├── LICENSE ├── LICENSE-LPIPS ├── LICENSE-NVIDIA ├── LICENSE-ROSINALITY ├── README.md ├── __init__.py ├── carla_assets ├── center-building_part_11-12.npy ├── center-tree_part_1-1.npy ├── clear-afternoon_theme.npy ├── clear-evening_theme.npy ├── cloudy-evening_theme.npy ├── left-building_part_1-0.npy ├── right-building_part_1-3.npy ├── tree-left_part_1-0.npy ├── tree-right_part_1-3.npy ├── wet-afternoon_theme.npy ├── wet-clear-evening_theme.npy └── wet-evening_theme.npy ├── carla_data_split.pkl ├── config.py ├── data ├── __init__.py ├── __pycache__ │ └── dataloader.cpython-36.pyc ├── carla │ ├── __init__.py │ └── carla_init_screens │ │ ├── 0.png │ │ ├── 10.png │ │ └── 13.png └── dataloader.py ├── distributed.py ├── frontend ├── demo.html ├── semanticui │ ├── components │ │ ├── accordion.css │ │ ├── accordion.js │ │ ├── accordion.min.css │ │ ├── accordion.min.js │ │ ├── ad.css │ │ ├── ad.min.css │ │ ├── api.js │ │ ├── api.min.js │ │ ├── breadcrumb.css │ │ ├── breadcrumb.min.css │ │ ├── button.css │ │ ├── button.min.css │ │ ├── card.css │ │ ├── card.min.css │ │ ├── checkbox.css │ │ ├── checkbox.js │ │ ├── checkbox.min.css │ │ ├── checkbox.min.js │ │ ├── colorize.js │ │ ├── colorize.min.js │ │ ├── comment.css │ │ ├── comment.min.css │ │ ├── container.css │ │ ├── container.min.css │ │ ├── dimmer.css │ │ ├── dimmer.js │ │ ├── dimmer.min.css │ │ ├── dimmer.min.js │ │ ├── divider.css │ │ ├── divider.min.css │ │ ├── dropdown.css │ │ ├── dropdown.js │ │ ├── dropdown.min.css │ │ ├── dropdown.min.js │ │ ├── embed.css │ │ ├── embed.js │ │ ├── embed.min.css │ │ ├── embed.min.js │ │ ├── feed.css │ │ ├── feed.min.css │ │ ├── flag.css │ │ ├── flag.min.css │ │ ├── form.css │ │ ├── form.js │ │ ├── form.min.css │ │ ├── form.min.js │ │ ├── grid.css │ │ ├── grid.min.css │ │ ├── header.css │ │ ├── header.min.css │ │ ├── icon.css │ │ ├── icon.min.css │ │ ├── image.css │ │ ├── image.min.css │ │ ├── input.css │ │ ├── input.min.css │ │ ├── item.css │ │ ├── item.min.css │ │ ├── label.css │ │ ├── label.min.css │ │ ├── list.css │ │ ├── list.min.css │ │ ├── loader.css │ │ ├── loader.min.css │ │ ├── menu.css │ │ ├── menu.min.css │ │ ├── message.css │ │ ├── message.min.css │ │ ├── modal.css │ │ ├── modal.js │ │ ├── modal.min.css │ │ ├── modal.min.js │ │ ├── nag.css │ │ ├── nag.js │ │ ├── nag.min.css │ │ ├── nag.min.js │ │ ├── placeholder.css │ │ ├── placeholder.min.css │ │ ├── popup.css │ │ ├── popup.js │ │ ├── popup.min.css │ │ ├── popup.min.js │ │ ├── progress.css │ │ ├── progress.js │ │ ├── progress.min.css │ │ ├── progress.min.js │ │ ├── rail.css │ │ ├── rail.min.css │ │ ├── rating.css │ │ ├── rating.js │ │ ├── rating.min.css │ │ ├── rating.min.js │ │ ├── reset.css │ │ ├── reset.min.css │ │ ├── reveal.css │ │ ├── reveal.min.css │ │ ├── search.css │ │ ├── search.js │ │ ├── search.min.css │ │ ├── search.min.js │ │ ├── segment.css │ │ ├── segment.min.css │ │ ├── shape.css │ │ ├── shape.js │ │ ├── shape.min.css │ │ ├── shape.min.js │ │ ├── sidebar.css │ │ ├── sidebar.js │ │ ├── sidebar.min.css │ │ ├── sidebar.min.js │ │ ├── site.css │ │ ├── site.js │ │ ├── site.min.css │ │ ├── site.min.js │ │ ├── state.js │ │ ├── state.min.js │ │ ├── statistic.css │ │ ├── statistic.min.css │ │ ├── step.css │ │ ├── step.min.css │ │ ├── sticky.css │ │ ├── sticky.js │ │ ├── sticky.min.css │ │ ├── sticky.min.js │ │ ├── tab.css │ │ ├── tab.js │ │ ├── tab.min.css │ │ ├── tab.min.js │ │ ├── table.css │ │ ├── table.min.css │ │ ├── transition.css │ │ ├── transition.js │ │ ├── transition.min.css │ │ ├── transition.min.js │ │ ├── video.css │ │ ├── video.js │ │ ├── video.min.css │ │ ├── video.min.js │ │ ├── visibility.js │ │ ├── visibility.min.js │ │ ├── visit.js │ │ └── visit.min.js │ ├── semantic.min.css │ ├── semantic.min.js │ └── themes │ │ └── default │ │ └── assets │ │ └── fonts │ │ ├── brand-icons.eot │ │ ├── brand-icons.svg │ │ ├── brand-icons.ttf │ │ ├── brand-icons.woff │ │ ├── brand-icons.woff2 │ │ ├── icons.eot │ │ ├── icons.otf │ │ ├── icons.svg │ │ ├── icons.ttf │ │ ├── icons.woff │ │ ├── icons.woff2 │ │ ├── outline-icons.eot │ │ ├── outline-icons.svg │ │ ├── outline-icons.ttf │ │ ├── outline-icons.woff │ │ └── outline-icons.woff2 └── wheel2.png ├── latent_decoder_model ├── .gitignore ├── Dockerfile ├── LICENSE-NVIDIA ├── LICENSE-ROSINALITY ├── __init__.py ├── dataset.py ├── distributed.py ├── docker_build.sh ├── lpips │ ├── LICENSE-LPIPS │ ├── __init__.py │ ├── base_model.py │ ├── dist_model.py │ ├── networks_basic.py │ ├── pretrained_networks.py │ └── weights │ │ ├── v0.0 │ │ ├── alex.pth │ │ ├── squeeze.pth │ │ └── vgg.pth │ │ └── v0.1 │ │ ├── alex.pth │ │ ├── squeeze.pth │ │ └── vgg.pth ├── main.py ├── model │ ├── __init__.py │ ├── model.py │ └── operations.py ├── op │ ├── __init__.py │ ├── fused_act.py │ ├── fused_bias_act.cpp │ ├── fused_bias_act_kernel.cu │ ├── upfirdn2d.cpp │ ├── upfirdn2d.py │ └── upfirdn2d_kernel.cu ├── projector_z.py └── scripts │ ├── encode.sh │ └── train.sh ├── main_parallel.py ├── requirements.txt ├── scripts ├── __init__.py ├── play │ └── server.sh └── train.sh ├── server.py ├── simulator_model ├── __init__.py ├── discriminator.py ├── dynamics_engine.py ├── layers.py └── model_utils.py ├── trainer.py ├── utils.py └── visual_utils.py /LICENSE: -------------------------------------------------------------------------------- 1 | NVIDIA Source Code License for DriveGAN 2 | 3 | 1. Definitions 4 | 5 | “Licensor” means any person or entity that distributes its Work. 6 | “Software” means the original work of authorship made available under this License. 7 | “Work” means the Software and any additions to or derivative works of the Software that are made available under this License. 8 | The terms “reproduce,” “reproduction,” “derivative works,” and “distribution” have the meaning as provided under U.S. copyright law; provided, however, that for the purposes of this License, derivative works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work. 9 | Works, including the Software, are “made available” under this License by including in or with the Work either (a) a copyright notice referencing the applicability of this License to the Work, or (b) a copy of this License. 10 | 11 | 2. License Grant 12 | 13 | 2.1 Copyright Grant. Subject to the terms and conditions of this License, each Licensor grants to you a perpetual, worldwide, non-exclusive, royalty-free, copyright license to reproduce, prepare derivative works of, publicly display, publicly perform, sublicense and distribute its Work and any resulting derivative works in any form. 14 | 15 | 3. Limitations 16 | 17 | 3.1 Redistribution. You may reproduce or distribute the Work only if (a) you do so under this License, (b) you include a complete copy of this License with your distribution, and (c) you retain without modification any copyright, patent, trademark, or attribution notices that are present in the Work. 18 | 19 | 3.2 Derivative Works. You may specify that additional or different terms apply to the use, reproduction, and distribution of your derivative works of the Work (“Your Terms”) only if (a) Your Terms provide that the use limitation in Section 3.3 applies to your derivative works, and (b) you identify the specific derivative works that are subject to Your Terms. Notwithstanding Your Terms, this License (including the redistribution requirements in Section 3.1) will continue to apply to the Work itself. 20 | 21 | 3.3 Use Limitation. The Work and any derivative works thereof only may be used or intended for use non-commercially. Notwithstanding the foregoing, NVIDIA and its affiliates may use the Work and any derivative works commercially. As used herein, “non-commercially” means for research or evaluation purposes only. 22 | 23 | 3.4 Patent Claims. If you bring or threaten to bring a patent claim against any Licensor (including any claim, cross-claim or counterclaim in a lawsuit) to enforce any patents that you allege are infringed by any Work, then your rights under this License from such Licensor (including the grant in Section 2.1) will terminate immediately. 24 | 25 | 3.5 Trademarks. This License does not grant any rights to use any Licensor’s or its affiliates’ names, logos, or trademarks, except as necessary to reproduce the notices described in this License. 26 | 27 | 3.6 Termination. If you violate any term of this License, then your rights under this License (including the grant in Section 2.1) will terminate immediately. 28 | 29 | 4. Disclaimer of Warranty. 30 | 31 | THE WORK IS PROVIDED “AS IS” WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF 32 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER THIS LICENSE. 33 | 34 | 5. Limitation of Liability. 35 | 36 | EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER COMM ERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 37 | -------------------------------------------------------------------------------- /LICENSE-LPIPS: -------------------------------------------------------------------------------- 1 | Copyright (c) 2018, Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, Oliver Wang 2 | All rights reserved. 3 | 4 | Redistribution and use in source and binary forms, with or without 5 | modification, are permitted provided that the following conditions are met: 6 | 7 | * Redistributions of source code must retain the above copyright notice, this 8 | list of conditions and the following disclaimer. 9 | 10 | * Redistributions in binary form must reproduce the above copyright notice, 11 | this list of conditions and the following disclaimer in the documentation 12 | and/or other materials provided with the distribution. 13 | 14 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 15 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 17 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE 18 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 20 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 21 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 22 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 23 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 | 25 | -------------------------------------------------------------------------------- /LICENSE-NVIDIA: -------------------------------------------------------------------------------- 1 | Copyright (c) 2019, NVIDIA Corporation. All rights reserved. 2 | 3 | 4 | Nvidia Source Code License-NC 5 | 6 | ======================================================================= 7 | 8 | 1. Definitions 9 | 10 | "Licensor" means any person or entity that distributes its Work. 11 | 12 | "Software" means the original work of authorship made available under 13 | this License. 14 | 15 | "Work" means the Software and any additions to or derivative works of 16 | the Software that are made available under this License. 17 | 18 | "Nvidia Processors" means any central processing unit (CPU), graphics 19 | processing unit (GPU), field-programmable gate array (FPGA), 20 | application-specific integrated circuit (ASIC) or any combination 21 | thereof designed, made, sold, or provided by Nvidia or its affiliates. 22 | 23 | The terms "reproduce," "reproduction," "derivative works," and 24 | "distribution" have the meaning as provided under U.S. copyright law; 25 | provided, however, that for the purposes of this License, derivative 26 | works shall not include works that remain separable from, or merely 27 | link (or bind by name) to the interfaces of, the Work. 28 | 29 | Works, including the Software, are "made available" under this License 30 | by including in or with the Work either (a) a copyright notice 31 | referencing the applicability of this License to the Work, or (b) a 32 | copy of this License. 33 | 34 | 2. License Grants 35 | 36 | 2.1 Copyright Grant. Subject to the terms and conditions of this 37 | License, each Licensor grants to you a perpetual, worldwide, 38 | non-exclusive, royalty-free, copyright license to reproduce, 39 | prepare derivative works of, publicly display, publicly perform, 40 | sublicense and distribute its Work and any resulting derivative 41 | works in any form. 42 | 43 | 3. Limitations 44 | 45 | 3.1 Redistribution. You may reproduce or distribute the Work only 46 | if (a) you do so under this License, (b) you include a complete 47 | copy of this License with your distribution, and (c) you retain 48 | without modification any copyright, patent, trademark, or 49 | attribution notices that are present in the Work. 50 | 51 | 3.2 Derivative Works. You may specify that additional or different 52 | terms apply to the use, reproduction, and distribution of your 53 | derivative works of the Work ("Your Terms") only if (a) Your Terms 54 | provide that the use limitation in Section 3.3 applies to your 55 | derivative works, and (b) you identify the specific derivative 56 | works that are subject to Your Terms. Notwithstanding Your Terms, 57 | this License (including the redistribution requirements in Section 58 | 3.1) will continue to apply to the Work itself. 59 | 60 | 3.3 Use Limitation. The Work and any derivative works thereof only 61 | may be used or intended for use non-commercially. The Work or 62 | derivative works thereof may be used or intended for use by Nvidia 63 | or its affiliates commercially or non-commercially. As used herein, 64 | "non-commercially" means for research or evaluation purposes only. 65 | 66 | 3.4 Patent Claims. If you bring or threaten to bring a patent claim 67 | against any Licensor (including any claim, cross-claim or 68 | counterclaim in a lawsuit) to enforce any patents that you allege 69 | are infringed by any Work, then your rights under this License from 70 | such Licensor (including the grants in Sections 2.1 and 2.2) will 71 | terminate immediately. 72 | 73 | 3.5 Trademarks. This License does not grant any rights to use any 74 | Licensor's or its affiliates' names, logos, or trademarks, except 75 | as necessary to reproduce the notices described in this License. 76 | 77 | 3.6 Termination. If you violate any term of this License, then your 78 | rights under this License (including the grants in Sections 2.1 and 79 | 2.2) will terminate immediately. 80 | 81 | 4. Disclaimer of Warranty. 82 | 83 | THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY 84 | KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF 85 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR 86 | NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER 87 | THIS LICENSE. 88 | 89 | 5. Limitation of Liability. 90 | 91 | EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL 92 | THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE 93 | SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, 94 | INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF 95 | OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK 96 | (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, 97 | LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER 98 | COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF 99 | THE POSSIBILITY OF SUCH DAMAGES. 100 | 101 | ======================================================================= 102 | -------------------------------------------------------------------------------- /LICENSE-ROSINALITY: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2019 Kim Seonghyeon 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/__init__.py -------------------------------------------------------------------------------- /carla_assets/center-building_part_11-12.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/center-building_part_11-12.npy -------------------------------------------------------------------------------- /carla_assets/center-tree_part_1-1.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/center-tree_part_1-1.npy -------------------------------------------------------------------------------- /carla_assets/clear-afternoon_theme.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/clear-afternoon_theme.npy -------------------------------------------------------------------------------- /carla_assets/clear-evening_theme.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/clear-evening_theme.npy -------------------------------------------------------------------------------- /carla_assets/cloudy-evening_theme.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/cloudy-evening_theme.npy -------------------------------------------------------------------------------- /carla_assets/left-building_part_1-0.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/left-building_part_1-0.npy -------------------------------------------------------------------------------- /carla_assets/right-building_part_1-3.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/right-building_part_1-3.npy -------------------------------------------------------------------------------- /carla_assets/tree-left_part_1-0.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/tree-left_part_1-0.npy -------------------------------------------------------------------------------- /carla_assets/tree-right_part_1-3.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/tree-right_part_1-3.npy -------------------------------------------------------------------------------- /carla_assets/wet-afternoon_theme.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/wet-afternoon_theme.npy -------------------------------------------------------------------------------- /carla_assets/wet-clear-evening_theme.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/wet-clear-evening_theme.npy -------------------------------------------------------------------------------- /carla_assets/wet-evening_theme.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_assets/wet-evening_theme.npy -------------------------------------------------------------------------------- /carla_data_split.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/carla_data_split.pkl -------------------------------------------------------------------------------- /config.py: -------------------------------------------------------------------------------- 1 | """ 2 | Copyright (C) 2021 NVIDIA Corporation. All rights reserved. 3 | Licensed under the NVIDIA Source Code License. See LICENSE at the main github page. 4 | Authors: Seung Wook Kim, Jonah Philion, Antonio Torralba, Sanja Fidler 5 | """ 6 | 7 | from optparse import OptionParser, OptionGroup 8 | 9 | def init_parser(): 10 | ''' 11 | ''' 12 | usage = """ 13 | Usage of this tool. 14 | $ python main.py [--train] 15 | """ 16 | parser = OptionParser(usage=usage) 17 | parser.add_option('--play', action='store_true', default=False) 18 | parser.add_option('--port', action='store', type=int, default=8888,help='') 19 | parser.add_option('--log_dir', type=str, default='tmp') 20 | parser.add_option('--saved_model', type=str, default=None) 21 | parser.add_option('--saved_optim', type=str, default=None) 22 | parser.add_option('--data', action='store', type=str, default='pacman') 23 | 24 | train_param = OptionGroup(parser, 'training hyperparameters') 25 | train_param.add_option('--gpu', action='store', type=int, default=0) 26 | train_param.add_option('--local_rank', action='store', type=int, default=0) 27 | train_param.add_option('--num_gpu', action='store', type=int, default=1) 28 | train_param.add_option('--save_epoch', action='store', type=int, default=10) 29 | train_param.add_option('--eval_epoch', action='store', type=int, default=5) 30 | 31 | # optimizer 32 | train_param.add_option('--optimizer', action='store', type='choice', default='adam', choices=['adam', 'sgd', 'rmsprop']) 33 | train_param.add_option('--lrD', action='store', type=float, default=1e-4) 34 | train_param.add_option('--lrG_temporal', action='store', type=float, default=1e-4) 35 | train_param.add_option('--lrG_graphic', action='store', type=float, default=1e-4) 36 | 37 | # training hyperparam 38 | train_param.add_option('--standard_gan_loss', action='store_true', default=False) 39 | train_param.add_option('--warm_up', action='store', type=int, default=10) 40 | train_param.add_option('--bs', action='store', type=int, default=64, help='batch size') 41 | train_param.add_option('--nep', action='store', type=int, default=10000, help='max number of epochs') 42 | train_param.add_option('--img_size', action='store', type=int, default=128) 43 | train_param.add_option('--num_steps', action='store', type=int, default=15) 44 | train_param.add_option('--seed', action='store', type=int, default=10000, help='random seed') 45 | train_param.add_option('--disc_features', action='store_true', default=False) 46 | train_param.add_option('--warmup_decay_step', action='store', type=int, default=10000) 47 | train_param.add_option('--min_warmup', action='store', type=int, default=0) 48 | 49 | # losses 50 | train_param.add_option("--recon_loss", type=str, default="l2") 51 | train_param.add_option("--do_gan_loss", action="store_true", dest="gan_loss", default=True) 52 | train_param.add_option("--no_gan_loss", action="store_false", dest="gan_loss") 53 | train_param.add_option("--do_disc_features", action="store_true", dest="disc_features", default=True) 54 | train_param.add_option("--no_disc_features", action="store_false", dest="disc_features") 55 | train_param.add_option('--LAMBDA', action='store', type=float, default=1.0) 56 | train_param.add_option('--LAMBDA_temporal', action='store', type=float, default=10.0) 57 | train_param.add_option('--recon_loss_multiplier', action='store', type=float, default=0.05) 58 | train_param.add_option('--gen_content_loss_multiplier', action='store', type=float, default=1.0) 59 | train_param.add_option('--feature_loss_multiplier', action='store', type=float, default=10.0) 60 | train_param.add_option('--content_kl_beta', action='store', type=float, default=1.0) 61 | train_param.add_option('--theme_kl_beta', action='store', type=float, default=1.0) 62 | train_param.add_option('--style_kl_beta', action='store', type=float, default=1.0) 63 | 64 | # dynamics engine 65 | train_param.add_option("--do_input_detach", action="store_true", dest="input_detach", default=True) 66 | train_param.add_option("--no_input_detach", action="store_false", dest="input_detach") 67 | train_param.add_option('--hidden_dim', action='store', type=int, default=512) 68 | train_param.add_option('--width_mul', action='store', type=float, default=1.0) 69 | train_param.add_option('--conv_lstm_num_layer', action='store', type=int, default=2) 70 | train_param.add_option('--lstm_num_layer', action='store', type=int, default=1) 71 | train_param.add_option('--action_space', action='store', type=int, default=10) 72 | train_param.add_option('--disentangle_style', action='store_true', default=False) 73 | train_param.add_option('--continuous_action', action='store_true', default=False) 74 | train_param.add_option('--separate_holistic_style_dim', action='store', type=int, default=0) 75 | train_param.add_option('--convLSTM_hidden_dim', action='store', type=int, default=512) 76 | train_param.add_option('--spatial_dim', action='store', type=int, default=4) 77 | 78 | # discriminator 79 | train_param.add_option('--nfilterD', action='store', type=int, default=64) 80 | train_param.add_option("--do_temporal_hierarchy", action="store_true", dest="temporal_hierarchy", default=True) 81 | train_param.add_option("--no_temporal_hierarchy", action="store_false", dest="temporal_hierarchy") 82 | train_param.add_option('--nfilterD_temp', action='store', type=int, default=64) 83 | train_param.add_option('--config_temporal', type=int, default=18) 84 | train_param.add_option('--D_num_base_layer', type=int, default=3) 85 | 86 | # latent model 87 | train_param.add_option('--latent_decoder_model_path', type=str, default='') 88 | train_param.add_option('--latent_z_size', action='store', type=int, default=1024) 89 | 90 | # misc. 91 | train_param.add_option('--num_channel', action='store', type=int, default=3) 92 | train_param.add_option('--test', action='store_true', default=False) 93 | train_param.add_option('--initial_screen', type=str, default='') 94 | train_param.add_option('--recording_name', type=str, default='') 95 | train_param.add_option('--force_play_from_data', action='store_true', default=False) 96 | 97 | return parser 98 | -------------------------------------------------------------------------------- /data/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/data/__init__.py -------------------------------------------------------------------------------- /data/__pycache__/dataloader.cpython-36.