└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # Awesome Meta-Learning Papers [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome) 2 | 3 | A summary of meta learning papers based on realm. Sorted by submission date on arXiv. 4 | 5 | # [Topics]() 6 | 7 | * [Survey](#Survey) 8 | * [Few-shot learning](#Few-shot-learning) 9 | * [Reinforcement Learning](#Reinforcement-learning) 10 | * [AutoML](#AutoML) 11 | * [Task-dependent Methods](#Task-dependent) 12 | * [Data Aug & Reg](#Data-Aug-&-Reg) 13 | * [Lifelong learning](#Lifelong-learning) 14 | * [Domain generalization](#Domain-generalization) 15 | * [Neural process](#Neural-process) 16 | * [Configuration transfer (Adaptation, Hyperparameter Opt)](#Configuration-transfer) 17 | * [Model compression](#Model-compression) 18 | * [Kernel learning](#Kernel-learning) 19 | * [Robustness](#Robustness) 20 | * [Bayesian inference](#Bayesian-inference) 21 | * [Optimization](#Optimization) 22 | * [Theory](#Theory) 23 | 24 | ## [Survey]() 25 | Meta-Learning in Neural Networks: A Survey [[paper](https://arxiv.org/abs/2004.05439)] 26 | - Timothy Hospedales, Antreas Antoniou, Paul Micaelli, Amos Storkey 27 | 28 | Meta-Learning[[paper](https://www.ml4aad.org/wp-content/uploads/2018/09/chapter2-metalearning.pdf)] 29 | - Joaquin Vanschoren 30 | 31 | Meta-Learning: A Survey [[paper](https://arxiv.org/pdf/1810.03548.pdf)] 32 | - Joaquin Vanschoren 33 | 34 | Meta-learners’ learning dynamics are unlike learners’ [[paper](https://arxiv.org/pdf/1905.01320.pdf)] 35 | - Neil C. Rabinowitz 36 | 37 | ## [Few-shot learning]() 38 | 39 | Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification [[paper](https://arxiv.org/abs/2204.04567)] 40 | - Jiangtao Xie, Fei Long, Jiaming Lv, Qilong Wang, Peihua Li --CVPR 2022 41 | 42 | Learning Prototype-oriented Set Representations for Meta-Learning [[paper](https://openreview.net/forum?id=WH6u2SvlLp4)] 43 | - Dan dan Guo, Long Tian, Minghe Zhang, Mingyuan Zhou, Hongyuan Zha --ICLR 2022 44 | 45 | On the Role of Pre-training for Meta Few-Shot Learning [[paper](https://openreview.net/forum?id=TwkEGci1Y-)] 46 | - Chia-You Chen, Hsuan-Tien Lin, Gang Niu, Masashi Sugiyama, --arXiv 2021 47 | 48 | BOIL: Towards Representation Change for Few-shot Learning [[paper](https://openreview.net/forum?id=umIdUL8rMH)] 49 | - Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, Se-Young Yun --ICLR 2021 50 | 51 | On Episodes, Prototypical Networks, and Few-Shot Learning [[paper](https://openreview.net/pdf?id=bJaZ8leI0QJ)] 52 | - Steinar Laenen, Luca Bertinetto --NeurIPS 2021 53 | 54 | Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels [[paper](https://arxiv.org/abs/1910.05199)] 55 | - Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O'Boyle, Amos Storkey --NeurIPS 2020 56 | 57 | Laplacian Regularized Few-Shot Learning [[paper](http://proceedings.mlr.press/v119/ziko20a/ziko20a.pdf)] 58 | - Imtiaz Masud Ziko, Jose Dolz, Eric Granger, Ismail Ben Ayed --ICML 2020 59 | 60 | Few-shot Sequence Learning with Transformer 61 | - Lajanugen Logeswaran, Ann Lee, Myle Ott, Honglak Lee, Marc´Aurelio Ranzato, Arthur Szlam --NeurIPS 2020 #Meta-Learning 62 | 63 | Prototype Rectification for Few-Shot Learning [[paper](https://arxiv.org/abs/1911.10713)] 64 | - Jinlu Liu, Liang Song, Yongqiang Qin --ECCV 2020 65 | 66 | When Does Self-supervision Improve Few-shot Learning? [[paper](https://arxiv.org/pdf/1910.03560.pdf)] 67 | - Jong-Chyi Su, Subhransu Maji, Bharath Hariharan --ECCV 2020 68 | 69 | Cross Attention Network for Few-shot Classification [[paper](https://arxiv.org/abs/1910.07677)] 70 | - Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, Xilin Chen --NeurIPS 2019 71 | 72 | Learning to Learn via Self-Critique [[paper](https://arxiv.org/abs/1905.10295)] 73 | - Antreas Antoniou, Amos Storkey --NeurIPS 2019 74 | 75 | Learning from the Past: Continual Meta-Learning with Bayesian Graph Neural Networks [[paper](https://arxiv.org/abs/1911.04695)] 76 | - Yadan Luo, Zi Huang, Zheng Zhang, Ziwei Wang, Mahsa Baktashmotlagh, Yang Yang --AAAI 2020 77 | 78 | Few-Shot Learning with Global Class Representations [[paper](https://arxiv.org/pdf/1908.05257.pdf)] 79 | - Tiange Luo, Aoxue Li, Tao Xiang, Weiran Huang, Liwei Wang --ICCV 2019 80 | 81 | TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning [[paper](https://arxiv.org/pdf/1905.06549.pdf)] 82 | - Sung Whan Yoon, Jun Seo, Jaekyun Moon --ICML 2019 83 | 84 | Learning to Learn with Conditional Class Dependencies [[paper](https://openreview.net/pdf?id=BJfOXnActQ)] 85 | - Xiang Jiang, Mohammad Havaei, Farshid Varno, Gabriel Chartrand, Nicolas Chapados, Stan Matwin --ICLR 2019 86 | 87 | Finding Task-Relevant Features for Few-Shot Learning by Category Traversal [[paper](https://arxiv.org/pdf/1905.11116.pdf)] 88 | - Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler, Xiaogang Wang --CVPR 2019 89 | 90 | TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning [[paper](https://arxiv.org/abs/1904.05967)] 91 | - Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, Joseph E. Gonzalez --CVPR 2019 92 | 93 | Variational Prototyping-Encoder: One-Shot Learning with Prototypical Images [[paper](https://arxiv.org/abs/1904.08482)] 94 | - Junsik Kim, Tae-Hyun Oh, Seokju Lee, Fei Pan, In So Kweon --CVPR 2019 95 | 96 | LCC: Learning to Customize and Combine Neural Networks for Few-Shot Learning [[paper](https://arxiv.org/pdf/1904.08479.pdf)] 97 | - Yaoyao Liu, Qianru Sun, An-An Liu, Yuting Su, Bernt Schiele, Tat-Seng Chua --CVPR 2019 98 | 99 | Meta-Learning with Differentiable Convex Optimization [[paper](https://arxiv.org/abs/1904.03758)] 100 | - Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, Stefano Soatto --CVPR 2019 101 | 102 | Dense Classification and Implanting for Few-Shot Learning [[paper](https://arxiv.org/pdf/1903.05050.pdf)] 103 | - Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, Andrei Bursuc --CVPR 2019 104 | 105 | Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples 106 | - Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle -- arXiv 2019 107 | 108 | Adaptive Cross-Modal Few-Shot Learning [[paper](https://arxiv.org/pdf/1902.07104.pdf)] 109 | - Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro --arXiv 2019 110 | 111 | Meta-Learning with Latent Embedding Optimization [[paper](https://arxiv.org/abs/1807.05960)] 112 | - Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, Raia Hadsell -- ICLR 2019 113 | 114 | A Closer Look at Few-shot Classification [[paper](https://arxiv.org/abs/1904.04232)] 115 | - Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, Jia-Bin Huang -- ICLR 2019 116 | 117 | Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning [[paper](https://arxiv.org/pdf/1805.10002.pdf)] 118 | - Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, Yi Yang -- ICLR 2019 119 | 120 | Dynamic Few-Shot Visual Learning without Forgetting [[paper](https://arxiv.org/pdf/1804.09458v1.pdf)] 121 | - Spyros Gidaris, Nikos Komodakis --arXiv 2019 122 | 123 | Meta Learning with Lantent Embedding Optimization [[paper](https://openreview.net/pdf?id=BJgklhAcK7)] 124 | - Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero & Raia Hadsell --ICLR 2019 125 | 126 | Adaptive Posterior Learning: few-shot learning with a surprise-based memory module 127 | - Tiago Ramalho, Marta Garnelo --ICLR 2019 128 | 129 | How To Train Your MAML [[paper](https://arxiv.org/pdf/1810.09502v1.pdf)] 130 | - Antreas Antoniou, Harrison Edwards, Amos Storkey -- ICLR 2019 131 | 132 | TADAM: Task dependent adaptive metric for improved few-shot learning [[paper](https://arxiv.org/abs/1805.10123)] 133 | - Boris N. Oreshkin, Pau Rodriguez, Alexandre Lacoste --arXiv 2019 134 | 135 | Few-shot Learning with Meta Metric Learners 136 | - Yu Cheng, Mo Yu, Xiaoxiao Guo, Bowen Zhou --NIPS 2017 workshop on Meta-Learning 137 | 138 | Learning Embedding Adaptation for Few-Shot Learning [[paper](https://arxiv.org/pdf/1812.03664.pdf)] 139 | - Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, Fei Sha --arXiv 2018 140 | 141 | Meta-Transfer Learning for Few-Shot Learning [[paper](https://arxiv.org/pdf/1812.02391.pdf)] 142 | - Qianru Sun, Yaoyao Liu, Tat-Seng Chu, Bernt Schiele -- arXiv 2018 143 | 144 | Task-Agnostic Meta-Learning