├── README.md
├── Town.gif
├── requirements.txt
├── track.py
└── yolov5
├── Dockerfile
├── LICENSE
├── data
├── coco.yaml
├── coco128.yaml
├── hyp.finetune.yaml
├── hyp.scratch.yaml
├── images
│ ├── bus.jpg
│ └── zidane.jpg
├── scripts
│ ├── get_coco.sh
│ └── get_voc.sh
└── voc.yaml
├── detect.py
├── hubconf.py
└── models
├── common.py
├── experimental.py
├── export.py
├── hub
├── anchors.yaml
├── yolov3-spp.yaml
├── yolov3-tiny.yaml
├── yolov3.yaml
├── yolov5-fpn.yaml
├── yolov5-p2.yaml
├── yolov5-p6.yaml
├── yolov5-p7.yaml
└── yolov5-panet.yaml
├── yolo.py
├── yolov5l.yaml
├── yolov5m.yaml
├── yolov5s.yaml
└── yolov5x.yaml
/README.md:
--------------------------------------------------------------------------------
1 | # Yolov5 + Deep Sort with PyTorch
2 |
3 | [](http://hits.dwyl.com/{mikel-brostrom}/{Yolov5_DeepSort_Pytorch})
4 |
5 |
6 | 
7 |
8 | ## Introduction
9 |
10 | This repository contains a moded version of PyTorch YOLOv5 (https://github.com/ultralytics/yolov5). It filters out every detection that is not a person. s. The reason behind the fact that it just tracks persons is that the deep association metric is trained on a person ONLY datatset.YOLO(https://github.com/ultralytics)
11 |
12 | ## Description
13 |
14 | The implementation is based on two papers:
15 |
16 | - Simple Online and Realtime Tracking with a Deep Association Metric
17 | https://arxiv.org/abs/1703.07402
18 | - YOLOv4: Optimal Speed and Accuracy of Object Detection
19 | https://arxiv.org/pdf/2004.10934.pdf
20 |
21 | ## 要求
22 |
23 | Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:
24 |
25 | `pip install -U -r requirements.txt`
26 |
27 | All dependencies are included in the associated docker images. Docker requirements are:
28 | - `nvidia-docker`
29 | - Nvidia Driver Version >= 440.44
30 |
31 | ## Before you run the tracker
32 |
33 | 1. Clone the repository recursively:
34 |
35 | `git clone --recurse-submodules https://github.com/oaqoe-DWQ/Yolov5_DeepSort_Pytorch`
36 |
37 | If you already cloned and forgot to use `--recurse-submodules` you can run `git submodule update --init`
38 |
39 | 2. Github block pushes of files larger than 100 MB (https://help.github.com/en/github/managing-large-files/conditions-for-large-files). Hence you need to download two different weights: the ones for yolo and the ones for deep sort
40 |
41 | - download the yolov5 weight from the latest realease https://github.com/ultralytics/yolov5/releases. Place the downlaoded `.pt` file under `yolov5/weights/`
42 | - download the deep sort weights from https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6. Place ckpt.t7 file under`deep_sort/deep/checkpoint/`
43 |
44 | ## Tracking
45 |
46 | Tracking can be run on most video formats
47 |
48 | ```bash
49 | python3 track.py --source ...
50 | ```
51 |
52 | - Video: `--source file.mp4`
53 | - Webcam: `--source 0`
54 | - RTSP stream: `--source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa`
55 | - HTTP stream: `--source http://wmccpinetop.axiscam.net/mjpg/video.mjpg`
56 |
57 | MOT compliant results can be saved to `inference/output` by
58 |
59 | ```bash
60 | python3 track.py --source ... --save-txt
61 | ```
62 |
63 | ## Other information
64 |
65 | For more detailed information about the algorithms and their corresponding lisences used in this project access their official github implementations.
66 | Thank you for Yolov5 help
67 |
68 |
--------------------------------------------------------------------------------
/Town.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/oaqoe-DWQ/Yolov5_DeepSort_Pytorch/2b1a682bf533beb5795bd1debe4469a77b4e2388/Town.gif
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | # pip install -U -r requirements.txt
2 | Cython
3 | matplotlib>=3.2.2
4 | numpy>=1.18.5
5 | opencv-python>=4.1.2
6 | Pillow
7 | PyYAML>=5.3
8 | scipy>=1.4.1
9 | tensorboard>=2.2
10 | torch>=1.7.0
11 | torchvision>=0.8.1
12 | tqdm>=4.41.0
13 | seaborn>=0.11.0
14 |
--------------------------------------------------------------------------------
/track.py:
--------------------------------------------------------------------------------
1 | import sys
2 | sys.path.insert(0, './yolov5')
3 |
4 | from yolov5.utils.datasets import LoadImages, LoadStreams
5 | from yolov5.utils.general import check_img_size, non_max_suppression, scale_coords
6 | from yolov5.utils.torch_utils import select_device, time_synchronized
7 | from deep_sort_pytorch.utils.parser import get_config
8 | from deep_sort_pytorch.deep_sort import DeepSort
9 | import argparse
10 | import os
11 | import platform
12 | import shutil
13 | import time
14 | from pathlib import Path
15 | import cv2
16 | import torch
17 | import torch.backends.cudnn as cudnn
18 |
19 |
20 |
21 | palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
22 |
23 |
24 | def bbox_rel(*xyxy):
25 | """" Calculates the relative bounding box from absolute pixel values. """
26 | bbox_left = min([xyxy[0].item(), xyxy[2].item()])
27 | bbox_top = min([xyxy[1].item(), xyxy[3].item()])
28 | bbox_w = abs(xyxy[0].item() - xyxy[2].item())
29 | bbox_h = abs(xyxy[1].item() - xyxy[3].item())
30 | x_c = (bbox_left + bbox_w / 2)
31 | y_c = (bbox_top + bbox_h / 2)
32 | w = bbox_w
33 | h = bbox_h
34 | return x_c, y_c, w, h
35 |
36 |
37 | def compute_color_for_labels(label):
38 | """
39 | Simple function that adds fixed color depending on the class
40 | """
41 | color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
42 | return tuple(color)
43 |
44 |
45 | def draw_boxes(img, bbox, identities=None, offset=(0, 0)):
46 | for i, box in enumerate(bbox):
47 | x1, y1, x2, y2 = [int(i) for i in box]
48 | x1 += offset[0]
49 | x2 += offset[0]
50 | y1 += offset[1]
51 | y2 += offset[1]
52 | # box text and bar
53 | id = int(identities[i]) if identities is not None else 0
54 | color = compute_color_for_labels(id)
55 | label = '{}{:d}'.format("", id)
56 | t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0]
57 | cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
58 | cv2.rectangle(
59 | img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1)
60 | cv2.putText(img, label, (x1, y1 +
61 | t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2)
62 | return img
63 |
64 |
65 | def detect(opt, save_img=False):
66 | out, source, weights, view_img, save_txt, imgsz = \
67 | opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
68 | webcam = source == '0' or source.startswith(
69 | 'rtsp') or source.startswith('http') or source.endswith('.txt')
70 |
71 | # initialize deepsort
72 | cfg = get_config()
73 | cfg.merge_from_file(opt.config_deepsort)
74 | deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
75 | max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
76 | nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
77 | max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
78 | use_cuda=True)
79 |
80 | # Initialize
81 | device = select_device(opt.device)
82 | if os.path.exists(out):
83 | shutil.rmtree(out) # delete output folder
84 | os.makedirs(out) # make new output folder
85 | half = device.type != 'cpu' # half precision only supported on CUDA
86 |
87 | # Load model
88 | model = torch.load(weights, map_location=device)[
89 | 'model'].float() # load to FP32
90 | model.to(device).eval()
91 | if half:
92 | model.half() # to FP16
93 |
94 | # Set Dataloader
95 | vid_path, vid_writer = None, None
96 | if webcam:
97 | view_img = True
98 | cudnn.benchmark = True # set True to speed up constant image size inference
99 | dataset = LoadStreams(source, img_size=imgsz)
100 | else:
101 | view_img = True
102 | save_img = True
103 | dataset = LoadImages(source, img_size=imgsz)
104 |
105 | # Get names and colors
106 | names = model.module.names if hasattr(model, 'module') else model.names
107 |
108 | # Run inference
109 | t0 = time.time()
110 | img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
111 | # run once
112 | _ = model(img.half() if half else img) if device.type != 'cpu' else None
113 |
114 | save_path = str(Path(out))
115 | txt_path = str(Path(out)) + '/results.txt'
116 |
117 | for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
118 | img = torch.from_numpy(img).to(device)
119 | img = img.half() if half else img.float() # uint8 to fp16/32
120 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
121 | if img.ndimension() == 3:
122 | img = img.unsqueeze(0)
123 |
124 | # Inference
125 | t1 = time_synchronized()
126 | pred = model(img, augment=opt.augment)[0]
127 |
128 | # Apply NMS
129 | pred = non_max_suppression(
130 | pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
131 | t2 = time_synchronized()
132 |
133 | # Process detections
134 | for i, det in enumerate(pred): # detections per image
135 | if webcam: # batch_size >= 1
136 | p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
137 | else:
138 | p, s, im0 = path, '', im0s
139 |
140 | s += '%gx%g ' % img.shape[2:] # print string
141 | save_path = str(Path(out) / Path(p).name)
142 |
143 | if det is not None and len(det):
144 | # Rescale boxes from img_size to im0 size
145 | det[:, :4] = scale_coords(
146 | img.shape[2:], det[:, :4], im0.shape).round()
147 |
148 | # Print results
149 | for c in det[:, -1].unique():
150 | n = (det[:, -1] == c).sum() # detections per class
151 | s += '%g %ss, ' % (n, names[int(c)]) # add to string
152 |
153 | bbox_xywh = []
154 | confs = []
155 |
156 | # Adapt detections to deep sort input format
157 | for *xyxy, conf, cls in det:
158 | x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy)
159 | obj = [x_c, y_c, bbox_w, bbox_h]
160 | bbox_xywh.append(obj)
