17 |
18 | Here, we explored how noise affects the performance of ML algorithms for biophysical trait retrieval. We focused on synthetic Sentinel-2 (S2) data generated using the PROSAIL RTM and four commonly applied ML algorithms: Gaussian Processes (GPR), Random Forests (RFR), and Artificial Neural Networks (ANN) and Multi-task Neural Networks (MTN). After identifying which biophysical variables can be retrieved from S2 using a Global Sensitivity Analysis, we evaluated the performance loss of each algorithm using the Mean Absolute Percentage Error (MAPE) with increasing noise levels. We found that, for S2 data, Carotenoid concentrations are uniquely dependent on band 2, Chlorophyll is almost exclusively dependent on the visible ranges, and Leaf Area Index, water, and dry matter contents are mostly dependent on infrared bands. Without added noise, GPR was the best algorithm (<0.05%), followed by the MTN (<3%) and ANN (<5%), with the RFR performing very poorly (<50%). The addition of noise critically affected the performance of all algorithms (>20%) even at low levels of added noise (≈5%).
19 |
20 | Overall, both neural networks performed significantly better than GPR and RFR when noise was added with the MTN being slightly better when compared to the ANN. Our results imply that the performance of the commonly used algorithms in hybrid-RTM inversion are pervasively sensitive to noise. The implication is that more advanced models or approaches are necessary to minimize the impact of noise to improve near real-time and accurate RS monitoring of biophysical trait retrieval.
21 |
--------------------------------------------------------------------------------
/Plotting/Noise_Inverson_Plot.R:
--------------------------------------------------------------------------------
1 | library(ggplot2)
2 | library(ggthemes)
3 | library(reshape2)
4 | library(tidyverse)
5 |
6 | gc()
7 | setwd("C:/Paper/Tables/Final_Data")
8 |
9 | agg.df <- read.csv2("NOISERTM_Final_Aggregated.csv")
10 | full.df <-read.csv2("NOISERTM_Final_Full.csv")
11 |
12 | names(agg.df)
13 | names(full.df)
14 |
15 |
16 |
17 | #### Line plot ####
18 |
19 | plt.fig <- ggplot(agg.df, aes(x=NoiseLevel, y=MAPE, colour=Model_ErrorType)) +
20 | geom_line(linetype="dashed",size=1)+
21 | geom_point(size=2)+
22 | geom_errorbar(aes(ymin=MAPE-sd, ymax=MAPE+sd), width=.2)+
23 | #geom_point()+
24 | ylim(0,50)+
25 | xlim(0,10)+
26 | scale_colour_manual(values= c('#762a83', '#af8dc3',
27 | '#d6604d','#f4a582',
28 | 'darkgreen','green',
29 | #'#4393c3','#92c5de',
30 | '#053061','#2166ac'))+
31 |
32 | labs(#title="Noise RTM inversion",
33 | x ="Noise level (%)",
34 | y = "Mean absolute percentage error (%)")+
35 | facet_grid(NoiseType~Variable_upper,
36 | #ncol=4,
37 | #strip.position = c("top","right")
38 | )+
39 | #theme(strip.text = element_text(hjust = 0))+
40 | theme_hc()+
41 | theme(text=element_text(size=24, family="serif"),legend.title = element_blank(),
42 | panel.spacing = unit(1.5, "lines"))
43 |
44 | print(plt.fig)
45 |
46 | ####
47 |
48 | pdf("Results_RTM_Inv_noise_2_zoom_thick.pdf",width=18,height=8,paper='special')
49 |
50 | print(plt.fig)
51 |
52 | dev.off()
53 |
54 |
55 |
56 |
57 | ### boxplot plot ####
58 | head(full.df)
59 | #as.factor(NoiseLevel*100)
60 | plt.fig <- ggplot(full.df, aes(x=Model, y=MAPE, fill=Model_ErrorType)) +
61 | geom_boxplot()+
62 | ylim(0,75)+
63 | scale_colour_manual(values= c('#762a83', '#af8dc3',
64 | '#d6604d','#f4a582',
65 | 'darkgreen','green',
66 | #'#4393c3','#92c5de',
67 | '#053061','#2166ac'),
68 | aesthetics = "fill")+
69 |
70 | labs(#title="Noise RTM inversion",
71 | x ="Model",
72 | y = "Mean absolute percentage error (%)")+
73 | facet_grid(NoiseType~Variable,
74 | labeller = labeller(Variable = c("cab" ='Cab',
75 | "cm" = "Cm",
76 | "cw" = "Cw",
77 | "lai"= "LAI"))
78 |
79 | )+
80 | #theme(strip.text = element_text(hjust = 0))+
81 | theme_hc()+
82 | theme(text=element_text(size=24, family="serif"),legend.title = element_blank(),
83 | panel.spacing = unit(1.5, "lines"))
84 |
85 | print(plt.fig)
86 |
87 |
88 |
89 |
90 |
91 |
--------------------------------------------------------------------------------
/Plotting/Pure_inversion_PlotDataPrep.R:
--------------------------------------------------------------------------------
1 | library(ggplot2)
2 | library(ggthemes)
3 | library(reshape2)
4 |
5 | gc()
6 | setwd("C:/Paper/Tables/Final_Data")
7 |
8 | errbg.df = read.csv2("MTMTSTST_Temp_KFold_OutOfBag_csv2_Corrected_600epoch.csv")
9 | errbg.df.2 = read.csv2("MTMTSTST_Temp_KFold_OutOfBag_csv2_Corrected_600epoch_1850.csv")
10 | errbg.df.3 = read.csv2("MTMTSTST_Temp_KFold_OutOfBag_csv2_Corrected_600epoch_3350.csv")
11 |
12 | train.df = read.csv2("MTMTSTST_Temp_KFold_TrainingError_csv2_Corrected_600epoch.csv")
13 | train.df.2 = read.csv2("MTMTSTST_Temp_KFold_TrainingError_csv2_Corrected_600epoch_1850.csv")
14 | train.df.3 = read.csv2("MTMTSTST_Temp_KFold_TrainingError_csv2_Corrected_600epoch_3350.csv")
15 |
16 | errbg.df <- rbind(errbg.df,errbg.df.2,errbg.df.3)
17 | train.df <- rbind(train.df,train.df.2,train.df.3)
18 |
19 | #to maintain everything easily comparable, we will use MAPE to visualize the rror
20 | mape.bag.df = errbg.df[,c(2,3,7,8,15)]
21 | mape.trn.df = train.df[,c(2,3,7,8,15)]
22 |
23 |
24 | agg.bag.df = aggregate(MAPE~.,data = mape.bag.df[,-4],
25 | FUN=mean, na.rm=TRUE)
26 | agg.bag.df.sd = aggregate(MAPE~.,data = mape.bag.df[,-4],
27 | FUN=sd, na.rm=TRUE)
28 |
29 | agg.trn.df = aggregate(MAPE~.,data = mape.trn.df[,-4],
30 | FUN=mean, na.rm=TRUE)
31 | agg.trn.df.sd = aggregate(MAPE~.,data = mape.trn.df[,-4],
32 | FUN=sd, na.rm=TRUE)
33 |
34 | agg.bag.df$sd <- agg.bag.df.sd$MAPE
35 | agg.trn.df$sd <- agg.trn.df.sd$MAPE
36 |
37 | #adding a tag
38 | agg.bag.df$ErrorType = "Out-of-bag"
39 | agg.trn.df$ErrorType = "Training"
40 |
41 | #binding to a dataframe
42 | full.df = rbind(agg.bag.df,agg.trn.df)
43 |
44 | names(full.df)
45 | head(full.df)
46 | unique(full.df$ErrorType)
47 |
48 |
49 | #naming
50 | full.df$ErrorTypeNames = NA
51 | full.df$ErrorTypeNames[full.df$ErrorType=="Out-of-bag"] <- "Validation error"
52 | full.df$ErrorTypeNames[full.df$ErrorType=="Training"] <- "Training error"
53 |
54 | #creating a new variable to direct the plotting order
55 | full.df$Model_ErrorType <- paste(full.df$Model,full.df$ErrorTypeNames)
56 |
57 |
58 | unique(full.df$NSamples)
59 |
60 | #creating a point type column
61 |
62 | full.df$PT_type = NA
63 | full.df$PT_type[full.df$Model=="ANN"] = 17
64 | full.df$PT_type[full.df$Model=="GPR"] = 17
65 | full.df$PT_type[full.df$Model=="MTN"] = 17
66 | full.df$PT_type[full.df$Model=="RFR"] = 17
67 |
68 |
69 | ########## PRINTING - error from 0 to 80
70 |
71 | list.files()
72 | #write.csv2(full.df,"PURERTM_Final_Processed (forPlots).csv")
73 |
74 | #saving aggregated data prepared for plots
75 | write.csv2(full.df,"PURERTM_Final_Aggregated.csv")
76 |
77 |
78 | #preparing a full dataset for boxplots
79 | errbg.df$ErrorType = "Validation error"
80 | train.df$ErrorType = "Training error"
81 |
82 | full.boxplot = rbind(errbg.df,train.df)
83 | full.boxplot$PT_type = 17
84 |
85 | full.boxplot$Model_ErrorType = paste(full.boxplot$Model,full.boxplot$ErrorType)
86 |
87 | write.csv2(full.boxplot,"PURERTM_Final_Full.csv")
88 |
--------------------------------------------------------------------------------
/Plotting/Noisy_Invesion_PlotDataPrep.R:
--------------------------------------------------------------------------------
1 |
2 | library(ggplot2)
3 | library(ggthemes)
4 | library(reshape2)
5 |
6 |
7 | gc()
8 | setwd("C:/Paper/Tables/Final_Data")
9 |
10 | errbg.df = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2.csv")
11 | errbg.df.2 = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2_10perc.csv")
12 | errbg.df.3 = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2_25perc.csv")
13 | errbg.df.4 = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2_50perc.csv")
14 |
15 | train.df = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2.csv")
16 | train.df.2 = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2_10perc.csv")
17 | train.df.3 = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2_25perc.csv")
18 | train.df.4 = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2_50perc.csv")
19 |
20 | errbg.df <- rbind(errbg.df,errbg.df.2,errbg.df.3,errbg.df.4)
21 | train.df <- rbind(train.df,train.df.2,train.df.3,train.df.4)
22 |
23 | unique(train.df$NoiseLevel)
24 |
25 | names(train.df)
26 |
27 | #to maintain everything easily comparable, we will use MAPE to visualize the rror
28 | mape.bag.df = errbg.df[,c(2,3,4,8,16)]
29 | mape.trn.df = train.df[,c(2,3,4,8,16)]
30 |
31 | names(mape.bag.df)
32 | head(mape.bag.df)
33 | #aggreating
34 | agg.bag.df = aggregate(MAPE~.,data = mape.bag.df,
35 | FUN=mean, na.rm=TRUE)
36 | agg.bag.df.sd = aggregate(MAPE~.,data = mape.bag.df,
37 | FUN=sd, na.rm=TRUE)
38 |
39 | agg.trn.df = aggregate(MAPE~.,data = mape.trn.df,
40 | FUN=mean, na.rm=TRUE)
41 | agg.trn.df.sd = aggregate(MAPE~.,data = mape.trn.df,
42 | FUN=sd, na.rm=TRUE)
43 |
44 | #bringing everything together
45 | agg.bag.df$sd <- agg.bag.df.sd$MAPE
46 | agg.trn.df$sd <- agg.trn.df.sd$MAPE
47 |
48 | #adding a tag
49 | agg.bag.df$ErrorType = "Validation error"
50 | agg.trn.df$ErrorType = "Training error"
51 |
52 | #binding to a dataframe
53 | full.df = rbind(agg.bag.df,agg.trn.df)
54 |
55 | names(full.df)
56 | head(full.df)
57 | unique(full.df$NoiseLevel)
58 |
59 | #creating a new variable to direct the plotting order
60 | full.df$Model_ErrorType <- paste(full.df$Model,full.df$ErrorType)
61 |
62 | full.df$Variable_upper <- NA
63 | full.df$Variable_upper[full.df$Variable == "cab"] <- "Cab"
64 | full.df$Variable_upper[full.df$Variable == "cm"] <- "Cm"
65 | full.df$Variable_upper[full.df$Variable == "cw"] <- "Cw"
66 | full.df$Variable_upper[full.df$Variable == "lai"] <- "LAI"
67 | #### plotting time
68 |
69 | #converting to percentage
70 | full.df$NoiseLevel = full.df$NoiseLevel*100
71 |
72 | #saving aggregated data prepared for plots
73 | write.csv2(full.df,"NOISERTM_Final_Aggregated.csv")
74 |
75 |
76 |
77 |
78 | #preparing a full dataset for boxplots
79 | mape.bag.df$ErrorType = "Validation error"
80 | mape.trn.df$ErrorType = "Training error"
81 |
82 | full.boxplot = rbind(mape.bag.df,mape.trn.df)
83 | full.boxplot$PT_type = 17
84 |
85 | full.boxplot$Model_ErrorType = paste(full.boxplot$Model,full.boxplot$ErrorType)
86 |
87 | write.csv2(full.boxplot,"NOISERTM_Final_Full.csv")
88 |
89 |
--------------------------------------------------------------------------------
/Plotting/Pure_Inversion_Plot.R:
--------------------------------------------------------------------------------
1 | library(ggplot2)
2 | library(ggthemes)
3 | library(reshape2)
4 | library(tidyverse)
5 |
6 | gc()
7 | setwd("C:/Paper/Tables/Final_Data")
8 |
9 | agg.df <- read.csv2("PURERTM_Final_Aggregated.csv")
10 | full.df <-read.csv2("PURERTM_Final_Full.csv")
11 |
12 | names(agg.df)
13 | names(full.df)
14 |
15 |
16 |
17 | ## Line plot ###########
18 | plt.fig2 <- ggplot(agg.df, aes(x=NSamples, y=MAPE, colour=Model_ErrorType)) +
19 | geom_line(linetype="dashed",size=1)+
20 | geom_point(size=2)+
21 | # geom_line(linetype="dashed",size=.1)+
22 | # geom_point(aes(shape=Model),size=2)+
23 | geom_errorbar(aes(ymin=MAPE-sd, ymax=MAPE+sd), width=.2)+
24 | ylim(0,80)+
25 | scale_colour_manual(values= c('#762a83', '#af8dc3',
26 | '#d6604d','#f4a582',
27 | 'darkgreen','green',
28 | #'#4393c3','#92c5de',
29 | '#053061','#2166ac'))+
30 |
31 | labs(title="Pure RTM inversion",
32 | x ="Nr of samples",
33 | y = "Mean absolute percentage error (%)")+
34 | facet_grid(~Variable,
35 | labeller = labeller(Variable = c("cab" = "Cab",
36 | "cm" = "Cm",
37 | "cw" = "Cw",
38 | "lai"= "LAI")))+
39 | #scale_shape_manual(values=c(15,15,16,16,17,17,18,18))+
40 | #guides(shape = guide_legend(override.aes = list(fill = "black")))
41 |
42 | theme_hc()+
43 | theme(text=element_text(size=24, family="serif"),legend.title = element_blank(),
44 | panel.spacing = unit(1.5, "lines"))
45 |
46 | print(plt.fig2)
47 |
48 | #### Saving the plot ###3
49 |
50 | pdf("Results_RTM_Inv_pure_2_thick.pdf",width=18,height=8,paper='special')
51 |
52 | print(plt.fig2)
53 |
54 | dev.off()
55 |
56 |
57 | ### Box plot ####
58 |
59 | plt.fig2.boxplot <- ggplot(full.df,aes(x=Model, y=MAPE, fill=Model_ErrorType))+
60 | geom_boxplot()+
61 | ylim(0,100)+
62 | labs(#title="Pure RTM inversion",
63 | x ="Model",
64 | y = "Mean absolute percentage error (%)")+
65 | #scale_colour_manual(values= c('#762a83', '#af8dc3',
66 | # '#d6604d','#f4a582',
67 | # 'darkgreen','green',
68 | # #'#4393c3','#92c5de',
69 | # '#053061','#2166ac'))+
70 | #scale_colour_manual(values= c('#053061','#2166ac',
71 | # '#d6604d','#f4a582',
72 | # 'darkgreen','green',
73 | #'#4393c3','#92c5de',
74 | # '#762a83', '#af8dc3'))+
75 | facet_grid(~Variable,#ColNames,
76 | labeller = labeller(Variable = c("cab" ='Cab',
77 | "cm" = "Cm",
78 | "cw" = "Cw",
79 | "lai"= "LAI"))
80 |
81 | )+
82 | scale_colour_manual(values= c('#762a83', '#af8dc3',
83 | '#d6604d','#f4a582',
84 | 'darkgreen','green',
85 | #'#4393c3','#92c5de',
86 | '#053061','#2166ac'),
87 | aesthetics = "fill")+
88 | theme_hc()+
89 | theme(text=element_text(size=24, family="serif"),legend.title = element_blank(),
90 | panel.spacing = unit(1.5, "lines"))#,
91 |
92 |
93 | print(plt.fig2.boxplot)
94 |
--------------------------------------------------------------------------------
/Plotting/NoiseInversion_Final_01.R:
--------------------------------------------------------------------------------
1 |
2 | library(ggplot2)
3 | library(ggthemes)
4 | library(reshape2)
5 |
6 |
7 | gc()
8 | setwd("C:/Paper/Tables/Final_Data")
9 |
10 | errbg.df = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2.csv")
11 | errbg.df.2 = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2_10perc.csv")
12 | errbg.df.3 = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2_25perc.csv")
13 | errbg.df.4 = read.csv2("Optim_S2000_Temp_Noise_KFold_TrainingError_csv2_50perc.csv")
14 |
15 | train.df = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2.csv")
16 | train.df.2 = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2_10perc.csv")
17 | train.df.3 = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2_25perc.csv")
18 | train.df.4 = read.csv2("Optim_S2000_Temp_Noise_KFold_OutOfBag_csv2_50perc.csv")
19 |
20 | errbg.df <- rbind(errbg.df,errbg.df.2,errbg.df.3,errbg.df.4)
21 | train.df <- rbind(train.df,train.df.2,train.df.3,train.df.4)
22 |
23 | unique(train.df$NoiseLevel)
24 |
25 | names(train.df)
26 |
27 | #to maintain everything easily comparable, we will use MAPE to visualize the rror
28 | mape.bag.df = errbg.df[,c(2,3,4,8,16)]
29 | mape.trn.df = train.df[,c(2,3,4,8,16)]
30 |
31 | names(mape.bag.df)
32 | head(mape.bag.df)
33 | #aggreating
34 | agg.bag.df = aggregate(MAPE~.,data = mape.bag.df,
35 | FUN=mean, na.rm=TRUE)
36 | agg.bag.df.sd = aggregate(MAPE~.,data = mape.bag.df,
37 | FUN=sd, na.rm=TRUE)
38 |
39 | agg.trn.df = aggregate(MAPE~.,data = mape.trn.df,
40 | FUN=mean, na.rm=TRUE)
41 | agg.trn.df.sd = aggregate(MAPE~.,data = mape.trn.df,
42 | FUN=sd, na.rm=TRUE)
43 |
44 | #bringing everything together
45 | agg.bag.df$sd <- agg.bag.df.sd$MAPE
46 | agg.trn.df$sd <- agg.trn.df.sd$MAPE
47 |
48 | #adding a tag
49 | agg.bag.df$ErrorType = "Validation error"
50 | agg.trn.df$ErrorType = "Training error"
51 |
52 | #binding to a dataframe
53 | full.df = rbind(agg.bag.df,agg.trn.df)
54 |
55 | names(full.df)
56 | head(full.df)
57 | unique(full.df$NoiseLevel)
58 |
59 | #creating a new variable to direct the plotting order
60 | full.df$Model_ErrorType <- paste(full.df$Model,full.df$ErrorType)
61 |
62 | full.df$Variable_upper <- NA
63 | full.df$Variable_upper[full.df$Variable == "cab"] <- "Cab"
64 | full.df$Variable_upper[full.df$Variable == "cm"] <- "Cm"
65 | full.df$Variable_upper[full.df$Variable == "cw"] <- "Cw"
66 | full.df$Variable_upper[full.df$Variable == "lai"] <- "LAI"
67 | #### plotting time
68 |
69 | #converting to percentage
70 | full.df$NoiseLevel = full.df$NoiseLevel*100
71 |
72 | pdf("Results_RTM_Inv_noise_2.pdf",width=18,height=8,paper='special')
73 |
74 | plt.fig <- ggplot(full.df, aes(x=NoiseLevel, y=MAPE, colour=Model_ErrorType)) +
75 | geom_line(linetype="dashed",size=.1)+
76 | geom_point(aes(shape=Model),size=2)+
77 | geom_errorbar(aes(ymin=MAPE-sd, ymax=MAPE+sd), width=.2)+
78 | #geom_point()+
79 | #ylim(0,100)+
80 | scale_colour_manual(values= c('#762a83', '#af8dc3',
81 | '#d6604d','#f4a582',
82 | 'darkgreen','green',
83 | #'#4393c3','#92c5de',
84 | '#053061','#2166ac'))+
85 |
86 | labs(#title="Noise RTM inversion",
87 | x ="Noise level (%)",
88 | y = "Mean absolute percentage error (%)")+
89 | facet_grid(NoiseType~Variable_upper,
90 | #ncol=4,
91 | #strip.position = c("top","right")
92 | )+
93 | #theme(strip.text = element_text(hjust = 0))+
94 | theme_hc()+
95 | theme(text=element_text(size=24, family="serif"),legend.title = element_blank(),
96 | panel.spacing = unit(1.5, "lines"))
97 |
98 | print(plt.fig)
99 |
100 | dev.off()
101 |
102 |
103 | ###### zoomed figure
104 |
105 | pdf("Results_RTM_Inv_noise_2_zoom.pdf",width=18,height=8,paper='special')
106 |
107 | plt.fig <- ggplot(full.df, aes(x=NoiseLevel, y=MAPE, colour=Model_ErrorType)) +
108 | geom_line(linetype="dashed",size=.1)+
109 | geom_point(aes(shape=Model),size=2)+
110 | geom_errorbar(aes(ymin=MAPE-sd, ymax=MAPE+sd), width=.2)+
111 | #geom_point()+
112 | xlim(0,10)+
113 | ylim(0,50)+
114 | scale_colour_manual(values= c('#762a83', '#af8dc3',
115 | '#d6604d','#f4a582',
116 | 'darkgreen','green',
117 | #'#4393c3','#92c5de',
118 | '#053061','#2166ac'))+
119 |
120 | labs(#title="Noise RTM inversion",
121 | x ="Noise level (%)",
122 | y = "Mean absolute percentage error (%)")+
123 | facet_grid(NoiseType~Variable_upper,
124 | #ncol=4,
125 | #strip.position = c("top","right")
126 | )+
127 | #theme(strip.text = element_text(hjust = 0))+
128 | theme_hc()+
129 | theme(text=element_text(size=24, family="serif"),legend.title = element_blank(),
130 | panel.spacing = unit(1.5, "lines"))
131 |
132 | print(plt.fig)
133 |
134 | dev.off()
--------------------------------------------------------------------------------
/Plotting/EpochTestings_Final_02.R:
--------------------------------------------------------------------------------
1 | library(ggplot2)
2 | library(ggthemes)
3 | library(reshape2)
4 | library(RColorBrewer)
5 |
6 |
7 | setwd("C:/Paper/Tables/Final_Data")
8 | gc()
9 |
10 |
11 | #my.df <- read.csv2("C:/Users/Nuno/Desktop/ChangeNet_Temp_EpochTesting_OptimizedOnly.csv")
12 | my.df <- read.csv2("MTMTSTST_01_Final_EpochTesting_OptimizedOnly.csv")
13 |
14 | #fixing the table
15 | my.df.2 = my.df[,c(2,3,4,5,13)]
16 |
17 | my.df.2$Model = substr(my.df.2$Model,1,3)
18 |
19 | my.df.2$Valid_Model = paste(my.df.2$Model,my.df.2$ValidType,sep=" ")
20 | my.df.2$Epochs_mdl_valid = paste(my.df.2$Epochs,my.df.2$Model,my.df.2$ValidType,sep=" ")
21 |
22 |
23 | ##boxplots works but are not pretty
24 | ggplot(my.df.2, aes(x=Epochs, y=MAPE, fill=Valid_Model,group=interaction(Epochs,Valid_Model))) +
25 | #geom_line(linetype="dashed")+
26 | #geom_point(shape=full.df$ptshape,size=1.8)+
27 | #geom_point()+
28 | #geom_jitter()+
29 | geom_boxplot(position = "dodge2")+
30 | #ylim(0,25)+
31 | #xlim(0,300)+
32 | scale_colour_manual(values= c('chocolate1', 'chocolate4',