for Few-shot Learning 145 | - Muhammad Abdullah Jamal, Guo-Jun Qi, and Mubarak Shah --arXiv 2018 146 | 147 | Few-Shot Learning with Graph Neural Networks [[paper](https://arxiv.org/abs/1711.04043)] 148 | - Victor Garcia, Joan Bruna -- ICLR 2018 149 | 150 | Prototypical Networks for Few-shot Learning [[paper](https://arxiv.org/pdf/1703.05175.pdf)] 151 | - Jake Snell, Kevin Swersky, Richard S. Zemel -- NIPS 2017 152 | 153 | Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [[paper](https://arxiv.org/abs/1703.03400)] 154 | - Chelsea Finn, Pieter Abbeel, Sergey Levine -- ICML 2016 155 | 156 | ### Large scale dataset 157 | Image Deformation Meta-Networks for One-Shot Learning [[paper](https://arxiv.org/pdf/1905.11641.pdf)] 158 | - Zitian Chen, Yanwei Fu, Yu-Xiong Wang, Lin Ma, Wei Liu, Martial Hebert --CVPR 2019 159 | 160 | ### Imbalance class 161 | Balanced Meta-Softmax for Long-Tailed Visual Recognition [[paper](https://arxiv.org/abs/2007.10740)] 162 | - Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu Zhao, Shuai Yi, Hongsheng Li --NeurIPS 2020 163 | 164 | MESA: Boost Ensemble Imbalanced Learning with MEta-SAmpler [[paper](https://proceedings.neurips.cc/paper/2020/file/a64bd53139f71961c5c31a9af03d775e-Paper.pdf)] 165 | - Zhining Liu, Pengfei Wei, Jing Jiang, Wei Cao, Jiang Bian, Yi Chang --NeurIPS 2019 166 | 167 | Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distribution Tasks [[paper](https://openreview.net/pdf?id=rkeZIJBYvr)] 168 | - Donghyun Na, Hae Beom Lee, Hayeon Lee, Saehoon Kim, Minseop Park, Eunho Yang, Sung Ju Hwang --ICLR 2020 169 | 170 | Meta-weight-net: Learning an explicit mapping for sample weighting [[paper](https://papers.nips.cc/paper/2019/file/e58cc5ca94270acaceed13bc82dfedf7-Paper.pdf)] 171 | - Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng --NeurIPS 2019 172 | 173 | Learning to Reweight Examples for Robust Deep Learning [[paper](https://arxiv.org/pdf/1803.09050.pdf)] 174 | - Mengye Ren, Wenyuan Zeng, Bin Yang, Raquel Urtasun --ICML 2018 175 | 176 | Learning to Model the Tail [[paper](https://papers.nips.cc/paper/7278-learning-to-model-the-tail.pdf)] 177 | - Yu-Xiong Wang, Deva Ramanan, Martial Hebert --NeurIPS 2017 178 | 179 | ### Video retargeting 180 | MetaPix: Few-Shot Video Retargeting [[paper](https://openreview.net/forum?id=SJx1URNKwH)] 181 | - Jessica Lee, Deva Ramanan, Rohit Girdhar --ICLR 2020 182 | 183 | ### Object detection 184 | Few-shot Object Detection via Feature Reweighting [[paper](https://arxiv.org/abs/1812.01866)] 185 | - Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, Trevor Darrell --ICCV 2019 186 | 187 | ### Segmentation 188 | PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment [[paper](https://arxiv.org/abs/1908.06391)] 189 | - Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou, Jiashi Feng --ICCV 2019 190 | 191 | ### NLP 192 | Meta-Learning for Few-Shot NMT Adaptation [[paper](https://arxiv.org/abs/2004.02745)] 193 | - Amr Sharaf, Hany Hassan, Hal Daumé III --arXiv 2020 194 | 195 | Learning to Few-Shot Learn Across Diverse Natural Language Classification Tasks [[paper](https://arxiv.org/pdf/1911.03863.pdf)] 196 | - Trapit Bansal, Rishikesh Jha, Andrew McCallum --arXiv 2020 197 | 198 | Compositional generalization through meta sequence-to-sequence learning [[paper](https://arxiv.org/abs/1906.05381)] 199 | - Brenden M. Lake --NeurIPS 2019 200 | 201 | Few-Shot Representation Learning for Out-Of-Vocabulary Words [[paper](https://arxiv.org/abs/1907.00505)] 202 | - Ziniu Hu, Ting Chen, Kai-Wei Chang, Yizhou Sun --ACL 2019 203 | 204 | 205 | ## Reinforcement learning 206 | 207 | Offline Meta-Reinforcement Learning with Online Self-Supervision [[paper](https://arxiv.org/abs/2107.03974)] 208 | - Vitchyr Pong, Ashvin Nair, Laura Smith, Catherine Huang, Sergey Levine --ICML 2022 209 | 210 | System-Agnostic Meta-Learning for MDP-based Dynamic Scheduling via Descriptive Policy [[paper](https://arxiv.org/abs/2201.07051)] 211 | - Lee, Hyun-Suk --AISTATS 2022 212 | 213 | Meta Learning MDPs with Linear Transition Models [[paper](https://arxiv.org/abs/2201.08732)] 214 | - Müller, Robert ; Pacchiano, Aldo --AISTATS 2022 215 | 216 | CoMPS: Continual Meta Policy Search [[paper](https://openreview.net/forum?id=PVJ6j87gOHz)] 217 | - Glen Berseth, Zhiwei Zhang, Grace Zhang, Chelsea Finn, Sergey Levine --ICLR 2022 218 | 219 | Modeling and Optimization Trade-off in Meta-learning [[paper](https://proceedings.neurips.cc/paper/2020/hash/7fc63ff01769c4fa7d9279e97e307829-Abstract.html)] 220 | - Katelyn Gao, Ozan Sener --NeurIPS 2020 221 | 222 | Information-theoretic Task Selection for Meta-Reinforcement Learning [[paper](https://arxiv.org/abs/2011.01054)] 223 | - Ricardo Luna Gutierrez, Matteo Leonetti --NeurIPS 2020 224 | 225 | On the Global Optimality of Model-Agnostic Meta-Learning: Reinforcement Learning and Supervised Learning [[paper](https://proceedings.icml.cc/static/paper_files/icml/2020/1816-Paper.pdf)] 226 | - Lingxiao Wang, Qi Cai, Zhuoyan Yang, Zhaoran Wang --PMLR 2020 227 | 228 | Generalized Reinforcement Meta Learning for Few-Shot Optimization [[paper](https://arxiv.org/abs/2005.01246)] 229 | - Raviteja Anantha, Stephen Pulman, Srinivas Chappidi --ICML 2020 230 | 231 | VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning [[paper](https://openreview.net/forum?id=Hkl9JlBYvr)] 232 | - Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, Shimon Whiteson --ICLR 2020 233 | 234 | Reinforcement Learning with Competitive Ensembles of Information-Constrained Primitives [[paper](https://openreview.net/forum?id=ryxgJTEYDr)] 235 | - Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, Yoshua Bengio --ICLR 2020 236 | 237 | Meta-learning curiosity algorithms [[paper](https://openreview.net/pdf?id=BygdyxHFDS)] 238 | - Ferran Alet*, Martin F. Schneider*, Tomas Lozano-Perez, Leslie Pack Kaelbling --ICLR 2020 239 | 240 | Meta-Q-Learning [[paper](https://openreview.net/forum?id=SJeD3CEFPH)] 241 | - Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, Alexander J. Smola --ICLR 2020 242 | 243 | Guided Meta-Policy Search [[paper](https://arxiv.org/abs/1904.00956)] 244 | - Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, Chelsea Finn 245 | 246 | ## AutoML 247 | 248 | Learning meta-features for AutoML [[paper](https://openreview.net/forum?id=DTkEfj0Ygb8)] 249 | - Herilalaina Rakotoarison, Louisot Milijaona, Andry RASOANAIVO, Michele Sebag, Marc Schoenauer --ICLR 2022 250 | 251 | Towards Fast Adaptation of Neural Architectures with Meta Learning [[paper](https://openreview.net/forum?id=r1eowANFvr)] 252 | - Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang, Shenghua Gao --ICLR 2020 253 | 254 | Graph HyperNetworks for Neural Architecture Search [[paper](https://arxiv.org/abs/1810.05749)] 255 | - Chris Zhang, Mengye Ren, Raquel Urtasun --ICLR 2019 256 | 257 | Fast Task-Aware Architecture Inference 258 | - Efi Kokiopoulou, Anja Hauth, Luciano Sbaiz, Andrea Gesmundo, Gabor Bartok, Jesse Berent --arXiv 2019 259 | 260 | Bayesian Meta-network Architecture Learning 261 | - Albert Shaw, Bo Dai, Weiyang Liu, Le Song --arXiv 2018 262 | 263 | ## Task-dependent 264 | 265 | Meta-Learning with Fewer Tasks through Task Interpolation [[paper](https://openreview.net/forum?id=ajXWF7bVR8d)] 266 | - Huaxiu Yao, Linjun Zhang, Chelsea Finn --ICLR 2022 267 | 268 | Meta-Regularization by Enforcing Mutual-Exclusiveness [[paper](https://arxiv.org/abs/2101.09819)] 269 | - Edwin Pan, Pankaj Rajak, Shubham Shrivastava --arXiv 2021 270 | 271 | Task-Robust Model-Agnostic Meta-Learning [[paper](https://papers.nips.cc/paper/2020/file/da8ce53cf0240070ce6c69c48cd588ee-Paper.pdf)] 272 | - Liam Collins, Aryan Mokhtari, Sanjay Shakkottai --NeurIPS 2020 273 | 274 | Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation [[paper](https://arxiv.org/abs/1910.13616)] 275 | - Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim --NeurIPS 2019 276 | 277 | Meta-Learning with Warped Gradient Descent [[paper](https://arxiv.org/pdf/1909.00025.pdf)] 278 | - Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Hujun Yin, Raia Hadsell --arXiv 2019 279 | 280 | TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning [[paper](https://arxiv.org/abs/1904.05967)] 281 | - Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, Joseph E. Gonzalez --CVPR 2019 282 | 283 | TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning [[paper](https://arxiv.org/pdf/1905.06549.pdf)] 284 | - Sung Whan Yoon, Jun Seo, Jaekyun Moon --ICML 2019 285 | 286 | Meta-Learning with Latent Embedding Optimization [[paper](https://arxiv.org/abs/1807.05960)] 287 | - Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, Raia Hadsell -- ICLR 2019 288 | 289 | Fast Task-Aware Architecture Inference 290 | - Efi Kokiopoulou, Anja Hauth, Luciano Sbaiz, Andrea Gesmundo, Gabor Bartok, Jesse Berent --arXiv 2019 291 | 292 | Task2Vec: Task Embedding for Meta-Learning 293 | - Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless Fowlkes, Stefano Soatto, Pietro Perona--arXiv 2019 294 | 295 | TADAM: Task dependent adaptive metric for improved few-shot learning 296 | - Boris N. Oreshkin, Pau Rodriguez, Alexandre Lacoste --arXiv 2019 297 | 298 | MetaReg: Towards Domain Generalization using Meta-Regularization [[paper](https://papers.nips.cc/paper/7378-metareg-towards-domain-generalization-using-meta-regularization.pdf)] 299 | - Yogesh Balaji, Swami Sankaranarayanan -- NIPS 2018 300 | 301 | ### Heterogeneous task 302 | Statistical Model Aggregation via Parameter Matching [[paper]](https://arxiv.org/pdf/1911.00218.pdf) 303 | - Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Trong Nghia Hoang --NeurIPS 2019 304 | 305 | Hierarchically Structured Meta-learning [[paper](https://arxiv.org/pdf/1905.05301.pdf)] 306 | - Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li --ICML 2019 307 | 308 | Hierarchical Meta Learning [[paper](https://arxiv.org/abs/1904.09081)] 309 | - Yingtian Zou, Jiashi Feng --arXiv 2019 310 | 311 | 312 | ## Data Aug & Reg 313 | MetAug: Contrastive Learning via Meta Feature Augmentation [[paper](https://arxiv.org/abs/2203.05119)] 314 | - Jiangmeng Li, Wenwen Qiang, Changwen Zheng, Bing Su, Hui Xiong --ICML 2022 315 | 316 | MetaInfoNet: Learning Task-Guided Information for Sample Reweighting [[paper](https://arxiv.org/abs/2012.05273)] 317 | - Hongxin Wei, Lei Feng, Rundong Wang, Bo An --arXiv 2020 318 | 319 | Meta Dropout: Learning to Perturb Latent Features for Generalization [[paper](https://openreview.net/forum?id=BJgd81SYwr)] 320 | - Hae Beom Lee, Taewook Nam, Eunho Yang, Sung Ju Hwang --ICLR 2020 321 | 322 | Learning to Reweight Examples for Robust Deep Learning [[paper](https://arxiv.org/abs/1803.09050)] 323 | - Mengye Ren, Wenyuan Zeng, Bin Yang, Raquel Urtasun --ICML 2018 324 | 325 | 326 | ## Lifelong learning 327 | 328 | Optimizing Reusable Knowledge for Continual Learning via Metalearning [[paper](https://arxiv.org/abs/2106.05390)] 329 | - Julio Hurtado, Alain Raymond-Saez, Alvaro Soto --NeurIPS 2021 330 | 331 | Learning where to learn: Gradient sparsity in meta and continual learning [[paper](https://arxiv.org/pdf/2110.14402.pdf)] 332 | - Johannes von Oswald, Dominic Zhao, Seijin Kobayashi, Simon Schug, Massimo Caccia, Nicolas Zucchet, João Sacramento --NeurIPS 2021 333 | 334 | Online-Within-Online Meta-Learning [[paper](https://papers.nips.cc/paper/9468-online-within-online-meta-learning)] 335 | - Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, Massimiliano Pontil 336 | 337 | Reconciling meta-learning and continual learning with online mixtures of tasks [[paper](https://arxiv.org/abs/1812.06080)] 338 | - Ghassen Jerfel, Erin Grant, Thomas L. Griffiths, Katherine Heller --NeurIPS 2019 339 | 340 | Meta-Learning Representations for Continual Learning [[paper](https://arxiv.org/abs/1905.12588)] 341 | - Khurram Javed, Martha White --NeurIPS 2019 342 | 343 | Online Meta-Learning [[paper](https://arxiv.org/abs/1902.08438)] 344 | - Chelsea Finn, Aravind Rajeswaran, Sham Kakade, Sergey Levine --ICML 2019 345 | 346 | Hierarchically Structured Meta-learning [[paper](https://arxiv.org/pdf/1905.05301.pdf)] 347 | - Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li --ICML 2019 348 | 349 | A Neural-Symbolic Architecture for Inverse Graphics Improved by Lifelong Meta-Learning [[paper](https://arxiv.org/pdf/1905.08910.pdf)] 350 | - Michael Kissner, Helmut Mayer --arXiv 2019 351 | 352 | Incremental Learning-to-Learn with Statistical Guarantees [[paper](http://auai.org/uai2018/proceedings/papers/181.pdf)] 353 | - Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil --arXiv 2018 354 | 355 | ## Domain generalization 356 | Meta-learning curiosity algorithms [[paper](https://openreview.net/pdf?id=BygdyxHFDS)] 357 | - Ferran Alet*, Martin F. Schneider*, Tomas Lozano-Perez, Leslie Pack Kaelbling --ICLR 2020 358 | 359 | Domain Generalization via Model-Agnostic Learning of Semantic Features [[paper](https://arxiv.org/abs/1910.13580)] 360 | - Qi Dou, Daniel C. Castro, Konstantinos Kamnitsas, Ben Glocker 361 | 362 | Learning to Generalize: Meta-Learning for Domain Generalization [[paper](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16067/16547)] 363 | - Da Li, Yongxin Yang, Yi-Zhe Song, Timothy M. Hospedales --AAAI 2018 364 | 365 | ## Bayesian inference 366 | 367 | Stochastic Deep Networks with Linear Competing Units for Model-Agnostic Meta-Learning [[paper](https://openreview.net/forum?id=FFGDKzLasUa)] 368 | - Konstantinos Ι. Kalais, Sotirios Chatzis --ICML 2022 369 | 370 | Meta-Learning with Variational Bayes [[paper](https://arxiv.org/abs/2103.02265)] 371 | - Lucas D. Lingle --arXiv 2021 372 | 373 | Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization [[paper](https://openreview.net/forum?id=ryeYpJSKwr)] 374 | - Michael Volpp, Lukas Froehlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, Christian Daniel --ICLR 2020 375 | 376 | Bayesian Meta Sampling for Fast Uncertainty Adaptation [[paper](https://openreview.net/forum?id=Bkxv90EKPB)] 377 | - Zhenyi Wang, Yang Zhao, Ping Yu, Ruiyi Zhang, Changyou Chen --ICLR 2020 378 | 379 | Meta-Learning Mean Functions for Gaussian Processes [[paper](https://arxiv.org/pdf/1901.08098.pdf)] 380 | - Vincent Fortuin, Heiko Strathmann, and Gunnar Rätsch --NeurIPS 2019 workshop 381 | 382 | Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distribution Tasks [[paper](https://openreview.net/pdf?id=rkeZIJBYvr)] 383 | - Donghyun Na, Hae Beom Lee, Hayeon Lee, Saehoon Kim, Minseop Park, Eunho Yang, Sung Ju Hwang --ICLR 2020 384 | 385 | Meta-Learning without Memorization [[paper](https://openreview.net/pdf?id=BklEFpEYwS)] 386 | - Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, Chelsea Finn --ICLR 2020 387 | 388 | Meta-Amortized Variational Inference and Learning [[paper](https://arxiv.org/pdf/1902.01950.pdf)] 389 | - Mike Wu, Kristy Choi, Noah Goodman, Stefano Ermon --arXiv 2019 390 | 391 | Amortized Bayesian Meta-Learning [[paper](https://openreview.net/pdf?id=rkgpy3C5tX)] 392 | - Sachin Ravi, Alex Beatson --ICLR 2019 393 | 394 | Neural Processes [[paper](https://arxiv.org/abs/1807.01622)] 395 | - Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M. Ali Eslami, Yee Whye Teh 396 | 397 | Meta-Learning Probabilistic Inference For Prediction [[paper](https://arxiv.org/pdf/1805.09921.pdf)] 398 | - Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, Richard E. Turner --ICLR 2019 399 | 400 | Meta-Learning Priors for Efficient Online Bayesian Regression [[paper](https://arxiv.org/abs/1807.08912)] 401 | - James Harrison, Apoorva Sharma, Marco Pavone --WAFR 2018 402 | 403 | Probabilistic Model-Agnostic Meta-Learning [[paper](https://arxiv.org/pdf/1806.02817.pdf)] 404 | - Chelsea Finn, Kelvin Xu, Sergey Levine --arXiv 2018 405 | 406 | Few-shot Autoregressive Density Estimation: Towards Learning to Learn Distributions [[paper](https://arxiv.org/abs/1710.10304)] 407 | - Scott Reed, Yutian Chen, Thomas Paine, Aäron van den Oord, S. M. Ali Eslami, Danilo Rezende, Oriol Vinyals, Nando de Freitas --ICLR 2018 408 | 409 | Bayesian Model-Agnostic Meta-Learning [[paper](https://arxiv.org/abs/1806.03836)] 410 | - Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, Sungjin Ahn -- NIPS 2018 411 | 412 | Meta-learning by adjusting priors based on extended PAC-Bayes theory [[paper](https://arxiv.org/pdf/1711.01244.pdf)] 413 | - Ron Amit , Ron Meir --ICML 2018 414 | 415 | ## Neural process 416 | 417 | Neural Variational Dropout Processes [[paper](https://openreview.net/forum?id=lyLVzukXi08)] 418 | - Insu Jeon, Youngjin Park, Gunhee Kim --ICLR 2022 419 | 420 | Neural ODE Processes [[paper](https://arxiv.org/abs/2103.12413)] 421 | - Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, Pietro Liò --ICLR 2021 422 | 423 | Convolutional Conditional Neural Processes [[paper](https://openreview.net/forum?id=Skey4eBYPS)] 424 | - Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois, Richard E. Turner --ICLR 2020 425 | 426 | Bootstrapping Neural Processes [[paper](https://arxiv.org/pdf/2008.02956.pdf)] 427 | - Juho Lee, Yoonho Lee, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, Yee Whye Teh --NeurIPS 2020 428 | 429 | MetaFun: Meta-Learning with Iterative Functional Updates [[paper](http://proceedings.mlr.press/v119/xu20i/xu20i.pdf)] 430 | - Jin Xu, Jean-Francois Ton, Hyunjik Kim, Adam R. Kosiorek, Yee Whye Teh --ICML 2020 431 | 432 | Sequential Neural Processes [[paper](https://arxiv.org/abs/1906.10264)] 433 | - Gautam Singh, Jaesik Yoon, Youngsung Son, Sungjin Ahn --NeurIPS 2019 434 | 435 | Neural Processes [[paper](https://arxiv.org/abs/1807.01622)] 436 | - Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M. Ali Eslami, Yee Whye Teh --arXiv 2018 437 | 438 | Conditional Neural Processes [[paper](https://arxiv.org/abs/1807.01613)] 439 | - Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, S. M. Ali Eslami --ICML 2018 440 | 441 | ## Configuration transfer 442 | 443 | Online Hyperparameter Meta-Learning with Hypergradient Distillation [[paper](https://openreview.net/forum?id=01AMRlen9wJ)] 444 | - Hae Beom Lee, Hayeon Lee, JaeWoong Shin, Eunho Yang, Timothy Hospedales, Sung Ju Hwang --ICLR 2022 445 | 446 | Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels [[paper](https://arxiv.org/abs/1910.05199)] 447 | - Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O'Boyle, Amos Storkey --NeurIPS 2020 448 | 449 | Meta-Learning for Few-Shot NMT Adaptation [[paper](https://www.aclweb.org/anthology/2020.ngt-1.5.pdf)] 450 | - Amr Sharaf, Hany Hassan, Hal Daumé III --arXiv 2020 451 | 452 | Fast Context Adaptation via Meta-Learning [[paper](https://arxiv.org/pdf/1810.03642.pdf)] 453 | - Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, Shimon Whiteson --ICML 2019 454 | 455 | Zero-Shot Knowledge Distillation in Deep Networks [[paper](https://arxiv.org/pdf/1905.08114.pdf)] 456 | - Gaurav Kumar Nayak *, Konda Reddy Mopuri, Vaisakh Shaj, R. Venkatesh Babu, Anirban Chakraborty --ICML 2019 457 | 458 | Toward Multimodal Model-Agnostic Meta-Learning [[paper](https://arxiv.org/pdf/1812.07172.pdf)] 459 | - Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim --arXiv 2019 460 | 461 | Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [[paper](https://arxiv.org/abs/1703.03400)] 462 | - Chelsea Finn, Pieter Abbeel, Sergey Levine -- ICML 2016 463 | 464 | ### Semi/Unsupervised learning 465 | 466 | Unsupervised Learning via Meta-Learning [[paper](https://arxiv.org/abs/1810.02334)] 467 | - Kyle Hsu, Sergey Levine, Chelsea Finn -- ICLR 2019 468 | 469 | Meta-Learning Update Rules for Unsupervised Representation Learning [[paper](https://openreview.net/pdf?id=HkNDsiC9KQ)] 470 | - Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein --ICLR 2019 471 | 472 | Meta-Learning for Semi-Supervised Few-Shot Classification [[paper](https://arxiv.org/pdf/1803.00676.pdf)] 473 | - Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, Richard S. Zemel --ICLR 2018 474 | 475 | Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace [[paper](https://arxiv.org/abs/1903.08254)] 476 | - Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, Sergey Levine --ICML 2018 477 | 478 | ### Self-supervised learning 479 | 480 | MAML is a Noisy Contrastive Learner in Classification [[paper](https://openreview.net/pdf?id=LDAwu17QaJz)] 481 | - Chia Hsiang Kao, Wei-Chen Chiu, Pin-Yu Chen --ICLR 2022 482 | 483 | Contrastive Learning is Just Meta-Learning [[paper](https://openreview.net/forum?id=gICys3ITSmj)] 484 | - Renkun Ni, Manli Shu, Hossein Souri, Micah Goldblum, Tom Goldstein --ICLR 2022 485 | 486 | ### Learning curves 487 | Transferring