161 | confs.append([conf.item()])
162 |
163 | xywhs = torch.Tensor(bbox_xywh)
164 | confss = torch.Tensor(confs)
165 |
166 | # Pass detections to deepsort
167 | outputs = deepsort.update(xywhs, confss, im0)
168 |
169 | # draw boxes for visualization
170 | if len(outputs) > 0:
171 | bbox_xyxy = outputs[:, :4]
172 | identities = outputs[:, -1]
173 | draw_boxes(im0, bbox_xyxy, identities)
174 |
175 | # Write MOT compliant results to file
176 | if save_txt and len(outputs) != 0:
177 | for j, output in enumerate(outputs):
178 | bbox_left = output[0]
179 | bbox_top = output[1]
180 | bbox_w = output[2]
181 | bbox_h = output[3]
182 | identity = output[-1]
183 | with open(txt_path, 'a') as f:
184 | f.write(('%g ' * 10 + '\n') % (frame_idx, identity, bbox_left,
185 | bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format
186 |
187 | else:
188 | deepsort.increment_ages()
189 |
190 | # Print time (inference + NMS)
191 | print('%sDone. (%.3fs)' % (s, t2 - t1))
192 |
193 | # Stream results
194 | if view_img:
195 | cv2.imshow(p, im0)
196 | if cv2.waitKey(1) == ord('q'): # q to quit
197 | raise StopIteration
198 |
199 | # Save results (image with detections)
200 | if save_img:
201 | print('saving img!')
202 | if dataset.mode == 'images':
203 | cv2.imwrite(save_path, im0)
204 | else:
205 | print('saving video!')
206 | if vid_path != save_path: # new video
207 | vid_path = save_path
208 | if isinstance(vid_writer, cv2.VideoWriter):
209 | vid_writer.release() # release previous video writer
210 |
211 | fps = vid_cap.get(cv2.CAP_PROP_FPS)
212 | w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
213 | h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
214 | vid_writer = cv2.VideoWriter(
215 | save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
216 | vid_writer.write(im0)
217 |
218 | if save_txt or save_img:
219 | print('Results saved to %s' % os.getcwd() + os.sep + out)
220 | if platform == 'darwin': # MacOS
221 | os.system('open ' + save_path)
222 |
223 | print('Done. (%.3fs)' % (time.time() - t0))
224 |
225 |
226 | if __name__ == '__main__':
227 | parser = argparse.ArgumentParser()
228 | parser.add_argument('--weights', type=str,
229 | default='yolov5/weights/yolov5s.pt', help='model.pt path')
230 | # file/folder, 0 for webcam
231 | parser.add_argument('--source', type=str,
232 | default='inference/images', help='source')
233 | parser.add_argument('--output', type=str, default='inference/output',
234 | help='output folder') # output folder
235 | parser.add_argument('--img-size', type=int, default=640,
236 | help='inference size (pixels)')
237 | parser.add_argument('--conf-thres', type=float,
238 | default=0.4, help='object confidence threshold')
239 | parser.add_argument('--iou-thres', type=float,
240 | default=0.5, help='IOU threshold for NMS')
241 | parser.add_argument('--fourcc', type=str, default='mp4v',
242 | help='output video codec (verify ffmpeg support)')
243 | parser.add_argument('--device', default='',
244 | help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
245 | parser.add_argument('--view-img', action='store_true',
246 | help='display results')
247 | parser.add_argument('--save-txt', action='store_true',
248 | help='save results to *.txt')
249 | # class 0 is person
250 | parser.add_argument('--classes', nargs='+', type=int,
251 | default=[0], help='filter by class')
252 | parser.add_argument('--agnostic-nms', action='store_true',
253 | help='class-agnostic NMS')
254 | parser.add_argument('--augment', action='store_true',
255 | help='augmented inference')
256 | parser.add_argument("--config_deepsort", type=str,
257 | default="deep_sort_pytorch/configs/deep_sort.yaml")
258 | args = parser.parse_args()
259 | args.img_size = check_img_size(args.img_size)
260 | print(args)
261 |
262 | with torch.no_grad():
263 | detect(args)
264 |
--------------------------------------------------------------------------------
/yolov5/Dockerfile:
--------------------------------------------------------------------------------
1 | # Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
2 | FROM nvcr.io/nvidia/pytorch:20.12-py3
3 |
4 | # Install linux packages
5 | RUN apt update && apt install -y screen libgl1-mesa-glx
6 |
7 | # Install python dependencies
8 | RUN pip install --upgrade pip
9 | COPY requirements.txt .
10 | RUN pip install -r requirements.txt
11 | RUN pip install gsutil
12 |
13 | # Create working directory
14 | RUN mkdir -p /usr/src/app
15 | WORKDIR /usr/src/app
16 |
17 | # Copy contents
18 | COPY . /usr/src/app
19 |
20 | # Copy weights
21 | #RUN python3 -c "from models import *; \
22 | #attempt_download('weights/yolov5s.pt'); \
23 | #attempt_download('weights/yolov5m.pt'); \
24 | #attempt_download('weights/yolov5l.pt')"
25 |
26 |
27 | # --------------------------------------------------- Extras Below ---------------------------------------------------
28 |
29 | # Build and Push
30 | # t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
31 | # for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done
32 |
33 | # Pull and Run
34 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
35 |
36 | # Pull and Run with local directory access
37 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t
38 |
39 | # Kill all
40 | # sudo docker kill $(sudo docker ps -q)
41 |
42 | # Kill all image-based
43 | # sudo docker kill $(sudo docker ps -a -q --filter ancestor=ultralytics/yolov5:latest)
44 |
45 | # Bash into running container
46 | # sudo docker container exec -it ba65811811ab bash
47 |
48 | # Bash into stopped container
49 | # sudo docker commit 092b16b25c5b usr/resume && sudo docker run -it --gpus all --ipc=host -v "$(pwd)"/coco:/usr/src/coco --entrypoint=sh usr/resume
50 |
51 | # Send weights to GCP
52 | # python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
53 |
54 | # Clean up
55 | # docker system prune -a --volumes
56 |
--------------------------------------------------------------------------------
/yolov5/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
--------------------------------------------------------------------------------
/yolov5/data/coco.yaml:
--------------------------------------------------------------------------------
1 | # COCO 2017 dataset http://cocodataset.org
2 | # Train command: python train.py --data coco.yaml
3 | # Default dataset location is next to /yolov5:
4 | # /parent_folder
5 | # /coco
6 | # /yolov5
7 |
8 |
9 | # download command/URL (optional)
10 | download: bash data/scripts/get_coco.sh
11 |
12 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
13 | train: ../coco/train2017.txt # 118287 images
14 | val: ../coco/val2017.txt # 5000 images
15 | test: ../coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
16 |
17 | # number of classes
18 | nc: 80
19 |
20 | # class names
21 | names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
22 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
23 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
24 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
25 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
26 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
27 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
28 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
29 | 'hair drier', 'toothbrush' ]
30 |
31 | # Print classes
32 | # with open('data/coco.yaml') as f:
33 | # d = yaml.load(f, Loader=yaml.FullLoader) # dict
34 | # for i, x in enumerate(d['names']):
35 | # print(i, x)
36 |
--------------------------------------------------------------------------------
/yolov5/data/coco128.yaml:
--------------------------------------------------------------------------------
1 | # COCO 2017 dataset http://cocodataset.org - first 128 training images
2 | # Train command: python train.py --data coco128.yaml
3 | # Default dataset location is next to /yolov5:
4 | # /parent_folder
5 | # /coco128
6 | # /yolov5
7 |
8 |
9 | # download command/URL (optional)
10 | download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
11 |
12 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
13 | train: ../coco128/images/train2017/ # 128 images
14 | val: ../coco128/images/train2017/ # 128 images
15 |
16 | # number of classes
17 | nc: 80
18 |
19 | # class names
20 | names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
21 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
22 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
23 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
24 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
25 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
26 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
27 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
28 | 'hair drier', 'toothbrush' ]
29 |
--------------------------------------------------------------------------------
/yolov5/data/hyp.finetune.yaml:
--------------------------------------------------------------------------------
1 | # Hyperparameters for VOC finetuning
2 | # python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
3 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
4 |
5 |
6 | # Hyperparameter Evolution Results
7 | # Generations: 306
8 | # P R mAP.5 mAP.5:.95 box obj cls
9 | # Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146
10 |
11 | lr0: 0.0032
12 | lrf: 0.12
13 | momentum: 0.843
14 | weight_decay: 0.00036
15 | warmup_epochs: 2.0
16 | warmup_momentum: 0.5
17 | warmup_bias_lr: 0.05
18 | box: 0.0296
19 | cls: 0.243
20 | cls_pw: 0.631
21 | obj: 0.301
22 | obj_pw: 0.911
23 | iou_t: 0.2
24 | anchor_t: 2.91
25 | # anchors: 3.63
26 | fl_gamma: 0.0
27 | hsv_h: 0.0138