33 | 'green1','darkgreen'))+
34 |
35 | labs(title="Neural networks - MAPE error in function of training iterations",
36 | x ="Epochs",
37 | y ="Mean absolute percentage error (%)")+
38 | facet_wrap(~Variable,scales="free_y",ncol=2)+
39 | #theme(strip.text = element_text(hjust = 0))+
40 | theme_hc()+
41 | theme(text=element_text(size=18, family="serif"),legend.title = element_blank(),
42 | panel.spacing = unit(1.5, "lines"))
43 |
44 |
45 | #aggregating
46 | my.df.2 = my.df[,c(2,3,4,5,13)]
47 | my.df.2$Model = substr(my.df.2$Model,1,3)
48 |
49 | #there is a big outlier on the 50 epochs training that breaks down the error bars
50 | my.df.2 = my.df.2[-c(67,68),]
51 |
52 | agg.df = aggregate(MAPE~.,data =my.df.2,
53 | FUN=mean, na.rm=TRUE)
54 | agg.df.sd = aggregate(MAPE~.,data =my.df.2,
55 | FUN=sd, na.rm=TRUE)
56 | agg.df$sd = agg.df.sd$MAPE
57 | agg.df$Valid_Model = paste(agg.df$Model,agg.df$ValidType,sep=" ")
58 |
59 | pdf("ANN_By_Epochs.pdf",width=18,height=8,paper='special')
60 |
61 | plt1 <- ggplot(agg.df, aes(x=Epochs, y=MAPE, colour=Valid_Model)) +
62 | geom_line(linetype="dashed",size=.1)+
63 | #geom_point(shape=full.df$ptshape,size=1.8)+
64 | geom_point(size=1.5)+
65 | geom_errorbar(aes(ymin=MAPE-sd, ymax=MAPE+sd), width=.2)+
66 | #ylim(0,25)+
67 | scale_colour_manual(values= c('chocolate1', 'chocolate4',
68 | 'green1','darkgreen'))+
69 |
70 | labs(#title="Neural networks - MAPE error in function of training iterations",
71 | x ="Epochs",
72 | y ="Mean absolute percentage error (%)")+
73 | facet_wrap(~Variable,scales="free_y",ncol=2,
74 | labeller = labeller(Variable = c("cab" = "Cab",
75 | "cm" = "Cm",
76 | "cw" = "Cw",
77 | "lai"= "LAI")))+
78 | #theme(strip.text = element_text(hjust = 0))+
79 | theme_hc()+
80 | theme(text=element_text(size=18, family="serif"),legend.title = element_blank(),
81 | panel.spacing = unit(1.5, "lines"))
82 |
83 | print(plt1)
84 | dev.off()
85 |
86 |
87 | ############### old code
88 | names(my.df)
89 |
90 | my.df.2 = my.df[,c(2,3,4,5,13)]
91 | my.df.2$Model = substr(my.df.2$Model,1,3)
92 |
93 |
94 | agg.df = aggregate(MAPE~.,data =my.df.2,
95 | FUN=mean, na.rm=TRUE)
96 |
97 | agg.df$Valid_Model = paste(agg.df$Model,agg.df$ValidType,sep=" ")
98 |
99 |
100 |
101 | plt.fig <- ggplot(agg.df, aes(x=Epochs, y=MAPE, colour=Valid_Model)) +
102 | geom_line(linetype="dashed")+
103 | #geom_point(shape=full.df$ptshape,size=1.8)+
104 | geom_point()+
105 | geom_errorbar(aes(ymin=MAPE-sd, ymax=MAPE+sd), width=.2)+
106 | #ylim(0,25)+
107 | scale_colour_manual(values= c('chocolate1', 'chocolate4',
108 | 'green1','darkgreen'))+
109 |
110 | labs(title="Neural networks - MAPE error in function of training iterations",
111 | x ="Epochs",
112 | y ="Mean absolute percentage error (%)")+
113 | facet_wrap(~Variable,scales="free_y",ncol=2)+
114 | #theme(strip.text = element_text(hjust = 0))+
115 | theme_hc()+
116 | theme(text=element_text(size=18, family="serif"),legend.title = element_blank(),
117 | panel.spacing = unit(1.5, "lines"))
118 |
119 | print(plt.fig)
120 |
121 |
122 |
123 |
124 | #as.character(unique(agg.df$Model))
125 |
126 | #agg.df.2 = agg.df[agg.df$Model==c("ANN_optimized"),]
127 | #agg.df.2 = rbind(agg.df.2,agg.df[agg.df$Model==c("MTN_optimized"),])
128 |
129 | agg.df$Valid_Model = paste(agg.df$Model,agg.df$ValidType,sep="_")
130 |
131 | #png("EpochComparision_0to25.png",
132 | # width = 800, height = 500, units = "px",pointsize=12)
133 |
134 | plt.fig <- ggplot(agg.df, aes(x=Epochs, y=MAPE, colour=Valid_Model)) +
135 | geom_line(linetype="dashed")+
136 | #geom_point(shape=full.df$ptshape,size=1.8)+
137 | geom_point()+
138 | ylim(0,25)+
139 | scale_colour_manual(values= c('chocolate1', 'chocolate4',
140 | 'green1','darkgreen'))+
141 |
142 | labs(title="Neural networks - MAPE error in function of training iterations",
143 | x ="Epochs",
144 | y ="Mean absolute percentage error (%)")+
145 | facet_wrap(~Variable,scales="free_y",ncol=2)+
146 | #theme(strip.text = element_text(hjust = 0))+
147 | theme_hc()+
148 | theme(text=element_text(size=18, family="serif"),legend.title = element_blank(),
149 | panel.spacing = unit(1.5, "lines"))
150 |
151 | print(plt.fig)
152 |
153 | #dev.off()
154 |
155 |
--------------------------------------------------------------------------------
/Plotting/PureInversion_Final_01.R:
--------------------------------------------------------------------------------
1 |
2 | library(ggplot2)
3 | library(ggthemes)
4 | library(reshape2)
5 |
6 | gc()
7 | setwd("C:/Paper/Tables/Final_Data")
8 |
9 | errbg.df = read.csv2("MTMTSTST_Temp_KFold_OutOfBag_csv2_Corrected_600epoch.csv")
10 | errbg.df.2 = read.csv2("MTMTSTST_Temp_KFold_OutOfBag_csv2_Corrected_600epoch_1850.csv")
11 | errbg.df.3 = read.csv2("MTMTSTST_Temp_KFold_OutOfBag_csv2_Corrected_600epoch_3350.csv")
12 |
13 | train.df = read.csv2("MTMTSTST_Temp_KFold_TrainingError_csv2_Corrected_600epoch.csv")
14 | train.df.2 = read.csv2("MTMTSTST_Temp_KFold_TrainingError_csv2_Corrected_600epoch_1850.csv")
15 | train.df.3 = read.csv2("MTMTSTST_Temp_KFold_TrainingError_csv2_Corrected_600epoch_3350.csv")
16 |
17 | errbg.df <- rbind(errbg.df,errbg.df.2,errbg.df.3)
18 | train.df <- rbind(train.df,train.df.2,train.df.3)
19 |
20 | #to maintain everything easily comparable, we will use MAPE to visualize the rror
21 | mape.bag.df = errbg.df[,c(2,3,7,8,15)]
22 | mape.trn.df = train.df[,c(2,3,7,8,15)]
23 |
24 |
25 | agg.bag.df = aggregate(MAPE~.,data = mape.bag.df[,-4],
26 | FUN=mean, na.rm=TRUE)
27 | agg.bag.df.sd = aggregate(MAPE~.,data = mape.bag.df[,-4],
28 | FUN=sd, na.rm=TRUE)
29 |
30 | agg.trn.df = aggregate(MAPE~.,data = mape.trn.df[,-4],
31 | FUN=mean, na.rm=TRUE)
32 | agg.trn.df.sd = aggregate(MAPE~.,data = mape.trn.df[,-4],
33 | FUN=sd, na.rm=TRUE)
34 |
35 | agg.bag.df$sd <- agg.bag.df.sd$MAPE
36 | agg.trn.df$sd <- agg.trn.df.sd$MAPE
37 |
38 | #adding a tag
39 | agg.bag.df$ErrorType = "Out-of-bag"
40 | agg.trn.df$ErrorType = "Training"
41 |
42 | #binding to a dataframe
43 | full.df = rbind(agg.bag.df,agg.trn.df)
44 |
45 | names(full.df)
46 | head(full.df)
47 | unique(full.df$ErrorType)
48 |
49 |
50 | #naming
51 | full.df$ErrorTypeNames = NA
52 | full.df$ErrorTypeNames[full.df$ErrorType=="Out-of-bag"] <- "Validation error"
53 | full.df$ErrorTypeNames[full.df$ErrorType=="Training"] <- "Training error"
54 |
55 | #creating a new variable to direct the plotting order
56 | full.df$Model_ErrorType <- paste(full.df$Model,full.df$ErrorTypeNames)
57 |
58 |
59 | unique(full.df$NSamples)
60 |
61 | #creating a point type column
62 |
63 | full.df$PT_type = NA
64 | full.df$PT_type[full.df$Model=="ANN"] = 17
65 | full.df$PT_type[full.df$Model=="GPR"] = 17
66 | full.df$PT_type[full.df$Model=="MTN"] = 17
67 | full.df$PT_type[full.df$Model=="RFR"] = 17
68 |
69 |
70 | ########## PRINTING - error from 0 to 80
71 |
72 | list.files()
73 | write.csv2(full.df,"PURERTM_Final_Processed (forPlots).csv")
74 |
75 |
76 | #png("C:/Paper/R_Scripts/Optimized_Pure_BySamples_4Box_meanTr_maxVal.png",
77 | # width = 600, height = 500, units = "px",pointsize=12)
78 | pdf("Results_RTM_Inv_pure_2.pdf",width=18,height=8,paper='special')
79 |
80 |
81 | plt.fig2 <- ggplot(full.df, aes(x=NSamples, y=MAPE, colour=Model_ErrorType)) +
82 | geom_line(linetype="dashed",size=.1)+
83 | geom_point(aes(shape=Model),size=2)+
84 | geom_errorbar(aes(ymin=MAPE-sd, ymax=MAPE+sd), width=.2)+
85 | ylim(0,80)+
86 | scale_colour_manual(values= c('#762a83', '#af8dc3',
87 | '#d6604d','#f4a582',
88 | 'darkgreen','green',
89 | #'#4393c3','#92c5de',
90 | '#053061','#2166ac'))+
91 |
92 | labs(title="Pure RTM inversion",
93 | x ="Nr of samples",
94 | y = "Mean absolute percentage error (%)")+
95 | facet_wrap(~ Variable,scales="free",labeller = labeller(Variable = c("cab" = "Cab",
96 | "cm" = "Cm",
97 | "cw" = "Cw",
98 | "lai"= "LAI")))+
99 |
100 | #scale_shape_manual(values=c(15,15,16,16,17,17,18,18))+
101 | #guides(shape = guide_legend(override.aes = list(fill = "black")))
102 |
103 | theme_hc()+
104 | theme(text=element_text(size=24, family="serif"),legend.title = element_blank(),
105 | panel.spacing = unit(1.5, "lines"))
106 |
107 | print(plt.fig2)
108 |
109 | dev.off()
110 |
111 |
112 | ################# printing, error from 0 to 25
113 |
114 |
115 | #png("C:/Paper/R_Scripts/Optimized_Pure_BySamples_4Box_meanTr_maxVal.png",
116 | # width = 600, height = 500, units = "px",pointsize=12)
117 | pdf("Results_RTM_Inv_pure_2_zoom.pdf",width=18,height=8,paper='special')
118 |
119 |
120 | plt.fig2 <- ggplot(full.df, aes(x=NSamples, y=MAPE, colour=Model_ErrorType)) +
121 | geom_line(linetype="dashed",size=.1)+
122 | geom_point(aes(shape=Model),size=2)+
123 | geom_errorbar(aes(ymin=MAPE-sd, ymax=MAPE+sd), width=.2)+
124 | ylim(0,5)+
125 | scale_colour_manual(values= c('#762a83', '#af8dc3',
126 | '#d6604d','#f4a582',
127 | 'darkgreen','green',
128 | #'#4393c3','#92c5de',
129 | '#053061','#2166ac'))+
130 |
131 | labs(title="Pure RTM inversion - Zoom",
132 | x ="Nr of samples",
133 | y = "Mean absolute percentage error (%)")+
134 | facet_wrap(~ Variable,scales="free",labeller = labeller(Variable = c("cab" = "Cab",
135 | "cm" = "Cm",
136 | "cw" = "Cw",
137 | "lai"= "LAI")))+
138 |
139 | #scale_shape_manual(values=c(15,15,16,16,17,17,18,18))+
140 | #guides(shape = guide_legend(override.aes = list(fill = "black")))
141 |
142 | theme_hc()+
143 | theme(text=element_text(size=24, family="serif"),legend.title = element_blank(),
144 | panel.spacing = unit(1.5, "lines"))
145 |
146 | print(plt.fig2)
147 |
148 | dev.off()
149 |
--------------------------------------------------------------------------------
/GeneratedData/Final_Sensitivity_2000_Samples.csv:
--------------------------------------------------------------------------------
1 | "";"Trait";"variable";"value";"type";"SampleNr"
2 | "1";"Cab";"B02";0,125011010472239;"mSI";2000
3 | "2";"Car";"B02";0,429419994993694;"mSI";2000
4 | "3";"Cw";"B02";2,09155793886949e-05;"mSI";2000
5 | "4";"Cm";"B02";0,000554431695569641;"mSI";2000
6 | "5";"LAI";"B02";0,00652228505301496;"mSI";2000
7 | "6";"Cab";"B03";0,918346248048515;"mSI";2000
8 | "7";"Car";"B03";0,00247837960334284;"mSI";2000
9 | "8";"Cw";"B03";3,81814225949986e-05;"mSI";2000
10 | "9";"Cm";"B03";0,00404884015300814;"mSI";2000
11 | "10";"LAI";"B03";0,00376193019112051;"mSI";2000
12 | "11";"Cab";"B04";0,786867646460567;"mSI";2000
13 | "12";"Car";"B04";1,26858235303276e-05;"mSI";2000
14 | "13";"Cw";"B04";1,23577184962876e-05;"mSI";2000
15 | "14";"Cm";"B04";0,000631582531389593;"mSI";2000
16 | "15";"LAI";"B04";0,000587715801616172;"mSI";2000
17 | "16";"Cab";"B05";0,923975051888028;"mSI";2000
18 | "17";"Car";"B05";4,22856123577979e-05;"mSI";2000
19 | "18";"Cw";"B05";3,81530725078949e-05;"mSI";2000
20 | "19";"Cm";"B05";0,0114331626087169;"mSI";2000
21 | "20";"LAI";"B05";0,0071525685835177;"mSI";2000
22 | "21";"Cab";"B06";0,179234132932269;"mSI";2000
23 | "22";"Car";"B06";1,66160144678392e-05;"mSI";2000
24 | "23";"Cw";"B06";1,7172948845051e-05;"mSI";2000
25 | "24";"Cm";"B06";0,531944287967785;"mSI";2000
26 | "25";"LAI";"B06";0,217231652404214;"mSI";2000
27 | "26";"Cab";"B07";2,31992191488829e-08;"mSI";2000
28 | "27";"Car";"B07";1,03513523324561e-06;"mSI";2000
29 | "28";"Cw";"B07";7,80274362593386e-05;"mSI";2000
30 | "29";"Cm";"B07";0,693241346338238;"mSI";2000
31 | "30";"LAI";"B07";0,249628169747524;"mSI";2000
32 | "31";"Cab";"B8A";1,08739986374236e-06;"mSI";2000
33 | "32";"Car";"B8A";1,08739986374236e-06;"mSI";2000
34 | "33";"Cw";"B8A";0,000272116600560051;"mSI";2000
35 | "34";"Cm";"B8A";0,70368285518215;"mSI";2000
36 | "35";"LAI";"B8A";0,240513920687923;"mSI";2000
37 | "36";"Cab";"B11";8,95401446485325e-06;"mSI";2000
38 | "37";"Car";"B11";8,95401446485325e-06;"mSI";2000
39 | "38";"Cw";"B11";0,563290880785687;"mSI";2000
40 | "39";"Cm";"B11";0,374612902109127;"mSI";2000
41 | "40";"LAI";"B11";0,00297011716456824;"mSI";2000
42 | "41";"Cab";"B12";1,55735492007798e-05;"mSI";2000
43 | "42";"Car";"B12";1,55735492007798e-05;"mSI";2000
44 | "43";"Cw";"B12";0,383138323523235;"mSI";2000
45 | "44";"Cm";"B12";0,396628226459402;"mSI";2000
46 | "45";"LAI";"B12";0,0629325283227431;"mSI";2000
47 | "46";"Cab";"GSI";0,247491011035436;"mSI";2000
48 | "47";"Car";"GSI";0,000474425637749958;"mSI";2000
49 | "48";"Cw";"GSI";0,0361562102228027;"mSI";2000
50 | "49";"Cm";"GSI";0,484290163874792;"mSI";2000
51 | "50";"LAI";"GSI";0,167640034137319;"mSI";2000
52 | "51";"Cab";"B02";0,389556342474449;"iSI";2000
53 | "52";"Car";"B02";0,41874028078035;"iSI";2000
54 | "53";"Cw";"B02";0,0117511844757104;"iSI";2000
55 | "54";"Cm";"B02";0,012784935159925;"iSI";2000
56 | "55";"LAI";"B02";0,00990269343909127;"iSI";2000
57 | "56";"Cab";"B03";0,0654008556371661;"iSI";2000
58 | "57";"Car";"B03";0,00599752029570067;"iSI";2000
59 | "58";"Cw";"B03";0,00218790149122454;"iSI";2000
60 | "59";"Cm";"B03";0,0114880965429434;"iSI";2000
61 | "60";"LAI";"B03";0,0103079832001178;"iSI";2000
62 | "61";"Cab";"B04";0,189568191667838;"iSI";2000
63 | "62";"Car";"B04";0,00131976905410967;"iSI";2000
64 | "63";"Cw";"B04";0,00132020553270284;"iSI";2000
65 | "64";"Cm";"B04";0,00720129362169877;"iSI";2000
66 | "65";"LAI";"B04";0,0101431006026967;"iSI";2000
67 | "66";"Cab";"B05";0,0532357701928428;"iSI";2000
68 | "67";"Car";"B05";0,00266464709615461;"iSI";2000
69 | "68";"Cw";"B05";0,00266295308759677;"iSI";2000
70 | "69";"Cm";"B05";0,019213621518761;"iSI";2000
71 | "70";"LAI";"B05";0,0134975606556929;"iSI";2000
72 | "71";"Cab";"B06";0,0521191407709006;"iSI";2000
73 | "72";"Car";"B06";0,029560119596181;"iSI";2000
74 | "73";"Cw";"B06";0,0294569903592175;"iSI";2000
75 | "74";"Cm";"B06";0,0639384754086985;"iSI";2000
76 | "75";"LAI";"B06";0,0467846829621675;"iSI";2000
77 | "76";"Cab";"B07";0,0269450563576302;"iSI";2000
78 | "77";"Car";"B07";0,0269484652097971;"iSI";2000
79 | "78";"Cw";"B07";0,0268788663241432;"iSI";2000
80 | "79";"Cm";"B07";0,0565742239481191;"iSI";2000
81 | "80";"LAI";"B07";0,0550598465434007;"iSI";2000
82 | "81";"Cab";"B8A";0,025612038330423;"iSI";2000
83 | "82";"Car";"B8A";0,025612038330423;"iSI";2000
84 | "83";"Cw";"B8A";0,025527250641119;"iSI";2000
85 | "84";"Cm";"B8A";0,0550221305292892;"iSI";2000
86 | "85";"LAI";"B8A";0,0536139247606676;"iSI";2000
87 | "86";"Cab";"B11";0,00387163205894905;"iSI";2000
88 | "87";"Car";"B11";0,00387163205894905;"iSI";2000
89 | "88";"Cw";"B11";0,0561055729348416;"iSI";2000
90 | "89";"Cm";"B11";0,0544748821577474;"iSI";2000
91 | "90";"LAI";"B11";0,0101189512409468;"iSI";2000
92 | "91";"Cab";"B12";0,0351435604007107;"iSI";2000
93 | "92";"Car";"B12";0,0351435604007107;"iSI";2000
94 | "93";"Cw";"B12";0,156378341482218;"iSI";2000
95 | "94";"Cm";"B12";0,156442617694171;"iSI";2000
96 | "95";"LAI";"B12";0,0364541288975483;"iSI";2000
97 | "96";"Cab";"GSI";0,0391297073979125;"iSI";2000
98 | "97";"Car";"GSI";0,0204862607145516;"iSI";2000
99 | "98";"Cw";"GSI";0,0240209239108027;"iSI";2000
100 | "99";"Cm";"GSI";0,0485412748629606;"iSI";2000
101 | "100";"LAI";"GSI";0,0403221014550804;"iSI";2000
102 | "101";"Cab";"B02";0,514567352946688;"tSI";2000
103 | "102";"Car";"B02";0,848160275774044;"tSI";2000
104 | "103";"Cw";"B02";0,0117721000550991;"tSI";2000
105 | "104";"Cm";"B02";0,0133393668554946;"tSI";2000
106 | "105";"LAI";"B02";0,0164249784921062;"tSI";2000
107 | "106";"Cab";"B03";0,983747103685681;"tSI";2000
108 | "107";"Car";"B03";0,00847589989904352;"tSI";2000
109 | "108";"Cw";"B03";0,00222608291381954;"tSI";2000
110 | "109";"Cm";"B03";0,0155369366959516;"tSI";2000
111 | "110";"LAI";"B03";0,0140699133912383;"tSI";2000
112 | "111";"Cab";"B04";0,976435838128404;"tSI";2000
113 | "112";"Car";"B04";0,00133245487764;"tSI";2000
114 | "113";"Cw";"B04";0,00133256325119913;"tSI";2000
115 | "114";"Cm";"B04";0,00783287615308836;"tSI";2000
116 | "115";"LAI";"B04";0,0107308164043128;"tSI";2000
117 | "116";"Cab";"B05";0,977210822080871;"tSI";2000
118 | "117";"Car";"B05";0,00270693270851241;"tSI";2000
119 | "118";"Cw";"B05";0,00270110616010466;"tSI";2000
120 | "119";"Cm";"B05";0,0306467841274779;"tSI";2000
121 | "120";"LAI";"B05";0,0206501292392106;"tSI";2000
122 | "121";"Cab";"B06";0,231353273703169;"tSI";2000
123 | "122";"Car";"B06";0,0295767356106489;"tSI";2000
124 | "123";"Cw";"B06";0,0294741633080625;"tSI";2000
125 | "124";"Cm";"B06";0,595882763376483;"tSI";2000
126 | "125";"LAI";"B06";0,264016335366382;"tSI";2000
127 | "126";"Cab";"B07";0,0269450795568493;"tSI";2000
128 | "127";"Car";"B07";0,0269495003450303;"tSI";2000
129 | "128";"Cw";"B07";0,0269568937604026;"tSI";2000
130 | "129";"Cm";"B07";0,749815570286357;"tSI";2000
131 | "130";"LAI";"B07";0,304688016290925;"tSI";2000
132 | "131";"Cab";"B8A";0,0256131257302867;"tSI";2000
133 | "132";"Car";"B8A";0,0256131257302867;"tSI";2000
134 | "133";"Cw";"B8A";0,0257993672416791;"tSI";2000
135 | "134";"Cm";"B8A";0,75870498571144;"tSI";2000
136 | "135";"LAI";"B8A";0,294127845448591;"tSI";2000
137 | "136";"Cab";"B11";0,00388058607341391;"tSI";2000
138 | "137";"Car";"B11";0,00388058607341391;"tSI";2000
139 | "138";"Cw";"B11";0,619396453720529;"tSI";2000
140 | "139";"Cm";"B11";0,429087784266875;"tSI";2000
141 | "140";"LAI";"B11";0,013089068405515;"tSI";2000
142 | "141";"Cab";"B12";0,0351591339499114;"tSI";2000
143 | "142";"Car";"B12";0,0351591339499114;"tSI";2000
144 | "143";"Cw";"B12";0,539516665005453;"tSI";2000
145 | "144";"Cm";"B12";0,553070844153573;"tSI";2000
146 | "145";"LAI";"B12";0,0993866572202914;"tSI";2000
147 | "146";"Cab";"GSI";0,286620718433348;"tSI";2000
148 | "147";"Car";"GSI";0,0209606863523015;"tSI";2000
149 | "148";"Cw";"GSI";0,0601771341336055;"tSI";2000
150 | "149";"Cm";"GSI";0,532831438737753;"tSI";2000
151 | "150";"LAI";"GSI";0,2079621355924;"tSI";2000
152 |
--------------------------------------------------------------------------------
/Plotting/CorrelationPlots_Final.R:
--------------------------------------------------------------------------------
1 | #library for PROSAIL and also Spectral Angle Mapper
2 | library(hsdar)
3 |
4 | #Latin hypercube comes from here
5 | library(FME)
6 |
7 | #for more options on generating random samples
8 | library(MCMCglmm)
9 |
10 | #the single target classifier
11 | #library(randomForest)
12 |
13 | #machine learning librarys
14 | #library(randomForestSRC)
15 | #library(ANN2)
16 |
17 | #for scaling and unscaling variables
18 | library(DMwR)
19 |
20 | #GIS/RS
21 | library(maptools)
22 | library(rgeos)
23 | library(rgdal)
24 | library(raster)
25 | library(sp)
26 |
27 | #sensitivity analysis
28 | #library(sensitivity)
29 |
30 | #plotting packages
31 | library(ggplot2)
32 | library(ggthemes)
33 |
34 | #data frame operations5
35 | library(reshape2)
36 |
37 | #gridExtra
38 | library(gridExtra)
39 |
40 | #importing fonts
41 | library(extrafont)
42 | #font_import()
43 |
44 | loadfonts(device="win")
45 | loadfonts()
46 |
47 | ## custom function to reshape text, subscripts and etc
48 | text_convert <- function(text_in){
49 |
50 | if (text_in =='cab'){
51 | text_out = expression('C'['ab'])
52 | }
53 | if (text_in =='cw'){
54 | text_out = expression('C'['w'])
55 | }
56 | if (text_in =='cm'){
57 | text_out = expression('C'['m'])
58 | }
59 | if (text_in =='lai'){
60 | text_out = expression('LAI')
61 | }
62 | if (text_in =='car'){
63 | text_out = expression('Car')
64 | }
65 |
66 | return(text_out)
67 | }
68 |
69 | ## custom function to generate the breaks of each input trait
70 | break_lims <- function(text_in){
71 |
72 | if (text_in =='cab'){
73 | out_list = c(0,60,120)
74 | }
75 | if (text_in =='cw'){
76 | out_list = c(0,0.005,0.01)
