├── README.md ├── aluminum_tensile_tests ├── Al_EA.eam.alloy ├── al_in.in └── stress_strain_plot.m ├── graphene_tensile_tests ├── CH.airebo ├── grap_data.data ├── grap_in.in └── stress_strain_plot.m ├── overview.PNG ├── polyurethane_aluminum_interface ├── Al_jnp_real.eam ├── energy_plot.m ├── pu_al_data.data ├── pu_al_in.in └── pu_al_para.params └── polyurethane_chain ├── energy_plot.m ├── pu_data.data ├── pu_in.in └── pu_para.params /README.md: -------------------------------------------------------------------------------- 1 | # LAMMPS tutorials for short courses 2 | 3 | An overview of four tutorials is shown velow. A movie of the tutorials is [available here.](https://youtu.be/CBFVeW0Jb18) 4 | 5 | 6 | 7 | More information on the graphene_tensile_tests tutorial is [available here](https://www.linkedin.com/pulse/how-perform-uniaxial-tensile-tests-graphene-sample-lammps-dewapriya/) and information on the polyurethane_aluminum_interface tutorial is [available here](https://github.com/nuwan-d/polymer_metal_interface/blob/master/README.md). 8 | -------------------------------------------------------------------------------- /aluminum_tensile_tests/Al_EA.eam.alloy: -------------------------------------------------------------------------------- 1 | # Aluminum (Z= 13) 2 | # Aluminum (Z= 13) 3 | # Aluminum (Z= 13) 4 | 1 Al 5 | 500 .2404809619238477e-02 500 .1113838560765150e-01 .5558054418218096e+01 6 | 13 26.982 4.0320 fcc 7 | .0000000000000000e+00 -.4371148081215313e-01 -.8647314541608221e-01 -.1282960699490713e+00 -.1691913305484043e+00 8 | -.2091700033513651e+00 -.2482431644952380e+00 -.2864218901173067e+00 -.3237172563548554e+00 -.3601403393451680e+00 9 | -.3957022152255283e+00 -.4304139601332206e+00 -.4642866502055287e+00 -.4973313615797368e+00 -.5295591703931285e+00 10 | -.5609811527829882e+00 -.5916083848865996e+00 -.6214519428412468e+00 -.6505229027842140e+00 -.6788323408527848e+00 11 | -.7063913331842434e+00 -.7332109559158738e+00 -.7593022851849599e+00 -.7846763971287857e+00 -.8093443678846353e+00 12 | -.8333172701766743e+00 -.8566061198644178e+00 -.8792220589824388e+00 -.9011761636680212e+00 -.9224795100584493e+00 13 | -.9431431742910068e+00 -.9631782325029778e+00 -.9825957608316463e+00 -.1001406835414296e+01 -.1019622532388212e+01 14 | -.1037253927890677e+01 -.1054312098058975e+01 -.1070808119030391e+01 -.1086753066942208e+01 -.1102158017931711e+01 15 | -.1117034048136183e+01 -.1131392233692909e+01 -.1145243694550743e+01 -.1158601082992798e+01 -.1171478956255275e+01 16 | -.1183891991305481e+01 -.1195854865110720e+01 -.1207382254638302e+01 -.1218488836855530e+01 -.1229189288729714e+01 17 | -.1239498283467901e+01 -.1249430469563366e+01 -.1259000559141405e+01 -.1268223229169323e+01 -.1277113156614428e+01 18 | -.1285685018444027e+01 -.1293953491625425e+01 -.1301933253125930e+01 -.1309638979912847e+01 -.1317085348953485e+01 19 | -.1324287037215150e+01 -.1331258721665147e+01 -.1338015079270785e+01 -.1344570786999368e+01 -.1350940521818205e+01 20 | -.1357138960694602e+01 -.1363180780595865e+01 -.1369080658489302e+01 -.1374853271342218e+01 -.1380513296121920e+01 21 | -.1386075409795716e+01 -.1391554289330911e+01 -.1396964611694813e+01 -.1402321053854728e+01 -.1407638292777962e+01 22 | -.1412931005284335e+01 -.1418213869333999e+01 -.1423501563972602e+01 -.1428808766167450e+01 -.1434150152885850e+01 23 | -.1439540401095108e+01 -.1444994187762531e+01 -.1450526189855425e+01 -.1456151084341098e+01 -.1461881807293422e+01 24 | -.1467719757831417e+01 -.1473661623457822e+01 -.1479704076989830e+01 -.1485843791244635e+01 -.1492077439039429e+01 25 | -.1498401693191406e+01 -.1504813226517760e+01 -.1511308711835684e+01 -.1517884821962370e+01 -.1524538229715013e+01 26 | -.1531265607910806e+01 -.1538063629366941e+01 -.1544928966900613e+01 -.1551858293329015e+01 -.1558848281469340e+01 27 | -.1565895605216791e+01 -.1572996940224924e+01 -.1580148954733775e+01 -.1587348321560537e+01 -.1594591713522402e+01 28 | -.1601875803436565e+01 -.1609197264120219e+01 -.1616552768390558e+01 -.1623938989064773e+01 -.1631352598960059e+01 29 | -.1638790270893610e+01 -.1646248677682618e+01 -.1653724492144276e+01 -.1661214387095779e+01 -.1668715035354319e+01 30 | -.1676223109737089e+01 -.1683735283061284e+01 -.1691248228144096e+01 -.1698758617802719e+01 -.1706263124854346e+01 31 | -.1713758422116170e+01 -.1721241182405384e+01 -.1728708078539183e+01 -.1736155783334759e+01 -.1743580969609305e+01 32 | -.1750980317598887e+01 -.1758351491098537e+01 -.1765694069616511e+01 -.1773007850321497e+01 -.1780292630382185e+01 33 | -.1787548206967262e+01 -.1794774377245416e+01 -.1801970938385337e+01 -.1809137687555712e+01 -.1816274421925230e+01 34 | -.1823380938662579e+01 -.1830457034936448e+01 -.1837502507915524e+01 -.1844517154768497e+01 -.1851500772664054e+01 35 | -.1858453158770884e+01 -.1865374110257675e+01 -.1872263424293116e+01 -.1879120898045895e+01 -.1885946328684700e+01 36 | -.1892739513378220e+01 -.1899500249295142e+01 -.1906228333604157e+01 -.1912923563473950e+01 -.1919585736073213e+01 37 | -.1926214647568750e+01 -.1932810093767146e+01 -.1939371874160670e+01 -.1945899785918011e+01 -.1952393626207858e+01 38 | -.1958853192198898e+01 -.1965278281059820e+01 -.1971668689959312e+01 -.1978024216066063e+01 -.1984344656548760e+01 39 | -.1990629808576093e+01 -.1996879469316750e+01 -.2003093435939419e+01 -.2009271505612787e+01 -.2015413475505545e+01 40 | -.2021519142786380e+01 -.2027588304623980e+01 -.2033620781104805e+01 -.2039616657658373e+01 -.2045576190997423e+01 41 | -.2051499640733444e+01 -.2057387266477927e+01 -.2063239327842362e+01 -.2069056084438240e+01 -.2074837795877053e+01 42 | -.2080584720564288e+01 -.2086297117112630e+01 -.2091975247390093e+01 -.2097619371008167e+01 -.2103229747578343e+01 43 | -.2108806636712112e+01 -.2114350298020965e+01 -.2119860991116391e+01 -.2125338975609881e+01 -.2130784511112927e+01 44 | -.2136197857237018e+01 -.2141579273593645e+01 -.2146929019794299e+01 -.2152247355450470e+01 -.2157534540173649e+01 45 | -.2162790833575327e+01 -.2168016495266993e+01 -.2173211784860140e+01 -.2178376961966256e+01 -.2183512286196833e+01 46 | -.2188618017163362e+01 -.2193694414477333e+01 -.2198741737750236e+01 -.2203760246593562e+01 -.2208750200618802e+01 47 | -.2213711858318254e+01 -.2218645478780012e+01 -.2223551323309871e+01 -.2228429651519322e+01 -.2233280723019854e+01 48 | -.2238104797422960e+01 -.2242902134340128e+01 -.2247672993382851e+01 -.2252417634139490e+01 -.2257136275771978e+01 49 | -.2261829011520847e+01 -.2266495910070847e+01 -.2271137040106724e+01 -.2275752470313225e+01 -.2280342269375099e+01 50 | -.2284906505977094e+01 -.2289445248803956e+01 -.2293958566540434e+01 -.2298446527871275e+01 -.2302909201481228e+01 51 | -.2307346656055039e+01 -.2311758960277456e+01 -.2316146182833227e+01 -.2320508392407100e+01 -.2324845657683822e+01 52 | -.2329158046234056e+01 -.2333445626504893e+01 -.2337708468546505e+01 -.2341946641043639e+01 -.2346160212681043e+01 53 | -.2350349252143465e+01 -.2354513828115652e+01 -.2358654009282352e+01 -.2362769864328313e+01 -.2366861461938282e+01 54 | -.2370928870797008e+01 -.2374972159589237e+01 -.2378991396999718e+01 -.2382986651713198e+01 -.2386957992414425e+01 55 | -.2390905487788146e+01 -.2394829206519109e+01 -.2398729217292063e+01 -.2402605588791753e+01 -.2406458389702930e+01 56 | -.2410287688710339e+01 -.2414093554498729e+01 -.2417876055752847e+01 -.2421635261157440e+01 -.2425371239397258e+01 57 | -.2429084039336482e+01 -.2432773281838701e+01 -.2436438159861304e+01 -.2440077846559989e+01 -.2443691515090459e+01 58 | -.2447278338608414e+01 -.2450837490269555e+01 -.2454368143229584e+01 -.2457869470644200e+01 -.2461340645669105e+01 59 | -.2464780841460000e+01 -.2468189231172584e+01 -.2471564987962561e+01 -.2474907284985630e+01 -.2478215295397492e+01 60 | -.2481488192353848e+01 -.2484725149010399e+01 -.2487925338522846e+01 -.2491087934046889e+01 -.2494212108738231e+01 61 | -.2497297035752570e+01 -.2500341888245610e+01 -.2503345839373049e+01 -.2506308062290589e+01 -.2509227730153932e+01 62 | -.2512104013692194e+01 -.2514936086374626e+01 -.2517723123305251e+01 -.2520464297639772e+01 -.2523158782533889e+01 63 | -.2525805751143305e+01 -.2528404376623717e+01 -.2530953832130829e+01 -.2533453290820341e+01 -.2535901925847955e+01 64 | -.2538298910369369e+01 -.2540643417540286e+01 -.2542934620516407e+01 -.2545171692453432e+01 -.2547353806507062e+01 65 | -.2549480135832998e+01 -.2551549853586941e+01 -.2553562438224526e+01 -.2555518933771133e+01 -.2557420886870428e+01 66 | -.2559269844453622e+01 -.2561067353451922e+01 -.2562814960796537e+01 -.2564514213418676e+01 -.2566166658249548e+01 67 | -.2567773839602659e+01 -.2569337305528308e+01 -.2570858604764470e+01 -.2572339284242352e+01 -.2573780890893165e+01 68 | -.2575184971648116e+01 -.2576553073438414e+01 -.2577886743195268e+01 -.2579187527849886e+01 -.2580456974333478e+01 69 | -.2581696629577252e+01 -.2582908040512417e+01 -.2584092754070181e+01 -.2585252317181753e+01 -.2586388276778342e+01 70 | -.2587502179791157e+01 -.2588595573151407e+01 -.2589670003790298e+01 -.2590727018639042e+01 -.2591768164628846e+01 71 | -.2592794988690919e+01 -.2593809037756471e+01 -.2594811858756708e+01 -.2595804998622841e+01 -.2596790004286078e+01 72 | -.2597768422350540e+01 -.2598741800152625e+01 -.2599711684853593e+01 -.2600679623384655e+01 -.2601647162677017e+01 73 | -.2602615849661890e+01 -.2603587231270480e+01 -.2604562854433998e+01 -.2605544252208974e+01 -.2606532137816828e+01 74 | -.2607525954433051e+01 -.2608525035538828e+01 -.2609528714615347e+01 -.2610536325143792e+01 -.2611547200605350e+01 75 | -.2612560674481208e+01 -.2613576080252550e+01 -.2614592751400564e+01 -.2615610021406434e+01 -.2616627223751348e+01 76 | -.2617643691916492e+01 -.2618658759383051e+01 -.2619671759632211e+01 -.2620682026145159e+01 -.2621688892403080e+01 77 | -.2622691691556552e+01 -.2623689757162823e+01 -.2624682422824853e+01 -.2625669022023829e+01 -.2626648888240935e+01 78 | -.2627621354957359e+01 -.2628585755654286e+01 -.2629541423812902e+01 -.2630487692914393e+01 -.2631423896439946e+01 79 | -.2632349367870746e+01 -.2633263440687980e+01 -.2634165448372833e+01 -.2635054724406492e+01 -.2635930602270142e+01 80 | -.2636792415444971e+01 -.2637639497412163e+01 -.2638471181652904e+01 -.2639286801648382e+01 -.2640085690879781e+01 81 | -.2640867182828289e+01 -.2641630610975090e+01 -.2642375308801371e+01 -.2643100609788319e+01 -.2643805847417118e+01 82 | -.2644490415028265e+01 -.2645154243268153e+01 -.2645797537615164e+01 -.2646420505303318e+01 -.2647023353566632e+01 83 | -.2647606289639127e+01 -.2648169520754823e+01 -.2648713254147737e+01 -.2649237697051888e+01 -.2649743056701299e+01 84 | -.2650229540329985e+01 -.2650697355171968e+01 -.2651146708461266e+01 -.2651577807431899e+01 -.2651990859317886e+01 85 | -.2652386071353245e+01 -.2652763650771997e+01 -.2653123804808160e+01 -.2653466740695754e+01 -.2653792665668798e+01 86 | -.2654101786961311e+01 -.2654394311807314e+01 -.2654670447440822e+01 -.2654930401095859e+01 -.2655174380006442e+01 87 | -.2655402590164227e+01 -.2655615239772161e+01 -.2655812536378980e+01 -.2655994687218704e+01 -.2656161899525352e+01 88 | -.2656314380532943e+01 -.2656452337475498e+01 -.2656575977587033e+01 -.2656685508101570e+01 -.2656781136253127e+01 89 | -.2656863069275723e+01 -.2656931514403379e+01 -.2656986678870112e+01 -.2657028769909942e+01 -.2657057994756890e+01 90 | -.2657074560644972e+01 -.2657078674583291e+01 -.2657070471419394e+01 -.2657049909304658e+01 -.2657016919727511e+01 91 | -.2656971434176383e+01 -.2656913384139703e+01 -.2656842701105901e+01 -.2656759316563406e+01 -.2656663162000648e+01 92 | -.2656554167811156e+01 -.2656432266372417e+01 -.2656297389365055e+01 -.2656149468277500e+01 -.2655988434598179e+01 93 | -.2655814219815524e+01 -.2655626755417964e+01 -.2655425972893926e+01 -.2655211803731843e+01 -.2654984179420142e+01 94 | -.2654743031447252e+01 -.2654488291301604e+01 -.2654219890471627e+01 -.2653937760445749e+01 -.2653641832712401e+01 95 | -.2653332038760012e+01 -.2653008310077011e+01 -.2652670578151827e+01 -.2652318774472890e+01 -.2651952830528630e+01 96 | -.2651572677807475e+01 -.2651178247797855e+01 -.2650769471988200e+01 -.2650346281866939e+01 -.2649908608922501e+01 97 | -.2649456383330166e+01 -.2648989537732641e+01 -.2648508003763582e+01 -.2648011712911413e+01 -.2647500596664568e+01 98 | -.2646974586511475e+01 -.2646433613940563e+01 -.2645877610440261e+01 -.2645306509332761e+01 -.2644720273115884e+01 99 | -.2644118887756173e+01 -.2643502339891175e+01 -.2642870616158439e+01 -.2642223703195511e+01 -.2641561587639939e+01 100 | -.2640884256129270e+01 -.2640191695301052e+01 -.2639483891792832e+01 -.2638760832242157e+01 -.2638022503286574e+01 101 | -.2637268891563631e+01 -.2636499983710875e+01 -.2635715766365854e+01 -.2634916226166115e+01 -.2634101349749205e+01 102 | -.2633271122296108e+01 -.2632425531821679e+01 -.2631564565040058e+01 -.2630688208588795e+01 -.2629796449105436e+01 103 | -.2628889273227529e+01 -.2627966667592620e+01 -.2627028618838257e+01 -.2626075113601988e+01 -.2625106138521361e+01 104 | -.2624121680233921e+01 -.2623121725377217e+01 -.2622106260588797e+01 -.2621075272506206e+01 -.2620028747766994e+01 105 | -.2618966673008706e+01 -.2617889034868891e+01 -.2616795819985096e+01 -.2615687014994867e+01 -.2614562606535753e+01 106 | -.2613422581245302e+01 -.2612266925761059e+01 -.2611095626720572e+01 -.2609908670761390e+01 -.2608706044521059e+01 107 | -.3636744237774180e-01 -.3568994540773603e-01 -.3501244843761657e-01 -.3433495146754091e-01 -.3365745449753513e-01 108 | -.3297995752752936e-01 -.3230246055745370e-01 -.3162496358733424e-01 -.3094746661725858e-01 -.3026996964725281e-01 109 | -.2959247267713335e-01 -.2891497570717137e-01 -.2823747873705192e-01 -.2755998176704614e-01 -.2688248479697048e-01 110 | -.2620498782685102e-01 -.2552749085684525e-01 -.2484999388676959e-01 -.2417249691665013e-01 -.2349499994668815e-01 111 | -.2281750297656869e-01 -.2214000600656292e-01 -.2146250903648726e-01 -.2078501206636780e-01 -.2010751509629214e-01 112 | -.1943001812628637e-01 -.1875252115616691e-01 -.1807502418616113e-01 -.1739752721608547e-01 -.1672003024607970e-01 113 | -.1604253327600404e-01 -.1536503630588458e-01 -.1468753933587881e-01 -.1401004236580315e-01 -.1333254539579737e-01 114 | -.1265504842572171e-01 -.1197755145560225e-01 -.1130005448559648e-01 -.1062255751552082e-01 -.9945060545401358e-02 115 | -.9267563575395585e-02 -.8590066605319923e-02 -.7912569635314150e-02 -.7235072665194691e-02 -.6557575695119030e-02 116 | -.5880078725113257e-02 -.5202581755037595e-02 -.4525084784918136e-02 -.3847587814956162e-02 -.3170090844836702e-02 117 | -.2492593874830929e-02 -.1815096904711470e-02 -.1137599934635808e-02 -.4601029645950914e-03 .2173940054894237e-03 118 | .8948909755301407e-03 .1572387945570858e-02 .2249884915611575e-02 .2927381885652292e-02 .3604878855806696e-02 119 | .4282375825847413e-02 .4959872795888129e-02 .5637369765928847e-02 .6314866736048306e-02 .6992363706089023e-02 120 | .7669860676129740e-02 .8347357646214255e-02 .9024854616254973e-02 .9702351586295689e-02 .1037984855633641e-01 121 | .1105734552637712e-01 .1173484249641784e-01 .1241233946657224e-01 .1308983643661296e-01 .1376733340665368e-01 122 | .1444483037665945e-01 .1512232734681386e-01 .1579982431685457e-01 .1647732128693909e-01 .1715481825697980e-01 123 | .1783231522702052e-01 .1850981219706124e-01 .1918730916710196e-01 .1986480613714267e-01 .2054230310729708e-01 124 | .2121980007733779e-01 .2189729704734357e-01 .2257479401738428e-01 .2325229098748184e-01 .2392978795756636e-01 125 | .2460728492762012e-01 .2528478189764779e-01 .2596227886774535e-01 .2663977583778607e-01 .2731727280782679e-01 126 | .2799476977792435e-01 .2867226674796506e-01 .2934976371802768e-01 .3002726068806840e-01 .3070475765816596e-01 127 | .3138225462820667e-01 .3205975159824739e-01 .3273724856833191e-01 .3341474553837263e-01 .3409224250847018e-01 128 | .3476973947851090e-01 .3544723644855162e-01 .3612473341864918e-01 .3680223038871180e-01 .3747972735875251e-01 129 | .3815722432879323e-01 .3883472129889079e-01 .3951221826893150e-01 .4018971523897222e-01 .4086721220905674e-01 130 | .4154470917909746e-01 .4222220614913817e-01 .4289970311923574e-01 .4357720008927645e-01 .4425469705931716e-01 131 | .4493219402941916e-01 .4560969099945987e-01 .4628718796950059e-01 .4696468493959815e-01 .4764218190963887e-01 132 | .4831967887967958e-01 .4899717584978157e-01 .4967467281982229e-01 .5035216978986300e-01 .5102966675996057e-01 133 | .5170716373000128e-01 .5238466070004642e-01 .5306215767014399e-01 .5373965464018470e-01 .5441715161022542e-01 134 | .5509464858029456e-01 .5577214555036370e-01 .5644964252040884e-01 .5712713949047798e-01 .5780463646054712e-01 135 | .5848213343058783e-01 .5915963040065698e-01 .5983712737072611e-01 .6051462434077126e-01 .6119212131084040e-01 136 | .6186961828090953e-01 .6254711525095025e-01 .6322461222101940e-01 .6390210919108853e-01 .6457960616114242e-01 137 | .6525710313118313e-01 .6593460010125227e-01 .6661209707132140e-01 .6728959404138181e-01 .6796709101142252e-01 138 | .6864458798150483e-01 .6932208495154554e-01 .6999958192161468e-01 .7067707889166960e-01 .7135457586173001e-01 139 | .7203207283179811e-01 .7270956980185303e-01 .7338706677190796e-01 .7406456374197710e-01 .7474206071203203e-01 140 | .7541955768209242e-01 .7609705465214631e-01 .7677455162221544e-01 .7745204859226601e-01 .7812954556233515e-01 141 | .7880704253239007e-01 .7948453950245210e-01 .8016203647250872e-01 .8083953344257076e-01 .8151703041263060e-01 142 | .8219452738269045e-01 .8287202435275250e-01 .8354952132281097e-01 .8422701829287005e-01 .8490451526293100e-01 143 | .8558201223299079e-01 .8625950920305005e-01 .8693092436955346e-01 .8756503405655147e-01 .8815805234218489e-01 144 | .8871072218983317e-01 .8922378656287559e-01 .8969798842469157e-01 .9013407073866045e-01 .9053277646816153e-01 145 | .9089484857657427e-01 .9122103002727795e-01 .9151206378365195e-01 .9176869280907565e-01 .9199166006692838e-01 146 | .9218170852058950e-01 .9233958113343839e-01 .9246602086885439e-01 .9256177069021683e-01 .9262757356090513e-01 147 | .9266417244429861e-01 .9267231030377664e-01 .9265273010271857e-01 .9260617480261060e-01 .9253338726214012e-01 148 | .9243515394792803e-01 .9231252363968266e-01 .9216664327459219e-01 .9199865996076392e-01 .9180972080630516e-01 149 | .9160097291932325e-01 .9137356340792546e-01 .9112863938021915e-01 .9086734794431159e-01 .9059083620831013e-01 150 | .9030025128032204e-01 .8999674026845467e-01 .8968145028081530e-01 .8935552842551128e-01 .8902012181064990e-01 151 | .8867637754433846e-01 .8832544273468432e-01 .8796846448979474e-01 .8760658991777706e-01 .8724096612673858e-01 152 | .8687274022478662e-01 .8650305932002850e-01 .8613306848520108e-01 .8576336494692764e-01 .8539325960055547e-01 153 | .8502187883055207e-01 .8464834902138503e-01 .8427179655752184e-01 .8389134782343009e-01 .8350612920357728e-01 154 | .8311526708243099e-01 .8271788784445870e-01 .8231311787412803e-01 .8190008355590643e-01 .8147791127426150e-01 155 | .8104572741366076e-01 .8060265835857178e-01 .8014783049346205e-01 .7968037020279914e-01 .7919940387105059e-01 156 | .7870405788268395e-01 .7819345862216673e-01 .7766673247396648e-01 .7712300582255076e-01 .7656140505238709e-01 157 | .7598110125066689e-01 .7538229312923314e-01 .7476620703193090e-01 .7413411400635872e-01 .7348728510011507e-01 158 | .7282699136079851e-01 .7215450383600756e-01 .7147109357334078e-01 .7077803162039664e-01 .7007658902477373e-01 159 | .6936803683407054e-01 .6865364609588563e-01 .6793468785781752e-01 .6721243316044943e-01 .6648815306660538e-01 160 | .6576311862650085e-01 .6503860088773442e-01 .6431587089790453e-01 .6359619970460977e-01 .6288085835544865e-01 161 | .6217111789801974e-01 .6146824937992153e-01 .6077352384875255e-01 .6008805359725855e-01 .5941184400089433e-01 162 | .5874442903023756e-01 .5808534090837505e-01 .5743411185839362e-01 .5679027410338011e-01 .5615335986642132e-01 163 | .5552290137060409e-01 .5489843083901522e-01 .5427948049474158e-01 .5366558256086993e-01 .5305626926048715e-01 164 | .5245107281668004e-01 .5184952545253540e-01 .5125115939114009e-01 .5065550685558094e-01 .5006210006894474e-01 165 | .4947047125431835e-01 .4888015263478855e-01 .4829067643344221e-01 .4770157487336611e-01 .4711238017764711e-01 166 | .4652262496718570e-01 .4593206822089400e-01 .4534107399903878e-01 .4475010643699053e-01 .4415962967011960e-01 167 | .4357010783379641e-01 .4298200506339135e-01 .4239578549427484e-01 .4181191326181729e-01 .4123085250138910e-01 168 | .4065306734836067e-01 .4007902193810240e-01 .3950918040598471e-01 .3894400688737801e-01 .3838396551765267e-01 169 | .3782952043217914e-01 .3728113576632780e-01 .3673927565546909e-01 .3620440423497337e-01 .3567698564021105e-01 170 | .3515748400655257e-01 .3464636346936831e-01 .3414408816402869e-01 .3365109962807551e-01 .3316718944221655e-01 171 | .3269141734820782e-01 .3222280403979445e-01 .3176037022423164e-01 .3130313658366980e-01 .3085012380159658e-01 172 | .3040035257175706e-01 .2995284358789634e-01 .2950661754375948e-01 .2906069513309160e-01 .2861409704963780e-01 173 | .2816584398714315e-01 .2771495663935274e-01 .2726045570001165e-01 .2680136186286503e-01 .2633669582165790e-01 174 | .2586547827013541e-01 .2538672990204260e-01 .2489947141112461e-01 .2440272349112649e-01 .2389550683579336e-01 175 | .2337684213887029e-01 .2284593883784834e-01 .2230352975222996e-01 .2175108447093903e-01 .2119007739898725e-01 176 | .2062198294138644e-01 .2004827550314835e-01 .1947042948928472e-01 .1888991930480734e-01 .1830821935472795e-01 177 | .1772680404405832e-01 .1714714777781021e-01 .1657072496099539e-01 .1599900999862561e-01 .1543347729571265e-01 178 | .1487560125726824e-01 .1432685628830417e-01 .1378871679383222e-01 .1326265717886411e-01 .1275015184841165e-01 179 | .1225267520748656e-01 .1177170166110059e-01 .1130870561426556e-01 .1086516120942539e-01 .1044209857096744e-01 180 | .1003919305316864e-01 .9655862430041708e-02 .9291524475599264e-02 .8945596963854002e-02 .8617497668818586e-02 181 | .8306644364505653e-02 .8012454824927876e-02 .7734346824097938e-02 .7471738136028479e-02 .7224046534732182e-02 182 | .6990689794221698e-02 .6771085688509705e-02 .6564651991608851e-02 .6370806477531830e-02 .6188966920291265e-02 183 | .6018551093899844e-02 .5858976790139858e-02 .5709661787679893e-02 .5570023833147493e-02 .5439480700555333e-02 184 | .5317450163916055e-02 .5203352465594106e-02 .5096698811428705e-02 .4997115778943672e-02 .4904237382936417e-02 185 | .4817697638204362e-02 .4737130559544917e-02 .4662170161755503e-02 .4592450459633531e-02 .4527605467976425e-02 186 | .4467269201581590e-02 .4411075675246448e-02 .4358658903768413e-02 .4309652901944902e-02 .4263691684573331e-02 187 | .4220409266451117e-02 .4179439662375672e-02 .4140416887144418e-02 .4102974955554763e-02 .4066747882404130e-02 188 | .4031369682489930e-02 .3996474370609582e-02 .3961695961560499e-02 .3926668470140099e-02 .3891054456732593e-02 189 | .3854784597723934e-02 .3817936484668432e-02 .3780589217726686e-02 .3742821897059292e-02 .3704713622826851e-02 190 | .3666343495189958e-02 .3627790614309213e-02 .3589134080345210e-02 .3550452993458549e-02 .3511826453809827e-02 191 | .3473333561559642e-02 .3435053416868590e-02 .3397065119897270e-02 .3359447770806278e-02 .3322280469756216e-02 192 | .3285642316907676e-02 .3249612412421258e-02 .3214269856457560e-02 .3179693749177179e-02 .3145963190740712e-02 193 | .3113157281308758e-02 .3081355118492790e-02 .3050606272192867e-02 .3020857237365417e-02 .2992032025192967e-02 194 | .2964054646858047e-02 .2936849113543186e-02 .2910339436430913e-02 .2884449626703757e-02 .2859103695544246e-02 195 | .2834225654474305e-02 .2809739515276894e-02 .2785569287547418e-02 .2761638982468411e-02 .2737872611222399e-02 196 | .2714194184991912e-02 .2690527714959477e-02 .2666797212307625e-02 .2642926688218884e-02 .2618840153875785e-02 197 | .2594461620460851e-02 .2569715099156616e-02 .2544524601145608e-02 .2518814137610354e-02 .2492507233663848e-02 198 | .2465503750643222e-02 .2437669713273173e-02 .2408868543096979e-02 .2378963661657903e-02 .2347818490499217e-02 199 | .2315296451164191e-02 .2281260965196097e-02 .2245575454138205e-02 .2208103339533784e-02 .2168708042926101e-02 200 | .2127252985858434e-02 .2083601589874046e-02 .2037617276516209e-02 .1989163467328192e-02 .1938103583853268e-02 201 | .1884301047634707e-02 .1827619280215780e-02 .1767921703139749e-02 .1705071737949894e-02 .1638932806189483e-02 202 | .1569368329401782e-02 .1496241729130059e-02 .1419456723009965e-02 .1339360426919480e-02 .1256574667115549e-02 203 | .1171725370811655e-02 .1085438465221302e-02 .9983398775579853e-03 .9110555350352116e-03 .8242113648664776e-03 204 | .7384332942652828e-03 .6543472504451219e-03 .5725791606195047e-03 .4937549520019311e-03 .4185005518058900e-03 205 | .3474418872448836e-03 .2812048855324178e-03 .2204154738819891e-03 .1656995795070971e-03 .1176831296212390e-03 206 | .7699205143792014e-04 .4425227217063918e-04 .2008971903289100e-04 .5130319238177366e-05 .0000000000000000e+00 207 | .0000000000000000e+00 .1791265296538916e+00 .3565097564862067e+00 .5321496804969477e+00 .7060463016862726e+00 208 | .8781996200538995e+00 .1048609635599955e+01 .1217276348324713e+01 .1384199758227658e+01 .1549379865309021e+01 209 | .1712816669569212e+01 .1874510171007471e+01 .2034460369624146e+01 .2192667265419771e+01 .2349130858393344e+01 210 | .2503851148545938e+01 .2656828135876388e+01 .2808061820385276e+01 .2957552202073303e+01 .3105299280939081e+01 211 | .3251303056983267e+01 .3395563530206728e+01 .3538080700607820e+01 .3678854568187317e+01 .3817885132946230e+01 212 | .3955172394882617e+01 .4090716353997427e+01 .4224517010291754e+01 .4356574363763474e+01 .4486888414413595e+01 213 | .4615459162243381e+01 .4742286607250390e+01 .4867370749435823e+01 .4990711588801044e+01 .5112309125343365e+01 214 | .5232163359064139e+01 .5350274289964767e+01 .5466641918042400e+01 .5581266243298487e+01 .5694147265734548e+01 215 | .5805284985347494e+01 .5914679402138895e+01 .6022330516110389e+01 .6128238327258646e+01 .6232402835585361e+01 216 | .6334824041092289e+01 .6435501943775896e+01 .6534436543639792e+01 .6631627840680289e+01 .6727075834899169e+01 217 | .6820780526297486e+01 .6912741914874268e+01 .7002960000628502e+01 .7091434783562213e+01 .7178166263674346e+01 218 | .7263154440964986e+01 .7346399315432955e+01 .7427900887080507e+01 .7507659155906520e+01 .7585674121909803e+01 219 | .7661945785092729e+01 .7736474145454117e+01 .7809259202992713e+01 .7880300957710986e+01 .7949599409607748e+01 220 | .8017154558681657e+01 .8082966404935275e+01 .8147034948367411e+01 .8209360188976632e+01 .8269942126765679e+01 221 | .8328780761733189e+01 .8385876093877723e+01 .8441228123202144e+01 .8494836849705028e+01 .8546702273386376e+01 222 | .8596824394244640e+01 .8645203212282896e+01 .8691838727499620e+01 .8736730939893162e+01 .8779879849466791e+01 223 | .8821285456218890e+01 .8860947760147807e+01 .8898866761256812e+01 .8935042459544285e+01 .8969474855008515e+01 224 | .9002163947652894e+01 .9033109737475705e+01 .9062312224475249e+01 .9089771408655002e+01 .9115487290013148e+01 225 | .9139459868549903e+01 .9161689144263130e+01 .9182175117156723e+01 .9200917787228779e+01 .9217917154477393e+01 226 | .9233173218906360e+01 .9246685980513789e+01 .9258455439297679e+01 .9268481595262019e+01 .9276764448404823e+01 227 | .9283303998724064e+01 .9288100246223777e+01 .9291153190901872e+01 .9292462832756426e+01 .9292029171791514e+01 228 | .9289852208005064e+01 .9285931941397079e+01 .9280268371965393e+01 .9272861499714274e+01 .9263711324641664e+01 229 | .9252817846745289e+01 .9240181066029589e+01 .9225800982492352e+01 .9209677596131291e+01 .9191810906950872e+01 230 | .9172200914949007e+01 .9150847620124436e+01 .9127751022478307e+01 .9102911122011818e+01 .9076327918722589e+01 231 | .9048001412611731e+01 .9017931603680614e+01 .8986118491926728e+01 .8952562077351287e+01 .8917262359955545e+01 232 | .8880219339737003e+01 .8841433016698105e+01 .8800903390836460e+01 .8758630462153260e+01 .8714614230649813e+01 233 | .8668854696323512e+01 .8621351859175576e+01 .8572105719207501e+01 .8521116276416546e+01 .8468383530804031e+01 234 | .8413907482371332e+01 .8357688131115719e+01 .8299725477039853e+01 .8240019520141139e+01 .8178570260420869e+01 235 | .8115377697880460e+01 .8050441832517089e+01 .7983762664332164e+01 .7915340193327042e+01 .7845174419499014e+01 236 | .7773265342850900e+01 .7699612963379773e+01 .7624217281087087e+01 .7547078295974347e+01 .7468196008038486e+01 237 | .7387570417281905e+01 .7305201523703779e+01 .7221089327303337e+01 .7135233828082098e+01 .7047635026039331e+01 238 | .6958292921174939e+01 .6867207513488291e+01 .6774378802980881e+01 .6679806789651927e+01 .6583491473501411e+01 239 | .6485432854528472e+01 .6385630932734877e+01 .6284085708119735e+01 .6180797180683049e+01 .6075765350423986e+01 240 | .5968990217344186e+01 .5860471781442773e+01 .5750210042719477e+01 .5638205001175047e+01 .5524456656808651e+01 241 | .5408965009621137e+01 .5291730059611644e+01 .5172751806780938e+01 .5052030251128346e+01 .4929565392654420e+01 242 | .4805357231358945e+01 .4679405767241927e+01 .4551711000303362e+01 .4422272930543258e+01 .4291091557961593e+01 243 | .4158166882558315e+01 .4023498904333536e+01 .3887723521845246e+01 .3754138934536299e+01 .3623222291394331e+01 244 | .3494978847578441e+01 .3369412434385193e+01 .3246525459248579e+01 .3126318905740062e+01 .3008792333568550e+01 245 | .2893943878580400e+01 .2781770252759416e+01 .2672266744226859e+01 .2565427217241436e+01 .2461244112199319e+01 246 | .2359708445634107e+01 .2260809810216869e+01 .2164536374756116e+01 .2070874884197816e+01 .1979810659625377e+01 247 | .1891327598259669e+01 .1805408173459006e+01 .1722033434719161e+01 .1641183007916302e+01 .1562835108426902e+01 248 | .1486965844191170e+01 .1413545916169721e+01 .1342543013648656e+01 .1273923280326377e+01 .1207651316883628e+01 249 | .1143690180983477e+01 .1082001387271327e+01 .1022544907374907e+01 .9652791699042790e+00 .9101610604518375e+00 250 | .8571459215923082e+00 .8061875528827404e+00 .7572382108625247e+00 .7102486090533761e+00 .6651679179593426e+00 251 | .6219437650668003e+00 .5805222348444591e+00 .5408478687433584e+00 .5028636651968694e+00 .4665110796206917e+00 252 | .4317300244128588e+00 .3984588689537328e+00 .3666344736613389e+00 .3362013633472025e+00 .3071243941422745e+00 253 | .2793705485274418e+00 .2529058617415239e+00 .2276954217812697e+00 .2037033694013603e+00 .1808928981144063e+00 254 | .1592262541909505e+00 .1386647366594654e+00 .1191686973063556e+00 .1006975406759551e+00 .8320972407052957e-01 255 | .6666275755027642e-01 .5101320393332302e-01 .3621667879572691e-01 .2222785047147755e-01 .9000440052495333e-02 256 | -.3512778611368816e-02 -.1535997891233374e-01 -.2659028148468637e-01 -.3725375420478299e-01 -.4740141219104920e-01 257 | -.5708425259798102e-01 -.6633192750464381e-01 -.7515229999225953e-01 -.8355247810742071e-01 -.9153977622940736e-01 258 | -.9912171507018591e-01 -.1063060216744102e+00 -.1131006294194211e+00 -.1195136780152474e+00 -.1255535135046043e+00 259 | -.1312286882628943e+00 -.1365479609982074e+00 -.1415202967513206e+00 -.1461548656549867e+00 -.1504610464664105e+00 260 | -.1544484235197291e+00 -.1581267871877863e+00 -.1615061341761136e+00 -.1645966675229291e+00 -.1674087965991385e+00 261 | -.1699531371083343e+00 -.1722405110867966e+00 -.1742819469034926e+00 -.1760881976209339e+00 -.1776668450500129e+00 262 | -.1790241804212213e+00 -.1801666187211549e+00 -.1811007039747267e+00 -.1818331092451662e+00 -.1823706366340204e+00 263 | -.1827202172811530e+00 -.1828889113647448e+00 -.1828839081012937e+00 -.1827125257456144e+00 -.1823822115908388e+00 264 | -.1819005419684156e+00 -.1812752222481107e+00 -.1805140868380070e+00 -.1796250991845043e+00 -.1786163517723194e+00 265 | -.1774960661244862e+00 -.1762725928023554e+00 -.1749544114055951e+00 -.1735501305721901e+00 -.1720684879784421e+00 266 | -.1705183492540033e+00 -.1689080896077451e+00 -.1672445434601355e+00 -.1655343677951880e+00 -.1637843141724956e+00 267 | -.1620012287272315e+00 -.1601920521701486e+00 -.1583638197875797e+00 -.1565236614414375e+00 -.1546788015692145e+00 268 | -.1528365591839830e+00 -.1510043478743954e+00 -.1491896758046838e+00 -.1474001457146601e+00 -.1456434549197162e+00 269 | -.1439273953108238e+00 -.1422598533545346e+00 -.1406488100929799e+00 -.1391023411438711e+00 -.1376286167004993e+00 270 | -.1362359015317355e+00 -.1349325549820307e+00 -.1337270309714158e+00 -.1326277795190684e+00 -.1316405027033986e+00 271 | -.1307677510592380e+00 -.1300119209472644e+00 -.1293754245137781e+00 -.1288606889178037e+00 -.1284701566711467e+00 272 | -.1282062859485842e+00 -.1280715503783934e+00 -.1280684390423516e+00 -.1281994564757364e+00 -.1284671226673255e+00 273 | -.1288739730593968e+00 -.1294225585477282e+00 -.1301154454815980e+00 -.1309552156637845e+00 -.1319444663505661e+00 274 | -.1330858102517214e+00 -.1343818755305294e+00 -.1358353058037689e+00 -.1374487601417192e+00 -.1392249130681594e+00 275 | -.1411664545603690e+00 -.1432752538358868e+00 -.1455464167489150e+00 -.1479716922889279e+00 -.1505426961056008e+00 276 | -.1532509317835078e+00 -.1560877908421223e+00 -.1590445527358173e+00 -.1621123848538645e+00 -.1652823425204352e+00 277 | -.1685453689945998e+00 -.1718922954703278e+00 -.1753138410764881e+00 -.1788006128768487e+00 -.1823431058700769e+00 278 | -.1859317029897393e+00 -.1895566751043014e+00 -.1932081810171282e+00 -.1968762674664840e+00 -.2005508691255318e+00 279 | -.2042218086023345e+00 -.2078787964398542e+00 -.2115114311159512e+00 -.2151091996145253e+00 -.2186624453518295e+00 280 | -.2221643734677034e+00 -.2256086850791776e+00 -.2289890185339933e+00 -.2322989494106015e+00 -.2355319905181637e+00 281 | -.2386815918965514e+00 -.2417411408163463e+00 -.2447039617788400e+00 -.2475633165160347e+00 -.2503124039906424e+00 282 | -.2529443603960853e+00 -.2554522591564958e+00 -.2578291109267166e+00 -.2600678635923001e+00 -.2621614022695096e+00 283 | -.2641025493053178e+00 -.2658840639791680e+00 -.2674986429241359e+00 -.2689389205976497e+00 -.2701974682691218e+00 284 | -.2712667944386752e+00 -.2721394854976286e+00 -.2728132635621537e+00 -.2732924517415556e+00 -.2735818607907503e+00 285 | -.2736863663907954e+00 -.2736109091488912e+00 -.2733604945983800e+00 -.2729401931987459e+00 -.2723551403356155e+00 286 | -.2716105363207572e+00 -.2707116463920818e+00 -.2696638007136421e+00 -.2684723943756330e+00 -.2671428873943916e+00 287 | -.2656808047123971e+00 -.2640917361982708e+00 -.2623813366467762e+00 -.2605553257788185e+00 -.2586194882414456e+00 288 | -.2565796736078473e+00 -.2544417963773556e+00 -.2522118359754443e+00 -.2498958367537298e+00 -.2474996302970771e+00 289 | -.2450264957776949e+00 -.2424783128827592e+00 -.2398569692403182e+00 -.2371643750592056e+00 -.2344024631290422e+00 290 | -.2315731888202347e+00 -.2286785300839765e+00 -.2257204874522467e+00 -.2227010840378115e+00 -.2196223655342229e+00 291 | -.2164864002158197e+00 -.2132952789377265e+00 -.2100511151358549e+00 -.2067560448269022e+00 -.2034122266083531e+00 292 | -.2000218416584769e+00 -.1965870937363310e+00 -.1931102091817581e+00 -.1895934369153877e+00 -.1860390484386355e+00 293 | -.1824493378337037e+00 -.1788266217799267e+00 -.1751734293274251e+00 -.1714929779140522e+00 -.1677886606341920e+00 294 | -.1640639023929872e+00 -.1603221599063386e+00 -.1565669217009043e+00 -.1528017081141012e+00 -.1490300712941034e+00 295 | -.1452555952166726e+00 -.1414818957187857e+00 -.1377126203271753e+00 -.1339514484332512e+00 -.1302020912391810e+00 296 | -.1264682917578901e+00 -.1227538248130617e+00 -.1190624970391379e+00 -.1153981468813177e+00 -.1117646445955588e+00 297 | -.1081658922485759e+00 -.1046058237178429e+00 -.1010884046915911e+00 -.9761763266880952e-01 -.9419750185765025e-01 298 | -.9083032532005079e-01 -.8751597828201539e-01 -.8425414165460193e-01 -.8104448960904150e-01 -.7788668957674044e-01 299 | -.7478040224927923e-01 -.7172528157841332e-01 -.6872097477607209e-01 -.6576712231435967e-01 -.6286335792555421e-01 300 | -.6000930860210927e-01 -.5720459459665182e-01 -.5444882942198392e-01 -.5174161985108179e-01 -.4908256591709662e-01 301 | -.4647126091335353e-01 -.4390729139335246e-01 -.4139023717076726e-01 -.3891967131944708e-01 -.3649516017341506e-01 302 | -.3411626332686867e-01 -.3178253363418002e-01 -.2949379140986019e-01 -.2725287601384799e-01 -.2506452480675935e-01 303 | -.2293353976637677e-01 -.2086475964066455e-01 -.1886305994776798e-01 -.1693335297601374e-01 -.1508058778390948e-01 304 | -.1330975020014410e-01 -.1162586282358757e-01 -.1003398502329136e-01 -.8539212938487899e-02 -.7146679478590594e-02 305 | -.5861554323194286e-02 -.4689043922075064e-02 -.3634391495190021e-02 -.2702877032677486e-02 -.1899817294856926e-02 306 | -.1230565812229125e-02 -.7005128854759269e-03 -.3150855854603050e-03 -.7974775322652196e-04 .0000000000000000e+00 307 | -------------------------------------------------------------------------------- /aluminum_tensile_tests/al_in.in: -------------------------------------------------------------------------------- 1 | # Created by Nuwan Dewapriya on 2020-12-16 2 | 3 | # ------------------------ INITIALIZATION ---------------------------- 4 | 5 | units metal 6 | dimension 3 7 | boundary p p p 8 | atom_style atomic 9 | variable latparam equal 4.0320 10 | 11 | 12 | # ----------------------- ATOM DEFINITION---------------------------- 13 | 14 | lattice fcc ${latparam} 15 | region whole block 0 10 0 10 0 10 16 | create_box 1 whole 17 | lattice fcc ${latparam} orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 18 | create_atoms 1 region whole 19 | 20 | 21 | # ------------------------ FORCE FIELDS------------------------------ 22 | 23 | pair_style eam/alloy 24 | pair_coeff * * Al_EA.eam.alloy Al 25 | 26 | 27 | # ------------------------EQUILIBRATION--------------------------------- 28 | 29 | variable tstp equal 0.001 30 | timestep ${tstp} 31 | variable tdamp equal "v_tstp * 100" 32 | variable pdamp equal "v_tstp * 1000" 33 | 34 | fix 1 all nve 35 | fix 2 all langevin 300.0 300.0 ${tdamp} 904297 36 | 37 | thermo 500 38 | run 10000 39 | 40 | unfix 1 41 | unfix 2 42 | 43 | fix 1 all npt temp 300 300 1 iso 0 0 1 drag 1 44 | 45 | thermo 200 46 | thermo_style custom step lx ly lz press pxx pyy pzz pe temp 47 | 48 | run 10000 49 | unfix 1 50 | 51 | variable tmp equal "lx" 52 | variable L0 equal ${tmp} 53 | 54 | 55 | # ------------------------DEFORMATION--------------------------------- 56 | 57 | reset_timestep 0 58 | fix 1 all npt temp 300 300 ${tdamp} y 1 1 ${pdamp} z 1 1 ${pdamp} drag 1 59 | variable srate equal 1.0e10 60 | variable srate1 equal "v_srate / 1.0e12" 61 | fix 2 all deform 1 x erate ${srate1} units box remap x 62 | 63 | 64 | # ------------------------OUTPUTS--------------------------------- 65 | 66 | # for units metal, pressure is in [bars] = 100 [kPa] = 1/10000 [GPa] 67 | # for units real, pressure is in [atm] = 101.325 [kPa] = 1.01325/10000 [GPa] 68 | 69 | variable strain equal "(lx - v_L0)/v_L0" 70 | variable p1 equal "-pxx/10000" 71 | variable p2 equal "-pyy/10000" 72 | variable p3 equal "-pzz/10000" 73 | 74 | fix print all print 10 "${strain} ${p1} ${p2} ${p3}" file stress-strain.txt screen no 75 | 76 | dump 2 all atom 200 tensile_test_movie.lammpstrj 77 | 78 | thermo 100 79 | thermo_style custom step temp v_strain v_p1 v_p2 v_p3 ke pe press 80 | 81 | run 20000 82 | -------------------------------------------------------------------------------- /aluminum_tensile_tests/stress_strain_plot.m: -------------------------------------------------------------------------------- 1 | %% Nuwan Dewapriya 2 | %% 2020/12/12 3 | %% This code extracts data from the LAMMPS output file stress-strain.dump and plot the stress-strain curve. 4 | 5 | clear all 6 | close all 7 | clc 8 | 9 | %% Extracting stress-strain data from the log.lammps file 10 | 11 | [fid] = fopen('stress-srain.txt'); 12 | 13 | headings = fscanf(fid,'%s ',7); 14 | 15 | [Stress,count] = fscanf(fid, '%f %f %f %f',[4,inf]); 16 | 17 | Stress = Stress'; % 18 | 19 | %% Plotting 20 | 21 | figure 22 | plot(Stress(:,1), Stress(:,2),'-or','MarkerSize',2) 23 | hold on 24 | plot(Stress(:,1), Stress(:,3),'-ob','MarkerSize',2) 25 | hold on 26 | plot(Stress(:,1), Stress(:,4),'-og','MarkerSize',2) 27 | xlabel('Strain','fontsize',12) 28 | ylabel('Stress (GPa)','fontsize',12) 29 | grid on 30 | set(gca,'LineWidth',1,'Fontsize',12) 31 | axis square 32 | %axis([0 0.3 0 120]) 33 | legend({ '\sigma_{xx}', '\sigma_{yy}', '\sigma_{zz}'},'Location','northwest','FontSize',14) 34 | legend boxoff -------------------------------------------------------------------------------- /graphene_tensile_tests/grap_data.data: -------------------------------------------------------------------------------- 1 | uniaxial tensile test of graphene 2 | 3 | 1008 atoms 4 | 5 | 1 atom types 6 | 7 | #simulation box 8 | -0.698000 49.558000 xlo xhi 9 | -0.604486 50.172316 ylo yhi 10 | -10.000000 10.000000 zlo zhi 11 | 12 | Masses 13 | 14 | 1 12.010000 15 | 16 | Atoms 17 | 18 | 1 1 0.698000 0.000000 0.081472 19 | 2 1 0.000000 1.208971 0.090579 20 | 3 1 0.698000 2.417943 0.012699 21 | 4 1 0.000000 3.626914 0.091338 22 | 5 1 0.698000 4.835886 0.063236 23 | 6 1 0.000000 6.044857 0.009754 24 | 7 1 0.698000 7.253829 0.027850 25 | 8 1 0.000000 8.462800 0.054688 26 | 9 1 0.698000 9.671772 0.095751 27 | 10 1 0.000000 10.880743 0.096489 28 | 11 1 0.698000 12.089715 0.015761 29 | 12 1 0.000000 13.298686 0.097059 30 | 13 1 0.698000 14.507658 0.095717 31 | 14 1 0.000000 15.716629 0.048538 32 | 15 1 0.698000 16.925600 0.080028 33 | 16 1 0.000000 18.134572 0.014189 34 | 17 1 0.698000 19.343543 0.042176 35 | 18 1 0.000000 20.552515 0.091574 36 | 19 1 0.698000 21.761486 0.079221 37 | 20 1 0.000000 22.970458 0.095949 38 | 21 1 0.698000 24.179429 0.065574 39 | 22 1 0.000000 25.388401 0.003571 40 | 23 1 0.698000 26.597372 0.084913 41 | 24 1 0.000000 27.806344 0.093399 42 | 25 1 0.698000 29.015315 0.067874 43 | 26 1 0.000000 30.224287 0.075774 44 | 27 1 0.698000 31.433258 0.074313 45 | 28 1 0.000000 32.642230 0.039223 46 | 29 1 0.698000 33.851201 0.065548 47 | 30 1 0.000000 35.060172 0.017119 48 | 31 1 0.698000 36.269144 0.070605 49 | 32 1 0.000000 37.478115 0.003183 50 | 33 1 0.698000 38.687087 0.027692 51 | 34 1 0.000000 39.896058 0.004617 52 | 35 1 0.698000 41.105030 0.009713 53 | 36 1 0.000000 42.314001 0.082346 54 | 37 1 0.698000 43.522973 0.069483 55 | 38 1 0.000000 44.731944 0.031710 56 | 39 1 0.698000 45.940916 0.095022 57 | 40 1 0.000000 47.149887 0.003445 58 | 41 1 0.698000 48.358859 0.043874 59 | 42 1 0.000000 49.567830 0.038156 60 | 43 1 2.094000 0.000000 0.076552 61 | 44 1 2.792000 1.208971 0.079520 62 | 45 1 2.094000 2.417943 0.018687 63 | 46 1 2.792000 3.626914 0.048976 64 | 47 1 2.094000 4.835886 0.044559 65 | 48 1 2.792000 6.044857 0.064631 66 | 49 1 2.094000 7.253829 0.070936 67 | 50 1 2.792000 8.462800 0.075469 68 | 51 1 2.094000 9.671772 0.027603 69 | 52 1 2.792000 10.880743 0.067970 70 | 53 1 2.094000 12.089715 0.065510 71 | 54 1 2.792000 13.298686 0.016261 72 | 55 1 2.094000 14.507658 0.011900 73 | 56 1 2.792000 15.716629 0.049836 74 | 57 1 2.094000 16.925600 0.095974 75 | 58 1 2.792000 18.134572 0.034039 76 | 59 1 2.094000 19.343543 0.058527 77 | 60 1 2.792000 20.552515 0.022381 78 | 61 1 2.094000 21.761486 0.075127 79 | 62 1 2.792000 22.970458 0.025510 80 | 63 1 2.094000 24.179429 0.050596 81 | 64 1 2.792000 25.388401 0.069908 82 | 65 1 2.094000 26.597372 0.089090 83 | 66 1 2.792000 27.806344 0.095929 84 | 67 1 2.094000 29.015315 0.054722 85 | 68 1 2.792000 30.224287 0.013862 86 | 69 1 2.094000 31.433258 0.014929 87 | 70 1 2.792000 32.642230 0.025751 88 | 71 1 2.094000 33.851201 0.084072 89 | 72 1 2.792000 35.060172 0.025428 90 | 73 1 2.094000 36.269144 0.081428 91 | 74 1 2.792000 37.478115 0.024352 92 | 75 1 2.094000 38.687087 0.092926 93 | 76 1 2.792000 39.896058 0.034998 94 | 77 1 2.094000 41.105030 0.019660 95 | 78 1 2.792000 42.314001 0.025108 96 | 79 1 2.094000 43.522973 0.061604 97 | 80 1 2.792000 44.731944 0.047329 98 | 81 1 2.094000 45.940916 0.035166 99 | 82 1 2.792000 47.149887 0.083083 100 | 83 1 2.094000 48.358859 0.058526 101 | 84 1 2.792000 49.567830 0.054972 102 | 85 1 4.886000 0.000000 0.091719 103 | 86 1 4.188000 1.208971 0.028584 104 | 87 1 4.886000 2.417943 0.075720 105 | 88 1 4.188000 3.626914 0.075373 106 | 89 1 4.886000 4.835886 0.038045 107 | 90 1 4.188000 6.044857 0.056782 108 | 91 1 4.886000 7.253829 0.007585 109 | 92 1 4.188000 8.462800 0.005395 110 | 93 1 4.886000 9.671772 0.053080 111 | 94 1 4.188000 10.880743 0.077917 112 | 95 1 4.886000 12.089715 0.093401 113 | 96 1 4.188000 13.298686 0.012991 114 | 97 1 4.886000 14.507658 0.056882 115 | 98 1 4.188000 15.716629 0.046939 116 | 99 1 4.886000 16.925600 0.001190 117 | 100 1 4.188000 18.134572 0.033712 118 | 101 1 4.886000 19.343543 0.016218 119 | 102 1 4.188000 20.552515 0.079428 120 | 103 1 4.886000 21.761486 0.031122 121 | 104 1 4.188000 22.970458 0.052853 122 | 105 1 4.886000 24.179429 0.016565 123 | 106 1 4.188000 25.388401 0.060198 124 | 107 1 4.886000 26.597372 0.026297 125 | 108 1 4.188000 27.806344 0.065408 126 | 109 1 4.886000 29.015315 0.068921 127 | 110 1 4.188000 30.224287 0.074815 128 | 111 1 4.886000 31.433258 0.045054 129 | 112 1 4.188000 32.642230 0.008382 130 | 113 1 4.886000 33.851201 0.022898 131 | 114 1 4.188000 35.060172 0.091334 132 | 115 1 4.886000 36.269144 0.015238 133 | 116 1 4.188000 37.478115 0.082582 134 | 117 1 4.886000 38.687087 0.053834 135 | 118 1 4.188000 39.896058 0.099613 136 | 119 1 4.886000 41.105030 0.007818 137 | 120 1 4.188000 42.314001 0.044268 138 | 121 1 4.886000 43.522973 0.010665 139 | 122 1 4.188000 44.731944 0.096190 140 | 123 1 4.886000 45.940916 0.000463 141 | 124 1 4.188000 47.149887 0.077491 142 | 125 1 4.886000 48.358859 0.081730 143 | 126 1 4.188000 49.567830 0.086869 144 | 127 1 6.282000 0.000000 0.008444 145 | 128 1 6.980000 1.208971 0.039978 146 | 129 1 6.282000 2.417943 0.025987 147 | 130 1 6.980000 3.626914 0.080007 148 | 131 1 6.282000 4.835886 0.043141 149 | 132 1 6.980000 6.044857 0.091065 150 | 133 1 6.282000 7.253829 0.018185 151 | 134 1 6.980000 8.462800 0.026380 152 | 135 1 6.282000 9.671772 0.014554 153 | 136 1 6.980000 10.880743 0.013607 154 | 137 1 6.282000 12.089715 0.086929 155 | 138 1 6.980000 13.298686 0.057970 156 | 139 1 6.282000 14.507658 0.054986 157 | 140 1 6.980000 15.716629 0.014495 158 | 141 1 6.282000 16.925600 0.085303 159 | 142 1 6.980000 18.134572 0.062206 160 | 143 1 6.282000 19.343543 0.035095 161 | 144 1 6.980000 20.552515 0.051325 162 | 145 1 6.282000 21.761486 0.040181 163 | 146 1 6.980000 22.970458 0.007597 164 | 147 1 6.282000 24.179429 0.023992 165 | 148 1 6.980000 25.388401 0.012332 166 | 149 1 6.282000 26.597372 0.018391 167 | 150 1 6.980000 27.806344 0.023995 168 | 151 1 6.282000 29.015315 0.041727 169 | 152 1 6.980000 30.224287 0.004965 170 | 153 1 6.282000 31.433258 0.090272 171 | 154 1 6.980000 32.642230 0.094479 172 | 155 1 6.282000 33.851201 0.049086 173 | 156 1 6.980000 35.060172 0.048925 174 | 157 1 6.282000 36.269144 0.033772 175 | 158 1 6.980000 37.478115 0.090005 176 | 159 1 6.282000 38.687087 0.036925 177 | 160 1 6.980000 39.896058 0.011120 178 | 161 1 6.282000 41.105030 0.078025 179 | 162 1 6.980000 42.314001 0.038974 180 | 163 1 6.282000 43.522973 0.024169 181 | 164 1 6.980000 44.731944 0.040391 182 | 165 1 6.282000 45.940916 0.009645 183 | 166 1 6.980000 47.149887 0.013197 184 | 167 1 6.282000 48.358859 0.094205 185 | 168 1 6.980000 49.567830 0.095613 186 | 169 1 9.074000 0.000000 0.057521 187 | 170 1 8.376000 1.208971 0.005978 188 | 171 1 9.074000 2.417943 0.023478 189 | 172 1 8.376000 3.626914 0.035316 190 | 173 1 9.074000 4.835886 0.082119 191 | 174 1 8.376000 6.044857 0.001540 192 | 175 1 9.074000 7.253829 0.004302 193 | 176 1 8.376000 8.462800 0.016899 194 | 177 1 9.074000 9.671772 0.064912 195 | 178 1 8.376000 10.880743 0.073172 196 | 179 1 9.074000 12.089715 0.064775 197 | 180 1 8.376000 13.298686 0.045092 198 | 181 1 9.074000 14.507658 0.054701 199 | 182 1 8.376000 15.716629 0.029632 200 | 183 1 9.074000 16.925600 0.074469 201 | 184 1 8.376000 18.134572 0.018896 202 | 185 1 9.074000 19.343543 0.068678 203 | 186 1 8.376000 20.552515 0.018351 204 | 187 1 9.074000 21.761486 0.036848 205 | 188 1 8.376000 22.970458 0.062562 206 | 189 1 9.074000 24.179429 0.078023 207 | 190 1 8.376000 25.388401 0.008113 208 | 191 1 9.074000 26.597372 0.092939 209 | 192 1 8.376000 27.806344 0.077571 210 | 193 1 9.074000 29.015315 0.048679 211 | 194 1 8.376000 30.224287 0.043586 212 | 195 1 9.074000 31.433258 0.044678 213 | 196 1 8.376000 32.642230 0.030635 214 | 197 1 9.074000 33.851201 0.050851 215 | 198 1 8.376000 35.060172 0.051077 216 | 199 1 9.074000 36.269144 0.081763 217 | 200 1 8.376000 37.478115 0.079483 218 | 201 1 9.074000 38.687087 0.064432 219 | 202 1 8.376000 39.896058 0.037861 220 | 203 1 9.074000 41.105030 0.081158 221 | 204 1 8.376000 42.314001 0.053283 222 | 205 1 9.074000 43.522973 0.035073 223 | 206 1 8.376000 44.731944 0.093900 224 | 207 1 9.074000 45.940916 0.087594 225 | 208 1 8.376000 47.149887 0.055016 226 | 209 1 9.074000 48.358859 0.062248 227 | 210 1 8.376000 49.567830 0.058704 228 | 211 1 10.470000 0.000000 0.020774 229 | 212 1 11.168000 1.208971 0.030125 230 | 213 1 10.470000 2.417943 0.047092 231 | 214 1 11.168000 3.626914 0.023049 232 | 215 1 10.470000 4.835886 0.084431 233 | 216 1 11.168000 6.044857 0.019476 234 | 217 1 10.470000 7.253829 0.022592 235 | 218 1 11.168000 8.462800 0.017071 236 | 219 1 10.470000 9.671772 0.022766 237 | 220 1 11.168000 10.880743 0.043570 238 | 221 1 10.470000 12.089715 0.031110 239 | 222 1 11.168000 13.298686 0.092338 240 | 223 1 10.470000 14.507658 0.043021 241 | 224 1 11.168000 15.716629 0.018482 242 | 225 1 10.470000 16.925600 0.090488 243 | 226 1 11.168000 18.134572 0.097975 244 | 227 1 10.470000 19.343543 0.043887 245 | 228 1 11.168000 20.552515 0.011112 246 | 229 1 10.470000 21.761486 0.025806 247 | 230 1 11.168000 22.970458 0.040872 248 | 231 1 10.470000 24.179429 0.059490 249 | 232 1 11.168000 25.388401 0.026221 250 | 233 1 10.470000 26.597372 0.060284 251 | 234 1 11.168000 27.806344 0.071122 252 | 235 1 10.470000 29.015315 0.022175 253 | 236 1 11.168000 30.224287 0.011742 254 | 237 1 10.470000 31.433258 0.029668 255 | 238 1 11.168000 32.642230 0.031878 256 | 239 1 10.470000 33.851201 0.042417 257 | 240 1 11.168000 35.060172 0.050786 258 | 241 1 10.470000 36.269144 0.008552 259 | 242 1 11.168000 37.478115 0.026248 260 | 243 1 10.470000 38.687087 0.080101 261 | 244 1 11.168000 39.896058 0.002922 262 | 245 1 10.470000 41.105030 0.092885 263 | 246 1 11.168000 42.314001 0.073033 264 | 247 1 10.470000 43.522973 0.048861 265 | 248 1 11.168000 44.731944 0.057853 266 | 249 1 10.470000 45.940916 0.023728 267 | 250 1 11.168000 47.149887 0.045885 268 | 251 1 10.470000 48.358859 0.096309 269 | 252 1 11.168000 49.567830 0.054681 270 | 253 1 13.262000 0.000000 0.052114 271 | 254 1 12.564000 1.208971 0.023159 272 | 255 1 13.262000 2.417943 0.048890 273 | 256 1 12.564000 3.626914 0.062406 274 | 257 1 13.262000 4.835886 0.067914 275 | 258 1 12.564000 6.044857 0.039552 276 | 259 1 13.262000 7.253829 0.036744 277 | 260 1 12.564000 8.462800 0.098798 278 | 261 1 13.262000 9.671772 0.003774 279 | 262 1 12.564000 10.880743 0.088517 280 | 263 1 13.262000 