28 | hsv_s: 0.664
29 | hsv_v: 0.464
30 | degrees: 0.373
31 | translate: 0.245
32 | scale: 0.898
33 | shear: 0.602
34 | perspective: 0.0
35 | flipud: 0.00856
36 | fliplr: 0.5
37 | mosaic: 1.0
38 | mixup: 0.243
39 |
--------------------------------------------------------------------------------
/yolov5/data/hyp.scratch.yaml:
--------------------------------------------------------------------------------
1 | # Hyperparameters for COCO training from scratch
2 | # python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
3 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
4 |
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.5 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 1.0 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | iou_t: 0.20 # IoU training threshold
19 | anchor_t: 4.0 # anchor-multiple threshold
20 | # anchors: 3 # anchors per output layer (0 to ignore)
21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25 | degrees: 0.0 # image rotation (+/- deg)
26 | translate: 0.1 # image translation (+/- fraction)
27 | scale: 0.5 # image scale (+/- gain)
28 | shear: 0.0 # image shear (+/- deg)
29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30 | flipud: 0.0 # image flip up-down (probability)
31 | fliplr: 0.5 # image flip left-right (probability)
32 | mosaic: 1.0 # image mosaic (probability)
33 | mixup: 0.0 # image mixup (probability)
34 |
--------------------------------------------------------------------------------
/yolov5/data/images/bus.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/oaqoe-DWQ/Yolov5_DeepSort_Pytorch/2b1a682bf533beb5795bd1debe4469a77b4e2388/yolov5/data/images/bus.jpg
--------------------------------------------------------------------------------
/yolov5/data/images/zidane.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/oaqoe-DWQ/Yolov5_DeepSort_Pytorch/2b1a682bf533beb5795bd1debe4469a77b4e2388/yolov5/data/images/zidane.jpg
--------------------------------------------------------------------------------
/yolov5/data/scripts/get_coco.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # COCO 2017 dataset http://cocodataset.org
3 | # Download command: bash data/scripts/get_coco.sh
4 | # Train command: python train.py --data coco.yaml
5 | # Default dataset location is next to /yolov5:
6 | # /parent_folder
7 | # /coco
8 | # /yolov5
9 |
10 | # Download/unzip labels
11 | d='../' # unzip directory
12 | url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
13 | f='coco2017labels.zip' # 68 MB
14 | echo 'Downloading' $url$f ' ...' && curl -L $url$f -o $f && unzip -q $f -d $d && rm $f # download, unzip, remove
15 |
16 | # Download/unzip images
17 | d='../coco/images' # unzip directory
18 | url=http://images.cocodataset.org/zips/
19 | f1='train2017.zip' # 19G, 118k images
20 | f2='val2017.zip' # 1G, 5k images
21 | f3='test2017.zip' # 7G, 41k images (optional)
22 | for f in $f1 $f2; do
23 | echo 'Downloading' $url$f ' ...' && curl -L $url$f -o $f && unzip -q $f -d $d && rm $f # download, unzip, remove
24 | done
25 |
--------------------------------------------------------------------------------
/yolov5/data/scripts/get_voc.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
3 | # Download command: bash data/scripts/get_voc.sh
4 | # Train command: python train.py --data voc.yaml
5 | # Default dataset location is next to /yolov5:
6 | # /parent_folder
7 | # /VOC
8 | # /yolov5
9 |
10 | start=$(date +%s)
11 | mkdir -p ../tmp
12 | cd ../tmp/
13 |
14 | # Download/unzip images and labels
15 | d='.' # unzip directory
16 | url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
17 | f1=VOCtrainval_06-Nov-2007.zip # 446MB, 5012 images
18 | f2=VOCtest_06-Nov-2007.zip # 438MB, 4953 images
19 | f3=VOCtrainval_11-May-2012.zip # 1.95GB, 17126 images
20 | for f in $f1 $f2 $f3; do
21 | echo 'Downloading' $url$f ' ...' && curl -L $url$f -o $f && unzip -q $f -d $d && rm $f # download, unzip, remove
22 | done
23 |
24 | end=$(date +%s)
25 | runtime=$((end - start))
26 | echo "Completed in" $runtime "seconds"
27 |
28 | echo "Splitting dataset..."
29 | python3 - "$@" <train.txt
89 | cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt >train.all.txt
90 |
91 | python3 - "$@" <= 1
84 | p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
85 | else:
86 | p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
87 |
88 | p = Path(p) # to Path
89 | save_path = str(save_dir / p.name) # img.jpg
90 | txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
91 | s += '%gx%g ' % img.shape[2:] # print string
92 | gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
93 | if len(det):
94 | # Rescale boxes from img_size to im0 size
95 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
96 |
97 | # Print results
98 | for c in det[:, -1].unique():
99 | n = (det[:, -1] == c).sum() # detections per class
100 | s += f'{n} {names[int(c)]}s, ' # add to string
101 |
102 | # Write results
103 | for *xyxy, conf, cls in reversed(det):
104 | if save_txt: # Write to file
105 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
106 | line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
107 | with open(txt_path + '.txt', 'a') as f:
108 | f.write(('%g ' * len(line)).rstrip() % line + '\n')
109 |
110 | if save_img or view_img: # Add bbox to image
111 | label = f'{names[int(cls)]} {conf:.2f}'
112 | plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
113 |
114 | # Print time (inference + NMS)
115 | print(f'{s}Done. ({t2 - t1:.3f}s)')
116 |
117 | # Stream results
118 | if view_img:
119 | cv2.imshow(str(p), im0)
120 |
121 | # Save results (image with detections)
122 | if save_img:
123 | if dataset.mode == 'image':
124 | cv2.imwrite(save_path, im0)
125 | else: # 'video'
126 | if vid_path != save_path: # new video
127 | vid_path = save_path
128 | if isinstance(vid_writer, cv2.VideoWriter):
129 | vid_writer.release() # release previous video writer
130 |
131 | fourcc = 'mp4v' # output video codec
132 | fps = vid_cap.get(cv2.CAP_PROP_FPS)
133 | w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
134 | h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
135 | vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
136 | vid_writer.write(im0)
137 |
138 | if save_txt or save_img:
139 | s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
140 | print(f"Results saved to {save_dir}{s}")
141 |
142 | print(f'Done. ({time.time() - t0:.3f}s)')
143 |
144 |
145 | if __name__ == '__main__':
146 | parser = argparse.ArgumentParser()
147 | parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
148 | parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
149 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
150 | parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
151 | parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
152 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
153 | parser.add_argument('--view-img', action='store_true', help='display results')
154 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
155 | parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
156 | parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
157 | parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
158 | parser.add_argument('--augment', action='store_true', help='augmented inference')
159 | parser.add_argument('--update', action='store_true', help='update all models')
160 | parser.add_argument('--project', default='runs/detect', help='save results to project/name')
161 | parser.add_argument('--name', default='exp', help='save results to project/name')
162 | parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
163 | opt = parser.parse_args()
164 | print(opt)
165 | check_requirements()
166 |
167 | with torch.no_grad():
168 | if opt.update: # update all models (to fix SourceChangeWarning)
169 | for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
170 | detect()
171 | strip_optimizer(opt.weights)
172 | else:
173 | detect()
174 |
--------------------------------------------------------------------------------
/yolov5/hubconf.py:
--------------------------------------------------------------------------------
1 | """File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
2 |
3 | Usage:
4 | import torch
5 | model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
6 | """
7 |
8 | from pathlib import Path
9 |
10 | import torch
11 |
12 | from models.yolo import Model
13 | from utils.general import set_logging
14 | from utils.google_utils import attempt_download
15 |
16 | dependencies = ['torch', 'yaml']
17 | set_logging()
18 |
19 |
20 | def create(name, pretrained, channels, classes, autoshape):
21 | """Creates a specified YOLOv5 model
22 |
23 | Arguments:
24 | name (str): name of model, i.e. 'yolov5s'
25 | pretrained (bool): load pretrained weights into the model
26 | channels (int): number of input channels
27 | classes (int): number of model classes
28 |
29 | Returns:
30 | pytorch model
31 | """
32 | config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path
33 | try:
34 | model = Model(config, channels, classes)
35 | if pretrained:
36 | fname = f'{name}.pt' # checkpoint filename
37 | attempt_download(fname) # download if not found locally
38 | ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
39 | state_dict = ckpt['model'].float().state_dict() # to FP32
40 | state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
41 | model.load_state_dict(state_dict, strict=False) # load
42 | if len(ckpt['model'].names) == classes:
43 | model.names = ckpt['model'].names # set class names attribute
44 | if autoshape:
45 | model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
46 | return model
47 |
48 | except Exception as e:
49 | help_url = 'https://github.com/ultralytics/yolov5/issues/36'
50 | s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
51 | raise Exception(s) from e
52 |
53 |
54 | def yolov5s(pretrained=False, channels=3, classes=80, autoshape=True):
55 | """YOLOv5-small model from https://github.com/ultralytics/yolov5
56 |
57 | Arguments:
58 | pretrained (bool): load pretrained weights into the model, default=False
59 | channels (int): number of input channels, default=3
60 | classes (int): number of model classes, default=80
61 |
62 | Returns:
63 | pytorch model
64 | """
65 | return create('yolov5s', pretrained, channels, classes, autoshape)
66 |
67 |
68 | def yolov5m(pretrained=False, channels=3, classes=80, autoshape=True):
69 | """YOLOv5-medium model from https://github.com/ultralytics/yolov5
70 |
71 | Arguments:
72 | pretrained (bool): load pretrained weights into the model, default=False
73 | channels (int): number of input channels, default=3
74 | classes (int): number of model classes, default=80
75 |
76 | Returns:
77 | pytorch model
78 | """
79 | return create('yolov5m', pretrained, channels, classes, autoshape)
80 |
81 |
82 | def yolov5l(pretrained=False, channels=3, classes=80, autoshape=True):
83 | """YOLOv5-large model from https://github.com/ultralytics/yolov5
84 |
85 | Arguments:
86 | pretrained (bool): load pretrained weights into the model, default=False
87 | channels (int): number of input channels, default=3
88 | classes (int): number of model classes, default=80
89 |
90 | Returns:
91 | pytorch model
92 | """
93 | return create('yolov5l', pretrained, channels, classes, autoshape)
94 |
95 |
96 | def yolov5x(pretrained=False, channels=3, classes=80, autoshape=True):
97 | """YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
98 |
99 | Arguments:
100 | pretrained (bool): load pretrained weights into the model, default=False
101 | channels (int): number of input channels, default=3
102 | classes (int): number of model classes, default=80
103 |
104 | Returns:
105 | pytorch model
106 | """
107 | return create('yolov5x', pretrained, channels, classes, autoshape)
108 |
109 |
110 | def custom(path_or_model='path/to/model.pt', autoshape=True):
111 | """YOLOv5-custom model from https://github.com/ultralytics/yolov5
112 |
113 | Arguments (3 options):
114 | path_or_model (str): 'path/to/model.pt'
115 | path_or_model (dict): torch.load('path/to/model.pt')
116 | path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
117 |
118 | Returns:
119 | pytorch model
120 | """
121 | model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
122 | if isinstance(model, dict):
123 | model = model['model'] # load model
124 |
125 | hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
126 | hub_model.load_state_dict(model.float().state_dict()) # load state_dict
127 | hub_model.names = model.names # class names
128 | return hub_model.autoshape() if autoshape else hub_model
129 |
130 |
131 | if __name__ == '__main__':
132 | model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
133 | # model = custom(path_or_model='path/to/model.pt') # custom example
134 |
135 | # Verify inference
136 | from PIL import Image
137 |
138 | imgs = [Image.open(x) for x in Path('data/images').glob('*.jpg')]
139 | results = model(imgs)
140 | results.show()
141 | results.print()
142 |
--------------------------------------------------------------------------------
/yolov5/models/common.py:
--------------------------------------------------------------------------------
1 | # This file contains modules common to various models
2 |
3 | import math
4 | import numpy as np
5 | import requests
6 | import torch
7 | import torch.nn as nn
8 | from PIL import Image, ImageDraw
9 |
10 | from utils.datasets import letterbox
11 | from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh
12 | from utils.plots import color_list
13 |
14 |
15 | def autopad(k, p=None): # kernel, padding
16 | # Pad to 'same'
17 | if p is None:
18 | p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
19 | return p
20 |
21 |
22 | def DWConv(c1, c2, k=1, s=1, act=True):
23 | # Depthwise convolution
24 | return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
25 |
26 |
27 | class Conv(nn.Module):
28 | # Standard convolution
29 | def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
30 | super(Conv, self).__init__()
31 | self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
32 | self.bn = nn.BatchNorm2d(c2)
33 | self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
34 |
35 | def forward(self, x):
36 | return self.act(self.bn(self.conv(x)))
37 |
38 | def fuseforward(self, x):
39 | return self.act(self.conv(x))
40 |
41 |
42 | class Bottleneck(nn.Module):
43 | # Standard bottleneck
44 | def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
45 | super(Bottleneck, self).__init__()
46 | c_ = int(c2 * e) # hidden channels
47 | self.cv1 = Conv(c1, c_, 1, 1)
48 | self.cv2 = Conv(c_, c2, 3, 1, g=g)
49 | self.add = shortcut and c1 == c2
50 |
51 | def forward(self, x):
52 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
53 |
54 |
55 | class BottleneckCSP(nn.Module):
56 | # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
57 | def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
58 | super(BottleneckCSP, self).__init__()
59 | c_ = int(c2 * e) # hidden channels
60 | self.cv1 = Conv(c1, c_, 1, 1)
61 | self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
62 | self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
63 | self.cv4 = Conv(2 * c_, c2, 1, 1)
64 | self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
65 | self.act = nn.LeakyReLU(0.1, inplace=True)
66 | self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
67 |
68 | def forward(self, x):
69 | y1 = self.cv3(self.m(self.cv1(x)))
70 | y2 = self.cv2(x)
71 | return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
72 |
73 |
74 | class C3(nn.Module):
75 | # CSP Bottleneck with 3 convolutions
76 | def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
77 | super(C3, self).__init__()
78 | c_ = int(c2 * e) # hidden channels
79 | self.cv1 = Conv(c1, c_, 1, 1)
80 | self.cv2 = Conv(c1, c_, 1, 1)
81 | self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
82 | self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
83 | # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
84 |
85 | def forward(self, x):
86 | return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
87 |
88 |
89 | class SPP(nn.Module):
90 | # Spatial pyramid pooling layer used in YOLOv3-SPP
91 | def __init__(self, c1, c2, k=(5, 9, 13)):
92 | super(SPP, self).__init__()
93 | c_ = c1 // 2 # hidden channels
94 | self.cv1 = Conv(c1, c_, 1, 1)
95 | self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
96 | self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
97 |
98 | def forward(self, x):
99 | x = self.cv1(x)
100 | return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
101 |
102 |
103 | class Focus(nn.Module):
104 | # Focus wh information into c-space
105 | def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
106 | super(Focus, self).__init__()
107 | self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
108 | # self.contract = Contract(gain=2)
109 |
110 | def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
111 | return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
112 | # return self.conv(self.contract(x))
113 |
114 |
115 | class Contract(nn.Module):
116 | # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
117 | def __init__(self, gain=2):
118 | super().__init__()
119 | self.gain = gain
120 |
121 | def forward(self, x):
122 | N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
123 | s = self.gain
124 | x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
125 | x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
126 | return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
127 |
128 |
129 | class Expand(nn.Module):
130 | # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
131 | def __init__(self, gain=2):
132 | super().__init__()
133 | self.gain = gain
134 |
135 | def forward(self, x):
136 | N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
137 | s = self.gain
138 | x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
139 | x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
140 | return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
141 |
142 |
143 | class Concat(nn.Module):
144 | # Concatenate a list of tensors along dimension
145 | def __init__(self, dimension=1):
146 | super(Concat, self).__init__()
147 | self.d = dimension
148 |
149 | def forward(self, x):
150 | return torch.cat(x, self.d)
151 |
152 |
153 | class NMS(nn.Module):
154 | # Non-Maximum Suppression (NMS) module
155 | conf = 0.25 # confidence threshold
156 | iou = 0.45 # IoU threshold
157 | classes = None # (optional list) filter by class
158 |
159 | def __init__(self):
160 | super(NMS, self).__init__()
161 |
162 | def forward(self, x):
163 | return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
164 |
165 |
166 | class autoShape(nn.Module):
167 | # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
168 | img_size = 640 # inference size (pixels)
169 | conf = 0.25 # NMS confidence threshold
170 | iou = 0.45 # NMS IoU threshold
171 | classes = None # (optional list) filter by class
172 |
173 | def __init__(self, model):
174 | super(autoShape, self).__init__()
175 | self.model = model.eval()
176 |
177 | def autoshape(self):
178 | print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