77 | }
78 | if (text_in =='cm'){
79 | out_list = c(0,0.005,0.01)
80 | }
81 | if (text_in =='lai'){
82 | out_list = c(0,5,10)
83 | }
84 | if (text_in =='car'){
85 | out_list = c(0,30,60)
86 | }
87 |
88 | return(out_list )
89 | }
90 | break_lims('cab')
91 |
92 | ## custom function to generate the breaks of each input band
93 | break_lims_bands <- function(text_in){
94 |
95 | if (text_in =='B2'){
96 | out_list = c(.02,.03,.04)
97 | }
98 | if (text_in =='B3'){
99 | out_list = c(.02,.06,.10)
100 | }
101 | if (text_in =='B4'){
102 | out_list = c(.02,.03,.04,.05)
103 | }
104 | if (text_in =='B5'){
105 | out_list = c(0,.1,.2)
106 | }
107 | if (text_in =='B6'){
108 | out_list = c(.2,.3,.4,.5)
109 | }
110 | if (text_in =='B7'){
111 | out_list = c(.3,.4,.5,.6)
112 | }
113 | if (text_in =='B8A'){
114 | out_list = c(.3,.4,.5,.6)
115 | }
116 | if (text_in =='B11'){
117 | out_list = c(.2,.3,.4)
118 | }
119 | if (text_in =='B12'){
120 | out_list = c(.1,.15,.2)
121 | }
122 |
123 |
124 | return(out_list )
125 | }
126 | break_lims_bands('B2')
127 |
128 |
129 | #multiplot function -> http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/
130 | multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
131 | library(grid)
132 |
133 | # Make a list from the ... arguments and plotlist
134 | plots <- c(list(...), plotlist)
135 |
136 | numPlots = length(plots)
137 |
138 | # If layout is NULL, then use 'cols' to determine layout
139 | if (is.null(layout)) {
140 | # Make the panel
141 | # ncol: Number of columns of plots
142 | # nrow: Number of rows needed, calculated from # of cols
143 | layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
144 | ncol = cols, nrow = ceiling(numPlots/cols))
145 | }
146 |
147 | if (numPlots==1) {
148 | print(plots[[1]])
149 |
150 | } else {
151 | # Set up the page
152 | grid.newpage()
153 | pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
154 |
155 | # Make each plot, in the correct location
156 | for (i in 1:numPlots) {
157 | # Get the i,j matrix positions of the regions that contain this subplot
158 | matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
159 |
160 | print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
161 | layout.pos.col = matchidx$col))
162 | }
163 | }
164 | }
165 |
166 |
167 |
168 | #latex font
169 | par(family = "LM Roman 10")
170 |
171 |
172 | #my.df <- read.csv2("C:/Paper/Tables/Final_Data/Traits_Spectra_car.csv")
173 | #head(my.df)
174 | #my.df <- my.df[,-1]
175 | #head(my.df)
176 | #sample.rows <- sample(seq(1,nrow(my.df)),100)
177 | #sub.df <- my.df[sample.rows,]
178 | #sel.df <- my.df[sample.rows,]
179 | #write.csv2(sel.df,"C:/Paper/Tables/Final_Data/Traits_Spectra_car_PlotSel.csv")
180 |
181 | #fetching selected
182 | sel.df <- read.csv2("C:/Paper/Tables/Final_Data/Traits_Spectra_car_PlotSel.csv")
183 | sel.df <- sel.df[,-1]
184 |
185 |
186 | #setting standard background theme
187 | txt_size = 26
188 | theme_set(theme_light(base_family ='serif',#"LM Roman 10",
189 | base_size=txt_size ))
190 |
191 | #a list to store all the pltos
192 | plot_list <- list()
193 |
194 | #number of breaks in the axis plots
195 | n_steps = 3
196 |
197 |
198 | #plot counter
199 | i = 1
200 |
201 | for (t_i in 10:14){
202 |
203 | print(t_i)
204 | print(names(sel.df)[t_i])
205 |
206 | for (b_i in 1:9){
207 |
208 |
209 | #loading row column
210 | temp.df = sel.df[,c(t_i,b_i)]
211 |
212 | #naming to
213 | names(temp.df)=c("Trait","Band")
214 |
215 | #getting text for band
216 | band_txt = names(sel.df)[b_i]
217 | print(band_txt)
218 |
219 | #controling the breaks
220 | #max_x = max(temp.df$Trait)
221 | #min_x = min(temp.df$Trait)
222 | #stp_x = (max_x-min_x)/n_steps
223 |
224 | #max_y = max(temp.df$Band)
225 | #min_y = min(temp.df$Band)
226 | #stp_y = (max_y-min_y)/n_steps
227 |
228 | #controlling the Breaks y
229 | brk_list_bands = break_lims_bands(names(sel.df)[b_i])
230 | brk_list = break_lims(names(sel.df)[t_i])
231 |
232 | if (i <= 9){
233 | txt_title = band_txt
234 | } else{
235 | txt_title = ""
236 | }
237 |
238 | if (band_txt == "B2"){
239 |
240 | y_txt = text_convert(names(sel.df)[t_i])
241 |
242 |
243 |
244 | p1= ggplot(temp.df,aes(x=Trait,y=Band))+
245 | #p1= ggplot(x=my.df[,b_i],y=my.df[,t_i])+
246 | #geometry types
247 | geom_point()+
248 | geom_smooth(method = "lm", linetype = "dashed")+
249 |
250 | #breaks
251 | scale_x_continuous(breaks = brk_list)+
252 | scale_y_continuous(breaks = brk_list_bands)+
253 |
254 | #theme stuff
255 | theme(axis.title.y=element_text(angle = 0,vjust=.5,size=txt_size + 2),
256 | title = element_text(hjust=.5,size=txt_size +2)#,
257 | #axis.text.x=element_text(txt_size+2),
258 | #axis.text.y=element_text(txt_size+2)
259 | #text=element_text(),
260 | )+
261 | labs(x="",
262 | y=y_txt,
263 | title=txt_title)#+
264 |
265 | #theme_minimal()
266 |
267 | }
268 |
269 |
270 |
271 | else{
272 |
273 |
274 |
275 | p1= ggplot(temp.df,aes(x=Trait,y=Band))+
276 | #p1= ggplot(x=my.df[,b_i],y=my.df[,t_i])+
277 | #geometry types
278 | geom_point()+
279 | geom_smooth(method = "lm", linetype = "dashed")+
280 |
281 | #breaks
282 | scale_x_continuous(breaks = brk_list)+
283 | scale_y_continuous(breaks = brk_list_bands)+
284 |
285 | #theme stuff
286 | theme(#axis.title.y=element_text(angle = 0,vjust=.5,size=18),
287 | title = element_text(hjust=.5,size=txt_size +2)#,
288 | #axis.text.x=element_text(txt_size+2),
289 | #axis.text.y=element_text(txt_size+2)
290 | #text=element_text(),
291 | )+
292 | labs(x="",
293 | y="",
294 | title=txt_title)
295 | #+
296 | #theme_minimal()
297 |
298 | }
299 |
300 |
301 | #adding to the list
302 | plot_list[[i]] <- p1
303 | i = i+1
304 | #plotter
305 | #plot(p1)
306 |
307 | }
308 |
309 | }
310 |
311 |
312 |
313 | library(cowplot)
314 |
315 | pdf("C:/Paper/Tables/Final_Data/PearsonR_ByBandPlot_Corrected_Reviewed_02.pdf",width=30,height=20,paper='special')
316 |
317 | plot_grid(plot_list[[1]],plot_list[[2]],plot_list[[3]],plot_list[[4]],plot_list[[5]],plot_list[[6]],plot_list[[7]],plot_list[[8]],plot_list[[9]],
318 | plot_list[[10]],plot_list[[11]],plot_list[[12]],plot_list[[13]],plot_list[[14]],plot_list[[15]],plot_list[[16]],plot_list[[17]],plot_list[[18]],
319 | plot_list[[19]],plot_list[[20]],plot_list[[21]],plot_list[[22]],plot_list[[23]],plot_list[[24]],plot_list[[25]],plot_list[[26]],plot_list[[27]],
320 | plot_list[[28]],plot_list[[29]],plot_list[[30]],plot_list[[31]],plot_list[[32]],plot_list[[33]],plot_list[[34]],plot_list[[35]],plot_list[[36]],
321 | plot_list[[37]],plot_list[[38]],plot_list[[39]],plot_list[[40]],plot_list[[41]],plot_list[[42]],plot_list[[43]],plot_list[[44]],plot_list[[45]],
322 | ncol=9,nrow=5,scale=.965, align = 'vh')
323 |
324 | dev.off()
325 |
326 |
327 |
--------------------------------------------------------------------------------
/Plotting/GSI_Plots_Final_01.R:
--------------------------------------------------------------------------------
1 | #library for PROSAIL and also Spectral Angle Mapper
2 | library(hsdar)
3 |
4 | #Latin hypercube comes from here
5 | library(FME)
6 |
7 | #for more options on generating random samples
8 | library(MCMCglmm)
9 |
10 | #the single target classifier
11 | #library(randomForest)
12 |
13 | #machine learning librarys
14 | #library(randomForestSRC)
15 | #library(ANN2)
16 |
17 | #for scaling and unscaling variables
18 | library(DMwR)
19 |
20 | #GIS/RS
21 | library(maptools)
22 | library(rgeos)
23 | library(rgdal)
24 | library(raster)
25 | library(sp)
26 |
27 | #sensitivity analysis
28 | library(sensitivity)
29 |
30 | #plotting packages
31 | library(ggplot2)
32 | library(ggthemes)
33 |
34 | #data frame operations5
35 | library(reshape2)
36 |
37 |
38 | #importing fonts
39 | library(extrafont)
40 | loadfonts(device="win")
41 | #font_import()
42 | y#latex font
43 | par(family = "LM Roman 10")
44 |
45 |
46 |
47 | ##############################################################
48 | ############ by sample number ################################
49 | ##############################################################
50 |
51 |
52 | #loading the csv
53 | all.df = read.csv2("C:/Paper/R_Scripts/All_sensitivity.csv")
54 | m_mSI = all.df[all.df$type=="mSI",]
55 | m_iSI = all.df[all.df$type=="iSI",]
56 | m_tSI = all.df[all.df$type=="tSI",]
57 |
58 |
59 | head(all.df)
60 |
61 | all.df$Order <- NA
62 | all.df$Order[all.df$type=="mSI"] <- "First-order"
63 | all.df$Order[all.df$type=="iSI"] <- "Interactions"
64 | all.df$Order[all.df$type=="tSI"] <- "Total-order"
65 |
66 | gc()
67 |
68 | head(all.df)
69 |
70 |
71 | #png("C:/Paper/R_Scripts/GSI_By_Samples_2.png",
72 | # width = 1000, height = 300, units = "px",pointsize=1)
73 | pdf("C:/Paper/Tables/Final_Data/Results_GSI_BySample.pdf",width=25,height=10,paper='special')
74 |
75 | plot.fig <- ggplot(all.df[all.df$variable!="GSI" &
76 | all.df$type!="iSI" &
77 | all.df$SampleNr < 6000,],aes(SampleNr,value,color=Trait))+
78 | geom_point(pch=19,size=2)+geom_line(linetype="dashed",size=.1)+
79 |
80 | #ggtitle("First order GSI")+
81 | facet_wrap(Order~variable,ncol=9)+
82 | xlab("Samples")+
83 | ylab("Sensitivity index")+
84 | theme_hc()+
85 | theme(text=element_text(size=16, family="serif"),legend.title = element_blank())
86 |
87 |
88 | print(plot.fig)
89 |
90 | dev.off()
91 |
92 |
93 | ### Barplot of the interaction and band variance
94 | df.gsi <- read.csv2("C:/Paper/R_Scripts/All_sensitivity_2000_samples.csv")
95 |
96 | #the logic for the normalized graphic is on excel sheet normalized square
97 | head(df.gsi)
98 | unique(df.gsi$variable)
99 |
100 |
101 | #making color fills
102 | #http://sape.inf.usi.ch/quick-reference/ggplot2/colour
103 | df.gsi$ColorFill = NA
104 | df.gsi$ColorFill[df.gsi$variable=="B02"] <- "blue2"
105 | df.gsi$ColorFill[df.gsi$variable=="B03"] <- "green4"
106 | df.gsi$ColorFill[df.gsi$variable=="B04"] <- "red"
107 | df.gsi$ColorFill[df.gsi$variable=="B05"] <- "orange"
108 | df.gsi$ColorFill[df.gsi$variable=="B06"] <- "orange3"
109 | df.gsi$ColorFill[df.gsi$variable=="B07"] <- "orange4"
110 | df.gsi$ColorFill[df.gsi$variable=="B8A"] <- "indianred"
111 | df.gsi$ColorFill[df.gsi$variable=="B11"] <- "gray"
112 | df.gsi$ColorFill[df.gsi$variable=="B12"] <- "black"
113 | df.gsi$ColorFill[df.gsi$variable=="GSI"] <- "black"
114 |
115 | #we have to cheat the plotting device due to the order of the bands
116 | df.gsi$band_order <- as.character(df.gsi$variable)
117 | #df.gsi$band_order[81:85] <- "B08"
118 | df.gsi$band_order[df.gsi$band_order=="B8A"] <- "B08"
119 |
120 |
121 |
122 |
123 | temp.df <- df.gsi[df.gsi$variable!="GSI",]# &
124 | #df.gsi$type != 'iSI',]
125 |
126 | temp.df$type_2 = NA
127 | temp.df$type_2[temp.df$type=="iSI"] = "BiSI"
128 | temp.df$type_2[temp.df$type=="mSI"] = "AmSI"
129 | temp.df$type_2[temp.df$type=="tSI"] = "CtSI"
130 |
131 | #png("C:/Paper/R_Scripts/GSI_by_Trait_3si.png",
132 | # width = 600, height = 400, units = "px",pointsize=12)
133 |
134 | pdf("C:/Paper/Tables/Final_Data/Results_GSI_By_Trait.pdf",width=20,height=8,paper='special')
135 |
136 | #in one go
137 | plt.fig <- ggplot(temp.df,aes(Trait,value, fill=band_order))+
138 | geom_bar(stat="identity",position="dodge")+
139 | scale_fill_manual(values=unique(temp.df$ColorFill),
140 | labels=c("B02","B03","B04",
141 | "B05","B06","B07",
142 | "B8A","B11","B12"))+
143 | ylab("Sensitivity index")+
144 | xlab("Biophysical traits")+
145 | #ggtitle("First order GSI")+
146 | coord_flip()+
147 | facet_wrap(~type_2,ncol=3,labeller = labeller(type_2 = c("BiSI" = "Interactions",
148 | "AmSI" = "First-order",
149 | "CtSI" = "Total-order")))+
150 | theme_hc()+
151 | theme(text=element_text(size=25, family="serif"),legend.title = element_blank(),
152 | panel.spacing = unit(1.5, "lines"))
153 |
154 | print(plt.fig)
155 |
156 | dev.off()
157 |
158 |
159 |
160 | ### facet_wrap(~type_2,ncol=3,labeller = labeller(type = c("iSI" = "Interactions",
161 | ###"mSI" = "First-order",
162 | ###"tSI" = "Total-order")))+
163 |
164 |
165 |
166 |
167 | ####### to rerun the 2k example, run here #####################
168 | custom.prosail.df = function(x){
169 |
170 | Cab = x[,1]
171 | Car = x[,2]
172 | Cw = x[,3]
173 | Cm = x[,4]
174 | LAI = x[,5]
175 | train.spclib = PROSAIL(Cab=Cab,Car=Car,Cw=Cw,Cm=Cm,LAI = LAI,
176 | tts = sun_zenith,
177 | tto = obs_zenith,
178 | psi = rel_azimut)
179 |
180 | #to make this hyperspectral, just comment the next line
181 | train.spclib <- spectralResampling(train.spclib,"Sentinel2",response_function = T)[,c(2,3,4,5,6,7,9,12,13)]
182 | #if output matrix
183 | #mat.out = spectra(train.spclib)
184 | #if output df
185 | df.out = as.data.frame(spectra(train.spclib))
186 |
187 | #and of course comment here also if you want to do hyperspectral
188 | names(df.out)<- c("B02","B03","B04",
189 | "B05","B06","B07",
190 | "B8A","B11","B12")
191 |
192 | return(df.out)
193 | }
194 | args.efast =list( factors=c("Cab","Car","Cw","Cm","LAI"), n=2000, q = "qunif",
195 | q.arg = list(list(min=5, max=120),
196 | list(min=5, max=60),
197 | list(min = 0.01, max = 0.05),
198 | list(min = 0.01, max = 0.05),
199 | list(min = 0.5, max = 10)))
200 |
201 | sens.99fast = multisensi(design = fast99, model = custom.prosail.df,
202 | center = FALSE, reduction = NULL, analysis = analysis.sensitivity,
203 | design.args=args.efast,
204 | analysis.args=list(keep.outputs=FALSE))
205 |
206 | plot(sens.99fast, color = terrain.colors)
207 | plot(sens.99fast,normalized = T, color = terrain.colors, gsi.plot = FALSE,cumul=T)
208 |
209 |
210 | m_SI = sens.99fast$SI
211 | m_mSI = sens.99fast$mSI
212 | m_tSI = sens.99fast$tSI
213 | m_iSI = sens.99fast$iSI
214 |
215 |
216 | t_mSI$Trait = rownames(t_mSI)
217 | t_tSI$Trait = rownames(t_tSI)
218 | t_iSI$Trait = rownames(t_iSI)
219 |
220 |
221 |
222 | m_mSI=melt(t_mSI,ID="Trait")
223 | m_tSI=melt(t_tSI,ID="Trait")
224 | m_iSI=melt(t_iSI,ID="Trait")
225 |
226 | m_mSI$type = "mSI"
227 | m_tSI$type = "tSI"
228 | m_iSI$type = "iSI"
229 |
230 | #and finally the number of samples
231 | m_mSI$SampleNr = 2000
232 | m_tSI$SampleNr = 2000
233 | m_iSI$SampleNr = 2000
234 |
235 | all.df = rbind(m_mSI,m_iSI,m_tSI)
236 | write.csv2(all.df,"C:/Paper/R_Scripts/All_sensitivity_2000_samplesexplore.csv")
237 |
238 |
239 | all.df = rbind(m_mSI,m_iSI,m_tSI)
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 | warnings()
255 |
256 | unique(m_mSI$type)
257 |
258 | summary(m_mSI)
259 |
260 | names(all.df)
261 | c_step
262 | #first order plot
263 | head(m_mSI)
264 | ggplot(m_mSI[m_mSI$variable!="GSI",],aes(SampleNr,value,color=Trait))+
265 | geom_point(size=3)+geom_line(linetype="dashed")+
266 | ggtitle("First order GSI")+
267 | facet_wrap(~variable,ncol=5)+
268 | theme_hc()
269 |
270 | ggplot(m_iSI[m_iSI$variable!="GSI",],aes(SampleNr,value,color=Trait))+
271 | geom_point(size=3)+geom_line(linetype="dashed")+
272 | ggtitle("Interaction GSI")+
273 | facet_wrap(~variable,ncol=5)+
274 | theme_hc()
275 |
276 | ggplot(m_tSI[m_tSI$variable!="GSI",],aes(SampleNr,value,color=Trait))+
277 | geom_point(size=3)+geom_line(linetype="dashed")+
278 | ggtitle("Total order GSI")+
279 | facet_wrap(~variable,ncol=5)+
280 | theme_hc()
281 |
282 |
283 |
284 |
285 | ##### not working
286 | http://iltabiai.github.io/tips/latex/2015/09/15/latex-tikzdevice-r.html
287 | library(tikzDevice)
288 |
289 | y <- exp(seq(1,10,.1))
290 | x <- 1:length(y)
291 | data <- data.frame(x = x, y = y)
292 |
293 |
294 |
295 |
296 | tikz(file = "C:/Paper/R_Scripts/plot_test.tex", width = 5, height = 5)
297 |
298 | plot <- ggplot(data, aes(x = x, y = y)) +
299 | geom_line() +
300 | #Space does not appear after Latex
301 | ggtitle( paste("Fancy \\LaTeX ", "\\hspace{0.01cm} title")) +
302 | labs( x = "$x$ = Time", y = "$\\Phi$ = Innovation output") +
303 | theme_bw()
304 |
305 |
306 | dev.off()
307 |
--------------------------------------------------------------------------------
/R/GSI_Analysis_v01.R:
--------------------------------------------------------------------------------
1 | #library for PROSAIL and also Spectral Angle Mapper
2 | library(hsdar)
3 |
4 | #Latin hypercube comes from here
5 | library(FME)
6 |
7 | #for more options on generating random samples
8 | library(MCMCglmm)
9 |
10 | #the single target classifier
11 | #library(randomForest)
12 |
13 | #machine learning librarys
14 | #library(randomForestSRC)
15 | #library(ANN2)
16 |
17 | #for scaling and unscaling variables
18 | library(DMwR)
19 |
20 | #GIS/RS
21 | library(maptools)
22 | library(rgeos)
23 | library(rgdal)
24 | library(raster)
25 | library(sp)
26 |
27 | #sensitivity analysis
28 | library(sensitivity)
29 |
30 | #plotting packages
31 | library(ggplot2)
32 | library(ggthemes)
33 |
34 | #data frame operations5
35 | library(reshape2)
36 |
37 |
38 |
39 | #links of interest
40 | #https://www.rdocumentation.org/packages/sensitivity/versions/1.17.1
41 | #https://cran.r-project.org/web/packages/multisensi/vignettes/multisensi-vignette.pdf
42 | #https://cran.r-project.org/web/packages/sensitivity/sensitivity.pdf
43 | #https://www.rdocumentation.org/packages/multisensi/versions/2.1-1/topics/multisensi
44 |
45 |
46 |
47 |
48 |
49 | #generating samples
50 | param.maxmin <- matrix(c(#1.5, 1.9, #leaf layers or leaf structure
51 | 15,45, #Cab
52 | 10,50, #Car
53 | 0.01,0.02, #Cw #original it was from [0.01 to 0.02] but i suspect saturation
54 | 0.01,0.02, #Cm
55 | 0.1,4.5),#LAI
56 | #0.05,0.1), #hotstop
57 | nrow=5,ncol = 2,byrow = T)
58 |
59 | #creating a training space
60 | #train.n <- 50 * nrow(param.maxmin) #this represents the number of runs that prosail will be, x pts per Trait
61 | #train.LHS <- Latinhyper(param.maxmin,train.n)
62 |
63 |
64 |
65 | #sentinel position
66 | sun_zenith = 45
67 | obs_zenith = 45
68 | rel_azimut = 0
69 |
70 |
71 | #actually we have to generate a function:
72 | names(train.trait.df)
73 | x=c(10,1,.002,.002,10)
74 | custom.prosail = function(x){
75 |
76 | Cab = x[1]
77 | Car = x[2]
78 | Cw = x[3]
79 | Cm = x[4]
80 | LAI = x[5]
81 | train.spclib = PROSAIL(Cab=Cab,Car=Car,Cw=Cw,Cm=Cm,LAI = LAI,
82 | tts = sun_zenith,
83 | tto = obs_zenith,
84 | psi = rel_azimut)
85 | train.spclib <- spectralResampling(train.spclib,"Sentinel2",response_function = T)[,c(2,3,4,5,6,7,9,12,13)]
86 | #if output matrix
87 | #mat.out = spectra(train.spclib)
88 | #if output df
89 | df.out = as.data.frame(spectra(train.spclib))
90 | names(df.out)<- c("B02","B03","B04",
91 | "B05","B06","B07",
92 | "B8A","B11","B12")
93 |
94 | return(df.out)
95 | }
96 |
97 | x.df = t(as.data.frame(x))
98 | names(x.df) = c("Cab","Cab","Cw","Cm","LAI")
99 | custom.prosail.df = function(x){
100 |
101 | Cab = x[,1]
102 | Car = x[,2]
103 | Cw = x[,3]
104 | Cm = x[,4]
105 | LAI = x[,5]
106 | train.spclib = PROSAIL(Cab=Cab,Car=Car,Cw=Cw,Cm=Cm,LAI = LAI,
107 | tts = sun_zenith,
108 | tto = obs_zenith,
109 | psi = rel_azimut)
110 |
111 | #to make this hyperspectral, just comment the next line
112 | train.spclib <- spectralResampling(train.spclib,"Sentinel2",response_function = T)[,c(2,3,4,5,6,7,9,12,13)]
113 | #if output matrix
114 | #mat.out = spectra(train.spclib)
115 | #if output df
116 | df.out = as.data.frame(spectra(train.spclib))
117 |
118 | #and of course comment here also if you want to do hyperspectral
119 | names(df.out)<- c("B02","B03","B04",
120 | "B05","B06","B07",
121 | "B8A","B11","B12")
122 |
123 | return(df.out)
124 | }
125 |
126 | library(multisensi)
127 | custom.prosail(x)
128 | custom.prosail.df(x.df)
129 |
130 | #time to call the functions for one case
131 |