12.089715 0.091329 281 | 264 1 12.564000 13.298686 0.079618 282 | 265 1 13.262000 14.507658 0.009871 283 | 266 1 12.564000 15.716629 0.026187 284 | 267 1 13.262000 16.925600 0.033536 285 | 268 1 12.564000 18.134572 0.067973 286 | 269 1 13.262000 19.343543 0.013655 287 | 270 1 12.564000 20.552515 0.072123 288 | 271 1 13.262000 21.761486 0.010676 289 | 272 1 12.564000 22.970458 0.065376 290 | 273 1 13.262000 24.179429 0.049417 291 | 274 1 12.564000 25.388401 0.077905 292 | 275 1 13.262000 26.597372 0.071504 293 | 276 1 12.564000 27.806344 0.090372 294 | 277 1 13.262000 29.015315 0.089092 295 | 278 1 12.564000 30.224287 0.033416 296 | 279 1 13.262000 31.433258 0.069875 297 | 280 1 12.564000 32.642230 0.019781 298 | 281 1 13.262000 33.851201 0.003054 299 | 282 1 12.564000 35.060172 0.074407 300 | 283 1 13.262000 36.269144 0.050002 301 | 284 1 12.564000 37.478115 0.047992 302 | 285 1 13.262000 38.687087 0.090472 303 | 286 1 12.564000 39.896058 0.060987 304 | 287 1 13.262000 41.105030 0.061767 305 | 288 1 12.564000 42.314001 0.085944 306 | 289 1 13.262000 43.522973 0.080549 307 | 290 1 12.564000 44.731944 0.057672 308 | 291 1 13.262000 45.940916 0.018292 309 | 292 1 12.564000 47.149887 0.023993 310 | 293 1 13.262000 48.358859 0.088651 311 | 294 1 12.564000 49.567830 0.002867 312 | 295 1 14.658000 0.000000 0.048990 313 | 296 1 15.356000 1.208971 0.016793 314 | 297 1 14.658000 2.417943 0.097868 315 | 298 1 15.356000 3.626914 0.071269 316 | 299 1 14.658000 4.835886 0.050047 317 | 300 1 15.356000 6.044857 0.047109 318 | 301 1 14.658000 7.253829 0.005962 319 | 302 1 15.356000 8.462800 0.068197 320 | 303 1 14.658000 9.671772 0.004243 321 | 304 1 15.356000 10.880743 0.007145 322 | 305 1 14.658000 12.089715 0.052165 323 | 306 1 15.356000 13.298686 0.009673 324 | 307 1 14.658000 14.507658 0.081815 325 | 308 1 15.356000 15.716629 0.081755 326 | 309 1 14.658000 16.925600 0.072244 327 | 310 1 15.356000 18.134572 0.014987 328 | 311 1 14.658000 19.343543 0.065961 329 | 312 1 15.356000 20.552515 0.051859 330 | 313 1 14.658000 21.761486 0.097297 331 | 314 1 15.356000 22.970458 0.064899 332 | 315 1 14.658000 24.179429 0.080033 333 | 316 1 15.356000 25.388401 0.045380 334 | 317 1 14.658000 26.597372 0.043239 335 | 318 1 15.356000 27.806344 0.082531 336 | 319 1 14.658000 29.015315 0.008347 337 | 320 1 15.356000 30.224287 0.013317 338 | 321 1 14.658000 31.433258 0.017339 339 | 322 1 15.356000 32.642230 0.039094 340 | 323 1 14.658000 33.851201 0.083138 341 | 324 1 15.356000 35.060172 0.080336 342 | 325 1 14.658000 36.269144 0.006047 343 | 326 1 15.356000 37.478115 0.039926 344 | 327 1 14.658000 38.687087 0.052688 345 | 328 1 15.356000 39.896058 0.041680 346 | 329 1 14.658000 41.105030 0.065686 347 | 330 1 15.356000 42.314001 0.062797 348 | 331 1 14.658000 43.522973 0.029198 349 | 332 1 15.356000 44.731944 0.043165 350 | 333 1 14.658000 45.940916 0.001549 351 | 334 1 15.356000 47.149887 0.098406 352 | 335 1 14.658000 48.358859 0.016717 353 | 336 1 15.356000 49.567830 0.010622 354 | 337 1 17.450000 0.000000 0.037241 355 | 338 1 16.752000 1.208971 0.019812 356 | 339 1 17.450000 2.417943 0.048969 357 | 340 1 16.752000 3.626914 0.033949 358 | 341 1 17.450000 4.835886 0.095163 359 | 342 1 16.752000 6.044857 0.092033 360 | 343 1 17.450000 7.253829 0.005268 361 | 344 1 16.752000 8.462800 0.073786 362 | 345 1 17.450000 9.671772 0.026912 363 | 346 1 16.752000 10.880743 0.042284 364 | 347 1 17.450000 12.089715 0.054787 365 | 348 1 16.752000 13.298686 0.094274 366 | 349 1 17.450000 14.507658 0.041774 367 | 350 1 16.752000 15.716629 0.098305 368 | 351 1 17.450000 16.925600 0.030145 369 | 352 1 16.752000 18.134572 0.070110 370 | 353 1 17.450000 19.343543 0.066634 371 | 354 1 16.752000 20.552515 0.053913 372 | 355 1 17.450000 21.761486 0.069811 373 | 356 1 16.752000 22.970458 0.066653 374 | 357 1 17.450000 24.179429 0.017813 375 | 358 1 16.752000 25.388401 0.012801 376 | 359 1 17.450000 26.597372 0.099908 377 | 360 1 16.752000 27.806344 0.017112 378 | 361 1 17.450000 29.015315 0.003260 379 | 362 1 16.752000 30.224287 0.056120 380 | 363 1 17.450000 31.433258 0.088187 381 | 364 1 16.752000 32.642230 0.066918 382 | 365 1 17.450000 33.851201 0.019043 383 | 366 1 16.752000 35.060172 0.036892 384 | 367 1 17.450000 36.269144 0.046073 385 | 368 1 16.752000 37.478115 0.098164 386 | 369 1 17.450000 38.687087 0.015640 387 | 370 1 16.752000 39.896058 0.085552 388 | 371 1 17.450000 41.105030 0.064476 389 | 372 1 16.752000 42.314001 0.037627 390 | 373 1 17.450000 43.522973 0.019092 391 | 374 1 16.752000 44.731944 0.042825 392 | 375 1 17.450000 45.940916 0.048202 393 | 376 1 16.752000 47.149887 0.012061 394 | 377 1 17.450000 48.358859 0.058951 395 | 378 1 16.752000 49.567830 0.022619 396 | 379 1 18.846000 0.000000 0.038462 397 | 380 1 19.544000 1.208971 0.058299 398 | 381 1 18.846000 2.417943 0.025181 399 | 382 1 19.544000 3.626914 0.029044 400 | 383 1 18.846000 4.835886 0.061709 401 | 384 1 19.544000 6.044857 0.026528 402 | 385 1 18.846000 7.253829 0.082438 403 | 386 1 19.544000 8.462800 0.098266 404 | 387 1 18.846000 9.671772 0.073025 405 | 388 1 19.544000 10.880743 0.034388 406 | 389 1 18.846000 12.089715 0.058407 407 | 390 1 19.544000 13.298686 0.010777 408 | 391 1 18.846000 14.507658 0.090631 409 | 392 1 19.544000 15.716629 0.087965 410 | 393 1 18.846000 16.925600 0.081776 411 | 394 1 19.544000 18.134572 0.026073 412 | 395 1 18.846000 19.343543 0.059436 413 | 396 1 19.544000 20.552515 0.002251 414 | 397 1 18.846000 21.761486 0.042526 415 | 398 1 19.544000 22.970458 0.031272 416 | 399 1 18.846000 24.179429 0.016148 417 | 400 1 19.544000 25.388401 0.017877 418 | 401 1 18.846000 26.597372 0.042289 419 | 402 1 19.544000 27.806344 0.009423 420 | 403 1 18.846000 29.015315 0.059852 421 | 404 1 19.544000 30.224287 0.047092 422 | 405 1 18.846000 31.433258 0.069595 423 | 406 1 19.544000 32.642230 0.069989 424 | 407 1 18.846000 33.851201 0.063853 425 | 408 1 19.544000 35.060172 0.003360 426 | 409 1 18.846000 36.269144 0.006881 427 | 410 1 19.544000 37.478115 0.031960 428 | 411 1 18.846000 38.687087 0.053086 429 | 412 1 19.544000 39.896058 0.065445 430 | 413 1 18.846000 41.105030 0.040762 431 | 414 1 19.544000 42.314001 0.081998 432 | 415 1 18.846000 43.522973 0.071836 433 | 416 1 19.544000 44.731944 0.096865 434 | 417 1 18.846000 45.940916 0.053133 435 | 418 1 19.544000 47.149887 0.032515 436 | 419 1 18.846000 48.358859 0.010563 437 | 420 1 19.544000 49.567830 0.061096 438 | 421 1 21.638000 0.000000 0.077880 439 | 422 1 20.940000 1.208971 0.042345 440 | 423 1 21.638000 2.417943 0.009082 441 | 424 1 20.940000 3.626914 0.026647 442 | 425 1 21.638000 4.835886 0.015366 443 | 426 1 20.940000 6.044857 0.028101 444 | 427 1 21.638000 7.253829 0.044009 445 | 428 1 20.940000 8.462800 0.052714 446 | 429 1 21.638000 9.671772 0.045742 447 | 430 1 20.940000 10.880743 0.087537 448 | 431 1 21.638000 12.089715 0.051805 449 | 432 1 20.940000 13.298686 0.094362 450 | 433 1 21.638000 14.507658 0.063771 451 | 434 1 20.940000 15.716629 0.095769 452 | 435 1 21.638000 16.925600 0.024071 453 | 436 1 20.940000 18.134572 0.067612 454 | 437 1 21.638000 19.343543 0.028906 455 | 438 1 20.940000 20.552515 0.067181 456 | 439 1 21.638000 21.761486 0.069514 457 | 440 1 20.940000 22.970458 0.006799 458 | 441 1 21.638000 24.179429 0.025479 459 | 442 1 20.940000 25.388401 0.022404 460 | 443 1 21.638000 26.597372 0.066783 461 | 444 1 20.940000 27.806344 0.084439 462 | 445 1 21.638000 29.015315 0.034446 463 | 446 1 20.940000 30.224287 0.078052 464 | 447 1 21.638000 31.433258 0.067533 465 | 448 1 20.940000 32.642230 0.000672 466 | 449 1 21.638000 33.851201 0.060217 467 | 450 1 20.940000 35.060172 0.038677 468 | 451 1 21.638000 36.269144 0.091599 469 | 452 1 20.940000 37.478115 0.000115 470 | 453 1 21.638000 38.687087 0.046245 471 | 454 1 20.940000 39.896058 0.042435 472 | 455 1 21.638000 41.105030 0.046092 473 | 456 1 20.940000 42.314001 0.077016 474 | 457 1 21.638000 43.522973 0.032247 475 | 458 1 20.940000 44.731944 0.078474 476 | 459 1 21.638000 45.940916 0.047136 477 | 460 1 20.940000 47.149887 0.003576 478 | 461 1 21.638000 48.358859 0.017587 479 | 462 1 20.940000 49.567830 0.072176 480 | 463 1 23.034000 0.000000 0.047349 481 | 464 1 23.732000 1.208971 0.015272 482 | 465 1 23.034000 2.417943 0.034112 483 | 466 1 23.732000 3.626914 0.060739 484 | 467 1 23.034000 4.835886 0.019175 485 | 468 1 23.732000 6.044857 0.073843 486 | 469 1 23.034000 7.253829 0.024285 487 | 470 1 23.732000 8.462800 0.091742 488 | 471 1 23.034000 9.671772 0.026906 489 | 472 1 23.732000 10.880743 0.076550 490 | 473 1 23.034000 12.089715 0.018866 491 | 474 1 23.732000 13.298686 0.028750 492 | 475 1 23.034000 14.507658 0.009111 493 | 476 1 23.732000 15.716629 0.057621 494 | 477 1 23.034000 16.925600 0.068336 495 | 478 1 23.732000 18.134572 0.054659 496 | 479 1 23.034000 19.343543 0.042573 497 | 480 1 23.732000 20.552515 0.064444 498 | 481 1 23.034000 21.761486 0.064762 499 | 482 1 23.732000 22.970458 0.067902 500 | 483 1 23.034000 24.179429 0.063579 501 | 484 1 23.732000 25.388401 0.094517 502 | 485 1 23.034000 26.597372 0.020893 503 | 486 1 23.732000 27.806344 0.070928 504 | 487 1 23.034000 29.015315 0.023623 505 | 488 1 23.732000 30.224287 0.011940 506 | 489 1 23.034000 31.433258 0.060730 507 | 490 1 23.732000 32.642230 0.045014 508 | 491 1 23.034000 33.851201 0.045873 509 | 492 1 23.732000 35.060172 0.066194 510 | 493 1 23.034000 36.269144 0.077029 511 | 494 1 23.732000 37.478115 0.035022 512 | 495 1 23.034000 38.687087 0.066201 513 | 496 1 23.732000 39.896058 0.041616 514 | 497 1 23.034000 41.105030 0.084193 515 | 498 1 23.732000 42.314001 0.083292 516 | 499 1 23.034000 43.522973 0.025644 517 | 500 1 23.732000 44.731944 0.061346 518 | 501 1 23.034000 45.940916 0.058225 519 | 502 1 23.732000 47.149887 0.054074 520 | 503 1 23.034000 48.358859 0.086994 521 | 504 1 23.732000 49.567830 0.026478 522 | 505 1 25.826000 0.000000 0.031807 523 | 506 1 25.128000 1.208971 0.011921 524 | 507 1 25.826000 2.417943 0.093983 525 | 508 1 25.128000 3.626914 0.064555 526 | 509 1 25.826000 4.835886 0.047946 527 | 510 1 25.128000 6.044857 0.063932 528 | 511 1 25.826000 7.253829 0.054472 529 | 512 1 25.128000 8.462800 0.064731 530 | 513 1 25.826000 9.671772 0.054389 531 | 514 1 25.128000 10.880743 0.072105 532 | 515 1 25.826000 12.089715 0.052250 533 | 516 1 25.128000 13.298686 0.099370 534 | 517 1 25.826000 14.507658 0.021868 535 | 518 1 25.128000 15.716629 0.010580 536 | 519 1 25.826000 16.925600 0.010970 537 | 520 1 25.128000 18.134572 0.006359 538 | 521 1 25.826000 19.343543 0.040458 539 | 522 1 25.128000 20.552515 0.044837 540 | 523 1 25.826000 21.761486 0.036582 541 | 524 1 25.128000 22.970458 0.076350 542 | 525 1 25.826000 24.179429 0.062790 543 | 526 1 25.128000 25.388401 0.077198 544 | 527 1 25.826000 26.597372 0.093285 545 | 528 1 25.128000 27.806344 0.097274 546 | 529 1 25.826000 29.015315 0.019203 547 | 530 1 25.128000 30.224287 0.013887 548 | 531 1 25.826000 31.433258 0.069627 549 | 532 1 25.128000 32.642230 0.009382 550 | 533 1 25.826000 33.851201 0.052540 551 | 534 1 25.128000 35.060172 0.053034 552 | 535 1 25.826000 36.269144 0.086114 553 | 536 1 25.128000 37.478115 0.048485 554 | 537 1 25.826000 38.687087 0.039346 555 | 538 1 25.128000 39.896058 0.067143 556 | 539 1 25.826000 41.105030 0.074126 557 | 540 1 25.128000 42.314001 0.052005 558 | 541 1 25.826000 43.522973 0.034771 559 | 542 1 25.128000 44.731944 0.015000 560 | 543 1 25.826000 45.940916 0.058609 561 | 544 1 25.128000 47.149887 0.026215 562 | 545 1 25.826000 48.358859 0.004445 563 | 546 1 25.128000 49.567830 0.075493 564 | 547 1 27.222000 0.000000 0.024279 565 | 548 1 27.920000 1.208971 0.044240 566 | 549 1 27.222000 2.417943 0.068780 567 | 550 1 27.920000 3.626914 0.035923 568 | 551 1 27.222000 4.835886 0.073634 569 | 552 1 27.920000 6.044857 0.039471 570 | 553 1 27.222000 7.253829 0.068342 571 | 554 1 27.920000 8.462800 0.070405 572 | 555 1 27.222000 9.671772 0.044231 573 | 556 1 27.920000 10.880743 0.001958 574 | 557 1 27.222000 12.089715 0.033086 575 | 558 1 27.920000 13.298686 0.042431 576 | 559 1 27.222000 14.507658 0.027027 577 | 560 1 27.920000 15.716629 0.019705 578 | 561 1 27.222000 16.925600 0.082172 579 | 562 1 27.920000 18.134572 0.042992 580 | 563 1 27.222000 19.343543 0.088777 581 | 564 1 27.920000 20.552515 0.039118 582 | 565 1 27.222000 21.761486 0.076911 583 | 566 1 27.920000 22.970458 0.039679 584 | 567 1 27.222000 24.179429 0.080851 585 | 568 1 27.920000 25.388401 0.075508 586 | 569 1 27.222000 26.597372 0.037740 587 | 570 1 27.920000 27.806344 0.021602 588 | 571 1 27.222000 29.015315 0.079041 589 | 572 1 27.920000 30.224287 0.094930 590 | 573 1 27.222000 31.433258 0.032757 591 | 574 1 27.920000 32.642230 0.067126 592 | 575 1 27.222000 33.851201 0.043864 593 | 576 1 27.920000 35.060172 0.083350 594 | 577 1 27.222000 36.269144 0.076885 595 | 578 1 27.920000 37.478115 0.016725 596 | 579 1 27.222000 38.687087 0.086198 597 | 580 1 27.920000 39.896058 0.098987 598 | 581 1 27.222000 41.105030 0.051442 599 | 582 1 27.920000 42.314001 0.088428 600 | 583 1 27.222000 43.522973 0.058803 601 | 584 1 27.920000 44.731944 0.015475 602 | 585 1 27.222000 45.940916 0.019986 603 | 586 1 27.920000 47.149887 0.040695 604 | 587 1 27.222000 48.358859 0.074871 605 | 588 1 27.920000 49.567830 0.082558 606 | 589 1 30.014000 0.000000 0.078996 607 | 590 1 29.316000 1.208971 0.031852 608 | 591 1 30.014000 2.417943 0.053406 609 | 592 1 29.316000 3.626914 0.008995 610 | 593 1 30.014000 4.835886 0.011171 611 | 594 1 29.316000 6.044857 0.013629 612 | 595 1 30.014000 7.253829 0.067865 613 | 596 1 29.316000 8.462800 0.049518 614 | 597 1 30.014000 9.671772 0.018971 615 | 598 1 29.316000 10.880743 0.049501 616 | 599 1 30.014000 12.089715 0.014761 617 | 600 1 29.316000 13.298686 0.005497 618 | 601 1 30.014000 14.507658 0.085071 619 | 602 1 29.316000 15.716629 0.056056 620 | 603 1 30.014000 16.925600 0.092961 621 | 604 1 29.316000 18.134572 0.069667 622 | 605 1 30.014000 19.343543 0.058279 623 | 606 1 29.316000 20.552515 0.081540 624 | 607 1 30.014000 21.761486 0.087901 625 | 608 1 29.316000 22.970458 0.098891 626 | 609 1 30.014000 24.179429 0.000052 627 | 610 1 29.316000 25.388401 0.086544 628 | 611 1 30.014000 26.597372 0.061257 629 | 612 1 29.316000 27.806344 0.098995 630 | 613 1 30.014000 29.015315 0.052768 631 | 614 1 29.316000 30.224287 0.047952 632 | 615 1 30.014000 31.433258 0.080135 633 | 616 1 29.316000 32.642230 0.022784 634 | 617 1 30.014000 33.851201 0.049809 635 | 618 1 29.316000 35.060172 0.090085 636 | 619 1 30.014000 36.269144 0.057466 637 | 620 1 29.316000 37.478115 0.084518 638 | 621 1 30.014000 38.687087 0.073864 639 | 622 1 29.316000 39.896058 0.058599 640 | 623 1 30.014000 41.105030 0.024673 641 | 624 1 29.316000 42.314001 0.066642 642 | 625 1 30.014000 43.522973 0.008348 643 | 626 1 29.316000 44.731944 0.062596 644 | 627 1 30.014000 45.940916 0.066094 645 | 628 1 29.316000 47.149887 0.072975 646 | 629 1 30.014000 48.358859 0.089075 647 | 630 1 29.316000 49.567830 0.098230 648 | 631 1 31.410000 0.000000 0.076903 649 | 632 1 32.108000 1.208971 0.058145 650 | 633 1 31.410000 2.417943 0.092831 651 | 634 1 32.108000 3.626914 0.058009 652 | 635 1 31.410000 4.835886 0.001698 653 | 636 1 32.108000 6.044857 0.012086 654 | 637 1 31.410000 7.253829 0.086271 655 | 638 1 32.108000 8.462800 0.048430 656 | 639 1 31.410000 9.671772 0.084486 657 | 640 1 32.108000 10.880743 0.020941 658 | 641 1 31.410000 12.089715 0.055229 659 | 642 1 32.108000 13.298686 0.062988 660 | 643 1 31.410000 14.507658 0.003199 661 | 644 1 32.108000 15.716629 0.061471 662 | 645 1 31.410000 16.925600 0.036241 663 | 646 1 32.108000 18.134572 0.004953 664 | 647 1 31.410000 19.343543 0.048957 665 | 648 1 32.108000 20.552515 0.019251 666 | 649 1 31.410000 21.761486 0.012308 667 | 650 1 32.108000 22.970458 0.020549 668 | 651 1 31.410000 24.179429 0.014651 669 | 652 1 32.108000 25.388401 0.018907 670 | 653 1 31.410000 26.597372 0.004265 671 | 654 1 32.108000 27.806344 0.063520 672 | 655 1 31.410000 29.015315 0.028187 673 | 656 1 32.108000 30.224287 0.053860 674 | 657 1 31.410000 31.433258 0.069516 675 | 658 1 32.108000 32.642230 0.049912 676 | 659 1 31.410000 33.851201 0.053580 677 | 660 1 32.108000 35.060172 0.044518 678 | 661 1 31.410000 36.269144 0.012393 679 | 662 1 32.108000 37.478115 0.049036 680 | 663 1 31.410000 38.687087 0.085300 681 | 664 1 32.108000 39.896058 0.087393 682 | 665 1 31.410000 41.105030 0.027029 683 | 666 1 32.108000 42.314001 0.020846 684 | 667 1 31.410000 43.522973 0.056498 685 | 668 1 32.108000 44.731944 0.064031 686 | 669 1 31.410000 45.940916 0.041703 687 | 670 1 32.108000 47.149887 0.020598 688 | 671 1 31.410000 48.358859 0.094793 689 | 672 1 32.108000 49.567830 0.008207 690 | 673 1 34.202000 0.000000 0.010571 691 | 674 1 33.504000 1.208971 0.014204 692 | 675 1 34.202000 2.417943 0.016646 693 | 676 1 33.504000 3.626914 0.062096 694 | 677 1 34.202000 4.835886 0.057371 695 | 678 1 33.504000 6.044857 0.005208 696 | 679 1 34.202000 7.253829 0.093120 697 | 680 1 33.504000 8.462800 0.072866 698 | 681 1 34.202000 9.671772 0.073784 699 | 682 1 33.504000 10.880743 0.006340 700 | 683 1 34.202000 12.089715 0.086044 701 | 684 1 33.504000 13.298686 0.093441 702 | 685 1 34.202000 14.507658 0.098440 703 | 686 1 33.504000 15.716629 0.085894 704 | 687 1 34.202000 16.925600 0.078556 705 | 688 1 33.504000 18.134572 0.051338 706 | 689 1 34.202000 19.343543 0.017760 707 | 690 1 33.504000 20.552515 0.039859 708 | 691 1 34.202000 21.761486 0.013393 709 | 692 1 33.504000 22.970458 0.003089 710 | 693 1 34.202000 24.179429 0.093914 711 | 694 1 33.504000 25.388401 0.030131 712 | 695 1 34.202000 26.597372 0.029553 713 | 696 1 33.504000 27.806344 0.033294 714 | 697 1 34.202000 29.015315 0.046707 715 | 698 1 33.504000 30.224287 0.064820 716 | 699 1 34.202000 31.433258 0.002523 717 | 700 1 33.504000 32.642230 0.084221 718 | 701 1 34.202000 33.851201 0.055903 719 | 702 1 33.504000 35.060172 0.085410 720 | 703 1 34.202000 36.269144 0.034788 721 | 704 1 33.504000 37.478115 0.044603 722 | 705 1 34.202000 38.687087 0.005424 723 | 706 1 33.504000 39.896058 0.017711 724 | 707 1 34.202000 41.105030 0.066281 725 | 708 1 33.504000 42.314001 0.033083 726 | 709 1 34.202000 43.522973 0.089849 727 | 710 1 33.504000 44.731944 0.011816 728 | 711 1 34.202000 45.940916 0.098842 729 | 712 1 33.504000 47.149887 0.053998 730 | 713 1 34.202000 48.358859 0.070692 731 | 714 1 33.504000 49.567830 0.099949 732 | 715 1 35.598000 0.000000 0.028785 733 | 716 1 36.296000 1.208971 0.041452 734 | 717 1 35.598000 2.417943 0.046484 735 | 718 1 36.296000 3.626914 0.076396 736 | 719 1 35.598000 4.835886 0.081820 737 | 720 1 36.296000 6.044857 0.010022 738 | 721 1 35.598000 7.253829 0.017812 739 | 722 1 36.296000 8.462800 0.035963 740 | 723 1 35.598000 9.671772 0.005670 741 | 724 1 36.296000 10.880743 0.052189 742 | 725 1 35.598000 12.089715 0.033585 743 | 726 1 36.296000 13.298686 0.017567 744 | 727 1 35.598000 14.507658 0.020895 745 | 728 1 36.296000 15.716629 0.090515 746 | 729 1 35.598000 16.925600 0.067539 747 | 730 1 36.296000 18.134572 0.046847 748 | 731 1 35.598000 19.343543 0.091213 749 | 732 1 36.296000 20.552515 0.010401 750 | 733 1 35.598000 21.761486 0.074555 751 | 734 1 36.296000 22.970458 0.073627 752 | 735 1 35.598000 24.179429 0.056186 753 | 736 1 36.296000 25.388401 0.018419 754 | 737 1 35.598000 26.597372 0.059721 755 | 738 1 36.296000 27.806344 0.029994 756 | 739 1 35.598000 29.015315 0.013412 757 | 740 1 36.296000 30.224287 0.021260 758 | 741 1 35.598000 31.433258 0.089494 759 | 742 1 36.296000 32.642230 0.007145 760 | 743 1 35.598000 33.851201 0.024249 761 | 744 1 36.296000 35.060172 0.005375 762 | 745 1 35.598000 36.269144 0.044172 763 | 746 1 36.296000 37.478115 0.001328 764 | 747 1 35.598000 38.687087 0.089719 765 | 748 1 36.296000 39.896058 0.019666 766 | 749 1 35.598000 41.105030 0.009337 767 | 750 1 36.296000 42.314001 0.030737 768 | 751 1 35.598000 43.522973 0.045606 769 | 752 1 36.296000 44.731944 0.010167 770 | 753 1 35.598000 45.940916 0.099539 771 | 754 1 36.296000 47.149887 0.033209 772 | 755 1 35.598000 48.358859 0.029735 773 | 756 1 36.296000 49.567830 0.006205 774 | 757 1 38.390000 0.000000 0.029824 775 | 758 1 37.692000 1.208971 0.004635 776 | 759 1 38.390000 2.417943 0.050543 777 | 760 1 37.692000 3.626914 0.076143 778 | 761 1 38.390000 4.835886 0.063107 779 | 762 1 37.692000 6.044857 0.008989 780 | 763 1 38.390000 7.253829 0.008086 781 | 764 1 37.692000 8.462800 0.077724 782 | 765 1 38.390000 9.671772 0.090513 783 | 766 1 37.692000 10.880743 0.053377 784 | 767 1 38.390000 12.089715 0.010915 785 | 768 1 37.692000 13.298686 0.082581 786 | 769 1 38.390000 14.507658 0.033810 787 | 770 1 37.692000 15.716629 0.029397 788 | 771 1 38.390000 16.925600 0.074631 789 | 772 1 37.692000 18.134572 0.001034 790 | 773 1 38.390000 19.343543 0.004845 791 | 774 1 37.692000 20.552515 0.066792 792 | 775 1 38.390000 21.761486 0.060347 793 | 776 1 37.692000 22.970458 0.052610 794 | 777 1 38.390000 24.179429 0.072971 795 | 778 1 37.692000 25.388401 0.070725 796 | 779 1 38.390000 26.597372 0.078138 797 | 780 1 37.692000 27.806344 0.028798 798 | 781 1 38.390000 29.015315 0.069253 799 | 782 1 37.692000 30.224287 0.055667 800 | 783 1 38.390000 31.433258 0.039652 801 | 784 1 37.692000 32.642230 0.006159 802 | 785 1 38.390000 33.851201 0.078018 803 | 786 1 37.692000 35.060172 0.033758 804 | 787 1 38.390000 36.269144 0.060787 805 | 788 1 37.692000 37.478115 0.074125 806 | 789 1 38.390000 38.687087 0.010481 807 | 790 1 37.692000 39.896058 0.012789 808 | 791 1 38.390000 41.105030 0.054954 809 | 792 1 37.692000 42.314001 0.048523 810 | 793 1 38.390000 43.522973 0.089048 811 | 794 1 37.692000 44.731944 0.079896 812 | 795 1 38.390000 45.940916 0.073434 813 | 796 1 37.692000 47.149887 0.005133 814 | 797 1 38.390000 48.358859 0.007289 815 | 798 1 37.692000 49.567830 0.008853 816 | 799 1 39.786000 0.000000 0.079835 817 | 800 1 40.484000 1.208971 0.094301 818 | 801 1 39.786000 2.417943 0.068372 819 | 802 1 40.484000 3.626914 0.013208 820 | 803 1 39.786000 4.835886 0.072272 821 | 804 1 40.484000 6.044857 0.011035 822 | 805 1 39.786000 7.253829 0.011749 823 | 806 1 40.484000 8.462800 0.064072 824 | 807 1 39.786000 9.671772 0.032881 825 | 808 1 40.484000 10.880743 0.065381 826 | 809 1 39.786000 12.089715 0.074913 827 | 810 1 40.484000 13.298686 0.058319 828 | 811 1 39.786000 14.507658 0.074003 829 | 812 1 40.484000 15.716629 0.023483 830 | 813 1 39.786000 16.925600 0.073496 831 | 814 1 40.484000 18.134572 0.097060 832 | 815 1 39.786000 19.343543 0.086693 833 | 816 1 40.484000 20.552515 0.008623 834 | 817 1 39.786000 21.761486 0.036644 835 | 818 1 40.484000 22.970458 0.036920 836 | 819 1 39.786000 24.179429 0.068503 837 | 820 1 40.484000 25.388401 0.059794 838 | 821 1 39.786000 26.597372 0.078936 839 | 822 1 40.484000 27.806344 0.036765 840 | 823 1 39.786000 29.015315 0.020603 841 | 824 1 40.484000 30.224287 0.008667 842 | 825 1 39.786000 31.433258 0.077193 843 | 826 1 40.484000 32.642230 0.020567 844 | 827 1 39.786000 33.851201 0.038827 845 | 828 1 40.484000 35.060172 0.055178 846 | 829 1 39.786000 36.269144 0.022895 847 | 830 1 40.484000 37.478115 0.064194 848 | 831 1 39.786000 38.687087 0.048448 849 | 832 1 40.484000 39.896058 0.015185 850 | 833 1 39.786000 41.105030 0.078193 851 | 834 1 40.484000 42.314001 0.010061 852 | 835 1 39.786000 43.522973 0.029407 853 | 836 1 40.484000 44.731944 0.023737 854 | 837 1 39.786000 45.940916 0.053087 855 | 838 1 40.484000 47.149887 0.009150 856 | 839 1 39.786000 48.358859 0.040532 857 | 840 1 40.484000 49.567830 0.010485 858 | 841 1 42.578000 0.000000 0.011228 859 | 842 1 41.880000 1.208971 0.078443 860 | 843 1 42.578000 2.417943 0.029157 861 | 844 1 41.880000 3.626914 0.060353 862 | 845 1 42.578000 4.835886 0.096442 863 | 846 1 41.880000 6.044857 0.043248 864 | 847 1 42.578000 7.253829 0.069475 865 | 848 1 41.880000 8.462800 0.075810 866 | 849 1 42.578000 9.671772 0.043264 867 | 850 1 41.880000 10.880743 0.065550 868 | 851 1 42.578000 12.089715 0.010976 869 | 852 1 41.880000 13.298686 0.093376 870 | 853 1 42.578000 14.507658 0.018746 871 | 854 1 41.880000 15.716629 0.026618 872 | 855 1 42.578000 16.925600 0.079783 873 | 856 1 41.880000 18.134572 0.048760 874 | 857 1 42.578000 19.343543 0.076896 875 | 858 1 41.880000 20.552515 0.039601 876 | 859 1 42.578000 21.761486 0.027294 877 | 860 1 41.880000 22.970458 0.003723 878 | 861 1 42.578000 24.179429 0.067329 879 | 862 1 41.880000 25.388401 0.042956 880 | 863 1 42.578000 26.597372 0.045174 881 | 864 1 41.880000 27.806344 0.060986 882 | 865 1 42.578000 29.015315 0.005940 883 | 866 1 41.880000 30.224287 0.031581 884 | 867 1 42.578000 31.433258 0.077272 885 | 868 1 41.880000 32.642230 0.069643 886 | 869 1 42.578000 33.851201 0.012533 887 | 870 1 41.880000 35.060172 0.013015 888 | 871 1 42.578000 36.269144 0.009235 889 | 872 1 41.880000 37.478115 0.000782 890 | 873 1 42.578000 38.687087 0.042311 891 | 874 1 41.880000 39.896058 0.065557 892 | 875 1 42.578000 41.105030 0.072292 893 | 876 1 41.880000 42.314001 0.053121 894 | 877 1 42.578000 43.522973 0.010882 895 | 878 1 41.880000 44.731944 0.063177 896 | 879 1 42.578000 45.940916 0.012650 897 | 880 1 41.880000 47.149887 0.013430 898 | 881 1 42.578000 48.358859 0.009859 899 | 882 1 41.880000 49.567830 0.014203 900 | 883 1 43.974000 0.000000 0.016825 901 | 884 1 44.672000 1.208971 0.019625 902 | 885 1 43.974000 2.417943 0.031748 903 | 886 1 44.672000 3.626914 0.031643 904 | 887 1 43.974000 4.835886 0.021756 905 | 888 1 44.672000 6.044857 0.025104 906 | 889 1 43.974000 7.253829 0.089292 907 | 890 1 44.672000 8.462800 0.070322 908 | 891 1 43.974000 9.671772 0.055574 909 | 892 1 44.672000 10.880743 0.018443 910 | 893 1 43.974000 12.089715 