179 | return self
180 |
181 | def forward(self, imgs, size=640, augment=False, profile=False):
182 | # Inference from various sources. For height=720, width=1280, RGB images example inputs are:
183 | # filename: imgs = 'data/samples/zidane.jpg'
184 | # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
185 | # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
186 | # PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
187 | # numpy: = np.zeros((720,1280,3)) # HWC
188 | # torch: = torch.zeros(16,3,720,1280) # BCHW
189 | # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
190 |
191 | p = next(self.model.parameters()) # for device and type
192 | if isinstance(imgs, torch.Tensor): # torch
193 | return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
194 |
195 | # Pre-process
196 | n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
197 | shape0, shape1 = [], [] # image and inference shapes
198 | for i, im in enumerate(imgs):
199 | if isinstance(im, str): # filename or uri
200 | im = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im) # open
201 | im = np.array(im) # to numpy
202 | if im.shape[0] < 5: # image in CHW
203 | im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
204 | im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
205 | s = im.shape[:2] # HWC
206 | shape0.append(s) # image shape
207 | g = (size / max(s)) # gain
208 | shape1.append([y * g for y in s])
209 | imgs[i] = im # update
210 | shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
211 | x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
212 | x = np.stack(x, 0) if n > 1 else x[0][None] # stack
213 | x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
214 | x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
215 |
216 | # Inference
217 | with torch.no_grad():
218 | y = self.model(x, augment, profile)[0] # forward
219 | y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
220 |
221 | # Post-process
222 | for i in range(n):
223 | scale_coords(shape1, y[i][:, :4], shape0[i])
224 |
225 | return Detections(imgs, y, self.names)
226 |
227 |
228 | class Detections:
229 | # detections class for YOLOv5 inference results
230 | def __init__(self, imgs, pred, names=None):
231 | super(Detections, self).__init__()
232 | d = pred[0].device # device
233 | gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
234 | self.imgs = imgs # list of images as numpy arrays
235 | self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
236 | self.names = names # class names
237 | self.xyxy = pred # xyxy pixels
238 | self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
239 | self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
240 | self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
241 | self.n = len(self.pred)
242 |
243 | def display(self, pprint=False, show=False, save=False):
244 | colors = color_list()
245 | for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
246 | str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
247 | if pred is not None:
248 | for c in pred[:, -1].unique():
249 | n = (pred[:, -1] == c).sum() # detections per class
250 | str += f'{n} {self.names[int(c)]}s, ' # add to string
251 | if show or save:
252 | img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
253 | for *box, conf, cls in pred: # xyxy, confidence, class
254 | # str += '%s %.2f, ' % (names[int(cls)], conf) # label
255 | ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot
256 | if save:
257 | f = f'results{i}.jpg'
258 | str += f"saved to '{f}'"
259 | img.save(f) # save
260 | if show:
261 | img.show(f'Image {i}') # show
262 | if pprint:
263 | print(str)
264 |
265 | def print(self):
266 | self.display(pprint=True) # print results
267 |
268 | def show(self):
269 | self.display(show=True) # show results
270 |
271 | def save(self):
272 | self.display(save=True) # save results
273 |
274 | def __len__(self):
275 | return self.n
276 |
277 | def tolist(self):
278 | # return a list of Detections objects, i.e. 'for result in results.tolist():'
279 | x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
280 | for d in x:
281 | for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
282 | setattr(d, k, getattr(d, k)[0]) # pop out of list
283 | return x
284 |
285 |
286 | class Classify(nn.Module):
287 | # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
288 | def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
289 | super(Classify, self).__init__()
290 | self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
291 | self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
292 | self.flat = nn.Flatten()
293 |
294 | def forward(self, x):
295 | z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
296 | return self.flat(self.conv(z)) # flatten to x(b,c2)
297 |
--------------------------------------------------------------------------------
/yolov5/models/experimental.py:
--------------------------------------------------------------------------------
1 | # This file contains experimental modules
2 |
3 | import numpy as np
4 | import torch
5 | import torch.nn as nn
6 |
7 | from models.common import Conv, DWConv
8 | from utils.google_utils import attempt_download
9 |
10 |
11 | class CrossConv(nn.Module):
12 | # Cross Convolution Downsample
13 | def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
14 | # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
15 | super(CrossConv, self).__init__()
16 | c_ = int(c2 * e) # hidden channels
17 | self.cv1 = Conv(c1, c_, (1, k), (1, s))
18 | self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
19 | self.add = shortcut and c1 == c2
20 |
21 | def forward(self, x):
22 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
23 |
24 |
25 | class Sum(nn.Module):
26 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
27 | def __init__(self, n, weight=False): # n: number of inputs
28 | super(Sum, self).__init__()
29 | self.weight = weight # apply weights boolean
30 | self.iter = range(n - 1) # iter object
31 | if weight:
32 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
33 |
34 | def forward(self, x):
35 | y = x[0] # no weight
36 | if self.weight:
37 | w = torch.sigmoid(self.w) * 2
38 | for i in self.iter:
39 | y = y + x[i + 1] * w[i]
40 | else:
41 | for i in self.iter:
42 | y = y + x[i + 1]
43 | return y
44 |
45 |
46 | class GhostConv(nn.Module):
47 | # Ghost Convolution https://github.com/huawei-noah/ghostnet
48 | def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
49 | super(GhostConv, self).__init__()
50 | c_ = c2 // 2 # hidden channels
51 | self.cv1 = Conv(c1, c_, k, s, None, g, act)
52 | self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
53 |
54 | def forward(self, x):
55 | y = self.cv1(x)
56 | return torch.cat([y, self.cv2(y)], 1)
57 |
58 |
59 | class GhostBottleneck(nn.Module):
60 | # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
61 | def __init__(self, c1, c2, k, s):
62 | super(GhostBottleneck, self).__init__()
63 | c_ = c2 // 2
64 | self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
65 | DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
66 | GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
67 | self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
68 | Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
69 |
70 | def forward(self, x):
71 | return self.conv(x) + self.shortcut(x)
72 |
73 |
74 | class MixConv2d(nn.Module):
75 | # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
76 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
77 | super(MixConv2d, self).__init__()
78 | groups = len(k)
79 | if equal_ch: # equal c_ per group
80 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
81 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
82 | else: # equal weight.numel() per group
83 | b = [c2] + [0] * groups
84 | a = np.eye(groups + 1, groups, k=-1)
85 | a -= np.roll(a, 1, axis=1)
86 | a *= np.array(k) ** 2
87 | a[0] = 1
88 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
89 |
90 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
91 | self.bn = nn.BatchNorm2d(c2)
92 | self.act = nn.LeakyReLU(0.1, inplace=True)
93 |
94 | def forward(self, x):
95 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
96 |
97 |
98 | class Ensemble(nn.ModuleList):
99 | # Ensemble of models
100 | def __init__(self):
101 | super(Ensemble, self).__init__()
102 |
103 | def forward(self, x, augment=False):
104 | y = []
105 | for module in self:
106 | y.append(module(x, augment)[0])
107 | # y = torch.stack(y).max(0)[0] # max ensemble
108 | # y = torch.stack(y).mean(0) # mean ensemble
109 | y = torch.cat(y, 1) # nms ensemble
110 | return y, None # inference, train output
111 |
112 |
113 | def attempt_load(weights, map_location=None):
114 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
115 | model = Ensemble()
116 | for w in weights if isinstance(weights, list) else [weights]:
117 | attempt_download(w)
118 | model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
119 |
120 | # Compatibility updates
121 | for m in model.modules():
122 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
123 | m.inplace = True # pytorch 1.7.0 compatibility
124 | elif type(m) is Conv:
125 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
126 |
127 | if len(model) == 1:
128 | return model[-1] # return model
129 | else:
130 | print('Ensemble created with %s\n' % weights)
131 | for k in ['names', 'stride']:
132 | setattr(model, k, getattr(model[-1], k))
133 | return model # return ensemble
134 |
--------------------------------------------------------------------------------
/yolov5/models/export.py:
--------------------------------------------------------------------------------
1 | """Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
2 |
3 | Usage:
4 | $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
5 | """
6 |
7 | import argparse
8 | import sys
9 | import time
10 |
11 | sys.path.append('./') # to run '$ python *.py' files in subdirectories
12 |
13 | import torch
14 | import torch.nn as nn
15 |
16 | import models
17 | from models.experimental import attempt_load
18 | from utils.activations import Hardswish, SiLU
19 | from utils.general import set_logging, check_img_size
20 |
21 | if __name__ == '__main__':
22 | parser = argparse.ArgumentParser()
23 | parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
24 | parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
25 | parser.add_argument('--batch-size', type=int, default=1, help='batch size')
26 | opt = parser.parse_args()
27 | opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
28 | print(opt)
29 | set_logging()
30 | t = time.time()
31 |
32 | # Load PyTorch model
33 | model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
34 | labels = model.names
35 |
36 | # Checks
37 | gs = int(max(model.stride)) # grid size (max stride)
38 | opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
39 |
40 | # Input
41 | img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection
42 |
43 | # Update model
44 | for k, m in model.named_modules():
45 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
46 | if isinstance(m, models.common.Conv): # assign export-friendly activations
47 | if isinstance(m.act, nn.Hardswish):
48 | m.act = Hardswish()
49 | elif isinstance(m.act, nn.SiLU):
50 | m.act = SiLU()
51 | # elif isinstance(m, models.yolo.Detect):
52 | # m.forward = m.forward_export # assign forward (optional)
53 | model.model[-1].export = True # set Detect() layer export=True
54 | y = model(img) # dry run
55 |
56 | # TorchScript export
57 | try:
58 | print('\nStarting TorchScript export with torch %s...' % torch.__version__)
59 | f = opt.weights.replace('.pt', '.torchscript.pt') # filename
60 | ts = torch.jit.trace(model, img)
61 | ts.save(f)
62 | print('TorchScript export success, saved as %s' % f)
63 | except Exception as e:
64 | print('TorchScript export failure: %s' % e)
65 |
66 | # ONNX export
67 | try:
68 | import onnx
69 |
70 | print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
71 | f = opt.weights.replace('.pt', '.onnx') # filename
72 | torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
73 | output_names=['classes', 'boxes'] if y is None else ['output'])
74 |
75 | # Checks
76 | onnx_model = onnx.load(f) # load onnx model
77 | onnx.checker.check_model(onnx_model) # check onnx model
78 | # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
79 | print('ONNX export success, saved as %s' % f)
80 | except Exception as e:
81 | print('ONNX export failure: %s' % e)
82 |
83 | # CoreML export
84 | try:
85 | import coremltools as ct
86 |
87 | print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
88 | # convert model from torchscript and apply pixel scaling as per detect.py
89 | model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
90 | f = opt.weights.replace('.pt', '.mlmodel') # filename
91 | model.save(f)
92 | print('CoreML export success, saved as %s' % f)
93 | except Exception as e:
94 | print('CoreML export failure: %s' % e)
95 |
96 | # Finish
97 | print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
98 |
--------------------------------------------------------------------------------
/yolov5/models/hub/anchors.yaml:
--------------------------------------------------------------------------------
1 | # Default YOLOv5 anchors for COCO data
2 |
3 |
4 | # P5 -------------------------------------------------------------------------------------------------------------------
5 | # P5-640:
6 | anchors_p5_640:
7 | - [ 10,13, 16,30, 33,23 ] # P3/8
8 | - [ 30,61, 62,45, 59,119 ] # P4/16
9 | - [ 116,90, 156,198, 373,326 ] # P5/32
10 |
11 |
12 | # P6 -------------------------------------------------------------------------------------------------------------------
13 | # P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
14 | anchors_p6_640:
15 | - [ 9,11, 21,19, 17,41 ] # P3/8
16 | - [ 43,32, 39,70, 86,64 ] # P4/16
17 | - [ 65,131, 134,130, 120,265 ] # P5/32
18 | - [ 282,180, 247,354, 512,387 ] # P6/64
19 |
20 | # P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
21 | anchors_p6_1280:
22 | - [ 19,27, 44,40, 38,94 ] # P3/8
23 | - [ 96,68, 86,152, 180,137 ] # P4/16
24 | - [ 140,301, 303,264, 238,542 ] # P5/32
25 | - [ 436,615, 739,380, 925,792 ] # P6/64
26 |
27 | # P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
28 | anchors_p6_1920:
29 | - [ 28,41, 67,59, 57,141 ] # P3/8
30 | - [ 144,103, 129,227, 270,205 ] # P4/16
31 | - [ 209,452, 455,396, 358,812 ] # P5/32
32 | - [ 653,922, 1109,570, 1387,1187 ] # P6/64
33 |
34 |
35 | # P7 -------------------------------------------------------------------------------------------------------------------
36 | # P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
37 | anchors_p7_640:
38 | - [ 11,11, 13,30, 29,20 ] # P3/8
39 | - [ 30,46, 61,38, 39,92 ] # P4/16
40 | - [ 78,80, 146,66, 79,163 ] # P5/32
41 | - [ 149,150, 321,143, 157,303 ] # P6/64
42 | - [ 257,402, 359,290, 524,372 ] # P7/128
43 |
44 | # P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
45 | anchors_p7_1280:
46 | - [ 19,22, 54,36, 32,77 ] # P3/8
47 | - [ 70,83, 138,71, 75,173 ] # P4/16
48 | - [ 165,159, 148,334, 375,151 ] # P5/32
49 | - [ 334,317, 251,626, 499,474 ] # P6/64
50 | - [ 750,326, 534,814, 1079,818 ] # P7/128
51 |
52 | # P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
53 | anchors_p7_1920:
54 | - [ 29,34, 81,55, 47,115 ] # P3/8
55 | - [ 105,124, 207,107, 113,259 ] # P4/16
56 | - [ 247,238, 222,500, 563,227 ] # P5/32
57 | - [ 501,476, 376,939, 749,711 ] # P6/64
58 | - [ 1126,489, 801,1222, 1618,1227 ] # P7/128
59 |
--------------------------------------------------------------------------------
/yolov5/models/hub/yolov3-spp.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # darknet53 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, Bottleneck, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, Bottleneck, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, Bottleneck, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, Bottleneck, [1024]], # 10
26 | ]
27 |
28 | # YOLOv3-SPP head
29 | head:
30 | [[-1, 1, Bottleneck, [1024, False]],
31 | [-1, 1, SPP, [512, [5, 9, 13]]],
32 | [-1, 1, Conv, [1024, 3, 1]],
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35 |
36 | [-2, 1, Conv, [256, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 | [-1, 1, Bottleneck, [512, False]],
40 | [-1, 1, Bottleneck, [512, False]],
41 | [-1, 1, Conv, [256, 1, 1]],
42 | [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43 |
44 | [-2, 1, Conv, [128, 1, 1]],
45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 | [[-1, 6], 1, Concat, [1]], # cat backbone P3
47 | [-1, 1, Bottleneck, [256, False]],
48 | [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49 |
50 | [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 | ]
52 |
--------------------------------------------------------------------------------
/yolov5/models/hub/yolov3-tiny.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,14, 23,27, 37,58] # P4/16
9 | - [81,82, 135,169, 344,319] # P5/32
10 |
11 | # YOLOv3-tiny backbone
12 | backbone:
13 | # [from, number, module, args]
14 | [[-1, 1, Conv, [16, 3, 1]], # 0
15 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
16 | [-1, 1, Conv, [32, 3, 1]],
17 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
18 | [-1, 1, Conv, [64, 3, 1]],
19 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
20 | [-1, 1, Conv, [128, 3, 1]],
21 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
22 | [-1, 1, Conv, [256, 3, 1]],
23 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
24 | [-1, 1, Conv, [512, 3, 1]],
25 | [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
26 | [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
27 | ]
28 |
29 | # YOLOv3-tiny head
30 | head:
31 | [[-1, 1, Conv, [1024, 3, 1]],
32 | [-1, 1, Conv, [256, 1, 1]],
33 | [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
34 |
35 | [-2, 1, Conv, [128, 1, 1]],
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
38 | [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
39 |
40 | [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
41 | ]
42 |
--------------------------------------------------------------------------------
/yolov5/models/hub/yolov3.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # darknet53 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, Bottleneck, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, Bottleneck, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, Bottleneck, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, Bottleneck, [1024]], # 10
26 | ]
27 |
28 | # YOLOv3 head
29 | head:
30 | [[-1, 1, Bottleneck, [1024, False]],
31 | [-1, 1, Conv, [512, [1, 1]]],
32 | [-1, 1, Conv, [1024, 3, 1]],
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35 |
36 | [-2, 1, Conv, [256, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 | [-1, 1, Bottleneck, [512, False]],
40 | [-1, 1, Bottleneck, [512, False]],
41 | [-1, 1, Conv, [256, 1, 1]],
42 | [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43 |
44 | [-2, 1, Conv, [128, 1, 1]],
45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 | [[-1, 6], 1, Concat, [1]], # cat backbone P3