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/data/__pycache__/dataloader.cpython-36.pyc -------------------------------------------------------------------------------- /data/carla/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/data/carla/__init__.py -------------------------------------------------------------------------------- /data/carla/carla_init_screens/0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/data/carla/carla_init_screens/0.png -------------------------------------------------------------------------------- /data/carla/carla_init_screens/10.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/data/carla/carla_init_screens/10.png -------------------------------------------------------------------------------- /data/carla/carla_init_screens/13.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/data/carla/carla_init_screens/13.png -------------------------------------------------------------------------------- /distributed.py: -------------------------------------------------------------------------------- 1 | """ 2 | Copyright (C) 2021 NVIDIA Corporation. All rights reserved. 3 | Licensed under the NVIDIA Source Code License. See LICENSE at the main github page. 4 | Authors: Seung Wook Kim, Jonah Philion, Antonio Torralba, Sanja Fidler 5 | """ 6 | 7 | ''' 8 | This file is copied from https://github.com/rosinality/stylegan2-pytorch 9 | 10 | MIT License 11 | 12 | Copyright (c) 2019 Kim Seonghyeon 13 | 14 | Permission is hereby granted, free of charge, to any person obtaining a copy 15 | of this software and associated documentation files (the "Software"), to deal 16 | in the Software without restriction, including without limitation the rights 17 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 18 | copies of the Software, and to permit persons to whom the Software is 19 | furnished to do so, subject to the following conditions: 20 | 21 | The above copyright notice and this permission notice shall be included in all 22 | copies or substantial portions of the Software. 23 | 24 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 25 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 26 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 27 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 28 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 29 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 | SOFTWARE. 31 | ''' 32 | 33 | import math 34 | import pickle 35 | 36 | import torch 37 | from torch import distributed as dist 38 | from torch.utils.data.sampler import Sampler 39 | 40 | 41 | def get_rank(): 42 | if not dist.is_available(): 43 | return 0 44 | 45 | if not dist.is_initialized(): 46 | return 0 47 | 48 | return dist.get_rank() 49 | 50 | 51 | def synchronize(): 52 | if not dist.is_available(): 53 | return 54 | 55 | if not dist.is_initialized(): 56 | return 57 | 58 | world_size = dist.get_world_size() 59 | 60 | if world_size == 1: 61 | return 62 | 63 | dist.barrier() 64 | 65 | 66 | def get_world_size(): 67 | if not dist.is_available(): 68 | return 1 69 | 70 | if not dist.is_initialized(): 71 | return 1 72 | 73 | return dist.get_world_size() 74 | 75 | 76 | def reduce_sum(tensor): 77 | if not dist.is_available(): 78 | return tensor 79 | 80 | if not dist.is_initialized(): 81 | return tensor 82 | 83 | tensor = tensor.clone() 84 | dist.all_reduce(tensor, op=dist.ReduceOp.SUM) 85 | 86 | return tensor 87 | 88 | 89 | def gather_grad(params): 90 | world_size = get_world_size() 91 | 92 | if world_size == 1: 93 | return 94 | 95 | for param in params: 96 | if param.grad is not None: 97 | dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM) 98 | param.grad.data.div_(world_size) 99 | 100 | 101 | def all_gather(data): 102 | world_size = get_world_size() 103 | 104 | if world_size == 1: 105 | return [data] 106 | 107 | buffer = pickle.dumps(data) 108 | storage = torch.ByteStorage.from_buffer(buffer) 109 | tensor = torch.ByteTensor(storage).to('cuda') 110 | 111 | local_size = torch.IntTensor([tensor.numel()]).to('cuda') 112 | size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)] 113 | dist.all_gather(size_list, local_size) 114 | size_list = [int(size.item()) for size in size_list] 115 | max_size = max(size_list) 116 | 117 | tensor_list = [] 118 | for _ in size_list: 119 | tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda')) 120 | 121 | if local_size != max_size: 122 | padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda') 123 | tensor = torch.cat((tensor, padding), 0) 124 | 125 | dist.all_gather(tensor_list, tensor) 126 | 127 | data_list = [] 128 | 129 | for size, tensor in zip(size_list, tensor_list): 130 | buffer = tensor.cpu().numpy().tobytes()[:size] 131 | data_list.append(pickle.loads(buffer)) 132 | 133 | return data_list 134 | 135 | 136 | def reduce_loss_dict(loss_dict): 137 | world_size = get_world_size() 138 | 139 | if world_size < 2: 140 | return loss_dict 141 | 142 | with torch.no_grad(): 143 | keys = [] 144 | losses = [] 145 | 146 | for k in sorted(loss_dict.keys()): 147 | keys.append(k) 148 | losses.append(loss_dict[k]) 149 | 150 | losses = torch.stack(losses, 0) 151 | dist.reduce(losses, dst=0) 152 | 153 | if dist.get_rank() == 0: 154 | losses /= world_size 155 | 156 | reduced_losses = {k: v for k, v in zip(keys, losses)} 157 | 158 | return reduced_losses 159 | -------------------------------------------------------------------------------- /frontend/semanticui/components/ad.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Ad 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Copyright 2013 Contributors 7 | * Released under the MIT license 8 | * http://opensource.org/licenses/MIT 9 | * 10 | */ 11 | 12 | 13 | /******************************* 14 | Advertisement 15 | *******************************/ 16 | 17 | .ui.ad { 18 | display: block; 19 | overflow: hidden; 20 | margin: 1em 0em; 21 | } 22 | .ui.ad:first-child { 23 | margin: 0em; 24 | } 25 | .ui.ad:last-child { 26 | margin: 0em; 27 | } 28 | .ui.ad iframe { 29 | margin: 0em; 30 | padding: 0em; 31 | border: none; 32 | overflow: hidden; 33 | } 34 | 35 | /*-------------- 36 | Common 37 | ---------------*/ 38 | 39 | 40 | /* Leaderboard */ 41 | .ui.leaderboard.ad { 42 | width: 728px; 43 | height: 90px; 44 | } 45 | 46 | /* Medium Rectangle */ 47 | .ui[class*="medium rectangle"].ad { 48 | width: 300px; 49 | height: 250px; 50 | } 51 | 52 | /* Large Rectangle */ 53 | .ui[class*="large rectangle"].ad { 54 | width: 336px; 55 | height: 280px; 56 | } 57 | 58 | /* Half Page */ 59 | .ui[class*="half page"].ad { 60 | width: 300px; 61 | height: 600px; 62 | } 63 | 64 | /*-------------- 65 | Square 66 | ---------------*/ 67 | 68 | 69 | /* Square */ 70 | .ui.square.ad { 71 | width: 250px; 72 | height: 250px; 73 | } 74 | 75 | /* Small Square */ 76 | .ui[class*="small square"].ad { 77 | width: 200px; 78 | height: 200px; 79 | } 80 | 81 | /*-------------- 82 | Rectangle 83 | ---------------*/ 84 | 85 | 86 | /* Small Rectangle */ 87 | .ui[class*="small rectangle"].ad { 88 | width: 180px; 89 | height: 150px; 90 | } 91 | 92 | /* Vertical Rectangle */ 93 | .ui[class*="vertical rectangle"].ad { 94 | width: 240px; 95 | height: 400px; 96 | } 97 | 98 | /*-------------- 99 | Button 100 | ---------------*/ 101 | 102 | .ui.button.ad { 103 | width: 120px; 104 | height: 90px; 105 | } 106 | .ui[class*="square button"].ad { 107 | width: 125px; 108 | height: 125px; 109 | } 110 | .ui[class*="small button"].ad { 111 | width: 120px; 112 | height: 60px; 113 | } 114 | 115 | /*-------------- 116 | Skyscrapers 117 | ---------------*/ 118 | 119 | 120 | /* Skyscraper */ 121 | .ui.skyscraper.ad { 122 | width: 120px; 123 | height: 600px; 124 | } 125 | 126 | /* Wide Skyscraper */ 127 | .ui[class*="wide skyscraper"].ad { 128 | width: 160px; 129 | } 130 | 131 | /*-------------- 132 | Banners 133 | ---------------*/ 134 | 135 | 136 | /* Banner */ 137 | .ui.banner.ad { 138 | width: 468px; 139 | height: 60px; 140 | } 141 | 142 | /* Vertical Banner */ 143 | .ui[class*="vertical banner"].ad { 144 | width: 120px; 145 | height: 240px; 146 | } 147 | 148 | /* Top Banner */ 149 | .ui[class*="top banner"].ad { 150 | width: 930px; 151 | height: 180px; 152 | } 153 | 154 | /* Half Banner */ 155 | .ui[class*="half banner"].ad { 156 | width: 234px; 157 | height: 60px; 158 | } 159 | 160 | /*-------------- 161 | Boards 162 | ---------------*/ 163 | 164 | 165 | /* Leaderboard */ 166 | .ui[class*="large leaderboard"].ad { 167 | width: 970px; 168 | height: 90px; 169 | } 170 | 171 | /* Billboard */ 172 | .ui.billboard.ad { 173 | width: 970px; 174 | height: 250px; 175 | } 176 | 177 | /*-------------- 178 | Panorama 179 | ---------------*/ 180 | 181 | 182 | /* Panorama */ 183 | .ui.panorama.ad { 184 | width: 980px; 185 | height: 120px; 186 | } 187 | 188 | /*-------------- 189 | Netboard 190 | ---------------*/ 191 | 192 | 193 | /* Netboard */ 194 | .ui.netboard.ad { 195 | width: 580px; 196 | height: 400px; 197 | } 198 | 199 | /*-------------- 200 | Mobile 201 | ---------------*/ 202 | 203 | 204 | /* Large Mobile Banner */ 205 | .ui[class*="large mobile banner"].ad { 206 | width: 320px; 207 | height: 100px; 208 | } 209 | 210 | /* Mobile Leaderboard */ 211 | .ui[class*="mobile leaderboard"].ad { 212 | width: 320px; 213 | height: 50px; 214 | } 215 | 216 | 217 | /******************************* 218 | Types 219 | *******************************/ 220 | 221 | 222 | /* Mobile Sizes */ 223 | .ui.mobile.ad { 224 | display: none; 225 | } 226 | @media only screen and (max-width: 767px) { 227 | .ui.mobile.ad { 228 | display: block; 229 | } 230 | } 231 | 232 | 233 | /******************************* 234 | Variations 235 | *******************************/ 236 | 237 | .ui.centered.ad { 238 | margin-left: auto; 239 | margin-right: auto; 240 | } 241 | .ui.test.ad { 242 | position: relative; 243 | background: #545454; 244 | } 245 | .ui.test.ad:after { 246 | position: absolute; 247 | top: 50%; 248 | left: 50%; 249 | width: 100%; 250 | text-align: center; 251 | -webkit-transform: translateX(-50%) translateY(-50%); 252 | transform: translateX(-50%) translateY(-50%); 253 | content: 'Ad'; 254 | color: #FFFFFF; 255 | font-size: 1em; 256 | font-weight: bold; 257 | } 258 | .ui.mobile.test.ad:after { 259 | font-size: 0.85714286em; 260 | } 261 | .ui.test.ad[data-text]:after { 262 | content: attr(data-text); 263 | } 264 | 265 | 266 | /******************************* 267 | Theme Overrides 268 | *******************************/ 269 | 270 | 271 | 272 | /******************************* 273 | User Variable Overrides 274 | *******************************/ 275 | 276 | -------------------------------------------------------------------------------- /frontend/semanticui/components/ad.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Ad 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Copyright 2013 Contributors 7 | * Released under the MIT license 8 | * http://opensource.org/licenses/MIT 9 | * 10 | */.ui.ad{display:block;overflow:hidden;margin:1em 0}.ui.ad:first-child{margin:0}.ui.ad:last-child{margin:0}.ui.ad iframe{margin:0;padding:0;border:none;overflow:hidden}.ui.leaderboard.ad{width:728px;height:90px}.ui[class*="medium rectangle"].ad{width:300px;height:250px}.ui[class*="large rectangle"].ad{width:336px;height:280px}.ui[class*="half page"].ad{width:300px;height:600px}.ui.square.ad{width:250px;height:250px}.ui[class*="small square"].ad{width:200px;height:200px}.ui[class*="small rectangle"].ad{width:180px;height:150px}.ui[class*="vertical rectangle"].ad{width:240px;height:400px}.ui.button.ad{width:120px;height:90px}.ui[class*="square button"].ad{width:125px;height:125px}.ui[class*="small button"].ad{width:120px;height:60px}.ui.skyscraper.ad{width:120px;height:600px}.ui[class*="wide skyscraper"].ad{width:160px}.ui.banner.ad{width:468px;height:60px}.ui[class*="vertical banner"].ad{width:120px;height:240px}.ui[class*="top banner"].ad{width:930px;height:180px}.ui[class*="half banner"].ad{width:234px;height:60px}.ui[class*="large leaderboard"].ad{width:970px;height:90px}.ui.billboard.ad{width:970px;height:250px}.ui.panorama.ad{width:980px;height:120px}.ui.netboard.ad{width:580px;height:400px}.ui[class*="large mobile banner"].ad{width:320px;height:100px}.ui[class*="mobile leaderboard"].ad{width:320px;height:50px}.ui.mobile.ad{display:none}@media only screen and (max-width:767px){.ui.mobile.ad{display:block}}.ui.centered.ad{margin-left:auto;margin-right:auto}.ui.test.ad{position:relative;background:#545454}.ui.test.ad:after{position:absolute;top:50%;left:50%;width:100%;text-align:center;-webkit-transform:translateX(-50%) translateY(-50%);transform:translateX(-50%) translateY(-50%);content:'Ad';color:#fff;font-size:1em;font-weight:700}.ui.mobile.test.ad:after{font-size:.85714286em}.ui.test.ad[data-text]:after{content:attr(data-text)} -------------------------------------------------------------------------------- /frontend/semanticui/components/breadcrumb.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Breadcrumb 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */ 10 | 11 | 12 | /******************************* 13 | Breadcrumb 14 | *******************************/ 15 | 16 | .ui.breadcrumb { 17 | line-height: 1; 18 | display: inline-block; 19 | margin: 0em 0em; 20 | vertical-align: middle; 21 | } 22 | .ui.breadcrumb:first-child { 23 | margin-top: 0em; 24 | } 25 | .ui.breadcrumb:last-child { 26 | margin-bottom: 0em; 27 | } 28 | 29 | 30 | /******************************* 31 | Content 32 | *******************************/ 33 | 34 | 35 | /* Divider */ 36 | .ui.breadcrumb .divider { 37 | display: inline-block; 38 | opacity: 0.7; 39 | margin: 0em 0.21428571rem 0em; 40 | font-size: 0.92857143em; 41 | color: rgba(0, 0, 0, 0.4); 42 | vertical-align: baseline; 43 | } 44 | 45 | /* Link */ 46 | .ui.breadcrumb a { 47 | color: #4183C4; 48 | } 49 | .ui.breadcrumb a:hover { 50 | color: #1e70bf; 51 | } 52 | 53 | /* Icon Divider */ 54 | .ui.breadcrumb .icon.divider { 55 | font-size: 0.85714286em; 56 | vertical-align: baseline; 57 | } 58 | 59 | /* Section */ 60 | .ui.breadcrumb a.section { 61 | cursor: pointer; 62 | } 63 | .ui.breadcrumb .section { 64 | display: inline-block; 65 | margin: 0em; 66 | padding: 0em; 67 | } 68 | 69 | /* Loose Coupling */ 70 | .ui.breadcrumb.segment { 71 | display: inline-block; 72 | padding: 0.78571429em 1em; 73 | } 74 | 75 | 76 | /******************************* 77 | States 78 | *******************************/ 79 | 80 | .ui.breadcrumb .active.section { 81 | font-weight: bold; 82 | } 83 | 84 | 85 | /******************************* 86 | Variations 87 | *******************************/ 88 | 89 | .ui.mini.breadcrumb { 90 | font-size: 0.78571429rem; 91 | } 92 | .ui.tiny.breadcrumb { 93 | font-size: 0.85714286rem; 94 | } 95 | .ui.small.breadcrumb { 96 | font-size: 0.92857143rem; 97 | } 98 | .ui.breadcrumb { 99 | font-size: 1rem; 100 | } 101 | .ui.large.breadcrumb { 102 | font-size: 1.14285714rem; 103 | } 104 | .ui.big.breadcrumb { 105 | font-size: 1.28571429rem; 106 | } 107 | .ui.huge.breadcrumb { 108 | font-size: 1.42857143rem; 109 | } 110 | .ui.massive.breadcrumb { 111 | font-size: 1.71428571rem; 112 | } 113 | 114 | 115 | /******************************* 116 | Theme Overrides 117 | *******************************/ 118 | 119 | 120 | 121 | /******************************* 122 | Site Overrides 123 | *******************************/ 124 | 125 | -------------------------------------------------------------------------------- /frontend/semanticui/components/breadcrumb.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Breadcrumb 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.breadcrumb{line-height:1;display:inline-block;margin:0 0;vertical-align:middle}.ui.breadcrumb:first-child{margin-top:0}.ui.breadcrumb:last-child{margin-bottom:0}.ui.breadcrumb .divider{display:inline-block;opacity:.7;margin:0 .21428571rem 0;font-size:.92857143em;color:rgba(0,0,0,.4);vertical-align:baseline}.ui.breadcrumb a{color:#4183c4}.ui.breadcrumb a:hover{color:#1e70bf}.ui.breadcrumb .icon.divider{font-size:.85714286em;vertical-align:baseline}.ui.breadcrumb a.section{cursor:pointer}.ui.breadcrumb .section{display:inline-block;margin:0;padding:0}.ui.breadcrumb.segment{display:inline-block;padding:.78571429em 1em}.ui.breadcrumb .active.section{font-weight:700}.ui.mini.breadcrumb{font-size:.78571429rem}.ui.tiny.breadcrumb{font-size:.85714286rem}.ui.small.breadcrumb{font-size:.92857143rem}.ui.breadcrumb{font-size:1rem}.ui.large.breadcrumb{font-size:1.14285714rem}.ui.big.breadcrumb{font-size:1.28571429rem}.ui.huge.breadcrumb{font-size:1.42857143rem}.ui.massive.breadcrumb{font-size:1.71428571rem} -------------------------------------------------------------------------------- /frontend/semanticui/components/colorize.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.0.0 - Colorize 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Copyright 2015 Contributors 7 | * Released under the MIT license 8 | * http://opensource.org/licenses/MIT 9 | * 10 | */ 11 | !function(e,n,i,t){"use strict";e.fn.colorize=function(n){var i=e.isPlainObject(n)?e.extend(!0,{},e.fn.colorize.settings,n):e.extend({},e.fn.colorize.settings),o=arguments||!1;return e(this).each(function(n){var a,r,c,s,d,g,u,l,m=e(this),f=e("")[0],h=e("")[0],p=e("")[0],v=new Image,w=i.colors,b=(i.paths,i.namespace),y=i.error,C=m.data("module-"+b);return l={checkPreconditions:function(){return l.debug("Checking pre-conditions"),!e.isPlainObject(w)||e.isEmptyObject(w)?(l.error(y.undefinedColors),!1):!0},async:function(e){i.async?setTimeout(e,0):e()},getMetadata:function(){l.debug("Grabbing metadata"),s=m.data("image")||i.image||t,d=m.data("name")||i.name||n,g=i.width||m.width(),u=i.height||m.height(),(0===g||0===u)&&l.error(y.undefinedSize)},initialize:function(){l.debug("Initializing with colors",w),l.checkPreconditions()&&l.async(function(){l.getMetadata(),l.canvas.create(),l.draw.image(function(){l.draw.colors(),l.canvas.merge()}),m.data("module-"+b,l)})},redraw:function(){l.debug("Redrawing image"),l.async(function(){l.canvas.clear(),l.draw.colors(),l.canvas.merge()})},change:{color:function(e,n){return l.debug("Changing color",e),w[e]===t?(l.error(y.missingColor),!1):(w[e]=n,void l.redraw())}},canvas:{create:function(){l.debug("Creating canvases"),f.width=g,f.height=u,h.width=g,h.height=u,p.width=g,p.height=u,a=f.getContext("2d"),r=h.getContext("2d"),c=p.getContext("2d"),m.append(f),a=m.children("canvas")[0].getContext("2d")},clear:function(e){l.debug("Clearing canvas"),c.fillStyle="#FFFFFF",c.fillRect(0,0,g,u)},merge:function(){return e.isFunction(a.blendOnto)?(a.putImageData(r.getImageData(0,0,g,u),0,0),void c.blendOnto(a,"multiply")):void l.error(y.missingPlugin)}},draw:{image:function(e){l.debug("Drawing image"),e=e||function(){},s?(v.src=s,v.onload=function(){r.drawImage(v,0,0),e()}):(l.error(y.noImage),e())},colors:function(){l.debug("Drawing color overlays",w),e.each(w,function(e,n){i.onDraw(c,d,e,n)})}},debug:function(e,n){i.debug&&(n!==t?console.info(i.name+": "+e,n):console.info(i.name+": "+e))},error:function(e){console.warn(i.name+": "+e)},invoke:function(n,o,a){var r;return a=a||Array.prototype.slice.call(arguments,2),"string"==typeof n&&C!==t&&(n=n.split("."),e.each(n,function(n,t){return e.isPlainObject(C[t])?(C=C[t],!0):e.isFunction(C[t])?(r=C[t],!0):(l.error(i.error.method),!1)})),e.isFunction(r)?r.apply(o,a):!1}},C!==t&&o?("invoke"==o[0]&&(o=Array.prototype.slice.call(o,1)),l.invoke(o[0],this,Array.prototype.slice.call(o,1))):void l.initialize()}),this},e.fn.colorize.settings={name:"Image Colorizer",debug:!0,namespace:"colorize",onDraw:function(e,n,i,t){},async:!0,colors:{},metadata:{image:"image",name:"name"},error:{noImage:"No tracing image specified",undefinedColors:"No default colors specified.",missingColor:"Attempted to change color that does not exist",missingPlugin:"Blend onto plug-in must be included",undefinedHeight:"The width or height of image canvas could not be automatically determined. Please specify a height."}}}(jQuery,window,document); -------------------------------------------------------------------------------- /frontend/semanticui/components/comment.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Comment 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */ 10 | 11 | 12 | /******************************* 13 | Standard 14 | *******************************/ 15 | 16 | 17 | /*-------------- 18 | Comments 19 | ---------------*/ 20 | 21 | .ui.comments { 22 | margin: 1.5em 0em; 23 | max-width: 650px; 24 | } 25 | .ui.comments:first-child { 26 | margin-top: 0em; 27 | } 28 | .ui.comments:last-child { 29 | margin-bottom: 0em; 30 | } 31 | 32 | /*-------------- 33 | Comment 34 | ---------------*/ 35 | 36 | .ui.comments .comment { 37 | position: relative; 38 | background: none; 39 | margin: 0.5em 0em 0em; 40 | padding: 0.5em 0em 0em; 41 | border: none; 42 | border-top: none; 43 | line-height: 1.2; 44 | } 45 | .ui.comments .comment:first-child { 46 | margin-top: 0em; 47 | padding-top: 0em; 48 | } 49 | 50 | /*-------------------- 51 | Nested Comments 52 | ---------------------*/ 53 | 54 | .ui.comments .comment .comments { 55 | margin: 0em 0em 0.5em 0.5em; 56 | padding: 1em 0em 1em 1em; 57 | } 58 | .ui.comments .comment .comments:before { 59 | position: absolute; 60 | top: 0px; 61 | left: 0px; 62 | } 63 | .ui.comments .comment .comments .comment { 64 | border: none; 65 | border-top: none; 66 | background: none; 67 | } 68 | 69 | /*-------------- 70 | Avatar 71 | ---------------*/ 72 | 73 | .ui.comments .comment .avatar { 74 | display: block; 75 | width: 2.5em; 76 | height: auto; 77 | float: left; 78 | margin: 0.2em 0em 0em; 79 | } 80 | .ui.comments .comment img.avatar, 81 | .ui.comments .comment .avatar img { 82 | display: block; 83 | margin: 0em auto; 84 | width: 100%; 85 | height: 100%; 86 | border-radius: 0.25rem; 87 | } 88 | 89 | /*-------------- 90 | Content 91 | ---------------*/ 92 | 93 | .ui.comments .comment > .content { 94 | display: block; 95 | } 96 | 97 | /* If there is an avatar move content over */ 98 | .ui.comments .comment > .avatar ~ .content { 99 | margin-left: 3.5em; 100 | } 101 | 102 | /*-------------- 103 | Author 104 | ---------------*/ 105 | 106 | .ui.comments .comment .author { 107 | font-size: 1em; 108 | color: rgba(0, 0, 0, 0.87); 109 | font-weight: bold; 110 | } 111 | .ui.comments .comment a.author { 112 | cursor: pointer; 113 | } 114 | .ui.comments .comment a.author:hover { 115 | color: #1e70bf; 116 | } 117 | 118 | /*-------------- 119 | Metadata 120 | ---------------*/ 121 | 122 | .ui.comments .comment .metadata { 123 | display: inline-block; 124 | margin-left: 0.5em; 125 | color: rgba(0, 0, 0, 0.4); 126 | font-size: 0.875em; 127 | } 128 | .ui.comments .comment .metadata > * { 129 | display: inline-block; 130 | margin: 0em 0.5em 0em 0em; 131 | } 132 | .ui.comments .comment .metadata > :last-child { 133 | margin-right: 0em; 134 | } 135 | 136 | /*-------------------- 137 | Comment Text 138 | ---------------------*/ 139 | 140 | .ui.comments .comment .text { 141 | margin: 0.25em 0em 0.5em; 142 | font-size: 1em; 143 | word-wrap: break-word; 144 | color: rgba(0, 0, 0, 0.87); 145 | line-height: 1.3; 146 | } 147 | 148 | /*-------------------- 149 | User Actions 150 | ---------------------*/ 151 | 152 | .ui.comments .comment .actions { 153 | font-size: 0.875em; 154 | } 155 | .ui.comments .comment .actions a { 156 | cursor: pointer; 157 | display: inline-block; 158 | margin: 0em 0.75em 0em 0em; 159 | color: rgba(0, 0, 0, 0.4); 160 | } 161 | .ui.comments .comment .actions a:last-child { 162 | margin-right: 0em; 163 | } 164 | .ui.comments .comment .actions a.active, 165 | .ui.comments .comment .actions a:hover { 166 | color: rgba(0, 0, 0, 0.8); 167 | } 168 | 169 | /*-------------------- 170 | Reply Form 171 | ---------------------*/ 172 | 173 | .ui.comments > .reply.form { 174 | margin-top: 1em; 175 | } 176 | .ui.comments .comment .reply.form { 177 | width: 100%; 178 | margin-top: 1em; 179 | } 180 | .ui.comments .reply.form textarea { 181 | font-size: 1em; 182 | height: 12em; 183 | } 184 | 185 | 186 | /******************************* 187 | State 188 | *******************************/ 189 | 190 | .ui.collapsed.comments, 191 | .ui.comments .collapsed.comments, 192 | .ui.comments .collapsed.comment { 193 | display: none; 194 | } 195 | 196 | 197 | /******************************* 198 | Variations 199 | *******************************/ 200 | 201 | 202 | /*-------------------- 203 | Threaded 204 | ---------------------*/ 205 | 206 | .ui.threaded.comments .comment .comments { 207 | margin: -1.5em 0 -1em 1.25em; 208 | padding: 3em 0em 2em 2.25em; 209 | -webkit-box-shadow: -1px 0px 0px rgba(34, 36, 38, 0.15); 210 | box-shadow: -1px 0px 0px rgba(34, 36, 38, 0.15); 211 | } 212 | 213 | /*-------------------- 214 | Minimal 215 | ---------------------*/ 216 | 217 | .ui.minimal.comments .comment .actions { 218 | opacity: 0; 219 | position: absolute; 220 | top: 0px; 221 | right: 0px; 222 | left: auto; 223 | -webkit-transition: opacity 0.2s ease; 224 | transition: opacity 0.2s ease; 225 | -webkit-transition-delay: 0.1s; 226 | transition-delay: 0.1s; 227 | } 228 | .ui.minimal.comments .comment > .content:hover > .actions { 229 | opacity: 1; 230 | } 231 | 232 | /*------------------- 233 | Sizes 234 | --------------------*/ 235 | 236 | .ui.mini.comments { 237 | font-size: 0.78571429rem; 238 | } 239 | .ui.tiny.comments { 240 | font-size: 0.85714286rem; 241 | } 242 | .ui.small.comments { 243 | font-size: 0.92857143rem; 244 | } 245 | .ui.comments { 246 | font-size: 1rem; 247 | } 248 | .ui.large.comments { 249 | font-size: 1.14285714rem; 250 | } 251 | .ui.big.comments { 252 | font-size: 1.28571429rem; 253 | } 254 | .ui.huge.comments { 255 | font-size: 1.42857143rem; 256 | } 257 | .ui.massive.comments { 258 | font-size: 1.71428571rem; 259 | } 260 | 261 | 262 | /******************************* 263 | Theme Overrides 264 | *******************************/ 265 | 266 | 267 | 268 | /******************************* 269 | User Variable Overrides 270 | *******************************/ 271 | 272 | -------------------------------------------------------------------------------- /frontend/semanticui/components/comment.