0.021203 911 | 894 1 44.672000 13.298686 0.007735 912 | 895 1 43.974000 14.507658 0.091380 913 | 896 1 44.672000 15.716629 0.070672 914 | 897 1 43.974000 16.925600 0.055779 915 | 898 1 44.672000 18.134572 0.031343 916 | 899 1 43.974000 19.343543 0.016620 917 | 900 1 44.672000 20.552515 0.062250 918 | 901 1 43.974000 21.761486 0.098793 919 | 902 1 44.672000 22.970458 0.017043 920 | 903 1 43.974000 24.179429 0.025779 921 | 904 1 44.672000 25.388401 0.039680 922 | 905 1 43.974000 26.597372 0.007399 923 | 906 1 44.672000 27.806344 0.068410 924 | 907 1 43.974000 29.015315 0.040239 925 | 908 1 44.672000 30.224287 0.098284 926 | 909 1 43.974000 31.433258 0.040218 927 | 910 1 44.672000 32.642230 0.062067 928 | 911 1 43.974000 33.851201 0.015437 929 | 912 1 44.672000 35.060172 0.038135 930 | 913 1 43.974000 36.269144 0.016113 931 | 914 1 44.672000 37.478115 0.075811 932 | 915 1 43.974000 38.687087 0.087111 933 | 916 1 44.672000 39.896058 0.035078 934 | 917 1 43.974000 41.105030 0.068554 935 | 918 1 44.672000 42.314001 0.029415 936 | 919 1 43.974000 43.522973 0.053063 937 | 920 1 44.672000 44.731944 0.083242 938 | 921 1 43.974000 45.940916 0.059749 939 | 922 1 44.672000 47.149887 0.033531 940 | 923 1 43.974000 48.358859 0.029923 941 | 924 1 44.672000 49.567830 0.045259 942 | 925 1 46.766000 0.000000 0.042265 943 | 926 1 46.068000 1.208971 0.035961 944 | 927 1 46.766000 2.417943 0.055832 945 | 928 1 46.068000 3.626914 0.074255 946 | 929 1 46.766000 4.835886 0.042433 947 | 930 1 46.068000 6.044857 0.042936 948 | 931 1 46.766000 7.253829 0.012487 949 | 932 1 46.068000 8.462800 0.002443 950 | 933 1 46.766000 9.671772 0.029019 951 | 934 1 46.068000 10.880743 0.031752 952 | 935 1 46.766000 12.089715 0.065369 953 | 936 1 46.068000 13.298686 0.095694 954 | 937 1 46.766000 14.507658 0.093573 955 | 938 1 46.068000 15.716629 0.045789 956 | 939 1 46.766000 16.925600 0.024048 957 | 940 1 46.068000 18.134572 0.076390 958 | 941 1 46.766000 19.343543 0.075933 959 | 942 1 46.068000 20.552515 0.074065 960 | 943 1 46.766000 21.761486 0.074369 961 | 944 1 46.068000 22.970458 0.010592 962 | 945 1 46.766000 24.179429 0.068156 963 | 946 1 46.068000 25.388401 0.046326 964 | 947 1 46.766000 26.597372 0.021216 965 | 948 1 46.068000 27.806344 0.009852 966 | 949 1 46.766000 29.015315 0.082357 967 | 950 1 46.068000 30.224287 0.017501 968 | 951 1 46.766000 31.433258 0.016357 969 | 952 1 46.068000 32.642230 0.066599 970 | 953 1 46.766000 33.851201 0.089439 971 | 954 1 46.068000 35.060172 0.051656 972 | 955 1 46.766000 36.269144 0.070270 973 | 956 1 46.068000 37.478115 0.015359 974 | 957 1 46.766000 38.687087 0.095346 975 | 958 1 46.068000 39.896058 0.054088 976 | 959 1 46.766000 41.105030 0.067973 977 | 960 1 46.068000 42.314001 0.003656 978 | 961 1 46.766000 43.522973 0.080920 979 | 962 1 46.068000 44.731944 0.074862 980 | 963 1 46.766000 45.940916 0.012019 981 | 964 1 46.068000 47.149887 0.052505 982 | 965 1 46.766000 48.358859 0.032583 983 | 966 1 46.068000 49.567830 0.054645 984 | 967 1 48.162000 0.000000 0.039888 985 | 968 1 48.860000 1.208971 0.041509 986 | 969 1 48.162000 2.417943 0.018074 987 | 970 1 48.860000 3.626914 0.025539 988 | 971 1 48.162000 4.835886 0.002054 989 | 972 1 48.860000 6.044857 0.092368 990 | 973 1 48.162000 7.253829 0.065370 991 | 974 1 48.860000 8.462800 0.093261 992 | 975 1 48.162000 9.671772 0.016351 993 | 976 1 48.860000 10.880743 0.092110 994 | 977 1 48.162000 12.089715 0.079466 995 | 978 1 48.860000 13.298686 0.057739 996 | 979 1 48.162000 14.507658 0.044004 997 | 980 1 48.860000 15.716629 0.025761 998 | 981 1 48.162000 16.925600 0.075195 999 | 982 1 48.860000 18.134572 0.022867 1000 | 983 1 48.162000 19.343543 0.006419 1001 | 984 1 48.860000 20.552515 0.076733 1002 | 985 1 48.162000 21.761486 0.067120 1003 | 986 1 48.860000 22.970458 0.071521 1004 | 987 1 48.162000 24.179429 0.064206 1005 | 988 1 48.860000 25.388401 0.041905 1006 | 989 1 48.162000 26.597372 0.039076 1007 | 990 1 48.860000 27.806344 0.081614 1008 | 991 1 48.162000 29.015315 0.031743 1009 | 992 1 48.860000 30.224287 0.081454 1010 | 993 1 48.162000 31.433258 0.078907 1011 | 994 1 48.860000 32.642230 0.085226 1012 | 995 1 48.162000 33.851201 0.050564 1013 | 996 1 48.860000 35.060172 0.063566 1014 | 997 1 48.162000 36.269144 0.095089 1015 | 998 1 48.860000 37.478115 0.044396 1016 | 999 1 48.162000 38.687087 0.006002 1017 | 1000 1 48.860000 39.896058 0.086675 1018 | 1001 1 48.162000 41.105030 0.063119 1019 | 1002 1 48.860000 42.314001 0.035507 1020 | 1003 1 48.162000 43.522973 0.099700 1021 | 1004 1 48.860000 44.731944 0.022417 1022 | 1005 1 48.162000 45.940916 0.065245 1023 | 1006 1 48.860000 47.149887 0.060499 1024 | 1007 1 48.162000 48.358859 0.038725 1025 | 1008 1 48.860000 49.567830 0.014219 -------------------------------------------------------------------------------- /graphene_tensile_tests/grap_in.in: -------------------------------------------------------------------------------- 1 | # Created by Nuwan Dewapriya on 2020-12-16 2 | 3 | ##---------------INITIALIZATION------------------------------- 4 | 5 | units metal 6 | dimension 3 7 | boundary p p f 8 | atom_style atomic 9 | newton on 10 | 11 | 12 | ##---------------ATOM DEFINITION------------------------------ 13 | 14 | read_data grap_data.data 15 | 16 | 17 | ##---------------FORCE FIELDS--------------------------------- 18 | 19 | pair_style airebo 3.0 20 | pair_coeff * * CH.airebo C 21 | 22 | 23 | ##---------------SETTINGS------------------------------------- 24 | 25 | timestep 0.0005 26 | variable ts equal 0.0005 27 | 28 | 29 | ##---------------COMPUTES------------------------------------- 30 | 31 | compute 1 all stress/atom NULL 32 | compute 2 all reduce sum c_1[1] c_1[2] 33 | 34 | 35 | variable Lx equal lx 36 | variable Ly equal ly 37 | variable Lz equal lz 38 | variable Vol equal vol 39 | variable thickn equal 3.4 40 | fix 1 all npt temp 300 300 0.05 x 0 0 0.5 y 0 0 0.5 41 | thermo 200 42 | ##---------------RELAXATION-------------------------------------- 43 | 44 | run 2000 45 | 46 | 47 | ##---------------DEFORMATION-------------------------------------- 48 | unfix 1 49 | reset_timestep 0 50 | fix 1 all npt temp 300 300 0.05 x 0 0 0.5 51 | fix 2 all ave/time 1 10 10 c_2[1] c_2[2] 52 | fix 3 all ave/time 1 10 10 v_Lx v_Ly v_Lz v_Vol 53 | variable srate equal 1.0e11 54 | variable srate1 equal "v_srate / 1.0e12" 55 | fix 4 all deform 1 y erate ${srate1} units box remap x 56 | run 10 57 | 58 | ##---------------THERMO-OUTPUTS-------------------------------------- 59 | variable CorVol equal f_3[4]*v_thickn/(f_3[3]) 60 | variable ConvoFac equal 1/1.0e4 61 | variable sigmaxx equal f_2[1]*v_ConvoFac/v_CorVol 62 | variable sigmayy equal f_2[2]*v_ConvoFac/v_CorVol 63 | variable StrainPerTs equal v_srate1*v_ts 64 | variable strain equal v_StrainPerTs*step 65 | thermo 100 66 | thermo_style custom step temp v_strain v_sigmaxx v_sigmayy pe ke lx ly vol 67 | 68 | 69 | ##---------------DEFORMATION-------------------------------------- 70 | dump 1 all atom 50 tensile_test.lammpstrj 71 | fix write all print 10 "${strain} ${sigmayy} ${sigmaxx}" file stress-strain.dump screen no 72 | run 6000 73 | -------------------------------------------------------------------------------- /graphene_tensile_tests/stress_strain_plot.m: -------------------------------------------------------------------------------- 1 | %% Nuwan Dewapriya 2 | %% 2020/12/12 3 | %% This code extracts data from the LAMMPS output file stress-strain.dump and plot the stress-strain curve. 4 | 5 | clear all 6 | close all 7 | clc 8 | 9 | %% Extracting stress-strain data from the log.lammps file 10 | 11 | [fid] = fopen('stress-strain.dump'); 12 | 13 | headings = fscanf(fid,'%s ',7); 14 | 15 | [Stress,count] = fscanf(fid, '%f %f %f',[3,inf]); 16 | 17 | Stress = Stress'; % 18 | 19 | %% Plotting 20 | 21 | figure 22 | plot(Stress(:,1), Stress(:,2),'-or','MarkerSize',2) 23 | hold on 24 | plot(Stress(:,1), Stress(:,3),'-ob','MarkerSize',2) 25 | xlabel('Strain','fontsize',12) 26 | ylabel('Stress (GPa)','fontsize',12) 27 | grid on 28 | set(gca,'LineWidth',1,'Fontsize',12) 29 | axis square 30 | axis([0 0.3 0 120]) 31 | legend({ '\sigma_{yy}', '\sigma_{xx}'},'Location','northwest','FontSize',14) 32 | legend boxoff -------------------------------------------------------------------------------- /overview.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nuwan-d/LAMMPS_tutorials_for_short_courses/22081242a39b93764fec226de3570889520274ff/overview.PNG -------------------------------------------------------------------------------- /polyurethane_aluminum_interface/Al_jnp_real.eam: -------------------------------------------------------------------------------- 1 | DATE: 2019-10-17-Nuwan Dewapriya- Transformed Al_jnp.eam to the real unit: F* = F*23.0606 and Z* = Z*sqrt(23.0606); ORIGINAL DATE: 2007-06-11 CONTRIBUTOR: Unknown CITATION: Jacobsen, Norskov and Puska, Phys Rev B, 35, 7423 (1987) COMMENT: FUNCTIONS FOR ALUMINUM 8/26/86 FROM JACOBSEN, NORSKOV, AND PUSKA 2 | 13 26.982000 3.986000 fcc 3 | 500 9.9999999999999829e-05 500 1.5000000000000013e-02 6.0000000000000000e+00 4 | -4.173969e+01 -4.386809e+01 -4.631746e+01 -4.886132e+01 -5.145975e+01 5 | -5.409502e+01 -5.675717e+01 -5.943990e+01 -6.213886e+01 -6.485094e+01 6 | -6.757377e+01 -7.030552e+01 -7.304473e+01 -7.579023e+01 -7.854104e+01 7 | -8.129634e+01 -8.405546e+01 -8.681779e+01 -8.958285e+01 -9.235018e+01 8 | -9.511941e+01 -9.789020e+01 -1.006623e+02 -1.034353e+02 -1.062091e+02 9 | -1.089835e+02 -1.117583e+02 -1.145332e+02 -1.173082e+02 -1.200831e+02 10 | -1.228578e+02 -1.256322e+02 -1.284061e+02 -1.311795e+02 -1.339523e+02 11 | -1.367244e+02 -1.394957e+02 -1.422662e+02 -1.450359e+02 -1.478045e+02 12 | -1.505722e+02 -1.533389e+02 -1.561045e+02 -1.588689e+02 -1.616322e+02 13 | -1.643943e+02 -1.671552e+02 -1.699148e+02 -1.726732e+02 -1.754303e+02 14 | -1.781861e+02 -1.809405e+02 -1.836936e+02 -1.864453e+02 -1.891957e+02 15 | -1.919446e+02 -1.946922e+02 -1.974383e+02 -2.001831e+02 -2.029264e+02 16 | -2.056682e+02 -2.084087e+02 -2.111476e+02 -2.138852e+02 -2.166213e+02 17 | -2.193559e+02 -2.220891e+02 -2.248208e+02 -2.275511e+02 -2.302799e+02 18 | -2.330073e+02 -2.357332e+02 -2.384576e+02 -2.411806e+02 -2.439022e+02 19 | -2.466223e+02 -2.493410e+02 -2.520583e+02 -2.547741e+02 -2.574885e+02 20 | -2.602015e+02 -2.629130e+02 -2.656232e+02 -2.683319e+02 -2.710393e+02 21 | -2.737453e+02 -2.764498e+02 -2.791530e+02 -2.818549e+02 -2.845553e+02 22 | -2.872545e+02 -2.899522e+02 -2.926487e+02 -2.953438e+02 -2.980375e+02 23 | -3.007300e+02 -3.034211e+02 -3.061110e+02 -3.087996e+02 -3.114869e+02 24 | -3.141729e+02 -3.168576e+02 -3.195411e+02 -3.222234e+02 -3.249044e+02 25 | -3.275842e+02 -3.302628e+02 -3.329402e+02 -3.356164e+02 -3.382914e+02 26 | -3.409652e+02 -3.436379e+02 -3.463094e+02 -3.489797e+02 -3.516489e+02 27 | -3.543170e+02 -3.569840e+02 -3.596499e+02 -3.623147e+02 -3.649783e+02 28 | -3.676410e+02 -3.703025e+02 -3.729630e+02 -3.756225e+02 -3.782809e+02 29 | -3.809383e+02 -3.835947e+02 -3.862501e+02 -3.889045e+02 -3.915580e+02 30 | -3.942104e+02 -3.968619e+02 -3.995125e+02 -4.021621e+02 -4.048108e+02 31 | -4.074586e+02 -4.101054e+02 -4.127514e+02 -4.153965e+02 -4.180407e+02 32 | -4.206841e+02 -4.233266e+02 -4.259683e+02 -4.286091e+02 -4.312492e+02 33 | -4.338884e+02 -4.365268e+02 -4.391645e+02 -4.418013e+02 -4.444374e+02 34 | -4.470728e+02 -4.497074e+02 -4.523413e+02 -4.549745e+02 -4.576069e+02 35 | -4.602387e+02 -4.628697e+02 -4.655001e+02 -4.681299e+02 -4.707589e+02 36 | -4.733874e+02 -4.760152e+02 -4.786424e+02 -4.812689e+02 -4.838949e+02 37 | -4.865203e+02 -4.891451e+02 -4.917693e+02 -4.943930e+02 -4.970161e+02 38 | -4.996387e+02 -5.022607e+02 -5.048823e+02 -5.075033e+02 -5.101239e+02 39 | -5.127440e+02 -5.153636e+02 -5.179827e+02 -5.206014e+02 -5.232197e+02 40 | -5.258375e+02 -5.284549e+02 -5.310719e+02 -5.336885e+02 -5.363047e+02 41 | -5.389206e+02 -5.415361e+02 -5.441512e+02 -5.467660e+02 -5.493804e+02 42 | -5.519945e+02 -5.546084e+02 -5.572219e+02 -5.598351e+02 -5.624480e+02 43 | -5.650607e+02 -5.676731e+02 -5.702853e+02 -5.728972e+02 -5.755089e+02 44 | -5.781204e+02 -5.807317e+02 -5.833428e+02 -5.859537e+02 -5.885644e+02 45 | -5.911749e+02 -5.937853e+02 -5.963956e+02 -5.990057e+02 -6.016157e+02 46 | -6.042256e+02 -6.068354e+02 -6.094451e+02 -6.120547e+02 -6.146642e+02 47 | -6.172737e+02 -6.198831e+02 -6.224925e+02 -6.251018e+02 -6.277111e+02 48 | -6.303204e+02 -6.329297e+02 -6.355390e+02 -6.381484e+02 -6.407577e+02 49 | -6.433671e+02 -6.459766e+02 -6.485861e+02 -6.511957e+02 -6.538053e+02 50 | -6.564151e+02 -6.590249e+02 -6.616349e+02 -6.642450e+02 -6.668552e+02 51 | -6.694655e+02 -6.720760e+02 -6.746867e+02 -6.772975e+02 -6.799085e+02 52 | -6.825197e+02 -6.851310e+02 -6.877426e+02 -6.903544e+02 -6.929665e+02 53 | -6.955787e+02 -6.981913e+02 -7.008040e+02 -7.034171e+02 -7.060304e+02 54 | -7.086440e+02 -7.112579e+02 -7.138721e+02 -7.164867e+02 -7.191015e+02 55 | -7.217167e+02 -7.243322e+02 -7.269481e+02 -7.295644e+02 -7.321810e+02 56 | -7.347980e+02 -7.374154e+02 -7.400332e+02 -7.426514e+02 -7.452700e+02 57 | -7.478891e+02 -7.505086e+02 -7.531285e+02 -7.557489e+02 -7.583698e+02 58 | -7.609912e+02 -7.636130e+02 -7.662353e+02 -7.688582e+02 -7.714815e+02 59 | -7.741054e+02 -7.767298e+02 -7.793548e+02 -7.819803e+02 -7.846064e+02 60 | -7.872330e+02 -7.898603e+02 -7.924881e+02 -7.951165e+02 -7.977455e+02 61 | -8.003752e+02 -8.030055e+02 -8.056364e+02 -8.082679e+02 -8.109001e+02 62 | -8.135330e+02 -8.161665e+02 -8.188008e+02 -8.214357e+02 -8.240713e+02 63 | -8.267076e+02 -8.293447e+02 -8.319825e+02 -8.346210e+02 -8.372602e+02 64 | -8.399003e+02 -8.425410e+02 -8.451826e+02 -8.478249e+02 -8.504681e+02 65 | -8.531120e+02 -8.557567e+02 -8.584023e+02 -8.610487e+02 -8.636959e+02 66 | -8.663439e+02 -8.689929e+02 -8.716426e+02 -8.742933e+02 -8.769448e+02 67 | -8.795972e+02 -8.822506e+02 -8.849048e+02 -8.875599e+02 -8.902160e+02 68 | -8.928730e+02 -8.955310e+02 -8.981899e+02 -9.008497e+02 -9.035105e+02 69 | -9.061723e+02 -9.088351e+02 -9.114989e+02 -9.141637e+02 -9.168295e+02 70 | -9.194963e+02 -9.221642e+02 -9.248331e+02 -9.275030e+02 -9.301740e+02 71 | -9.328461e+02 -9.355192e+02 -9.381934e+02 -9.408688e+02 -9.435452e+02 72 | -9.462227e+02 -9.489013e+02 -9.515811e+02 -9.542620e+02 -9.569440e+02 73 | -9.596272e+02 -9.623115e+02 -9.649970e+02 -9.676837e+02 -9.703716e+02 74 | -9.730607e+02 -9.757509e+02 -9.784424e+02 -9.811351e+02 -9.838290e+02 75 | -9.865242e+02 -9.892206e+02 -9.919182e+02 -9.946172e+02 -9.973173e+02 76 | -1.000019e+03 -1.002722e+03 -1.005426e+03 -1.008131e+03 -1.010838e+03 77 | -1.013546e+03 -1.016255e+03 -1.018966e+03 -1.021678e+03 -1.024391e+03 78 | -1.027106e+03 -1.029822e+03 -1.032539e+03 -1.035258e+03 -1.037978e+03 79 | -1.040700e+03 -1.043423e+03 -1.046147e+03 -1.048873e+03 -1.051600e+03 80 | -1.054329e+03 -1.057059e+03 -1.059791e+03 -1.062524e+03 -1.065259e+03 81 | -1.067995e+03 -1.070733e+03 -1.073472e+03 -1.076212e+03 -1.078954e+03 82 | -1.081698e+03 -1.084443e+03 -1.087190e+03 -1.089938e+03 -1.092688e+03 83 | -1.095439e+03 -1.098192e+03 -1.100947e+03 -1.103703e+03 -1.106461e+03 84 | -1.109220e+03 -1.111981e+03 -1.114744e+03 -1.117508e+03 -1.120274e+03 85 | -1.123041e+03 -1.125810e+03 -1.128581e+03 -1.131353e+03 -1.134128e+03 86 | -1.136903e+03 -1.139681e+03 -1.142460e+03 -1.145241e+03 -1.148024e+03 87 | -1.150808e+03 -1.153594e+03 -1.156382e+03 -1.159172e+03 -1.161963e+03 88 | -1.164756e+03 -1.167551e+03 -1.170348e+03 -1.173146e+03 -1.175946e+03 89 | -1.178748e+03 -1.181552e+03 -1.184358e+03 -1.187165e+03 -1.189975e+03 90 | -1.192786e+03 -1.195599e+03 -1.198414e+03 -1.201230e+03 -1.204049e+03 91 | -1.206869e+03 -1.209692e+03 -1.212516e+03 -1.215342e+03 -1.218170e+03 92 | -1.221000e+03 -1.223832e+03 -1.226666e+03 -1.229502e+03 -1.232340e+03 93 | -1.235179e+03 -1.238021e+03 -1.240865e+03 -1.243710e+03 -1.246558e+03 94 | -1.249407e+03 -1.252259e+03 -1.255113e+03 -1.257968e+03 -1.260826e+03 95 | -1.263686e+03 -1.266547e+03 -1.269411e+03 -1.272277e+03 -1.275145e+03 96 | -1.278015e+03 -1.280887e+03 -1.283761e+03 -1.286637e+03 -1.289515e+03 97 | -1.292396e+03 -1.295278e+03 -1.298163e+03 -1.301050e+03 -1.303939e+03 98 | -1.306830e+03 -1.309723e+03 -1.312618e+03 -1.315516e+03 -1.318416e+03 99 | -1.321318e+03 -1.324222e+03 -1.327128e+03 -1.330036e+03 -1.332947e+03 100 | -1.335860e+03 -1.338775e+03 -1.341693e+03 -1.344612e+03 -1.347534e+03 101 | -1.350458e+03 -1.353385e+03 -1.356313e+03 -1.359244e+03 -1.362177e+03 102 | -1.365113e+03 -1.368051e+03 -1.370991e+03 -1.373933e+03 -1.376878e+03 103 | -1.379825e+03 -1.382774e+03 -1.385726e+03 -1.388680e+03 -1.391637e+03 104 | 0.000000e+00 8.297529e+00 1.151980e+01 1.385067e+01 1.570071e+01 105 | 1.723265e+01 1.853188e+01 1.965027e+01 2.062238e+01 2.147279e+01 106 | 2.221976e+01 2.287740e+01 2.345690e+01 2.396736e+01 2.441631e+01 107 | 2.481006e+01 2.515400e+01 2.545278e+01 2.571044e+01 2.593053e+01 108 | 2.611618e+01 2.627018e+01 2.639503e+01 2.649299e+01 2.656609e+01 109 | 2.661618e+01 2.664493e+01 2.665391e+01 2.664451e+01 2.661805e+01 110 | 2.657571e+01 2.651861e+01 2.644779e+01 2.636418e+01 2.626869e+01 111 | 2.616214e+01 2.604530e+01 2.591889e+01 2.578359e+01 2.564003e+01 112 | 2.548880e+01 2.533046e+01 2.516554e+01 2.499451e+01 2.481785e+01 113 | 2.463599e+01 2.444933e+01 2.425828e+01 2.406318e+01 2.386439e+01 114 | 2.366223e+01 2.345701e+01 2.324901e+01 2.303851e+01 2.282577e+01 115 | 2.261103e+01 2.239453e+01 2.217648e+01 2.195710e+01 2.173657e+01 116 | 2.151508e+01 2.129281e+01 2.106993e+01 2.084658e+01 2.062293e+01 117 | 2.039910e+01 2.017523e+01 1.995145e+01 1.972788e+01 1.950462e+01 118 | 1.928178e+01 1.905947e+01 1.883777e+01 1.861678e+01 1.839658e+01 119 | 1.817725e+01 1.795885e+01 1.774147e+01 1.752517e+01 1.731000e+01 120 | 1.709603e+01 1.688332e+01 1.667190e+01 1.646183e+01 1.625316e+01 121 | 1.604592e+01 1.584016e+01 1.563590e+01 1.543319e+01 1.523205e+01 122 | 1.503251e+01 1.483459e+01 1.463833e+01 1.444374e+01 1.425085e+01 123 | 1.405966e+01 1.387021e+01 1.368249e+01 1.349653e+01 1.331234e+01 124 | 1.312992e+01 1.294929e+01 1.277045e+01 1.259341e+01 1.241817e+01 125 | 1.224474e+01 1.207312e+01 1.190331e+01 1.173532e+01 1.156913e+01 126 | 1.140475e+01 1.124218e+01 1.108142e+01 1.092246e+01 1.076529e+01 127 | 1.060992e+01 1.045633e+01 1.030452e+01 1.015449e+01 1.000622e+01 128 | 9.859703e+00 9.714939e+00 9.571915e+00 9.430622e+00 9.291048e+00 129 | 9.153186e+00 9.017023e+00 8.882549e+00 8.749752e+00 8.618622e+00 130 | 8.489146e+00 8.361313e+00 8.235109e+00 8.110523e+00 7.987541e+00 131 | 7.866152e+00 7.746341e+00 7.628095e+00 7.511401e+00 7.396245e+00 132 | 7.282615e+00 7.170495e+00 7.059872e+00 6.950732e+00 6.843061e+00 133 | 6.736845e+00 6.632070e+00 6.528722e+00 6.426785e+00 6.326247e+00 134 | 6.227092e+00 6.129306e+00 6.032875e+00 5.937786e+00 5.844022e+00 135 | 5.751570e+00 5.660417e+00 5.570546e+00 5.481945e+00 5.394599e+00 136 | 5.308494e+00 5.223616e+00 5.139951e+00 5.057484e+00 4.976203e+00 137 | 4.896092e+00 4.817138e+00 4.739328e+00 4.662648e+00 4.587084e+00 138 | 4.512623e+00 4.439251e+00 4.366955e+00 4.295721e+00 4.225538e+00 139 | 4.156390e+00 4.088267e+00 4.021154e+00 3.955039e+00 3.889909e+00 140 | 3.825751e+00 3.762554e+00 3.700304e+00 3.638990e+00 3.578600e+00 141 | 3.519120e+00 3.460540e+00 3.402848e+00 3.346031e+00 3.290078e+00 142 | 3.234978e+00 3.180719e+00 3.127290e+00 3.074679e+00 3.022877e+00 143 | 2.971870e+00 2.921650e+00 2.872205e+00 2.823524e+00 2.775597e+00 144 | 2.728414e+00 2.681964e+00 2.636237e+00 2.591222e+00 2.546911e+00 145 | 2.503293e+00 2.460359e+00 2.418098e+00 2.376501e+00 2.335559e+00 146 | 2.295263e+00 2.255603e+00 2.216570e+00 2.178155e+00 2.140350e+00 147 | 2.103145e+00 2.066533e+00 2.030503e+00 1.995049e+00 1.960161e+00 148 | 1.925831e+00 1.892051e+00 1.858813e+00 1.826110e+00 1.793932e+00 149 | 1.762273e+00 1.731125e+00 1.700480e+00 1.670331e+00 1.640671e+00 150 | 1.611491e+00 1.582786e+00 1.554547e+00 1.526768e+00 1.499442e+00 151 | 1.472562e+00 1.446122e+00 1.420114e+00 1.394533e+00 1.369371e+00 152 | 1.344623e+00 1.320282e+00 1.296341e+00 1.272796e+00 1.249639e+00 153 | 1.226865e+00 1.204468e+00 1.182442e+00 1.160781e+00 1.139480e+00 154 | 1.118534e+00 1.097935e+00 1.077681e+00 1.057764e+00 1.038180e+00 155 | 1.018923e+00 9.999885e-01 9.813716e-01 9.630669e-01 9.450698e-01 156 | 9.273753e-01 9.099786e-01 8.928752e-01 8.760603e-01 8.595293e-01 157 | 8.432779e-01 8.273015e-01 8.115958e-01 7.961565e-01 7.809793e-01 158 | 7.660600e-01 7.513946e-01 7.369789e-01 7.228090e-01 7.088809e-01 159 | 6.951907e-01 6.817346e-01 6.685089e-01 6.555097e-01 6.427334e-01 160 | 6.301765e-01 6.178353e-01 6.057063e-01 5.937862e-01 5.820714e-01 161 | 5.705587e-01 5.592447e-01 5.481261e-01 5.371998e-01 5.264627e-01 162 | 5.159115e-01 5.055432e-01 4.953549e-01 4.853434e-01 4.755060e-01 163 | 4.658396e-01 4.563416e-01 4.470089e-01 4.378390e-01 4.288290e-01 164 | 4.199764e-01 4.112784e-01 4.027324e-01 3.943359e-01 3.860864e-01 165 | 3.779814e-01 3.700184e-01 3.621951e-01 3.545090e-01 3.469577e-01 166 | 3.395391e-01 3.322508e-01 3.250906e-01 3.180562e-01 3.111455e-01 167 | 3.043564e-01 2.976868e-01 2.911345e-01 2.846975e-01 2.783737e-01 168 | 2.721613e-01 2.660583e-01 2.600626e-01 2.541724e-01 2.483857e-01 169 | 2.427009e-01 2.371159e-01 2.316291e-01 2.262385e-01 2.209426e-01 170 | 2.157394e-01 2.106274e-01 2.056047e-01 2.006698e-01 1.958210e-01 171 | 1.910567e-01 1.863752e-01 1.817749e-01 1.772543e-01 1.728118e-01 172 | 1.684459e-01 1.641549e-01 1.599375e-01 1.557920e-01 1.517171e-01 173 | 1.477111e-01 1.437726e-01 1.399002e-01 1.360923e-01 1.323476e-01 174 | 1.286644e-01 1.250415e-01 1.214773e-01 1.179702e-01 1.145190e-01 175 | 1.111219e-01 1.077777e-01 1.044846e-01 1.012412e-01 9.804587e-02 176 | 9.489699e-02 9.179291e-02 8.873191e-02 8.571221e-02 8.273197e-02 177 | 7.978925e-02 7.688201e-02 7.400809e-02 7.116519e-02 6.835082e-02 178 | 6.556228e-02 6.279662e-02 6.005057e-02 5.732046e-02 5.460215e-02 179 | 5.189087e-02 4.918108e-02 4.646621e-02 4.373835e-02 4.098776e-02 180 | 3.820216e-02 3.536563e-02 3.245681e-02 2.944584e-02 2.628851e-02 181 | 2.291438e-02 1.919805e-02 1.487110e-02 9.078242e-03 0.000000e+00 182 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 183 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 184 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 185 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 186 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 187 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 188 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 189 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 190 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 191 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 192 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 193 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 194 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 195 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 196 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 197 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 198 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 199 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 200 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 201 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 202 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 203 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 204 | 9.999994e-01 9.646288e-01 9.305092e-01 8.975965e-01 8.658479e-01 205 | 8.352223e-01 8.056799e-01 7.771825e-01 7.496930e-01 7.231759e-01 206 | 6.975966e-01 6.729222e-01 6.491205e-01 6.261606e-01 6.040129e-01 207 | 5.826486e-01 5.620399e-01 5.421602e-01 5.229836e-01 5.044853e-01 208 | 4.866413e-01 4.694285e-01 4.528245e-01 4.368077e-01 4.213575e-01 209 | 4.064538e-01 3.920773e-01 3.782092e-01 3.648317e-01 3.519274e-01 210 | 3.394794e-01 3.274718e-01 3.158889e-01 3.047157e-01 2.939377e-01 211 | 2.835409e-01 2.735118e-01 2.638375e-01 2.545054e-01 2.455034e-01 212 | 2.368197e-01 2.284433e-01 2.203630e-01 2.125686e-01 2.050499e-01 213 | 1.977972e-01 1.908009e-01 1.840522e-01 1.775421e-01 1.712623e-01 214 | 1.652046e-01 1.593612e-01 1.537245e-01 1.482871e-01 1.430421e-01 215 | 1.379826e-01 1.331020e-01 1.283941e-01 1.238527e-01 1.194719e-01 216 | 1.152461e-01 1.111698e-01 1.072376e-01 1.034445e-01 9.978559e-02 217 | 9.625609e-02 9.285143e-02 8.956720e-02 8.639913e-02 8.334312e-02 218 | 8.039520e-02 7.755155e-02 7.480848e-02 7.216243e-02 6.960998e-02 219 | 6.714781e-02 6.477273e-02 6.248166e-02 6.027162e-02 5.813976e-02 220 | 5.608330e-02 5.409957e-02 5.218602e-02 5.034014e-02 4.855956e-02 221 | 4.684196e-02 4.518511e-02 4.358686e-02 4.204515e-02 4.055796e-02 222 | 3.912338e-02 3.773954e-02 3.640465e-02 3.511698e-02 3.387485e-02 223 | 3.267665e-02 3.152084e-02 3.040591e-02 2.933041e-02 2.829295e-02 224 | 2.729219e-02 2.632683e-02 2.539562e-02 2.449734e-02 2.363083e-02 225 | 2.279497e-02 2.198868e-02 2.121091e-02 2.046064e-02 1.973692e-02 226 | 1.903879e-02 1.836536e-02 1.771574e-02 1.708911e-02 1.648463e-02 227 | 1.590154e-02 1.533907e-02 1.479650e-02 1.427312e-02 1.376825e-02 228 | 1.328124e-02 1.281145e-02 1.235828e-02 1.192114e-02 1.149947e-02 229 | 1.109270e-02 1.070033e-02 1.032183e-02 9.956721e-03 9.604525e-03 230 | 9.264787e-03 8.937066e-03 8.620937e-03 8.315989e-03 8.021827e-03 231 | 7.738071e-03 7.464350e-03 7.200312e-03 6.945613e-03 6.699922e-03 232 | 6.462922e-03 6.234305e-03 6.013774e-03 5.801043e-03 5.595837e-03 233 | 5.397889e-03 5.206942e-03 5.022750e-03 4.845072e-03 4.673679e-03 234 | 4.508348e-03 4.348866e-03 4.195024e-03 4.046623e-03 3.903472e-03 235 | 3.765384e-03 3.632180e-03 3.503688e-03 3.379741e-03 3.260178e-03 236 | 3.144843e-03 