47 | [-1, 1, Bottleneck, [256, False]],
48 | [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49 |
50 | [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 | ]
52 |
--------------------------------------------------------------------------------
/yolov5/models/hub/yolov5-fpn.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, Bottleneck, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 6, BottleneckCSP, [1024]], # 9
25 | ]
26 |
27 | # YOLOv5 FPN head
28 | head:
29 | [[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
30 |
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
35 |
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
38 | [-1, 1, Conv, [256, 1, 1]],
39 | [-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
40 |
41 | [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
42 | ]
43 |
--------------------------------------------------------------------------------
/yolov5/models/hub/yolov5-p2.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors: 3
8 |
9 | # YOLOv5 backbone
10 | backbone:
11 | # [from, number, module, args]
12 | [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
13 | [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
14 | [ -1, 3, C3, [ 128 ] ],
15 | [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
16 | [ -1, 9, C3, [ 256 ] ],
17 | [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
18 | [ -1, 9, C3, [ 512 ] ],
19 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
20 | [ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
21 | [ -1, 3, C3, [ 1024, False ] ], # 9
22 | ]
23 |
24 | # YOLOv5 head
25 | head:
26 | [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
27 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
28 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
29 | [ -1, 3, C3, [ 512, False ] ], # 13
30 |
31 | [ -1, 1, Conv, [ 256, 1, 1 ] ],
32 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
33 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
34 | [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
35 |
36 | [ -1, 1, Conv, [ 128, 1, 1 ] ],
37 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
38 | [ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P2
39 | [ -1, 1, C3, [ 128, False ] ], # 21 (P2/4-xsmall)
40 |
41 | [ -1, 1, Conv, [ 128, 3, 2 ] ],
42 | [ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P3
43 | [ -1, 3, C3, [ 256, False ] ], # 24 (P3/8-small)
44 |
45 | [ -1, 1, Conv, [ 256, 3, 2 ] ],
46 | [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
47 | [ -1, 3, C3, [ 512, False ] ], # 27 (P4/16-medium)
48 |
49 | [ -1, 1, Conv, [ 512, 3, 2 ] ],
50 | [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5
51 | [ -1, 3, C3, [ 1024, False ] ], # 30 (P5/32-large)
52 |
53 | [ [ 24, 27, 30 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
54 | ]
55 |
--------------------------------------------------------------------------------
/yolov5/models/hub/yolov5-p6.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors: 3
8 |
9 | # YOLOv5 backbone
10 | backbone:
11 | # [from, number, module, args]
12 | [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
13 | [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
14 | [ -1, 3, C3, [ 128 ] ],
15 | [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
16 | [ -1, 9, C3, [ 256 ] ],
17 | [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
18 | [ -1, 9, C3, [ 512 ] ],
19 | [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
20 | [ -1, 3, C3, [ 768 ] ],
21 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
22 | [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
23 | [ -1, 3, C3, [ 1024, False ] ], # 11
24 | ]
25 |
26 | # YOLOv5 head
27 | head:
28 | [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
29 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
30 | [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
31 | [ -1, 3, C3, [ 768, False ] ], # 15
32 |
33 | [ -1, 1, Conv, [ 512, 1, 1 ] ],
34 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
35 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
36 | [ -1, 3, C3, [ 512, False ] ], # 19
37 |
38 | [ -1, 1, Conv, [ 256, 1, 1 ] ],
39 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
40 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
41 | [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
42 |
43 | [ -1, 1, Conv, [ 256, 3, 2 ] ],
44 | [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
45 | [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
46 |
47 | [ -1, 1, Conv, [ 512, 3, 2 ] ],
48 | [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
49 | [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
50 |
51 | [ -1, 1, Conv, [ 768, 3, 2 ] ],
52 | [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
53 | [ -1, 3, C3, [ 1024, False ] ], # 32 (P5/64-xlarge)
54 |
55 | [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
56 | ]
57 |
--------------------------------------------------------------------------------
/yolov5/models/hub/yolov5-p7.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors: 3
8 |
9 | # YOLOv5 backbone
10 | backbone:
11 | # [from, number, module, args]
12 | [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
13 | [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
14 | [ -1, 3, C3, [ 128 ] ],
15 | [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
16 | [ -1, 9, C3, [ 256 ] ],
17 | [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
18 | [ -1, 9, C3, [ 512 ] ],
19 | [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
20 | [ -1, 3, C3, [ 768 ] ],
21 | [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
22 | [ -1, 3, C3, [ 1024 ] ],
23 | [ -1, 1, Conv, [ 1280, 3, 2 ] ], # 11-P7/128
24 | [ -1, 1, SPP, [ 1280, [ 3, 5 ] ] ],
25 | [ -1, 3, C3, [ 1280, False ] ], # 13
26 | ]
27 |
28 | # YOLOv5 head
29 | head:
30 | [ [ -1, 1, Conv, [ 1024, 1, 1 ] ],
31 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
32 | [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat backbone P6
33 | [ -1, 3, C3, [ 1024, False ] ], # 17
34 |
35 | [ -1, 1, Conv, [ 768, 1, 1 ] ],
36 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
37 | [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
38 | [ -1, 3, C3, [ 768, False ] ], # 21
39 |
40 | [ -1, 1, Conv, [ 512, 1, 1 ] ],
41 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
42 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
43 | [ -1, 3, C3, [ 512, False ] ], # 25
44 |
45 | [ -1, 1, Conv, [ 256, 1, 1 ] ],
46 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
47 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
48 | [ -1, 3, C3, [ 256, False ] ], # 29 (P3/8-small)
49 |
50 | [ -1, 1, Conv, [ 256, 3, 2 ] ],
51 | [ [ -1, 26 ], 1, Concat, [ 1 ] ], # cat head P4
52 | [ -1, 3, C3, [ 512, False ] ], # 32 (P4/16-medium)
53 |
54 | [ -1, 1, Conv, [ 512, 3, 2 ] ],
55 | [ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P5
56 | [ -1, 3, C3, [ 768, False ] ], # 35 (P5/32-large)
57 |
58 | [ -1, 1, Conv, [ 768, 3, 2 ] ],
59 | [ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P6
60 | [ -1, 3, C3, [ 1024, False ] ], # 38 (P6/64-xlarge)
61 |
62 | [ -1, 1, Conv, [ 1024, 3, 2 ] ],
63 | [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P7
64 | [ -1, 3, C3, [ 1280, False ] ], # 41 (P7/128-xxlarge)
65 |
66 | [ [ 29, 32, 35, 38, 41 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6, P7)
67 | ]
68 |
--------------------------------------------------------------------------------
/yolov5/models/hub/yolov5-panet.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, BottleneckCSP, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, BottleneckCSP, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 PANet head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, BottleneckCSP, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/yolov5/models/yolo.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import logging
3 | import sys
4 | from copy import deepcopy
5 | from pathlib import Path
6 |
7 | sys.path.append('./') # to run '$ python *.py' files in subdirectories
8 | logger = logging.getLogger(__name__)
9 |
10 | from models.common import *
11 | from models.experimental import MixConv2d, CrossConv
12 | from utils.autoanchor import check_anchor_order
13 | from utils.general import make_divisible, check_file, set_logging
14 | from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
15 | select_device, copy_attr
16 |
17 | try:
18 | import thop # for FLOPS computation
19 | except ImportError:
20 | thop = None
21 |
22 |
23 | class Detect(nn.Module):
24 | stride = None # strides computed during build
25 | export = False # onnx export
26 |
27 | def __init__(self, nc=80, anchors=(), ch=()): # detection layer
28 | super(Detect, self).__init__()
29 | self.nc = nc # number of classes
30 | self.no = nc + 5 # number of outputs per anchor
31 | self.nl = len(anchors) # number of detection layers
32 | self.na = len(anchors[0]) // 2 # number of anchors
33 | self.grid = [torch.zeros(1)] * self.nl # init grid
34 | a = torch.tensor(anchors).float().view(self.nl, -1, 2)
35 | self.register_buffer('anchors', a) # shape(nl,na,2)
36 | self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
37 | self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
38 |
39 | def forward(self, x):
40 | # x = x.copy() # for profiling
41 | z = [] # inference output
42 | self.training |= self.export
43 | for i in range(self.nl):
44 | x[i] = self.m[i](x[i]) # conv
45 | bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
46 | x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
47 |
48 | if not self.training: # inference