132 | args.efast =list( factors=c("Cab","Car","Cw","Cm","LAI"), n=500, q = "qunif",
133 | q.arg = list(list(min=5, max=120),
134 | list(min=5, max=60),
135 | list(min = 0.01, max = 0.05),
136 | list(min = 0.01, max = 0.05),
137 | list(min = 0.5, max = 10)))
138 |
139 | sens.99fast = multisensi(design = fast99, model = custom.prosail.df,
140 | center = FALSE, reduction = NULL, analysis = analysis.sensitivity,
141 | design.args=args.efast,
142 | analysis.args=list(keep.outputs=FALSE))
143 |
144 | str(sens.99fast)
145 | sens.99fast$call.info
146 |
147 | #multisensi::plot.gsi(sens.99fast)
148 | plot(sens.99fast, normalized = F, color = terrain.colors)
149 | plot(sens.99fast, normalized = T, color = terrain.colors, gsi.plot = FALSE)
150 |
151 | m_SI = sens.99fast$SI
152 | m_mSI = sens.99fast$mSI
153 | m_tSI = sens.99fast$tSI
154 | m_iSI = sens.99fast$iSI
155 |
156 | #First step is to find the nr of samples that stabilizess the analysis of variance
157 |
158 |
159 | #oldschoool iterations because im sleepy
160 | maxstep = 5000
161 | c_step = vector()
162 | c_step = c(c_step,100)
163 | it = 1
164 | while (c_step[it] <= maxstep){
165 | #there was this cool trick with qexp but it was creting too many iterations plot(50+(50*qexp((1:100)/100)))
166 | c_step = c(c_step,ceiling(c_step[it]*2))
167 | it=it+1
168 |
169 | }
170 |
171 |
172 |
173 | k=1
174 | #for (i in 100:105){ #use this for testing smaller loops
175 | for (i in c_step){
176 |
177 | print(paste("Processing sample nr:",i))
178 |
179 | args.efast =list( factors=c("Cab","Car","Cw","Cm","LAI"), n=i, q = "qunif",
180 | q.arg = list(list(min=5, max=120),
181 | list(min=5, max=60),
182 | list(min = 0.01, max = 0.05),
183 | list(min = 0.01, max = 0.05),
184 | list(min = 0.5, max = 10)))
185 |
186 |
187 | sens.99fast = multisensi(design = fast99, model = custom.prosail.df,dimension = NULL,
188 | center = FALSE, reduction = NULL, analysis = analysis.sensitivity,
189 | design.args=args.efast,
190 | analysis.args=list(keep.outputs=FALSE))
191 |
192 | if (k == 1){
193 | #t_SI = sens.99fast$SI
194 | #$Trait = rownames(t_SI)
195 | t_mSI = sens.99fast$mSI
196 | t_tSI = sens.99fast$tSI
197 | t_iSI = sens.99fast$iSI
198 |
199 | t_mSI$Trait = rownames(t_mSI)
200 | t_tSI$Trait = rownames(t_tSI)
201 | t_iSI$Trait = rownames(t_iSI)
202 |
203 | m_mSI=melt(t_mSI,ID="Trait")
204 | m_tSI=melt(t_tSI,ID="Trait")
205 | m_iSI=melt(t_iSI,ID="Trait")
206 |
207 | m_mSI$type = "mSI"
208 | m_tSI$type = "tSI"
209 | m_iSI$type = "iSI"
210 |
211 | #and finally the number of samples
212 | m_mSI$SampleNr = i
213 | m_tSI$SampleNr = i
214 | m_iSI$SampleNr = i
215 | #and we update k
216 | k = k+1
217 | }
218 |
219 | if (k>1){
220 | #$Trait = rownames(t_SI)
221 | t_mSI = sens.99fast$mSI
222 | t_tSI = sens.99fast$tSI
223 | t_iSI = sens.99fast$iSI
224 |
225 | t_mSI$Trait = rownames(t_mSI)
226 | t_tSI$Trait = rownames(t_tSI)
227 | t_iSI$Trait = rownames(t_iSI)
228 |
229 | t_mSI=melt(t_mSI,ID="Trait")
230 | t_tSI=melt(t_tSI,ID="Trait")
231 | t_iSI=melt(t_iSI,ID="Trait")
232 |
233 | t_mSI$type = "mSI"
234 | t_tSI$type = "tSI"
235 | t_iSI$type = "iSI"
236 |
237 | t_mSI$SampleNr = i
238 | t_tSI$SampleNr = i
239 | t_iSI$SampleNr = i
240 |
241 | #and now we add them to the bottom of the dataframe
242 |
243 | m_mSI <- rbind(m_mSI,t_mSI)
244 | m_tSI <- rbind(m_tSI,t_tSI)
245 | m_iSI <- rbind(m_iSI,t_iSI)
246 |
247 | k = k +1
248 | }
249 |
250 |
251 | }
252 |
253 |
254 | #saving all the data to separate csv
255 | all.df = rbind(m_mSI,m_iSI,m_tSI)
256 | write.csv2(all.df,"C:/Paper/R_Scripts/All_sensitivity")
257 |
258 | #loading the csv
259 | all.df = read.csv2("C:/Paper/R_Scripts/All_sensitivity.csv")
260 | m_mSI = all.df[all.df$type=="mSI",]
261 | m_iSI = all.df[all.df$type=="iSI",]
262 | m_tSI = all.df[all.df$type=="tSI",]
263 |
264 |
265 |
266 | ggplot(m_tSI[m_mSI$variable=="GSI",],aes(SampleNr,value,color=variable))+
267 | geom_point(size=3)+geom_line(linetype="dashed")+
268 | ggtitle("First order GSI")+
269 | facet_wrap(~Trait,ncol=5)+
270 | theme_hc()
271 |
272 |
273 |
274 | unique(m_mSI$type)
275 |
276 | summary(m_mSI)
277 |
278 | names(all.df)
279 | c_step
280 | #first order plot
281 | head(m_mSI)
282 | ggplot(m_mSI[m_mSI$variable!="GSI",],aes(SampleNr,value,color=variable))+
283 | geom_point(size=3)+geom_line(linetype="dashed")+
284 | ggtitle("First order GSI")+
285 | facet_wrap(~Trait,ncol=5)+
286 | theme_hc()
287 |
288 | ggplot(m_iSI,aes(SampleNr,value,color=Trait))+
289 | geom_point(size=3)+geom_line(linetype="dashed")+
290 | ggtitle("Interaction GSI")+
291 | facet_wrap(~variable,ncol=5)+
292 | theme_hc()
293 |
294 | ggplot(m_tSI,aes(SampleNr,value,color=Trait))+
295 | geom_point(size=3)+geom_line(linetype="dashed")+
296 | ggtitle("Total order GSI")+
297 | facet_wrap(~variable,ncol=5)+
298 | theme_hc()
299 |
300 |
301 |
302 |
303 | ############################################################################################################
304 | ### repeating the run with only 2000 samples ###############################################################
305 | ############################################################################################################
306 | ### Notice -> this will override the above steps -> load the csv if you want to repeat them ################
307 | ############################################################################################################
308 |
309 | #bar plot of Trait ~ GSI
310 | #REmoving the GSI
311 |
312 | args.efast =list( factors=c("Cab","Car","Cw","Cm","LAI"), n=2000, q = "qunif",
313 | q.arg = list(list(min=5, max=120),
314 | list(min=5, max=60),
315 | list(min = 0.01, max = 0.05),
316 | list(min = 0.01, max = 0.05),
317 | list(min = 0.5, max = 10)))
318 |
319 | sens.99fast = multisensi(design = fast99, model = custom.prosail.df,
320 | center = FALSE, reduction = NULL, analysis = analysis.sensitivity,
321 | design.args=args.efast,
322 | analysis.args=list(keep.outputs=FALSE))
323 |
324 |
325 | plot(sens.99fast, normalized = T, color = terrain.colors, gsi.plot = FALSE)
326 |
327 | #and creating the table
328 | t_mSI = sens.99fast$mSI
329 | t_tSI = sens.99fast$tSI
330 | t_iSI = sens.99fast$iSI
331 |
332 | t_mSI$Trait = rownames(t_mSI)
333 | t_tSI$Trait = rownames(t_tSI)
334 | t_iSI$Trait = rownames(t_iSI)
335 |
336 | m_mSI=melt(t_mSI,ID="Trait")
337 | m_tSI=melt(t_tSI,ID="Trait")
338 | m_iSI=melt(t_iSI,ID="Trait")
339 |
340 | m_mSI$type = "mSI"
341 | m_tSI$type = "tSI"
342 | m_iSI$type = "iSI"
343 |
344 | #and finally the number of samples
345 | m_mSI$SampleNr = 2000
346 | m_tSI$SampleNr = 2000
347 | m_iSI$SampleNr = 2000
348 |
349 |
350 | #bar plot of Trait ~ GSI
351 | #REmoving the GSI
352 |
353 | combine.df = rbind(m_mSI,m_tSI,m_iSI)
354 | write.csv2(combine.df,"C:/Paper/R_Scripts/All_sensitivity_2000_samples.csv")
355 |
356 | #in one go
357 | ggplot(combine.df[combine.df$variable!="GSI",],aes(Trait,value, fill=variable))+
358 | geom_bar(stat="identity",position="dodge")+
359 | #ggtitle("First order GSI")+
360 | coord_flip()+
361 | facet_wrap(~type,ncol=3,labeller = labeller(type = c("iSI" = "Interaction GSI",
362 | "mSI" = "First order GSI",
363 | "tSI" = "Total order GSI")))
364 | theme_hc()
365 |
366 | #one by one
367 |
368 | ggplot(m_mSI[m_mSI$variable!="GSI",],aes(Trait,value, fill=variable))+
369 | geom_bar(stat="identity",position="dodge")+
370 | ggtitle("First order GSI")+
371 | coord_flip()+
372 | theme_hc()
373 |
374 | ggplot(m_iSI[m_iSI$variable!="GSI",],aes(Trait,value, fill=variable))+
375 | geom_bar(stat="identity",position="dodge")+
376 | ggtitle("Interaction GSI")+
377 | coord_flip()+
378 | theme_hc()
379 |
380 | ggplot(m_tSI[m_tSI$variable!="GSI",],aes(Trait,value, fill=variable))+
381 | geom_bar(stat="identity",position="dodge")+
382 | ggtitle("Total order GSI")+
383 | coord_flip()+
384 | theme_hc()
385 |
386 |
387 | #summary of first order + TSI vs bands on X axis, per trait
388 |
389 | head(combine.df)
390 | #names(combine.df) <- c("Trait","variable","value","Type","SampleNr")
391 | #in one go
392 |
393 |
394 | #lets summarize the data
395 | head(combine.df)
396 |
397 | combine.df <- read.csv2("C:/Paper/R_Scripts/All_sensitivity_2000_samples")
398 |
399 | agg.df = aggregate(value~variable+type,data=combine.df[combine.df$variable!="GSI",],FUN=sum)
400 |
401 | agg.df
402 |
403 | library(dplyr)
404 |
405 | #removing the interaction because the interaction is Total - single
406 | ymin_vec = agg.df[agg.df$type=="mSI",]
407 | ymax_vec = agg.df[agg.df$type=="tSI",]
408 |
409 | ggplot(agg.df[agg.df$type!="iSI",],aes(variable,value,color=type,group=type))+
410 | geom_point(size=3)+geom_line(linetype="dashed")+
411 | geom_ribbon(aes(ymin=agg.df$value,ymax=agg.df$value))+
412 | ylim(0,1.5)+
413 | theme_hc()
414 |
415 |
416 | ggplot(ymin_vec,aes(variable,value,color="red",group=type))+
417 | scale_fill_discrete(labels = c("First order Sensitivity index", "Total order sensitivity index"))+
418 | geom_ribbon(aes(ymin=ymin_vec$value,ymax=ymax_vec$value),fill = "grey50")+
419 | geom_point(size=5)+
420 | geom_line(linetype="dashed",size=2)+
421 | geom_point(data=ymax_vec,aes(variable,value,color="blue",group=type),size=5)+
422 | geom_line(data=ymax_vec,aes(variable,value,color="blue",group=type),linetype="dashed",size=2)+
423 | ylim(0,1.5)+
424 | theme_hc()
425 |
426 |
427 |
428 |
429 |
430 | ggplot(agg.df[agg.df$type!="iSI",],aes(variable,value,color=type,group=type))+
431 | geom_line(size=3)+geom_line(linetype="dashed")+
432 | #geom_ribbon(aes(ymin=,ymax=1))+
433 | ylim(0,1.5)+
434 | theme_hc()
435 |
436 |
437 | help(geom_ribbon)
438 |
439 |
440 |
441 | huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
442 |
--------------------------------------------------------------------------------
/CC-BY-4.0:
--------------------------------------------------------------------------------
1 | Attribution 4.0 International
2 |
3 | =======================================================================
4 |
5 | Creative Commons Corporation ("Creative Commons") is not a law firm and
6 | does not provide legal services or legal advice. Distribution of
7 | Creative Commons public licenses does not create a lawyer-client or
8 | other relationship. Creative Commons makes its licenses and related
9 | information available on an "as-is" basis. Creative Commons gives no
10 | warranties regarding its licenses, any material licensed under their
11 | terms and conditions, or any related information. Creative Commons
12 | disclaims all liability for damages resulting from their use to the
13 | fullest extent possible.
14 |
15 | Using Creative Commons Public Licenses
16 |
17 | Creative Commons public licenses provide a standard set of terms and
18 | conditions that creators and other rights holders may use to share
19 | original works of authorship and other material subject to copyright
20 | and certain other rights specified in the public license below. The
21 | following considerations are for informational purposes only, are not
22 | exhaustive, and do not form part of our licenses.
23 |
24 | Considerations for licensors: Our public licenses are
25 | intended for use by those authorized to give the public
26 | permission to use material in ways otherwise restricted by
27 | copyright and certain other rights. Our licenses are
28 | irrevocable. Licensors should read and understand the terms
29 | and conditions of the license they choose before applying it.
30 | Licensors should also secure all rights necessary before
31 | applying our licenses so that the public can reuse the
32 | material as expected. Licensors should clearly mark any
33 | material not subject to the license. This includes other CC-
34 | licensed material, or material used under an exception or
35 | limitation to copyright. More considerations for licensors:
36 | wiki.creativecommons.org/Considerations_for_licensors
37 |
38 | Considerations for the public: By using one of our public
39 | licenses, a licensor grants the public permission to use the
40 | licensed material under specified terms and conditions. If
41 | the licensor's permission is not necessary for any reason--for
42 | example, because of any applicable exception or limitation to
43 | copyright--then that use is not regulated by the license. Our
44 | licenses grant only permissions under copyright and certain
45 | other rights that a licensor has authority to grant. Use of
46 | the licensed material may still be restricted for other
47 | reasons, including because others have copyright or other
48 | rights in the material. A licensor may make special requests,
49 | such as asking that all changes be marked or described.
50 | Although not required by our licenses, you are encouraged to
51 | respect those requests where reasonable. More considerations
52 | for the public:
53 | wiki.creativecommons.org/Considerations_for_licensees
54 |
55 | =======================================================================
56 |
57 | Creative Commons Attribution 4.0 International Public License
58 |
59 | By exercising the Licensed Rights (defined below), You accept and agree
60 | to be bound by the terms and conditions of this Creative Commons
61 | Attribution 4.0 International Public License ("Public License"). To the
62 | extent this Public License may be interpreted as a contract, You are
63 | granted the Licensed Rights in consideration of Your acceptance of
64 | these terms and conditions, and the Licensor grants You such rights in
65 | consideration of benefits the Licensor receives from making the
66 | Licensed Material available under these terms and conditions.
67 |
68 |
69 | Section 1 -- Definitions.
70 |
71 | a. Adapted Material means material subject to Copyright and Similar
72 | Rights that is derived from or based upon the Licensed Material
73 | and in which the Licensed Material is translated, altered,
74 | arranged, transformed, or otherwise modified in a manner requiring
75 | permission under the Copyright and Similar Rights held by the
76 | Licensor. For purposes of this Public License, where the Licensed
77 | Material is a musical work, performance, or sound recording,
78 | Adapted Material is always produced where the Licensed Material is
79 | synched in timed relation with a moving image.
80 |
81 | b. Adapter's License means the license You apply to Your Copyright
82 | and Similar Rights in Your contributions to Adapted Material in
83 | accordance with the terms and conditions of this Public License.
84 |
85 | c. Copyright and Similar Rights means copyright and/or similar rights
86 | closely related to copyright including, without limitation,
87 | performance, broadcast, sound recording, and Sui Generis Database
88 | Rights, without regard to how the rights are labeled or
89 | categorized. For purposes of this Public License, the rights
90 | specified in Section 2(b)(1)-(2) are not Copyright and Similar
91 | Rights.
92 |
93 | d. Effective Technological Measures means those measures that, in the
94 | absence of proper authority, may not be circumvented under laws
95 | fulfilling obligations under Article 11 of the WIPO Copyright
96 | Treaty adopted on December 20, 1996, and/or similar international
97 | agreements.
98 |
99 | e. Exceptions and Limitations means fair use, fair dealing, and/or
100 | any other exception or limitation to Copyright and Similar Rights
101 | that applies to Your use of the Licensed Material.
102 |
103 | f. Licensed Material means the artistic or literary work, database,
104 | or other material to which the Licensor applied this Public
105 | License.
106 |
107 | g. Licensed Rights means the rights granted to You subject to the
108 | terms and conditions of this Public License, which are limited to
109 | all Copyright and Similar Rights that apply to Your use of the
110 | Licensed Material and that the Licensor has authority to license.
111 |
112 | h. Licensor means the individual(s) or entity(ies) granting rights
113 | under this Public License.
114 |
115 | i. Share means to provide material to the public by any means or
116 | process that requires permission under the Licensed Rights, such
117 | as reproduction, public display, public performance, distribution,
118 | dissemination, communication, or importation, and to make material
119 | available to the public including in ways that members of the
120 | public may access the material from a place and at a time
121 | individually chosen by them.
122 |
123 | j. Sui Generis Database Rights means rights other than copyright
124 | resulting from Directive 96/9/EC of the European Parliament and of
125 | the Council of 11 March 1996 on the legal protection of databases,
126 | as amended and/or succeeded, as well as other essentially
127 | equivalent rights anywhere in the world.
128 |
129 | k. You means the individual or entity exercising the Licensed Rights
130 | under this Public License. Your has a corresponding meaning.
131 |
132 |
133 | Section 2 -- Scope.
134 |
135 | a. License grant.
136 |
137 | 1. Subject to the terms and conditions of this Public License,
138 | the Licensor hereby grants You a worldwide, royalty-free,
139 | non-sublicensable, non-exclusive, irrevocable license to
140 | exercise the Licensed Rights in the Licensed Material to:
141 |
142 | a. reproduce and Share the Licensed Material, in whole or
143 | in part; and
144 |
145 | b. produce, reproduce, and Share Adapted Material.
146 |
147 | 2. Exceptions and Limitations. For the avoidance of doubt, where
148 | Exceptions and Limitations apply to Your use, this Public
149 | License does not apply, and You do not need to comply with
150 | its terms and conditions.
151 |
152 | 3. Term. The term of this Public License is specified in Section
153 | 6(a).
154 |
155 | 4. Media and formats; technical modifications allowed. The
156 | Licensor authorizes You to exercise the Licensed Rights in
157 | all media and formats whether now known or hereafter created,
158 | and to make technical modifications necessary to do so. The
159 | Licensor waives and/or agrees not to assert any right or
160 | authority to forbid You from making technical modifications
161 | necessary to exercise the Licensed Rights, including
162 | technical modifications necessary to circumvent Effective
163 | Technological Measures. For purposes of this Public License,
164 | simply making modifications authorized by this Section 2(a)
165 | (4) never produces Adapted Material.
166 |
167 | 5. Downstream recipients.
168 |
169 | a. Offer from the Licensor -- Licensed Material. Every
170 | recipient of the Licensed Material automatically
171 | receives an offer from the Licensor to exercise the
172 | Licensed Rights under the terms and conditions of this
173 | Public License.
174 |
175 | b. No downstream restrictions. You may not offer or impose
176 | any additional or different terms or conditions on, or
177 | apply any Effective Technological Measures to, the
178 | Licensed Material if doing so restricts exercise of the
179 | Licensed Rights by any recipient of the Licensed
180 | Material.
181 |
182 | 6. No endorsement. Nothing in this Public License constitutes or
183 | may be construed as permission to assert or imply that You
184 | are, or that Your use of the Licensed Material is, connected
185 | with, or sponsored, endorsed, or granted official status by,
186 | the Licensor or others designated to receive attribution as
187 | provided in Section 3(a)(1)(A)(i).