3.033589e-03 2.926269e-03 2.822745e-03 2.722883e-03 237 | 2.626554e-03 2.533631e-03 2.443995e-03 2.357530e-03 2.274123e-03 238 | 2.193666e-03 2.116055e-03 2.041189e-03 1.968971e-03 1.899308e-03 239 | 1.832109e-03 1.767286e-03 1.704757e-03 1.644439e-03 1.586254e-03 240 | 1.530128e-03 1.475986e-03 1.423760e-03 1.373381e-03 1.324784e-03 241 | 1.277906e-03 1.232686e-03 1.189066e-03 1.146988e-03 1.106399e-03 242 | 1.067245e-03 1.029476e-03 9.930433e-04 9.578991e-04 9.239980e-04 243 | 8.912959e-04 8.597506e-04 8.293210e-04 7.999678e-04 7.716528e-04 244 | 7.443393e-04 7.179919e-04 6.925764e-04 6.680599e-04 6.444106e-04 245 | 6.215977e-04 5.995918e-04 5.783642e-04 5.578875e-04 5.381350e-04 246 | 5.190812e-04 5.007013e-04 4.829716e-04 4.658689e-04 4.493712e-04 247 | 4.334571e-04 4.181058e-04 4.032975e-04 3.890130e-04 3.752337e-04 248 | 3.619418e-04 3.491201e-04 3.367518e-04 3.248211e-04 3.133123e-04 249 | 3.022106e-04 2.915016e-04 2.811714e-04 2.712066e-04 2.615942e-04 250 | 2.523218e-04 2.433774e-04 2.347493e-04 2.264265e-04 2.183980e-04 251 | 2.106535e-04 2.031829e-04 1.959766e-04 1.890251e-04 1.823196e-04 252 | 1.758512e-04 1.696116e-04 1.635927e-04 1.577867e-04 1.521860e-04 253 | 1.467835e-04 1.415720e-04 1.365449e-04 1.316956e-04 1.270178e-04 254 | 1.225055e-04 1.181528e-04 1.139540e-04 1.099038e-04 1.059968e-04 255 | 1.022280e-04 9.859247e-05 9.508556e-05 9.170270e-05 8.843949e-05 256 | 8.529170e-05 8.225525e-05 7.932620e-05 7.650076e-05 7.377525e-05 257 | 7.114615e-05 6.861004e-05 6.616363e-05 6.380375e-05 6.152735e-05 258 | 5.933146e-05 5.721324e-05 5.516994e-05 5.319892e-05 5.129761e-05 259 | 4.946356e-05 4.769437e-05 4.598777e-05 4.434152e-05 4.275351e-05 260 | 4.122167e-05 3.974400e-05 3.831860e-05 3.694363e-05 3.561728e-05 261 | 3.433785e-05 3.310367e-05 3.191314e-05 3.076473e-05 2.965694e-05 262 | 2.858832e-05 2.755751e-05 2.656316e-05 2.560398e-05 2.467872e-05 263 | 2.378619e-05 2.292523e-05 2.209473e-05 2.129360e-05 2.052080e-05 264 | 1.977534e-05 1.905625e-05 1.836259e-05 1.769347e-05 1.704801e-05 265 | 1.642539e-05 1.582479e-05 1.524543e-05 1.468656e-05 1.414746e-05 266 | 1.362743e-05 1.312579e-05 1.264190e-05 1.217512e-05 1.172485e-05 267 | 1.129051e-05 1.087153e-05 1.046737e-05 1.007751e-05 9.701435e-06 268 | 9.338663e-06 8.988723e-06 8.651160e-06 8.325537e-06 8.011431e-06 269 | 7.708435e-06 7.416157e-06 7.134217e-06 6.862249e-06 6.599901e-06 270 | 6.346832e-06 6.102714e-06 5.867231e-06 5.640078e-06 5.420958e-06 271 | 5.209590e-06 5.005697e-06 4.809016e-06 4.619292e-06 4.436279e-06 272 | 4.259739e-06 4.089443e-06 3.925171e-06 3.766709e-06 3.613852e-06 273 | 3.466402e-06 3.324167e-06 3.186963e-06 3.054612e-06 2.926942e-06 274 | 2.803788e-06 2.684991e-06 2.570395e-06 2.459852e-06 2.353220e-06 275 | 2.250359e-06 2.151136e-06 2.055423e-06 1.963095e-06 1.874033e-06 276 | 1.788122e-06 1.705248e-06 1.625307e-06 1.548193e-06 1.473806e-06 277 | 1.402050e-06 1.332833e-06 1.266064e-06 1.201656e-06 1.139527e-06 278 | 1.079595e-06 1.021783e-06 9.660160e-07 9.122214e-07 8.603295e-07 279 | 8.102731e-07 7.619872e-07 7.154092e-07 6.704787e-07 6.271374e-07 280 | 5.853291e-07 5.449996e-07 5.060966e-07 4.685696e-07 4.323700e-07 281 | 3.974508e-07 3.637667e-07 3.312740e-07 2.999306e-07 2.696959e-07 282 | 2.405305e-07 2.123968e-07 1.852582e-07 1.590794e-07 1.338267e-07 283 | 1.094671e-07 8.596920e-08 6.330240e-08 4.143734e-08 2.034565e-08 284 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 285 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 286 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 287 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 288 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 289 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 290 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 291 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 292 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 293 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 294 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 295 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 296 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 297 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 298 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 299 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 300 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 301 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 302 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 303 | 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 304 | -------------------------------------------------------------------------------- /polyurethane_aluminum_interface/energy_plot.m: -------------------------------------------------------------------------------- 1 | %% Nuwan Dewapriya 2 | %% 2020/12/12 3 | %% This code extracts data from the LAMMPS output file energy.dump and plot the time-energy curve. 4 | 5 | clear all 6 | close all 7 | clc 8 | 9 | %% Extracting stress-strain data from the log.lammps file 10 | 11 | [fid] = fopen('energy.dump'); 12 | 13 | headings = fscanf(fid,'%s ',7); 14 | 15 | [Energy,count] = fscanf(fid, '%f %f',[2,inf]);%% etract only Step and E_pair 16 | 17 | Energy = Energy'; % 18 | 19 | %% Plotting 20 | 21 | figure 22 | plot(Energy(:,1), Energy(:,2),'-or','MarkerSize',2) 23 | xlabel('Time (ps)','fontsize',12) 24 | ylabel('Energy (kcal/mol)','fontsize',12) 25 | grid on 26 | set(gca,'LineWidth',1,'Fontsize',12) 27 | axis square 28 | %axis([0 0.3 0 120]) -------------------------------------------------------------------------------- /polyurethane_aluminum_interface/pu_al_in.in: -------------------------------------------------------------------------------- 1 | # Created by Nuwan Dewapriya on 2020-12-16 2 | 3 | units real 4 | atom_style full 5 | boundary p p p 6 | 7 | 8 | # -----------------Potential definition----------------- 9 | 10 | read_data "pu_al_data.data" 11 | include "pu_al_para.params" 12 | 13 | 14 | # -----------------Integration----------------- 15 | 16 | timestep 0.5 17 | variable t_step equal 0.5 18 | kspace_style pppm 1.0e-6 19 | 20 | 21 | # ----------------- Minimization----------------- 22 | 23 | min_style cg 24 | min_modify dmax 0.4 25 | minimize 1e-8 1e-10 200 500 26 | reset_timestep 0 27 | 28 | 29 | # -----------------Run----------------- 30 | 31 | fix 1 all nve 32 | fix 2 all langevin 300.0 300.0 $(100.0*v_t_step) 904297 33 | 34 | thermo 200 35 | dump 1 all atom 200 al_pu_equilibration.lammpstrj 36 | 37 | variable E_t equal etotal 38 | variable time equal time*0.001 39 | fix write all print 10 "${time} ${E_t}" file energy.dump screen no 40 | 41 | run 5000 42 | -------------------------------------------------------------------------------- /polyurethane_aluminum_interface/pu_al_para.params: -------------------------------------------------------------------------------- 1 | # Parameters for the polymer chain were assembled by EMC v9.4.4, build Jul 2 2019 14:55:34 2 | 3 | # Variables 4 | 5 | variable cutoff index 12 6 | variable charge_cutoff index 12 7 | 8 | 9 | # Potentials 10 | 11 | pair_style hybrid eam lj/class2/coul/long ${cutoff} ${charge_cutoff} # 9.5 12 | bond_style class2 13 | angle_style class2 14 | dihedral_style class2 15 | improper_style class2 16 | pair_modify mix sixthpower tail yes 17 | special_bonds lj/coul 0 0 1 18 | 19 | # Pair Coeffs 20 | 21 | pair_coeff 11 11 eam Al_jnp_real.eam 22 | pair_coeff 1 1 lj/class2/coul/long 0.05400 4.01000 # c,c 23 | pair_coeff 2 2 lj/class2/coul/long 0.02000 2.99500 # hc,hc 24 | pair_coeff 3 3 lj/class2/coul/long 0.24000 3.42000 # o_2,o_2 25 | pair_coeff 4 4 lj/class2/coul/long 0.12000 3.81000 # c_2,c_2 26 | pair_coeff 5 5 lj/class2/coul/long 0.26700 3.30000 # o_1,o_1 27 | pair_coeff 6 6 lj/class2/coul/long 0.10600 3.60000 # n_2,n_2 28 | pair_coeff 7 7 lj/class2/coul/long 0.01300 1.65000 # hn2,hn2 29 | pair_coeff 8 8 lj/class2/coul/long 0.06400 4.01000 # cp,cp 30 | pair_coeff 9 9 lj/class2/coul/long 0.12000 3.81000 # c_1,c_1 31 | pair_coeff 10 10 lj/class2/coul/long 0.24000 3.53500 # oc,oc 32 | 33 | pair_coeff 1 11 lj/class2/coul/long 0.293900097 3.665694839 34 | pair_coeff 2 11 lj/class2/coul/long 0.255296375 2.98557557 35 | pair_coeff 3 11 lj/class2/coul/long 0.8127743 3.235590807 36 | pair_coeff 4 11 lj/class2/coul/long 0.485811351 3.512105707 37 | pair_coeff 5 11 lj/class2/coul/long 0.889854418 3.158622163 38 | pair_coeff 6 11 lj/class2/coul/long 0.503491101 3.35876307 39 | pair_coeff 7 11 lj/class2/coul/long 0.068191175 2.663997536 40 | pair_coeff 8 11 lj/class2/coul/long 0.319957899 3.665694839 41 | pair_coeff 9 11 lj/class2/coul/long 0.485811351 3.512105707 42 | pair_coeff 10 11 lj/class2/coul/long 0.77841707 3.313305775 43 | 44 | 45 | # Bond Coeffs 46 | 47 | bond_coeff 1 1.53000 299.67000 -501.77000 679.81000 # c,c 48 | bond_coeff 2 1.10100 345.00000 -691.89000 844.60000 # c,hc 49 | bond_coeff 3 1.43000 326.72730 -608.53060 689.03330 # c,o_2 50 | bond_coeff 4 1.50100 321.90210 -521.82080 572.16280 # c,cp 51 | bond_coeff 5 1.52020 253.70670 -423.03700 396.90000 # c,c_1 52 | bond_coeff 6 1.42000 400.39540 -835.19510 1313.01420 # c,oc 53 | bond_coeff 7 1.09820 372.82510 -803.45260 894.31730 # hc,cp 54 | bond_coeff 8 1.35980 391.33100 -788.56550 1212.38120 # o_2,c_2 55 | bond_coeff 9 1.20630 854.29030 -1922.34070 2101.68240 # c_2,o_1 56 | bond_coeff 10 1.35800 440.67830 -828.37980 1423.24180 # c_2,n_2 57 | bond_coeff 11 1.20200 851.14030 -1918.48820 2160.76590 # o_1,c_1 58 | bond_coeff 12 0.99590 495.82940 -1092.72390 1441.12900 # n_2,hn2 59 | bond_coeff 13 1.43900 344.04520 -652.12080 1022.22420 # n_2,cp 60 | bond_coeff 14 1.36600 390.67830 -768.37980 923.24180 # n_2,c_1 61 | bond_coeff 15 1.41700 470.83610 -627.61790 1327.63450 # cp,cp 62 | 63 | # Angle Coeffs 64 | 65 | angle_coeff 1 112.67000 39.51600 -7.44300 -9.55830 # c,c,c 66 | angle_coeff 2 110.77000 41.45300 -10.60400 5.12900 # c,c,hc 67 | angle_coeff 3 107.41000 63.39070 -13.45130 1.66500 # c,c,o_2 68 | angle_coeff 4 111.27000 54.53810 -8.36420 -13.08380 # c,c,oc 69 | angle_coeff 5 113.62000 57.92740 -17.13120 23.54800 # c,o_2,c_2 70 | angle_coeff 6 120.05000 44.71480 -22.73520 0.00000 # c,cp,cp 71 | angle_coeff 7 123.14510 55.54310 -17.21230 0.13480 # c,c_1,o_1 72 | angle_coeff 8 116.92570 39.41930 -10.99450 -8.77330 # c,c_1,n_2 73 | angle_coeff 9 104.50000 35.74540 -10.00670 -6.27290 # c,oc,c 74 | angle_coeff 10 107.66000 39.64100 -12.92100 -2.43180 # hc,c,hc 75 | angle_coeff 11 107.68800 65.48010 -10.34980 5.88660 # hc,c,o_2 76 | angle_coeff 12 111.00000 44.32340 -9.44540 0.00000 # hc,c,cp 77 | angle_coeff 13 107.73360 40.60990 -28.81210 0.00000 # hc,c,c_1 78 | angle_coeff 14 108.72800 58.54460 -10.80880 -12.40060 # hc,c,oc 79 | angle_coeff 15 117.94000 35.15580 -12.46820 0.00000 # hc,cp,cp 80 | angle_coeff 16 120.79700 95.34460 -32.28690 6.37780 # o_2,c_2,o_1 81 | angle_coeff 17 108.44000 112.44030 -59.97300 38.30670 # o_2,c_2,n_2 82 | angle_coeff 18 122.94800 40.48200 -16.20280 8.32800 # c_2,n_2,hn2 83 | angle_coeff 19 120.07000 47.11310 -32.55920 13.12570 # c_2,n_2,cp 84 | angle_coeff 20 125.53200 101.87650 -41.80940 7.72360 # o_1,c_2,n_2 85 | angle_coeff 21 125.53200 101.87650 -41.80940 0.00000 # o_1,c_1,n_2 86 | angle_coeff 22 120.76400 73.27380 -27.40330 13.39200 # n_2,cp,cp 87 | angle_coeff 23 116.32300 18.31230 -7.83250 5.32900 # hn2,n_2,cp 88 | angle_coeff 24 122.94800 40.48200 -16.20280 0.00000 # hn2,n_2,c_1 89 | angle_coeff 25 111.00000 44.32340 -9.44540 0.00000 # cp,c,cp 90 | angle_coeff 26 116.62600 42.47110 -10.42690 0.00000 # cp,n_2,c_1 91 | angle_coeff 27 118.90000 61.02260 -34.99310 0.00000 # cp,cp,cp 92 | 93 | # BondBond Coeffs 94 | 95 | angle_coeff 1 bb 0.00000 1.53000 1.53000 # c,c,c 96 | angle_coeff 2 bb 3.38720 1.53000 1.10100 # c,c,hc 97 | angle_coeff 3 bb 23.26470 1.53000 1.43000 # c,c,o_2 98 | angle_coeff 4 bb 11.43180 1.53000 1.42000 # c,c,oc 99 | angle_coeff 5 bb 42.09410 1.43000 1.35980 # c,o_2,c_2 100 | angle_coeff 6 bb 12.06760 1.50100 1.41700 # c,cp,cp 101 | angle_coeff 7 bb 46.06850 1.52020 1.20200 # c,c_1,o_1 102 | angle_coeff 8 bb 56.47880 1.52020 1.36600 # c,c_1,n_2 103 | angle_coeff 9 bb -7.11310 1.42000 1.42000 # c,oc,c 104 | angle_coeff 10 bb 5.33160 1.10100 1.10100 # hc,c,hc 105 | angle_coeff 11 bb 5.64540 1.10100 1.43000 # hc,c,o_2 106 | angle_coeff 12 bb 2.91680 1.10100 1.50100 # hc,c,cp 107 | angle_coeff 13 bb 0.71150 1.10100 1.52020 # hc,c,c_1 108 | angle_coeff 14 bb 23.19790 1.10100 1.42000 # hc,c,oc 109 | angle_coeff 15 bb 1.07950 1.09820 1.41700 # hc,cp,cp 110 | angle_coeff 16 bb 122.49660 1.35980 1.20630 # o_2,c_2,o_1 111 | angle_coeff 17 bb 84.52630 1.35980 1.35800 # o_2,c_2,n_2 112 | angle_coeff 18 bb 8.62530 1.35800 0.99590 # c_2,n_2,hn2 113 | angle_coeff 19 bb 41.42330 1.35800 1.43900 # c_2,n_2,cp 114 | angle_coeff 20 bb 115.46450 1.20630 1.35800 # o_1,c_2,n_2 115 | angle_coeff 21 bb 116.94450 1.20200 1.36600 # o_1,c_1,n_2 116 | angle_coeff 22 bb 37.87490 1.43900 1.41700 # n_2,cp,cp 117 | angle_coeff 23 bb 8.29300 0.99590 1.43900 # hn2,n_2,cp 118 | angle_coeff 24 bb 8.62530 0.99590 1.36600 # hn2,n_2,c_1 119 | angle_coeff 25 bb 0.00000 1.50100 1.50100 # cp,c,cp 120 | angle_coeff 26 bb 41.42330 1.43900 1.36600 # cp,n_2,c_1 121 | angle_coeff 27 bb 68.28560 1.41700 1.41700 # cp,cp,cp 122 | 123 | # BondAngle Coeffs 124 | 125 | angle_coeff 1 ba 8.01600 8.01600 1.53000 1.53000 # c,c,c 126 | angle_coeff 2 ba 20.75400 11.42100 1.53000 1.10100 # c,c,hc 127 | angle_coeff 3 ba 23.39200 47.94870 1.53000 1.43000 # c,c,o_2 128 | angle_coeff 4 ba 2.68680 20.40330 1.53000 1.42000 # c,c,oc 129 | angle_coeff 5 ba 32.48160 53.59200 1.43000 1.35980 # c,o_2,c_2 130 | angle_coeff 6 ba 47.05790 31.07710 1.50100 1.41700 # c,cp,cp 131 | angle_coeff 7 ba 34.99820 37.12980 1.52020 1.20200 # c,c_1,o_1 132 | angle_coeff 8 ba 25.37120 6.08030 1.52020 1.36600 # c,c_1,n_2 133 | angle_coeff 9 ba -2.81120 -2.81120 1.42000 1.42000 # c,oc,c 134 | angle_coeff 10 ba 18.10300 18.10300 1.10100 1.10100 # hc,c,hc 135 | angle_coeff 11 ba 8.68640 57.49750 1.10100 1.43000 # hc,c,o_2 136 | angle_coeff 12 ba 11.77170 26.46080 1.10100 1.50100 # hc,c,cp 137 | angle_coeff 13 ba 9.17650 12.46320 1.10100 1.52020 # hc,c,c_1 138 | angle_coeff 14 ba 4.61890 55.32700 1.10100 1.42000 # hc,c,oc 139 | angle_coeff 15 ba 24.21830 20.00330 1.09820 1.41700 # hc,cp,cp 140 | angle_coeff 16 ba 31.85330 43.60080 1.35980 1.20630 # o_2,c_2,o_1 141 | angle_coeff 17 ba 39.08750 32.76240 1.35980 1.35800 # o_2,c_2,n_2 142 | angle_coeff 18 ba 34.83120 15.07780 1.35800 0.99590 # c_2,n_2,hn2 143 | angle_coeff 19 ba 34.77910 24.37050 1.35800 1.43900 # c_2,n_2,cp 144 | angle_coeff 20 ba 46.10930 32.87580 1.20630 1.35800 # o_1,c_2,n_2 145 | angle_coeff 21 ba 46.10930 32.87580 1.20200 1.36600 # o_1,c_1,n_2 146 | angle_coeff 22 ba 53.69770 35.88650 1.43900 1.41700 # n_2,cp,cp 147 | angle_coeff 23 ba 12.82170 10.45680 0.99590 1.43900 # hn2,n_2,cp 148 | angle_coeff 24 ba 0.00000 0.00000 0.99590 1.36600 # hn2,n_2,c_1 149 | angle_coeff 25 ba 0.00000 0.00000 1.50100 1.50100 # cp,c,cp 150 | angle_coeff 26 ba 0.00000 0.00000 1.43900 1.36600 # cp,n_2,c_1 151 | angle_coeff 27 ba 28.87080 28.87080 1.41700 1.41700 # cp,cp,cp 152 | 153 | # Dihedral Coeffs 154 | 155 | dihedral_coeff 1 0.00000 0.00000 0.05140 0.00000 -0.14300 0.00000 # c,c,c,c 156 | dihedral_coeff 2 0.00000 0.00000 0.03160 0.00000 -0.16810 0.00000 # c,c,c,hc 157 | dihedral_coeff 3 0.00000 0.00000 0.00000 0.00000 -0.25000 0.00000 # c,c,c,o_2 158 | dihedral_coeff 4 0.71370 0.00000 0.26600 0.00000 -0.25450 0.00000 # c,c,c,oc 159 | dihedral_coeff 5 0.00000 0.00000 0.00000 0.00000 -0.08820 0.00000 # c,c,o_2,c_2 160 | dihedral_coeff 6 -0.52030 0.00000 -0.30280 0.00000 -0.34500 0.00000 # c,c,oc,c 161 | dihedral_coeff 7 0.00000 0.00000 1.80990 0.00000 0.00000 0.00000 # c,o_2,c_2,o_1 162 | dihedral_coeff 8 -2.95220 0.00000 2.40470 0.00000 0.00000 0.00000 # c,o_2,c_2,n_2 163 | dihedral_coeff 9 0.00000 0.00000 1.55900 0.00000 0.00000 0.00000 # c,cp,cp,hc 164 | dihedral_coeff 10 0.00000 0.00000 4.40720 0.00000 0.00000 0.00000 # c,cp,cp,cp 165 | dihedral_coeff 11 -0.82360 0.00000 2.14670 0.00000 -0.21420 0.00000 # c,c_1,n_2,hn2 166 | dihedral_coeff 12 0.00000 0.00000 0.90000 0.00000 0.00000 0.00000 # c,c_1,n_2,cp 167 | dihedral_coeff 13 0.53020 0.00000 0.00000 0.00000 -0.39660 0.00000 # c,oc,c,hc 168 | dihedral_coeff 14 -0.14320 0.00000 0.06170 0.00000 -0.10830 0.00000 # hc,c,c,hc 169 | dihedral_coeff 15 0.00000 0.00000 0.00000 0.00000 -0.25000 0.00000 # hc,c,c,o_2 170 | dihedral_coeff 16 -0.14350 0.00000 0.25300 0.00000 -0.09050 0.00000 # hc,c,c,oc 171 | dihedral_coeff 17 0.00000 0.00000 0.00000 0.00000 -0.08820 0.00000 # hc,c,o_2,c_2 172 | dihedral_coeff 18 -0.28010 0.00000 -0.06780 0.00000 -0.01220 0.00000 # hc,c,cp,cp 173 | dihedral_coeff 19 -0.18040 0.00000 0.00120 0.00000 0.03710 0.00000 # hc,c,c_1,o_1 174 | dihedral_coeff 20 0.16930 0.00000 -0.00900 0.00000 -0.06870 0.00000 # hc,c,c_1,n_2 175 | dihedral_coeff 21 0.00000 0.00000 1.87690 0.00000 0.00000 0.00000 # hc,cp,cp,hc 176 | dihedral_coeff 22 0.00000 0.00000 3.40400 0.00000 0.00000 0.00000 # hc,cp,cp,n_2 177 | dihedral_coeff 23 0.00000 0.00000 3.96610 0.00000 0.00000 0.00000 # hc,cp,cp,cp 178 | dihedral_coeff 24 -1.71770 0.00000 1.88630 0.00000 0.00000 0.00000 # o_2,c_2,n_2,hn2 179 | dihedral_coeff 25 -1.71770 0.00000 1.88630 0.00000 0.00000 0.00000 # o_2,c_2,n_2,cp 180 | dihedral_coeff 26 0.00000 0.00000 0.81070 0.00000 0.00000 0.00000 # c_2,n_2,cp,cp 181 | dihedral_coeff 27 0.00000 0.00000 2.05210 0.00000 0.00000 0.00000 # o_1,c_2,n_2,hn2 182 | dihedral_coeff 28 0.00000 0.00000 2.05210 0.00000 0.00000 0.00000 # o_1,c_2,n_2,cp 183 | dihedral_coeff 29 0.00000 0.00000 2.05210 0.00000 0.00000 0.00000 # o_1,c_1,n_2,hn2 184 | dihedral_coeff 30 0.00000 0.00000 2.05210 0.00000 0.00000 0.00000 # o_1,c_1,n_2,cp 185 | dihedral_coeff 31 0.00000 0.00000 3.40400 0.00000 0.00000 0.00000 # n_2,cp,cp,cp 186 | dihedral_coeff 32 0.00000 0.00000 0.61070 0.00000 0.00000 0.00000 # hn2,n_2,cp,cp 187 | dihedral_coeff 33 -0.28020 0.00000 -0.06780 0.00000 -0.01220 0.00000 # cp,c,cp,cp 188 | dihedral_coeff 34 0.00000 0.00000 0.81070 0.00000 0.00000 0.00000 # cp,cp,n_2,c_1 189 | dihedral_coeff 35 8.36670 0.00000 1.19320 0.00000 0.00000 0.00000 # cp,cp,cp,cp 190 | 191 | # MiddleBondTorsion Coeffs 192 | 193 | dihedral_coeff 1 mbt -17.78700 -7.18770 0.00000 1.53000 # c,c,c,c 194 | dihedral_coeff 2 mbt -14.87900 -3.65810 -0.31380 1.53000 # c,c,c,hc 195 | dihedral_coeff 3 mbt 0.00000 0.00000 0.00000 1.53000 # c,c,c,o_2 196 | dihedral_coeff 4 mbt -21.88420 -7.67640 -0.68680 1.53000 # c,c,c,oc 197 | dihedral_coeff 5 mbt 0.00000 0.00000 0.00000 1.43000 # c,c,o_2,c_2 198 | dihedral_coeff 6 mbt -5.92880 -2.70070 -0.31750 1.42000 # c,c,oc,c 199 | dihedral_coeff 7 mbt 0.00000 4.71480 0.00000 1.35980 # c,o_2,c_2,o_1 200 | dihedral_coeff 8 mbt 0.00000 6.35620 0.00000 1.35980 # c,o_2,c_2,n_2 201 | dihedral_coeff 9 mbt 0.00000 3.94210 0.00000 1.41700 # c,cp,cp,hc 202 | dihedral_coeff 10 mbt 0.00000 9.17920 0.00000 1.41700 # c,cp,cp,cp 203 | dihedral_coeff 11 mbt -0.52980 4.73560 -1.06370 1.36600 # c,c_1,n_2,hn2 204 | dihedral_coeff 12 mbt 0.00000 0.00000 0.00000 1.36600 # c,c_1,n_2,cp 205 | dihedral_coeff 13 mbt -6.80070 -4.65460 -1.41010 1.42000 # c,oc,c,hc 206 | dihedral_coeff 14 mbt -14.26100 -0.53220 -0.48640 1.53000 # hc,c,c,hc 207 | dihedral_coeff 15 mbt 0.00000 0.00000 0.00000 1.53000 # hc,c,c,o_2 208 | dihedral_coeff 16 mbt -16.79750 -1.22960 -0.27500 1.53000 # hc,c,c,oc 209 | dihedral_coeff 17 mbt 0.00000 0.00000 0.00000 1.43000 # hc,c,o_2,c_2 210 | dihedral_coeff 18 mbt -5.56790 1.40830 0.30100 1.50100 # hc,c,cp,cp 211 | dihedral_coeff 19 mbt 0.23590 0.91390 0.95940 1.52020 # hc,c,c_1,o_1 212 | dihedral_coeff 20 mbt 0.22960 -0.41490 0.80030 1.52020 # hc,c,c_1,n_2 213 | dihedral_coeff 21 mbt 0.00000 4.82280 0.00000 1.41700 # hc,cp,cp,hc 214 | dihedral_coeff 22 mbt 0.00000 5.20120 0.00000 1.41700 # hc,cp,cp,n_2 215 | dihedral_coeff 23 mbt 0.00000 -1.15210 0.00000 1.41700 # hc,cp,cp,cp 216 | dihedral_coeff 24 mbt 0.00000 6.31630 0.00000 1.35800 # o_2,c_2,n_2,hn2 217 | dihedral_coeff 25 mbt 0.00000 6.31630 0.00000 1.35800 # o_2,c_2,n_2,cp 218 | dihedral_coeff 26 mbt 0.00000 4.90270 0.00000 1.43900 # c_2,n_2,cp,cp 219 | dihedral_coeff 27 mbt 0.00000 4.47000 0.00000 1.35800 # o_1,c_2,n_2,hn2 220 | dihedral_coeff 28 mbt 0.00000 4.47000 0.00000 1.35800 # o_1,c_2,n_2,cp 221 | dihedral_coeff 29 mbt 0.00000 0.00000 0.00000 1.36600 # o_1,c_1,n_2,hn2 222 | dihedral_coeff 30 mbt 0.00000 0.00000 0.00000 1.36600 # o_1,c_1,n_2,cp 223 | dihedral_coeff 31 mbt 0.00000 5.20120 0.00000 1.41700 # n_2,cp,cp,cp 224 | dihedral_coeff 32 mbt 0.00000 2.47300 0.00000 1.43900 # hn2,n_2,cp,cp 225 | dihedral_coeff 33 mbt 0.00000 0.00000 0.00000 1.50100 # cp,c,cp,cp 226 | dihedral_coeff 34 mbt 0.00000 0.00000 0.00000 1.43900 # cp,cp,n_2,c_1 227 | dihedral_coeff 35 mbt 27.59890 -2.31200 0.00000 1.41700 # cp,cp,cp,cp 228 | 229 | # EndBondTorsion Coeffs 230 | 231 | dihedral_coeff 1 ebt -0.07320 0.00000 0.00000 -0.07320 0.00000 0.00000 1.53000 1.53000 # c,c,c,c 232 | dihedral_coeff 2 ebt 0.24860 0.24220 -0.09250 0.08140 0.05910 0.22190 1.53000 1.10100 # c,c,c,hc 233 | dihedral_coeff 3 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.53000 1.43000 # c,c,c,o_2 234 | dihedral_coeff 4 ebt -0.31900 0.44110 -0.71740 1.15380 0.84090 -0.91380 1.53000 1.42000 # c,c,c,oc 235 | dihedral_coeff 5 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.53000 1.35980 # c,c,o_2,c_2 236 | dihedral_coeff 6 ebt -0.24560 1.05170 -0.77950 0.47410 1.26350 0.55760 1.53000 1.42000 # c,c,oc,c 237 | dihedral_coeff 7 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.43000 1.20630 # c,o_2,c_2,o_1 238 | dihedral_coeff 8 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.43000 1.35800 # c,o_2,c_2,n_2 239 | dihedral_coeff 9 ebt 0.00000 -1.79700 0.00000 0.00000 -0.48790 0.00000 1.50100 1.09820 # c,cp,cp,hc 240 | dihedral_coeff 10 ebt 0.00000 0.24210 0.00000 0.00000 -0.69180 0.00000 1.50100 1.41700 # c,cp,cp,cp 241 | dihedral_coeff 11 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.52020 0.99590 # c,c_1,n_2,hn2 242 | dihedral_coeff 12 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.52020 1.43900 # c,c_1,n_2,cp 243 | dihedral_coeff 13 ebt -0.16200 0.15640 -1.14080 -0.60540 1.33390 0.96480 1.42000 1.10100 # c,oc,c,hc 244 | dihedral_coeff 14 ebt 0.21300 0.31200 0.07770 0.21300 0.31200 0.07770 1.10100 1.10100 # hc,c,c,hc 245 | dihedral_coeff 15 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.10100 1.43000 # hc,c,c,o_2 246 | dihedral_coeff 16 ebt 0.96810 0.95510 0.04360 0.59030 0.66690 0.85840 1.10100 1.42000 # hc,c,c,oc 247 | dihedral_coeff 17 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.10100 1.35980 # hc,c,o_2,c_2 248 | dihedral_coeff 18 ebt 1.39970 0.77560 0.00000 -0.58350 1.12200 0.39780 1.10100 1.41700 # hc,c,cp,cp 249 | dihedral_coeff 19 ebt 1.21430 0.28310 0.39160 -0.22980 0.03540 0.38530 1.10100 1.20200 # hc,c,c_1,o_1 250 | dihedral_coeff 20 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.10100 1.36600 # hc,c,c_1,n_2 251 | dihedral_coeff 21 ebt 0.00000 -0.68900 0.00000 0.00000 -0.68900 0.00000 1.09820 1.09820 # hc,cp,cp,hc 252 | dihedral_coeff 22 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.09820 1.43900 # hc,cp,cp,n_2 253 | dihedral_coeff 23 ebt 0.00000 -0.46690 0.00000 0.00000 -6.89580 0.00000 1.09820 1.41700 # hc,cp,cp,cp 254 | dihedral_coeff 24 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.35980 0.99590 # o_2,c_2,n_2,hn2 255 | dihedral_coeff 25 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.35980 1.43900 # o_2,c_2,n_2,cp 256 | dihedral_coeff 26 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.35800 1.41700 # c_2,n_2,cp,cp 257 | dihedral_coeff 27 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.20630 0.99590 # o_1,c_2,n_2,hn2 258 | dihedral_coeff 28 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.20630 1.43900 # o_1,c_2,n_2,cp 259 | dihedral_coeff 29 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.20200 0.99590 # o_1,c_1,n_2,hn2 260 | dihedral_coeff 30 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.20200 1.43900 # o_1,c_1,n_2,cp 261 | dihedral_coeff 31 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.43900 1.41700 # n_2,cp,cp,cp 262 | dihedral_coeff 32 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99590 1.41700 # hn2,n_2,cp,cp 263 | dihedral_coeff 33 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.50100 1.41700 # cp,c,cp,cp 264 | dihedral_coeff 34 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.41700 1.36600 # cp,cp,n_2,c_1 265 | dihedral_coeff 35 ebt -0.11850 6.32040 0.00000 -0.11850 6.32040 0.00000 1.41700 1.41700 # cp,cp,cp,cp 266 | 267 | # AngleTorsion Coeffs 268 | 269 | dihedral_coeff 1 at 0.38860 -0.31390 0.13890 0.38860 -0.31390 0.13890 112.67000 112.67000 # c,c,c,c 270 | dihedral_coeff 2 at -0.24540 0.00000 -0.11360 0.31130 0.45160 -0.19880 112.67000 110.77000 # c,c,c,hc 271 | dihedral_coeff 3 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 112.67000 107.41000 # c,c,c,o_2 272 | dihedral_coeff 4 at 0.56230 -0.30410 -0.40150 0.96720 -0.75660 -1.23310 112.67000 111.27000 # c,c,c,oc 273 | dihedral_coeff 5 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 107.41000 113.62000 # c,c,o_2,c_2 274 | dihedral_coeff 6 at -2.74660 1.48770 -0.89550 0.56760 0.94500 0.07030 111.27000 104.50000 # c,c,oc,c 275 | dihedral_coeff 7 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 113.62000 120.79700 # c,o_2,c_2,o_1 276 | dihedral_coeff 8 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 113.62000 108.44000 # c,o_2,c_2,n_2 277 | dihedral_coeff 9 at 0.00000 -0.12420 0.00000 0.00000 3.46010 0.00000 120.05000 117.94000 # c,cp,cp,hc 