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Comment 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.comments{margin:1.5em 0;max-width:650px}.ui.comments:first-child{margin-top:0}.ui.comments:last-child{margin-bottom:0}.ui.comments .comment{position:relative;background:0 0;margin:.5em 0 0;padding:.5em 0 0;border:none;border-top:none;line-height:1.2}.ui.comments .comment:first-child{margin-top:0;padding-top:0}.ui.comments .comment .comments{margin:0 0 .5em .5em;padding:1em 0 1em 1em}.ui.comments .comment .comments:before{position:absolute;top:0;left:0}.ui.comments .comment .comments .comment{border:none;border-top:none;background:0 0}.ui.comments .comment .avatar{display:block;width:2.5em;height:auto;float:left;margin:.2em 0 0}.ui.comments .comment .avatar img,.ui.comments .comment img.avatar{display:block;margin:0 auto;width:100%;height:100%;border-radius:.25rem}.ui.comments .comment>.content{display:block}.ui.comments .comment>.avatar~.content{margin-left:3.5em}.ui.comments .comment .author{font-size:1em;color:rgba(0,0,0,.87);font-weight:700}.ui.comments .comment a.author{cursor:pointer}.ui.comments .comment a.author:hover{color:#1e70bf}.ui.comments .comment .metadata{display:inline-block;margin-left:.5em;color:rgba(0,0,0,.4);font-size:.875em}.ui.comments .comment .metadata>*{display:inline-block;margin:0 .5em 0 0}.ui.comments .comment .metadata>:last-child{margin-right:0}.ui.comments .comment .text{margin:.25em 0 .5em;font-size:1em;word-wrap:break-word;color:rgba(0,0,0,.87);line-height:1.3}.ui.comments .comment .actions{font-size:.875em}.ui.comments .comment .actions a{cursor:pointer;display:inline-block;margin:0 .75em 0 0;color:rgba(0,0,0,.4)}.ui.comments .comment .actions a:last-child{margin-right:0}.ui.comments .comment .actions a.active,.ui.comments .comment .actions a:hover{color:rgba(0,0,0,.8)}.ui.comments>.reply.form{margin-top:1em}.ui.comments .comment .reply.form{width:100%;margin-top:1em}.ui.comments .reply.form textarea{font-size:1em;height:12em}.ui.collapsed.comments,.ui.comments .collapsed.comment,.ui.comments .collapsed.comments{display:none}.ui.threaded.comments .comment .comments{margin:-1.5em 0 -1em 1.25em;padding:3em 0 2em 2.25em;-webkit-box-shadow:-1px 0 0 rgba(34,36,38,.15);box-shadow:-1px 0 0 rgba(34,36,38,.15)}.ui.minimal.comments .comment .actions{opacity:0;position:absolute;top:0;right:0;left:auto;-webkit-transition:opacity .2s ease;transition:opacity .2s ease;-webkit-transition-delay:.1s;transition-delay:.1s}.ui.minimal.comments .comment>.content:hover>.actions{opacity:1}.ui.mini.comments{font-size:.78571429rem}.ui.tiny.comments{font-size:.85714286rem}.ui.small.comments{font-size:.92857143rem}.ui.comments{font-size:1rem}.ui.large.comments{font-size:1.14285714rem}.ui.big.comments{font-size:1.28571429rem}.ui.huge.comments{font-size:1.42857143rem}.ui.massive.comments{font-size:1.71428571rem} -------------------------------------------------------------------------------- /frontend/semanticui/components/container.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Container 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */ 10 | 11 | 12 | /******************************* 13 | Container 14 | *******************************/ 15 | 16 | 17 | /* All Sizes */ 18 | .ui.container { 19 | display: block; 20 | max-width: 100% !important; 21 | } 22 | 23 | /* Mobile */ 24 | @media only screen and (max-width: 767px) { 25 | .ui.container { 26 | width: auto !important; 27 | margin-left: 1em !important; 28 | margin-right: 1em !important; 29 | } 30 | .ui.grid.container { 31 | width: auto !important; 32 | } 33 | .ui.relaxed.grid.container { 34 | width: auto !important; 35 | } 36 | .ui.very.relaxed.grid.container { 37 | width: auto !important; 38 | } 39 | } 40 | 41 | /* Tablet */ 42 | @media only screen and (min-width: 768px) and (max-width: 991px) { 43 | .ui.container { 44 | width: 723px; 45 | margin-left: auto !important; 46 | margin-right: auto !important; 47 | } 48 | .ui.grid.container { 49 | width: calc( 723px + 2rem ) !important; 50 | } 51 | .ui.relaxed.grid.container { 52 | width: calc( 723px + 3rem ) !important; 53 | } 54 | .ui.very.relaxed.grid.container { 55 | width: calc( 723px + 5rem ) !important; 56 | } 57 | } 58 | 59 | /* Small Monitor */ 60 | @media only screen and (min-width: 992px) and (max-width: 1199px) { 61 | .ui.container { 62 | width: 933px; 63 | margin-left: auto !important; 64 | margin-right: auto !important; 65 | } 66 | .ui.grid.container { 67 | width: calc( 933px + 2rem ) !important; 68 | } 69 | .ui.relaxed.grid.container { 70 | width: calc( 933px + 3rem ) !important; 71 | } 72 | .ui.very.relaxed.grid.container { 73 | width: calc( 933px + 5rem ) !important; 74 | } 75 | } 76 | 77 | /* Large Monitor */ 78 | @media only screen and (min-width: 1200px) { 79 | .ui.container { 80 | width: 1127px; 81 | margin-left: auto !important; 82 | margin-right: auto !important; 83 | } 84 | .ui.grid.container { 85 | width: calc( 1127px + 2rem ) !important; 86 | } 87 | .ui.relaxed.grid.container { 88 | width: calc( 1127px + 3rem ) !important; 89 | } 90 | .ui.very.relaxed.grid.container { 91 | width: calc( 1127px + 5rem ) !important; 92 | } 93 | } 94 | 95 | 96 | /******************************* 97 | Types 98 | *******************************/ 99 | 100 | 101 | /* Text Container */ 102 | .ui.text.container { 103 | font-family: 'Lato', 'Helvetica Neue', Arial, Helvetica, sans-serif; 104 | max-width: 700px !important; 105 | line-height: 1.5; 106 | } 107 | .ui.text.container { 108 | font-size: 1.14285714rem; 109 | } 110 | 111 | /* Fluid */ 112 | .ui.fluid.container { 113 | width: 100%; 114 | } 115 | 116 | 117 | /******************************* 118 | Variations 119 | *******************************/ 120 | 121 | .ui[class*="left aligned"].container { 122 | text-align: left; 123 | } 124 | .ui[class*="center aligned"].container { 125 | text-align: center; 126 | } 127 | .ui[class*="right aligned"].container { 128 | text-align: right; 129 | } 130 | .ui.justified.container { 131 | text-align: justify; 132 | -webkit-hyphens: auto; 133 | -ms-hyphens: auto; 134 | hyphens: auto; 135 | } 136 | 137 | 138 | /******************************* 139 | Theme Overrides 140 | *******************************/ 141 | 142 | 143 | 144 | /******************************* 145 | Site Overrides 146 | *******************************/ 147 | 148 | -------------------------------------------------------------------------------- /frontend/semanticui/components/container.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Container 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.container{display:block;max-width:100%!important}@media only screen and (max-width:767px){.ui.container{width:auto!important;margin-left:1em!important;margin-right:1em!important}.ui.grid.container{width:auto!important}.ui.relaxed.grid.container{width:auto!important}.ui.very.relaxed.grid.container{width:auto!important}}@media only screen and (min-width:768px) and (max-width:991px){.ui.container{width:723px;margin-left:auto!important;margin-right:auto!important}.ui.grid.container{width:calc(723px + 2rem)!important}.ui.relaxed.grid.container{width:calc(723px + 3rem)!important}.ui.very.relaxed.grid.container{width:calc(723px + 5rem)!important}}@media only screen and (min-width:992px) and (max-width:1199px){.ui.container{width:933px;margin-left:auto!important;margin-right:auto!important}.ui.grid.container{width:calc(933px + 2rem)!important}.ui.relaxed.grid.container{width:calc(933px + 3rem)!important}.ui.very.relaxed.grid.container{width:calc(933px + 5rem)!important}}@media only screen and (min-width:1200px){.ui.container{width:1127px;margin-left:auto!important;margin-right:auto!important}.ui.grid.container{width:calc(1127px + 2rem)!important}.ui.relaxed.grid.container{width:calc(1127px + 3rem)!important}.ui.very.relaxed.grid.container{width:calc(1127px + 5rem)!important}}.ui.text.container{font-family:Lato,'Helvetica Neue',Arial,Helvetica,sans-serif;max-width:700px!important;line-height:1.5}.ui.text.container{font-size:1.14285714rem}.ui.fluid.container{width:100%}.ui[class*="left aligned"].container{text-align:left}.ui[class*="center aligned"].container{text-align:center}.ui[class*="right aligned"].container{text-align:right}.ui.justified.container{text-align:justify;-webkit-hyphens:auto;-ms-hyphens:auto;hyphens:auto} -------------------------------------------------------------------------------- /frontend/semanticui/components/dimmer.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.0 - Dimmer 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.dimmable:not(body){position:relative}.ui.dimmer{display:none;position:absolute;top:0!important;left:0!important;width:100%;height:100%;text-align:center;vertical-align:middle;padding:1em;background-color:rgba(0,0,0,.85);opacity:0;line-height:1;-webkit-animation-fill-mode:both;animation-fill-mode:both;-webkit-animation-duration:.5s;animation-duration:.5s;-webkit-transition:background-color .5s linear;transition:background-color .5s linear;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:center;-ms-flex-pack:center;justify-content:center;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;will-change:opacity;z-index:1000}.ui.dimmer>.content{-webkit-user-select:text;-moz-user-select:text;-ms-user-select:text;user-select:text;color:#fff}.ui.segment>.ui.dimmer{border-radius:inherit!important}.ui.dimmer:not(.inverted)::-webkit-scrollbar-track{background:rgba(255,255,255,.1)}.ui.dimmer:not(.inverted)::-webkit-scrollbar-thumb{background:rgba(255,255,255,.25)}.ui.dimmer:not(.inverted)::-webkit-scrollbar-thumb:window-inactive{background:rgba(255,255,255,.15)}.ui.dimmer:not(.inverted)::-webkit-scrollbar-thumb:hover{background:rgba(255,255,255,.35)}.animating.dimmable:not(body),.dimmed.dimmable:not(body){overflow:hidden}.dimmed.dimmable>.ui.animating.dimmer,.dimmed.dimmable>.ui.visible.dimmer,.ui.active.dimmer{display:-webkit-box;display:-ms-flexbox;display:flex;opacity:1}.ui.disabled.dimmer{width:0!important;height:0!important}.dimmed.dimmable>.ui.animating.legacy.dimmer,.dimmed.dimmable>.ui.visible.legacy.dimmer,.ui.active.legacy.dimmer{display:block}.ui[class*="top aligned"].dimmer{-webkit-box-pack:start;-ms-flex-pack:start;justify-content:flex-start}.ui[class*="bottom aligned"].dimmer{-webkit-box-pack:end;-ms-flex-pack:end;justify-content:flex-end}.ui.page.dimmer{position:fixed;-webkit-transform-style:'';transform-style:'';-webkit-perspective:2000px;perspective:2000px;-webkit-transform-origin:center center;transform-origin:center center}body.animating.in.dimmable,body.dimmed.dimmable{overflow:hidden}body.dimmable>.dimmer{position:fixed}.blurring.dimmable>:not(.dimmer){-webkit-filter:blur(0) grayscale(0);filter:blur(0) grayscale(0);-webkit-transition:.8s -webkit-filter ease;transition:.8s -webkit-filter ease;transition:.8s filter ease;transition:.8s filter ease,.8s -webkit-filter ease}.blurring.dimmed.dimmable>:not(.dimmer){-webkit-filter:blur(5px) grayscale(.7);filter:blur(5px) grayscale(.7)}.blurring.dimmable>.dimmer{background-color:rgba(0,0,0,.6)}.blurring.dimmable>.inverted.dimmer{background-color:rgba(255,255,255,.6)}.ui.dimmer>.top.aligned.content>*{vertical-align:top}.ui.dimmer>.bottom.aligned.content>*{vertical-align:bottom}.ui.inverted.dimmer{background-color:rgba(255,255,255,.85)}.ui.inverted.dimmer>.content>*{color:#fff}.ui.simple.dimmer{display:block;overflow:hidden;opacity:1;width:0%;height:0%;z-index:-100;background-color:rgba(0,0,0,0)}.dimmed.dimmable>.ui.simple.dimmer{overflow:visible;opacity:1;width:100%;height:100%;background-color:rgba(0,0,0,.85);z-index:1}.ui.simple.inverted.dimmer{background-color:rgba(255,255,255,0)}.dimmed.dimmable>.ui.simple.inverted.dimmer{background-color:rgba(255,255,255,.85)} -------------------------------------------------------------------------------- /frontend/semanticui/components/divider.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Divider 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.divider{margin:1rem 0;line-height:1;height:0;font-weight:700;text-transform:uppercase;letter-spacing:.05em;color:rgba(0,0,0,.85);-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-tap-highlight-color:transparent}.ui.divider:not(.vertical):not(.horizontal){border-top:1px solid rgba(34,36,38,.15);border-bottom:1px solid rgba(255,255,255,.1)}.ui.grid>.column+.divider,.ui.grid>.row>.column+.divider{left:auto}.ui.horizontal.divider{display:table;white-space:nowrap;height:auto;margin:'';line-height:1;text-align:center}.ui.horizontal.divider:after,.ui.horizontal.divider:before{content:'';display:table-cell;position:relative;top:50%;width:50%;background-repeat:no-repeat}.ui.horizontal.divider:before{background-position:right 1em top 50%}.ui.horizontal.divider:after{background-position:left 1em top 50%}.ui.vertical.divider{position:absolute;z-index:2;top:50%;left:50%;margin:0;padding:0;width:auto;height:50%;line-height:0;text-align:center;-webkit-transform:translateX(-50%);transform:translateX(-50%)}.ui.vertical.divider:after,.ui.vertical.divider:before{position:absolute;left:50%;content:'';z-index:3;border-left:1px solid rgba(34,36,38,.15);border-right:1px solid rgba(255,255,255,.1);width:0%;height:calc(100% - 1rem)}.ui.vertical.divider:before{top:-100%}.ui.vertical.divider:after{top:auto;bottom:0}@media only screen and (max-width:767px){.ui.grid .stackable.row .ui.vertical.divider,.ui.stackable.grid .ui.vertical.divider{display:table;white-space:nowrap;height:auto;margin:'';overflow:hidden;line-height:1;text-align:center;position:static;top:0;left:0;-webkit-transform:none;transform:none}.ui.grid .stackable.row .ui.vertical.divider:after,.ui.grid .stackable.row .ui.vertical.divider:before,.ui.stackable.grid .ui.vertical.divider:after,.ui.stackable.grid .ui.vertical.divider:before{position:static;left:0;border-left:none;border-right:none;content:'';display:table-cell;position:relative;top:50%;width:50%;background-repeat:no-repeat}.ui.grid .stackable.row .ui.vertical.divider:before,.ui.stackable.grid .ui.vertical.divider:before{background-position:right 1em top 50%}.ui.grid .stackable.row .ui.vertical.divider:after,.ui.stackable.grid .ui.vertical.divider:after{background-position:left 1em top 50%}}.ui.divider>.icon{margin:0;font-size:1rem;height:1em;vertical-align:middle}.ui.hidden.divider{border-color:transparent!important}.ui.hidden.divider:after,.ui.hidden.divider:before{display:none}.ui.divider.inverted,.ui.horizontal.inverted.divider,.ui.vertical.inverted.divider{color:#fff}.ui.divider.inverted,.ui.divider.inverted:after,.ui.divider.inverted:before{border-top-color:rgba(34,36,38,.15)!important;border-left-color:rgba(34,36,38,.15)!important;border-bottom-color:rgba(255,255,255,.15)!important;border-right-color:rgba(255,255,255,.15)!important}.ui.fitted.divider{margin:0}.ui.clearing.divider{clear:both}.ui.section.divider{margin-top:2rem;margin-bottom:2rem}.ui.divider{font-size:1rem}.ui.horizontal.divider:after,.ui.horizontal.divider:before{background-image:url()}@media only screen and (max-width:767px){.ui.grid .stackable.row .ui.vertical.divider:after,.ui.grid .stackable.row .ui.vertical.divider:before,.ui.stackable.grid .ui.vertical.divider:after,.ui.stackable.grid .ui.vertical.divider:before{background-image:url()}} -------------------------------------------------------------------------------- /frontend/semanticui/components/embed.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.0 - Video 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */ 10 | 11 | 12 | /******************************* 13 | Types 14 | *******************************/ 15 | 16 | .ui.embed { 17 | position: relative; 18 | max-width: 100%; 19 | height: 0px; 20 | overflow: hidden; 21 | background: #DCDDDE; 22 | padding-bottom: 56.25%; 23 | } 24 | 25 | /*----------------- 26 | Embedded Content 27 | ------------------*/ 28 | 29 | .ui.embed iframe, 30 | .ui.embed embed, 31 | .ui.embed object { 32 | position: absolute; 33 | border: none; 34 | width: 100%; 35 | height: 100%; 36 | top: 0px; 37 | left: 0px; 38 | margin: 0em; 39 | padding: 0em; 40 | } 41 | 42 | /*----------------- 43 | Embed 44 | ------------------*/ 45 | 46 | .ui.embed > .embed { 47 | display: none; 48 | } 49 | 50 | /*-------------- 51 | Placeholder 52 | ---------------*/ 53 | 54 | .ui.embed > .placeholder { 55 | position: absolute; 56 | cursor: pointer; 57 | top: 0px; 58 | left: 0px; 59 | display: block; 60 | width: 100%; 61 | height: 100%; 62 | background-color: radial-gradient(transparent 45%, rgba(0, 0, 0, 0.3)); 63 | } 64 | 65 | /*-------------- 66 | Icon 67 | ---------------*/ 68 | 69 | .ui.embed > .icon { 70 | cursor: pointer; 71 | position: absolute; 72 | top: 0px; 73 | left: 0px; 74 | width: 100%; 75 | height: 100%; 76 | z-index: 2; 77 | } 78 | .ui.embed > .icon:after { 79 | position: absolute; 80 | top: 0%; 81 | left: 0%; 82 | width: 100%; 83 | height: 100%; 84 | z-index: 3; 85 | content: ''; 86 | background: -webkit-radial-gradient(transparent 45%, rgba(0, 0, 0, 0.3)); 87 | background: radial-gradient(transparent 45%, rgba(0, 0, 0, 0.3)); 88 | opacity: 0.5; 89 | -webkit-transition: opacity 0.5s ease; 90 | transition: opacity 0.5s ease; 91 | } 92 | .ui.embed > .icon:before { 93 | position: absolute; 94 | top: 50%; 95 | left: 50%; 96 | z-index: 4; 97 | -webkit-transform: translateX(-50%) translateY(-50%); 98 | transform: translateX(-50%) translateY(-50%); 99 | color: #FFFFFF; 100 | font-size: 6rem; 101 | text-shadow: 0px 2px 10px rgba(34, 36, 38, 0.2); 102 | -webkit-transition: opacity 0.5s ease, color 0.5s ease; 103 | transition: opacity 0.5s ease, color 0.5s ease; 104 | z-index: 10; 105 | } 106 | 107 | 108 | /******************************* 109 | States 110 | *******************************/ 111 | 112 | 113 | /*-------------- 114 | Hover 115 | ---------------*/ 116 | 117 | .ui.embed .icon:hover:after { 118 | background: -webkit-radial-gradient(transparent 45%, rgba(0, 0, 0, 0.3)); 119 | background: radial-gradient(transparent 45%, rgba(0, 0, 0, 0.3)); 120 | opacity: 1; 121 | } 122 | .ui.embed .icon:hover:before { 123 | color: #FFFFFF; 124 | } 125 | 126 | /*-------------- 127 | Active 128 | ---------------*/ 129 | 130 | .ui.active.embed > .icon, 131 | .ui.active.embed > .placeholder { 132 | display: none; 133 | } 134 | .ui.active.embed > .embed { 135 | display: block; 136 | } 137 | 138 | 139 | /******************************* 140 | Video Overrides 141 | *******************************/ 142 | 143 | 144 | 145 | /******************************* 146 | Site Overrides 147 | *******************************/ 148 | 149 | 150 | 151 | /******************************* 152 | Variations 153 | *******************************/ 154 | 155 | .ui.square.embed { 156 | padding-bottom: 100%; 157 | } 158 | .ui[class*="4:3"].embed { 159 | padding-bottom: 75%; 160 | } 161 | .ui[class*="16:9"].embed { 162 | padding-bottom: 56.25%; 163 | } 164 | .ui[class*="21:9"].embed { 165 | padding-bottom: 42.85714286%; 166 | } 167 | -------------------------------------------------------------------------------- /frontend/semanticui/components/embed.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.0 - Video 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.embed{position:relative;max-width:100%;height:0;overflow:hidden;background:#dcddde;padding-bottom:56.25%}.ui.embed embed,.ui.embed iframe,.ui.embed object{position:absolute;border:none;width:100%;height:100%;top:0;left:0;margin:0;padding:0}.ui.embed>.embed{display:none}.ui.embed>.placeholder{position:absolute;cursor:pointer;top:0;left:0;display:block;width:100%;height:100%;background-color:radial-gradient(transparent 45%,rgba(0,0,0,.3))}.ui.embed>.icon{cursor:pointer;position:absolute;top:0;left:0;width:100%;height:100%;z-index:2}.ui.embed>.icon:after{position:absolute;top:0;left:0;width:100%;height:100%;z-index:3;content:'';background:-webkit-radial-gradient(transparent 45%,rgba(0,0,0,.3));background:radial-gradient(transparent 45%,rgba(0,0,0,.3));opacity:.5;-webkit-transition:opacity .5s ease;transition:opacity .5s ease}.ui.embed>.icon:before{position:absolute;top:50%;left:50%;z-index:4;-webkit-transform:translateX(-50%) translateY(-50%);transform:translateX(-50%) translateY(-50%);color:#fff;font-size:6rem;text-shadow:0 2px 10px rgba(34,36,38,.2);-webkit-transition:opacity .5s ease,color .5s ease;transition:opacity .5s ease,color .5s ease;z-index:10}.ui.embed .icon:hover:after{background:-webkit-radial-gradient(transparent 45%,rgba(0,0,0,.3));background:radial-gradient(transparent 45%,rgba(0,0,0,.3));opacity:1}.ui.embed .icon:hover:before{color:#fff}.ui.active.embed>.icon,.ui.active.embed>.placeholder{display:none}.ui.active.embed>.embed{display:block}.ui.square.embed{padding-bottom:100%}.ui[class*="4:3"].embed{padding-bottom:75%}.ui[class*="16:9"].embed{padding-bottom:56.25%}.ui[class*="21:9"].embed{padding-bottom:42.85714286%} -------------------------------------------------------------------------------- /frontend/semanticui/components/feed.