49 | if self.grid[i].shape[2:4] != x[i].shape[2:4]:
50 | self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
51 |
52 | y = x[i].sigmoid()
53 | y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
54 | y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
55 | z.append(y.view(bs, -1, self.no))
56 |
57 | return x if self.training else (torch.cat(z, 1), x)
58 |
59 | @staticmethod
60 | def _make_grid(nx=20, ny=20):
61 | yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
62 | return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
63 |
64 |
65 | class Model(nn.Module):
66 | def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
67 | super(Model, self).__init__()
68 | if isinstance(cfg, dict):
69 | self.yaml = cfg # model dict
70 | else: # is *.yaml
71 | import yaml # for torch hub
72 | self.yaml_file = Path(cfg).name
73 | with open(cfg) as f:
74 | self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
75 |
76 | # Define model
77 | ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
78 | if nc and nc != self.yaml['nc']:
79 | logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
80 | self.yaml['nc'] = nc # override yaml value
81 | self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
82 | self.names = [str(i) for i in range(self.yaml['nc'])] # default names
83 | # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
84 |
85 | # Build strides, anchors
86 | m = self.model[-1] # Detect()
87 | if isinstance(m, Detect):
88 | s = 256 # 2x min stride
89 | m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
90 | m.anchors /= m.stride.view(-1, 1, 1)
91 | check_anchor_order(m)
92 | self.stride = m.stride
93 | self._initialize_biases() # only run once
94 | # print('Strides: %s' % m.stride.tolist())
95 |
96 | # Init weights, biases
97 | initialize_weights(self)
98 | self.info()
99 | logger.info('')
100 |
101 | def forward(self, x, augment=False, profile=False):
102 | if augment:
103 | img_size = x.shape[-2:] # height, width
104 | s = [1, 0.83, 0.67] # scales
105 | f = [None, 3, None] # flips (2-ud, 3-lr)
106 | y = [] # outputs
107 | for si, fi in zip(s, f):
108 | xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
109 | yi = self.forward_once(xi)[0] # forward
110 | # cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
111 | yi[..., :4] /= si # de-scale
112 | if fi == 2:
113 | yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
114 | elif fi == 3:
115 | yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
116 | y.append(yi)
117 | return torch.cat(y, 1), None # augmented inference, train
118 | else:
119 | return self.forward_once(x, profile) # single-scale inference, train
120 |
121 | def forward_once(self, x, profile=False):
122 | y, dt = [], [] # outputs
123 | for m in self.model:
124 | if m.f != -1: # if not from previous layer
125 | x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
126 |
127 | if profile:
128 | o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
129 | t = time_synchronized()
130 | for _ in range(10):
131 | _ = m(x)
132 | dt.append((time_synchronized() - t) * 100)
133 | print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
134 |
135 | x = m(x) # run
136 | y.append(x if m.i in self.save else None) # save output
137 |
138 | if profile:
139 | print('%.1fms total' % sum(dt))
140 | return x
141 |
142 | def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
143 | # https://arxiv.org/abs/1708.02002 section 3.3
144 | # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
145 | m = self.model[-1] # Detect() module
146 | for mi, s in zip(m.m, m.stride): # from
147 | b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
148 | b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
149 | b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
150 | mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
151 |
152 | def _print_biases(self):
153 | m = self.model[-1] # Detect() module
154 | for mi in m.m: # from
155 | b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
156 | print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
157 |
158 | # def _print_weights(self):
159 | # for m in self.model.modules():
160 | # if type(m) is Bottleneck:
161 | # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
162 |
163 | def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
164 | print('Fusing layers... ')
165 | for m in self.model.modules():
166 | if type(m) is Conv and hasattr(m, 'bn'):
167 | m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
168 | delattr(m, 'bn') # remove batchnorm
169 | m.forward = m.fuseforward # update forward
170 | self.info()
171 | return self
172 |
173 | def nms(self, mode=True): # add or remove NMS module
174 | present = type(self.model[-1]) is NMS # last layer is NMS
175 | if mode and not present:
176 | print('Adding NMS... ')
177 | m = NMS() # module
178 | m.f = -1 # from
179 | m.i = self.model[-1].i + 1 # index
180 | self.model.add_module(name='%s' % m.i, module=m) # add
181 | self.eval()
182 | elif not mode and present:
183 | print('Removing NMS... ')
184 | self.model = self.model[:-1] # remove
185 | return self
186 |
187 | def autoshape(self): # add autoShape module
188 | print('Adding autoShape... ')
189 | m = autoShape(self) # wrap model
190 | copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
191 | return m
192 |
193 | def info(self, verbose=False, img_size=640): # print model information
194 | model_info(self, verbose, img_size)
195 |
196 |
197 | def parse_model(d, ch): # model_dict, input_channels(3)
198 | logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
199 | anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
200 | na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
201 | no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
202 |
203 | layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
204 | for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
205 | m = eval(m) if isinstance(m, str) else m # eval strings
206 | for j, a in enumerate(args):
207 | try:
208 | args[j] = eval(a) if isinstance(a, str) else a # eval strings
209 | except:
210 | pass
211 |
212 | n = max(round(n * gd), 1) if n > 1 else n # depth gain
213 | if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
214 | c1, c2 = ch[f], args[0]
215 |
216 | # Normal
217 | # if i > 0 and args[0] != no: # channel expansion factor
218 | # ex = 1.75 # exponential (default 2.0)
219 | # e = math.log(c2 / ch[1]) / math.log(2)
220 | # c2 = int(ch[1] * ex ** e)
221 | # if m != Focus:
222 |
223 | c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
224 |
225 | # Experimental
226 | # if i > 0 and args[0] != no: # channel expansion factor
227 | # ex = 1 + gw # exponential (default 2.0)
228 | # ch1 = 32 # ch[1]
229 | # e = math.log(c2 / ch1) / math.log(2) # level 1-n
230 | # c2 = int(ch1 * ex ** e)
231 | # if m != Focus:
232 | # c2 = make_divisible(c2, 8) if c2 != no else c2
233 |
234 | args = [c1, c2, *args[1:]]
235 | if m in [BottleneckCSP, C3]:
236 | args.insert(2, n)
237 | n = 1
238 | elif m is nn.BatchNorm2d:
239 | args = [ch[f]]
240 | elif m is Concat:
241 | c2 = sum([ch[x if x < 0 else x + 1] for x in f])
242 | elif m is Detect:
243 | args.append([ch[x + 1] for x in f])
244 | if isinstance(args[1], int): # number of anchors
245 | args[1] = [list(range(args[1] * 2))] * len(f)
246 | elif m is Contract:
247 | c2 = ch[f if f < 0 else f + 1] * args[0] ** 2
248 | elif m is Expand:
249 | c2 = ch[f if f < 0 else f + 1] // args[0] ** 2
250 | else:
251 | c2 = ch[f if f < 0 else f + 1]
252 |
253 | m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
254 | t = str(m)[8:-2].replace('__main__.', '') # module type
255 | np = sum([x.numel() for x in m_.parameters()]) # number params
256 | m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
257 | logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
258 | save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
259 | layers.append(m_)
260 | ch.append(c2)
261 | return nn.Sequential(*layers), sorted(save)
262 |
263 |
264 | if __name__ == '__main__':
265 | parser = argparse.ArgumentParser()
266 | parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
267 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
268 | opt = parser.parse_args()
269 | opt.cfg = check_file(opt.cfg) # check file
270 | set_logging()
271 | device = select_device(opt.device)
272 |
273 | # Create model
274 | model = Model(opt.cfg).to(device)
275 | model.train()
276 |
277 | # Profile
278 | # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
279 | # y = model(img, profile=True)
280 |
281 | # Tensorboard
282 | # from torch.utils.tensorboard import SummaryWriter
283 | # tb_writer = SummaryWriter()
284 | # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
285 | # tb_writer.add_graph(model.model, img) # add model to tensorboard
286 | # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
287 |
--------------------------------------------------------------------------------
/yolov5/models/yolov5l.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/yolov5/models/yolov5m.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 0.67 # model depth multiple
4 | width_multiple: 0.75 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/yolov5/models/yolov5s.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 0.33 # model depth multiple
4 | width_multiple: 0.50 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/yolov5/models/yolov5x.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.33 # model depth multiple
4 | width_multiple: 1.25 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------