278 | dihedral_coeff 10 at 0.00000 -4.46830 0.00000 0.00000 3.89870 0.00000 120.05000 118.90000 # c,cp,cp,cp 279 | dihedral_coeff 11 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 116.92570 122.94800 # c,c_1,n_2,hn2 280 | dihedral_coeff 12 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 116.92570 116.62600 # c,c_1,n_2,cp 281 | dihedral_coeff 13 at -0.77770 0.43400 -0.66530 -1.82340 1.63930 0.51440 104.50000 108.72800 # c,oc,c,hc 282 | dihedral_coeff 14 at -0.80850 0.55690 -0.24660 -0.80850 0.55690 -0.24660 110.77000 110.77000 # hc,c,c,hc 283 | dihedral_coeff 15 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 110.77000 107.41000 # hc,c,c,o_2 284 | dihedral_coeff 16 at 2.36680 2.49200 -1.01220 -0.18920 0.49180 0.72730 110.77000 111.27000 # hc,c,c,oc 285 | dihedral_coeff 17 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 107.68800 113.62000 # hc,c,o_2,c_2 286 | dihedral_coeff 18 at 4.62660 0.16320 0.04610 0.22510 0.65480 0.12370 111.00000 120.05000 # hc,c,cp,cp 287 | dihedral_coeff 19 at 9.12990 -0.48470 0.35820 -1.49460 0.73080 -0.20830 107.73360 123.14510 # hc,c,c_1,o_1 288 | dihedral_coeff 20 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 107.73360 116.92570 # hc,c,c_1,n_2 289 | dihedral_coeff 21 at 0.00000 2.45010 0.00000 0.00000 2.45010 0.00000 117.94000 117.94000 # hc,cp,cp,hc 290 | dihedral_coeff 22 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 117.94000 120.76400 # hc,cp,cp,n_2 291 | dihedral_coeff 23 at 0.00000 2.71470 0.00000 0.00000 2.50140 0.00000 117.94000 118.90000 # hc,cp,cp,cp 292 | dihedral_coeff 24 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 108.44000 122.94800 # o_2,c_2,n_2,hn2 293 | dihedral_coeff 25 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 108.44000 120.07000 # o_2,c_2,n_2,cp 294 | dihedral_coeff 26 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 120.07000 120.76400 # c_2,n_2,cp,cp 295 | dihedral_coeff 27 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 125.53200 122.94800 # o_1,c_2,n_2,hn2 296 | dihedral_coeff 28 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 125.53200 120.07000 # o_1,c_2,n_2,cp 297 | dihedral_coeff 29 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 125.53200 122.94800 # o_1,c_1,n_2,hn2 298 | dihedral_coeff 30 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 125.53200 116.62600 # o_1,c_1,n_2,cp 299 | dihedral_coeff 31 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 120.76400 118.90000 # n_2,cp,cp,cp 300 | dihedral_coeff 32 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 116.32300 120.76400 # hn2,n_2,cp,cp 301 | dihedral_coeff 33 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 111.00000 120.05000 # cp,c,cp,cp 302 | dihedral_coeff 34 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 120.76400 116.62600 # cp,cp,n_2,c_1 303 | dihedral_coeff 35 at 1.97670 1.02390 0.00000 1.97670 1.02390 0.00000 118.90000 118.90000 # cp,cp,cp,cp 304 | 305 | # AngleAngleTorsion Coeffs 306 | 307 | dihedral_coeff 1 aat -22.04500 112.67000 112.67000 # c,c,c,c 308 | dihedral_coeff 2 aat -16.16400 112.67000 110.77000 # c,c,c,hc 309 | dihedral_coeff 3 aat 0.00000 112.67000 107.41000 # c,c,c,o_2 310 | dihedral_coeff 4 aat -29.04200 112.67000 111.27000 # c,c,c,oc 311 | dihedral_coeff 5 aat 0.00000 107.41000 113.62000 # c,c,o_2,c_2 312 | dihedral_coeff 6 aat -19.00590 111.27000 104.50000 # c,c,oc,c 313 | dihedral_coeff 7 aat 0.00000 113.62000 120.79700 # c,o_2,c_2,o_1 314 | dihedral_coeff 8 aat 0.00000 113.62000 108.44000 # c,o_2,c_2,n_2 315 | dihedral_coeff 9 aat 4.44440 120.05000 117.94000 # c,cp,cp,hc 316 | dihedral_coeff 10 aat -14.40970 120.05000 118.90000 # c,cp,cp,cp 317 | dihedral_coeff 11 aat 0.00000 116.92570 122.94800 # c,c_1,n_2,hn2 318 | dihedral_coeff 12 aat 0.00000 116.92570 116.62600 # c,c_1,n_2,cp 319 | dihedral_coeff 13 aat -16.44380 104.50000 108.72800 # c,oc,c,hc 320 | dihedral_coeff 14 aat -12.56400 110.77000 110.77000 # hc,c,c,hc 321 | dihedral_coeff 15 aat 0.00000 110.77000 107.41000 # hc,c,c,o_2 322 | dihedral_coeff 16 aat -20.20060 110.77000 111.27000 # hc,c,c,oc 323 | dihedral_coeff 17 aat 0.00000 107.68800 113.62000 # hc,c,o_2,c_2 324 | dihedral_coeff 18 aat -5.88880 111.00000 120.05000 # hc,c,cp,cp 325 | dihedral_coeff 19 aat -15.34960 107.73360 123.14510 # hc,c,c_1,o_1 326 | dihedral_coeff 20 aat 0.00000 107.73360 116.92570 # hc,c,c_1,n_2 327 | dihedral_coeff 21 aat 0.35980 117.94000 117.94000 # hc,cp,cp,hc 328 | dihedral_coeff 22 aat 0.00000 117.94000 120.76400 # hc,cp,cp,n_2 329 | dihedral_coeff 23 aat -4.81410 117.94000 118.90000 # hc,cp,cp,cp 330 | dihedral_coeff 24 aat 0.00000 108.44000 122.94800 # o_2,c_2,n_2,hn2 331 | dihedral_coeff 25 aat 0.00000 108.44000 120.07000 # o_2,c_2,n_2,cp 332 | dihedral_coeff 26 aat 0.00000 120.07000 120.76400 # c_2,n_2,cp,cp 333 | dihedral_coeff 27 aat 0.00000 125.53200 122.94800 # o_1,c_2,n_2,hn2 334 | dihedral_coeff 28 aat 0.00000 125.53200 120.07000 # o_1,c_2,n_2,cp 335 | dihedral_coeff 29 aat 0.00000 125.53200 122.94800 # o_1,c_1,n_2,hn2 336 | dihedral_coeff 30 aat 0.00000 125.53200 116.62600 # o_1,c_1,n_2,cp 337 | dihedral_coeff 31 aat 0.00000 120.76400 118.90000 # n_2,cp,cp,cp 338 | dihedral_coeff 32 aat 0.00000 116.32300 120.76400 # hn2,n_2,cp,cp 339 | dihedral_coeff 33 aat 0.00000 111.00000 120.05000 # cp,c,cp,cp 340 | dihedral_coeff 34 aat 0.00000 120.76400 116.62600 # cp,cp,n_2,c_1 341 | dihedral_coeff 35 aat 0.00000 118.90000 118.90000 # cp,cp,cp,cp 342 | 343 | # BondBond13 Coeffs 344 | 345 | dihedral_coeff 1 bb13 0.00000 1.53000 1.53000 # c,c,c,c 346 | dihedral_coeff 2 bb13 0.00000 1.53000 1.10100 # c,c,c,hc 347 | dihedral_coeff 3 bb13 0.00000 1.53000 1.43000 # c,c,c,o_2 348 | dihedral_coeff 4 bb13 0.00000 1.53000 1.42000 # c,c,c,oc 349 | dihedral_coeff 5 bb13 0.00000 1.53000 1.35980 # c,c,o_2,c_2 350 | dihedral_coeff 6 bb13 0.00000 1.53000 1.42000 # c,c,oc,c 351 | dihedral_coeff 7 bb13 0.00000 1.43000 1.20630 # c,o_2,c_2,o_1 352 | dihedral_coeff 8 bb13 0.00000 1.43000 1.35800 # c,o_2,c_2,n_2 353 | dihedral_coeff 9 bb13 0.87430 1.50100 1.09820 # c,cp,cp,hc 354 | dihedral_coeff 10 bb13 2.50850 1.50100 1.41700 # c,cp,cp,cp 355 | dihedral_coeff 11 bb13 0.00000 1.52020 0.99590 # c,c_1,n_2,hn2 356 | dihedral_coeff 12 bb13 0.00000 1.52020 1.43900 # c,c_1,n_2,cp 357 | dihedral_coeff 13 bb13 0.00000 1.42000 1.10100 # c,oc,c,hc 358 | dihedral_coeff 14 bb13 0.00000 1.10100 1.10100 # hc,c,c,hc 359 | dihedral_coeff 15 bb13 0.00000 1.10100 1.43000 # hc,c,c,o_2 360 | dihedral_coeff 16 bb13 0.00000 1.10100 1.42000 # hc,c,c,oc 361 | dihedral_coeff 17 bb13 0.00000 1.10100 1.35980 # hc,c,o_2,c_2 362 | dihedral_coeff 18 bb13 -3.48260 1.10100 1.41700 # hc,c,cp,cp 363 | dihedral_coeff 19 bb13 0.00000 1.10100 1.20200 # hc,c,c_1,o_1 364 | dihedral_coeff 20 bb13 0.00000 1.10100 1.36600 # hc,c,c_1,n_2 365 | dihedral_coeff 21 bb13 -1.70770 1.09820 1.09820 # hc,cp,cp,hc 366 | dihedral_coeff 22 bb13 0.00000 1.09820 1.43900 # hc,cp,cp,n_2 367 | dihedral_coeff 23 bb13 -6.27410 1.09820 1.41700 # hc,cp,cp,cp 368 | dihedral_coeff 24 bb13 0.00000 1.35980 0.99590 # o_2,c_2,n_2,hn2 369 | dihedral_coeff 25 bb13 0.00000 1.35980 1.43900 # o_2,c_2,n_2,cp 370 | dihedral_coeff 26 bb13 0.00000 1.35800 1.41700 # c_2,n_2,cp,cp 371 | dihedral_coeff 27 bb13 0.00000 1.20630 0.99590 # o_1,c_2,n_2,hn2 372 | dihedral_coeff 28 bb13 0.00000 1.20630 1.43900 # o_1,c_2,n_2,cp 373 | dihedral_coeff 29 bb13 0.00000 1.20200 0.99590 # o_1,c_1,n_2,hn2 374 | dihedral_coeff 30 bb13 0.00000 1.20200 1.43900 # o_1,c_1,n_2,cp 375 | dihedral_coeff 31 bb13 0.00000 1.43900 1.41700 # n_2,cp,cp,cp 376 | dihedral_coeff 32 bb13 0.00000 0.99590 1.41700 # hn2,n_2,cp,cp 377 | dihedral_coeff 33 bb13 0.00000 1.50100 1.41700 # cp,c,cp,cp 378 | dihedral_coeff 34 bb13 0.00000 1.41700 1.36600 # cp,cp,n_2,c_1 379 | dihedral_coeff 35 bb13 53.00000 1.41700 1.41700 # cp,cp,cp,cp 380 | 381 | # Improper Coeffs 382 | 383 | improper_coeff 1 0.00000 0.00000 # c,c,c,hc 384 | improper_coeff 2 0.00000 0.00000 # c,c,hc,hc 385 | improper_coeff 3 0.00000 0.00000 # c,c,hc,o_2 386 | improper_coeff 4 0.00000 0.00000 # c,c,o_2,hc 387 | improper_coeff 5 0.00000 0.00000 # c,c,oc,hc 388 | improper_coeff 6 0.00000 0.00000 # c,hc,hc,hc 389 | improper_coeff 7 0.00000 0.00000 # c,hc,hc,o_2 390 | improper_coeff 8 0.00000 0.00000 # c,hc,hc,cp 391 | improper_coeff 9 0.00000 0.00000 # c,hc,hc,c_1 392 | improper_coeff 10 0.00000 0.00000 # c,hc,hc,oc 393 | improper_coeff 11 0.00000 0.00000 # c,hc,cp,cp 394 | improper_coeff 12 49.37400 0.00000 # c_2,o_2,o_1,n_2 395 | improper_coeff 13 49.37400 0.00000 # c_2,o_2,n_2,o_1 396 | improper_coeff 14 4.41810 0.00000 # n_2,c_2,hn2,cp 397 | improper_coeff 15 4.41810 0.00000 # n_2,c_2,cp,hn2 398 | improper_coeff 16 4.41810 0.00000 # n_2,hn2,cp,c_1 399 | improper_coeff 17 7.81530 0.00000 # cp,c,cp,cp 400 | improper_coeff 18 4.89120 0.00000 # cp,hc,cp,cp 401 | improper_coeff 19 17.05260 0.00000 # cp,n_2,cp,cp 402 | improper_coeff 20 24.33290 0.00000 # c_1,c,o_1,n_2 403 | 404 | # AngleAngle Coeffs 405 | 406 | improper_coeff 1 aa -1.31990 -1.31990 0.11840 112.67000 110.77000 110.77000 # c,c,c,hc 407 | improper_coeff 2 aa 0.27380 -0.48250 0.27380 110.77000 110.77000 107.66000 # c,c,hc,hc 408 | improper_coeff 3 aa 0.00000 0.00000 0.00000 110.77000 107.41000 107.68800 # c,c,hc,o_2 409 | improper_coeff 4 aa 0.00000 0.00000 0.00000 107.41000 110.77000 107.68800 # c,c,o_2,hc 410 | improper_coeff 5 aa 0.16890 2.59260 3.91770 111.27000 110.77000 108.72800 # c,c,oc,hc 411 | improper_coeff 6 aa -0.31570 -0.31570 -0.31570 107.66000 107.66000 107.66000 # c,hc,hc,hc 412 | improper_coeff 7 aa 0.00000 0.00000 0.00000 107.66000 107.68800 107.68800 # c,hc,hc,o_2 413 | improper_coeff 8 aa 2.37940 2.37940 3.01180 107.66000 111.00000 111.00000 # c,hc,hc,cp 414 | improper_coeff 9 aa -3.38670 -3.38670 -3.49760 107.66000 107.73360 107.73360 # c,hc,hc,c_1 415 | improper_coeff 10 aa 2.42590 2.42590 2.12830 107.66000 108.72800 108.72800 # c,hc,hc,oc 416 | improper_coeff 11 aa 0.00000 0.00000 0.00000 111.00000 111.00000 111.00000 # c,hc,cp,cp 417 | improper_coeff 12 aa 0.00000 0.00000 0.00000 120.79700 108.44000 125.53200 # c_2,o_2,o_1,n_2 418 | improper_coeff 13 aa 0.00000 0.00000 0.00000 108.44000 120.79700 125.53200 # c_2,o_2,n_2,o_1 419 | improper_coeff 14 aa 0.00000 0.00000 0.00000 122.94800 120.07000 116.32300 # n_2,c_2,hn2,cp 420 | improper_coeff 15 aa 0.00000 0.00000 0.00000 120.07000 122.94800 116.32300 # n_2,c_2,cp,hn2 421 | improper_coeff 16 aa 0.00000 0.00000 0.00000 116.32300 122.94800 116.62600 # n_2,hn2,cp,c_1 422 | improper_coeff 17 aa 0.00000 0.00000 0.00000 120.05000 120.05000 118.90000 # cp,c,cp,cp 423 | improper_coeff 18 aa 0.00000 0.00000 0.00000 117.94000 117.94000 118.90000 # cp,hc,cp,cp 424 | improper_coeff 19 aa 0.00000 0.00000 0.00000 120.76400 120.76400 118.90000 # cp,n_2,cp,cp 425 | improper_coeff 20 aa 0.00000 0.00000 0.00000 123.14510 116.92570 125.53200 # c_1,c,o_1,n_2 426 | 427 | -------------------------------------------------------------------------------- /polyurethane_chain/energy_plot.m: -------------------------------------------------------------------------------- 1 | %% Nuwan Dewapriya 2 | %% 2020/12/16 3 | %% This code extracts data from the LAMMPS output file energy.dump and plot the time-energy curve. 4 | 5 | clear all 6 | close all 7 | clc 8 | 9 | %% Extracting stress-strain data from the log.lammps file 10 | 11 | [fid] = fopen('energy.dump'); 12 | 13 | headings = fscanf(fid,'%s ',7); 14 | 15 | [Energy,count] = fscanf(fid, '%f %f',[2,inf]);%% etract only Step and E_pair 16 | 17 | Energy = Energy'; % 18 | 19 | %% Plotting 20 | 21 | figure 22 | plot(Energy(:,1), Energy(:,2),'-or','MarkerSize',2) 23 | xlabel('Time (ps)','fontsize',12) 24 | ylabel('Energy (kcal/mol)','fontsize',12) 25 | grid on 26 | set(gca,'LineWidth',1,'Fontsize',12) 27 | axis square 28 | %axis([0 0.3 0 120]) -------------------------------------------------------------------------------- /polyurethane_chain/pu_data.data: -------------------------------------------------------------------------------- 1 | LAMMPS output created by EMC v9.4.4, build Jul 2 2019 14:55:34 2 | 3 | 124 atoms 4 | 127 bonds 5 | 222 angles 6 | 299 dihedrals 7 | 112 impropers 8 | 9 | 10 atom types 10 | 15 bond types 11 | 27 angle types 12 | 35 dihedral types 13 | 21 improper types 14 | 15 | -20 31.23955359 xlo xhi 16 | -20 31.23955359 ylo yhi 17 | -20 31.23955359 zlo zhi 18 | 19 | 20 | Masses 21 | 22 | 1 12.01100 # c_2 23 | 2 12.01115 # c_1 24 | 3 15.99940 # o_1 25 | 4 14.01000 # n_2 26 | 5 1.00800 # hn2 27 | 6 12.01115 # cp 28 | 7 1.00797 # hc 29 | 8 12.01115 # c 30 | 9 15.99940 # o_2 31 | 10 15.99940 # oc 32 | 33 | Atoms 34 | 35 | 1 1 2 0.6420 6.7353361115 23.7899338591 17.8433262207 # c_1 36 | 2 1 3 -0.5310 6.3629372231 23.4111421688 18.9072767115 # o_1 37 | 3 1 4 -0.7260 6.0332893354 23.6497650849 16.6381301646 # n_2 38 | 4 1 5 0.3780 6.4549093185 23.8894246109 15.8190193136 # hn2 39 | 5 1 6 0.2370 4.6766374746 23.1301878706 16.4994323808 # cp 40 | 6 1 6 -0.1268 4.2243222820 22.4329796831 15.3549630484 # cp 41 | 7 1 7 0.1268 4.8371070245 22.2125605026 14.4817041451 # hc 42 | 8 1 6 -0.1268 2.9695812547 21.8830146127 15.2780357492 # cp 43 | 9 1 7 0.1268 2.8702773298 21.3414030749 14.3473281779 # hc 44 | 10 1 6 0.0000 2.0506962917 22.0097292454 16.2609224880 # cp 45 | 11 1 6 -0.1268 2.4858836739 22.5641528240 17.4193439406 # cp 46 | 12 1 7 0.1268 1.7636262469 22.5899833728 18.2137702490 # hc 47 | 13 1 6 -0.1268 3.7434338865 23.0225204282 17.5671172020 # cp 48 | 14 1 7 0.1268 3.9589175609 23.3877962226 18.5594409297 # hc 49 | 15 1 8 -0.1060 0.6647543139 21.3485092857 16.2192813480 # c 50 | 16 1 7 0.0530 -0.1952164229 22.0138272938 16.2276561308 # hc 51 | 17 1 7 0.0530 0.5080672517 20.7656047733 17.1179060677 # hc 52 | 18 1 6 0.0000 0.6209828056 20.3712784253 15.0259783146 # cp 53 | 19 1 6 -0.1268 0.6754114359 20.9994953863 13.7678778031 # cp 54 | 20 1 7 0.1268 0.7973349971 22.1112359150 13.7372556212 # hc 55 | 21 1 6 -0.1268 0.1531969770 20.2842992152 12.6957090857 # cp 56 | 22 1 7 0.1268 -0.0576549744 20.8744451380 11.8191536792 # hc 57 | 23 1 6 0.2370 -0.5139565014 19.1803330776 12.8900068839 # cp 58 | 24 1 6 -0.1268 -0.2810471054 18.4078833244 14.0402707786 # cp 59 | 25 1 7 0.1268 -0.6710140451 17.4333552382 14.2083268633 # hc 60 | 26 1 6 -0.1268 0.4578727970 18.9829850511 15.0592820246 # cp 61 | 27 1 7 0.1268 0.6588444374 18.4199131681 15.9721372354 # hc 62 | 28 1 4 -0.7260 -1.4899383595 18.7957468621 11.9180892012 # n_2 63 | 29 1 5 0.3780 -1.4564540236 19.5060867815 11.1575834275 # hn2 64 | 30 1 1 0.8850 -2.2903960284 17.7323579368 11.9221349868 # c_2 65 | 31 1 3 -0.5850 -2.5118773688 16.9774291009 12.8561126383 # o_1 66 | 32 1 9 -0.4140 -2.8075140069 17.5521596699 10.6890731882 # o_2 67 | 33 1 8 0.1190 -3.4206088578 16.3030742880 10.3082955830 # c 68 | 34 1 7 0.0530 -3.2660892270 16.1684780979 9.2391245134 # hc 69 | 35 1 7 0.0530 -2.8676604384 15.4763146019 10.8541085112 # hc 70 | 36 1 8 -0.1060 -4.9196087737 16.2664459133 10.6251960125 # c 71 | 37 1 7 0.0530 -5.2151692940 15.2150357368 10.4164092129 # hc 72 | 38 1 7 0.0530 -5.1609950852 16.3466923880 11.6629060854 # hc 73 | 39 1 8 -0.1060 -5.8464685705 17.3949317118 9.8005273357 # c 74 | 40 1 7 0.0530 -6.8888165367 17.2436362659 10.2263890838 # hc 75 | 41 1 7 0.0530 -5.5099178275 18.4373306453 10.0592290390 # hc 76 | 42 1 8 0.1190 -5.9351136038 17.0995843680 8.2894817012 # c 77 | 43 1 7 0.0530 -5.6822779075 16.0608115315 8.3493476877 # hc 78 | 44 1 7 0.0530 -6.9264759393 17.2408829015 7.8237536362 # hc 79 | 45 1 9 -0.4140 -5.1104772331 17.6479766522 7.3331725111 # o_2 80 | 46 1 1 0.8850 -4.0259120009 18.4232727392 7.5708239635 # c_2 81 | 47 1 3 -0.5850 -3.9271024911 19.1606735057 8.5014183442 # o_1 82 | 48 1 4 -0.7260 -3.1856099958 18.2527287282 6.5069090654 # n_2 83 | 49 1 5 0.3780 -3.5513559786 17.8771994987 5.6964321721 # hn2 84 | 50 1 6 0.2370 -1.8631615780 17.8487565167 6.8121934514 # cp 85 | 51 1 6 -0.1268 -1.2553514444 18.2166073928 7.9970857004 # cp 86 | 52 1 7 0.1268 -1.7015057477 19.0505649895 8.5322877999 # hc 87 | 53 1 6 -0.1268 -0.2253929089 17.4622256035 8.4064417969 # cp 88 | 54 1 7 0.1268 0.2944642932 17.5934855560 9.3850882578 # hc 89 | 55 1 6 0.0000 0.2561628734 16.3085634679 7.7143155868 # cp 90 | 56 1 6 -0.1268 -0.3807855207 16.1066399419 6.4427160978 # cp 91 | 57 1 7 0.1268 -0.3089597262 15.1374347821 5.9133749231 # hc 92 | 58 1 6 -0.1268 -1.3546942914 16.8742229597 5.9312824139 # cp 93 | 59 1 7 0.1268 -2.0053004106 16.4829996424 5.1834407850 # hc 94 | 60 1 8 -0.1060 1.3085064902 15.4799087728 8.2952718937 # c 95 | 61 1 7 0.0530 1.6862101668 15.8938614893 9.2547436207 # hc 96 | 62 1 7 0.0530 0.7551495653 14.6176218906 8.7153557653 # hc 97 | 63 1 6 0.0000 2.4243607716 15.0525716622 7.3006701193 # cp 98 | 64 1 6 -0.1268 2.1049258563 14.6185643128 5.9860374350 # cp 99 | 65 1 7 0.1268 1.1073010455 14.0928628264 5.8120712761 # hc 100 | 66 1 6 -0.1268 3.1032231159 14.5272721715 4.9859678323 # cp 101 | 67 1 7 0.1268 2.8134361003 14.3248289704 3.9707102471 # hc 102 | 68 1 6 0.2370 4.4594379903 14.7160253583 5.2765632536 # cp 103 | 69 1 6 -0.1268 4.7194494041 14.6904855224 6.6558958818 # cp 104 | 70 1 7 0.1268 5.7311174537 14.6813832862 7.0974552317 # hc 105 | 71 1 6 -0.1268 3.7641959558 14.8832997620 7.6789028124 # cp 106 | 72 1 7 0.1268 4.0001827298 15.0492611330 8.7214056561 # hc 107 | 73 1 4 -0.7260 5.4974297040 14.6441922305 4.2873901802 # n_2 108 | 74 1 5 0.3780 6.3695373540 14.9571891085 4.7308723361 # hn2 109 | 75 1 1 0.8850 5.3378272575 14.0281570634 3.1278870875 # c_2 110 | 76 1 3 -0.5850 4.4167685364 13.8095774352 2.3867902284 # o_1 111 | 77 1 9 -0.4140 6.5908019056 13.5678422630 2.7715367964 # o_2 112 | 78 1 8 0.1190 6.7089155512 12.5319572799 1.7746234389 # c 113 | 79 1 7 0.0530 6.2438270674 12.9567462841 0.8565915248 # hc 114 | 80 1 7 0.0530 6.1519430456 11.6817008788 2.1698134095 # hc 115 | 81 1 8 -0.1060 8.1558557817 12.0836108781 1.4772170576 # c 116 | 82 1 7 0.0530 7.9695199959 11.5067447920 0.4854758083 # hc 117 | 83 1 7 0.0530 8.7702367601 12.9235402379 1.2007737870 # hc 118 | 84 1 8 -0.1060 8.9867588043 11.1809690463 2.3934915964 # c 119 | 85 1 7 0.0530 9.6116283653 11.8284603022 3.0481185620 # hc 120 | 86 1 7 0.0530 9.7616863338 10.7328189418 1.7741907325 # hc 121 | 87 1 8 0.0270 8.3759121650 10.1684075829 3.2824750320 # c 122 | 88 1 7 0.0530 7.4770619968 9.6297835209 2.8710773156 # hc 123 | 89 1 7 0.0530 9.0993933915 9.3329320239 3.4430358319 # hc 124 | 90 1 10 -0.2660 8.2263498612 10.7879174538 4.5379001481 # oc 125 | 91 1 8 0.0270 8.0309150080 9.9553446036 5.6530560087 # c 126 | 92 1 7 0.0530 8.4413555212 10.4813654263 6.5112002829 # hc 127 | 93 1 7 0.0530 8.5791024008 9.0296303392 5.5157770404 # hc 128 | 94 1 8 -0.1060 6.4919592984 9.4705700388 5.9217431724 # c 129 | 95 1 7 0.0530 5.8167234832 10.2947757069 6.0504450917 # hc 130 | 96 1 7 0.0530 6.4341827239 9.1555636162 6.8722022577 # hc 131 | 97 1 8 -0.1060 5.8267469998 8.4991614432 4.9440513721 # c 132 | 98 1 7 0.0530 5.8207732792 8.8677328372 3.9222916540 # hc 133 | 99 1 7 0.0530 6.5242126024 7.6861084588 4.8503919076 # hc 134 | 100 1 8 0.0270 4.4154697330 7.9991765439 5.5208542573 # c 135 | 101 1 7 0.0530 4.4953292992 6.9437777259 5.3440330945 # hc 136 | 102 1 7 0.0530 3.5578360132 8.4295528957 4.8816623073 # hc 137 | 103 1 10 -0.2660 4.1177724953 8.3697856468 6.8191191496 # oc 138 | 104 1 8 0.0270 2.7273768162 8.2306793985 7.2674711982 # c 139 | 105 1 7 0.0530 2.2118389606 7.3688880852 6.7135638376 # hc 140 | 106 1 7 0.0530 2.1525173801 9.1455528687 7.0906246419 # hc 141 | 107 1 8 -0.1060 2.5680898315 7.9265854472 8.7468823012 # c 142 | 108 1 7 0.0530 2.8612833776 6.8594318300 8.8852172309 # hc 143 | 109 1 7 0.0530 1.4926813456 7.9301319532 8.9839724135 # hc 144 | 110 1 8 -0.1060 3.3392274187 8.7334804141 9.8616681427 # c 145 | 111 1 7 0.0530 3.2942863455 8.1247886303 10.7269952125 # hc 146 | 112 1 7 0.0530 4.4238434875 8.8331843020 9.6174847572 # hc 147 | 113 1 8 0.0270 2.7973298272 10.1311564602 10.3081633553 # c 148 | 114 1 7 0.0530 1.7753106402 10.0057477406 10.8502632735 # hc 149 | 115 1 7 0.0530 3.5600264668 10.5050267179 10.9800542143 # hc 150 | 116 1 10 -0.2660 2.7972374405 10.9909945889 9.1885453201 # oc 151 | 117 1 8 -0.0260 1.9876947965 12.1343777270 9.4252730950 # c 152 | 118 1 7 0.0530 1.0375829208 11.9776106250 8.9986201576 # hc 153 | 119 1 7 0.0530 1.7849691292 12.2912383091 10.4932389149 # hc 154 | 120 1 7 0.0530 2.4202527965 13.0157313700 8.9731992759 # hc 155 | 121 1 8 -0.1590 8.0572789446 24.5149307490 17.5760805255 # c 156 | 122 1 7 0.0530 8.1981021601 25.2002008882 18.4236279181 # hc 157 | 123 1 7 0.0530 8.9032956626 23.8043504646 17.6098770453 # hc 158 | 124 1 7 0.0530 8.1579260666 25.2064708593 16.7217919669 # hc 159 | 160 | Bonds 161 | 162 | 1 6 1 121 # c_1,c 163 | 2 5 1 3 # c_1,n_2 164 | 3 4 1 2 # c_1,o_1 165 | 4 8 3 5 # n_2,cp 166 | 5 7 3 4 # n_2,hn2 167 | 6 9 5 6 # cp,cp 168 | 7 9 5 13 # cp,cp 169 | 8 9 6 8 # cp,cp 170 | 9 10 6 7 # cp,hc 171 | 10 9 8 10 # cp,cp 172 | 11 10 8 9 # cp,hc 173 | 12 11 10 15 # cp,c 174 | 13 9 10 11 # cp,cp 175 | 14 9 11 13 # cp,cp 176 | 15 10 11 12 # cp,hc 177 | 16 10 13 14 # cp,hc 178 | 17 11 18 15 # cp,c 179 | 18 12 16 15 # hc,c 180 | 19 12 17 15 # hc,c 181 | 20 9 18 19 # cp,cp 182 | 21 9 18 26 # cp,cp 183 | 22 9 19 21 # cp,cp 184 | 23 10 19 20 # cp,hc 185 | 24 9 21 23 # cp,cp 186 | 25 10 21 22 # cp,hc 187 | 26 8 28 23 # n_2,cp 188 | 27 9 23 24 # cp,cp 189 | 28 9 24 26 # cp,cp 190 | 29 10 24 25 # cp,hc 191 | 30 10 26 27 # cp,hc 192 | 31 2 30 28 # c_2,n_2 193 | 32 7 28 29 # n_2,hn2 194 | 33 3 30 32 # c_2,o_2 195 | 34 1 30 31 # c_2,o_1 196 | 35 14 33 32 # c,o_2 197 | 36 13 33 36 # c,c 198 | 37 12 34 33 # hc,c 199 | 38 12 35 33 # hc,c 200 | 39 13 36 39 # c,c 201 | 40 12 37 36 # hc,c 202 | 41 12 38 36 # hc,c 203 | 42 13 39 42 # c,c 204 | 43 12 40 39 # hc,c 205 | 44 12 41 39 # hc,c 206 | 45 14 42 45 # c,o_2 207 | 46 12 43 42 # hc,c 208 | 47 12 44 42 # hc,c 209 | 48 3 46 45 # c_2,o_2 210 | 49 2 46 48 # c_2,n_2 211 | 50 1 46 47 # c_2,o_1 212 | 51 8 48 50 # n_2,cp 213 | 52 7 48 49 # n_2,hn2 214 | 53 9 50 51 # cp,cp 215 | 54 9 50 58 # cp,cp 216 | 55 9 51 53 # cp,cp 217 | 56 10 51 52 # cp,hc 218 | 57 9 53 55 # cp,cp 219 | 58 10 53 54 # cp,hc 220 | 59 11 55 60 # cp,c 221 | 60 9 55 56 # cp,cp 222 | 61 9 56 58 # cp,cp 223 | 62 10 56 57 # cp,hc 224 | 63 10 58 59 # cp,hc 225 | 64 11 63 60 # cp,c 226 | 65 12 61 60 # hc,c 227 | 66 12 62 60 # hc,c 228 | 67 9 63 64 # cp,cp 229 | 68 9 63 71 # cp,cp 230 | 69 9 64 66 # cp,cp 231 | 70 10 64 65 # cp,hc 232 | 71 9 66 68 # cp,cp 233 | 72 10 66 67 # cp,hc 234 | 73 8 73 68 # n_2,cp 235 | 74 9 68 69 # cp,cp 236 | 75 9 69 71 # cp,cp 237 | 76 10 69 70 # cp,hc 238 | 77 10 71 72 # cp,hc 239 | 78 2 75 73 # c_2,n_2 240 | 79 7 73 74 # n_2,hn2 241 | 80 3 75 77 # c_2,o_2 242 | 81 1 75 76 # c_2,o_1 243 | 82 14 78 77 # c,o_2 244 | 83 13 78 81 # c,c 245 | 84 12 79 78 # hc,c 246 | 85 12 80 78 # hc,c 247 | 86 13 81 84 # c,c 248 | 87 12 82 81 # hc,c 249 | 88 12 83 81 # hc,c 250 | 89 13 84 87 # c,c 251 | 90 12 85 84 # hc,c 252 | 91 12 86 84 # hc,c 253 | 92 15 87 90 # c,oc 254 | 93 12 88 87 # hc,c 255 | 94 12 89 87 # hc,c 256 | 95 15 91 90 # c,oc 257 | 96 13 91 94 # c,c 258 | 97 12 92 91 # hc,c 259 | 98 12 93 91 # hc,c 260 | 99 13 94 97 # c,c 261 | 100 12 95 94 # hc,c 262 | 101 12 96 94 # hc,c 263 | 102 13 97 100 # c,c 264 | 103 12 98 97 # hc,c 265 | 104 12 99 97 # hc,c 266 | 105 15 100 103 # c,oc 267 | 106 12 101 100 # hc,c 268 | 107 12 102 100 # hc,c 269 | 108 15 104 103 # c,oc 270 | 109 13 104 107 # c,c 271 | 110 12 105 104 # hc,c 272 | 111 12 106 104 # hc,c 273 | 112 13 107 110 # c,c 274 | 113 12 108 107 # hc,c 275 | 114 12 109 107 # hc,c 276 | 115 13 110 113 # c,c 277 | 116 12 111 110 # hc,c 278 | 117 12 112 110 # hc,c 279 | 118 15 113 116 # c,oc 280 | 119 12 114 113 # hc,c 281 | 120 12 115 113 # hc,c 282 | 121 15 117 116 # c,oc 283 | 122 12 118 117 # hc,c 284 | 123 12 119 117 # hc,c 285 | 124 12 120 117 # hc,c 286 | 125 12 122 121 # hc,c 287 | 126 12 123 121 # hc,c 288 | 127 12 124 121 # hc,c 289 | 290 | Angles 291 | 292 | 1 6 1 121 122 # c_1,c,hc 293 | 2 6 1 121 123 # c_1,c,hc 294 | 3 6 1 121 124 # c_1,c,hc 295 | 4 5 1 3 5 # c_1,n_2,cp 296 | 5 4 1 3 4 # c_1,n_2,hn2 297 | 6 10 2 1 121 # o_1,c_1,c 298 | 7 9 2 1 3 # o_1,c_1,n_2 299 | 8 12 3 1 121 # n_2,c_1,c 300 | 9 13 3 5 6 # n_2,cp,cp 301 | 10 13 3 5 13 # n_2,cp,cp 302 | 11 14 4 3 5 # hn2,n_2,cp 303 | 12 15 5 6 8 # cp,cp,cp 304 | 13 16 5 6 7 # cp,cp,hc 305 | 14 15 5 13 11 # cp,cp,cp 306 | 15 16 5 13 14 # cp,cp,hc 307 | 16 15 6 5 13 # cp,cp,cp 308 | 17 15 6 8 10 # cp,cp,cp 309 | 18 16 6 8 9 # cp,cp,hc 310 | 19 16 8 6 7 # cp,cp,hc 311 | 20 17 8 10 15 # cp,cp,c 312 | 21 15 8 10 11 # cp,cp,cp 313 | 22 16 10 8 9 # cp,cp,hc 314 | 23 18 10 15 18 # cp,c,cp 315 | 24 19 10 15 16 # cp,c,hc 316 | 25 19 10 15 17 # cp,c,hc 317 | 26 15 10 11 13 # cp,cp,cp 318 | 27 16 10 11 12 # cp,cp,hc 319 | 28 17 11 10 15 # cp,cp,c 320 | 29 16 11 13 14 # cp,cp,hc 321 | 30 16 13 11 12 # cp,cp,hc 322 | 31 17 19 18 15 # cp,cp,c 323 | 32 17 26 18 15 # cp,cp,c 324 | 33 19 18 15 16 # cp,c,hc 325 | 34 20 16 15 17 # hc,c,hc 326 | 35 19 18 15 17 # cp,c,hc 327 | 36 15 18 19 21 # cp,cp,cp 328 | 37 16 18 19 20 # cp,cp,hc 329 | 38 15 18 26 24 # cp,cp,cp 330 | 39 16 18 26 27 # cp,cp,hc 331 | 40 15 19 18 26 # cp,cp,cp 332 | 41 15 19 21 23 # cp,cp,cp 333 | 42 16 19 21 22 # cp,cp,hc 334 | 43 16 21 19 20 # cp,cp,hc 335 | 44 13 28 23 21 # n_2,cp,cp 336 | 45 15 21 23 24 # cp,cp,cp 337 | 46 16 23 21 22 # cp,cp,hc 338 | 47 2 30 28 23 # c_2,n_2,cp 339 | 48 14 29 28 23 # hn2,n_2,cp 340 | 49 15 23 24 26 # cp,cp,cp 341 | 50 16 23 24 25 # cp,cp,hc 342 | 51 13 28 23 24 # n_2,cp,cp 343 | 52 16 24 26 27 # cp,cp,hc 344 | 53 16 