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Feed 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.feed{margin:1em 0}.ui.feed:first-child{margin-top:0}.ui.feed:last-child{margin-bottom:0}.ui.feed>.event{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-orient:horizontal;-webkit-box-direction:normal;-ms-flex-direction:row;flex-direction:row;width:100%;padding:.21428571rem 0;margin:0;background:0 0;border-top:none}.ui.feed>.event:first-child{border-top:0;padding-top:0}.ui.feed>.event:last-child{padding-bottom:0}.ui.feed>.event>.label{display:block;-webkit-box-flex:0;-ms-flex:0 0 auto;flex:0 0 auto;width:2.5em;height:auto;-ms-flex-item-align:stretch;align-self:stretch;text-align:left}.ui.feed>.event>.label .icon{opacity:1;font-size:1.5em;width:100%;padding:.25em;background:0 0;border:none;border-radius:none;color:rgba(0,0,0,.6)}.ui.feed>.event>.label img{width:100%;height:auto;border-radius:500rem}.ui.feed>.event>.label+.content{margin:.5em 0 .35714286em 1.14285714em}.ui.feed>.event>.content{display:block;-webkit-box-flex:1;-ms-flex:1 1 auto;flex:1 1 auto;-ms-flex-item-align:stretch;align-self:stretch;text-align:left;word-wrap:break-word}.ui.feed>.event:last-child>.content{padding-bottom:0}.ui.feed>.event>.content a{cursor:pointer}.ui.feed>.event>.content .date{margin:-.5rem 0 0;padding:0;font-weight:400;font-size:1em;font-style:normal;color:rgba(0,0,0,.4)}.ui.feed>.event>.content .summary{margin:0;font-size:1em;font-weight:700;color:rgba(0,0,0,.87)}.ui.feed>.event>.content .summary img{display:inline-block;width:auto;height:10em;margin:-.25em .25em 0 0;border-radius:.25em;vertical-align:middle}.ui.feed>.event>.content .user{display:inline-block;font-weight:700;margin-right:0;vertical-align:baseline}.ui.feed>.event>.content .user img{margin:-.25em .25em 0 0;width:auto;height:10em;vertical-align:middle}.ui.feed>.event>.content .summary>.date{display:inline-block;float:none;font-weight:400;font-size:.85714286em;font-style:normal;margin:0 0 0 .5em;padding:0;color:rgba(0,0,0,.4)}.ui.feed>.event>.content .extra{margin:.5em 0 0;background:0 0;padding:0;color:rgba(0,0,0,.87)}.ui.feed>.event>.content .extra.images img{display:inline-block;margin:0 .25em 0 0;width:6em}.ui.feed>.event>.content .extra.text{padding:0;border-left:none;font-size:1em;max-width:500px;line-height:1.4285em}.ui.feed>.event>.content .meta{display:inline-block;font-size:.85714286em;margin:.5em 0 0;background:0 0;border:none;border-radius:0;-webkit-box-shadow:none;box-shadow:none;padding:0;color:rgba(0,0,0,.6)}.ui.feed>.event>.content .meta>*{position:relative;margin-left:.75em}.ui.feed>.event>.content .meta>:after{content:'';color:rgba(0,0,0,.2);top:0;left:-1em;opacity:1;position:absolute;vertical-align:top}.ui.feed>.event>.content .meta .like{color:'';-webkit-transition:.2s color ease;transition:.2s color ease}.ui.feed>.event>.content .meta .like:hover .icon{color:#ff2733}.ui.feed>.event>.content .meta .active.like .icon{color:#ef404a}.ui.feed>.event>.content .meta>:first-child{margin-left:0}.ui.feed>.event>.content .meta>:first-child::after{display:none}.ui.feed>.event>.content .meta a,.ui.feed>.event>.content .meta>.icon{cursor:pointer;opacity:1;color:rgba(0,0,0,.5);-webkit-transition:color .1s ease;transition:color .1s ease}.ui.feed>.event>.content .meta a:hover,.ui.feed>.event>.content .meta a:hover .icon,.ui.feed>.event>.content .meta>.icon:hover{color:rgba(0,0,0,.95)}.ui.small.feed{font-size:.92857143rem}.ui.feed{font-size:1rem}.ui.large.feed{font-size:1.14285714rem} -------------------------------------------------------------------------------- /frontend/semanticui/components/image.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Image 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.image{position:relative;display:inline-block;vertical-align:middle;max-width:100%;background-color:transparent}img.ui.image{display:block}.ui.image img,.ui.image svg{display:block;max-width:100%;height:auto}.ui.hidden.image,.ui.hidden.images{display:none}.ui.hidden.transition.image,.ui.hidden.transition.images{display:block;visibility:hidden}.ui.images>.hidden.transition{display:inline-block;visibility:hidden}.ui.disabled.image,.ui.disabled.images{cursor:default;opacity:.45}.ui.inline.image,.ui.inline.image img,.ui.inline.image svg{display:inline-block}.ui.top.aligned.image,.ui.top.aligned.image img,.ui.top.aligned.image svg,.ui.top.aligned.images .image{display:inline-block;vertical-align:top}.ui.middle.aligned.image,.ui.middle.aligned.image img,.ui.middle.aligned.image svg,.ui.middle.aligned.images .image{display:inline-block;vertical-align:middle}.ui.bottom.aligned.image,.ui.bottom.aligned.image img,.ui.bottom.aligned.image svg,.ui.bottom.aligned.images .image{display:inline-block;vertical-align:bottom}.ui.rounded.image,.ui.rounded.image>*,.ui.rounded.images .image,.ui.rounded.images .image>*{border-radius:.3125em}.ui.bordered.image img,.ui.bordered.image svg,.ui.bordered.images .image,.ui.bordered.images img,.ui.bordered.images svg,img.ui.bordered.image{border:1px solid rgba(0,0,0,.1)}.ui.circular.image,.ui.circular.images{overflow:hidden}.ui.circular.image,.ui.circular.image>*,.ui.circular.images .image,.ui.circular.images .image>*{border-radius:500rem}.ui.fluid.image,.ui.fluid.image img,.ui.fluid.image svg,.ui.fluid.images,.ui.fluid.images img,.ui.fluid.images svg{display:block;width:100%;height:auto}.ui.avatar.image,.ui.avatar.image img,.ui.avatar.image svg,.ui.avatar.images .image,.ui.avatar.images img,.ui.avatar.images svg{margin-right:.25em;display:inline-block;width:2em;height:2em;border-radius:500rem}.ui.spaced.image{display:inline-block!important;margin-left:.5em;margin-right:.5em}.ui[class*="left spaced"].image{margin-left:.5em;margin-right:0}.ui[class*="right spaced"].image{margin-left:0;margin-right:.5em}.ui.floated.image,.ui.floated.images{float:left;margin-right:1em;margin-bottom:1em}.ui.right.floated.image,.ui.right.floated.images{float:right;margin-right:0;margin-bottom:1em;margin-left:1em}.ui.floated.image:last-child,.ui.floated.images:last-child{margin-bottom:0}.ui.centered.image,.ui.centered.images{margin-left:auto;margin-right:auto}.ui.mini.image,.ui.mini.images .image,.ui.mini.images img,.ui.mini.images svg{width:35px;height:auto;font-size:.78571429rem}.ui.tiny.image,.ui.tiny.images .image,.ui.tiny.images img,.ui.tiny.images svg{width:80px;height:auto;font-size:.85714286rem}.ui.small.image,.ui.small.images .image,.ui.small.images img,.ui.small.images svg{width:150px;height:auto;font-size:.92857143rem}.ui.medium.image,.ui.medium.images .image,.ui.medium.images img,.ui.medium.images svg{width:300px;height:auto;font-size:1rem}.ui.large.image,.ui.large.images .image,.ui.large.images img,.ui.large.images svg{width:450px;height:auto;font-size:1.14285714rem}.ui.big.image,.ui.big.images .image,.ui.big.images img,.ui.big.images svg{width:600px;height:auto;font-size:1.28571429rem}.ui.huge.image,.ui.huge.images .image,.ui.huge.images img,.ui.huge.images svg{width:800px;height:auto;font-size:1.42857143rem}.ui.massive.image,.ui.massive.images .image,.ui.massive.images img,.ui.massive.images svg{width:960px;height:auto;font-size:1.71428571rem}.ui.images{font-size:0;margin:0 -.25rem 0}.ui.images .image,.ui.images>img,.ui.images>svg{display:inline-block;margin:0 .25rem .5rem} -------------------------------------------------------------------------------- /frontend/semanticui/components/item.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Item 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.items>.item{display:-webkit-box;display:-ms-flexbox;display:flex;margin:1em 0;width:100%;min-height:0;background:0 0;padding:0;border:none;border-radius:0;-webkit-box-shadow:none;box-shadow:none;-webkit-transition:-webkit-box-shadow .1s ease;transition:-webkit-box-shadow .1s ease;transition:box-shadow .1s ease;transition:box-shadow .1s ease,-webkit-box-shadow .1s ease;z-index:''}.ui.items>.item a{cursor:pointer}.ui.items{margin:1.5em 0}.ui.items:first-child{margin-top:0!important}.ui.items:last-child{margin-bottom:0!important}.ui.items>.item:after{display:block;content:' ';height:0;clear:both;overflow:hidden;visibility:hidden}.ui.items>.item:first-child{margin-top:0}.ui.items>.item:last-child{margin-bottom:0}.ui.items>.item>.image{position:relative;-webkit-box-flex:0;-ms-flex:0 0 auto;flex:0 0 auto;display:block;float:none;margin:0;padding:0;max-height:'';-ms-flex-item-align:top;align-self:top}.ui.items>.item>.image>img{display:block;width:100%;height:auto;border-radius:.125rem;border:none}.ui.items>.item>.image:only-child>img{border-radius:0}.ui.items>.item>.content{display:block;-webkit-box-flex:1;-ms-flex:1 1 auto;flex:1 1 auto;background:0 0;margin:0;padding:0;-webkit-box-shadow:none;box-shadow:none;font-size:1em;border:none;border-radius:0}.ui.items>.item>.content:after{display:block;content:' ';height:0;clear:both;overflow:hidden;visibility:hidden}.ui.items>.item>.image+.content{min-width:0;width:auto;display:block;margin-left:0;-ms-flex-item-align:top;align-self:top;padding-left:1.5em}.ui.items>.item>.content>.header{display:inline-block;margin:-.21425em 0 0;font-family:Lato,'Helvetica Neue',Arial,Helvetica,sans-serif;font-weight:700;color:rgba(0,0,0,.85)}.ui.items>.item>.content>.header:not(.ui){font-size:1.28571429em}.ui.items>.item [class*="left floated"]{float:left}.ui.items>.item [class*="right floated"]{float:right}.ui.items>.item .content img{-ms-flex-item-align:middle;align-self:middle;width:''}.ui.items>.item .avatar img,.ui.items>.item img.avatar{width:'';height:'';border-radius:500rem}.ui.items>.item>.content>.description{margin-top:.6em;max-width:auto;font-size:1em;line-height:1.4285em;color:rgba(0,0,0,.87)}.ui.items>.item>.content p{margin:0 0 .5em}.ui.items>.item>.content p:last-child{margin-bottom:0}.ui.items>.item .meta{margin:.5em 0 .5em;font-size:1em;line-height:1em;color:rgba(0,0,0,.6)}.ui.items>.item .meta *{margin-right:.3em}.ui.items>.item .meta :last-child{margin-right:0}.ui.items>.item .meta [class*="right floated"]{margin-right:0;margin-left:.3em}.ui.items>.item>.content a:not(.ui){color:'';-webkit-transition:color .1s ease;transition:color .1s ease}.ui.items>.item>.content a:not(.ui):hover{color:''}.ui.items>.item>.content>a.header{color:rgba(0,0,0,.85)}.ui.items>.item>.content>a.header:hover{color:#1e70bf}.ui.items>.item .meta>a:not(.ui){color:rgba(0,0,0,.4)}.ui.items>.item .meta>a:not(.ui):hover{color:rgba(0,0,0,.87)}.ui.items>.item>.content .favorite.icon{cursor:pointer;opacity:.75;-webkit-transition:color .1s ease;transition:color .1s ease}.ui.items>.item>.content .favorite.icon:hover{opacity:1;color:#ffb70a}.ui.items>.item>.content .active.favorite.icon{color:#ffe623}.ui.items>.item>.content .like.icon{cursor:pointer;opacity:.75;-webkit-transition:color .1s ease;transition:color .1s ease}.ui.items>.item>.content .like.icon:hover{opacity:1;color:#ff2733}.ui.items>.item>.content .active.like.icon{color:#ff2733}.ui.items>.item .extra{display:block;position:relative;background:0 0;margin:.5rem 0 0;width:100%;padding:0 0 0;top:0;left:0;color:rgba(0,0,0,.4);-webkit-box-shadow:none;box-shadow:none;-webkit-transition:color .1s ease;transition:color .1s ease;border-top:none}.ui.items>.item .extra>*{margin:.25rem .5rem .25rem 0}.ui.items>.item .extra>[class*="right floated"]{margin:.25rem 0 .25rem .5rem}.ui.items>.item .extra:after{display:block;content:' ';height:0;clear:both;overflow:hidden;visibility:hidden}.ui.items>.item>.image:not(.ui){width:175px}@media only screen and (min-width:768px) and (max-width:991px){.ui.items>.item{margin:1em 0}.ui.items>.item>.image:not(.ui){width:150px}.ui.items>.item>.image+.content{display:block;padding:0 0 0 1em}}@media only screen and (max-width:767px){.ui.items:not(.unstackable)>.item{-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;margin:2em 0}.ui.items:not(.unstackable)>.item>.image{display:block;margin-left:auto;margin-right:auto}.ui.items:not(.unstackable)>.item>.image,.ui.items:not(.unstackable)>.item>.image>img{max-width:100%!important;width:auto!important;max-height:250px!important}.ui.items:not(.unstackable)>.item>.image+.content{display:block;padding:1.5em 0 0}}.ui.items>.item>.image+[class*="top aligned"].content{-ms-flex-item-align:start;align-self:flex-start}.ui.items>.item>.image+[class*="middle aligned"].content{-ms-flex-item-align:center;align-self:center}.ui.items>.item>.image+[class*="bottom aligned"].content{-ms-flex-item-align:end;align-self:flex-end}.ui.relaxed.items>.item{margin:1.5em 0}.ui[class*="very relaxed"].items>.item{margin:2em 0}.ui.divided.items>.item{border-top:1px solid rgba(34,36,38,.15);margin:0;padding:1em 0}.ui.divided.items>.item:first-child{border-top:none;margin-top:0!important;padding-top:0!important}.ui.divided.items>.item:last-child{margin-bottom:0!important;padding-bottom:0!important}.ui.relaxed.divided.items>.item{margin:0;padding:1.5em 0}.ui[class*="very relaxed"].divided.items>.item{margin:0;padding:2em 0}.ui.items a.item:hover,.ui.link.items>.item:hover{cursor:pointer}.ui.items a.item:hover .content .header,.ui.link.items>.item:hover .content .header{color:#1e70bf}.ui.items>.item{font-size:1em}@media only screen and (max-width:767px){.ui.unstackable.items>.item>.image,.ui.unstackable.items>.item>.image>img{width:125px!important}} -------------------------------------------------------------------------------- /frontend/semanticui/components/loader.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Loader 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.loader{display:none;position:absolute;top:50%;left:50%;margin:0;text-align:center;z-index:1000;-webkit-transform:translateX(-50%) translateY(-50%);transform:translateX(-50%) translateY(-50%)}.ui.loader:before{position:absolute;content:'';top:0;left:50%;width:100%;height:100%;border-radius:500rem;border:.2em solid rgba(0,0,0,.1)}.ui.loader:after{position:absolute;content:'';top:0;left:50%;width:100%;height:100%;-webkit-animation:loader .6s linear;animation:loader .6s linear;-webkit-animation-iteration-count:infinite;animation-iteration-count:infinite;border-radius:500rem;border-color:#767676 transparent transparent;border-style:solid;border-width:.2em;-webkit-box-shadow:0 0 0 1px transparent;box-shadow:0 0 0 1px transparent}@-webkit-keyframes loader{from{-webkit-transform:rotate(0);transform:rotate(0)}to{-webkit-transform:rotate(360deg);transform:rotate(360deg)}}@keyframes loader{from{-webkit-transform:rotate(0);transform:rotate(0)}to{-webkit-transform:rotate(360deg);transform:rotate(360deg)}}.ui.mini.loader:after,.ui.mini.loader:before{width:1rem;height:1rem;margin:0 0 0 -.5rem}.ui.tiny.loader:after,.ui.tiny.loader:before{width:1.14285714rem;height:1.14285714rem;margin:0 0 0 -.57142857rem}.ui.small.loader:after,.ui.small.loader:before{width:1.71428571rem;height:1.71428571rem;margin:0 0 0 -.85714286rem}.ui.loader:after,.ui.loader:before{width:2.28571429rem;height:2.28571429rem;margin:0 0 0 -1.14285714rem}.ui.large.loader:after,.ui.large.loader:before{width:3.42857143rem;height:3.42857143rem;margin:0 0 0 -1.71428571rem}.ui.big.loader:after,.ui.big.loader:before{width:3.71428571rem;height:3.71428571rem;margin:0 0 0 -1.85714286rem}.ui.huge.loader:after,.ui.huge.loader:before{width:4.14285714rem;height:4.14285714rem;margin:0 0 0 -2.07142857rem}.ui.massive.loader:after,.ui.massive.loader:before{width:4.57142857rem;height:4.57142857rem;margin:0 0 0 -2.28571429rem}.ui.dimmer .loader{display:block}.ui.dimmer .ui.loader{color:rgba(255,255,255,.9)}.ui.dimmer .ui.loader:before{border-color:rgba(255,255,255,.15)}.ui.dimmer .ui.loader:after{border-color:#fff transparent transparent}.ui.inverted.dimmer .ui.loader{color:rgba(0,0,0,.87)}.ui.inverted.dimmer .ui.loader:before{border-color:rgba(0,0,0,.1)}.ui.inverted.dimmer .ui.loader:after{border-color:#767676 transparent transparent}.ui.text.loader{width:auto!important;height:auto!important;text-align:center;font-style:normal}.ui.indeterminate.loader:after{animation-direction:reverse;-webkit-animation-duration:1.2s;animation-duration:1.2s}.ui.loader.active,.ui.loader.visible{display:block}.ui.loader.disabled,.ui.loader.hidden{display:none}.ui.inverted.dimmer .ui.mini.loader,.ui.mini.loader{width:1rem;height:1rem;font-size:.78571429em}.ui.inverted.dimmer .ui.tiny.loader,.ui.tiny.loader{width:1.14285714rem;height:1.14285714rem;font-size:.85714286em}.ui.inverted.dimmer .ui.small.loader,.ui.small.loader{width:1.71428571rem;height:1.71428571rem;font-size:.92857143em}.ui.inverted.dimmer .ui.loader,.ui.loader{width:2.28571429rem;height:2.28571429rem;font-size:1em}.ui.inverted.dimmer .ui.large.loader,.ui.large.loader{width:3.42857143rem;height:3.42857143rem;font-size:1.14285714em}.ui.big.loader,.ui.inverted.dimmer .ui.big.loader{width:3.71428571rem;height:3.71428571rem;font-size:1.28571429em}.ui.huge.loader,.ui.inverted.dimmer .ui.huge.loader{width:4.14285714rem;height:4.14285714rem;font-size:1.42857143em}.ui.inverted.dimmer .ui.massive.loader,.ui.massive.loader{width:4.57142857rem;height:4.57142857rem;font-size:1.71428571em}.ui.mini.text.loader{min-width:1rem;padding-top:1.78571429rem}.ui.tiny.text.loader{min-width:1.14285714rem;padding-top:1.92857143rem}.ui.small.text.loader{min-width:1.71428571rem;padding-top:2.5rem}.ui.text.loader{min-width:2.28571429rem;padding-top:3.07142857rem}.ui.large.text.loader{min-width:3.42857143rem;padding-top:4.21428571rem}.ui.big.text.loader{min-width:3.71428571rem;padding-top:4.5rem}.ui.huge.text.loader{min-width:4.14285714rem;padding-top:4.92857143rem}.ui.massive.text.loader{min-width:4.57142857rem;padding-top:5.35714286rem}.ui.inverted.loader{color:rgba(255,255,255,.9)}.ui.inverted.loader:before{border-color:rgba(255,255,255,.15)}.ui.inverted.loader:after{border-top-color:#fff}.ui.inline.loader{position:relative;vertical-align:middle;margin:0;left:0;top:0;-webkit-transform:none;transform:none}.ui.inline.loader.active,.ui.inline.loader.visible{display:inline-block}.ui.centered.inline.loader.active,.ui.centered.inline.loader.visible{display:block;margin-left:auto;margin-right:auto} -------------------------------------------------------------------------------- /frontend/semanticui/components/nag.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.0 - Nag 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */ 10 | 11 | 12 | /******************************* 13 | Nag 14 | *******************************/ 15 | 16 | .ui.nag { 17 | display: none; 18 | opacity: 0.95; 19 | position: relative; 20 | top: 0em; 21 | left: 0px; 22 | z-index: 999; 23 | min-height: 0em; 24 | width: 100%; 25 | margin: 0em; 26 | padding: 0.75em 1em; 27 | background: #555555; 28 | -webkit-box-shadow: 0px 1px 2px 0px rgba(0, 0, 0, 0.2); 29 | box-shadow: 0px 1px 2px 0px rgba(0, 0, 0, 0.2); 30 | font-size: 1rem; 31 | text-align: center; 32 | color: rgba(0, 0, 0, 0.87); 33 | border-radius: 0em 0em 0.28571429rem 0.28571429rem; 34 | -webkit-transition: 0.2s background ease; 35 | transition: 0.2s background ease; 36 | } 37 | a.ui.nag { 38 | cursor: pointer; 39 | } 40 | .ui.nag > .title { 41 | display: inline-block; 42 | margin: 0em 0.5em; 43 | color: #FFFFFF; 44 | } 45 | .ui.nag > .close.icon { 46 | cursor: pointer; 47 | opacity: 0.4; 48 | position: absolute; 49 | top: 50%; 50 | right: 1em; 51 | font-size: 1em; 52 | margin: -0.5em 0em 0em; 53 | color: #FFFFFF; 54 | -webkit-transition: opacity 0.2s ease; 55 | transition: opacity 0.2s ease; 56 | } 57 | 58 | 59 | /******************************* 60 | States 61 | *******************************/ 62 | 63 | 64 | /* Hover */ 65 | .ui.nag:hover { 66 | background: #555555; 67 | opacity: 1; 68 | } 69 | .ui.nag .close:hover { 70 | opacity: 1; 71 | } 72 | 73 | 74 | /******************************* 75 | Variations 76 | *******************************/ 77 | 78 | 79 | /*-------------- 80 | Static 81 | ---------------*/ 82 | 83 | .ui.overlay.nag { 84 | position: absolute; 85 | display: block; 86 | } 87 | 88 | /*-------------- 89 | Fixed 90 | ---------------*/ 91 | 92 | .ui.fixed.nag { 93 | position: fixed; 94 | } 95 | 96 | /*-------------- 97 | Bottom 98 | ---------------*/ 99 | 100 | .ui.bottom.nags, 101 | .ui.bottom.nag { 102 | border-radius: 0.28571429rem 0.28571429rem 0em 0em; 103 | top: auto; 104 | bottom: 0em; 105 | } 106 | 107 | /*-------------- 108 | White 109 | ---------------*/ 110 | 111 | .ui.inverted.nags .nag, 112 | .ui.inverted.nag { 113 | background-color: #F3F4F5; 114 | color: rgba(0, 0, 0, 0.85); 115 | } 116 | .ui.inverted.nags .nag .close, 117 | .ui.inverted.nags .nag .title, 118 | .ui.inverted.nag .close, 119 | .ui.inverted.nag .title { 120 | color: rgba(0, 0, 0, 0.4); 121 | } 122 | 123 | 124 | /******************************* 125 | Groups 126 | *******************************/ 127 | 128 | .ui.nags .nag { 129 | border-radius: 0em !important; 130 | } 131 | .ui.nags .nag:last-child { 132 | border-radius: 0em 0em 0.28571429rem 0.28571429rem; 133 | } 134 | .ui.bottom.nags .nag:last-child { 135 | border-radius: 0.28571429rem 0.28571429rem 0em 0em; 136 | } 137 | 138 | 139 | /******************************* 140 | Theme Overrides 141 | *******************************/ 142 | 143 | 144 | 145 | /******************************* 146 | User Overrides 147 | *******************************/ 148 | 149 | -------------------------------------------------------------------------------- /frontend/semanticui/components/nag.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.0 - Nag 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.nag{display:none;opacity:.95;position:relative;top:0;left:0;z-index:999;min-height:0;width:100%;margin:0;padding:.75em 1em;background:#555;-webkit-box-shadow:0 1px 2px 0 rgba(0,0,0,.2);box-shadow:0 1px 2px 0 rgba(0,0,0,.2);font-size:1rem;text-align:center;color:rgba(0,0,0,.87);border-radius:0 0 .28571429rem .28571429rem;-webkit-transition:.2s background ease;transition:.2s background ease}a.ui.nag{cursor:pointer}.ui.nag>.title{display:inline-block;margin:0 .5em;color:#fff}.ui.nag>.close.icon{cursor:pointer;opacity:.4;position:absolute;top:50%;right:1em;font-size:1em;margin:-.5em 0 0;color:#fff;-webkit-transition:opacity .2s ease;transition:opacity .2s ease}.ui.nag:hover{background:#555;opacity:1}.ui.nag .close:hover{opacity:1}.ui.overlay.nag{position:absolute;display:block}.ui.fixed.nag{position:fixed}.ui.bottom.nag,.ui.bottom.nags{border-radius:.28571429rem .28571429rem 0 0;top:auto;bottom:0}.ui.inverted.nag,.ui.inverted.nags .nag{background-color:#f3f4f5;color:rgba(0,0,0,.85)}.ui.inverted.nag .close,.ui.inverted.nag .title,.ui.inverted.nags .nag .close,.ui.inverted.nags .nag .title{color:rgba(0,0,0,.4)}.ui.nags .nag{border-radius:0!important}.ui.nags .nag:last-child{border-radius:0 0 .28571429rem .28571429rem}.ui.bottom.nags .nag:last-child{border-radius:.28571429rem .28571429rem 0 0} -------------------------------------------------------------------------------- /frontend/semanticui/components/nag.min.js: -------------------------------------------------------------------------------- 1 | !function(y,k,e,S){"use strict";k=void 0!==k&&k.Math==Math?k:"undefined"!=typeof self&&self.Math==Math?self:Function("return this")(),y.fn.nag=function(u){var d,e=y(this),m=e.selector||"",f=(new Date).getTime(),p=[],h=u,b="string"==typeof h,v=[].slice.call(arguments,1);return e.each(function(){var r,n=y.isPlainObject(u)?y.extend(!0,{},y.fn.nag.settings,u):y.extend({},y.fn.nag.settings),e=(n.className,n.selector),l=n.error,o=n.namespace,t="."+o,i=o+"-module",s=y(this),a=(s.find(e.close),n.context?y(n.context):y("body")),c=this,g=s.data(i);k.requestAnimationFrame||k.mozRequestAnimationFrame||k.webkitRequestAnimationFrame||k.msRequestAnimationFrame;r={initialize:function(){r.verbose("Initializing element"),s.on("click"+t,e.close,r.dismiss).data(i,r),n.detachable&&s.parent()[0]!