188 |
189 | b. Other rights.
190 |
191 | 1. Moral rights, such as the right of integrity, are not
192 | licensed under this Public License, nor are publicity,
193 | privacy, and/or other similar personality rights; however, to
194 | the extent possible, the Licensor waives and/or agrees not to
195 | assert any such rights held by the Licensor to the limited
196 | extent necessary to allow You to exercise the Licensed
197 | Rights, but not otherwise.
198 |
199 | 2. Patent and trademark rights are not licensed under this
200 | Public License.
201 |
202 | 3. To the extent possible, the Licensor waives any right to
203 | collect royalties from You for the exercise of the Licensed
204 | Rights, whether directly or through a collecting society
205 | under any voluntary or waivable statutory or compulsory
206 | licensing scheme. In all other cases the Licensor expressly
207 | reserves any right to collect such royalties.
208 |
209 |
210 | Section 3 -- License Conditions.
211 |
212 | Your exercise of the Licensed Rights is expressly made subject to the
213 | following conditions.
214 |
215 | a. Attribution.
216 |
217 | 1. If You Share the Licensed Material (including in modified
218 | form), You must:
219 |
220 | a. retain the following if it is supplied by the Licensor
221 | with the Licensed Material:
222 |
223 | i. identification of the creator(s) of the Licensed
224 | Material and any others designated to receive
225 | attribution, in any reasonable manner requested by
226 | the Licensor (including by pseudonym if
227 | designated);
228 |
229 | ii. a copyright notice;
230 |
231 | iii. a notice that refers to this Public License;
232 |
233 | iv. a notice that refers to the disclaimer of
234 | warranties;
235 |
236 | v. a URI or hyperlink to the Licensed Material to the
237 | extent reasonably practicable;
238 |
239 | b. indicate if You modified the Licensed Material and
240 | retain an indication of any previous modifications; and
241 |
242 | c. indicate the Licensed Material is licensed under this
243 | Public License, and include the text of, or the URI or
244 | hyperlink to, this Public License.
245 |
246 | 2. You may satisfy the conditions in Section 3(a)(1) in any
247 | reasonable manner based on the medium, means, and context in
248 | which You Share the Licensed Material. For example, it may be
249 | reasonable to satisfy the conditions by providing a URI or
250 | hyperlink to a resource that includes the required
251 | information.
252 |
253 | 3. If requested by the Licensor, You must remove any of the
254 | information required by Section 3(a)(1)(A) to the extent
255 | reasonably practicable.
256 |
257 | 4. If You Share Adapted Material You produce, the Adapter's
258 | License You apply must not prevent recipients of the Adapted
259 | Material from complying with this Public License.
260 |
261 |
262 | Section 4 -- Sui Generis Database Rights.
263 |
264 | Where the Licensed Rights include Sui Generis Database Rights that
265 | apply to Your use of the Licensed Material:
266 |
267 | a. for the avoidance of doubt, Section 2(a)(1) grants You the right
268 | to extract, reuse, reproduce, and Share all or a substantial
269 | portion of the contents of the database;
270 |
271 | b. if You include all or a substantial portion of the database
272 | contents in a database in which You have Sui Generis Database
273 | Rights, then the database in which You have Sui Generis Database
274 | Rights (but not its individual contents) is Adapted Material; and
275 |
276 | c. You must comply with the conditions in Section 3(a) if You Share
277 | all or a substantial portion of the contents of the database.
278 |
279 | For the avoidance of doubt, this Section 4 supplements and does not
280 | replace Your obligations under this Public License where the Licensed
281 | Rights include other Copyright and Similar Rights.
282 |
283 |
284 | Section 5 -- Disclaimer of Warranties and Limitation of Liability.
285 |
286 | a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
287 | EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
288 | AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
289 | ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
290 | IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
291 | WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
292 | PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
293 | ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
294 | KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
295 | ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
296 |
297 | b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
298 | TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
299 | NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
300 | INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
301 | COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
302 | USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
303 | ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
304 | DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
305 | IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
306 |
307 | c. The disclaimer of warranties and limitation of liability provided
308 | above shall be interpreted in a manner that, to the extent
309 | possible, most closely approximates an absolute disclaimer and
310 | waiver of all liability.
311 |
312 |
313 | Section 6 -- Term and Termination.
314 |
315 | a. This Public License applies for the term of the Copyright and
316 | Similar Rights licensed here. However, if You fail to comply with
317 | this Public License, then Your rights under this Public License
318 | terminate automatically.
319 |
320 | b. Where Your right to use the Licensed Material has terminated under
321 | Section 6(a), it reinstates:
322 |
323 | 1. automatically as of the date the violation is cured, provided
324 | it is cured within 30 days of Your discovery of the
325 | violation; or
326 |
327 | 2. upon express reinstatement by the Licensor.
328 |
329 | For the avoidance of doubt, this Section 6(b) does not affect any
330 | right the Licensor may have to seek remedies for Your violations
331 | of this Public License.
332 |
333 | c. For the avoidance of doubt, the Licensor may also offer the
334 | Licensed Material under separate terms or conditions or stop
335 | distributing the Licensed Material at any time; however, doing so
336 | will not terminate this Public License.
337 |
338 | d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
339 | License.
340 |
341 |
342 | Section 7 -- Other Terms and Conditions.
343 |
344 | a. The Licensor shall not be bound by any additional or different
345 | terms or conditions communicated by You unless expressly agreed.
346 |
347 | b. Any arrangements, understandings, or agreements regarding the
348 | Licensed Material not stated herein are separate from and
349 | independent of the terms and conditions of this Public License.
350 |
351 |
352 | Section 8 -- Interpretation.
353 |
354 | a. For the avoidance of doubt, this Public License does not, and
355 | shall not be interpreted to, reduce, limit, restrict, or impose
356 | conditions on any use of the Licensed Material that could lawfully
357 | be made without permission under this Public License.
358 |
359 | b. To the extent possible, if any provision of this Public License is
360 | deemed unenforceable, it shall be automatically reformed to the
361 | minimum extent necessary to make it enforceable. If the provision
362 | cannot be reformed, it shall be severed from this Public License
363 | without affecting the enforceability of the remaining terms and
364 | conditions.
365 |
366 | c. No term or condition of this Public License will be waived and no
367 | failure to comply consented to unless expressly agreed to by the
368 | Licensor.
369 |
370 | d. Nothing in this Public License constitutes or may be interpreted
371 | as a limitation upon, or waiver of, any privileges and immunities
372 | that apply to the Licensor or You, including from the legal
373 | processes of any jurisdiction or authority.
374 |
375 |
376 | =======================================================================
377 |
378 | Creative Commons is not a party to its public
379 | licenses. Notwithstanding, Creative Commons may elect to apply one of
380 | its public licenses to material it publishes and in those instances
381 | will be considered the “Licensor.” The text of the Creative Commons
382 | public licenses is dedicated to the public domain under the CC0 Public
383 | Domain Dedication. Except for the limited purpose of indicating that
384 | material is shared under a Creative Commons public license or as
385 | otherwise permitted by the Creative Commons policies published at
386 | creativecommons.org/policies, Creative Commons does not authorize the
387 | use of the trademark "Creative Commons" or any other trademark or logo
388 | of Creative Commons without its prior written consent including,
389 | without limitation, in connection with any unauthorized modifications
390 | to any of its public licenses or any other arrangements,
391 | understandings, or agreements concerning use of licensed material. For
392 | the avoidance of doubt, this paragraph does not form part of the
393 | public licenses.
394 |
395 | Creative Commons may be contacted at creativecommons.org.
396 |
--------------------------------------------------------------------------------
/GeneratedData/Traits_Spectra_car_PlotSel.csv:
--------------------------------------------------------------------------------
1 | "";"B2";"B3";"B4";"B5";"B6";"B7";"B8A";"B11";"B12";"cab";"cw";"cm";"lai";"car"
2 | "1391";0,024946797876566;0,0652848016719082;0,0208947945077811;0,106904366374172;0,402151777697204;0,492802748997241;0,494515800313359;0,224220550412586;0,0665573554137009;30,3451962807613;0,00953346484660072;0,00986778350403873;6,11891291587137;11,2490469133216
3 | "1624";0,0221860916154674;0,0272954770126319;0,0191322618679647;0,0392044346836061;0,319061143436713;0,532115599783167;0,536260978642749;0,33220905959434;0,127024355643506;86,1648084681074;0,00285414074070744;0,00828145768224295;7,90919024786475;39,0411346963172
4 | "611";0,0219948570403682;0,0327082903017845;0,0190052103651736;0,051808813116925;0,356700406891072;0,544110490646707;0,546929990358511;0,245065823557684;0,0795469619943941;65,2389068427813;0,00972093059935576;0,00726210150103487;7,07854324853471;34,7813959480109
5 | "499";0,0225816231711662;0,0488460157647701;0,0203710529401156;0,0894091052281789;0,456653705725971;0,645919384217995;0,650921353806084;0,401711371695463;0,188228794016482;40,0580292750395;0,00353256810789174;0,00380957809161418;9,35935433083617;46,3862035667978
6 | "151";0,0392528257673806;0,0702647496333607;0,040115416765651;0,103779774584522;0,225344237157419;0,249488443189341;0,257782976096559;0,211190102603747;0,121386593131596;28,0832448636172;0,00770596810432541;0,00590121860749938;0,654022981337821;5,77641663577755
7 | "1256";0,0212248285033933;0,0686000310396678;0,0225794588797256;0,128030054314806;0,416993103169968;0,491188961035616;0,493800360064883;0,283416167475871;0,0999424180831225;24,3889499996676;0,0049419744722451;0,00868436512937555;4,65549581275622;37,6330433616792
8 | "890";0,0218828302687385;0,0235063978764231;0,0188799326400167;0,0298463270590626;0,282653284095879;0,531586621152346;0,536385158745485;0,332701586664782;0,128523057965003;114,779401696544;0,00298875002784972;0,00794049780242;7,03225856606942;45,6492920513688
9 | "1646";0,0223654444749257;0,0233702103050228;0,0192753376483495;0,0283145081638451;0,282828070058697;0,582713872516107;0,58779364111054;0,272163483283723;0,0961120255557811;126,223210172439;0,00876065336492804;0,00587516110818777;8,5960680684589;38,8866403739126
10 | "837";0,0209309484223179;0,0224095378115325;0,0179349494886186;0,0276031161756706;0,266793453625719;0,474659683218427;0,479725538985557;0,249191714370137;0,0922153190961373;120,698433627839;0,00999959176171933;0,00471433863661032;2,75938821189268;20,0873517247479
11 | "563";0,0209134107855902;0,0219014303111441;0,0179134661006873;0,0262360278421199;0,261527202402709;0,483119690117925;0,489031555751017;0,336085597266926;0,158125164117963;128,650196067261;0,00397965748865464;0,0044607550729416;2,83673463358755;19,8802435910155
12 | "771";0,0224710404390123;0,0272070084554966;0,0190952303888668;0,0376351093749148;0,350980931050866;0,680027019167479;0,686326089042357;0,310961817969344;0,128598163134445;91,7583868649563;0,00903777926639739;0,00209450909737172;7,7963814976709;21,9421940221639
13 | "1437";0,0219373636760708;0,0324898099579834;0,0188884564161389;0,0505809973790377;0,339517715832274;0,504991105702592;0,5074979139549;0,235447747874789;0,0723905618498244;65,7870765174414;0,00889758104148193;0,00933902638720109;6,66091371925056;30,2168334021249
14 | "713";0,0207275205684719;0,023050969991709;0,0179390864914473;0,0311831036620628;0,278896864618814;0,467899012513367;0,472374775435693;0,311224434485948;0,121831508402109;103,588120878333;0,00303325117461246;0,00816556951281861;3,51608126287969;59,0736574331111
15 | "524";0,0221722358023645;0,0257131223176122;0,019144636107823;0,0360160682853522;0,338711334647789;0,656374496168356;0,66227097060296;0,303385872344275;0,121346458778095;95,9507563058798;0,00886718507237349;0,00292161846138231;8,01086730364476;48,8720279385511
16 | "1844";0,0267740700850931;0,0613939638837361;0,0202132084222456;0,0995304788591141;0,44577454874983;0,583877400173823;0,586789085454195;0,279728248460304;0,102855985659135;34,4379378393286;0,00859261779559538;0,00494764849866399;6,33000392965509;8,4278089133262
17 | "1887";0,0210421420622557;0,0647471672962797;0,0213622355416779;0,122311720722;0,456119621331107;0,556494089611356;0,560116692617412;0,311850815778154;0,130250533836415;27,0500814636093;0,006900672836154;0,00369895076281032;4,12373974735005;37,9316511502123
18 | "1985";0,0209473069058199;0,0237670450138532;0,0181074122432754;0,0329243529266694;0,291821292999767;0,492657569097352;0,497129448671305;0,334356507820268;0,134527467753349;98,5635635994659;0,00232276815454672;0,00784671656187457;4,21918363699688;59,2826704200293
19 | "1808";0,0219377766343361;0,0983508584768018;0,0377481520566555;0,200020106020014;0,461707492670962;0,512456579331775;0,514592439821992;0,292316345972318;0,102188458446658;13,4319150418391;0,00438015023563493;0,00925155971378697;7,24313803549641;59,0668955400766
20 | "1715";0,0210402939167041;0,0575275814406335;0,0217578806963901;0,112933886328196;0,379554905377374;0,444812705082754;0,450383353788089;0,323265176836174;0,17595980574245;28,7357251115908;0,00521159645535752;0,00204772912655177;1,96905640161789;62,154304525052
21 | "407";0,0211422493634448;0,0391548067112473;0,0185369752818895;0,0670874026852684;0,3770356764705;0,516134224976309;0,520054172150709;0,357365329898811;0,152899357967736;49,5308066939595;0,00218589301367089;0,00670198469490185;4,44320290415879;36,0512569193739
22 | "1195";0,02297762444227;0,0389386936697018;0,0197551779481015;0,0628772615606385;0,392935416777461;0,58897843781793;0,592399233642866;0,286594978420713;0,104225868696687;55,9671623581081;0,00775881622216954;0,00594448952756177;9,62059477104937;25,534177181793
23 | "1658";0,021499385905274;0,0488030123136301;0,019272742148169;0,0848960236909586;0,393361206396098;0,508557455527172;0,511453207069984;0,286916629585527;0,102734826986692;39,0753707236502;0,00538425586344976;0,00795570459238189;5,03382424273261;29,3129159498911
24 | "1512";0,023554438212906;0,0601686977973488;0,0206659463170795;0,101374947970471;0,441461630837577;0,57604220773417;0,578993697883265;0,297364546783564;0,110976353392138;33,9559187927152;0,0067129889639337;0,00602190333440911;7,71410919681559;16,6103581908479
25 | "57";0,0217051860524587;0,0265475167890707;0,0185305212966707;0,0368829618935921;0,306095904685323;0,50522057247617;0,509014557228243;0,299913311199376;0,108197353981074;89,0261073813132;0,0040339207134368;0,00873249236285328;5,67824133108766;24,7148121541137
26 | "1401";0,0220950321379695;0,0425347108126398;0,0190533562021236;0,0701478028565591;0,381075674975326;0,523191129325658;0,526098510243687;0,281965706187259;0,099083843524899;47,9444640208668;0,00596780021663367;0,00794190773715339;6,07549428543221;22,9218707110239
27 | "1082";0,0244918345207184;0,0284594194439509;0,0243554339984292;0,038138674156011;0,214230838952294;0,305003109744797;0,311611055567545;0,23903200370958;0,109452828735029;103,714615540988;0,00359973268726339;0,0099996529020618;1,16985139399064;27,854573033443
28 | "803";0,0222695634278442;0,0361392874453857;0,0190085849874748;0,0572547844144157;0,374356854761086;0,560267358861061;0,564572000966349;0,378854899889473;0,163100292498821;59,4046519091091;0,0020404149600407;0,00642257884552021;6,85837987378206;23,1179753771925
29 | "5";0,0267226329941984;0,0392634642865841;0,0242000157528351;0,0586599134335144;0,272427593446045;0,349770219576698;0,356822335906572;0,265022219211517;0,146392824279186;61,2622307200075;0,00684034413448378;0,00242573103329526;1,19778149702834;9,45677236860348
30 | "923";0,0214603719325261;0,0306005715056243;0,0185895773565166;0,0491524061068965;0,373907475981605;0,601655307864843;0,605808161507781;0,282692575271158;0,107768737713378;68,6808430641265;0,00937238038249732;0,00355621354807567;5,64415322115777;45,1099085932247
31 | "1549";0,0210723780718038;0,0361186946184226;0,0185049465592682;0,0646337010856371;0,393838339503786;0,560882644224007;0,565236719391569;0,350678698797308;0,155491655848331;52,1884889239225;0,00450093692738677;0,0042823035156024;4,58026172730678;60,0018448947528
32 | "932";0,0290742650782531;0,0863709393597116;0,0454279194893713;0,14851836792455;0,265699985340826;0,284366499650063;0,292113586590478;0,217676725964086;0,119810599046868;15,1938270636687;0,009918124054781;0,00329980402726196;0,803370293634297;39,7324623559206
33 | "1093";0,0222028371337042;0,025285852868134;0,0191356511069388;0,0341912386868784;0,330580127255084;0,657335911417166;0,663879801780227;0,33014204632734;0,139780857853547;101,343033600646;0,00731742978705063;0,00289497641469173;7,99414649127948;39,2006073034708
34 | "255";0,0216950382449956;0,0231623876258438;0,0185952322782072;0,0284153880955518;0,26823431973611;0,497554817419925;0,501634355029847;0,284469682199722;0,0980729836088918;119,350088509258;0,00458572160955784;0,00941502934950169;5,98745950895585;26,6879263652469
35 | "904";0,0232076224091069;0,0990862355953341;0,0291750374876809;0,175537114538046;0,486555300613333;0,556412301100944;0,55963664502058;0,303852395624038;0,123114579505276;17,1853657487005;0,00718774686439136;0,00404124841924912;4,29181763673745;15,5514870490558
36 | "1055";0,0316295441605699;0,0364294470092202;0,0361762384872636;0,0488221337473104;0,186335383545325;0,254884986822912;0,263458365233098;0,212714681998342;0,122136149001205;109,669838314803;0,00819090372151459;0,00516581279056114;0,67355035078197;40,4446897861677
37 | "1632";0,0323979045131911;0,0368082591041613;0,0366588380987865;0,048260675055947;0,185330130045977;0,257904457896383;0,266825816574278;0,24500056616444;0,162963528416234;115,958764698426;0,00377184432358643;0,00360702441556771;0,66070449607348;16,6447074396341
38 | "1295";0,0222671572929506;0,102132090605295;0,0396454094044998;0,208248721146919;0,478944226119585;0,532784332217039;0,534269444226689;0,242973633302627;0,0769039493663293;12,9970560227491;0,0092147293584006;0,00839510454462594;8,3534082870244;58,3218590983372
39 | "96";0,0239519572058797;0,0634584475314131;0,0208548766430979;0,106675753071095;0,453227729983419;0,587317184786096;0,590989801817672;0,355746346576008;0,150650590779085;32,1661548028611;0,00396792484765269;0,00533425397903624;7,19810012426204;14,584388219006
40 | "624";0,0244982208673933;0,0252328603998029;0,0188296425379225;0,0316089740415227;0,310899147935225;0,612293385723086;0,617730728012219;0,293102640193163;0,112861260684065;108,379517452943;0,0085379886723241;0,00395475702613333;6,83255545069987;5,01523056272143
41 | "868";0,0219992079804929;0,0483468988097466;0,019476511306768;0,0831813016022852;0,415861372068699;0,561026260768507;0,563766053007596;0,26475684703933;0,092317587991411;41,086913886087;0,00889124716513217;0,00599483619322054;6,27988415016113;26,7606496036172
42 | "166";0,0218193140054503;0,0233950534320705;0,0188463145773075;0,0304005704333311;0,30631625397073;0,622529339144222;0,628309390413381;0,294664856316247;0,114609214518592;113,552204429506;0,00874347887441026;0,00358448382652227;6,90353309685003;61,5651870205892
43 | "118";0,0257334454404891;0,030678240492854;0,0192080544977784;0,0424898467271149;0,340807165489419;0,571310894001814;0,575018456335502;0,269358875853698;0,0939080105446195;80,3340175889389;0,00856369728671499;0,00631540624708009;8,15615509717688;5,92069267694238
44 | "1829";0,0221397895454899;0,0771814659221075;0,0248428975369883;0,14498102800242;0,470037590092829;0,563716234057632;0,566140939810795;0,283725009926813;0,102071229266225;22,2553938827338;0,00722793129437627;0,00649299762454513;7,41363881418698;36,1625561947384
