├── Code
└── .gitkeep
├── Images
├── .gitkeep
├── curetsd_real.JPG
├── sign_types.png
├── coordinate_system.png
└── curetsd_challenges.png
├── LICENSE
└── README.md
/Code/.gitkeep:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/Images/.gitkeep:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/Images/curetsd_real.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/olivesgatech/CURE-TSD/HEAD/Images/curetsd_real.JPG
--------------------------------------------------------------------------------
/Images/sign_types.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/olivesgatech/CURE-TSD/HEAD/Images/sign_types.png
--------------------------------------------------------------------------------
/Images/coordinate_system.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/olivesgatech/CURE-TSD/HEAD/Images/coordinate_system.png
--------------------------------------------------------------------------------
/Images/curetsd_challenges.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/olivesgatech/CURE-TSD/HEAD/Images/curetsd_challenges.png
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2019 OLIVES @GATech
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # CURE-TSD
2 | CURE-TSD: Challenging Unreal and Real Environments for Traffic Sign Detection
3 |
4 | [OLIVES Lab, Georgia Institute of Technology](https://ghassanalregib.info/)
5 |
6 |
7 |
8 | |
11 | |
12 |
15 | |
16 |
17 |
18 |
19 |
20 |
21 | ### Publications
22 | If you use CURE-TSD dataset or codes, please cite the papers listed below:
23 |
24 | [Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics
25 | ](https://arxiv.org/abs/1908.11262)
26 |
27 | ```
28 | @ARTICLE{temel2019traffic,
29 | author={D. Temel and M. Chen and G. AlRegib},
30 | journal={IEEE Transactions on Intelligent Transportation Systems},
31 | title={Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics},
32 | year={2019},
33 | volume={},
34 | number={},
35 | pages={1-11},
36 | doi={10.1109/TITS.2019.2931429},
37 | ISSN={1524-9050},
38 | url={https://arxiv.org/abs/1908.11262}}
39 | ```
40 |
41 | [Traffic Signs in the Wild: Highlights from the IEEE Video and Image Processing Cup 2017 Student Competition [SP Competitions]
42 | ](https://arxiv.org/abs/1810.06169)
43 |
44 | ```
45 | @ARTICLE{Temel2018_SPM,
46 | author={D. Temel and G. AlRegib},
47 | journal={IEEE Sig. Proc. Mag.},
48 | title={Traffic Signs in the Wild: Highlights from the IEEE Video and Image Processing Cup 2017 Student
49 | Competition [SP Competitions]},
50 | year={2018},
51 | volume={35},
52 | number={2},
53 | pages={154-161},
54 | doi={10.1109/MSP.2017.2783449},
55 | ISSN={1053-5888},
56 | url={https://arxiv.org/abs/1810.06169}}
57 | ```
58 |
59 |
60 | [Challenging Environments for Traffic Sign Detection: Reliability Assessment under Inclement Conditions](https://arxiv.org/abs/1902.06857)
61 |
62 | ```
63 | @article{temel2019challenging,
64 | title={Challenging environments for traffic sign detection: Reliability assessment under inclement conditions},
65 | author={Temel, Dogancan and Alshawi, Tariq and Chen, Min-Hung and AlRegib, Ghassan},
66 | journal={arXiv preprint arXiv:1902.06857},
67 | year={2019},
68 | url={https://arxiv.org/abs/1902.06857}
69 | }
70 | ```
71 |
72 |
73 | [CURE-TSR: Challenging unreal and real environments for traffic sign recognition](https://arxiv.org/abs/1712.02463)
74 |
75 | ```
76 | @INPROCEEDINGS{Temel2017_NIPSW,
77 | Author = {D. Temel and G. Kwon and M. Prabhushankar and G. AlRegib},
78 | Title = {{CURE-TSR: Challenging unreal and real environments for traffic sign recognition}},
79 | Year = {2017},
80 | booktitle = {Neural Information Processing Systems (NeurIPS) Workshop on Machine Learning for Intelligent Transportation Systems},
81 |
82 | ```
83 |
84 |
85 |
86 | ### Download Dataset
87 | The video sequences in the CURE-TSD dataset are grouped into two classes: real data and unreal data. Real data correspond to processed versions of sequences acquired from real world. Unreal data corresponds to synthesized sequences generated in a virtual environment. There are 49 real sequences and 49 unreal sequences that do not include any specific challenge. We separated the sequences into 70% and %30 splits. Therefore, we have 34 training videos and 15 test videos in both real and unreal sequences that are challenge-free. There are 300 frames in each video sequence. There are 49 challenge-free real video sequences processed with 12 different types of effects and 5 different challenge levels, which result in 2,989 (49*12*5+49) video sequences. Moreover, there are 49 synthesized video sequences processed with 11 different types of effects and 5 different challenge levels, which leads to 2,744 (49*11*5+49) video sequences. In total, there are 5,733 video sequences, which include around 1.72 million frames. To receive the download link, please fill out this FORM to submit your information and agree the conditions of use. These information will be kept confidential and will not be released to anybody outside the MSL administration team.
88 |
89 | ### Challenging Conditions
90 |
91 |
92 |
96 |
97 |
141 |
142 |