==a[0]&&s.detach().prependTo(a),0:before{background-color:#fff}.ui.placeholder .image:not(.header):not(.ui){height:100px}.ui.placeholder .square.image:not(.header){height:0;overflow:hidden;padding-top:100%}.ui.placeholder .rectangular.image:not(.header){height:0;overflow:hidden;padding-top:75%}.ui.placeholder .line{position:relative;height:.85714286em}.ui.placeholder .line:after,.ui.placeholder .line:before{top:100%;position:absolute;content:'';background-color:inherit}.ui.placeholder .line:before{left:0}.ui.placeholder .line:after{right:0}.ui.placeholder .line{margin-bottom:.5em}.ui.placeholder .line:after,.ui.placeholder .line:before{height:.5em}.ui.placeholder .line:not(:first-child){margin-top:.5em}.ui.placeholder .header{position:relative;overflow:hidden}.ui.placeholder .line:nth-child(1):after{width:0%}.ui.placeholder .line:nth-child(2):after{width:50%}.ui.placeholder .line:nth-child(3):after{width:10%}.ui.placeholder .line:nth-child(4):after{width:35%}.ui.placeholder .line:nth-child(5):after{width:65%}.ui.placeholder .header .line{margin-bottom:.64285714em}.ui.placeholder .header .line:after,.ui.placeholder .header .line:before{height:.64285714em}.ui.placeholder .header .line:not(:first-child){margin-top:.64285714em}.ui.placeholder .header .line:after{width:20%}.ui.placeholder .header .line:nth-child(2):after{width:60%}.ui.placeholder .image.header .line{margin-left:3em}.ui.placeholder .image.header .line:before{width:.71428571rem}.ui.placeholder .image.header:after{display:block;height:.85714286em;content:'';margin-left:3em}.ui.placeholder .header .line:first-child,.ui.placeholder .image .line:first-child,.ui.placeholder .paragraph .line:first-child{height:.01px}.ui.placeholder .header:not(:first-child):before,.ui.placeholder .image:not(:first-child):before,.ui.placeholder .paragraph:not(:first-child):before{height:1.42857143em;content:'';display:block}.ui.inverted.placeholder{background-image:-webkit-gradient(linear,left top,right top,from(rgba(255,255,255,.08)),color-stop(15%,rgba(255,255,255,.14)),color-stop(30%,rgba(255,255,255,.08)));background-image:-webkit-linear-gradient(left,rgba(255,255,255,.08) 0,rgba(255,255,255,.14) 15%,rgba(255,255,255,.08) 30%);background-image:linear-gradient(to right,rgba(255,255,255,.08) 0,rgba(255,255,255,.14) 15%,rgba(255,255,255,.08) 30%)}.ui.inverted.placeholder,.ui.inverted.placeholder .image.header:after,.ui.inverted.placeholder .line,.ui.inverted.placeholder .line:after,.ui.inverted.placeholder>:before{background-color:#1b1c1d}.ui.placeholder .full.line.line.line:after{width:0%}.ui.placeholder .very.long.line.line.line:after{width:10%}.ui.placeholder .long.line.line.line:after{width:35%}.ui.placeholder .medium.line.line.line:after{width:50%}.ui.placeholder .short.line.line.line:after{width:65%}.ui.placeholder .very.short.line.line.line:after{width:80%}.ui.fluid.placeholder{max-width:none} -------------------------------------------------------------------------------- /frontend/semanticui/components/rail.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Rail 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */ 10 | 11 | 12 | /******************************* 13 | Rails 14 | *******************************/ 15 | 16 | .ui.rail { 17 | position: absolute; 18 | top: 0%; 19 | width: 300px; 20 | height: 100%; 21 | } 22 | .ui.left.rail { 23 | left: auto; 24 | right: 100%; 25 | padding: 0em 2rem 0em 0em; 26 | margin: 0em 2rem 0em 0em; 27 | } 28 | .ui.right.rail { 29 | left: 100%; 30 | right: auto; 31 | padding: 0em 0em 0em 2rem; 32 | margin: 0em 0em 0em 2rem; 33 | } 34 | 35 | 36 | /******************************* 37 | Variations 38 | *******************************/ 39 | 40 | 41 | /*-------------- 42 | Internal 43 | ---------------*/ 44 | 45 | .ui.left.internal.rail { 46 | left: 0%; 47 | right: auto; 48 | padding: 0em 0em 0em 2rem; 49 | margin: 0em 0em 0em 2rem; 50 | } 51 | .ui.right.internal.rail { 52 | left: auto; 53 | right: 0%; 54 | padding: 0em 2rem 0em 0em; 55 | margin: 0em 2rem 0em 0em; 56 | } 57 | 58 | /*-------------- 59 | Dividing 60 | ---------------*/ 61 | 62 | .ui.dividing.rail { 63 | width: 302.5px; 64 | } 65 | .ui.left.dividing.rail { 66 | padding: 0em 2.5rem 0em 0em; 67 | margin: 0em 2.5rem 0em 0em; 68 | border-right: 1px solid rgba(34, 36, 38, 0.15); 69 | } 70 | .ui.right.dividing.rail { 71 | border-left: 1px solid rgba(34, 36, 38, 0.15); 72 | padding: 0em 0em 0em 2.5rem; 73 | margin: 0em 0em 0em 2.5rem; 74 | } 75 | 76 | /*-------------- 77 | Distance 78 | ---------------*/ 79 | 80 | .ui.close.rail { 81 | width: calc( 300px + 1em ); 82 | } 83 | .ui.close.left.rail { 84 | padding: 0em 1em 0em 0em; 85 | margin: 0em 1em 0em 0em; 86 | } 87 | .ui.close.right.rail { 88 | padding: 0em 0em 0em 1em; 89 | margin: 0em 0em 0em 1em; 90 | } 91 | .ui.very.close.rail { 92 | width: calc( 300px + 0.5em ); 93 | } 94 | .ui.very.close.left.rail { 95 | padding: 0em 0.5em 0em 0em; 96 | margin: 0em 0.5em 0em 0em; 97 | } 98 | .ui.very.close.right.rail { 99 | padding: 0em 0em 0em 0.5em; 100 | margin: 0em 0em 0em 0.5em; 101 | } 102 | 103 | /*-------------- 104 | Attached 105 | ---------------*/ 106 | 107 | .ui.attached.left.rail, 108 | .ui.attached.right.rail { 109 | padding: 0em; 110 | margin: 0em; 111 | } 112 | 113 | /*-------------- 114 | Sizing 115 | ---------------*/ 116 | 117 | .ui.mini.rail { 118 | font-size: 0.78571429rem; 119 | } 120 | .ui.tiny.rail { 121 | font-size: 0.85714286rem; 122 | } 123 | .ui.small.rail { 124 | font-size: 0.92857143rem; 125 | } 126 | .ui.rail { 127 | font-size: 1rem; 128 | } 129 | .ui.large.rail { 130 | font-size: 1.14285714rem; 131 | } 132 | .ui.big.rail { 133 | font-size: 1.28571429rem; 134 | } 135 | .ui.huge.rail { 136 | font-size: 1.42857143rem; 137 | } 138 | .ui.massive.rail { 139 | font-size: 1.71428571rem; 140 | } 141 | 142 | 143 | /******************************* 144 | Theme Overrides 145 | *******************************/ 146 | 147 | 148 | 149 | /******************************* 150 | Site Overrides 151 | *******************************/ 152 | 153 | -------------------------------------------------------------------------------- /frontend/semanticui/components/rail.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Rail 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.rail{position:absolute;top:0;width:300px;height:100%}.ui.left.rail{left:auto;right:100%;padding:0 2rem 0 0;margin:0 2rem 0 0}.ui.right.rail{left:100%;right:auto;padding:0 0 0 2rem;margin:0 0 0 2rem}.ui.left.internal.rail{left:0;right:auto;padding:0 0 0 2rem;margin:0 0 0 2rem}.ui.right.internal.rail{left:auto;right:0;padding:0 2rem 0 0;margin:0 2rem 0 0}.ui.dividing.rail{width:302.5px}.ui.left.dividing.rail{padding:0 2.5rem 0 0;margin:0 2.5rem 0 0;border-right:1px solid rgba(34,36,38,.15)}.ui.right.dividing.rail{border-left:1px solid rgba(34,36,38,.15);padding:0 0 0 2.5rem;margin:0 0 0 2.5rem}.ui.close.rail{width:calc(300px + 1em)}.ui.close.left.rail{padding:0 1em 0 0;margin:0 1em 0 0}.ui.close.right.rail{padding:0 0 0 1em;margin:0 0 0 1em}.ui.very.close.rail{width:calc(300px + .5em)}.ui.very.close.left.rail{padding:0 .5em 0 0;margin:0 .5em 0 0}.ui.very.close.right.rail{padding:0 0 0 .5em;margin:0 0 0 .5em}.ui.attached.left.rail,.ui.attached.right.rail{padding:0;margin:0}.ui.mini.rail{font-size:.78571429rem}.ui.tiny.rail{font-size:.85714286rem}.ui.small.rail{font-size:.92857143rem}.ui.rail{font-size:1rem}.ui.large.rail{font-size:1.14285714rem}.ui.big.rail{font-size:1.28571429rem}.ui.huge.rail{font-size:1.42857143rem}.ui.massive.rail{font-size:1.71428571rem} -------------------------------------------------------------------------------- /frontend/semanticui/components/rating.min.js: -------------------------------------------------------------------------------- 1 | !function(C,e,n,T){"use strict";e=void 0!==e&&e.Math==Math?e:"undefined"!=typeof self&&self.Math==Math?self:Function("return this")(),C.fn.rating=function(m){var f,v=C(this),p=v.selector||"",b=(new Date).getTime(),h=[],y=m,x="string"==typeof y,R=[].slice.call(arguments,1);return v.each(function(){var e,i,a=C.isPlainObject(m)?C.extend(!0,{},C.fn.rating.settings,m):C.extend({},C.fn.rating.settings),n=a.namespace,o=a.className,t=a.metadata,r=a.selector,s=(a.error,"."+n),l="module-"+n,c=this,u=C(this).data(l),d=C(this),g=d.find(r.icon);i={initialize:function(){i.verbose("Initializing rating module",a),0===g.length&&i.setup.layout(),a.interactive?i.enable():i.disable(),i.set.initialLoad(),i.set.rating(i.get.initialRating()),i.remove.initialLoad(),i.instantiate()},instantiate:function(){i.verbose("Instantiating module",a),u=i,d.data(l,i)},destroy:function(){i.verbose("Destroying previous instance",u),i.remove.events(),d.removeData(l)},refresh:function(){g=d.find(r.icon)},setup:{layout:function(){var e=i.get.maxRating(),n=C.fn.rating.settings.templates.icon(e);i.debug("Generating icon html dynamically"),d.html(n),i.refresh()}},event:{mouseenter:function(){var e=C(this);e.nextAll().removeClass(o.selected),d.addClass(o.selected),e.addClass(o.selected).prevAll().addClass(o.selected)},mouseleave:function(){d.removeClass(o.selected),g.removeClass(o.selected)},click:function(){var e=C(this),n=i.get.rating(),t=g.index(e)+1;("auto"==a.clearable?1===g.length:a.clearable)&&n==t?i.clearRating():i.set.rating(t)}},clearRating:function(){i.debug("Clearing current rating"),i.set.rating(0)},bind:{events:function(){i.verbose("Binding events"),d.on("mouseenter"+s,r.icon,i.event.mouseenter).on("mouseleave"+s,r.icon,i.event.mouseleave).on("click"+s,r.icon,i.event.click)}},remove:{events:function(){i.verbose("Removing events"),d.off(s)},initialLoad:function(){e=!1}},enable:function(){i.debug("Setting rating to interactive mode"),i.bind.events(),d.removeClass(o.disabled)},disable:function(){i.debug("Setting rating to read-only mode"),i.remove.events(),d.addClass(o.disabled)},is:{initialLoad:function(){return e}},get:{initialRating:function(){return d.data(t.rating)!==T?(d.removeData(t.rating),d.data(t.rating)):a.initialRating},maxRating:function(){return d.data(t.maxRating)!==T?(d.removeData(t.maxRating),d.data(t.maxRating)):a.maxRating},rating:function(){var e=g.filter("."+o.active).length;return i.verbose("Current rating retrieved",e),e}},set:{rating:function(e){var n=0<=e-1?e-1:0,t=g.eq(n);d.removeClass(o.selected),g.removeClass(o.selected).removeClass(o.active),0',n++;return t}}}}(jQuery,window,document); -------------------------------------------------------------------------------- /frontend/semanticui/components/reset.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Reset 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */*,:after,:before{-webkit-box-sizing:inherit;box-sizing:inherit}html{-webkit-box-sizing:border-box;box-sizing:border-box}input[type=email],input[type=password],input[type=search],input[type=text]{-webkit-appearance:none;-moz-appearance:none}/*! normalize.css v7.0.0 | MIT License | github.com/necolas/normalize.css */html{line-height:1.15;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}body{margin:0}article,aside,footer,header,nav,section{display:block}h1{font-size:2em;margin:.67em 0}figcaption,figure,main{display:block}figure{margin:1em 40px}hr{-webkit-box-sizing:content-box;box-sizing:content-box;height:0;overflow:visible}pre{font-family:monospace,monospace;font-size:1em}a{background-color:transparent;-webkit-text-decoration-skip:objects}abbr[title]{border-bottom:none;text-decoration:underline;-webkit-text-decoration:underline dotted;text-decoration:underline dotted}b,strong{font-weight:inherit}b,strong{font-weight:bolder}code,kbd,samp{font-family:monospace,monospace;font-size:1em}dfn{font-style:italic}mark{background-color:#ff0;color:#000}small{font-size:80%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}audio,video{display:inline-block}audio:not([controls]){display:none;height:0}img{border-style:none}svg:not(:root){overflow:hidden}button,input,optgroup,select,textarea{font-family:sans-serif;font-size:100%;line-height:1.15;margin:0}button,input{overflow:visible}button,select{text-transform:none}[type=reset],[type=submit],button,html [type=button]{-webkit-appearance:button}[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner,button::-moz-focus-inner{border-style:none;padding:0}[type=button]:-moz-focusring,[type=reset]:-moz-focusring,[type=submit]:-moz-focusring,button:-moz-focusring{outline:1px dotted ButtonText}fieldset{padding:.35em .75em .625em}legend{-webkit-box-sizing:border-box;box-sizing:border-box;color:inherit;display:table;max-width:100%;padding:0;white-space:normal}progress{display:inline-block;vertical-align:baseline}textarea{overflow:auto}[type=checkbox],[type=radio]{-webkit-box-sizing:border-box;box-sizing:border-box;padding:0}[type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}[type=search]::-webkit-search-cancel-button,[type=search]::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{-webkit-appearance:button;font:inherit}details,menu{display:block}summary{display:list-item}canvas{display:inline-block}template{display:none}[hidden]{display:none} -------------------------------------------------------------------------------- /frontend/semanticui/components/reveal.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Reveal 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.reveal{display:inherit;position:relative!important;font-size:0!important}.ui.reveal>.visible.content{position:absolute!important;top:0!important;left:0!important;z-index:3!important;-webkit-transition:all .5s ease .1s;transition:all .5s ease .1s}.ui.reveal>.hidden.content{position:relative!important;z-index:2!important}.ui.active.reveal .visible.content,.ui.reveal:hover .visible.content{z-index:4!important}.ui.slide.reveal{position:relative!important;overflow:hidden!important;white-space:nowrap}.ui.slide.reveal>.content{display:block;width:100%;white-space:normal;float:left;margin:0;-webkit-transition:-webkit-transform .5s ease .1s;transition:-webkit-transform .5s ease .1s;transition:transform .5s ease .1s;transition:transform .5s ease .1s,-webkit-transform .5s ease .1s}.ui.slide.reveal>.visible.content{position:relative!important}.ui.slide.reveal>.hidden.content{position:absolute!important;left:0!important;width:100%!important;-webkit-transform:translateX(100%)!important;transform:translateX(100%)!important}.ui.slide.active.reveal>.visible.content,.ui.slide.reveal:hover>.visible.content{-webkit-transform:translateX(-100%)!important;transform:translateX(-100%)!important}.ui.slide.active.reveal>.hidden.content,.ui.slide.reveal:hover>.hidden.content{-webkit-transform:translateX(0)!important;transform:translateX(0)!important}.ui.slide.right.reveal>.visible.content{-webkit-transform:translateX(0)!important;transform:translateX(0)!important}.ui.slide.right.reveal>.hidden.content{-webkit-transform:translateX(-100%)!important;transform:translateX(-100%)!important}.ui.slide.right.active.reveal>.visible.content,.ui.slide.right.reveal:hover>.visible.content{-webkit-transform:translateX(100%)!important;transform:translateX(100%)!important}.ui.slide.right.active.reveal>.hidden.content,.ui.slide.right.reveal:hover>.hidden.content{-webkit-transform:translateX(0)!important;transform:translateX(0)!important}.ui.slide.up.reveal>.hidden.content{-webkit-transform:translateY(100%)!important;transform:translateY(100%)!important}.ui.slide.up.active.reveal>.visible.content,.ui.slide.up.reveal:hover>.visible.content{-webkit-transform:translateY(-100%)!important;transform:translateY(-100%)!important}.ui.slide.up.active.reveal>.hidden.content,.ui.slide.up.reveal:hover>.hidden.content{-webkit-transform:translateY(0)!important;transform:translateY(0)!important}.ui.slide.down.reveal>.hidden.content{-webkit-transform:translateY(-100%)!important;transform:translateY(-100%)!important}.ui.slide.down.active.reveal>.visible.content,.ui.slide.down.reveal:hover>.visible.content{-webkit-transform:translateY(100%)!important;transform:translateY(100%)!important}.ui.slide.down.active.reveal>.hidden.content,.ui.slide.down.reveal:hover>.hidden.content{-webkit-transform:translateY(0)!important;transform:translateY(0)!important}.ui.fade.reveal>.visible.content{opacity:1}.ui.fade.active.reveal>.visible.content,.ui.fade.reveal:hover>.visible.content{opacity:0}.ui.move.reveal{position:relative!important;overflow:hidden!important;white-space:nowrap}.ui.move.reveal>.content{display:block;float:left;white-space:normal;margin:0;-webkit-transition:-webkit-transform .5s cubic-bezier(.175,.885,.32,1) .1s;transition:-webkit-transform .5s cubic-bezier(.175,.885,.32,1) .1s;transition:transform .5s cubic-bezier(.175,.885,.32,1) .1s;transition:transform .5s cubic-bezier(.175,.885,.32,1) .1s,-webkit-transform .5s cubic-bezier(.175,.885,.32,1) .1s}.ui.move.reveal>.visible.content{position:relative!important}.ui.move.reveal>.hidden.content{position:absolute!important;left:0!important;width:100%!important}.ui.move.active.reveal>.visible.content,.ui.move.reveal:hover>.visible.content{-webkit-transform:translateX(-100%)!important;transform:translateX(-100%)!important}.ui.move.right.active.reveal>.visible.content,.ui.move.right.reveal:hover>.visible.content{-webkit-transform:translateX(100%)!important;transform:translateX(100%)!important}.ui.move.up.active.reveal>.visible.content,.ui.move.up.reveal:hover>.visible.content{-webkit-transform:translateY(-100%)!important;transform:translateY(-100%)!important}.ui.move.down.active.reveal>.visible.content,.ui.move.down.reveal:hover>.visible.content{-webkit-transform:translateY(100%)!important;transform:translateY(100%)!important}.ui.rotate.reveal>.visible.content{-webkit-transition-duration:.5s;transition-duration:.5s;-webkit-transform:rotate(0);transform:rotate(0)}.ui.rotate.reveal>.visible.content,.ui.rotate.right.reveal>.visible.content{-webkit-transform-origin:bottom right;transform-origin:bottom right}.ui.rotate.active.reveal>.visible.content,.ui.rotate.reveal:hover>.visible.content,.ui.rotate.right.active.reveal>.visible.content,.ui.rotate.right.reveal:hover>.visible.content{-webkit-transform:rotate(110deg);transform:rotate(110deg)}.ui.rotate.left.reveal>.visible.content{-webkit-transform-origin:bottom left;transform-origin:bottom left}.ui.rotate.left.active.reveal>.visible.content,.ui.rotate.left.reveal:hover>.visible.content{-webkit-transform:rotate(-110deg);transform:rotate(-110deg)}.ui.disabled.reveal:hover>.visible.visible.content{position:static!important;display:block!important;opacity:1!important;top:0!important;left:0!important;right:auto!important;bottom:auto!important;-webkit-transform:none!important;transform:none!important}.ui.disabled.reveal:hover>.hidden.hidden.content{display:none!important}.ui.reveal>.ui.ribbon.label{z-index:5}.ui.visible.reveal{overflow:visible}.ui.instant.reveal>.content{-webkit-transition-delay:0s!important;transition-delay:0s!important}.ui.reveal>.content{font-size:1rem!important} -------------------------------------------------------------------------------- /frontend/semanticui/components/shape.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.0 - Shape 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */ 10 | 11 | 12 | /******************************* 13 | Shape 14 | *******************************/ 15 | 16 | .ui.shape { 17 | position: relative; 18 | vertical-align: top; 19 | display: inline-block; 20 | -webkit-perspective: 2000px; 21 | perspective: 2000px; 22 | -webkit-transition: left 0.6s ease-in-out, width 0.6s ease-in-out, height 0.6s ease-in-out, -webkit-transform 0.6s ease-in-out; 23 | transition: left 0.6s ease-in-out, width 0.6s ease-in-out, height 0.6s ease-in-out, -webkit-transform 0.6s ease-in-out; 24 | transition: transform 0.6s ease-in-out, left 0.6s ease-in-out, width 0.6s ease-in-out, height 0.6s ease-in-out; 25 | transition: transform 0.6s ease-in-out, left 0.6s ease-in-out, width 0.6s ease-in-out, height 0.6s ease-in-out, -webkit-transform 0.6s ease-in-out; 26 | } 27 | .ui.shape .sides { 28 | -webkit-transform-style: preserve-3d; 29 | transform-style: preserve-3d; 30 | } 31 | .ui.shape .side { 32 | opacity: 1; 33 | width: 100%; 34 | margin: 0em !important; 35 | -webkit-backface-visibility: hidden; 36 | backface-visibility: hidden; 37 | } 38 | .ui.shape .side { 39 | display: none; 40 | } 41 | .ui.shape .side * { 42 | -webkit-backface-visibility: visible !important; 43 | backface-visibility: visible !important; 44 | } 45 | 46 | 47 | /******************************* 48 | Types 49 | *******************************/ 50 | 51 | .ui.cube.shape .side { 52 | min-width: 15em; 53 | height: 15em; 54 | padding: 2em; 55 | background-color: #E6E6E6; 56 | color: rgba(0, 0, 0, 0.87); 57 | -webkit-box-shadow: 0px 0px 2px rgba(0, 0, 0, 0.3); 58 | box-shadow: 0px 0px 2px rgba(0, 0, 0, 0.3); 59 | } 60 | .ui.cube.shape .side > .content { 61 | width: 100%; 62 | height: 100%; 63 | display: table; 64 | text-align: center; 65 | -webkit-user-select: text; 66 | -moz-user-select: text; 67 | -ms-user-select: text; 68 | user-select: text; 69 | } 70 | .ui.cube.shape .side > .content > div { 71 | display: table-cell; 72 | vertical-align: middle; 73 | font-size: 2em; 74 | } 75 | 76 | 77 | /******************************* 78 | Variations 79 | *******************************/ 80 | 81 | .ui.text.shape.animating .sides { 82 | position: static; 83 | } 84 | .ui.text.shape .side { 85 | white-space: nowrap; 86 | } 87 | .ui.text.shape .side > * { 88 | white-space: normal; 89 | } 90 | 91 | 92 | /******************************* 93 | States 94 | *******************************/ 95 | 96 | 97 | /*-------------- 98 | Loading 99 | ---------------*/ 100 | 101 | .ui.loading.shape { 102 | position: absolute; 103 | top: -9999px; 104 | left: -9999px; 105 | } 106 | 107 | /*-------------- 108 | Animating 109 | ---------------*/ 110 | 111 | .ui.shape .animating.side { 112 | position: absolute; 113 | top: 0px; 114 | left: 0px; 115 | display: block; 116 | z-index: 100; 117 | } 118 | .ui.shape .hidden.side { 119 | opacity: 0.6; 120 | } 121 | 122 | /*-------------- 123 | CSS 124 | ---------------*/ 125 | 126 | .ui.shape.animating .sides { 127 | position: absolute; 128 | } 129 | .ui.shape.animating .sides { 130 | -webkit-transition: left 0.6s ease-in-out, width 0.6s ease-in-out, height 0.6s ease-in-out, -webkit-transform 0.6s ease-in-out; 131 | transition: left 0.6s ease-in-out, width 0.6s ease-in-out, height 0.6s ease-in-out, -webkit-transform 0.6s ease-in-out; 132 | transition: transform 0.6s ease-in-out, left 0.6s ease-in-out, width 0.6s ease-in-out, height 0.6s ease-in-out; 133 | transition: transform 0.6s ease-in-out, left 0.6s ease-in-out, width 0.6s ease-in-out, height 0.6s ease-in-out, -webkit-transform 0.6s ease-in-out; 134 | } 135 | .ui.shape.animating .side { 136 | -webkit-transition: opacity 0.6s ease-in-out; 137 | transition: opacity 0.6s ease-in-out; 138 | } 139 | 140 | /*-------------- 141 | Active 142 | ---------------*/ 143 | 144 | .ui.shape .active.side { 145 | display: block; 146 | } 147 | 148 | 149 | /******************************* 150 | Theme Overrides 151 | *******************************/ 152 | 153 | 154 | 155 | /******************************* 156 | User Overrides 157 | *******************************/ 158 | 159 | -------------------------------------------------------------------------------- /frontend/semanticui/components/shape.