45 | "370";0,0223268355946131;0,0259661150689451;0,0179443410498872;0,0350017563832053;0,32223689800874;0,551380953110285;0,557384288251828;0,381034615796718;0,198613027389078;93,4930274431385;0,00410312941608409;0,00234191194416645;3,49168265665934;9,9003802034294
46 | "142";0,0208062176764901;0,0345810001670715;0,0186710277099339;0,0591868886247829;0,307648900669224;0,398264811631909;0,402533047261811;0,245339711821314;0,0889829434215364;54,4749862757955;0,00631629284087705;0,00901134158313194;2,19931593866096;50,7367313122292
47 | "199";0,0289855070957133;0,090864757508728;0,0377008941442083;0,14527646387857;0,28746229901279;0,310391606581996;0,317450262338603;0,276121312920298;0,162732714604199;17,0215283991889;0,00222605346377405;0,00546319191725038;1,03262559522563;12,7584207484236
48 | "1330";0,0208480941571012;0,0220371329409643;0,0180160191796749;0,0278165004512471;0,287358690368776;0,556486368009965;0,562488773206298;0,334609777094756;0,150339340021738;120,507315160411;0,00596559938146404;0,00312231438320396;3,90801037442895;55,4975323996233
49 | "489";0,0238409742257636;0,0257320893444971;0,0227724892091901;0,0320068027615057;0,211589894028515;0,329729722568111;0,336362183754933;0,245726265625239;0,112510363693324;127,103155287619;0,0050402766081895;0,0078914865659851;1,29753513046771;16,4833614889318
50 | "905";0,0227316710184958;0,0245389328188974;0,0193983098180286;0,0304953262586613;0,297381263198443;0,593797448719254;0,598625630203022;0,264821039548253;0,092331302474666;115,999248598389;0,009697366203823;0,0055308609823986;9,09239091431263;22,6655549915555
51 | "1124";0,0206820397351596;0,0685134624112873;0,0228158941117154;0,130392667201468;0,393308934133319;0,451791790666627;0,455143369749497;0,26269345466745;0,0951190856759928;23,3731975803719;0,006581063973398;0,00762918086633592;2,93431257974274;43,2016790877504
52 | "1755";0,0225377773935167;0,0626026889788489;0,0223416526824553;0,12312114797799;0,505989412787031;0,668582335241844;0,673171274999603;0,375166562960636;0,171332908450611;28,6854763832066;0,00516147061429431;0,00307559514106668;9,32330497688447;57,9337989277047
53 | "415";0,0219324229719225;0,048945483580538;0,0216540475937731;0,0873710214526313;0,311433276403101;0,368587516292726;0,374011366283728;0,261312553165999;0,115968058186755;36,7604707568761;0,00525557120217271;0,00689138188795652;1,60851666524516;43,7390465841779
54 | "421";0,0239261873729485;0,0253283575430943;0,0220436627336121;0,0313217016733486;0,226983055361061;0,366851244119005;0,37411035290538;0,295262455156495;0,1682647777903;127,885001750984;0,00421934433468799;0,00327014598793278;1,37036411116205;10,2830016157762
55 | "30";0,0216267935646765;0,0338072746713954;0,0187866328444678;0,0555471037840174;0,358346030675582;0,525135172601956;0,52846457591164;0,296855917520612;0,107856213067126;60,1740947388534;0,00503733154565343;0,00782864567745422;6,08317631492182;41,2602467799704
56 | "358";0,0225689567176258;0,0711565730385506;0,0217650983558273;0,121297589333436;0,397972341086218;0,466860739476639;0,469113951260854;0,222184660393784;0,0676077370918951;25,5921284214247;0,00979829808587768;0,0090909226247536;3,85510438748464;16,0489651364131
57 | "1421";0,0228890622169836;0,0973303629418653;0,0330725605268349;0,184847619527187;0,47521137095821;0,541350030951956;0,543331959125864;0,277194396225933;0,0948124769186229;15,9894690555892;0,0065692237464377;0,0083482054357986;10,0708554707912;36,9348681745333
58 | "1043";0,0212217280565648;0,0269179113914198;0,0189311950367914;0,0390437867726769;0,289305917829909;0,43038309461245;0,436093291195184;0,264904203354052;0,116838861103744;85,8314835910517;0,00866783100674701;0,00327135112814913;1,95632737131196;30,1292418957066
59 | "264";0,022964128370792;0,0236419681934819;0,0188248597120023;0,0282141839404208;0,271515906504007;0,521078048579733;0,525346092314856;0,276399182314996;0,094918086151444;122,473047331855;0,00613244752879357;0,00840624487123943;6,83329773294296;9,5661022453232
60 | "1688";0,0214590043136672;0,0235473078513186;0,0185353570709011;0,0314019814477651;0,303829461371588;0,57387276137085;0,578919491968053;0,301744973285992;0,117087896187656;107,160020782024;0,00701228168445704;0,00491114219457562;5,75562704834437;58,3271645937565
61 | "753";0,0224622374502143;0,0231285330656675;0,0184129393684632;0,0275995615954363;0,265394774538272;0,498060546919668;0,502193019989716;0,273704117743424;0,093454569193874;122,629064793055;0,00569406103802358;0,00885587645573519;5,3420536822163;9,5779967792307
62 | "1193";0,0220761714311893;0,0466752844022259;0,0194142355403056;0,0802837718704834;0,437033324600357;0,61786792594898;0,621890598886568;0,325272595217236;0,135057288803323;43,436795481183;0,00675718145146434;0,00367970424165023;6,58367633647772;27,0929200560946
63 | "482";0,021964566072601;0,0445909642868876;0,0187933969558287;0,0732391539913533;0,357946252547344;0,457917133079305;0,462826154343497;0,295005166791776;0,133463311160094;45,4280778043028;0,00647237446908758;0,00377674417853477;2,33162862104091;16,4083737874739
64 | "830";0,0276242684945655;0,0630033501842932;0,0317149169458348;0,102400773658941;0,255925487275011;0,286931342823888;0,294002552902498;0,214239251300766;0,104782167782535;29,2566946700114;0,00816752069282185;0,00721654801415334;0,924669383111759;24,1851851360999
65 | "1827";0,0216882134726501;0,0233640853325913;0,0186878647218264;0,0295500838477617;0,293951779674653;0,57995789771422;0,58592075620553;0,366864204472345;0,160184761592645;115,85592579466;0,00354119809817318;0,00508110150075373;6,31946002104263;38,5494536009651
66 | "1849";0,0224232311417096;0,0566367049721285;0,0197907006837457;0,0975008277617952;0,472395687276129;0,637127915000347;0,642457937846593;0,446618753461652;0,245192585374319;35,7345714662313;0,00295748157377846;0,00201095527472469;5,44336179676274;18,8741106825668
67 | "1133";0,0221092235537881;0,0231814488077181;0,0187907626029584;0,0277696356025578;0,280627955797054;0,572319947485201;0,577448888692905;0,281643306658484;0,10264204897678;125,690902306755;0,00797885966941264;0,00561381368202694;6,7084197961661;19,3434138164533
68 | "589";0,0208569161874182;0,0819484265429445;0,0283740930078214;0,162701210015364;0,417001129436057;0,466836770028553;0,469459552989141;0,270858530374738;0,0935433342134276;17,3905029850813;0,00520408370865204;0,00918006967403121;3,86685853031362;53,5876301483696
69 | "1672";0,0238090218842537;0,0278265625764186;0,0231273567179288;0,0376069055451444;0,241264524831072;0,358170266008038;0,365202439471636;0,240893527125949;0,118323643734196;103,300358964638;0,00980642949856473;0,00252313216569528;1,26694436547604;25,2233989062369
70 | "378";0,0222659328563604;0,0229535739604222;0,0184691577437482;0,027253041226138;0,275158788037107;0,548147650029245;0,552995190033284;0,276517254447112;0,0995598009597415;126,059158967262;0,00782703197061495;0,00600278994530296;5,542857047753;11,4416559412636
71 | "1780";0,0222644038507368;0,0242967543729202;0,0191788505672992;0,0312312640983829;0,313188600552332;0,648091694286316;0,655753511026072;0,408151885360484;0,196368247199784;112,180929582667;0,00360087475920702;0,00330459210946475;8,1902642962894;37,4446074058416
72 | "642";0,0326744948573172;0,0368058463388627;0,0378347032535687;0,0480095860772754;0,170027260062364;0,234118004415674;0,242530236341346;0,188717024475817;0,100445424402839;123,235681706231;0,00962964945570467;0,00971723194268058;0,630907576648248;36,5871953112676
73 | "457";0,025214289560379;0,0301727534781868;0,0242256254468539;0,0410555856711849;0,225950923031571;0,314586226409253;0,32105704163247;0,210929275775194;0,0896150492339248;93,4619600744078;0,0090100955060025;0,00824287672565859;1,1803954795768;13,4712070475763
74 | "1923";0,022904321224298;0,0588479823682688;0,0220685440524534;0,0989995682110516;0,335448249434717;0,393293527663202;0,399109361605547;0,309279362351123;0,165966538667542;32,5217501262933;0,00350327884250597;0,00422882372459635;1,65537005096228;18,4103309274034
75 | "881";0,0212746923055373;0,024679730868967;0,0183329541949779;0,0339215007276486;0,322104137140077;0,589371312609288;0,594751027209482;0,318173019188654;0,132932679747648;98,0331859511151;0,00706308255688566;0,00340519292569899;5,01903320626878;38,3095055687628
76 | "1461";0,0227617199420157;0,0235549639345941;0,0196384685352653;0,0283503267639623;0,284235047978634;0,59891025303754;0,605001819517874;0,318916918020006;0,124710602438622;128,995511366384;0,00602783070494329;0,00556683815065974;10,1315943791477;45,8016772472944
77 | "1620";0,0219189484432565;0,0705797291426465;0,024011977404216;0,143177077080595;0,516657515997077;0,646072922048965;0,649961987586225;0,349039999810698;0,153444312026226;23,5791422152229;0,00615171061127657;0,00301989686409747;7,20138714916192;61,9861042891775
78 | "1576";0,0225756011631965;0,0973489627240571;0,0354699949826474;0,203862168349118;0,551759733048214;0,64468014894294;0,647381056389761;0,298771619133508;0,115825400182102;14,9458580713762;0,00859318935696548;0,00385585706697989;9,49301948934287;64,6050888867191
79 | "764";0,0225333694674306;0,0395152320009063;0,0198001525136384;0,0697066146393129;0,409904093186497;0,601806909313095;0,6062163366427;0,368206676317595;0,157932749815965;50,6683742343864;0,00358725398199119;0,00539491269652155;9,28774007226368;53,2983916402157
80 | "1776";0,0207335342002058;0,0576931985904653;0,0203064017296598;0,108001490316905;0,409583380810706;0,494103156670428;0,499320226095827;0,370562253144097;0,209328256672248;30,7118178267742;0,0036657936878225;0,00212356859742954;2,53491232939837;39,1786499540219
81 | "20";0,035193936341334;0,0402755940120631;0,041867478135158;0,0533249663263912;0,17323530243143;0,233995757244585;0,24320200359148;0,205182602349585;0,126966790041156;115,271469937865;0,00923240655548225;0,0039848979878405;0,540711769654776;33,6870280706395
82 | "94";0,0313483042099178;0,037337575804747;0,0355136745306671;0,0509325917827612;0,190753622431019;0,252713074623226;0,260984506404936;0,200523542455291;0,107928944225462;96,6755916983464;0,00958637401326611;0,00679859666660818;0,692040038987275;28,40414444662
83 | "694";0,0222442772053477;0,0360325669990336;0,0192978844177878;0,0596460091536699;0,412271911204038;0,661248929352315;0,666128538908012;0,318943446622169;0,132291167379264;58,9134777706503;0,00802433912055226;0,00278511003063694;7,9322915833923;36,1282030320063
84 | "1630";0,0220742703390344;0,0245909724066746;0,0190598143136059;0,0330959850077519;0,317532761808135;0,616970173114768;0,622603408319115;0,312197887837223;0,124277102013915;104,142700477889;0,00724216997858214;0,00420880585815568;7,70368353834975;51,612517738512
85 | "299";0,0218465441986307;0,0227703853654702;0,0187966503780881;0,0272076974054415;0,260130223394387;0,498160938707806;0,501763535009006;0,235561565592962;0,0720101677493523;127,723258171799;0,00857337547543655;0,00974285666759573;6,7319133848087;32,9156144729508
86 | "227";0,0349960383376917;0,0413955881627741;0,0417279100016011;0,0572546452647534;0,176473831442064;0,225751541145299;0,234792660518339;0,224634036134931;0,144035996435501;93,1860814429257;0,00233077097853245;0,00748405588302713;0,544199494356684;59,2751172723795
87 | "1975";0,0260932920524437;0,103923273583046;0,0537765671926626;0,183337961108238;0,298041473296663;0,314350803586836;0,321564990906066;0,280695802409219;0,173863484115583;10,5792736141818;0,00272855774697707;0,00407303608180078;1,01216240051283;36,5572285375995
88 | "792";0,0239952254321799;0,0463726362901137;0,0249373333256171;0,0814680157587656;0,271213106504621;0,318475454142312;0,324603476652314;0,221713040202371;0,0965081441033598;39,8333897171499;0,00752169025215183;0,00821498991890607;1,20914811591604;57,4232399678038
89 | "1747";0,0218178042673176;0,0705655679146962;0,0241061825015813;0,138075047544495;0,443348002444069;0,526724816541444;0,529298539434289;0,306820557539708;0,112536333791115;22,983424813376;0,00421652930180889;0,00821273793220342;6,82038111469071;54,1583051101768
90 | "164";0,0209528818479642;0,0223517965925918;0,0181072745442105;0,0288769740732884;0,281541585279211;0,518452951549121;0,522916265590501;0,26502005738892;0,0941537039888813;114,832261437364;0,00831228778047467;0,0060835054090772;4,25263901761672;64,9986771068434
91 | "17";0,0222376115016418;0,113366556020573;0,0419904312089495;0,227664454724189;0,559916796706667;0,637027621795462;0,640405351508603;0,349350005930799;0,15104003320839;12,4464260902794;0,0056948275372955;0,00367753715777191;7,91440547177525;40,811893321154
92 | "862";0,0222995269705345;0,0243175077767962;0,0207786878312156;0,0306904867232409;0,226048661971909;0,357152395311338;0,363205187088696;0,233067373977892;0,095612543648911;121,719942214604;0,00775453254589147;0,00733018265898307;1,53039394974606;28,1372077758256
93 | "1468";0,0208186116462355;0,0542091980957742;0,0196095065789069;0,0981933438092968;0,397952353528014;0,487387490651014;0,491688114211842;0,277269751665263;0,11535758206298;33,7705700103354;0,0085988933898387;0,00334212464651513;2,66797127035518;32,4521784843391
94 | "1816";0,0262573534292048;0,0305519217966609;0,0197331253734985;0,0416394645429328;0,333277201991023;0,559195704878379;0,563558744191778;0,332729467808803;0,128765804466589;83,536763533688;0,00375707039719111;0,00745401414801383;10,3971129498718;5,85913676688488
95 | "756";0,0217028501200471;0,0233353087669392;0,0187035827150633;0,0294468574481806;0,289495639533365;0,563573461689056;0,569211508566256;0,362609006023486;0,154293264085725;116,165253490068;0,00307363957981044;0,00590749922995626;6,37741703123091;39,211881481438
96 | "1790";0,0213597036006587;0,061883427395014;0,0216237822723842;0,122933098264748;0,479887579532888;0,601897488332043;0,606127027967085;0,39011542580046;0,186660087705271;27,4530523446095;0,00372650692530637;0,00343168521056574;5,41951575786619;58,1467557085934
97 | "260";0,0213144742375741;0,042450779641834;0,0187844776906164;0,0728027388018957;0,373595060821888;0,496038962308144;0,499041725424918;0,286526505289412;0,101961745990301;45,3498507418984;0,00493059496664604;0,00846354738338106;4,76344937745702;32,3826595308761
98 | "582";0,0242900182489518;0,0301156023006471;0,0239696749920473;0,0425848025861043;0,245984307960199;0,346872292680751;0,353974486492684;0,247184490801028;0,126712345482933;89,99521889248;0,00845561030057067;0,00289583845427891;1,20013641117128;27,2084531315964
99 | "1861";0,0218847400494424;0,0227181261251509;0,0179075937781723;0,0275842689725739;0,282084038808589;0,532137226147091;0,538117105769685;0,329760365625596;0,151037730842868;121,063070656167;0,00597045887782608;0,00302239481346294;3,35630298095496;9,44681280839022
100 | "246";0,0216350194337986;0,036126708590177;0,0186162887133859;0,0588230983863569;0,398131172613245;0,604165398526392;0,609078444655107;0,365626634365659;0,168198822657802;57,9232240396825;0,00490154347835152;0,0032147061908926;5,35720673807699;26,8169369372476
101 | "692";0,0256997055333169;0,122152322990237;0,0386697006772337;0,216561101830073;0,557853911037899;0,642207166751318;0,645433587367124;0,333202693238009;0,139730036086687;13,5320184167185;0,00660317289328714;0,00361716335669163;8,27438996548285;13,4792442325653
102 |
--------------------------------------------------------------------------------
/Jupyter/Hyperparameter tunning/HyperParameter_RFR_RTM.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "name": "HyperParameter_RFR_RTM.ipynb",
7 | "provenance": [],
8 | "collapsed_sections": []
9 | },
10 | "kernelspec": {
11 | "name": "python3",
12 | "display_name": "Python 3"
13 | }
14 | },
15 | "cells": [
16 | {
17 | "cell_type": "markdown",
18 | "metadata": {
19 | "id": "4h63bK9iL2sg"
20 | },
21 | "source": [
22 | "Step 1: Import packages & stuff needed to generate the data for inversion"
23 | ]
24 | },
25 | {
26 | "cell_type": "code",
27 | "metadata": {
28 | "id": "2eGsrTISLu6k",
29 | "colab": {
30 | "base_uri": "https://localhost:8080/",
31 | "height": 128
32 | },
33 | "outputId": "4fb9c7db-d452-4eaf-8b33-5157600641a8"
34 | },
35 | "source": [
36 | "from google.colab import drive\n",
37 | "drive.mount('/content/drive')\n",
38 | "#Perhaps this step can be skipped by saving directly to the workspace"
39 | ],
40 | "execution_count": null,
41 | "outputs": [
42 | {
43 | "output_type": "stream",
44 | "text": [
45 | "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
46 | "\n",
47 | "Enter your authorization code:\n",
48 | "··········\n",
49 | "Mounted at /content/drive\n"
50 | ],
51 | "name": "stdout"
52 | }
53 | ]
54 | },
55 | {
56 | "cell_type": "code",
57 | "metadata": {
58 | "id": "9nuu-jvIMTcP",
59 | "colab": {
60 | "base_uri": "https://localhost:8080/",
61 | "height": 435
62 | },
63 | "outputId": "57ccf3e6-eadf-4a9e-8648-a3f92b0bab94"
64 | },
65 | "source": [
66 | "#package instalation\n",
67 | "\n",
68 | "#Installing PROSAIL\n",
69 | "!pip install prosail\n",
70 | "\n",
71 | "#latin hypercube stuff\n",
72 | "#lets try to do a LHS\n",
73 | "!pip install lhsmdu\n",
74 | "\n",
75 | "#this package as a number of functions to deal with hyperspectral data\n",
76 | "#!pip install pysptools"
77 | ],
78 | "execution_count": null,
79 | "outputs": [
80 | {
81 | "output_type": "stream",
82 | "text": [
83 | "Collecting prosail\n",
84 | "\u001b[?25l Downloading https://files.pythonhosted.org/packages/b5/52/d0c15ab469e8c82bc76a6b6cd614efbc60e43d09d5bacaa349170d229e91/prosail-2.0.5-py3-none-any.whl (149kB)\n",
85 | "\r\u001b[K |██▏ | 10kB 13.4MB/s eta 0:00:01\r\u001b[K |████▍ | 20kB 1.8MB/s eta 0:00:01\r\u001b[K |██████▋ | 30kB 2.2MB/s eta 0:00:01\r\u001b[K |████████▊ | 40kB 2.6MB/s eta 0:00:01\r\u001b[K |███████████ | 51kB 2.0MB/s eta 0:00:01\r\u001b[K |█████████████▏ | 61kB 2.2MB/s eta 0:00:01\r\u001b[K |███████████████▍ | 71kB 2.4MB/s eta 0:00:01\r\u001b[K |█████████████████▌ | 81kB 2.7MB/s eta 0:00:01\r\u001b[K |███████████████████▊ | 92kB 2.9MB/s eta 0:00:01\r\u001b[K |██████████████████████ | 102kB 2.8MB/s eta 0:00:01\r\u001b[K |████████████████████████▏ | 112kB 2.8MB/s eta 0:00:01\r\u001b[K |██████████████████████████▎ | 122kB 2.8MB/s eta 0:00:01\r\u001b[K |████████████████████████████▌ | 133kB 2.8MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▊ | 143kB 2.8MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 153kB 2.8MB/s \n",
86 | "\u001b[?25hRequirement already satisfied: numba in /usr/local/lib/python3.6/dist-packages (from prosail) (0.48.0)\n",
87 | "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from prosail) (1.18.4)\n",
88 | "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from prosail) (1.4.1)\n",
89 | "Requirement already satisfied: pytest in /usr/local/lib/python3.6/dist-packages (from prosail) (3.6.4)\n",
90 | "Requirement already satisfied: llvmlite<0.32.0,>=0.31.0dev0 in /usr/local/lib/python3.6/dist-packages (from numba->prosail) (0.31.0)\n",
91 | "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from numba->prosail) (46.3.0)\n",
92 | "Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (1.12.0)\n",
93 | "Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (8.3.0)\n",
94 | "Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (1.8.1)\n",
95 | "Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (19.3.0)\n",
96 | "Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (1.4.0)\n",
97 | "Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (0.7.1)\n",
98 | "Installing collected packages: prosail\n",
99 | "Successfully installed prosail-2.0.5\n",
100 | "Collecting lhsmdu\n",
101 | " Downloading https://files.pythonhosted.org/packages/7b/f0/e714a4dae734bcd7228a09d74fff7dc5857dc3311cd72a3e07b09c85d088/lhsmdu-0.1-py3-none-any.whl\n",
102 | "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lhsmdu) (1.18.4)\n",
103 | "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lhsmdu) (1.4.1)\n",
104 | "Installing collected packages: lhsmdu\n",
105 | "Successfully installed lhsmdu-0.1\n"
106 | ],
107 | "name": "stdout"
108 | }
109 | ]
110 | },
111 | {
112 | "cell_type": "code",
113 | "metadata": {
114 | "id": "eWA_vt4HOyop",
115 | "colab": {
116 | "base_uri": "https://localhost:8080/",
117 | "height": 181
118 | },
119 | "outputId": "ec2cc6ff-1303-4d91-e4d6-59cd00593f6a"
120 | },
121 | "source": [
122 | "!pip install hyperopt "
123 | ],
124 | "execution_count": null,
125 | "outputs": [
126 | {
127 | "output_type": "stream",
128 | "text": [
129 | "Requirement already satisfied: hyperopt in /usr/local/lib/python3.6/dist-packages (0.1.2)\n",
130 | "Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from hyperopt) (1.12.0)\n",
131 | "Requirement already satisfied: networkx in /usr/local/lib/python3.6/dist-packages (from hyperopt) (2.4)\n",
132 | "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from hyperopt) (4.41.1)\n",
133 | "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from hyperopt) (1.18.4)\n",
134 | "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from hyperopt) (1.4.1)\n",
135 | "Requirement already satisfied: pymongo in /usr/local/lib/python3.6/dist-packages (from hyperopt) (3.10.1)\n",
136 | "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from hyperopt) (0.16.0)\n",