26 24 25 # cp,cp,hc 345 | 54 11 28 30 32 # n_2,c_2,o_2 346 | 55 7 31 30 28 # o_1,c_2,n_2 347 | 56 1 30 28 29 # c_2,n_2,hn2 348 | 57 3 30 32 33 # c_2,o_2,c 349 | 58 8 31 30 32 # o_1,c_2,o_2 350 | 59 25 36 33 32 # c,c,o_2 351 | 60 22 34 33 32 # hc,c,o_2 352 | 61 22 35 33 32 # hc,c,o_2 353 | 62 24 33 36 39 # c,c,c 354 | 63 21 37 36 33 # hc,c,c 355 | 64 21 38 36 33 # hc,c,c 356 | 65 21 34 33 36 # hc,c,c 357 | 66 20 34 33 35 # hc,c,hc 358 | 67 21 35 33 36 # hc,c,c 359 | 68 24 36 39 42 # c,c,c 360 | 69 21 40 39 36 # hc,c,c 361 | 70 21 41 39 36 # hc,c,c 362 | 71 21 37 36 39 # hc,c,c 363 | 72 20 37 36 38 # hc,c,hc 364 | 73 21 38 36 39 # hc,c,c 365 | 74 25 39 42 45 # c,c,o_2 366 | 75 21 43 42 39 # hc,c,c 367 | 76 21 44 42 39 # hc,c,c 368 | 77 21 40 39 42 # hc,c,c 369 | 78 20 40 39 41 # hc,c,hc 370 | 79 21 41 39 42 # hc,c,c 371 | 80 3 46 45 42 # c_2,o_2,c 372 | 81 22 43 42 45 # hc,c,o_2 373 | 82 20 43 42 44 # hc,c,hc 374 | 83 22 44 42 45 # hc,c,o_2 375 | 84 11 48 46 45 # n_2,c_2,o_2 376 | 85 8 47 46 45 # o_1,c_2,o_2 377 | 86 2 46 48 50 # c_2,n_2,cp 378 | 87 1 46 48 49 # c_2,n_2,hn2 379 | 88 7 47 46 48 # o_1,c_2,n_2 380 | 89 13 48 50 51 # n_2,cp,cp 381 | 90 13 48 50 58 # n_2,cp,cp 382 | 91 14 49 48 50 # hn2,n_2,cp 383 | 92 15 50 51 53 # cp,cp,cp 384 | 93 16 50 51 52 # cp,cp,hc 385 | 94 15 50 58 56 # cp,cp,cp 386 | 95 16 50 58 59 # cp,cp,hc 387 | 96 15 51 50 58 # cp,cp,cp 388 | 97 15 51 53 55 # cp,cp,cp 389 | 98 16 51 53 54 # cp,cp,hc 390 | 99 16 53 51 52 # cp,cp,hc 391 | 100 17 53 55 60 # cp,cp,c 392 | 101 15 53 55 56 # cp,cp,cp 393 | 102 16 55 53 54 # cp,cp,hc 394 | 103 18 55 60 63 # cp,c,cp 395 | 104 19 55 60 61 # cp,c,hc 396 | 105 19 55 60 62 # cp,c,hc 397 | 106 15 55 56 58 # cp,cp,cp 398 | 107 16 55 56 57 # cp,cp,hc 399 | 108 17 56 55 60 # cp,cp,c 400 | 109 16 56 58 59 # cp,cp,hc 401 | 110 16 58 56 57 # cp,cp,hc 402 | 111 17 64 63 60 # cp,cp,c 403 | 112 17 71 63 60 # cp,cp,c 404 | 113 19 63 60 61 # cp,c,hc 405 | 114 20 61 60 62 # hc,c,hc 406 | 115 19 63 60 62 # cp,c,hc 407 | 116 15 63 64 66 # cp,cp,cp 408 | 117 16 63 64 65 # cp,cp,hc 409 | 118 15 63 71 69 # cp,cp,cp 410 | 119 16 63 71 72 # cp,cp,hc 411 | 120 15 64 63 71 # cp,cp,cp 412 | 121 15 64 66 68 # cp,cp,cp 413 | 122 16 64 66 67 # cp,cp,hc 414 | 123 16 66 64 65 # cp,cp,hc 415 | 124 13 73 68 66 # n_2,cp,cp 416 | 125 15 66 68 69 # cp,cp,cp 417 | 126 16 68 66 67 # cp,cp,hc 418 | 127 2 75 73 68 # c_2,n_2,cp 419 | 128 14 74 73 68 # hn2,n_2,cp 420 | 129 15 68 69 71 # cp,cp,cp 421 | 130 16 68 69 70 # cp,cp,hc 422 | 131 13 73 68 69 # n_2,cp,cp 423 | 132 16 69 71 72 # cp,cp,hc 424 | 133 16 71 69 70 # cp,cp,hc 425 | 134 11 73 75 77 # n_2,c_2,o_2 426 | 135 7 76 75 73 # o_1,c_2,n_2 427 | 136 1 75 73 74 # c_2,n_2,hn2 428 | 137 3 75 77 78 # c_2,o_2,c 429 | 138 8 76 75 77 # o_1,c_2,o_2 430 | 139 25 81 78 77 # c,c,o_2 431 | 140 22 79 78 77 # hc,c,o_2 432 | 141 22 80 78 77 # hc,c,o_2 433 | 142 24 78 81 84 # c,c,c 434 | 143 21 82 81 78 # hc,c,c 435 | 144 21 83 81 78 # hc,c,c 436 | 145 21 79 78 81 # hc,c,c 437 | 146 20 79 78 80 # hc,c,hc 438 | 147 21 80 78 81 # hc,c,c 439 | 148 24 81 84 87 # c,c,c 440 | 149 21 85 84 81 # hc,c,c 441 | 150 21 86 84 81 # hc,c,c 442 | 151 21 82 81 84 # hc,c,c 443 | 152 20 82 81 83 # hc,c,hc 444 | 153 21 83 81 84 # hc,c,c 445 | 154 26 84 87 90 # c,c,oc 446 | 155 21 88 87 84 # hc,c,c 447 | 156 21 89 87 84 # hc,c,c 448 | 157 21 85 84 87 # hc,c,c 449 | 158 20 85 84 86 # hc,c,hc 450 | 159 21 86 84 87 # hc,c,c 451 | 160 27 87 90 91 # c,oc,c 452 | 161 23 88 87 90 # hc,c,oc 453 | 162 20 88 87 89 # hc,c,hc 454 | 163 23 89 87 90 # hc,c,oc 455 | 164 26 94 91 90 # c,c,oc 456 | 165 23 92 91 90 # hc,c,oc 457 | 166 23 93 91 90 # hc,c,oc 458 | 167 24 91 94 97 # c,c,c 459 | 168 21 95 94 91 # hc,c,c 460 | 169 21 96 94 91 # hc,c,c 461 | 170 21 92 91 94 # hc,c,c 462 | 171 20 92 91 93 # hc,c,hc 463 | 172 21 93 91 94 # hc,c,c 464 | 173 24 94 97 100 # c,c,c 465 | 174 21 98 97 94 # hc,c,c 466 | 175 21 99 97 94 # hc,c,c 467 | 176 21 95 94 97 # hc,c,c 468 | 177 20 95 94 96 # hc,c,hc 469 | 178 21 96 94 97 # hc,c,c 470 | 179 26 97 100 103 # c,c,oc 471 | 180 21 101 100 97 # hc,c,c 472 | 181 21 102 100 97 # hc,c,c 473 | 182 21 98 97 100 # hc,c,c 474 | 183 20 98 97 99 # hc,c,hc 475 | 184 21 99 97 100 # hc,c,c 476 | 185 27 100 103 104 # c,oc,c 477 | 186 23 101 100 103 # hc,c,oc 478 | 187 20 101 100 102 # hc,c,hc 479 | 188 23 102 100 103 # hc,c,oc 480 | 189 26 107 104 103 # c,c,oc 481 | 190 23 105 104 103 # hc,c,oc 482 | 191 23 106 104 103 # hc,c,oc 483 | 192 24 104 107 110 # c,c,c 484 | 193 21 108 107 104 # hc,c,c 485 | 194 21 109 107 104 # hc,c,c 486 | 195 21 105 104 107 # hc,c,c 487 | 196 20 105 104 106 # hc,c,hc 488 | 197 21 106 104 107 # hc,c,c 489 | 198 24 107 110 113 # c,c,c 490 | 199 21 111 110 107 # hc,c,c 491 | 200 21 112 110 107 # hc,c,c 492 | 201 21 108 107 110 # hc,c,c 493 | 202 20 108 107 109 # hc,c,hc 494 | 203 21 109 107 110 # hc,c,c 495 | 204 26 110 113 116 # c,c,oc 496 | 205 21 114 113 110 # hc,c,c 497 | 206 21 115 113 110 # hc,c,c 498 | 207 21 111 110 113 # hc,c,c 499 | 208 20 111 110 112 # hc,c,hc 500 | 209 21 112 110 113 # hc,c,c 501 | 210 27 113 116 117 # c,oc,c 502 | 211 23 114 113 116 # hc,c,oc 503 | 212 20 114 113 115 # hc,c,hc 504 | 213 23 115 113 116 # hc,c,oc 505 | 214 23 118 117 116 # hc,c,oc 506 | 215 23 119 117 116 # hc,c,oc 507 | 216 23 120 117 116 # hc,c,oc 508 | 217 20 118 117 119 # hc,c,hc 509 | 218 20 118 117 120 # hc,c,hc 510 | 219 20 119 117 120 # hc,c,hc 511 | 220 20 122 121 123 # hc,c,hc 512 | 221 20 122 121 124 # hc,c,hc 513 | 222 20 123 121 124 # hc,c,hc 514 | 515 | Dihedrals 516 | 517 | 1 4 1 3 5 6 # c_1,n_2,cp,cp 518 | 2 4 1 3 5 13 # c_1,n_2,cp,cp 519 | 3 10 2 1 121 122 # o_1,c_1,c,hc 520 | 4 10 2 1 121 123 # o_1,c_1,c,hc 521 | 5 10 2 1 121 124 # o_1,c_1,c,hc 522 | 6 9 2 1 3 5 # o_1,c_1,n_2,cp 523 | 7 8 2 1 3 4 # o_1,c_1,n_2,hn2 524 | 8 12 3 1 121 122 # n_2,c_1,c,hc 525 | 9 12 3 1 121 123 # n_2,c_1,c,hc 526 | 10 12 3 1 121 124 # n_2,c_1,c,hc 527 | 11 13 3 5 6 8 # n_2,cp,cp,cp 528 | 12 14 3 5 6 7 # n_2,cp,cp,hc 529 | 13 13 3 5 13 11 # n_2,cp,cp,cp 530 | 14 14 3 5 13 14 # n_2,cp,cp,hc 531 | 15 16 4 3 1 121 # hn2,n_2,c_1,c 532 | 16 17 4 3 5 6 # hn2,n_2,cp,cp 533 | 17 17 4 3 5 13 # hn2,n_2,cp,cp 534 | 18 19 5 3 1 121 # cp,n_2,c_1,c 535 | 19 20 5 6 8 10 # cp,cp,cp,cp 536 | 20 21 5 6 8 9 # cp,cp,cp,hc 537 | 21 20 5 13 11 10 # cp,cp,cp,cp 538 | 22 21 5 13 11 12 # cp,cp,cp,hc 539 | 23 20 6 5 13 11 # cp,cp,cp,cp 540 | 24 21 6 5 13 14 # cp,cp,cp,hc 541 | 25 22 6 8 10 15 # cp,cp,cp,c 542 | 26 20 6 8 10 11 # cp,cp,cp,cp 543 | 27 21 13 5 6 7 # cp,cp,cp,hc 544 | 28 21 10 8 6 7 # cp,cp,cp,hc 545 | 29 25 7 6 8 9 # hc,cp,cp,hc 546 | 30 20 8 6 5 13 # cp,cp,cp,cp 547 | 31 23 8 10 15 18 # cp,cp,c,cp 548 | 32 24 8 10 15 16 # cp,cp,c,hc 549 | 33 24 8 10 15 17 # cp,cp,c,hc 550 | 34 20 8 10 11 13 # cp,cp,cp,cp 551 | 35 21 8 10 11 12 # cp,cp,cp,hc 552 | 36 26 9 8 10 15 # hc,cp,cp,c 553 | 37 21 11 10 8 9 # cp,cp,cp,hc 554 | 38 23 19 18 15 10 # cp,cp,c,cp 555 | 39 23 26 18 15 10 # cp,cp,c,cp 556 | 40 21 10 11 13 14 # cp,cp,cp,hc 557 | 41 23 11 10 15 18 # cp,cp,c,cp 558 | 42 24 11 10 15 16 # cp,cp,c,hc 559 | 43 24 11 10 15 17 # cp,cp,c,hc 560 | 44 26 12 11 10 15 # hc,cp,cp,c 561 | 45 25 12 11 13 14 # hc,cp,cp,hc 562 | 46 22 13 11 10 15 # cp,cp,cp,c 563 | 47 22 21 19 18 15 # cp,cp,cp,c 564 | 48 26 20 19 18 15 # hc,cp,cp,c 565 | 49 22 24 26 18 15 # cp,cp,cp,c 566 | 50 26 27 26 18 15 # hc,cp,cp,c 567 | 51 24 19 18 15 16 # cp,cp,c,hc 568 | 52 24 26 18 15 16 # cp,cp,c,hc 569 | 53 24 19 18 15 17 # cp,cp,c,hc 570 | 54 24 26 18 15 17 # cp,cp,c,hc 571 | 55 20 18 19 21 23 # cp,cp,cp,cp 572 | 56 21 18 19 21 22 # cp,cp,cp,hc 573 | 57 20 18 26 24 23 # cp,cp,cp,cp 574 | 58 21 18 26 24 25 # cp,cp,cp,hc 575 | 59 20 19 18 26 24 # cp,cp,cp,cp 576 | 60 21 19 18 26 27 # cp,cp,cp,hc 577 | 61 13 28 23 21 19 # n_2,cp,cp,cp 578 | 62 20 19 21 23 24 # cp,cp,cp,cp 579 | 63 21 26 18 19 20 # cp,cp,cp,hc 580 | 64 21 23 21 19 20 # cp,cp,cp,hc 581 | 65 25 20 19 21 22 # hc,cp,cp,hc 582 | 66 20 21 19 18 26 # cp,cp,cp,cp 583 | 67 1 30 28 23 21 # c_2,n_2,cp,cp 584 | 68 17 29 28 23 21 # hn2,n_2,cp,cp 585 | 69 20 21 23 24 26 # cp,cp,cp,cp 586 | 70 21 21 23 24 25 # cp,cp,cp,hc 587 | 71 14 28 23 21 22 # n_2,cp,cp,hc 588 | 72 21 24 23 21 22 # cp,cp,cp,hc 589 | 73 18 23 28 30 32 # cp,n_2,c_2,o_2 590 | 74 6 31 30 28 23 # o_1,c_2,n_2,cp 591 | 75 21 23 24 26 27 # cp,cp,cp,hc 592 | 76 1 30 28 23 24 # c_2,n_2,cp,cp 593 | 77 17 29 28 23 24 # hn2,n_2,cp,cp 594 | 78 14 28 23 24 25 # n_2,cp,cp,hc 595 | 79 25 25 24 26 27 # hc,cp,cp,hc 596 | 80 13 28 23 24 26 # n_2,cp,cp,cp 597 | 81 11 28 30 32 33 # n_2,c_2,o_2,c 598 | 82 15 29 28 30 32 # hn2,n_2,c_2,o_2 599 | 83 5 31 30 28 29 # o_1,c_2,n_2,hn2 600 | 84 3 30 32 33 36 # c_2,o_2,c,c 601 | 85 2 30 32 33 34 # c_2,o_2,c,hc 602 | 86 2 30 32 33 35 # c_2,o_2,c,hc 603 | 87 7 31 30 32 33 # o_1,c_2,o_2,c 604 | 88 33 39 36 33 32 # c,c,c,o_2 605 | 89 29 37 36 33 32 # hc,c,c,o_2 606 | 90 29 38 36 33 32 # hc,c,c,o_2 607 | 91 32 33 36 39 42 # c,c,c,c 608 | 92 28 40 39 36 33 # hc,c,c,c 609 | 93 28 41 39 36 33 # hc,c,c,c 610 | 94 28 34 33 36 39 # hc,c,c,c 611 | 95 27 34 33 36 37 # hc,c,c,hc 612 | 96 27 34 33 36 38 # hc,c,c,hc 613 | 97 28 35 33 36 39 # hc,c,c,c 614 | 98 27 35 33 36 37 # hc,c,c,hc 615 | 99 27 35 33 36 38 # hc,c,c,hc 616 | 100 33 36 39 42 45 # c,c,c,o_2 617 | 101 28 43 42 39 36 # hc,c,c,c 618 | 102 28 44 42 39 36 # hc,c,c,c 619 | 103 28 37 36 39 42 # hc,c,c,c 620 | 104 27 37 36 39 40 # hc,c,c,hc 621 | 105 27 37 36 39 41 # hc,c,c,hc 622 | 106 28 38 36 39 42 # hc,c,c,c 623 | 107 27 38 36 39 40 # hc,c,c,hc 624 | 108 27 38 36 39 41 # hc,c,c,hc 625 | 109 3 46 45 42 39 # c_2,o_2,c,c 626 | 110 29 40 39 42 45 # hc,c,c,o_2 627 | 111 27 40 39 42 43 # hc,c,c,hc 628 | 112 27 40 39 42 44 # hc,c,c,hc 629 | 113 29 41 39 42 45 # hc,c,c,o_2 630 | 114 27 41 39 42 43 # hc,c,c,hc 631 | 115 27 41 39 42 44 # hc,c,c,hc 632 | 116 11 48 46 45 42 # n_2,c_2,o_2,c 633 | 117 7 47 46 45 42 # o_1,c_2,o_2,c 634 | 118 2 46 45 42 43 # c_2,o_2,c,hc 635 | 119 2 46 45 42 44 # c_2,o_2,c,hc 636 | 120 18 50 48 46 45 # cp,n_2,c_2,o_2 637 | 121 15 49 48 46 45 # hn2,n_2,c_2,o_2 638 | 122 1 46 48 50 51 # c_2,n_2,cp,cp 639 | 123 1 46 48 50 58 # c_2,n_2,cp,cp 640 | 124 6 47 46 48 50 # o_1,c_2,n_2,cp 641 | 125 5 47 46 48 49 # o_1,c_2,n_2,hn2 642 | 126 13 48 50 51 53 # n_2,cp,cp,cp 643 | 127 14 48 50 51 52 # n_2,cp,cp,hc 644 | 128 13 48 50 58 56 # n_2,cp,cp,cp 645 | 129 14 48 50 58 59 # n_2,cp,cp,hc 646 | 130 17 49 48 50 51 # hn2,n_2,cp,cp 647 | 131 17 49 48 50 58 # hn2,n_2,cp,cp 648 | 132 20 50 51 53 55 # cp,cp,cp,cp 649 | 133 21 50 51 53 54 # cp,cp,cp,hc 650 | 134 20 50 58 56 55 # cp,cp,cp,cp 651 | 135 21 50 58 56 57 # cp,cp,cp,hc 652 | 136 20 51 50 58 56 # cp,cp,cp,cp 653 | 137 21 51 50 58 59 # cp,cp,cp,hc 654 | 138 22 51 53 55 60 # cp,cp,cp,c 655 | 139 20 51 53 55 56 # cp,cp,cp,cp 656 | 140 21 58 50 51 52 # cp,cp,cp,hc 657 | 141 21 55 53 51 52 # cp,cp,cp,hc 658 | 142 25 52 51 53 54 # hc,cp,cp,hc 659 | 143 20 53 51 50 58 # cp,cp,cp,cp 660 | 144 23 53 55 60 63 # cp,cp,c,cp 661 | 145 24 53 55 60 61 # cp,cp,c,hc 662 | 146 24 53 55 60 62 # cp,cp,c,hc 663 | 147 20 53 55 56 58 # cp,cp,cp,cp 664 | 148 21 53 55 56 57 # cp,cp,cp,hc 665 | 149 26 54 53 55 60 # hc,cp,cp,c 666 | 150 21 56 55 53 54 # cp,cp,cp,hc 667 | 151 23 64 63 60 55 # cp,cp,c,cp 668 | 152 23 71 63 60 55 # cp,cp,c,cp 669 | 153 21 55 56 58 59 # cp,cp,cp,hc 670 | 154 23 56 55 60 63 # cp,cp,c,cp 671 | 155 24 56 55 60 61 # cp,cp,c,hc 672 | 156 24 56 55 60 62 # cp,cp,c,hc 673 | 157 26 57 56 55 60 # hc,cp,cp,c 674 | 158 25 57 56 58 59 # hc,cp,cp,hc 675 | 159 22 58 56 55 60 # cp,cp,cp,c 676 | 160 22 66 64 63 60 # cp,cp,cp,c 677 | 161 26 65 64 63 60 # hc,cp,cp,c 678 | 162 22 69 71 63 60 # cp,cp,cp,c 679 | 163 26 72 71 63 60 # hc,cp,cp,c 680 | 164 24 64 63 60 61 # cp,cp,c,hc 681 | 165 24 71 63 60 61 # cp,cp,c,hc 682 | 166 24 64 63 60 62 # cp,cp,c,hc 683 | 167 24 71 63 60 62 # cp,cp,c,hc 684 | 168 20 63 64 66 68 # cp,cp,cp,cp 685 | 169 21 63 64 66 67 # cp,cp,cp,hc 686 | 170 20 63 71 69 68 # cp,cp,cp,cp 687 | 171 21 63 71 69 70 # cp,cp,cp,hc 688 | 172 20 64 63 71 69 # cp,cp,cp,cp 689 | 173 21 64 63 71 72 # cp,cp,cp,hc 690 | 174 13 73 68 66 64 # n_2,cp,cp,cp 691 | 175 20 64 66 68 69 # cp,cp,cp,cp 692 | 176 21 71 63 64 65 # cp,cp,cp,hc 693 | 177 21 68 66 64 65 # cp,cp,cp,hc 694 | 178 25 65 64 66 67 # hc,cp,cp,hc 695 | 179 20 66 64 63 71 # cp,cp,cp,cp 696 | 180 1 75 73 68 66 # c_2,n_2,cp,cp 697 | 181 17 74 73 68 66 # hn2,n_2,cp,cp 698 | 182 20 66 68 69 71 # cp,cp,cp,cp 699 | 183 21 66 68 69 70 # cp,cp,cp,hc 700 | 184 14 73 68 66 67 # n_2,cp,cp,hc 701 | 185 21 69 68 66 67 # cp,cp,cp,hc 702 | 186 18 68 73 75 77 # cp,n_2,c_2,o_2 703 | 187 6 76 75 73 68 # o_1,c_2,n_2,cp 704 | 188 21 68 69 71 72 # cp,cp,cp,hc 705 | 189 1 75 73 68 69 # c_2,n_2,cp,cp 706 | 190 17 74 73 68 69 # hn2,n_2,cp,cp 707 | 191 14 73 68 69 70 # n_2,cp,cp,hc 708 | 192 25 70 69 71 72 # hc,cp,cp,hc 709 | 193 13 73 68 69 71 # n_2,cp,cp,cp 710 | 194 11 73 75 77 78 # n_2,c_2,o_2,c 711 | 195 15 74 73 75 77 # hn2,n_2,c_2,o_2 712 | 196 5 76 75 73 74 # o_1,c_2,n_2,hn2 713 | 197 3 75 77 78 81 # c_2,o_2,c,c 714 | 198 2 75 77 78 79 # c_2,o_2,c,hc 715 | 199 2 75 77 78 80 # c_2,o_2,c,hc 716 | 200 7 76 75 77 78 # o_1,c_2,o_2,c 717 | 201 33 84 81 78 77 # c,c,c,o_2 718 | 202 29 82 81 78 77 # hc,c,c,o_2 719 | 203 29 83 81 78 77 # hc,c,c,o_2 720 | 204 32 78 81 84 87 # c,c,c,c 721 | 205 28 85 84 81 78 # hc,c,c,c 722 | 206 28 86 84 81 78 # hc,c,c,c 723 | 207 28 79 78 81 84 # hc,c,c,c 724 | 208 27 79 78 81 82 # hc,c,c,hc 725 | 209 27 79 78 81 83 # hc,c,c,hc 726 | 210 28 80 78 81 84 # hc,c,c,c 727 | 211 27 80 78 81 82 # hc,c,c,hc 728 | 212 27 80 78 81 83 # hc,c,c,hc 729 | 213 34 81 84 87 90 # c,c,c,oc 730 | 214 28 88 87 84 81 # hc,c,c,c 731 | 215 28 89 87 84 81 # hc,c,c,c 732 | 216 28 82 81 84 87 # hc,c,c,c 733 | 217 27 82 81 84 85 # hc,c,c,hc 734 | 218 27 82 81 84 86 # hc,c,c,hc 735 | 219 28 83 81 84 87 # hc,c,c,c 736 | 220 27 83 81 84 85 # hc,c,c,hc 737 | 221 27 83 81 84 86 # hc,c,c,hc 738 | 222 35 84 87 90 91 # c,c,oc,c 739 | 223 30 85 84 87 90 # hc,c,c,oc 740 | 224 27 85 84 87 88 # hc,c,c,hc 741 | 225 27 85 84 87 89 # hc,c,c,hc 742 | 226 30 86 84 87 90 # hc,c,c,oc 743 | 227 27 86 84 87 88 # hc,c,c,hc 744 | 228 27 86 84 87 89 # hc,c,c,hc 745 | 229 35 94 91 90 87 # c,c,oc,c 746 | 230 31 92 91 90 87 # hc,c,oc,c 747 | 231 31 93 91 90 87 # hc,c,oc,c 748 | 232 31 88 87 90 91 # hc,c,oc,c 749 | 233 31 89 87 90 91 # hc,c,oc,c 750 | 234 34 97 94 91 90 # c,c,c,oc 751 | 235 30 95 94 91 90 # hc,c,c,oc 752 | 236 30 96 94 91 90 # hc,c,c,oc 753 | 237 32 91 94 97 100 # c,c,c,c 754 | 238 28 98 97 94 91 # hc,c,c,c 755 | 239 28 99 97 94 91 # hc,c,c,c 756 | 240 28 92 91 94 97 # hc,c,c,c 757 | 241 27 92 91 94 95 # hc,c,c,hc 758 | 242 27 92 91 94 96 # hc,c,c,hc 759 | 243 28 93 91 94 97 # hc,c,c,c 760 | 244 27 93 91 94 95 # hc,c,c,hc 761 | 245 27 93 91 94 96 # hc,c,c,hc 762 | 246 34 94 97 100 103 # c,c,c,oc 763 | 247 28 101 100 97 94 # hc,c,c,c 764 | 248 28 102 100 97 94 # hc,c,c,c 765 | 249 28 95 94 97 100 # hc,c,c,c 766 | 250 27 95 94 97 98 # hc,c,c,hc 767 | 251 27 95 94 97 99 # hc,c,c,hc 768 | 252 28 96 94 97 100 # hc,c,c,c 769 | 253 27 96 94 97 98 # hc,c,c,hc 770 | 254 27 96 94 97 99 # hc,c,c,hc 771 | 255 35 97 100 103 104 # c,c,oc,c 772 | 256 30 98 97 100 103 # hc,c,c,oc 773 | 257 27 98 97 100 101 # hc,c,c,hc 774 | 258 27 98 97 100 102 # hc,c,c,hc 775 | 259 30 99 97 100 103 # hc,c,c,oc 776 | 260 27 99 97 100 101 # hc,c,c,hc 777 | 261 27 99 97 100 102 # hc,c,c,hc 778 | 262 35 107 104 103 100 # c,c,oc,c 779 | 263 31 105 104 103 100 # hc,c,oc,c 780 | 264 31 106 104 103 100 # hc,c,oc,c 781 | 265 31 101 100 103 104 # hc,c,oc,c 782 | 266 31 102 100 103 104 # hc,c,oc,c 783 | 267 34 110 107 104 103 # c,c,c,oc 784 | 268 30 108 107 104 103 # hc,c,c,oc 785 | 269 30 109 107 104 103 # hc,c,c,oc 786 | 270 32 104 107 110 113 # c,c,c,c 787 | 271 28 111 110 107 104 # hc,c,c,c 788 | 272 28 112 110 107 104 # hc,c,c,c 789 | 273 28 105 104 107 110 # hc,c,c,c 790 | 274 27 105 104 107 108 # hc,c,c,hc 791 | 275 27 105 104 107 109 # hc,c,c,hc 792 | 276 28 106 104 107 110 # hc,c,c,c 793 | 277 27 106 104 107 108 # hc,c,c,hc 794 | 278 27 106 104 107 109 # hc,c,c,hc 795 | 279 34 107 110 113 116 # c,c,c,oc 796 | 280 28 114 113 110 107 # hc,c,c,c 797 | 281 28 115 113 110 107 # hc,c,c,c 798 | 282 28 108 107 110 113 # hc,c,c,c 799 | 283 27 108 107 110 111 # hc,c,c,hc 800 | 284 27 108 107 110 112 # hc,c,c,hc 801 | 285 28 109 107 110 113 # hc,c,c,c 802 | 286 27 109 107 110 111 # hc,c,c,hc 803 | 287 27 109 107 110 112 # hc,c,c,hc 804 | 288 35 110 113 116 117 # c,c,oc,c 805 | 289 30 111 110 113 116 # hc,c,c,oc 806 | 290 27 111 110 113 114 # hc,c,c,hc 807 | 291 27 111 110 113 115 # hc,c,c,hc 808 | 292 30 112 110 113 116 # hc,c,c,oc 809 | 293 27 112 110 113 114 # hc,c,c,hc 810 | 294 27 112 110 113 115 # hc,c,c,hc 811 | 295 31 118 117 116 113 # hc,c,oc,c 812 | 296 31 119 117 116 113 # hc,c,oc,c 813 | 297 31 120 117 116 113 # hc,c,oc,c 814 | 298 31 114 113 116 117 # hc,c,oc,c 815 | 299 31 115 113 116 117 # hc,c,oc,c 816 | 817 | Impropers 818 | 819 | 1 3 2 1 121 3 # o_1,c_1,c,n_2 820 | 2 6 1 3 5 4 # c_1,n_2,cp,hn2 821 | 3 7 3 5 6 13 # n_2,cp,cp,cp 822 | 4 8 5 6 8 7 # cp,cp,cp,hc 823 | 5 8 6 8 10 9 # cp,cp,cp,hc 824 | 6 9 11 10 8 15 # cp,cp,cp,c 825 | 7 8 10 11 13 12 # cp,cp,cp,hc 826 | 8 8 11 13 5 14 # cp,cp,cp,hc 827 | 9 11 10 15 18 16 # cp,c,cp,hc 828 | 10 11 10 15 18 17 # cp,c,cp,hc 829 | 11 12 10 15 16 17 # cp,c,hc,hc 830 | 12 12 18 15 16 17 # cp,c,hc,hc 831 | 13 9 19 18 26 15 # cp,cp,cp,c 832 | 14 8 18 19 21 20 # cp,cp,cp,hc 833 | 15 8 19 21 23 22 # cp,cp,cp,hc 834 | 16 7 28 23 24 21 # n_2,cp,cp,cp 835 | 17 8 23 24 26 25 # cp,cp,cp,hc 836 | 18 8 24 26 18 27 # cp,cp,cp,hc 837 | 19 4 30 28 29 23 # c_2,n_2,hn2,cp 838 | 20 1 31 30 28 32 # o_1,c_2,n_2,o_2 839 | 21 20 34 33 32 36 # hc,c,o_2,c 840 | 22 20 35 33 32 36 # hc,c,o_2,c 841 | 23 15 34 33 35 32 # hc,c,hc,o_2 842 | 24 14 34 33 35 36 # hc,c,hc,c 843 | 25 17 37 36 33 39 # hc,c,c,c 844 | 26 17 38 36 33 39 # hc,c,c,c 845 | 27 14 37 36 38 33 # hc,c,hc,c 846 | 28 14 37 36 38 39 # hc,c,hc,c 847 | 29 17 40 39 36 42 # hc,c,c,c 848 | 30 17 41 39 36 42 # hc,c,c,c 849 | 31 14 40 39 41 36 # hc,c,hc,c 850 | 32 14 40 39 41 42 # hc,c,hc,c 851 | 33 18 43 42 39 45 # hc,c,c,o_2 852 | 34 18 44 42 39 45 # hc,c,c,o_2 853 | 35 14 43 42 44 39 # hc,c,hc,c 854 | 36 15 43 42 44 45 # hc,c,hc,o_2 855 | 37 2 47 46 45 48 # o_1,c_2,o_2,n_2 856 | 38 5 46 48 50 49 # c_2,n_2,cp,hn2 857 | 39 7 48 50 51 58 # n_2,cp,cp,cp 858 | 40 8 50 51 53 52 # cp,cp,cp,hc 859 | 41 8 51 53 55 54 # cp,cp,cp,hc 860 | 42 9 56 55 53 60 # cp,cp,cp,c 861 | 43 8 55 56 58 57 # cp,cp,cp,hc 862 | 44 8 56 58 50 59 # cp,cp,cp,hc 863 | 45 11 55 60 63 61 # cp,c,cp,hc 864 | 46 11 55 60 63 62 # cp,c,cp,hc 865 | 47 12 55 60 61 62 # cp,c,hc,hc 866 | 48 12 63 60 61 62 # cp,c,hc,hc 867 | 49 9 64 63 71 60 # cp,cp,cp,c 868 | 50 8 63 64 66 65 # cp,cp,cp,hc 869 | 51 8 64 66 68 67 # cp,cp,cp,hc 870 | 52 7 73 68 69 66 # n_2,cp,cp,cp 871 | 53 8 68 69 71 70 # cp,cp,cp,hc 872 | 54 8 69 71 63 72 # cp,cp,cp,hc 873 | 55 4 75 73 74 68 # c_2,n_2,hn2,cp 874 | 56 1 76 75 73 77 # o_1,c_2,n_2,o_2 875 | 57 20 79 78 77 81 # hc,c,o_2,c 876 | 58 20 80 78 77 81 # hc,c,o_2,c 877 | 59 15 79 78 80 77 # hc,c,hc,o_2 878 | 60 14 79 78 80 81 # hc,c,hc,c 879 | 61 17 82 81 78 84 # hc,c,c,c 880 | 62 17 83 81 78 84 # hc,c,c,c 881 | 63 14 82 81 83 78 # hc,c,hc,c 882 | 64 14 82 81 83 84 # hc,c,hc,c 883 | 65 17 85 84 81 87 # hc,c,c,c 884 | 66 17 86 84 81 87 # hc,c,c,c 885 | 67 14 85 84 86 81 # hc,c,hc,c 886 | 68 14 85 84 86 87 # hc,c,hc,c 887 | 69 19 88 87 84 90 # hc,c,c,oc 888 | 70 19 89 87 84 90 # hc,c,c,oc 889 | 71 14 88 87 89 84 # hc,c,hc,c 890 | 72 16 88 87 89 90 # hc,c,hc,oc 891 | 73 21 92 91 90 94 # hc,c,oc,c 892 | 74 21 93 91 90 94 # hc,c,oc,c 893 | 75 16 92 91 93 90 # hc,c,hc,oc 894 | 76 14 92 91 93 94 # hc,c,hc,c 895 | 77 17 95 94 91 97 # hc,c,c,c 896 | 78 17 96 94 91 97 # hc,c,c,c 897 | 79 14 95 94 96 91 # hc,c,hc,c 898 | 80 14 95 94 96 97 # hc,c,hc,c 899 | 81 17 98 97 94 100 # hc,c,c,c 900 | 82 17 99 97 94 100 # hc,c,c,c 901 | 83 14 98 97 99 94 # hc,c,hc,c 902 | 84 14 98 97 99 100 # hc,c,hc,c 903 | 85 19 101 100 97 103 # hc,c,c,oc 904 | 86 19 102 100 97 103 # hc,c,c,oc 905 | 87 14 101 100 102 97 # hc,c,hc,c 906 | 88 16 101 100 102 103 # hc,c,hc,oc 907 | 89 21 105 104 103 107 # hc,c,oc,c 908 | 90 21 106 104 103 107 # hc,c,oc,c 909 | 91 16 105 104 106 103 # hc,c,hc,oc 910 | 92 14 105 104 106 107 # hc,c,hc,c 911 | 93 17 108 107 104 110 # hc,c,c,c 912 | 94 17 109 107 104 110 # hc,c,c,c 913 | 95 14 108 107 109 104 # hc,c,hc,c 914 | 96 14 108 107 109 110 # hc,c,hc,c 915 | 97 17 111 110 107 113 # hc,c,c,c 916 | 98 17 112 110 107 113 # hc,c,c,c 917 | 99 14 111 110 112 107 # hc,c,hc,c 918 | 100 14 111 110 112 113 # hc,c,hc,c 919 | 101 19 114 113 110 116 # hc,c,c,oc 920 | 102 19 115 113 110 116 # hc,c,c,oc 921 | 103 14 114 113 115 110 # hc,c,hc,c 922 | 104 16 114 113 115 116 # hc,c,hc,oc 923 | 105 16 118 117 119 116 # hc,c,hc,oc 924 | 106 16 118 117 120 116 # hc,c,hc,oc 925 | 107 16 119 117 120 116 # hc,c,hc,oc 926 | 108 13 118 117 119 120 # hc,c,hc,hc 927 | 109 10 1 121 122 123 # c_1,c,hc,hc 928 | 110 10 1 121 122 124 # c_1,c,hc,hc 929 | 111 10 1 121 123 124 # c_1,c,hc,hc 930 | 112 13 122 121 123 124 # hc,c,hc,hc 931 | 932 | -------------------------------------------------------------------------------- /polyurethane_chain/pu_in.in: -------------------------------------------------------------------------------- 1 | # Created by Nuwan Dewapriya on 2020-12-16 2 | 3 | units real 4 | boundary p p p 5 | atom_style full 6 | 7 | 8 | # -----------------Potential----------------- 9 | 10 | variable cutoff equal 10 11 | variable charge_cutoff equal 12 12 | 13 | pair_style lj/class2/coul/long ${cutoff} ${charge_cutoff} 14 | bond_style class2 15 | angle_style class2 16 | dihedral_style class2 17 | improper_style class2 18 | pair_modify mix sixthpower tail yes 19 | special_bonds lj/coul 0 0 1 20 | 21 | read_data "pu_data.data" 22 | include "pu_para.params" 23 | kspace_style pppm 1e-06 24 | 25 | 26 | # ----------------- Minimization----------------- 27 | 28 | min_style cg 29 | min_modify dmax 0.4 30 | minimize 1e-8 1e-10 20000 50000 31 | reset_timestep 0 32 | 33 | variable tstp equal 1 34 | timestep ${tstp} 35 | variable tdamp equal "v_tstp * 100" 36 | variable pdamp equal "v_tstp * 1000" 37 | variable E_t equal etotal 38 | variable time equal time*0.001 39 | 40 | fix 1 all nvt temp 1 1 ${tdamp} 41 | 42 | thermo 1000 43 | 44 | dump 1 all atom 200 pu_eq.lammpstrj 45 | fix write all print 100 "${time} ${E_t}" file energy.dump screen no 46 | 47 | run 50000 -------------------------------------------------------------------------------- /polyurethane_chain/pu_para.params: -------------------------------------------------------------------------------- 1 | # LAMMPS parameters created by EMC v9.4.4, build Jul 2 2019 14:55:34 2 | 3 | 4 | # Pair Coeffs 5 | 6 | pair_coeff 1 1 0.12000 3.81000 # c_2,c_2 7 | pair_coeff 2 2 0.12000 3.81000 # c_1,c_1 8 | pair_coeff 3 3 0.26700 3.30000 # o_1,o_1 9 | pair_coeff 4 4 0.10600 3.60000 # n_2,n_2 10 | pair_coeff 5 5 0.01300 1.65000 # hn2,hn2 11 | pair_coeff 6 6 0.06400 4.01000 # cp,cp 12 | pair_coeff 7 7 0.02000 2.99500 # hc,hc 13 | pair_coeff 8 8 0.05400 4.01000 # c,c 14 | pair_coeff 9 9 0.24000 3.42000 # o_2,o_2 15 | pair_coeff 10 10 0.24000 3.53500 # oc,oc 16 | 17 | # Bond Coeffs 18 | 19 | bond_coeff 1 1.20630 854.29030 -1922.34070 2101.68240 # c_2,o_1 20 | bond_coeff 2 1.35800 440.67830 -828.37980 1423.24180 # c_2,n_2 21 | bond_coeff 3 1.35980 391.33100 -788.56550 1212.38120 # c_2,o_2 22 | bond_coeff 4 1.20200 851.14030 -1918.48820 2160.76590 # c_1,o_1 23 | bond_coeff 5 1.36600 390.67830 -768.37980 923.24180 # c_1,n_2 24 | bond_coeff 6 1.52020 253.70670 -423.03700 396.90000 # c_1,c 25 | bond_coeff 7 0.99590 495.82940 -1092.72390 1441.12900 # n_2,hn2 26 | bond_coeff 8 1.43900 344.04520 -652.12080 1022.22420 # n_2,cp 27 | bond_coeff 9 1.41700 470.83610 -627.61790 1327.63450 # cp,cp 28 | bond_coeff 10 1.09820 372.82510 -803.45260 894.31730 # cp,hc 29 | bond_coeff 11 1.50100 321.90210 -521.82080 572.16280 # cp,c 30 | bond_coeff 12 1.10100 345.00000 -691.89000 844.60000 # hc,c 31 | bond_coeff 13 1.53000 299.67000 -501.77000 679.81000 # c,c 32 | bond_coeff 14 1.43000 326.72730 -608.53060 689.03330 # c,o_2 33 | bond_coeff 15 1.42000 400.39540 -835.19510 1313.01420 # c,oc 34 | 35 | # Angle Coeffs 36 | 37 | angle_coeff 1 122.94800 40.48200 -16.20280 8.32800 # c_2,n_2,hn2 38 | angle_coeff 2 120.07000 47.11310 -32.55920 13.12570 # c_2,n_2,cp 39 | angle_coeff 3 113.62000 57.92740 -17.13120 23.54800 # c_2,o_2,c 40 | angle_coeff 4 122.94800 40.48200 -16.20280 0.00000 # c_1,n_2,hn2 41 | angle_coeff 5 116.62600 42.47110 -10.42690 0.00000 # c_1,n_2,cp 42 | angle_coeff 6 107.73360 40.60990 -28.81210 0.00000 # c_1,c,hc 43 | angle_coeff 7 125.53200 101.87650 -41.80940 7.72360 # o_1,c_2,n_2 44 | angle_coeff 8 120.79700 95.34460 -32.28690 6.37780 # o_1,c_2,o_2 45 | angle_coeff 9 125.53200 101.87650 -41.80940 0.00000 # o_1,c_1,n_2 46 | angle_coeff 10 123.14510 55.54310 -17.21230 0.13480 # o_1,c_1,c 47 | angle_coeff 11 108.44000 112.44030 -59.97300 38.30670 # n_2,c_2,o_2 48 | angle_coeff 12 116.92570 39.41930 -10.99450 -8.77330 # n_2,c_1,c 49 | angle_coeff 13 120.76400 73.27380 -27.40330 13.39200 # n_2,cp,cp 50 | angle_coeff 14 116.32300 18.31230 -7.83250 5.32900 # hn2,n_2,cp 51 | angle_coeff 15 118.90000 61.02260 -34.99310 0.00000 # cp,cp,cp 52 | angle_coeff 16 117.94000 35.15580 -12.46820 0.00000 # cp,cp,hc 53 | angle_coeff 17 120.05000 44.71480 -22.73520 0.00000 # cp,cp,c 54 | angle_coeff 18 111.00000 44.32340 -9.44540 0.00000 # cp,c,cp 55 | angle_coeff 19 111.00000 44.32340 -9.44540 0.00000 # cp,c,hc 56 | angle_coeff 20 107.66000 