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.0 - Shape 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */.ui.shape{position:relative;vertical-align:top;display:inline-block;-webkit-perspective:2000px;perspective:2000px;-webkit-transition:left .6s ease-in-out,width .6s ease-in-out,height .6s ease-in-out,-webkit-transform .6s ease-in-out;transition:left .6s ease-in-out,width .6s ease-in-out,height .6s ease-in-out,-webkit-transform .6s ease-in-out;transition:transform .6s ease-in-out,left .6s ease-in-out,width .6s ease-in-out,height .6s ease-in-out;transition:transform .6s ease-in-out,left .6s ease-in-out,width .6s ease-in-out,height .6s ease-in-out,-webkit-transform .6s ease-in-out}.ui.shape .sides{-webkit-transform-style:preserve-3d;transform-style:preserve-3d}.ui.shape .side{opacity:1;width:100%;margin:0!important;-webkit-backface-visibility:hidden;backface-visibility:hidden}.ui.shape .side{display:none}.ui.shape .side *{-webkit-backface-visibility:visible!important;backface-visibility:visible!important}.ui.cube.shape .side{min-width:15em;height:15em;padding:2em;background-color:#e6e6e6;color:rgba(0,0,0,.87);-webkit-box-shadow:0 0 2px rgba(0,0,0,.3);box-shadow:0 0 2px rgba(0,0,0,.3)}.ui.cube.shape .side>.content{width:100%;height:100%;display:table;text-align:center;-webkit-user-select:text;-moz-user-select:text;-ms-user-select:text;user-select:text}.ui.cube.shape .side>.content>div{display:table-cell;vertical-align:middle;font-size:2em}.ui.text.shape.animating .sides{position:static}.ui.text.shape .side{white-space:nowrap}.ui.text.shape .side>*{white-space:normal}.ui.loading.shape{position:absolute;top:-9999px;left:-9999px}.ui.shape .animating.side{position:absolute;top:0;left:0;display:block;z-index:100}.ui.shape .hidden.side{opacity:.6}.ui.shape.animating .sides{position:absolute}.ui.shape.animating .sides{-webkit-transition:left .6s ease-in-out,width .6s ease-in-out,height .6s ease-in-out,-webkit-transform .6s ease-in-out;transition:left .6s ease-in-out,width .6s ease-in-out,height .6s ease-in-out,-webkit-transform .6s ease-in-out;transition:transform .6s ease-in-out,left .6s ease-in-out,width .6s ease-in-out,height .6s ease-in-out;transition:transform .6s ease-in-out,left .6s ease-in-out,width .6s ease-in-out,height .6s ease-in-out,-webkit-transform .6s ease-in-out}.ui.shape.animating .side{-webkit-transition:opacity .6s ease-in-out;transition:opacity .6s ease-in-out}.ui.shape .active.side{display:block} -------------------------------------------------------------------------------- /frontend/semanticui/components/site.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Site 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */ 10 | 11 | 12 | /******************************* 13 | Page 14 | *******************************/ 15 | 16 | @import url('https://fonts.googleapis.com/css?family=Lato:400,700,400italic,700italic&subset=latin'); 17 | html, 18 | body { 19 | height: 100%; 20 | } 21 | html { 22 | font-size: 14px; 23 | } 24 | body { 25 | margin: 0px; 26 | padding: 0px; 27 | overflow-x: hidden; 28 | min-width: 320px; 29 | background: #FFFFFF; 30 | font-family: 'Lato', 'Helvetica Neue', Arial, Helvetica, sans-serif; 31 | font-size: 14px; 32 | line-height: 1.4285em; 33 | color: rgba(0, 0, 0, 0.87); 34 | font-smoothing: antialiased; 35 | } 36 | 37 | 38 | /******************************* 39 | Headers 40 | *******************************/ 41 | 42 | h1, 43 | h2, 44 | h3, 45 | h4, 46 | h5 { 47 | font-family: 'Lato', 'Helvetica Neue', Arial, Helvetica, sans-serif; 48 | line-height: 1.28571429em; 49 | margin: calc(2rem - 0.14285714em ) 0em 1rem; 50 | font-weight: bold; 51 | padding: 0em; 52 | } 53 | h1 { 54 | min-height: 1rem; 55 | font-size: 2rem; 56 | } 57 | h2 { 58 | font-size: 1.71428571rem; 59 | } 60 | h3 { 61 | font-size: 1.28571429rem; 62 | } 63 | h4 { 64 | font-size: 1.07142857rem; 65 | } 66 | h5 { 67 | font-size: 1rem; 68 | } 69 | h1:first-child, 70 | h2:first-child, 71 | h3:first-child, 72 | h4:first-child, 73 | h5:first-child { 74 | margin-top: 0em; 75 | } 76 | h1:last-child, 77 | h2:last-child, 78 | h3:last-child, 79 | h4:last-child, 80 | h5:last-child { 81 | margin-bottom: 0em; 82 | } 83 | 84 | 85 | /******************************* 86 | Text 87 | *******************************/ 88 | 89 | p { 90 | margin: 0em 0em 1em; 91 | line-height: 1.4285em; 92 | } 93 | p:first-child { 94 | margin-top: 0em; 95 | } 96 | p:last-child { 97 | margin-bottom: 0em; 98 | } 99 | 100 | /*------------------- 101 | Links 102 | --------------------*/ 103 | 104 | a { 105 | color: #4183C4; 106 | text-decoration: none; 107 | } 108 | a:hover { 109 | color: #1e70bf; 110 | text-decoration: none; 111 | } 112 | 113 | 114 | /******************************* 115 | Scrollbars 116 | *******************************/ 117 | 118 | 119 | 120 | /******************************* 121 | Highlighting 122 | *******************************/ 123 | 124 | 125 | /* Site */ 126 | ::-webkit-selection { 127 | background-color: #CCE2FF; 128 | color: rgba(0, 0, 0, 0.87); 129 | } 130 | ::-moz-selection { 131 | background-color: #CCE2FF; 132 | color: rgba(0, 0, 0, 0.87); 133 | } 134 | ::selection { 135 | background-color: #CCE2FF; 136 | color: rgba(0, 0, 0, 0.87); 137 | } 138 | 139 | /* Form */ 140 | textarea::-webkit-selection, 141 | input::-webkit-selection { 142 | background-color: rgba(100, 100, 100, 0.4); 143 | color: rgba(0, 0, 0, 0.87); 144 | } 145 | textarea::-moz-selection, 146 | input::-moz-selection { 147 | background-color: rgba(100, 100, 100, 0.4); 148 | color: rgba(0, 0, 0, 0.87); 149 | } 150 | textarea::selection, 151 | input::selection { 152 | background-color: rgba(100, 100, 100, 0.4); 153 | color: rgba(0, 0, 0, 0.87); 154 | } 155 | 156 | /* Force Simple Scrollbars */ 157 | body ::-webkit-scrollbar { 158 | -webkit-appearance: none; 159 | width: 10px; 160 | height: 10px; 161 | } 162 | body ::-webkit-scrollbar-track { 163 | background: rgba(0, 0, 0, 0.1); 164 | border-radius: 0px; 165 | } 166 | body ::-webkit-scrollbar-thumb { 167 | cursor: pointer; 168 | border-radius: 5px; 169 | background: rgba(0, 0, 0, 0.25); 170 | -webkit-transition: color 0.2s ease; 171 | transition: color 0.2s ease; 172 | } 173 | body ::-webkit-scrollbar-thumb:window-inactive { 174 | background: rgba(0, 0, 0, 0.15); 175 | } 176 | body ::-webkit-scrollbar-thumb:hover { 177 | background: rgba(128, 135, 139, 0.8); 178 | } 179 | 180 | /* Inverted UI */ 181 | body .ui.inverted::-webkit-scrollbar-track { 182 | background: rgba(255, 255, 255, 0.1); 183 | } 184 | body .ui.inverted::-webkit-scrollbar-thumb { 185 | background: rgba(255, 255, 255, 0.25); 186 | } 187 | body .ui.inverted::-webkit-scrollbar-thumb:window-inactive { 188 | background: rgba(255, 255, 255, 0.15); 189 | } 190 | body .ui.inverted::-webkit-scrollbar-thumb:hover { 191 | background: rgba(255, 255, 255, 0.35); 192 | } 193 | 194 | 195 | /******************************* 196 | Global Overrides 197 | *******************************/ 198 | 199 | 200 | 201 | /******************************* 202 | Site Overrides 203 | *******************************/ 204 | 205 | -------------------------------------------------------------------------------- /frontend/semanticui/components/site.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.4.1 - Site 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Released under the MIT license 7 | * http://opensource.org/licenses/MIT 8 | * 9 | */@import url(https://fonts.googleapis.com/css?family=Lato:400,700,400italic,700italic&subset=latin);body,html{height:100%}html{font-size:14px}body{margin:0;padding:0;overflow-x:hidden;min-width:320px;background:#fff;font-family:Lato,'Helvetica Neue',Arial,Helvetica,sans-serif;font-size:14px;line-height:1.4285em;color:rgba(0,0,0,.87);font-smoothing:antialiased}h1,h2,h3,h4,h5{font-family:Lato,'Helvetica Neue',Arial,Helvetica,sans-serif;line-height:1.28571429em;margin:calc(2rem - .14285714em) 0 1rem;font-weight:700;padding:0}h1{min-height:1rem;font-size:2rem}h2{font-size:1.71428571rem}h3{font-size:1.28571429rem}h4{font-size:1.07142857rem}h5{font-size:1rem}h1:first-child,h2:first-child,h3:first-child,h4:first-child,h5:first-child{margin-top:0}h1:last-child,h2:last-child,h3:last-child,h4:last-child,h5:last-child{margin-bottom:0}p{margin:0 0 1em;line-height:1.4285em}p:first-child{margin-top:0}p:last-child{margin-bottom:0}a{color:#4183c4;text-decoration:none}a:hover{color:#1e70bf;text-decoration:none}::-webkit-selection{background-color:#cce2ff;color:rgba(0,0,0,.87)}::-moz-selection{background-color:#cce2ff;color:rgba(0,0,0,.87)}::selection{background-color:#cce2ff;color:rgba(0,0,0,.87)}input::-webkit-selection,textarea::-webkit-selection{background-color:rgba(100,100,100,.4);color:rgba(0,0,0,.87)}input::-moz-selection,textarea::-moz-selection{background-color:rgba(100,100,100,.4);color:rgba(0,0,0,.87)}input::selection,textarea::selection{background-color:rgba(100,100,100,.4);color:rgba(0,0,0,.87)}body ::-webkit-scrollbar{-webkit-appearance:none;width:10px;height:10px}body ::-webkit-scrollbar-track{background:rgba(0,0,0,.1);border-radius:0}body ::-webkit-scrollbar-thumb{cursor:pointer;border-radius:5px;background:rgba(0,0,0,.25);-webkit-transition:color .2s ease;transition:color .2s ease}body ::-webkit-scrollbar-thumb:window-inactive{background:rgba(0,0,0,.15)}body ::-webkit-scrollbar-thumb:hover{background:rgba(128,135,139,.8)}body .ui.inverted::-webkit-scrollbar-track{background:rgba(255,255,255,.1)}body .ui.inverted::-webkit-scrollbar-thumb{background:rgba(255,255,255,.25)}body .ui.inverted::-webkit-scrollbar-thumb:window-inactive{background:rgba(255,255,255,.15)}body .ui.inverted::-webkit-scrollbar-thumb:hover{background:rgba(255,255,255,.35)} -------------------------------------------------------------------------------- /frontend/semanticui/components/site.min.js: -------------------------------------------------------------------------------- 1 | !function(b,p,v,h){b.site=b.fn.site=function(e){var a,c,i=(new Date).getTime(),t=[],n=e,o="string"==typeof n,l=[].slice.call(arguments,1),u=b.isPlainObject(e)?b.extend(!0,{},b.site.settings,e):b.extend({},b.site.settings),s=u.namespace,m=u.error,r="module-"+s,d=b(v),g=this,f=d.data(r);return a={initialize:function(){a.instantiate()},instantiate:function(){a.verbose("Storing instance of site",a),f=a,d.data(r,a)},normalize:function(){a.fix.console(),a.fix.requestAnimationFrame()},fix:{console:function(){a.debug("Normalizing window.console"),console!==h&&console.log!==h||(a.verbose("Console not available, normalizing events"),a.disable.console()),void 0!==console.group&&void 0!==console.groupEnd&&void 0!==console.groupCollapsed||(a.verbose("Console group not available, normalizing events"),p.console.group=function(){},p.console.groupEnd=function(){},p.console.groupCollapsed=function(){}),void 0===console.markTimeline&&(a.verbose("Mark timeline not available, normalizing events"),p.console.markTimeline=function(){})},consoleClear:function(){a.debug("Disabling programmatic console clearing"),p.console.clear=function(){}},requestAnimationFrame:function(){a.debug("Normalizing requestAnimationFrame"),p.requestAnimationFrame===h&&(a.debug("RequestAnimationFrame not available, normalizing event"),p.requestAnimationFrame=p.requestAnimationFrame||p.mozRequestAnimationFrame||p.webkitRequestAnimationFrame||p.msRequestAnimationFrame||function(e){setTimeout(e,0)})}},moduleExists:function(e){return b.fn[e]!==h&&b.fn[e].settings!==h},enabled:{modules:function(e){var o=[];return e=e||u.modules,b.each(e,function(e,n){a.moduleExists(n)&&o.push(n)}),o}},disabled:{modules:function(e){var o=[];return e=e||u.modules,b.each(e,function(e,n){a.moduleExists(n)||o.push(n)}),o}},change:{setting:function(t,s,e,r){e="string"==typeof e?"all"===e?u.modules:[e]:e||u.modules,r=r===h||r,b.each(e,function(e,n){var o,i=!a.moduleExists(n)||(b.fn[n].settings.namespace||!1);a.moduleExists(n)&&(a.verbose("Changing default setting",t,s,n),b.fn[n].settings[t]=s,r&&i&&0<(o=b(":data(module-"+i+")")).length&&(a.verbose("Modifying existing settings",o),o[n]("setting",t,s)))})},settings:function(i,e,t){e="string"==typeof e?[e]:e||u.modules,t=t===h||t,b.each(e,function(e,n){var o;a.moduleExists(n)&&(a.verbose("Changing default setting",i,n),b.extend(!0,b.fn[n].settings,i),t&&s&&0<(o=b(":data(module-"+s+")")).length&&(a.verbose("Modifying existing settings",o),o[n]("setting",i)))})}},enable:{console:function(){a.console(!0)},debug:function(e,n){e=e||u.modules,a.debug("Enabling debug for modules",e),a.change.setting("debug",!0,e,n)},verbose:function(e,n){e=e||u.modules,a.debug("Enabling verbose debug for modules",e),a.change.setting("verbose",!0,e,n)}},disable:{console:function(){a.console(!1)},debug:function(e,n){e=e||u.modules,a.debug("Disabling debug for modules",e),a.change.setting("debug",!1,e,n)},verbose:function(e,n){e=e||u.modules,a.debug("Disabling verbose debug for modules",e),a.change.setting("verbose",!1,e,n)}},console:function(e){if(e){if(f.cache.console===h)return void a.error(m.console);a.debug("Restoring console function"),p.console=f.cache.console}else a.debug("Disabling console function"),f.cache.console=p.console,p.console={clear:function(){},error:function(){},group:function(){},groupCollapsed:function(){},groupEnd:function(){},info:function(){},log:function(){},markTimeline:function(){},warn:function(){}}},destroy:function(){a.verbose("Destroying previous site for",d),d.removeData(r)},cache:{},setting:function(e,n){if(b.isPlainObject(e))b.extend(!0,u,e);else{if(n===h)return u[e];u[e]=n}},internal:function(e,n){if(b.isPlainObject(e))b.extend(!0,a,e);else{if(n===h)return a[e];a[e]=n}},debug:function(){u.debug&&(u.performance?a.performance.log(arguments):(a.debug=Function.prototype.bind.call(console.info,console,u.name+":"),a.debug.apply(console,arguments)))},verbose:function(){u.verbose&&u.debug&&(u.performance?a.performance.log(arguments):(a.verbose=Function.prototype.bind.call(console.info,console,u.name+":"),a.verbose.apply(console,arguments)))},error:function(){a.error=Function.prototype.bind.call(console.error,console,u.name+":"),a.error.apply(console,arguments)},performance:{log:function(e){var n,o;u.performance&&(o=(n=(new Date).getTime())-(i||n),i=n,t.push({Element:g,Name:e[0],Arguments:[].slice.call(e,1)||"","Execution Time":o})),clearTimeout(a.performance.timer),a.performance.timer=setTimeout(a.performance.display,500)},display:function(){var e=u.name+":",o=0;i=!1,clearTimeout(a.performance.timer),b.each(t,function(e,n){o+=n["Execution Time"]}),e+=" "+o+"ms",(console.group!==h||console.table!==h)&&0':"youtube"==e&&(n='')):d.error(h.noVideo),n},url:function(e){var o=p.api?1:0,t="auto"===p.autoplay?F.data("image")!==n:p.autoplay,a=p.hd?1:0,i=p.showUI?1:0,r=p.showUI?0:1,l="";return"vimeo"==e&&(l="api="+o+"&title="+i+"&byline="+i+"&portrait="+i+"&autoplay="+t,p.color&&(l+="&color="+p.color)),"ustream"==e?(l="autoplay="+t,p.color&&(l+="&color="+p.color)):"youtube"==e&&(l="enablejsapi="+o+"&autoplay="+t+"&autohide="+r+"&hq="+a+"&modestbranding=1",p.color&&(l+="&color="+p.color)),l}},setting:function(o,t){if(d.debug("Changing setting",o,t),e.isPlainObject(o))e.extend(!0,p,o);else{if(t===n)return p[o];p[o]=t}},internal:function(o,t){if(e.isPlainObject(o))e.extend(!0,d,o);else{if(t===n)return d[o];d[o]=t}},debug:function(){p.debug&&(p.performance?d.performance.log(arguments):(d.debug=Function.prototype.bind.call(console.info,console,p.name+":"),d.debug.apply(console,arguments)))},verbose:function(){p.verbose&&p.debug&&(p.performance?d.performance.log(arguments):(d.verbose=Function.prototype.bind.call(console.info,console,p.name+":"),d.verbose.apply(console,arguments)))},error:function(){d.error=Function.prototype.bind.call(console.error,console,p.name+":"),d.error.apply(console,arguments)},performance:{log:function(e){var o,t,n;p.performance&&(o=(new Date).getTime(),n=l||o,t=o-n,l=o,c.push({Name:e[0],Arguments:[].slice.call(e,1)||"",Element:A,"Execution Time":t})),clearTimeout(d.performance.timer),d.performance.timer=setTimeout(d.performance.display,500)},display:function(){var o=p.name+":",t=0;l=!1,clearTimeout(d.performance.timer),e.each(c,function(e,o){t+=o["Execution Time"]}),o+=" "+t+"ms",r&&(o+=" '"+r+"'"),i.length>1&&(o+=" ("+i.length+")"),(console.group!==n||console.table!==n)&&c.length>0&&(console.groupCollapsed(o),console.table?console.table(c):e.each(c,function(e,o){console.log(o.Name+": "+o["Execution Time"]+"ms")}),console.groupEnd()),c=[]}},invoke:function(o,t,i){var r,l,c,u=P;return t=t||m,i=A||i,"string"==typeof o&&u!==n&&(o=o.split(/[\. ]/),r=o.length-1,e.each(o,function(t,a){var i=t!=r?a+o[t+1].charAt(0).toUpperCase()+o[t+1].slice(1):o;if(e.isPlainObject(u[i])&&t!=r)u=u[i];else{if(u[i]!==n)return l=u[i],!1;if(!e.isPlainObject(u[a])||t==r)return u[a]!==n?(l=u[a],!1):(d.error(h.method,o),!1);u=u[a]}})),e.isFunction(l)?c=l.apply(i,t):l!==n&&(c=l),e.isArray(a)?a.push(c):a!==n?a=[a,c]:c!==n&&(a=c),l}},s?(P===n&&d.initialize(),d.invoke(u)):(P!==n&&P.invoke("destroy"),d.initialize())}),a!==n?a:this},e.fn.video.settings={name:"Video",namespace:"video",debug:!1,verbose:!1,performance:!0,metadata:{id:"id",image:"image",source:"source",url:"url"},source:!1,url:!1,id:!1,aspectRatio:16/9,onPlay:function(){},onReset:function(){},onChange:function(){},onPause:function(){},onStop:function(){},width:"auto",height:"auto",autoplay:"auto",color:"#442359",hd:!0,showUI:!1,api:!0,regExp:{youtube:/^(?:https?:\/\/)?(?:www\.)?(?:youtu\.be\/|youtube\.com\/(?:embed\/|v\/|watch\?v=|watch\?.+&v=))((\w|-){11})(?:\S+)?$/,vimeo:/http:\/\/(www\.)?vimeo.com\/(\d+)($|\/)/},error:{noVideo:"No video specified",method:"The method you called is not defined"},className:{active:"active"},selector:{embed:".embed",placeholder:".placeholder",playButton:".play"}},e.fn.video.settings.templates={video:function(e){var o="";return e&&(o+=''),o+='
'}}}(jQuery,window,document); -------------------------------------------------------------------------------- /frontend/semanticui/components/visit.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * # Semantic UI 2.0.0 - Visit 3 | * http://github.com/semantic-org/semantic-ui/ 4 | * 5 | * 6 | * Copyright 2015 Contributors 7 | * Released under the MIT license 8 | * http://opensource.org/licenses/MIT 9 | * 10 | */ 11 | !function(e,t,i,n){"use strict";e.visit=e.fn.visit=function(i){var o,r=e(e.isFunction(this)?t:this),s=r.selector||"",a=(new Date).getTime(),c=[],u=arguments[0],l="string"==typeof u,d=[].slice.call(arguments,1);return r.each(function(){var g,m=e.isPlainObject(i)?e.extend(!0,{},e.fn.visit.settings,i):e.extend({},e.fn.visit.settings),f=m.error,p=m.namespace,v=p+"-module",h=e(this),b=e(),y=this,k=h.data(v);g={initialize:function(){m.count?g.store(m.key.count,m.count):m.id?g.add.id(m.id):m.increment&&"increment"!==l&&g.increment(),g.add.display(h),g.instantiate()},instantiate:function(){g.verbose("Storing instance of visit module",g),k=g,h.data(v,g)},destroy:function(){g.verbose("Destroying instance"),h.removeData(v)},increment:function(e){var t=g.get.count(),i=+t+1;e?g.add.id(e):(i>m.limit&&!m.surpass&&(i=m.limit),g.debug("Incrementing visits",i),g.store(m.key.count,i))},decrement:function(e){var t=g.get.count(),i=+t-1;e?g.remove.id(e):(g.debug("Removing visit"),g.store(m.key.count,i))},get:{count:function(){return+g.retrieve(m.key.count)||0},idCount:function(e){return e=e||g.get.ids(),e.length},ids:function(e){var t=[];return e=e||g.retrieve(m.key.ids),"string"==typeof e&&(t=e.split(m.delimiter)),g.verbose("Found visited ID list",t),t},storageOptions:function(e){var t={};return m.expires&&(t.expires=m.expires),m.domain&&(t.domain=m.domain),m.path&&(t.path=m.path),t}},has:{visited:function(t,i){var o=!1;return i=i||g.get.ids(),t!==n&&i&&e.each(i,function(e,i){i==t&&(o=!0)}),o}},set:{count:function(e){g.store(m.key.count,e)},ids:function(e){g.store(m.key.ids,e)}},reset:function(){g.store(m.key.count,0),g.store(m.key.ids,null)},add:{id:function(e){var t=g.retrieve(m.key.ids),i=t===n||""===t?e:t+m.delimiter+e;g.has.visited(e)?g.debug("Unique content already visited, not adding visit",e,t):e===n?g.debug("ID is not defined"):(g.debug("Adding visit to unique content",e),g.store(m.key.ids,i)),g.set.count(g.get.idCount())},display:function(t){var i=e(t);i.length>0&&!e.isWindow(i[0])&&(g.debug("Updating visit count for element",i),b=b.length>0?b.add(i):i)}},remove:{id:function(t){var i=g.get.ids(),o=[];t!==n&&i!==n&&(g.debug("Removing visit to unique content",t,i),e.each(i,function(e,i){i!==t&&o.push(i)}),o=o.join(m.delimiter),g.store(m.key.ids,o)),g.set.count(g.get.idCount())}},check:{limit:function(e){e=e||g.get.count(),m.limit&&(e>=m.limit&&(g.debug("Pages viewed exceeded limit, firing callback",e,m.limit),m.onLimit.call(y,e)),g.debug("Limit not reached",e,m.limit),m.onChange.call(y,e)),g.update.display(e)}},update:{display:function(e){e=e||g.get.count(),b.length>0&&(g.debug("Updating displayed view count",b),b.html(e))}},store:function(i,o){var r=g.get.storageOptions(o);if("localstorage"==m.storageMethod&&t.localStorage!==n)t.localStorage.setItem(i,o),g.debug("Value stored using local storage",i,o);else{if(e.cookie===n)return void g.error(f.noCookieStorage);e.cookie(i,o,r),g.debug("Value stored using cookie",i,o,r)}i==m.key.count&&g.check.limit(o)},retrieve:function(i,o){var r;return"localstorage"==m.storageMethod&&t.localStorage!==n?r=t.localStorage.getItem(i):e.cookie!==n?r=e.cookie(i):g.error(f.noCookieStorage),("undefined"==r||"null"==r||r===n||null===r)&&(r=n),r},setting:function(t,i){if(e.isPlainObject(t))e.extend(!0,m,t);else{if(i===n)return m[t];m[t]=i}},internal:function(t,i){return g.debug("Changing internal",t,i),i===n?g[t]:void(e.isPlainObject(t)?e.extend(!0,g,t):g[t]=i)},debug:function(){m.debug&&(m.performance?g.performance.log(arguments):(g.debug=Function.prototype.bind.call(console.info,console,m.name+":"),g.debug.apply(console,arguments)))},verbose:function(){m.verbose&&m.debug&&(m.performance?g.performance.log(arguments):(g.verbose=Function.prototype.bind.call(console.info,console,m.name+":"),g.verbose.apply(console,arguments)))},error:function(){g.error=Function.prototype.bind.call(console.error,console,m.name+":"),g.error.apply(console,arguments)},performance:{log:function(e){var t,i,n;m.performance&&(t=(new Date).getTime(),n=a||t,i=t-n,a=t,c.push({Name:e[0],Arguments:[].slice.call(e,1)||"",Element:y,"Execution Time":i})),clearTimeout(g.performance.timer),g.performance.timer=setTimeout(g.performance.display,500)},display:function(){var t=m.name+":",i=0;a=!1,clearTimeout(g.performance.timer),e.each(c,function(e,t){i+=t["Execution Time"]}),t+=" "+i+"ms",s&&(t+=" '"+s+"'"),r.length>1&&(t+=" ("+r.length+")"),(console.group!==n||console.table!==n)&&c.length>0&&(console.groupCollapsed(t),console.table?console.table(c):e.each(c,function(e,t){console.log(t.Name+": "+t["Execution Time"]+"ms")}),console.groupEnd()),c=[]}},invoke:function(t,i,r){var s,a,c,u=k;return i=i||d,r=y||r,"string"==typeof t&&u!==n&&(t=t.split(/[\. ]/),s=t.length-1,e.each(t,function(i,o){var r=i!=s?o+t[i+1].charAt(0).toUpperCase()+t[i+1].slice(1):t;if(e.isPlainObject(u[r])&&i!=s)u=u[r];else{if(u[r]!==n)return a=u[r],!1;if(!e.isPlainObject(u[o])||i==s)return u[o]!==n?(a=u[o],!1):!1;u=u[o]}})),e.isFunction(a)?c=a.apply(r,i):a!==n&&(c=a),e.isArray(o)?o.push(c):o!==n?o=[o,c]:c!==n&&(o=c),a}},l?(k===n&&g.initialize(),g.invoke(u)):(k!==n&&k.invoke("destroy"),g.initialize())}),o!==n?o:this},e.fn.visit.settings={name:"Visit",debug:!1,verbose:!1,performance:!0,namespace:"visit",increment:!1,surpass:!1,count:!1,limit:!1,delimiter:"&",storageMethod:"localstorage",key:{count:"visit-count",ids:"visit-ids"},expires:30,domain:!1,path:"/",onLimit:function(){},onChange:function(){},error:{method:"The method you called is not defined",missingPersist:"Using the persist setting requires the inclusion of PersistJS",noCookieStorage:"The default storage cookie requires $.cookie to be included."}}}(jQuery,window,document); -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/brand-icons.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/brand-icons.eot -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/brand-icons.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/brand-icons.ttf -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/brand-icons.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/brand-icons.woff -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/brand-icons.woff2: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/brand-icons.woff2 -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/icons.