137 | "Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.6/dist-packages (from networkx->hyperopt) (4.4.2)\n"
138 | ],
139 | "name": "stdout"
140 | }
141 | ]
142 | },
143 | {
144 | "cell_type": "markdown",
145 | "metadata": {
146 | "id": "DfOcve1fMYBo"
147 | },
148 | "source": [
149 | "Packages for RandomForest and other auxiliary stuff"
150 | ]
151 | },
152 | {
153 | "cell_type": "code",
154 | "metadata": {
155 | "id": "T7SW2mrcaKA0",
156 | "colab": {
157 | "base_uri": "https://localhost:8080/",
158 | "height": 34
159 | },
160 | "outputId": "8e000731-17f7-42bb-ccae-b1c49db35132"
161 | },
162 | "source": [
163 | "\n",
164 | "import numpy as np\n",
165 | "for i in range(50, 1001, 50):\n",
166 | " print(i, end=', ')"
167 | ],
168 | "execution_count": null,
169 | "outputs": [
170 | {
171 | "output_type": "stream",
172 | "text": [
173 | "50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, "
174 | ],
175 | "name": "stdout"
176 | }
177 | ]
178 | },
179 | {
180 | "cell_type": "code",
181 | "metadata": {
182 | "id": "OzNjF9ldMXTM"
183 | },
184 | "source": [
185 | "#the beutiful R like data frame\n",
186 | "import pandas as pd\n",
187 | "\n",
188 | "#the famous numpy \n",
189 | "import numpy as np\n",
190 | "\n",
191 | "#PROSPECT+SAIL Radiative transfer mode package\n",
192 | "import prosail\n",
193 | "\n",
194 | "#Sampling design package\n",
195 | "import lhsmdu\n",
196 | "\n",
197 | "#a few more stuff for random\n",
198 | "import random as rdm\n",
199 | "import math\n",
200 | "\n",
201 | "\n",
202 | "# import the regressor for random forests\n",
203 | "from sklearn.ensemble import RandomForestRegressor \n",
204 | "\n",
205 | "from sklearn import metrics"
206 | ],
207 | "execution_count": null,
208 | "outputs": []
209 | },
210 | {
211 | "cell_type": "markdown",
212 | "metadata": {
213 | "id": "PdxUW6drNjZc"
214 | },
215 | "source": [
216 | "Bunch of functions needed for generating data"
217 | ]
218 | },
219 | {
220 | "cell_type": "code",
221 | "metadata": {
222 | "id": "Hk-0MPrdNrGY"
223 | },
224 | "source": [
225 | "def custom_prosail(cab,cw,cm,lai):\n",
226 | " import prosail\n",
227 | " #default parameters\n",
228 | " n= 1.\n",
229 | " car=10.\n",
230 | " cbrown=0.01\n",
231 | " typelidf=1 #this is the default option\n",
232 | " lidfa = -1 #leaf angle distribution parameter a and b\n",
233 | " lidfb=-0.15\n",
234 | " hspot= 0.01 #hotspot parameters - got this from R package https://www.rdocumentation.org/packages/hsdar/versions/0.4.1/topics/PROSAIL\n",
235 | " #sun and viewing angle\n",
236 | " tts=30. #observation and solar position parameters\n",
237 | " tto=10. \n",
238 | " psi=0.\n",
239 | " #for now i put them by hand but they should be an input of a custom function\n",
240 | " #tts=sol_zen #solar zenith angle\n",
241 | " #tto=inc_zen #sensor zenith angle\n",
242 | " #psi=raa\n",
243 | " rho_out = prosail.run_prosail(n,\n",
244 | " cab,\n",
245 | " car,\n",
246 | " cbrown,\n",
247 | " cw,\n",
248 | " cm,\n",
249 | " lai,\n",
250 | " lidfa,\n",
251 | " hspot,\n",
252 | " tts,tto,psi,\n",
253 | " typelidf, lidfb,\n",
254 | " prospect_version=\"D\",\n",
255 | " factor='SDR', \n",
256 | " rsoil=.5, psoil=.5)\n",
257 | " return(rho_out)\n",
258 | "\n",
259 | "def Prosail2S2(path2csv,spectra_input):\n",
260 | " #importing pandas\n",
261 | " import pandas as pd\n",
262 | " import numpy\n",
263 | " import numpy as np\n",
264 | " #upload a S2_Response.csv from https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses\n",
265 | "\n",
266 | " s2_table = pd.read_csv(path2csv,sep=\";\",decimal=\",\") #check if this is proper, regarding the sep and dec\n",
267 | " #chekc which row you are actually extracting\n",
268 | "\n",
269 | " s2_table_sel = s2_table[s2_table['SR_WL'].between(400,2500)] #selects all values between 400 and 2500\n",
270 | " spectra_input_df = pd.DataFrame(data=spectra_input,columns=[\"rho\"],index=s2_table_sel.index) #transforms the input array into a pandas df with the column name rho and row.index = to the original input table\n",
271 | "\n",
272 | " \n",
273 | " rho_s2 = s2_table_sel.multiply(spectra_input_df['rho'],axis=\"index\") #calculates the numerator\n",
274 | " w_band_sum = s2_table_sel.sum(axis=0,skipna = True) #calculates the denominator\n",
275 | "\n",
276 | " output = (rho_s2.sum(axis=0)/w_band_sum).rename_axis(\"ID\").values #runs the weighted mean and converts the output to a numpy array\n",
277 | "\n",
278 | " return output[1:] #removes the first value because it represents the wavelength column\n",
279 | "\n",
280 | "#please LOAD THTE FILE NOW\n",
281 | "filepath=\"/content/drive/My Drive/S2_Response.csv\"\n",
282 | "#filepath=\"/content/S2_Responses_S2B.csv\"\n",
283 | "#filepath=\"/content/drive/My Drive/S2_Response.csv\"\n",
284 | "\n",
285 | "\n",
286 | "def Gen_spectra_data(traits):\n",
287 | " k = 1\n",
288 | " #pd_train_traits=traits\n",
289 | " #print(range(len(traits)))\n",
290 | " for i in range(len(traits)):\n",
291 | " #n_t = pd_train_traits[\"n\"][i]\n",
292 | " cab_t = traits[\"cab\"][i]\n",
293 | " #car_t = pd_train_traits[\"car\"][i]\n",
294 | " #cbrown_t = pd_train_traits[\"cbrown\"][i]\n",
295 | " cw_t = traits[\"cw\"][i]\n",
296 | " cm_t = traits[\"cm\"][i]\n",
297 | " lai_t = traits[\"lai\"][i]\n",
298 | "\n",
299 | " if k == 1:\n",
300 | " tr_rho_s = custom_prosail(cab_t,cw_t,cm_t,lai_t)\n",
301 | " tr_rho_s = Prosail2S2(filepath,tr_rho_s)\n",
302 | " #plt.plot ( x, tr_rho_s, ':', label=\"Training prosail\")\n",
303 | " #plt.legend(loc='best')\n",
304 | " \n",
305 | " if k > 1:\n",
306 | " tr_rho_t = custom_prosail(cab_t,cw_t,cm_t,lai_t)\n",
307 | " tr_rho_t = Prosail2S2(filepath,tr_rho_t)\n",
308 | " tr_rho_s = np.vstack((tr_rho_s,tr_rho_t))\n",
309 | " #plt.plot ( x, tr_rho_t, ':')\n",
310 | "\n",
311 | " k = k+1\n",
312 | "\n",
313 | "\n",
314 | " rho_samples=tr_rho_s\n",
315 | "\n",
316 | "\n",
317 | " return rho_samples\n",
318 | "\n",
319 | "\n",
320 | "\n",
321 | "\n",
322 | "#Function to store the outputs into a table\n",
323 | "column_names=[\"Model\",\n",
324 | " \"NSamples\",\n",
325 | " \"OutOfBag\",\n",
326 | " \"KFold_tr_samples\",\n",
327 | " \"KFold_vl_samples\",\n",
328 | " \"Variable\",\n",
329 | " \"Fold_nr\",\n",
330 | " \"ExplVar\",\n",
331 | " \"Max_err\",\n",
332 | " \"Mean_abs_Err\",\n",
333 | " \"Mean_sqr_err\",\n",
334 | " #\"Mean_sqr_lg_err\",\n",
335 | " \"Median_abs_err\",\n",
336 | " \"r2\",\n",
337 | " \"MAPE\",\n",
338 | " \"ModelName\"]\n",
339 | " #\"Mean_poiss_dev\",\n",
340 | " #\"Mean_gamma_dev\"]\n",
341 | " #\"Mean_tweed_dev\"]\n",
342 | "\n",
343 | "#mape is not existant in the package so we have to create it:\n",
344 | "#https://stats.stackexchange.com/questions/58391/mean-absolute-percentage-error-mape-in-scikit-learn\n",
345 | "#from sklearn.utils import check_array\n",
346 | "def mean_absolute_percentage_error(y_true, y_pred): \n",
347 | "\n",
348 | " ## Note: does not handle mix 1d representation\n",
349 | " #if _is_1d(y_true): \n",
350 | " # y_true, y_pred = _check_1d_array(y_true, y_pred)\n",
351 | "\n",
352 | " return np.mean(np.abs((y_true - y_pred) / y_true)) * 100\n",
353 | "\n",
354 | " #Here, the file is used for saving\n",
355 | " #creating a df to receive the data\n",
356 | "\n",
357 | "\n",
358 | "def calc_metrics(MDL,Samples,oob_samples,kf_tr,kf_vl,Variable,Fold,Ref,Pred,Modelname):\n",
359 | "\n",
360 | " out_list = {\"Model\":MDL,\n",
361 | " \"NSamples\":Samples,\n",
362 | " \"OutOfBag\":oob_samples,\n",
363 | " \"KFold_tr_samples\":kf_tr,\n",
364 | " \"KFold_vl_samples\":kf_vl,\n",
365 | " \"Variable\":Variable,\n",
366 | " \"Fold_nr\":Fold,\n",
367 | " \"ExplVar\": metrics.explained_variance_score(Ref, Pred),\n",
368 | " \"Max_err\": metrics.max_error(Ref, Pred),\n",
369 | " \"Mean_abs_Err\": metrics.mean_absolute_error(Ref, Pred),\n",
370 | " \"Mean_sqr_err\": metrics.mean_squared_error(Ref, Pred),\n",
371 | " \"Median_abs_err\" : metrics.median_absolute_error(Ref, Pred),\n",
372 | " \"r2\": metrics.r2_score(Ref, Pred),\n",
373 | " \"MAPE\": mean_absolute_percentage_error(Ref, Pred),\n",
374 | " \"ModelName\":Modelname}\n",
375 | "\n",
376 | "\n",
377 | " return out_list"
378 | ],
379 | "execution_count": null,
380 | "outputs": []
381 | },
382 | {
383 | "cell_type": "markdown",
384 | "metadata": {
385 | "id": "oFeTJUgbN2k8"
386 | },
387 | "source": [
388 | "Hyperparameter tuning section\n",
389 | "\n",
390 | "\n"
391 | ]
392 | },
393 | {
394 | "cell_type": "code",
395 | "metadata": {
396 | "id": "MbKvtfA0OumM"
397 | },
398 | "source": [
399 | "# define an objective function\n",
400 | "\n",
401 | "# These are a bunch of methods of te hyperopt package to generate the search space\n",
402 | "from hyperopt import hp\n",
403 | "\n",
404 | "# these are the minimizing function (fmin), Tree-parzen estimator method, an evaluation function, trial method and status indicators\n",
405 | "from hyperopt import fmin, tpe, space_eval, Trials, STATUS_OK, STATUS_FAIL\n",
406 | "from sklearn.model_selection import cross_val_score\n",
407 | "\n"
408 | ],
409 | "execution_count": null,
410 | "outputs": []
411 | },
412 | {
413 | "cell_type": "markdown",
414 | "metadata": {
415 | "id": "2FxnCB3_PY5B"
416 | },
417 | "source": [
418 | "Step 2: Generate the data that is going to be used for training\n",
419 | "\n",
420 | "\n"
421 | ]
422 | },
423 | {
424 | "cell_type": "code",
425 | "metadata": {
426 | "id": "7K-075akPeZ6"
427 | },
428 | "source": [
429 | "#first the trait-space\n",
430 | "\n",
431 | "n_traits=4 #I will test on 4 varying traits: cab, car, cw,cm,lai\n",
432 | "\n",
433 | "#generating a LHS hypercube (it uses a 0 to 1 interval that can be used as a multiplier against the different traits)\n",
434 | "np.random.seed(0)\n",
435 | "\n",
436 | "\n",
437 | "#the values here are 1 less than the max so i can add a value later to it\n",
438 | "#max_n=1 \n",
439 | "max_cab=121. #add 1\n",
440 | "#max_car=44. #add 1\n",
441 | "#max_cbrown= 9.99 #add 0.01\n",
442 | "max_cw=0.008 #add 0.001 \n",
443 | "max_cm=0.008 #0.001\n",
444 | "max_lai = 9.9 #add 0.1\n",
445 | "\n",
446 | "min_cab = 10.\n",
447 | "min_cw = 0.002\n",
448 | "min_cm = 0.002\n",
449 | "min_lai = .5\n",
450 | "\n",
451 | "#set the number of samples used for the optimization\n",
452 | "n_samples = 2000\n"
453 | ],
454 | "execution_count": null,
455 | "outputs": []
456 | },
457 | {
458 | "cell_type": "code",
459 | "metadata": {
460 | "id": "5D7pk_9TPyiX"
461 | },
462 | "source": [
463 | "#this is for the training dataset\n",
464 | "df_metrics = pd.DataFrame(columns=column_names)\n",
465 | "#this is for the out of bag\n",
466 | "df_metrics_valid = pd.DataFrame(columns=column_names)\n",
467 | "\n",
468 | "#a path to store the models \n",
469 | "#path2folder = \"/content/drive/My Drive/DSRP_Lunch_outputs/Models/\"\n",
470 | "path2folder = \"/content/drive/My Drive/RTM_Inversion/HyperParameterTunning/RandF/\"\n",
471 | "\n",
472 | "#generating trait space and data\n",
473 | "LHS_train = lhsmdu.createRandomStandardUniformMatrix(n_traits,n_samples)\n",
474 | "pd_trait = pd.DataFrame.transpose(pd.DataFrame(LHS_train))\n",
475 | "pd_trait.columns = [\"cab\",\"cw\",\"cm\",\"lai\"]\n",
476 | "\n",
477 | "pd_trait[\"cab\"]=pd_trait[\"cab\"]*max_cab+min_cab\n",
478 | "pd_trait[\"cw\"] =pd_trait[\"cw\"] *max_cw+min_cw\n",
479 | "pd_trait[\"cm\"] =pd_trait[\"cm\"] *max_cm+min_cw\n",
480 | "pd_trait[\"lai\"]=pd_trait[\"lai\"]*max_lai+min_lai\n",
481 | "\n",
482 | "#this is the same as above but on numpy format\n",
483 | "np_trait = pd_trait.iloc[:,:].values\n",
484 | "\n",
485 | "#now we first generate the date in hyperspectral, convolute it to S2 while iterating through the entire given trait space\n",
486 | "np_spect = Gen_spectra_data(pd_trait)[:,[1,2,3,4,5,6,8,11,12]]\n",
487 | "\n",
488 | "#now we remove 10% of the data for out-of-bag validation of the final model while the cross-validation happens within the hyperparemeter tunning\n",
489 | "index = list(range(len(np_spect)))\n",
490 | "index10 = rdm.sample(index,math.ceil(len(index)*.1))\n",
491 | "index90 = [x for x in index if x not in index10]\n",
492 | "\n",
493 | "#selecting the groups for training (tr) and validation (vl)\n",
494 | "tr_trait_df = np_trait[index90,]\n",
495 | "tr_spect_df = np_spect[index90,]\n",
496 | "\n",
497 | "vl_trait_df = np_trait[index10,]\n",
498 | "vl_spect_df = np_spect[index10,]\n",
499 | "\n"
500 | ],
501 | "execution_count": null,
502 | "outputs": []
503 | },
504 | {
505 | "cell_type": "markdown",
506 | "metadata": {
507 | "id": "qLbGumF3SaOF"
508 | },
509 | "source": [
510 | "Definining the optimization function and the search space\n",
511 | "\n",
512 | "---\n",
513 | "\n"
514 | ]
515 | },
516 | {
517 | "cell_type": "code",
518 | "metadata": {
519 | "id": "28j686EqSZiL"
520 | },
521 | "source": [
522 | "#objective function\n",
523 | "\n",
524 | "#first we define the function\n",
525 | "N_FOLDS = 10\n",
526 | "MAX_EVALS = 200\n",
527 | "\n",
528 | "#here we can just fetch the data so we keep everything in one place\n",
529 | "train_labels = tr_trait_df = np_trait[index90,]\n",
530 | "train_features = tr_spect_df = np_spect[index90,]\n",
531 | "\n",
532 | "\n",
533 | "def objective(params, n_folds = N_FOLDS):\n",
534 | " \"\"\"Objective function for Random forest Hyperparameter Tuning\"\"\"\n",
535 | "\n",
536 | " # Perform n_fold cross validation with hyperparameters\n",
537 | " # Use early stopping and evaluate based on ROC AUC\n",
538 | " rf = RandomForestRegressor(**params, random_state = 42,bootstrap=True,oob_score=True)\n",
539 | "\n",
540 | " #clf = LogisticRegression(**params,random_state=0,verbose =0)\n",
541 | " scores = cross_val_score(rf, X=train_features, y=train_labels, cv=10, scoring='neg_mean_absolute_error') #thi is the simple Mean abs\n",
542 | "\n",
543 | " # Extract the best score\n",
544 | " best_score = np.mean(abs(scores)) #mean value\n",
545 | " # if the the result is miniming\n",
546 | "\n",
547 | " # Loss must be minimized\n",
548 | " #loss = 1 - best_score \n",
549 | " loss = best_score \n",
550 | "\n",
551 | " # Dictionary with information for evaluation\n",
552 | " return {'loss': loss, 'params': params, 'status': STATUS_OK}\n",
553 | "\n",
554 | "#distribution functions for the parameter sampling are here:\n",
555 | "#https://github.com/hyperopt/hyperopt/wiki/FMin\n",
556 | "\n",
557 | "space = {\n",
558 | " 'n_estimators': hp.choice('n_estimators', range(50, 1001, 50)), #to avoid errors (e.g. to few trees)\n",
559 | " 'min_samples_split' : hp.uniform('min_samples_split', 0,.5), #these must be a fractio up to 50% of the data it seems\n",
560 | " 'min_samples_leaf' : hp.uniform('min_samples_leaf', 0,.5)\n",
561 | "}\n",
562 | "\n",
563 | "# for i in range(50, 1001, 50):\n",
564 | "# print(i, end=', ')"
565 | ],
566 | "execution_count": null,
567 | "outputs": []
568 | },
569 | {
570 | "cell_type": "code",
571 | "metadata": {
572 | "id": "TVIydEOQSsHW",
573 | "colab": {
574 | "base_uri": "https://localhost:8080/",
575 | "height": 34
576 | },
577 | "outputId": "8125d52d-1595-429d-ea14-901e36fb10ed"
578 | },
579 | "source": [
580 | "#this loop is the actual testing\n",
581 | "bayes_trials = Trials()\n",
582 | "\n",
583 | "best_rfr = fmin(fn = objective, space = space, algo = tpe.suggest, max_evals = MAX_EVALS, trials = bayes_trials,verbose=1)"
584 | ],
585 | "execution_count": null,
586 | "outputs": [
587 | {
588 | "output_type": "stream",
589 | "text": [
590 | "100%|██████████| 200/200 [1:04:32<00:00, 19.36s/it, best loss: 0.31946225928160776]\n"
591 | ],
592 | "name": "stdout"
593 | }
594 | ]
595 | },
596 | {
597 | "cell_type": "markdown",
598 | "metadata": {
599 | "id": "9bnbvVAdXLkj"
600 | },
601 | "source": [
602 | "Quick testing to check for improvements "
603 | ]
604 | },
605 | {
606 | "cell_type": "code",
607 | "metadata": {
608 | "id": "Ce0C3dSvXKzO",
609 | "colab": {
610 | "base_uri": "https://localhost:8080/",
611 | "height": 52
612 | },
613 | "outputId": "1906ea4e-eca1-48d7-d717-3d63363745fb"
614 | },
615 | "source": [
616 | "#beware, pointers effect is happening here\n",
617 | "print(best_rfr)\n",
618 | "#updating the dictionary\n",
619 | "#best_rfr_new = best_rfr\n",
620 | "#best_rfr_new.update(n_estimators=range(50, 1001, 50)[best_rfr['n_estimators']])\n",
621 | "print(range(50, 1001, 50)[15])\n",
622 | "#it updates the pointer so it can only be run once"
623 | ],
624 | "execution_count": null,
625 | "outputs": [
626 | {
627 | "output_type": "stream",
628 | "text": [
629 | "{'min_samples_leaf': 0.0007218586390063501, 'min_samples_split': 0.0006729906646919075, 'n_estimators': 17}\n",
630 | "800\n"
631 | ],
632 | "name": "stdout"
633 | }
634 | ]
635 | },
636 | {
637 | "cell_type": "markdown",
638 | "metadata": {
639 | "id": "kEMnUQywo9I0"
640 | },
641 | "source": [
642 | "Run 01:\n",
643 | "\n",
644 | "\n",
645 | "{'min_samples_leaf': 0.0007027343011890524, 'min_samples_split': 0.004091222247067641, 'n_estimators': 800} \n",
646 | "\n",
647 | "run 02\n",
648 | "\n",
649 | "{'min_samples_leaf': 0.0014275823590012802, 'min_samples_split': 0.0014118318943800098, 'n_estimators': 400}\n",
650 | "\n",
651 | "\n",
652 | "run 03\n",
653 | "{'min_samples_leaf': 0.0007218586390063501, 'min_samples_split': 0.0006729906646919075, 'n_estimators': 17}\n",
654 | "900\n",
655 | "\n"
656 | ]
657 | }
658 | ]
659 | }
--------------------------------------------------------------------------------
/Jupyter/Hyperparameter tunning/HyperParameter_GPR_RTM.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "name": "HyperParameter_GPR_RTM.ipynb",
7 | "provenance": []
8 | },
9 | "kernelspec": {
10 | "name": "python3",
11 | "display_name": "Python 3"
12 | }
13 | },
14 | "cells": [
15 | {
16 | "cell_type": "markdown",
17 | "metadata": {
18 | "id": "zVlg9bx3PNlC"
19 | },
20 | "source": [
21 | "\n",
22 | "Step 1: Import packages & stuff needed to generate the data for inversion"
23 | ]
24 | },
25 | {
26 | "cell_type": "code",
27 | "metadata": {
28 | "id": "Yvn2K9tbEgd-",
29 | "colab": {
30 | "base_uri": "https://localhost:8080/",
31 | "height": 125
32 | },
33 | "outputId": "620726d5-4051-4538-a16f-d9e040118edb"
34 | },
35 | "source": [
36 | "from google.colab import drive\n",
37 | "drive.mount('/content/drive')\n",
38 | "#Perhaps this step can be skipped by saving directly to the workspace"
39 | ],
40 | "execution_count": null,
41 | "outputs": [
42 | {
43 | "output_type": "stream",
44 | "text": [
45 | "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
46 | "\n",
47 | "Enter your authorization code:\n",
48 | "··········\n",
49 | "Mounted at /content/drive\n"
50 | ],
51 | "name": "stdout"
52 | }
53 | ]
54 | },
55 | {
56 | "cell_type": "code",
57 | "metadata": {
58 | "id": "z7Kj7sUNPL3G",
59 | "colab": {
60 | "base_uri": "https://localhost:8080/",
61 | "height": 425
62 | },
63 | "outputId": "169efe5c-554c-47e0-d89c-df5c0fec0295"
64 | },
65 | "source": [
66 | "#package instalation\n",
67 | "\n",
68 | "#Installing PROSAIL\n",
69 | "!pip install prosail\n",
70 | "\n",
71 | "#latin hypercube stuff\n",
72 | "#lets try to do a LHS\n",
73 | "!pip install lhsmdu\n",
74 | "\n",
75 | "#this package as a number of functions to deal with hyperspectral data\n",
76 | "#!pip install pysptools"
77 | ],
78 | "execution_count": null,
79 | "outputs": [
80 | {
81 | "output_type": "stream",
82 | "text": [
83 | "Collecting prosail\n",
84 | "\u001b[?25l Downloading https://files.pythonhosted.org/packages/b5/52/d0c15ab469e8c82bc76a6b6cd614efbc60e43d09d5bacaa349170d229e91/prosail-2.0.5-py3-none-any.whl (149kB)\n",
85 | "\r\u001b[K |██▏ | 10kB 15.9MB/s eta 0:00:01\r\u001b[K |████▍ | 20kB 1.5MB/s eta 0:00:01\r\u001b[K |██████▋ | 30kB 1.7MB/s eta 0:00:01\r\u001b[K |████████▊ | 40kB 1.9MB/s eta 0:00:01\r\u001b[K |███████████ | 51kB 1.8MB/s eta 0:00:01\r\u001b[K |█████████████▏ | 61kB 1.9MB/s eta 0:00:01\r\u001b[K |███████████████▍ | 71kB 2.2MB/s eta 0:00:01\r\u001b[K |█████████████████▌ | 81kB 2.3MB/s eta 0:00:01\r\u001b[K |███████████████████▊ | 92kB 2.5MB/s eta 0:00:01\r\u001b[K |██████████████████████ | 102kB 2.5MB/s eta 0:00:01\r\u001b[K |████████████████████████▏ | 112kB 2.5MB/s eta 0:00:01\r\u001b[K |██████████████████████████▎ | 122kB 2.5MB/s eta 0:00:01\r\u001b[K |████████████████████████████▌ | 133kB 2.5MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▊ | 143kB 2.5MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 153kB 2.5MB/s \n",
86 | "\u001b[?25hRequirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from prosail) (1.4.1)\n",
87 | "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from prosail) (1.18.4)\n",
88 | "Requirement already satisfied: numba in /usr/local/lib/python3.6/dist-packages (from prosail) (0.48.0)\n",
89 | "Requirement already satisfied: pytest in /usr/local/lib/python3.6/dist-packages (from prosail) (3.6.4)\n",
90 | "Requirement already satisfied: llvmlite<0.32.0,>=0.31.0dev0 in /usr/local/lib/python3.6/dist-packages (from numba->prosail) (0.31.0)\n",
91 | "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from numba->prosail) (46.4.0)\n",
92 | "Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (8.3.0)\n",