39.64100 -12.92100 -2.43180 # hc,c,hc 57 | angle_coeff 21 110.77000 41.45300 -10.60400 5.12900 # hc,c,c 58 | angle_coeff 22 107.68800 65.48010 -10.34980 5.88660 # hc,c,o_2 59 | angle_coeff 23 108.72800 58.54460 -10.80880 -12.40060 # hc,c,oc 60 | angle_coeff 24 112.67000 39.51600 -7.44300 -9.55830 # c,c,c 61 | angle_coeff 25 107.41000 63.39070 -13.45130 1.66500 # c,c,o_2 62 | angle_coeff 26 111.27000 54.53810 -8.36420 -13.08380 # c,c,oc 63 | angle_coeff 27 104.50000 35.74540 -10.00670 -6.27290 # c,oc,c 64 | 65 | # BondBond Coeffs 66 | 67 | angle_coeff 1 bb 8.62530 1.35800 0.99590 # c_2,n_2,hn2 68 | angle_coeff 2 bb 41.42330 1.35800 1.43900 # c_2,n_2,cp 69 | angle_coeff 3 bb 42.09410 1.35980 1.43000 # c_2,o_2,c 70 | angle_coeff 4 bb 8.62530 1.36600 0.99590 # c_1,n_2,hn2 71 | angle_coeff 5 bb 41.42330 1.36600 1.43900 # c_1,n_2,cp 72 | angle_coeff 6 bb 0.71150 1.52020 1.10100 # c_1,c,hc 73 | angle_coeff 7 bb 115.46450 1.20630 1.35800 # o_1,c_2,n_2 74 | angle_coeff 8 bb 122.49660 1.20630 1.35980 # o_1,c_2,o_2 75 | angle_coeff 9 bb 116.94450 1.20200 1.36600 # o_1,c_1,n_2 76 | angle_coeff 10 bb 46.06850 1.20200 1.52020 # o_1,c_1,c 77 | angle_coeff 11 bb 84.52630 1.35800 1.35980 # n_2,c_2,o_2 78 | angle_coeff 12 bb 56.47880 1.36600 1.52020 # n_2,c_1,c 79 | angle_coeff 13 bb 37.87490 1.43900 1.41700 # n_2,cp,cp 80 | angle_coeff 14 bb 8.29300 0.99590 1.43900 # hn2,n_2,cp 81 | angle_coeff 15 bb 68.28560 1.41700 1.41700 # cp,cp,cp 82 | angle_coeff 16 bb 1.07950 1.41700 1.09820 # cp,cp,hc 83 | angle_coeff 17 bb 12.06760 1.41700 1.50100 # cp,cp,c 84 | angle_coeff 18 bb 0.00000 1.50100 1.50100 # cp,c,cp 85 | angle_coeff 19 bb 2.91680 1.50100 1.10100 # cp,c,hc 86 | angle_coeff 20 bb 5.33160 1.10100 1.10100 # hc,c,hc 87 | angle_coeff 21 bb 3.38720 1.10100 1.53000 # hc,c,c 88 | angle_coeff 22 bb 5.64540 1.10100 1.43000 # hc,c,o_2 89 | angle_coeff 23 bb 23.19790 1.10100 1.42000 # hc,c,oc 90 | angle_coeff 24 bb 0.00000 1.53000 1.53000 # c,c,c 91 | angle_coeff 25 bb 23.26470 1.53000 1.43000 # c,c,o_2 92 | angle_coeff 26 bb 11.43180 1.53000 1.42000 # c,c,oc 93 | angle_coeff 27 bb -7.11310 1.42000 1.42000 # c,oc,c 94 | 95 | # BondAngle Coeffs 96 | 97 | angle_coeff 1 ba 34.83120 15.07780 1.35800 0.99590 # c_2,n_2,hn2 98 | angle_coeff 2 ba 34.77910 24.37050 1.35800 1.43900 # c_2,n_2,cp 99 | angle_coeff 3 ba 53.59200 32.48160 1.35980 1.43000 # c_2,o_2,c 100 | angle_coeff 4 ba 0.00000 0.00000 1.36600 0.99590 # c_1,n_2,hn2 101 | angle_coeff 5 ba 0.00000 0.00000 1.36600 1.43900 # c_1,n_2,cp 102 | angle_coeff 6 ba 12.46320 9.17650 1.52020 1.10100 # c_1,c,hc 103 | angle_coeff 7 ba 46.10930 32.87580 1.20630 1.35800 # o_1,c_2,n_2 104 | angle_coeff 8 ba 43.60080 31.85330 1.20630 1.35980 # o_1,c_2,o_2 105 | angle_coeff 9 ba 46.10930 32.87580 1.20200 1.36600 # o_1,c_1,n_2 106 | angle_coeff 10 ba 37.12980 34.99820 1.20200 1.52020 # o_1,c_1,c 107 | angle_coeff 11 ba 32.76240 39.08750 1.35800 1.35980 # n_2,c_2,o_2 108 | angle_coeff 12 ba 6.08030 25.37120 1.36600 1.52020 # n_2,c_1,c 109 | angle_coeff 13 ba 53.69770 35.88650 1.43900 1.41700 # n_2,cp,cp 110 | angle_coeff 14 ba 12.82170 10.45680 0.99590 1.43900 # hn2,n_2,cp 111 | angle_coeff 15 ba 28.87080 28.87080 1.41700 1.41700 # cp,cp,cp 112 | angle_coeff 16 ba 20.00330 24.21830 1.41700 1.09820 # cp,cp,hc 113 | angle_coeff 17 ba 31.07710 47.05790 1.41700 1.50100 # cp,cp,c 114 | angle_coeff 18 ba 0.00000 0.00000 1.50100 1.50100 # cp,c,cp 115 | angle_coeff 19 ba 26.46080 11.77170 1.50100 1.10100 # cp,c,hc 116 | angle_coeff 20 ba 18.10300 18.10300 1.10100 1.10100 # hc,c,hc 117 | angle_coeff 21 ba 11.42100 20.75400 1.10100 1.53000 # hc,c,c 118 | angle_coeff 22 ba 8.68640 57.49750 1.10100 1.43000 # hc,c,o_2 119 | angle_coeff 23 ba 4.61890 55.32700 1.10100 1.42000 # hc,c,oc 120 | angle_coeff 24 ba 8.01600 8.01600 1.53000 1.53000 # c,c,c 121 | angle_coeff 25 ba 23.39200 47.94870 1.53000 1.43000 # c,c,o_2 122 | angle_coeff 26 ba 2.68680 20.40330 1.53000 1.42000 # c,c,oc 123 | angle_coeff 27 ba -2.81120 -2.81120 1.42000 1.42000 # c,oc,c 124 | 125 | # Dihedral Coeffs 126 | 127 | dihedral_coeff 1 0.00000 0.00000 0.81070 0.00000 0.00000 0.00000 # c_2,n_2,cp,cp 128 | dihedral_coeff 2 0.00000 0.00000 0.00000 0.00000 -0.08820 0.00000 # c_2,o_2,c,hc 129 | dihedral_coeff 3 0.00000 0.00000 0.00000 0.00000 -0.08820 0.00000 # c_2,o_2,c,c 130 | dihedral_coeff 4 0.00000 0.00000 0.81070 0.00000 0.00000 0.00000 # c_1,n_2,cp,cp 131 | dihedral_coeff 5 0.00000 0.00000 2.05210 0.00000 0.00000 0.00000 # o_1,c_2,n_2,hn2 132 | dihedral_coeff 6 0.00000 0.00000 2.05210 0.00000 0.00000 0.00000 # o_1,c_2,n_2,cp 133 | dihedral_coeff 7 0.00000 0.00000 1.80990 0.00000 0.00000 0.00000 # o_1,c_2,o_2,c 134 | dihedral_coeff 8 0.00000 0.00000 2.05210 0.00000 0.00000 0.00000 # o_1,c_1,n_2,hn2 135 | dihedral_coeff 9 0.00000 0.00000 2.05210 0.00000 0.00000 0.00000 # o_1,c_1,n_2,cp 136 | dihedral_coeff 10 -0.18040 0.00000 0.00120 0.00000 0.03710 0.00000 # o_1,c_1,c,hc 137 | dihedral_coeff 11 -2.95220 0.00000 2.40470 0.00000 0.00000 0.00000 # n_2,c_2,o_2,c 138 | dihedral_coeff 12 0.16930 0.00000 -0.00900 0.00000 -0.06870 0.00000 # n_2,c_1,c,hc 139 | dihedral_coeff 13 0.00000 0.00000 3.40400 0.00000 0.00000 0.00000 # n_2,cp,cp,cp 140 | dihedral_coeff 14 0.00000 0.00000 3.40400 0.00000 0.00000 0.00000 # n_2,cp,cp,hc 141 | dihedral_coeff 15 -1.71770 0.00000 1.88630 0.00000 0.00000 0.00000 # hn2,n_2,c_2,o_2 142 | dihedral_coeff 16 -0.82360 0.00000 2.14670 0.00000 -0.21420 0.00000 # hn2,n_2,c_1,c 143 | dihedral_coeff 17 0.00000 0.00000 0.61070 0.00000 0.00000 0.00000 # hn2,n_2,cp,cp 144 | dihedral_coeff 18 -1.71770 0.00000 1.88630 0.00000 0.00000 0.00000 # cp,n_2,c_2,o_2 145 | dihedral_coeff 19 0.00000 0.00000 0.90000 0.00000 0.00000 0.00000 # cp,n_2,c_1,c 146 | dihedral_coeff 20 8.36670 0.00000 1.19320 0.00000 0.00000 0.00000 # cp,cp,cp,cp 147 | dihedral_coeff 21 0.00000 0.00000 3.96610 0.00000 0.00000 0.00000 # cp,cp,cp,hc 148 | dihedral_coeff 22 0.00000 0.00000 4.40720 0.00000 0.00000 0.00000 # cp,cp,cp,c 149 | dihedral_coeff 23 -0.28020 0.00000 -0.06780 0.00000 -0.01220 0.00000 # cp,cp,c,cp 150 | dihedral_coeff 24 -0.28010 0.00000 -0.06780 0.00000 -0.01220 0.00000 # cp,cp,c,hc 151 | dihedral_coeff 25 0.00000 0.00000 1.87690 0.00000 0.00000 0.00000 # hc,cp,cp,hc 152 | dihedral_coeff 26 0.00000 0.00000 1.55900 0.00000 0.00000 0.00000 # hc,cp,cp,c 153 | dihedral_coeff 27 -0.14320 0.00000 0.06170 0.00000 -0.10830 0.00000 # hc,c,c,hc 154 | dihedral_coeff 28 0.00000 0.00000 0.03160 0.00000 -0.16810 0.00000 # hc,c,c,c 155 | dihedral_coeff 29 0.00000 0.00000 0.00000 0.00000 -0.25000 0.00000 # hc,c,c,o_2 156 | dihedral_coeff 30 -0.14350 0.00000 0.25300 0.00000 -0.09050 0.00000 # hc,c,c,oc 157 | dihedral_coeff 31 0.53020 0.00000 0.00000 0.00000 -0.39660 0.00000 # hc,c,oc,c 158 | dihedral_coeff 32 0.00000 0.00000 0.05140 0.00000 -0.14300 0.00000 # c,c,c,c 159 | dihedral_coeff 33 0.00000 0.00000 0.00000 0.00000 -0.25000 0.00000 # c,c,c,o_2 160 | dihedral_coeff 34 0.71370 0.00000 0.26600 0.00000 -0.25450 0.00000 # c,c,c,oc 161 | dihedral_coeff 35 -0.52030 0.00000 -0.30280 0.00000 -0.34500 0.00000 # c,c,oc,c 162 | 163 | # MiddleBondTorsion Coeffs 164 | 165 | dihedral_coeff 1 mbt 0.00000 4.90270 0.00000 1.43900 # c_2,n_2,cp,cp 166 | dihedral_coeff 2 mbt 0.00000 0.00000 0.00000 1.43000 # c_2,o_2,c,hc 167 | dihedral_coeff 3 mbt 0.00000 0.00000 0.00000 1.43000 # c_2,o_2,c,c 168 | dihedral_coeff 4 mbt 0.00000 0.00000 0.00000 1.43900 # c_1,n_2,cp,cp 169 | dihedral_coeff 5 mbt 0.00000 4.47000 0.00000 1.35800 # o_1,c_2,n_2,hn2 170 | dihedral_coeff 6 mbt 0.00000 4.47000 0.00000 1.35800 # o_1,c_2,n_2,cp 171 | dihedral_coeff 7 mbt 0.00000 4.71480 0.00000 1.35980 # o_1,c_2,o_2,c 172 | dihedral_coeff 8 mbt 0.00000 0.00000 0.00000 1.36600 # o_1,c_1,n_2,hn2 173 | dihedral_coeff 9 mbt 0.00000 0.00000 0.00000 1.36600 # o_1,c_1,n_2,cp 174 | dihedral_coeff 10 mbt 0.23590 0.91390 0.95940 1.52020 # o_1,c_1,c,hc 175 | dihedral_coeff 11 mbt 0.00000 6.35620 0.00000 1.35980 # n_2,c_2,o_2,c 176 | dihedral_coeff 12 mbt 0.22960 -0.41490 0.80030 1.52020 # n_2,c_1,c,hc 177 | dihedral_coeff 13 mbt 0.00000 5.20120 0.00000 1.41700 # n_2,cp,cp,cp 178 | dihedral_coeff 14 mbt 0.00000 5.20120 0.00000 1.41700 # n_2,cp,cp,hc 179 | dihedral_coeff 15 mbt 0.00000 6.31630 0.00000 1.35800 # hn2,n_2,c_2,o_2 180 | dihedral_coeff 16 mbt -0.52980 4.73560 -1.06370 1.36600 # hn2,n_2,c_1,c 181 | dihedral_coeff 17 mbt 0.00000 2.47300 0.00000 1.43900 # hn2,n_2,cp,cp 182 | dihedral_coeff 18 mbt 0.00000 6.31630 0.00000 1.35800 # cp,n_2,c_2,o_2 183 | dihedral_coeff 19 mbt 0.00000 0.00000 0.00000 1.36600 # cp,n_2,c_1,c 184 | dihedral_coeff 20 mbt 27.59890 -2.31200 0.00000 1.41700 # cp,cp,cp,cp 185 | dihedral_coeff 21 mbt 0.00000 -1.15210 0.00000 1.41700 # cp,cp,cp,hc 186 | dihedral_coeff 22 mbt 0.00000 9.17920 0.00000 1.41700 # cp,cp,cp,c 187 | dihedral_coeff 23 mbt 0.00000 0.00000 0.00000 1.50100 # cp,cp,c,cp 188 | dihedral_coeff 24 mbt -5.56790 1.40830 0.30100 1.50100 # cp,cp,c,hc 189 | dihedral_coeff 25 mbt 0.00000 4.82280 0.00000 1.41700 # hc,cp,cp,hc 190 | dihedral_coeff 26 mbt 0.00000 3.94210 0.00000 1.41700 # hc,cp,cp,c 191 | dihedral_coeff 27 mbt -14.26100 -0.53220 -0.48640 1.53000 # hc,c,c,hc 192 | dihedral_coeff 28 mbt -14.87900 -3.65810 -0.31380 1.53000 # hc,c,c,c 193 | dihedral_coeff 29 mbt 0.00000 0.00000 0.00000 1.53000 # hc,c,c,o_2 194 | dihedral_coeff 30 mbt -16.79750 -1.22960 -0.27500 1.53000 # hc,c,c,oc 195 | dihedral_coeff 31 mbt -6.80070 -4.65460 -1.41010 1.42000 # hc,c,oc,c 196 | dihedral_coeff 32 mbt -17.78700 -7.18770 0.00000 1.53000 # c,c,c,c 197 | dihedral_coeff 33 mbt 0.00000 0.00000 0.00000 1.53000 # c,c,c,o_2 198 | dihedral_coeff 34 mbt -21.88420 -7.67640 -0.68680 1.53000 # c,c,c,oc 199 | dihedral_coeff 35 mbt -5.92880 -2.70070 -0.31750 1.42000 # c,c,oc,c 200 | 201 | # EndBondTorsion Coeffs 202 | 203 | dihedral_coeff 1 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.35800 1.41700 # c_2,n_2,cp,cp 204 | dihedral_coeff 2 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.35980 1.10100 # c_2,o_2,c,hc 205 | dihedral_coeff 3 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.35980 1.53000 # c_2,o_2,c,c 206 | dihedral_coeff 4 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.36600 1.41700 # c_1,n_2,cp,cp 207 | dihedral_coeff 5 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.20630 0.99590 # o_1,c_2,n_2,hn2 208 | dihedral_coeff 6 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.20630 1.43900 # o_1,c_2,n_2,cp 209 | dihedral_coeff 7 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.20630 1.43000 # o_1,c_2,o_2,c 210 | dihedral_coeff 8 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.20200 0.99590 # o_1,c_1,n_2,hn2 211 | dihedral_coeff 9 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.20200 1.43900 # o_1,c_1,n_2,cp 212 | dihedral_coeff 10 ebt -0.22980 0.03540 0.38530 1.21430 0.28310 0.39160 1.20200 1.10100 # o_1,c_1,c,hc 213 | dihedral_coeff 11 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.35800 1.43000 # n_2,c_2,o_2,c 214 | dihedral_coeff 12 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.36600 1.10100 # n_2,c_1,c,hc 215 | dihedral_coeff 13 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.43900 1.41700 # n_2,cp,cp,cp 216 | dihedral_coeff 14 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.43900 1.09820 # n_2,cp,cp,hc 217 | dihedral_coeff 15 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99590 1.35980 # hn2,n_2,c_2,o_2 218 | dihedral_coeff 16 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99590 1.52020 # hn2,n_2,c_1,c 219 | dihedral_coeff 17 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.99590 1.41700 # hn2,n_2,cp,cp 220 | dihedral_coeff 18 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.43900 1.35980 # cp,n_2,c_2,o_2 221 | dihedral_coeff 19 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.43900 1.52020 # cp,n_2,c_1,c 222 | dihedral_coeff 20 ebt -0.11850 6.32040 0.00000 -0.11850 6.32040 0.00000 1.41700 1.41700 # cp,cp,cp,cp 223 | dihedral_coeff 21 ebt 0.00000 -6.89580 0.00000 0.00000 -0.46690 0.00000 1.41700 1.09820 # cp,cp,cp,hc 224 | dihedral_coeff 22 ebt 0.00000 -0.69180 0.00000 0.00000 0.24210 0.00000 1.41700 1.50100 # cp,cp,cp,c 225 | dihedral_coeff 23 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.41700 1.50100 # cp,cp,c,cp 226 | dihedral_coeff 24 ebt -0.58350 1.12200 0.39780 1.39970 0.77560 0.00000 1.41700 1.10100 # cp,cp,c,hc 227 | dihedral_coeff 25 ebt 0.00000 -0.68900 0.00000 0.00000 -0.68900 0.00000 1.09820 1.09820 # hc,cp,cp,hc 228 | dihedral_coeff 26 ebt 0.00000 -0.48790 0.00000 0.00000 -1.79700 0.00000 1.09820 1.50100 # hc,cp,cp,c 229 | dihedral_coeff 27 ebt 0.21300 0.31200 0.07770 0.21300 0.31200 0.07770 1.10100 1.10100 # hc,c,c,hc 230 | dihedral_coeff 28 ebt 0.08140 0.05910 0.22190 0.24860 0.24220 -0.09250 1.10100 1.53000 # hc,c,c,c 231 | dihedral_coeff 29 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.10100 1.43000 # hc,c,c,o_2 232 | dihedral_coeff 30 ebt 0.96810 0.95510 0.04360 0.59030 0.66690 0.85840 1.10100 1.42000 # hc,c,c,oc 233 | dihedral_coeff 31 ebt -0.60540 1.33390 0.96480 -0.16200 0.15640 -1.14080 1.10100 1.42000 # hc,c,oc,c 234 | dihedral_coeff 32 ebt -0.07320 0.00000 0.00000 -0.07320 0.00000 0.00000 1.53000 1.53000 # c,c,c,c 235 | dihedral_coeff 33 ebt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.53000 1.43000 # c,c,c,o_2 236 | dihedral_coeff 34 ebt -0.31900 0.44110 -0.71740 1.15380 0.84090 -0.91380 1.53000 1.42000 # c,c,c,oc 237 | dihedral_coeff 35 ebt -0.24560 1.05170 -0.77950 0.47410 1.26350 0.55760 1.53000 1.42000 # c,c,oc,c 238 | 239 | # AngleTorsion Coeffs 240 | 241 | dihedral_coeff 1 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 120.07000 120.76400 # c_2,n_2,cp,cp 242 | dihedral_coeff 2 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 113.62000 107.68800 # c_2,o_2,c,hc 243 | dihedral_coeff 3 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 113.62000 107.41000 # c_2,o_2,c,c 244 | dihedral_coeff 4 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 116.62600 120.76400 # c_1,n_2,cp,cp 245 | dihedral_coeff 5 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 125.53200 122.94800 # o_1,c_2,n_2,hn2 246 | dihedral_coeff 6 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 125.53200 120.07000 # o_1,c_2,n_2,cp 247 | dihedral_coeff 7 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 120.79700 113.62000 # o_1,c_2,o_2,c 248 | dihedral_coeff 8 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 125.53200 122.94800 # o_1,c_1,n_2,hn2 249 | dihedral_coeff 9 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 125.53200 116.62600 # o_1,c_1,n_2,cp 250 | dihedral_coeff 10 at -1.49460 0.73080 -0.20830 9.12990 -0.48470 0.35820 123.14510 107.73360 # o_1,c_1,c,hc 251 | dihedral_coeff 11 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 108.44000 113.62000 # n_2,c_2,o_2,c 252 | dihedral_coeff 12 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 116.92570 107.73360 # n_2,c_1,c,hc 253 | dihedral_coeff 13 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 120.76400 118.90000 # n_2,cp,cp,cp 254 | dihedral_coeff 14 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 120.76400 117.94000 # n_2,cp,cp,hc 255 | dihedral_coeff 15 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 122.94800 108.44000 # hn2,n_2,c_2,o_2 256 | dihedral_coeff 16 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 122.94800 116.92570 # hn2,n_2,c_1,c 257 | dihedral_coeff 17 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 116.32300 120.76400 # hn2,n_2,cp,cp 258 | dihedral_coeff 18 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 120.07000 108.44000 # cp,n_2,c_2,o_2 259 | dihedral_coeff 19 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 116.62600 116.92570 # cp,n_2,c_1,c 260 | dihedral_coeff 20 at 1.97670 1.02390 0.00000 1.97670 1.02390 0.00000 118.90000 118.90000 # cp,cp,cp,cp 261 | dihedral_coeff 21 at 0.00000 2.50140 0.00000 0.00000 2.71470 0.00000 118.90000 117.94000 # cp,cp,cp,hc 262 | dihedral_coeff 22 at 0.00000 3.89870 0.00000 0.00000 -4.46830 0.00000 118.90000 120.05000 # cp,cp,cp,c 263 | dihedral_coeff 23 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 120.05000 111.00000 # cp,cp,c,cp 264 | dihedral_coeff 24 at 0.22510 0.65480 0.12370 4.62660 0.16320 0.04610 120.05000 111.00000 # cp,cp,c,hc 265 | dihedral_coeff 25 at 0.00000 2.45010 0.00000 0.00000 2.45010 0.00000 117.94000 117.94000 # hc,cp,cp,hc 266 | dihedral_coeff 26 at 0.00000 3.46010 0.00000 0.00000 -0.12420 0.00000 117.94000 120.05000 # hc,cp,cp,c 267 | dihedral_coeff 27 at -0.80850 0.55690 -0.24660 -0.80850 0.55690 -0.24660 110.77000 110.77000 # hc,c,c,hc 268 | dihedral_coeff 28 at 0.31130 0.45160 -0.19880 -0.24540 0.00000 -0.11360 110.77000 112.67000 # hc,c,c,c 269 | dihedral_coeff 29 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 110.77000 107.41000 # hc,c,c,o_2 270 | dihedral_coeff 30 at 2.36680 2.49200 -1.01220 -0.18920 0.49180 0.72730 110.77000 111.27000 # hc,c,c,oc 271 | dihedral_coeff 31 at -1.82340 1.63930 0.51440 -0.77770 0.43400 -0.66530 108.72800 104.50000 # hc,c,oc,c 272 | dihedral_coeff 32 at 0.38860 -0.31390 0.13890 0.38860 -0.31390 0.13890 112.67000 112.67000 # c,c,c,c 273 | dihedral_coeff 33 at 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 112.67000 107.41000 # c,c,c,o_2 274 | dihedral_coeff 34 at 0.56230 -0.30410 -0.40150 0.96720 -0.75660 -1.23310 112.67000 111.27000 # c,c,c,oc 275 | dihedral_coeff 35 at -2.74660 1.48770 -0.89550 0.56760 0.94500 0.07030 111.27000 104.50000 # c,c,oc,c 276 | 277 | # AngleAngleTorsion Coeffs 278 | 279 | dihedral_coeff 1 aat 0.00000 120.07000 120.76400 # c_2,n_2,cp,cp 280 | dihedral_coeff 2 aat 0.00000 113.62000 107.68800 # c_2,o_2,c,hc 281 | dihedral_coeff 3 aat 0.00000 113.62000 107.41000 # c_2,o_2,c,c 282 | dihedral_coeff 4 aat 0.00000 116.62600 120.76400 # c_1,n_2,cp,cp 283 | dihedral_coeff 5 aat 0.00000 125.53200 122.94800 # o_1,c_2,n_2,hn2 284 | dihedral_coeff 6 aat 0.00000 125.53200 120.07000 # o_1,c_2,n_2,cp 285 | dihedral_coeff 7 aat 0.00000 120.79700 113.62000 # o_1,c_2,o_2,c 286 | dihedral_coeff 8 aat 0.00000 125.53200 122.94800 # o_1,c_1,n_2,hn2 287 | dihedral_coeff 9 aat 0.00000 125.53200 116.62600 # o_1,c_1,n_2,cp 288 | dihedral_coeff 10 aat -15.34960 123.14510 107.73360 # o_1,c_1,c,hc 289 | dihedral_coeff 11 aat 0.00000 108.44000 113.62000 # n_2,c_2,o_2,c 290 | dihedral_coeff 12 aat 0.00000 116.92570 107.73360 # n_2,c_1,c,hc 291 | dihedral_coeff 13 aat 0.00000 120.76400 118.90000 # n_2,cp,cp,cp 292 | dihedral_coeff 14 aat 0.00000 120.76400 117.94000 # n_2,cp,cp,hc 293 | dihedral_coeff 15 aat 0.00000 122.94800 108.44000 # hn2,n_2,c_2,o_2 294 | dihedral_coeff 16 aat 0.00000 122.94800 116.92570 # hn2,n_2,c_1,c 295 | dihedral_coeff 17 aat 0.00000 116.32300 120.76400 # hn2,n_2,cp,cp 296 | dihedral_coeff 18 aat 0.00000 120.07000 108.44000 # cp,n_2,c_2,o_2 297 | dihedral_coeff 19 aat 0.00000 116.62600 116.92570 # cp,n_2,c_1,c 298 | dihedral_coeff 20 aat 0.00000 118.90000 118.90000 # cp,cp,cp,cp 299 | dihedral_coeff 21 aat -4.81410 118.90000 117.94000 # cp,cp,cp,hc 300 | dihedral_coeff 22 aat -14.40970 118.90000 120.05000 # cp,cp,cp,c 301 | dihedral_coeff 23 aat 0.00000 120.05000 111.00000 # cp,cp,c,cp 302 | dihedral_coeff 24 aat -5.88880 120.05000 111.00000 # cp,cp,c,hc 303 | dihedral_coeff 25 aat 0.35980 117.94000 117.94000 # hc,cp,cp,hc 304 | dihedral_coeff 26 aat 4.44440 117.94000 120.05000 # hc,cp,cp,c 305 | dihedral_coeff 27 aat -12.56400 110.77000 110.77000 # hc,c,c,hc 306 | dihedral_coeff 28 aat -16.16400 110.77000 112.67000 # hc,c,c,c 307 | dihedral_coeff 29 aat 0.00000 110.77000 107.41000 # hc,c,c,o_2 308 | dihedral_coeff 30 aat -20.20060 110.77000 111.27000 # hc,c,c,oc 309 | dihedral_coeff 31 aat -16.44380 108.72800 104.50000 # hc,c,oc,c 310 | dihedral_coeff 32 aat -22.04500 112.67000 112.67000 # c,c,c,c 311 | dihedral_coeff 33 aat 0.00000 112.67000 107.41000 # c,c,c,o_2 312 | dihedral_coeff 34 aat -29.04200 112.67000 111.27000 # c,c,c,oc 313 | dihedral_coeff 35 aat -19.00590 111.27000 104.50000 # c,c,oc,c 314 | 315 | # BondBond13 Coeffs 316 | 317 | dihedral_coeff 1 bb13 0.00000 1.35800 1.41700 # c_2,n_2,cp,cp 318 | dihedral_coeff 2 bb13 0.00000 1.35980 1.10100 # c_2,o_2,c,hc 319 | dihedral_coeff 3 bb13 0.00000 1.35980 1.53000 # c_2,o_2,c,c 320 | dihedral_coeff 4 bb13 0.00000 1.36600 1.41700 # c_1,n_2,cp,cp 321 | dihedral_coeff 5 bb13 0.00000 1.20630 0.99590 # o_1,c_2,n_2,hn2 322 | dihedral_coeff 6 bb13 0.00000 1.20630 1.43900 # o_1,c_2,n_2,cp 323 | dihedral_coeff 7 bb13 0.00000 1.20630 1.43000 # o_1,c_2,o_2,c 324 | dihedral_coeff 8 bb13 0.00000 1.20200 0.99590 # o_1,c_1,n_2,hn2 325 | dihedral_coeff 9 bb13 0.00000 1.20200 1.43900 # o_1,c_1,n_2,cp 326 | dihedral_coeff 10 bb13 0.00000 1.20200 1.10100 # o_1,c_1,c,hc 327 | dihedral_coeff 11 bb13 0.00000 1.35800 1.43000 # n_2,c_2,o_2,c 328 | dihedral_coeff 12 bb13 0.00000 1.36600 1.10100 # n_2,c_1,c,hc 329 | dihedral_coeff 13 bb13 0.00000 1.43900 1.41700 # n_2,cp,cp,cp 330 | dihedral_coeff 14 bb13 0.00000 1.43900 1.09820 # n_2,cp,cp,hc 331 | dihedral_coeff 15 bb13 0.00000 0.99590 1.35980 # hn2,n_2,c_2,o_2 332 | dihedral_coeff 16 bb13 0.00000 0.99590 1.52020 # hn2,n_2,c_1,c 333 | dihedral_coeff 17 bb13 0.00000 0.99590 1.41700 # hn2,n_2,cp,cp 334 | dihedral_coeff 18 bb13 0.00000 1.43900 1.35980 # cp,n_2,c_2,o_2 335 | dihedral_coeff 19 bb13 0.00000 1.43900 1.52020 # cp,n_2,c_1,c 336 | dihedral_coeff 20 bb13 53.00000 1.41700 1.41700 # cp,cp,cp,cp 337 | dihedral_coeff 21 bb13 -6.27410 1.41700 1.09820 # cp,cp,cp,hc 338 | dihedral_coeff 22 bb13 2.50850 1.41700 1.50100 # cp,cp,cp,c 339 | dihedral_coeff 23 bb13 0.00000 1.41700 1.50100 # cp,cp,c,cp 340 | dihedral_coeff 24 bb13 -3.48260 1.41700 1.10100 # cp,cp,c,hc 341 | dihedral_coeff 25 bb13 -1.70770 1.09820 1.09820 # hc,cp,cp,hc 342 | dihedral_coeff 26 bb13 0.87430 1.09820 1.50100 # hc,cp,cp,c 343 | dihedral_coeff 27 bb13 0.00000 1.10100 1.10100 # hc,c,c,hc 344 | dihedral_coeff 28 bb13 0.00000 1.10100 1.53000 # hc,c,c,c 345 | dihedral_coeff 29 bb13 0.00000 1.10100 1.43000 # hc,c,c,o_2 346 | dihedral_coeff 30 bb13 0.00000 1.10100 1.42000 # hc,c,c,oc 347 | dihedral_coeff 31 bb13 0.00000 1.10100 1.42000 # hc,c,oc,c 348 | dihedral_coeff 32 bb13 0.00000 1.53000 1.53000 # c,c,c,c 349 | dihedral_coeff 33 bb13 0.00000 1.53000 1.43000 # c,c,c,o_2 350 | dihedral_coeff 34 bb13 0.00000 1.53000 1.42000 # c,c,c,oc 351 | dihedral_coeff 35 bb13 0.00000 1.53000 1.42000 # c,c,oc,c 352 | 353 | # Improper Coeffs 354 | 355 | improper_coeff 1 49.37400 0.00000 # c_2,o_1,n_2,o_2 356 | improper_coeff 2 49.37400 0.00000 # c_2,o_1,o_2,n_2 357 | improper_coeff 3 24.33290 0.00000 # c_1,o_1,c,n_2 358 | improper_coeff 4 4.41810 0.00000 # n_2,c_2,hn2,cp 359 | improper_coeff 5 4.41810 0.00000 # n_2,c_2,cp,hn2 360 | improper_coeff 6 4.41810 0.00000 # n_2,c_1,cp,hn2 361 | improper_coeff 7 17.05260 0.00000 # cp,n_2,cp,cp 362 | improper_coeff 8 4.89120 0.00000 # cp,cp,cp,hc 363 | improper_coeff 9 7.81530 0.00000 # cp,cp,cp,c 364 | improper_coeff 10 0.00000 0.00000 # c,c_1,hc,hc 365 | improper_coeff 11 0.00000 0.00000 # c,cp,cp,hc 366 | improper_coeff 12 0.00000 0.00000 # c,cp,hc,hc 367 | improper_coeff 13 0.00000 0.00000 # c,hc,hc,hc 368 | improper_coeff 14 0.00000 0.00000 # c,hc,hc,c 369 | improper_coeff 15 0.00000 0.00000 # c,hc,hc,o_2 370 | improper_coeff 16 0.00000 0.00000 # c,hc,hc,oc 371 | improper_coeff 17 0.00000 0.00000 # c,hc,c,c 372 | improper_coeff 18 0.00000 0.00000 # c,hc,c,o_2 373 | improper_coeff 19 0.00000 0.00000 # c,hc,c,oc 374 | improper_coeff 20 0.00000 0.00000 # c,hc,o_2,c 375 | improper_coeff 21 0.00000 0.00000 # c,hc,oc,c 376 | 377 | # AngleAngle Coeffs 378 | 379 | improper_coeff 1 aa 0.00000 0.00000 0.00000 125.53200 120.79700 108.44000 # c_2,o_1,n_2,o_2 380 | improper_coeff 2 aa 0.00000 0.00000 0.00000 120.79700 125.53200 108.44000 # c_2,o_1,o_2,n_2 381 | improper_coeff 3 aa 0.00000 0.00000 0.00000 123.14510 125.53200 116.92570 # c_1,o_1,c,n_2 382 | improper_coeff 4 aa 0.00000 0.00000 0.00000 122.94800 120.07000 116.32300 # n_2,c_2,hn2,cp 383 | improper_coeff 5 aa 0.00000 0.00000 0.00000 120.07000 122.94800 116.32300 # n_2,c_2,cp,hn2 384 | improper_coeff 6 aa 0.00000 0.00000 0.00000 116.62600 122.94800 116.32300 # n_2,c_1,cp,hn2 385 | improper_coeff 7 aa 0.00000 0.00000 0.00000 120.76400 120.76400 118.90000 # cp,n_2,cp,cp 386 | improper_coeff 8 aa 0.00000 0.00000 0.00000 118.90000 117.94000 117.94000 # cp,cp,cp,hc 387 | improper_coeff 9 aa 0.00000 0.00000 0.00000 118.90000 120.05000 120.05000 # cp,cp,cp,c 388 | improper_coeff 10 aa -3.38670 -3.49760 -3.38670 107.73360 107.73360 107.66000 # c,c_1,hc,hc 389 | improper_coeff 11 aa 0.00000 0.00000 0.00000 111.00000 111.00000 111.00000 # c,cp,cp,hc 390 | improper_coeff 12 aa 2.37940 3.01180 2.37940 111.00000 111.00000 107.66000 # c,cp,hc,hc 391 | improper_coeff 13 aa -0.31570 -0.31570 -0.31570 107.66000 107.66000 107.66000 # c,hc,hc,hc 392 | improper_coeff 14 aa 0.27380 0.27380 -0.48250 107.66000 110.77000 110.77000 # c,hc,hc,c 393 | improper_coeff 15 aa 0.00000 0.00000 0.00000 107.66000 107.68800 107.68800 # c,hc,hc,o_2 394 | improper_coeff 16 aa 2.42590 2.42590 2.12830 107.66000 108.72800 108.72800 # c,hc,hc,oc 395 | improper_coeff 17 aa -1.31990 0.11840 -1.31990 110.77000 110.77000 112.67000 # c,hc,c,c 396 | improper_coeff 18 aa 0.00000 0.00000 0.00000 110.77000 107.68800 107.41000 # c,hc,c,o_2 397 | improper_coeff 19 aa 2.59260 3.91770 0.16890 110.77000 108.72800 111.27000 # c,hc,c,oc 398 | improper_coeff 20 aa 0.00000 0.00000 0.00000 107.68800 110.77000 107.41000 # c,hc,o_2,c 399 | improper_coeff 21 aa 0.16890 3.91770 2.59260 108.72800 110.77000 111.27000 # c,hc,oc,c 400 | 401 | --------------------------------------------------------------------------------