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/icons.eot -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/icons.otf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/icons.otf -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/icons.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/icons.ttf -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/icons.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/icons.woff -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/icons.woff2: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/icons.woff2 -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/outline-icons.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/outline-icons.eot -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/outline-icons.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/outline-icons.ttf -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/outline-icons.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/outline-icons.woff -------------------------------------------------------------------------------- /frontend/semanticui/themes/default/assets/fonts/outline-icons.woff2: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/semanticui/themes/default/assets/fonts/outline-icons.woff2 -------------------------------------------------------------------------------- /frontend/wheel2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/frontend/wheel2.png -------------------------------------------------------------------------------- /latent_decoder_model/.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | pip-wheel-metadata/ 24 | share/python-wheels/ 25 | *.egg-info/ 26 | .installed.cfg 27 | *.egg 28 | MANIFEST 29 | 30 | # PyInstaller 31 | # Usually these files are written by a python script from a template 32 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 33 | *.manifest 34 | *.spec 35 | 36 | # Installer logs 37 | pip-log.txt 38 | pip-delete-this-directory.txt 39 | 40 | # Unit test / coverage reports 41 | htmlcov/ 42 | .tox/ 43 | .nox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *.cover 50 | *.py,cover 51 | .hypothesis/ 52 | .pytest_cache/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | target/ 76 | 77 | # Jupyter Notebook 78 | .ipynb_checkpoints 79 | 80 | # IPython 81 | profile_default/ 82 | ipython_config.py 83 | 84 | # pyenv 85 | .python-version 86 | 87 | # pipenv 88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 91 | # install all needed dependencies. 92 | #Pipfile.lock 93 | 94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 95 | __pypackages__/ 96 | 97 | # Celery stuff 98 | celerybeat-schedule 99 | celerybeat.pid 100 | 101 | # SageMath parsed files 102 | *.sage.py 103 | 104 | # Environments 105 | .env 106 | .venv 107 | env/ 108 | venv/ 109 | ENV/ 110 | env.bak/ 111 | venv.bak/ 112 | 113 | # Spyder project settings 114 | .spyderproject 115 | .spyproject 116 | 117 | # Rope project settings 118 | .ropeproject 119 | 120 | # mkdocs documentation 121 | /site 122 | 123 | # mypy 124 | .mypy_cache/ 125 | .dmypy.json 126 | dmypy.json 127 | 128 | # Pyre type checker 129 | .pyre/ 130 | 131 | wandb/ 132 | *.lmdb/ 133 | *.pkl 134 | -------------------------------------------------------------------------------- /latent_decoder_model/Dockerfile: -------------------------------------------------------------------------------- 1 | # tmp 2 | FROM nvcr.io/nvidian/ct-toronto-ai/stylegan:0.4 3 | MAINTAINER seungwookk@nvidia.com 4 | 5 | 6 | WORKDIR /workspace 7 | COPY . . 8 | RUN pip install matplotlib==3.3.3 9 | #RUN pip install torch==1.7.1 torchvision==0.8.2 10 | #RUN rm -fr /tmp/torch_extensions/ 11 | #RUN cd apex && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" . 12 | -------------------------------------------------------------------------------- /latent_decoder_model/LICENSE-NVIDIA: -------------------------------------------------------------------------------- 1 | Copyright (c) 2019, NVIDIA Corporation. All rights reserved. 2 | 3 | 4 | Nvidia Source Code License-NC 5 | 6 | ======================================================================= 7 | 8 | 1. Definitions 9 | 10 | "Licensor" means any person or entity that distributes its Work. 11 | 12 | "Software" means the original work of authorship made available under 13 | this License. 14 | 15 | "Work" means the Software and any additions to or derivative works of 16 | the Software that are made available under this License. 17 | 18 | "Nvidia Processors" means any central processing unit (CPU), graphics 19 | processing unit (GPU), field-programmable gate array (FPGA), 20 | application-specific integrated circuit (ASIC) or any combination 21 | thereof designed, made, sold, or provided by Nvidia or its affiliates. 22 | 23 | The terms "reproduce," "reproduction," "derivative works," and 24 | "distribution" have the meaning as provided under U.S. copyright law; 25 | provided, however, that for the purposes of this License, derivative 26 | works shall not include works that remain separable from, or merely 27 | link (or bind by name) to the interfaces of, the Work. 28 | 29 | Works, including the Software, are "made available" under this License 30 | by including in or with the Work either (a) a copyright notice 31 | referencing the applicability of this License to the Work, or (b) a 32 | copy of this License. 33 | 34 | 2. License Grants 35 | 36 | 2.1 Copyright Grant. Subject to the terms and conditions of this 37 | License, each Licensor grants to you a perpetual, worldwide, 38 | non-exclusive, royalty-free, copyright license to reproduce, 39 | prepare derivative works of, publicly display, publicly perform, 40 | sublicense and distribute its Work and any resulting derivative 41 | works in any form. 42 | 43 | 3. Limitations 44 | 45 | 3.1 Redistribution. You may reproduce or distribute the Work only 46 | if (a) you do so under this License, (b) you include a complete 47 | copy of this License with your distribution, and (c) you retain 48 | without modification any copyright, patent, trademark, or 49 | attribution notices that are present in the Work. 50 | 51 | 3.2 Derivative Works. You may specify that additional or different 52 | terms apply to the use, reproduction, and distribution of your 53 | derivative works of the Work ("Your Terms") only if (a) Your Terms 54 | provide that the use limitation in Section 3.3 applies to your 55 | derivative works, and (b) you identify the specific derivative 56 | works that are subject to Your Terms. Notwithstanding Your Terms, 57 | this License (including the redistribution requirements in Section 58 | 3.1) will continue to apply to the Work itself. 59 | 60 | 3.3 Use Limitation. The Work and any derivative works thereof only 61 | may be used or intended for use non-commercially. The Work or 62 | derivative works thereof may be used or intended for use by Nvidia 63 | or its affiliates commercially or non-commercially. As used herein, 64 | "non-commercially" means for research or evaluation purposes only. 65 | 66 | 3.4 Patent Claims. If you bring or threaten to bring a patent claim 67 | against any Licensor (including any claim, cross-claim or 68 | counterclaim in a lawsuit) to enforce any patents that you allege 69 | are infringed by any Work, then your rights under this License from 70 | such Licensor (including the grants in Sections 2.1 and 2.2) will 71 | terminate immediately. 72 | 73 | 3.5 Trademarks. This License does not grant any rights to use any 74 | Licensor's or its affiliates' names, logos, or trademarks, except 75 | as necessary to reproduce the notices described in this License. 76 | 77 | 3.6 Termination. If you violate any term of this License, then your 78 | rights under this License (including the grants in Sections 2.1 and 79 | 2.2) will terminate immediately. 80 | 81 | 4. Disclaimer of Warranty. 82 | 83 | THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY 84 | KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF 85 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR 86 | NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER 87 | THIS LICENSE. 88 | 89 | 5. Limitation of Liability. 90 | 91 | EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL 92 | THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE 93 | SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, 94 | INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF 95 | OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK 96 | (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, 97 | LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER 98 | COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF 99 | THE POSSIBILITY OF SUCH DAMAGES. 100 | 101 | ======================================================================= 102 | -------------------------------------------------------------------------------- /latent_decoder_model/LICENSE-ROSINALITY: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2019 Kim Seonghyeon 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /latent_decoder_model/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/latent_decoder_model/__init__.py -------------------------------------------------------------------------------- /latent_decoder_model/distributed.py: -------------------------------------------------------------------------------- 1 | """ 2 | Copyright (C) 2021 NVIDIA Corporation. All rights reserved. 3 | Licensed under the NVIDIA Source Code License. See LICENSE at the main github page. 4 | Authors: Seung Wook Kim, Jonah Philion, Antonio Torralba, Sanja Fidler 5 | """ 6 | 7 | ''' 8 | This file is copied from https://github.com/rosinality/stylegan2-pytorch 9 | 10 | MIT License 11 | 12 | Copyright (c) 2019 Kim Seonghyeon 13 | 14 | Permission is hereby granted, free of charge, to any person obtaining a copy 15 | of this software and associated documentation files (the "Software"), to deal 16 | in the Software without restriction, including without limitation the rights 17 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 18 | copies of the Software, and to permit persons to whom the Software is 19 | furnished to do so, subject to the following conditions: 20 | 21 | The above copyright notice and this permission notice shall be included in all 22 | copies or substantial portions of the Software. 23 | 24 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 25 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 26 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 27 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 28 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 29 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 | SOFTWARE. 31 | ''' 32 | 33 | import math 34 | import pickle 35 | 36 | import torch 37 | from torch import distributed as dist 38 | from torch.utils.data.sampler import Sampler 39 | 40 | 41 | def get_rank(): 42 | if not dist.is_available(): 43 | return 0 44 | 45 | if not dist.is_initialized(): 46 | return 0 47 | 48 | return dist.get_rank() 49 | 50 | 51 | def synchronize(): 52 | if not dist.is_available(): 53 | return 54 | 55 | if not dist.is_initialized(): 56 | return 57 | 58 | world_size = dist.get_world_size() 59 | 60 | if world_size == 1: 61 | return 62 | 63 | dist.barrier() 64 | 65 | 66 | def get_world_size(): 67 | if not dist.is_available(): 68 | return 1 69 | 70 | if not dist.is_initialized(): 71 | return 1 72 | 73 | return dist.get_world_size() 74 | 75 | 76 | def reduce_sum(tensor): 77 | if not dist.is_available(): 78 | return tensor 79 | 80 | if not dist.is_initialized(): 81 | return tensor 82 | 83 | tensor = tensor.clone() 84 | dist.all_reduce(tensor, op=dist.ReduceOp.SUM) 85 | 86 | return tensor 87 | 88 | 89 | def gather_grad(params): 90 | world_size = get_world_size() 91 | 92 | if world_size == 1: 93 | return 94 | 95 | for param in params: 96 | if param.grad is not None: 97 | dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM) 98 | param.grad.data.div_(world_size) 99 | 100 | 101 | def all_gather(data): 102 | world_size = get_world_size() 103 | 104 | if world_size == 1: 105 | return [data] 106 | 107 | buffer = pickle.dumps(data) 108 | storage = torch.ByteStorage.from_buffer(buffer) 109 | tensor = torch.ByteTensor(storage).to('cuda') 110 | 111 | local_size = torch.IntTensor([tensor.numel()]).to('cuda') 112 | size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)] 113 | dist.all_gather(size_list, local_size) 114 | size_list = [int(size.item()) for size in size_list] 115 | max_size = max(size_list) 116 | 117 | tensor_list = [] 118 | for _ in size_list: 119 | tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda')) 120 | 121 | if local_size != max_size: 122 | padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda') 123 | tensor = torch.cat((tensor, padding), 0) 124 | 125 | dist.all_gather(tensor_list, tensor) 126 | 127 | data_list = [] 128 | 129 | for size, tensor in zip(size_list, tensor_list): 130 | buffer = tensor.cpu().numpy().tobytes()[:size] 131 | data_list.append(pickle.loads(buffer)) 132 | 133 | return data_list 134 | 135 | 136 | def reduce_loss_dict(loss_dict): 137 | world_size = get_world_size() 138 | 139 | if world_size < 2: 140 | return loss_dict 141 | 142 | with torch.no_grad(): 143 | keys = [] 144 | losses = [] 145 | 146 | for k in sorted(loss_dict.keys()): 147 | keys.append(k) 148 | losses.append(loss_dict[k]) 149 | 150 | losses = torch.stack(losses, 0) 151 | dist.reduce(losses, dst=0) 152 | 153 | if dist.get_rank() == 0: 154 | losses /= world_size 155 | 156 | reduced_losses = {k: v for k, v in zip(keys, losses)} 157 | 158 | return reduced_losses 159 | -------------------------------------------------------------------------------- /latent_decoder_model/docker_build.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # 3 | # sudo docker build -t stylegan:0.3 . 4 | # sudo docker tag stylegan:0.3 nvcr.io/nvidian/ct-toronto-ai/stylegan:0.3 5 | # sudo docker push nvcr.io/nvidian/ct-toronto-ai/stylegan:0.3 6 | 7 | sudo docker build -t ggstylegan_release:0.1 . 8 | sudo docker tag ggstylegan_release:0.1 nvcr.io/nvidian/ct-toronto-ai/ggstylegan_release:0.1 9 | sudo docker push nvcr.io/nvidian/ct-toronto-ai/ggstylegan_release:0.1 10 | 11 | #./scripts/september/run_ngc_sep16.sh 12 | -------------------------------------------------------------------------------- /latent_decoder_model/lpips/LICENSE-LPIPS: -------------------------------------------------------------------------------- 1 | Copyright (c) 2018, Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, Oliver Wang 2 | All rights reserved. 3 | 4 | Redistribution and use in source and binary forms, with or without 5 | modification, are permitted provided that the following conditions are met: 6 | 7 | * Redistributions of source code must retain the above copyright notice, this 8 | list of conditions and the following disclaimer. 9 | 10 | * Redistributions in binary form must reproduce the above copyright notice, 11 | this list of conditions and the following disclaimer in the documentation 12 | and/or other materials provided with the distribution. 13 | 14 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 15 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 17 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE 18 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 20 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 21 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 22 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 23 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 | 25 | -------------------------------------------------------------------------------- /latent_decoder_model/lpips/__init__.py: -------------------------------------------------------------------------------- 1 | 2 | from __future__ import absolute_import 3 | from __future__ import division 4 | from __future__ import print_function 5 | 6 | import numpy as np 7 | from skimage.measure import compare_ssim 8 | import torch 9 | from torch.autograd import Variable 10 | 11 | from lpips import dist_model 12 | 13 | class PerceptualLoss(torch.nn.Module): 14 | def __init__(self, model='net-lin', net='alex', colorspace='rgb', spatial=False, use_gpu=True, gpu_ids=[0], device=None): # VGG using our perceptually-learned weights (LPIPS metric) 15 | # def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss 16 | super(PerceptualLoss, self).__init__() 17 | print('Setting up Perceptual loss...') 18 | self.use_gpu = use_gpu 19 | self.spatial = spatial 20 | self.gpu_ids = gpu_ids 21 | self.model = dist_model.DistModel() 22 | self.model.initialize(model=model, net=net, use_gpu=use_gpu, colorspace=colorspace, spatial=self.spatial, gpu_ids=gpu_ids, device=device) 23 | print('...[%s] initialized'%self.model.name()) 24 | print('...Done') 25 | 26 | def forward(self, pred, target, normalize=False): 27 | """ 28 | Pred and target are Variables. 29 | If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1] 30 | If normalize is False, assumes the images are already between [-1,+1] 31 | 32 | Inputs pred and target are Nx3xHxW 33 | Output pytorch Variable N long 34 | """ 35 | 36 | if normalize: 37 | target = 2 * target - 1 38 | pred = 2 * pred - 1 39 | 40 | return self.model.forward(target, pred) 41 | 42 | def normalize_tensor(in_feat,eps=1e-10): 43 | norm_factor = torch.sqrt(torch.sum(in_feat**2,dim=1,keepdim=True)) 44 | return in_feat/(norm_factor+eps) 45 | 46 | def l2(p0, p1, range=255.): 47 | return .5*np.mean((p0 / range - p1 / range)**2) 48 | 49 | def psnr(p0, p1, peak=255.): 50 | return 10*np.log10(peak**2/np.mean((1.*p0-1.*p1)**2)) 51 | 52 | def dssim(p0, p1, range=255.): 53 | return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2. 54 | 55 | def rgb2lab(in_img,mean_cent=False): 56 | from skimage import color 57 | img_lab = color.rgb2lab(in_img) 58 | if(mean_cent): 59 | img_lab[:,:,0] = img_lab[:,:,0]-50 60 | return img_lab 61 | 62 | def tensor2np(tensor_obj): 63 | # change dimension of a tensor object into a numpy array 64 | return tensor_obj[0].cpu().float().numpy().transpose((1,2,0)) 65 | 66 | def np2tensor(np_obj): 67 | # change dimenion of np array into tensor array 68 | return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) 69 | 70 | def tensor2tensorlab(image_tensor,to_norm=True,mc_only=False): 71 | # image tensor to lab tensor 72 | from skimage import color 73 | 74 | img = tensor2im(image_tensor) 75 | img_lab = color.rgb2lab(img) 76 | if(mc_only): 77 | img_lab[:,:,0] = img_lab[:,:,0]-50 78 | if(to_norm and not mc_only): 79 | img_lab[:,:,0] = img_lab[:,:,0]-50 80 | img_lab = img_lab/100. 81 | 82 | return np2tensor(img_lab) 83 | 84 | def tensorlab2tensor(lab_tensor,return_inbnd=False): 85 | from skimage import color 86 | import warnings 87 | warnings.filterwarnings("ignore") 88 | 89 | lab = tensor2np(lab_tensor)*100. 90 | lab[:,:,0] = lab[:,:,0]+50 91 | 92 | rgb_back = 255.*np.clip(color.lab2rgb(lab.astype('float')),0,1) 93 | if(return_inbnd): 94 | # convert back to lab, see if we match 95 | lab_back = color.rgb2lab(rgb_back.astype('uint8')) 96 | mask = 1.*np.isclose(lab_back,lab,atol=2.) 97 | mask = np2tensor(np.prod(mask,axis=2)[:,:,np.newaxis]) 98 | return (im2tensor(rgb_back),mask) 99 | else: 100 | return im2tensor(rgb_back) 101 | 102 | def rgb2lab(input): 103 | from skimage import color 104 | return color.rgb2lab(input / 255.) 105 | 106 | def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.): 107 | image_numpy = image_tensor[0].cpu().float().numpy() 108 | image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor 109 | return image_numpy.astype(imtype) 110 | 111 | def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.): 112 | return torch.Tensor((image / factor - cent) 113 | [:, :, :, np.newaxis].transpose((3, 2, 0, 1))) 114 | 115 | def tensor2vec(vector_tensor): 116 | return vector_tensor.data.cpu().numpy()[:, :, 0, 0] 117 | 118 | def voc_ap(rec, prec, use_07_metric=False): 119 | """ ap = voc_ap(rec, prec, [use_07_metric]) 120 | Compute VOC AP given precision and recall. 121 | If use_07_metric is true, uses the 122 | VOC 07 11 point method (default:False). 123 | """ 124 | if use_07_metric: 125 | # 11 point metric 126 | ap = 0. 127 | for t in np.arange(0., 1.1, 0.1): 128 | if np.sum(rec >= t) == 0: 129 | p = 0 130 | else: 131 | p = np.max(prec[rec >= t]) 132 | ap = ap + p / 11. 133 | else: 134 | # correct AP calculation 135 | # first append sentinel values at the end 136 | mrec = np.concatenate(([0.], rec, [1.])) 137 | mpre = np.concatenate(([0.], prec, [0.])) 