93 | "Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (1.12.0)\n",
94 | "Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (1.8.1)\n",
95 | "Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (19.3.0)\n",
96 | "Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (1.4.0)\n",
97 | "Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.6/dist-packages (from pytest->prosail) (0.7.1)\n",
98 | "Installing collected packages: prosail\n",
99 | "Successfully installed prosail-2.0.5\n",
100 | "Collecting lhsmdu\n",
101 | " Downloading https://files.pythonhosted.org/packages/7b/f0/e714a4dae734bcd7228a09d74fff7dc5857dc3311cd72a3e07b09c85d088/lhsmdu-0.1-py3-none-any.whl\n",
102 | "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lhsmdu) (1.18.4)\n",
103 | "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lhsmdu) (1.4.1)\n",
104 | "Installing collected packages: lhsmdu\n",
105 | "Successfully installed lhsmdu-0.1\n"
106 | ],
107 | "name": "stdout"
108 | }
109 | ]
110 | },
111 | {
112 | "cell_type": "code",
113 | "metadata": {
114 | "id": "5UV3WvQ8PeU2",
115 | "colab": {
116 | "base_uri": "https://localhost:8080/",
117 | "height": 176
118 | },
119 | "outputId": "5cfa4d53-6ce1-42ea-f7de-cea892d5f60b"
120 | },
121 | "source": [
122 | "!pip install hyperopt "
123 | ],
124 | "execution_count": null,
125 | "outputs": [
126 | {
127 | "output_type": "stream",
128 | "text": [
129 | "Requirement already satisfied: hyperopt in /usr/local/lib/python3.6/dist-packages (0.1.2)\n",
130 | "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from hyperopt) (1.18.4)\n",
131 | "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from hyperopt) (4.41.1)\n",
132 | "Requirement already satisfied: pymongo in /usr/local/lib/python3.6/dist-packages (from hyperopt) (3.10.1)\n",
133 | "Requirement already satisfied: networkx in /usr/local/lib/python3.6/dist-packages (from hyperopt) (2.4)\n",
134 | "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from hyperopt) (0.16.0)\n",
135 | "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from hyperopt) (1.4.1)\n",
136 | "Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from hyperopt) (1.12.0)\n",
137 | "Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.6/dist-packages (from networkx->hyperopt) (4.4.2)\n"
138 | ],
139 | "name": "stdout"
140 | }
141 | ]
142 | },
143 | {
144 | "cell_type": "markdown",
145 | "metadata": {
146 | "id": "Ffgkb6EjPgJq"
147 | },
148 | "source": [
149 | "Packages for RandomForest and other auxiliary stuff"
150 | ]
151 | },
152 | {
153 | "cell_type": "code",
154 | "metadata": {
155 | "id": "jf01gPABPjd2"
156 | },
157 | "source": [
158 | "#the beutiful R like data frame\n",
159 | "import pandas as pd\n",
160 | "\n",
161 | "#the famous numpy \n",
162 | "import numpy as np\n",
163 | "\n",
164 | "#PROSPECT+SAIL Radiative transfer mode package\n",
165 | "import prosail\n",
166 | "\n",
167 | "#Sampling design package\n",
168 | "import lhsmdu\n",
169 | "\n",
170 | "#a few more stuff for random\n",
171 | "import random as rdm\n",
172 | "import math\n",
173 | "\n",
174 | "\n",
175 | "# import the regressor for gaussian processes and also the pre-set group of kernels\n",
176 | "from sklearn.gaussian_process import GaussianProcessRegressor\n",
177 | "from sklearn.gaussian_process.kernels import RBF,DotProduct,Matern,ExpSineSquared,RationalQuadratic\n",
178 | "\n",
179 | "\n",
180 | "from sklearn import metrics"
181 | ],
182 | "execution_count": null,
183 | "outputs": []
184 | },
185 | {
186 | "cell_type": "markdown",
187 | "metadata": {
188 | "id": "Vf0CAwQePmC2"
189 | },
190 | "source": [
191 | "Bunch of functions needed for generating data"
192 | ]
193 | },
194 | {
195 | "cell_type": "code",
196 | "metadata": {
197 | "id": "rTAkzLnPPmiG"
198 | },
199 | "source": [
200 | "def custom_prosail(cab,cw,cm,lai):\n",
201 | " import prosail\n",
202 | " #default parameters\n",
203 | " n= 1.\n",
204 | " car=10.\n",
205 | " cbrown=0.01\n",
206 | " typelidf=1 #this is the default option\n",
207 | " lidfa = -1 #leaf angle distribution parameter a and b\n",
208 | " lidfb=-0.15\n",
209 | " hspot= 0.01 #hotspot parameters - got this from R package https://www.rdocumentation.org/packages/hsdar/versions/0.4.1/topics/PROSAIL\n",
210 | " #sun and viewing angle\n",
211 | " tts=30. #observation and solar position parameters\n",
212 | " tto=10. \n",
213 | " psi=0.\n",
214 | " #for now i put them by hand but they should be an input of a custom function\n",
215 | " #tts=sol_zen #solar zenith angle\n",
216 | " #tto=inc_zen #sensor zenith angle\n",
217 | " #psi=raa\n",
218 | " rho_out = prosail.run_prosail(n,\n",
219 | " cab,\n",
220 | " car,\n",
221 | " cbrown,\n",
222 | " cw,\n",
223 | " cm,\n",
224 | " lai,\n",
225 | " lidfa,\n",
226 | " hspot,\n",
227 | " tts,tto,psi,\n",
228 | " typelidf, lidfb,\n",
229 | " prospect_version=\"D\",\n",
230 | " factor='SDR', \n",
231 | " rsoil=.5, psoil=.5)\n",
232 | " return(rho_out)\n",
233 | "\n",
234 | "def Prosail2S2(path2csv,spectra_input):\n",
235 | " #importing pandas\n",
236 | " import pandas as pd\n",
237 | " import numpy\n",
238 | " import numpy as np\n",
239 | " #upload a S2_Response.csv from https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses\n",
240 | "\n",
241 | " s2_table = pd.read_csv(path2csv,sep=\";\",decimal=\",\") #check if this is proper, regarding the sep and dec\n",
242 | " #chekc which row you are actually extracting\n",
243 | "\n",
244 | " s2_table_sel = s2_table[s2_table['SR_WL'].between(400,2500)] #selects all values between 400 and 2500\n",
245 | " spectra_input_df = pd.DataFrame(data=spectra_input,columns=[\"rho\"],index=s2_table_sel.index) #transforms the input array into a pandas df with the column name rho and row.index = to the original input table\n",
246 | "\n",
247 | " \n",
248 | " rho_s2 = s2_table_sel.multiply(spectra_input_df['rho'],axis=\"index\") #calculates the numerator\n",
249 | " w_band_sum = s2_table_sel.sum(axis=0,skipna = True) #calculates the denominator\n",
250 | "\n",
251 | " output = (rho_s2.sum(axis=0)/w_band_sum).rename_axis(\"ID\").values #runs the weighted mean and converts the output to a numpy array\n",
252 | "\n",
253 | " return output[1:] #removes the first value because it represents the wavelength column\n",
254 | "\n",
255 | "#please LOAD THTE FILE NOW\n",
256 | "filepath=\"/content/drive/My Drive/S2_Response.csv\"\n",
257 | "#filepath=\"/content/S2_Responses_S2B.csv\"\n",
258 | "#filepath=\"/content/drive/My Drive/S2_Response.csv\"\n",
259 | "\n",
260 | "\n",
261 | "def Gen_spectra_data(traits):\n",
262 | " k = 1\n",
263 | " #pd_train_traits=traits\n",
264 | " #print(range(len(traits)))\n",
265 | " for i in range(len(traits)):\n",
266 | " #n_t = pd_train_traits[\"n\"][i]\n",
267 | " cab_t = traits[\"cab\"][i]\n",
268 | " #car_t = pd_train_traits[\"car\"][i]\n",
269 | " #cbrown_t = pd_train_traits[\"cbrown\"][i]\n",
270 | " cw_t = traits[\"cw\"][i]\n",
271 | " cm_t = traits[\"cm\"][i]\n",
272 | " lai_t = traits[\"lai\"][i]\n",
273 | "\n",
274 | " if k == 1:\n",
275 | " tr_rho_s = custom_prosail(cab_t,cw_t,cm_t,lai_t)\n",
276 | " tr_rho_s = Prosail2S2(filepath,tr_rho_s)\n",
277 | " #plt.plot ( x, tr_rho_s, ':', label=\"Training prosail\")\n",
278 | " #plt.legend(loc='best')\n",
279 | " \n",
280 | " if k > 1:\n",
281 | " tr_rho_t = custom_prosail(cab_t,cw_t,cm_t,lai_t)\n",
282 | " tr_rho_t = Prosail2S2(filepath,tr_rho_t)\n",
283 | " tr_rho_s = np.vstack((tr_rho_s,tr_rho_t))\n",
284 | " #plt.plot ( x, tr_rho_t, ':')\n",
285 | "\n",
286 | " k = k+1\n",
287 | "\n",
288 | "\n",
289 | " rho_samples=tr_rho_s\n",
290 | "\n",
291 | "\n",
292 | " return rho_samples\n",
293 | "\n",
294 | "\n",
295 | "\n",
296 | "\n",
297 | "#Function to store the outputs into a table\n",
298 | "column_names=[\"Model\",\n",
299 | " \"NSamples\",\n",
300 | " \"OutOfBag\",\n",
301 | " \"KFold_tr_samples\",\n",
302 | " \"KFold_vl_samples\",\n",
303 | " \"Variable\",\n",
304 | " \"Fold_nr\",\n",
305 | " \"ExplVar\",\n",
306 | " \"Max_err\",\n",
307 | " \"Mean_abs_Err\",\n",
308 | " \"Mean_sqr_err\",\n",
309 | " #\"Mean_sqr_lg_err\",\n",
310 | " \"Median_abs_err\",\n",
311 | " \"r2\",\n",
312 | " \"MAPE\",\n",
313 | " \"ModelName\"]\n",
314 | " #\"Mean_poiss_dev\",\n",
315 | " #\"Mean_gamma_dev\"]\n",
316 | " #\"Mean_tweed_dev\"]\n",
317 | "\n",
318 | "#mape is not existant in the package so we have to create it:\n",
319 | "#https://stats.stackexchange.com/questions/58391/mean-absolute-percentage-error-mape-in-scikit-learn\n",
320 | "#from sklearn.utils import check_array\n",
321 | "def mean_absolute_percentage_error(y_true, y_pred): \n",
322 | "\n",
323 | " ## Note: does not handle mix 1d representation\n",
324 | " #if _is_1d(y_true): \n",
325 | " # y_true, y_pred = _check_1d_array(y_true, y_pred)\n",
326 | "\n",
327 | " return np.mean(np.abs((y_true - y_pred) / y_true)) * 100\n",
328 | "\n",
329 | " #Here, the file is used for saving\n",
330 | " #creating a df to receive the data\n",
331 | "\n",
332 | "\n",
333 | "def calc_metrics(MDL,Samples,oob_samples,kf_tr,kf_vl,Variable,Fold,Ref,Pred,Modelname):\n",
334 | "\n",
335 | " out_list = {\"Model\":MDL,\n",
336 | " \"NSamples\":Samples,\n",
337 | " \"OutOfBag\":oob_samples,\n",
338 | " \"KFold_tr_samples\":kf_tr,\n",
339 | " \"KFold_vl_samples\":kf_vl,\n",
340 | " \"Variable\":Variable,\n",
341 | " \"Fold_nr\":Fold,\n",
342 | " \"ExplVar\": metrics.explained_variance_score(Ref, Pred),\n",
343 | " \"Max_err\": metrics.max_error(Ref, Pred),\n",
344 | " \"Mean_abs_Err\": metrics.mean_absolute_error(Ref, Pred),\n",
345 | " \"Mean_sqr_err\": metrics.mean_squared_error(Ref, Pred),\n",
346 | " \"Median_abs_err\" : metrics.median_absolute_error(Ref, Pred),\n",
347 | " \"r2\": metrics.r2_score(Ref, Pred),\n",
348 | " \"MAPE\": mean_absolute_percentage_error(Ref, Pred),\n",
349 | " \"ModelName\":Modelname}\n",
350 | "\n",
351 | "\n",
352 | " return out_list"
353 | ],
354 | "execution_count": null,
355 | "outputs": []
356 | },
357 | {
358 | "cell_type": "markdown",
359 | "metadata": {
360 | "id": "AH5x-3a2PpZn"
361 | },
362 | "source": [
363 | "Hyperparameter tuning section"
364 | ]
365 | },
366 | {
367 | "cell_type": "code",
368 | "metadata": {
369 | "id": "ci2Q04P5Ptt_"
370 | },
371 | "source": [
372 | "# define an objective function\n",
373 | "\n",
374 | "# These are a bunch of methods of te hyperopt package to generate the search space\n",
375 | "from hyperopt import hp\n",
376 | "\n",
377 | "# these are the minimizing function (fmin), Tree-parzen estimator method, an evaluation function, trial method and status indicators\n",
378 | "from hyperopt import fmin, tpe, space_eval, Trials, STATUS_OK, STATUS_FAIL\n",
379 | "from sklearn.model_selection import cross_val_score\n"
380 | ],
381 | "execution_count": null,
382 | "outputs": []
383 | },
384 | {
385 | "cell_type": "markdown",
386 | "metadata": {
387 | "id": "8zOs0-UNPv93"
388 | },
389 | "source": [
390 | "Step 2: Generate the data that is going to be used for training"
391 | ]
392 | },
393 | {
394 | "cell_type": "code",
395 | "metadata": {
396 | "id": "3-Cn1W_aPw5v"
397 | },
398 | "source": [
399 | "#first the trait-space\n",
400 | "\n",
401 | "n_traits=4 #I will test on 4 varying traits: cab, car, cw,cm,lai\n",
402 | "\n",
403 | "#generating a LHS hypercube (it uses a 0 to 1 interval that can be used as a multiplier against the different traits)\n",
404 | "np.random.seed(0)\n",
405 | "\n",
406 | "\n",
407 | "#the values here are 1 less than the max so i can add a value later to it\n",
408 | "#max_n=1 \n",
409 | "max_cab=121. #add 1\n",
410 | "#max_car=44. #add 1\n",
411 | "#max_cbrown= 9.99 #add 0.01\n",
412 | "max_cw=0.008 #add 0.001 \n",
413 | "max_cm=0.008 #0.001\n",
414 | "max_lai = 9.9 #add 0.1\n",
415 | "\n",
416 | "min_cab = 10.\n",
417 | "min_cw = 0.002\n",
418 | "min_cm = 0.002\n",
419 | "min_lai = .5\n",
420 | "\n",
421 | "#set the number of samples used for the optimization\n",
422 | "n_samples = 1500"
423 | ],
424 | "execution_count": null,
425 | "outputs": []
426 | },
427 | {
428 | "cell_type": "code",
429 | "metadata": {
430 | "id": "hUsffTpDP26P"
431 | },
432 | "source": [
433 | "#this is for the training dataset\n",
434 | "df_metrics = pd.DataFrame(columns=column_names)\n",
435 | "#this is for the out of bag\n",
436 | "df_metrics_valid = pd.DataFrame(columns=column_names)\n",
437 | "\n",
438 | "#a path to store the models \n",
439 | "#path2folder = \"/content/drive/My Drive/DSRP_Lunch_outputs/Models/\"\n",
440 | "path2folder = \"/content/drive/My Drive/RTM_Inversion/HyperParameterTunning/RandF/\"\n",
441 | "\n",
442 | "#generating trait space and data\n",
443 | "LHS_train = lhsmdu.createRandomStandardUniformMatrix(n_traits,n_samples)\n",
444 | "pd_trait = pd.DataFrame.transpose(pd.DataFrame(LHS_train))\n",
445 | "pd_trait.columns = [\"cab\",\"cw\",\"cm\",\"lai\"]\n",
446 | "\n",
447 | "pd_trait[\"cab\"]=pd_trait[\"cab\"]*max_cab+min_cab\n",
448 | "pd_trait[\"cw\"] =pd_trait[\"cw\"] *max_cw+min_cw\n",
449 | "pd_trait[\"cm\"] =pd_trait[\"cm\"] *max_cm+min_cw\n",
450 | "pd_trait[\"lai\"]=pd_trait[\"lai\"]*max_lai+min_lai\n",
451 | "\n",
452 | "#this is the same as above but on numpy format\n",
453 | "np_trait = pd_trait.iloc[:,:].values\n",
454 | "\n",
455 | "#now we first generate the date in hyperspectral, convolute it to S2 while iterating through the entire given trait space\n",
456 | "np_spect = Gen_spectra_data(pd_trait)[:,[1,2,3,4,5,6,8,11,12]]\n",
457 | "\n",
458 | "#now we remove 10% of the data for out-of-bag validation of the final model while the cross-validation happens within the hyperparemeter tunning\n",
459 | "index = list(range(len(np_spect)))\n",
460 | "index10 = rdm.sample(index,math.ceil(len(index)*.1))\n",
461 | "index90 = [x for x in index if x not in index10]\n",
462 | "\n",
463 | "#selecting the groups for training (tr) and validation (vl)\n",
464 | "tr_trait_df = np_trait[index90,]\n",
465 | "tr_spect_df = np_spect[index90,]\n",
466 | "\n",
467 | "vl_trait_df = np_trait[index10,]\n",
468 | "vl_spect_df = np_spect[index10,]"
469 | ],
470 | "execution_count": null,
471 | "outputs": []
472 | },
473 | {
474 | "cell_type": "markdown",
475 | "metadata": {
476 | "id": "A127epk7P__n"
477 | },
478 | "source": [
479 | "Definining the optimization function and the search space\n",
480 | "\n",
481 | "---"
482 | ]
483 | },
484 | {
485 | "cell_type": "code",
486 | "metadata": {
487 | "id": "gr2pmF5-P9dr",
488 | "colab": {
489 | "base_uri": "https://localhost:8080/",
490 | "height": 34
491 | },
492 | "outputId": "ddf10023-8ca9-49fd-830e-9b4690ea6f85"
493 | },
494 | "source": [
495 | "\n",
496 | "#objective function\n",
497 | "\n",
498 | "#first we define the function\n",
499 | "N_FOLDS = 10\n",
500 | "MAX_EVALS = 200\n",
501 | "\n",
502 | "#here we can just fetch the data so we keep everything in one place\n",
503 | "train_labels = tr_trait_df\n",
504 | "train_features = tr_spect_df \n",
505 | "\n",
506 | "from sklearn.model_selection import KFold # import KFold\n",
507 | "\n",
508 | "def objective(params, n_folds = N_FOLDS):\n",
509 | " \"\"\"Objective function for Random forest Hyperparameter Tuning\"\"\"\n",
510 | "\n",
511 | " # Perform n_fold cross validation with hyperparameters\n",
512 | " gp = GaussianProcessRegressor(**params, random_state = 42) #normalizing and adding noise does not increase the likelihood of sucessfull minimization\n",
513 | "\n",
514 | " #scores = cross_val_score(gp, X=train_features, y=train_labels, cv=10, scoring='neg_mean_absolute_error') #thi is the simple Mean abs\n",
515 | " #the cross_val_score function in GP seems to work out wonky so lets try explicitely creating it\n",
516 | "\n",
517 | " kf = KFold(n_splits=N_FOLDS,shuffle=True,random_state=42)\n",
518 | "\n",
519 | " scores = np.empty((0,n_traits)) #an empty arrray to holdout all the results of the kfoldind\n",
520 | " for train_index,test_index in kf.split(train_labels):\n",
521 | " x_train_k,x_test_k = train_features[train_index],train_features[test_index]\n",
522 | " y_train_k,y_test_k = train_labels[train_index],train_labels[test_index]\n",
523 | "\n",
524 | " gp.fit(x_train_k,y_train_k)\n",
525 | " outval = gp.predict(x_test_k)\n",
526 | "\n",
527 | " #storing all the MAE scores into a single place - this can be changed to anoter function\n",
528 | " score = [metrics.mean_absolute_error(y_test_k[:,0], outval[:,0]),\n",
529 | " metrics.mean_absolute_error(y_test_k[:,1], outval[:,1]),\n",
530 | " metrics.mean_absolute_error(y_test_k[:,2], outval[:,2]),\n",
531 | " metrics.mean_absolute_error(y_test_k[:,3], outval[:,3])]\n",
532 | " scores=np.append(scores,score) #just add the values to the end of the numpy and continues\n",
533 | "\n",
534 | "\n",
535 | " # Extract the best score\n",
536 | " best_score = max(abs(scores)) #using the abs here forces the function to minimize independently of the sign\n",
537 | " # if the the result is miniming\n",
538 | "\n",
539 | " # Loss must be minimized\n",
540 | " #loss = 1 - best_score \n",
541 | " loss = best_score \n",
542 | "\n",
543 | " # Dictionary with information for evaluation\n",
544 | " return {'loss': loss, 'params': params, 'status': STATUS_OK}\n",
545 | "\n",
546 | "#distribution functions for the parameter sampling are here:\n",
547 | "#https://github.com/hyperopt/hyperopt/wiki/FMin\n",
548 | "\n",
549 | "\n",
550 | "#first we should create the kernels\n",
551 | "#K_white = kernels.WhiteKernel()\n",
552 | "\n",
553 | "#seems trivial to limit the maximum number of iterations within this base function\n",
554 | "#https://scikit-optimize.github.io/stable/_modules/sklearn/gaussian_process/_gpr.html\n",
555 | "#or alternitively call an altered version of the scipy.optimizer (or with an improved optimization technique)\n",
556 | "\n",
557 | "\n",
558 | "#RBF,DotProduct,Matern,ExpSineSquared,RationalQuadratic\n",
559 | "#K_rbf = 1.0*kernels.RBF()\n",
560 | "K_rbf = RBF(length_scale_bounds=\"fixed\")\n",
561 | "#K_ratQ = kernels.RationalQuadratic() \n",
562 | "K_ratQ = RationalQuadratic(length_scale_bounds=\"fixed\",alpha_bounds=\"fixed\")\n",
563 | "#k_mate = 1.0*kernels.Matern()\n",
564 | "k_mate = Matern(length_scale_bounds=\"fixed\")\n",
565 | "#K_expsine = kernels.ExpSineSquared()\n",
566 | "#K_expsine = ExpSineSquared(length_scale_bounds=\"fixed\",periodicity_bounds=\"fixed\")\n",
567 | "K_dotprod = DotProduct()\n",
568 | "K_dotprod = DotProduct(sigma_0_bounds=\"fixed\")\n",
569 | "\n",
570 | "#kernel_list = [K_ratQ,K_rbf,k_mate,K_expsine,K_dotprod]\n",
571 | "#kernel_list = [RBF(1.0, length_scale_bounds=\"fixed\")] #ahh! eureka, this is the version of RBF it utilized by default -> it only has to minimize one thing, basically its very slow because of that..\n",
572 | "kernel_list = [K_rbf,K_ratQ,k_mate,K_dotprod]\n",
573 | "\n",
574 | "space = {\n",
575 | " 'n_restarts_optimizer': hp.choice('n_restarts_optimizer', range(10, 101, 10)), #to avoid values of 0\n",
576 | " 'kernel': hp.choice('kernel', kernel_list),\n",
577 | " 'normalize_y':hp.choice('normalize_y',[True,False])\n",
578 | "}\n",
579 | "\n",
580 | "for i in range(10, 101, 10):\n",
581 | " print(i, end=', ')"
582 | ],
583 | "execution_count": null,
584 | "outputs": [
585 | {
586 | "output_type": "stream",
587 | "text": [
588 | "10, 20, 30, 40, 50, 60, 70, 80, 90, 100, "
589 | ],
590 | "name": "stdout"
591 | }
592 | ]
593 | },
594 | {
595 | "cell_type": "markdown",
596 | "metadata": {
597 | "id": "cEf-kvGcVtNi"
598 | },
599 | "source": [
600 | "This now is the order for running"
601 | ]
602 | },
603 | {
604 | "cell_type": "code",
605 | "metadata": {
606 | "id": "1iGm-b55UXNE",
607 | "colab": {
608 | "base_uri": "https://localhost:8080/",
609 | "height": 34
610 | },
611 | "outputId": "6f3952ed-5c16-4c81-96f1-5c6c884d852c"
612 | },
613 | "source": [
614 | "#this loop is the actual testing\n",
615 | "bayes_trials = Trials()\n",
616 | "\n",
617 | "best_pgr = fmin(fn = objective, space = space, algo = tpe.suggest, max_evals = MAX_EVALS, trials = bayes_trials,verbose=1)"
618 | ],
619 | "execution_count": null,
620 | "outputs": [
621 | {
622 | "output_type": "stream",
623 | "text": [
624 | "100%|██████████| 200/200 [05:39<00:00, 1.70s/it, best loss: 0.028436356979695123]\n"
625 | ],
626 | "name": "stdout"
627 | }
628 | ]
629 | },
630 | {
631 | "cell_type": "markdown",
632 | "metadata": {
633 | "id": "Q5qy0xyz8qLf"
634 | },
635 | "source": [
636 | "Checking the outputs"
637 | ]
638 | },
639 | {
640 | "cell_type": "code",
641 | "metadata": {
642 | "id": "_MBrznXC8sKH",
643 | "colab": {
644 | "base_uri": "https://localhost:8080/",
645 | "height": 34
646 | },
647 | "outputId": "2c5b9e7a-772c-4ad6-9280-5789b22cae26"
648 | },
649 | "source": [
650 | "best_pgr"
651 | ],
652 | "execution_count": null,
653 | "outputs": [
654 | {
655 | "output_type": "execute_result",
656 | "data": {
657 | "text/plain": [
658 | "{'kernel': 1, 'n_restarts_optimizer': 7, 'normalize_y': 0}"
659 | ]
660 | },
661 | "metadata": {
662 | "tags": []
663 | },
664 | "execution_count": 12
665 | }
666 | ]
667 | }
668 | ]
669 | }
--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
--------------------------------------------------------------------------------