138 | 139 | # compute the precision envelope 140 | for i in range(mpre.size - 1, 0, -1): 141 | mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) 142 | 143 | # to calculate area under PR curve, look for points 144 | # where X axis (recall) changes value 145 | i = np.where(mrec[1:] != mrec[:-1])[0] 146 | 147 | # and sum (\Delta recall) * prec 148 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) 149 | return ap 150 | 151 | def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.): 152 | # def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.): 153 | image_numpy = image_tensor[0].cpu().float().numpy() 154 | image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor 155 | return image_numpy.astype(imtype) 156 | 157 | def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.): 158 | # def im2tensor(image, imtype=np.uint8, cent=1., factor=1.): 159 | return torch.Tensor((image / factor - cent) 160 | [:, :, :, np.newaxis].transpose((3, 2, 0, 1))) 161 | -------------------------------------------------------------------------------- /latent_decoder_model/lpips/base_model.py: -------------------------------------------------------------------------------- 1 | import os 2 | import torch 3 | from torch.autograd import Variable 4 | from pdb import set_trace as st 5 | from IPython import embed 6 | 7 | class BaseModel(): 8 | def __init__(self): 9 | pass; 10 | 11 | def name(self): 12 | return 'BaseModel' 13 | 14 | def initialize(self, use_gpu=True, gpu_ids=[0]): 15 | self.use_gpu = use_gpu 16 | self.gpu_ids = gpu_ids 17 | 18 | def forward(self): 19 | pass 20 | 21 | def get_image_paths(self): 22 | pass 23 | 24 | def optimize_parameters(self): 25 | pass 26 | 27 | def get_current_visuals(self): 28 | return self.input 29 | 30 | def get_current_errors(self): 31 | return {} 32 | 33 | def save(self, label): 34 | pass 35 | 36 | # helper saving function that can be used by subclasses 37 | def save_network(self, network, path, network_label, epoch_label): 38 | save_filename = '%s_net_%s.pth' % (epoch_label, network_label) 39 | save_path = os.path.join(path, save_filename) 40 | torch.save(network.state_dict(), save_path) 41 | 42 | # helper loading function that can be used by subclasses 43 | def load_network(self, network, network_label, epoch_label): 44 | save_filename = '%s_net_%s.pth' % (epoch_label, network_label) 45 | save_path = os.path.join(self.save_dir, save_filename) 46 | print('Loading network from %s'%save_path) 47 | network.load_state_dict(torch.load(save_path)) 48 | 49 | def update_learning_rate(): 50 | pass 51 | 52 | def get_image_paths(self): 53 | return self.image_paths 54 | 55 | def save_done(self, flag=False): 56 | np.save(os.path.join(self.save_dir, 'done_flag'),flag) 57 | np.savetxt(os.path.join(self.save_dir, 'done_flag'),[flag,],fmt='%i') 58 | 59 | -------------------------------------------------------------------------------- /latent_decoder_model/lpips/weights/v0.0/alex.pth: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/latent_decoder_model/lpips/weights/v0.0/alex.pth -------------------------------------------------------------------------------- /latent_decoder_model/lpips/weights/v0.0/squeeze.pth: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/latent_decoder_model/lpips/weights/v0.0/squeeze.pth -------------------------------------------------------------------------------- /latent_decoder_model/lpips/weights/v0.0/vgg.pth: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/latent_decoder_model/lpips/weights/v0.0/vgg.pth -------------------------------------------------------------------------------- /latent_decoder_model/lpips/weights/v0.1/alex.pth: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/latent_decoder_model/lpips/weights/v0.1/alex.pth -------------------------------------------------------------------------------- /latent_decoder_model/lpips/weights/v0.1/squeeze.pth: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/latent_decoder_model/lpips/weights/v0.1/squeeze.pth -------------------------------------------------------------------------------- /latent_decoder_model/lpips/weights/v0.1/vgg.pth: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/latent_decoder_model/lpips/weights/v0.1/vgg.pth -------------------------------------------------------------------------------- /latent_decoder_model/model/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/latent_decoder_model/model/__init__.py -------------------------------------------------------------------------------- /latent_decoder_model/op/__init__.py: -------------------------------------------------------------------------------- 1 | from .fused_act import FusedLeakyReLU, fused_leaky_relu 2 | from .upfirdn2d import upfirdn2d 3 | -------------------------------------------------------------------------------- /latent_decoder_model/op/fused_act.py: -------------------------------------------------------------------------------- 1 | import os 2 | 3 | import torch 4 | from torch import nn 5 | from torch.autograd import Function 6 | from torch.utils.cpp_extension import load 7 | 8 | 9 | module_path = os.path.dirname(__file__) 10 | fused = load( 11 | 'fused', 12 | sources=[ 13 | os.path.join(module_path, 'fused_bias_act.cpp'), 14 | os.path.join(module_path, 'fused_bias_act_kernel.cu'), 15 | ], 16 | verbose=True 17 | ) 18 | 19 | 20 | 21 | class FusedLeakyReLUFunctionBackward(Function): 22 | @staticmethod 23 | def forward(ctx, grad_output, out, negative_slope, scale): 24 | ctx.save_for_backward(out) 25 | ctx.negative_slope = negative_slope 26 | ctx.scale = scale 27 | 28 | empty = grad_output.new_empty(0) 29 | 30 | grad_input = fused.fused_bias_act( 31 | grad_output, empty, out, 3, 1, negative_slope, scale 32 | ) 33 | 34 | dim = [0] 35 | 36 | if grad_input.ndim > 2: 37 | dim += list(range(2, grad_input.ndim)) 38 | 39 | grad_bias = grad_input.sum(dim).detach() 40 | 41 | return grad_input, grad_bias 42 | 43 | @staticmethod 44 | def backward(ctx, gradgrad_input, gradgrad_bias): 45 | out, = ctx.saved_tensors 46 | gradgrad_out = fused.fused_bias_act( 47 | gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale 48 | ) 49 | 50 | return gradgrad_out, None, None, None 51 | 52 | 53 | class FusedLeakyReLUFunction(Function): 54 | @staticmethod 55 | def forward(ctx, input, bias, negative_slope, scale): 56 | empty = input.new_empty(0) 57 | out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) 58 | ctx.save_for_backward(out) 59 | ctx.negative_slope = negative_slope 60 | ctx.scale = scale 61 | 62 | return out 63 | 64 | @staticmethod 65 | def backward(ctx, grad_output): 66 | out, = ctx.saved_tensors 67 | 68 | grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( 69 | grad_output, out, ctx.negative_slope, ctx.scale 70 | ) 71 | 72 | return grad_input, grad_bias, None, None 73 | 74 | 75 | class FusedLeakyReLU(nn.Module): 76 | def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): 77 | super().__init__() 78 | 79 | self.bias = nn.Parameter(torch.zeros(channel)) 80 | self.negative_slope = negative_slope 81 | self.scale = scale 82 | 83 | def forward(self, input): 84 | return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) 85 | 86 | 87 | def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): 88 | return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) 89 | -------------------------------------------------------------------------------- /latent_decoder_model/op/fused_bias_act.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | 4 | torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer, 5 | int act, int grad, float alpha, float scale); 6 | 7 | #define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor") 8 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") 9 | #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) 10 | 11 | torch::Tensor fused_bias_act(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer, 12 | int act, int grad, float alpha, float scale) { 13 | CHECK_CUDA(input); 14 | CHECK_CUDA(bias); 15 | 16 | return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale); 17 | } 18 | 19 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { 20 | m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)"); 21 | } -------------------------------------------------------------------------------- /latent_decoder_model/op/fused_bias_act_kernel.cu: -------------------------------------------------------------------------------- 1 | // Copyright (c) 2019, NVIDIA Corporation. All rights reserved. 2 | // 3 | // This work is made available under the Nvidia Source Code License-NC. 4 | // To view a copy of this license, visit 5 | // https://nvlabs.github.io/stylegan2/license.html 6 | 7 | #include 8 | 9 | #include 10 | #include 11 | #include 12 | #include 13 | 14 | #include 15 | #include 16 | 17 | 18 | template 19 | static __global__ void fused_bias_act_kernel(scalar_t* out, const scalar_t* p_x, const scalar_t* p_b, const scalar_t* p_ref, 20 | int act, int grad, scalar_t alpha, scalar_t scale, int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) { 21 | int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x; 22 | 23 | scalar_t zero = 0.0; 24 | 25 | for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; loop_idx++, xi += blockDim.x) { 26 | scalar_t x = p_x[xi]; 27 | 28 | if (use_bias) { 29 | x += p_b[(xi / step_b) % size_b]; 30 | } 31 | 32 | scalar_t ref = use_ref ? p_ref[xi] : zero; 33 | 34 | scalar_t y; 35 | 36 | switch (act * 10 + grad) { 37 | default: 38 | case 10: y = x; break; 39 | case 11: y = x; break; 40 | case 12: y = 0.0; break; 41 | 42 | case 30: y = (x > 0.0) ? x : x * alpha; break; 43 | case 31: y = (ref > 0.0) ? x : x * alpha; break; 44 | case 32: y = 0.0; break; 45 | } 46 | 47 | out[xi] = y * scale; 48 | } 49 | } 50 | 51 | 52 | torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer, 53 | int act, int grad, float alpha, float scale) { 54 | int curDevice = -1; 55 | cudaGetDevice(&curDevice); 56 | cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice); 57 | 58 | auto x = input.contiguous(); 59 | auto b = bias.contiguous(); 60 | auto ref = refer.contiguous(); 61 | 62 | int use_bias = b.numel() ? 1 : 0; 63 | int use_ref = ref.numel() ? 1 : 0; 64 | 65 | int size_x = x.numel(); 66 | int size_b = b.numel(); 67 | int step_b = 1; 68 | 69 | for (int i = 1 + 1; i < x.dim(); i++) { 70 | step_b *= x.size(i); 71 | } 72 | 73 | int loop_x = 4; 74 | int block_size = 4 * 32; 75 | int grid_size = (size_x - 1) / (loop_x * block_size) + 1; 76 | 77 | auto y = torch::empty_like(x); 78 | 79 | AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "fused_bias_act_kernel", [&] { 80 | fused_bias_act_kernel<<>>( 81 | y.data_ptr(), 82 | x.data_ptr(), 83 | b.data_ptr(), 84 | ref.data_ptr(), 85 | act, 86 | grad, 87 | alpha, 88 | scale, 89 | loop_x, 90 | size_x, 91 | step_b, 92 | size_b, 93 | use_bias, 94 | use_ref 95 | ); 96 | }); 97 | 98 | return y; 99 | } -------------------------------------------------------------------------------- /latent_decoder_model/op/upfirdn2d.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | 4 | torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel, 5 | int up_x, int up_y, int down_x, int down_y, 6 | int pad_x0, int pad_x1, int pad_y0, int pad_y1); 7 | 8 | #define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor") 9 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") 10 | #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) 11 | 12 | torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel, 13 | int up_x, int up_y, int down_x, int down_y, 14 | int pad_x0, int pad_x1, int pad_y0, int pad_y1) { 15 | CHECK_CUDA(input); 16 | CHECK_CUDA(kernel); 17 | 18 | return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1); 19 | } 20 | 21 | PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { 22 | m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)"); 23 | } -------------------------------------------------------------------------------- /latent_decoder_model/op/upfirdn2d.py: -------------------------------------------------------------------------------- 1 | import os 2 | 3 | import torch 4 | from torch.autograd import Function 5 | from torch.utils.cpp_extension import load 6 | 7 | 8 | module_path = os.path.dirname(__file__) 9 | upfirdn2d_op = load( 10 | 'upfirdn2d', 11 | sources=[ 12 | os.path.join(module_path, 'upfirdn2d.cpp'), 13 | os.path.join(module_path, 'upfirdn2d_kernel.cu'), 14 | ], 15 | ) 16 | 17 | 18 | class UpFirDn2dBackward(Function): 19 | @staticmethod 20 | def forward( 21 | ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size 22 | ): 23 | 24 | up_x, up_y = up 25 | down_x, down_y = down 26 | g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad 27 | 28 | grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) 29 | 30 | grad_input = upfirdn2d_op.upfirdn2d( 31 | grad_output, 32 | grad_kernel, 33 | down_x, 34 | down_y, 35 | up_x, 36 | up_y, 37 | g_pad_x0, 38 | g_pad_x1, 39 | g_pad_y0, 40 | g_pad_y1, 41 | ) 42 | grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) 43 | 44 | ctx.save_for_backward(kernel) 45 | 46 | pad_x0, pad_x1, pad_y0, pad_y1 = pad 47 | 48 | ctx.up_x = up_x 49 | ctx.up_y = up_y 50 | ctx.down_x = down_x 51 | ctx.down_y = down_y 52 | ctx.pad_x0 = pad_x0 53 | ctx.pad_x1 = pad_x1 54 | ctx.pad_y0 = pad_y0 55 | ctx.pad_y1 = pad_y1 56 | ctx.in_size = in_size 57 | ctx.out_size = out_size 58 | 59 | return grad_input 60 | 61 | @staticmethod 62 | def backward(ctx, gradgrad_input): 63 | kernel, = ctx.saved_tensors 64 | 65 | gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1) 66 | 67 | gradgrad_out = upfirdn2d_op.upfirdn2d( 68 | gradgrad_input, 69 | kernel, 70 | ctx.up_x, 71 | ctx.up_y, 72 | ctx.down_x, 73 | ctx.down_y, 74 | ctx.pad_x0, 75 | ctx.pad_x1, 76 | ctx.pad_y0, 77 | ctx.pad_y1, 78 | ) 79 | # gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3]) 80 | gradgrad_out = gradgrad_out.view( 81 | ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1] 82 | ) 83 | 84 | return gradgrad_out, None, None, None, None, None, None, None, None 85 | 86 | 87 | class UpFirDn2d(Function): 88 | @staticmethod 89 | def forward(ctx, input, kernel, up, down, pad): 90 | up_x, up_y = up 91 | down_x, down_y = down 92 | pad_x0, pad_x1, pad_y0, pad_y1 = pad 93 | 94 | kernel_h, kernel_w = kernel.shape 95 | batch, channel, in_h, in_w = input.shape 96 | ctx.in_size = input.shape 97 | 98 | input = input.reshape(-1, in_h, in_w, 1) 99 | 100 | ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) 101 | 102 | out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 103 | out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 104 | ctx.out_size = (out_h, out_w) 105 | 106 | ctx.up = (up_x, up_y) 107 | ctx.down = (down_x, down_y) 108 | ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1) 109 | 110 | g_pad_x0 = kernel_w - pad_x0 - 1 111 | g_pad_y0 = kernel_h - pad_y0 - 1 112 | g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 113 | g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 114 | 115 | ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) 116 | 117 | out = upfirdn2d_op.upfirdn2d( 118 | input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 119 | ) 120 | # out = out.view(major, out_h, out_w, minor) 121 | out = out.view(-1, channel, out_h, out_w) 122 | 123 | return out 124 | 125 | @staticmethod 126 | def backward(ctx, grad_output): 127 | kernel, grad_kernel = ctx.saved_tensors 128 | 129 | grad_input = UpFirDn2dBackward.apply( 130 | grad_output, 131 | kernel, 132 | grad_kernel, 133 | ctx.up, 134 | ctx.down, 135 | ctx.pad, 136 | ctx.g_pad, 137 | ctx.in_size, 138 | ctx.out_size, 139 | ) 140 | 141 | return grad_input, None, None, None, None 142 | 143 | 144 | def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): 145 | out = UpFirDn2d.apply( 146 | input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1]) 147 | ) 148 | 149 | return out 150 | 151 | 152 | def upfirdn2d_native( 153 | input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 154 | ): 155 | _, in_h, in_w, minor = input.shape 156 | kernel_h, kernel_w = kernel.shape 157 | 158 | out = input.view(-1, in_h, 1, in_w, 1, minor) 159 | out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) 160 | out = out.view(-1, in_h * up_y, in_w * up_x, minor) 161 | 162 | out = F.pad( 163 | out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)] 164 | ) 165 | out = out[ 166 | :, 167 | max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), 168 | max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), 169 | :, 170 | ] 171 | 172 | out = out.permute(0, 3, 1, 2) 173 | out = out.reshape( 174 | [-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1] 175 | ) 176 | w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) 177 | out = F.conv2d(out, w) 178 | out = out.reshape( 179 | -1, 180 | minor, 181 | in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, 182 | in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, 183 | ) 184 | out = out.permute(0, 2, 3, 1) 185 | 186 | return out[:, ::down_y, ::down_x, :] 187 | -------------------------------------------------------------------------------- /latent_decoder_model/scripts/encode.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env bash 2 | 3 | 4 | 5 | 6 | ckpt=$1 7 | num_chunk=$2 8 | cur_ind=$3 9 | src_dir=$4 10 | out_dir=$5 11 | 12 | common_command=" 13 | python -m torch.distributed.launch --nproc_per_node=1 --master_port=6003 projector_z.py \ 14 | --data_path ${src_dir} \ 15 | --ckpt ${ckpt} --size 256 --dataset carla --results_path ${out_dir} \ 16 | --test 1 --num_div_batch 4 17 | " 18 | 19 | 20 | CUDA_VISIBLE_DEVICES=0 ${common_command} --num_chunk ${num_chunk} --cur_ind $((cur_ind)) & 21 | 22 | ## use multiple commands to parallelize e.g. 23 | # CUDA_VISIBLE_DEVICES=0 ${common_command} --num_chunk ${num_chunk} --cur_ind $((cur_ind)) & 24 | # CUDA_VISIBLE_DEVICES=1 ${common_command} --num_chunk ${num_chunk} --cur_ind $((cur_ind+1)) & 25 | # CUDA_VISIBLE_DEVICES=2 ${common_command} --num_chunk ${num_chunk} --cur_ind $((cur_ind+2)) & 26 | # CUDA_VISIBLE_DEVICES=3 ${common_command} --num_chunk ${num_chunk} --cur_ind $((cur_ind+3)) & 27 | -------------------------------------------------------------------------------- /latent_decoder_model/scripts/train.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env bash 2 | 3 | src_dir=$1 4 | 5 | python -m torch.distributed.launch --nproc_per_node=4 --master_port=6003 main.py \ 6 | --path ${src_dir} \ 7 | --batch 6 \ 8 | --size 256 \ 9 | --dataset carla \ 10 | --gamma 50.0 \ 11 | --theme_beta 1.0 \ 12 | --spatial_beta 2.0 \ 13 | --log_dir ./logs/vaegan 14 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | termcolor 2 | opencv-python 3 | moviepy 4 | scikit-image 5 | IPython 6 | tornado 7 | simplejson 8 | torch==1.7.1 9 | torchvision==0.8.2 10 | tensorboard 11 | -------------------------------------------------------------------------------- /scripts/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/scripts/__init__.py -------------------------------------------------------------------------------- /scripts/play/server.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | 4 | modelPath=$1 5 | port=$2 6 | latent_decoder_model_path=$3 7 | 8 | 9 | python server.py \ 10 | --saved_model ${modelPath} \ 11 | --initial_screen rand \ 12 | --play \ 13 | --seed 222 \ 14 | --gpu 0 \ 15 | --port ${port} \ 16 | --latent_decoder_model_path ${latent_decoder_model_path} \ 17 | -------------------------------------------------------------------------------- /scripts/train.sh: -------------------------------------------------------------------------------- 1 | 2 | src_dir=$1 3 | vae_path=$2 4 | 5 | python -m torch.distributed.launch --nproc_per_node=1 --master_port=6003 main_parallel.py \ 6 | --latent_decoder_model_path ${vae_path} \ 7 | --log_dir logs/carla \ 8 | --save_epoch 30 \ 9 | --num_gpu 1 \ 10 | --img_size 128 \ 11 | --num_steps 32 \ 12 | --warm_up 18 \ 13 | --bs 128 \ 14 | --hidden_dim 1536 \ 15 | --recon_loss_multiplier 0.1 \ 16 | --nfilterD_temp 32 \ 17 | --LAMBDA_temporal 1.0 \ 18 | --continuous_action True \ 19 | --gen_content_loss_multiplier 1.5 \ 20 | --lstm_num_layer 4 \ 21 | --eval_epoch 10 \ 22 | --disentangle_style True \ 23 | --latent_z_size 1152 \ 24 | --convLSTM_hidden_dim 128 \ 25 | --warmup_decay_step 90000 \ 26 | --content_kl_beta 0.1 \ 27 | --style_kl_beta 1.0 \ 28 | --theme_kl_beta 1.0 \ 29 | --separate_holistic_style_dim 128 \ 30 | --data carla_latent:${src_dir} 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | - 49 | -------------------------------------------------------------------------------- /simulator_model/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/nv-tlabs/DriveGAN_code/25ba1cf5cd77a5e1931ce80770f7d3fd4e2796a2/simulator_model/__init__.py -------------------------------------------------------------------------------- /simulator_model/model_utils.py: -------------------------------------------------------------------------------- 1 | """ 2 | Copyright (C) 2021 NVIDIA Corporation. All rights reserved. 3 | Licensed under the NVIDIA Source Code License. See LICENSE at the main github page. 4 | Authors: Seung Wook Kim, Jonah Philion, Antonio Torralba, Sanja Fidler 5 | """ 6 | import torch 7 | from torch import nn 8 | from torch.nn import functional as F 9 | from simulator_model import layers 10 | import functools 11 | import sys 12 | sys.path.append('..') 13 | 14 | class convLinearSPADE(nn.Module): 15 | def __init__(self, channel, h, w, linear_input_channel, opts): 16 | super().__init__() 17 | self.h = h 18 | self.w = w 19 | self.param_free_norm = nn.InstanceNorm2d(channel, affine=False) 20 | 21 | self.mlp_gamma = nn.Linear(linear_input_channel, channel) 22 | self.mlp_beta = nn.Linear(linear_input_channel, channel) 23 | self.activation = nn.LeakyReLU(0.2) 24 | 25 | def forward(self, x, y, resize=True): 26 | if resize: 27 | x = x.view(x.size(0), -1, self.h, self.w) 28 | normalized = self.param_free_norm(x) 29 | y = y.view(y.size(0), -1) 30 | gamma = self.mlp_gamma(y).view(y.size(0), -1, 1, 1) 31 | beta = self.mlp_beta(y).view(y.size(0), -1, 1, 1) 32 | 33 | out = normalized * (1 + gamma) + beta 34 | 35 | return self.activation(out) 36 | 37 | class View(nn.Module): 38 | def __init__(self, size): 39 | super(View, self).__init__() 40 | self.size = size 41 | 42 | def forward(self, tensor): 43 | return tensor.view(self.size) 44 | 45 | 46 | def choose_netG_encoder(input_dim=512, basechannel=512, opts=None): 47 | enc = nn.Sequential( 48 | nn.Linear(input_dim, basechannel), 49 | nn.LeakyReLU(0.2), 50 | nn.Linear(basechannel, basechannel), 51 | nn.LeakyReLU(0.2), 52 | nn.Linear(basechannel, basechannel), 53 | nn.LeakyReLU(0.2), 54 | nn.Linear(basechannel, basechannel), 55 | nn.LeakyReLU(0.2) 56 | ) 57 | 58 | return enc 59 | 60 | 61 | 62 | def choose_netD_temporal(opts, conv3d_dim, window=[]): 63 | in_dim = opts.nfilterD * 16 64 | in_dim = in_dim * 2 65 | extractors, finals = [], [] 66 | 67 | which_conv = functools.partial(layers.SNConv2d, 68 | kernel_size=3, padding=0, 69 | num_svs=1, num_itrs=1, 70 | eps=1e-12) 71 | 72 | net1 = nn.Sequential( 73 | which_conv(in_dim, conv3d_dim // 4, kernel_size=(3, 1), stride=(2, 1)), 74 | nn.LeakyReLU(0.2) 75 | ) 76 | 77 | head1 = nn.Sequential( 78 | which_conv(conv3d_dim // 4, 1, kernel_size=(2, 1), stride=(1, 1)), 79 | ) 80 | extractors.append(net1) 81 | finals.append(head1) 82 | 83 | if window >= 12: 84 | net2 = nn.Sequential( 85 | which_conv(conv3d_dim // 4, conv3d_dim // 2, kernel_size=(3, 1), stride=(1, 1)), 86 | nn.LeakyReLU(0.2), 87 | ) 88 | head2 = nn.Sequential( 89 | which_conv(conv3d_dim // 2, 1, kernel_size=(3, 1)), 90 | ) 91 | extractors.append(net2) 92 | finals.append(head2) 93 | 94 | if window >= 18: 95 | net3 = nn.Sequential( 96 | which_conv(conv3d_dim // 2, conv3d_dim, kernel_size=(2, 1), stride=(2, 1)), 97 | nn.LeakyReLU(0.2), 98 | ) 99 | head3 = nn.Sequential( 100 | which_conv(conv3d_dim, 1, kernel_size=(3, 1)), 101 | ) 102 | extractors.append(net3) 103 | finals.append(head3) 104 | 105 | if window >= 36: 106 | net4 = nn.Sequential( 107 | which_conv(conv3d_dim, conv3d_dim, kernel_size=(2, 1), stride=(2, 1)), 108 | nn.LeakyReLU(0.2), 109 | ) 110 | head4 = nn.Sequential( 111 | which_conv(conv3d_dim, 1, kernel_size=(3, 1)), 112 | ) 113 | extractors.append(net4) 114 | finals.append(head4) 115 | 116 | return extractors, finals 117 | -------------------------------------------------------------------------------- /visual_utils.py: -------------------------------------------------------------------------------- 1 | """ 2 | Copyright (C) 2021 NVIDIA Corporation. All rights reserved. 3 | Licensed under the NVIDIA Source Code License. See LICENSE at the main github page. 4 | Authors: Seung Wook Kim, Jonah Philion, Antonio Torralba, Sanja Fidler 5 | """ 6 | 7 | import torch 8 | import utils 9 | import numpy as np 10 | import torch.nn.functional as F 11 | 12 | def rescale(x): 13 | return (x + 1) * 0.5 14 | 15 | def visualize_tensor(tensor, name, logger, vutils, it, kind='video'): 16 | tensor = rescale(tensor) 17 | tensor = torch.clamp(tensor, 0, 1.0) 18 | 19 | if kind == 'image': 20 | x = vutils.make_grid( 21 | tensor, nrow=1, 22 | normalize=True, scale_each=True 23 | ) 24 | logger.add_image(name, x, it) 25 | else: 26 | logger.add_video(name, tensor.unsqueeze(0), it) 27 | 28 | 29 | def write_action(actions, name, logger, it): 30 | s = '' 31 | for a in actions: 32 | s += str(a[:1].cpu().numpy()) 33 | logger.add_text(name, s, it) 34 | 35 | 36 | def draw_output(gout, actions, false_actions, states, opts, vutils, logger, it, latent_decoder=None, 37 | tag='images'): 38 | img_size = opts.img_size 39 | if states is not None and latent_decoder is not None: 40 | bs = states[0].size(0) 41 | else: 42 | bs = 0 43 | 44 | if actions is not None: 45 | write_action(actions, tag+'actions', logger, it) 46 | if false_actions is not None: 47 | write_action(false_actions, tag+'false_actions', logger, it) 48 | 49 | vis_st = [] 50 | for st in states: 51 | vis_st.append(st[0:1]) 52 | states_ = torch.cat(vis_st, dim=0) 53 | states_ = utils.run_latent_decoder(latent_decoder, states_, opts=opts) 54 | visualize_tensor(states_, tag + '_output/GTImage', logger, vutils, it) 55 | 56 | 57 | vis_st = [] 58 | for st in gout['outputs']: 59 | vis_st.append(st[0:1]) 60 | 61 | x_gen = torch.cat(vis_st, dim=0) 62 | x_gen = utils.run_latent_decoder(latent_decoder, x_gen, opts=opts) 63 | 64 | if opts.disentangle_style and 'swap_outputs' in gout: 65 | vis_st = [] 66 | for st in gout['swap_outputs']: 67 | vis_st.append(st[0:1]) 68 | x_gen_swap = torch.cat(vis_st, dim=0) 69 | x_gen_swap = utils.run_latent_decoder(latent_decoder, x_gen_swap, opts=opts) 70 | visualize_tensor(x_gen_swap, tag + '_output/z_aindep_SwapGenImage', logger, vutils, it) 71 | if opts.separate_holistic_style_dim > 0 and 'holistic_swap_outputs' in gout: 72 | vis_st = [] 73 | for st in gout['holistic_swap_outputs']: 74 | vis_st.append(st[0:1]) 75 | x_gen_swap = torch.cat(vis_st, dim=0) 76 | x_gen_swap = utils.run_latent_decoder(latent_decoder, x_gen_swap, opts=opts) 77 | visualize_tensor(x_gen_swap, tag + '_output/z_theme_SwapGenImage', logger, vutils, it) 78 | 79 | visualize_tensor(x_gen, tag + '_output/GenImage', logger, vutils, it) 80 | --------------------------------------------------------------------------------