Knowledge across Learning Processes [[paper](https://openreview.net/forum?id=HygBZnRctX)] 488 | - Sebastian Flennerhag, Pablo G. Moreno, Neil D. Lawrence, Andreas Damianou --ICLR 2019 489 | 490 | Meta-Curvature [[paper](https://arxiv.org/abs/1902.03356)] 491 | - Eunbyung Park, Junier B. Oliva --NeurIPS 2019 492 | 493 | ### Hyperparameter 494 | LCC: Learning to Customize and Combine Neural Networks for Few-Shot Learning [[paper](https://arxiv.org/pdf/1904.08479.pdf)] 495 | - Yaoyao Liu, Qianru Sun, An-An Liu, Yuting Su, Bernt Schiele, Tat-Seng Chua --CVPR 2019 496 | 497 | Gradient-based Hyperparameter Optimization through Reversible Learning [[paper](https://arxiv.org/pdf/1502.03492.pdf)] 498 | - Dougal Maclaurin, David Duvenaud, Ryan P. Adams --ICML 2016 499 | 500 | ## Model compression 501 | N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning 502 | - Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, Kris M. Kitani --ICLR 2018 503 | 504 | ## Kernel learning 505 | 506 | Deep Kernel Transfer in Gaussian Processes for Few-shot Learning [[paper](https://arxiv.org/pdf/1910.05199.pdf)] 507 | - Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O’Boyle, Amos Storkey --arXiv 2020 508 | 509 | Deep Mean Functions for Meta-Learning in Gaussian Processes [[paper](https://arxiv.org/pdf/1901.08098.pdf)] 510 | - Vincent Fortuin, Gunnar Rätsch --arXiv 2019 511 | 512 | Kernel Learning and Meta Kernels for Transfer Learning [[paper](http://www1.icsi.berkeley.edu/~rueckert/papers/rueckert09kernel)] 513 | - Ulrich Ruckert 514 | 515 | ## Robustness 516 | A Closer Look at the Training Strategy for Modern Meta-Learning [[paper](https://proceedings.neurips.cc/paper/2020/hash/0415740eaa4d9decbc8da001d3fd805f-Abstract.html)] 517 | - JIAXIN CHEN, Xiao-Ming Wu, Yanke Li, Qimai LI, Li-Ming Zhan, Fu-lai Chung --NeurIPS 2020 518 | 519 | Task-Robust Model-Agnostic Meta-Learning [[paper](https://papers.nips.cc/paper/2020/file/da8ce53cf0240070ce6c69c48cd588ee-Paper.pdf)] 520 | - Liam Collins, Aryan Mokhtari, Sanjay Shakkottai --NeurIPS 2020 521 | 522 | FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness [[paper](https://hunch.net/~jl/projects/robust/ml2krobust.pdf)] 523 | - Joseph O'Sullivan, John Langford, Rich Caruana, Avrim Blum --ICML 2000 524 | 525 | ## Optimization 526 | 527 | Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning [[paper](https://arxiv.org/abs/2206.03996)] 528 | - Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, Tianyi Chen --ICML 2022 529 | 530 | Bootstrapped Meta-Learning [[paper](https://openreview.net/forum?id=b-ny3x071E5)] 531 | - Sebastian Flennerhag, Yannick Schroecker, Tom Zahavy, Hado van Hasselt, David Silver, Satinder Singh --ICLR 2022 532 | 533 | Learning where to learn: Gradient sparsity in meta and continual learning [[paper](https://arxiv.org/pdf/2110.14402.pdf)] 534 | - Johannes von Oswald, Dominic Zhao, Seijin Kobayashi, Simon Schug, Massimo Caccia, Nicolas Zucchet, João Sacramento --NeurIPS 2021 535 | 536 | 537 | Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML [[paper](https://openreview.net/pdf/f0530e2cf88af3b74bf61bc8591b7a5a1339c49e.pdf)] 538 | - Aniruddh Raghu, Maithra Raghu, Samy Bengio, Oriol Vinyals --ICLR 2020 539 | 540 | Empirical Bayes Transductive Meta-Learning with Synthetic Gradients [[paper](https://arxiv.org/abs/2004.12696)] 541 | - Shell Xu Hu, Pablo G. Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil D. Lawrence, Andreas Damianou --ICLR 2020 542 | 543 | Transferring Knowledge across Learning Processes [[paper](https://openreview.net/forum?id=HygBZnRctX)] 544 | - Sebastian Flennerhag, Pablo G. Moreno, Neil D. Lawrence, Andreas Damianou --ICLR 2019 545 | 546 | MetaInit: Initializing learning by learning to initialize [[paper](https://papers.nips.cc/paper/9427-metainit-initializing-learning-by-learning-to-initialize)] 547 | - Yann N. Dauphin, Samuel Schoenholz --NeurIPS 2019 548 | 549 | Meta-Learning with Implicit Gradients [[paper](https://arxiv.org/abs/1909.04630)] 550 | - Aravind Rajeswaran*, Chelsea Finn*, Sham Kakade, Sergey Levine --NeurIPS 2019 551 | 552 | Model-Agnostic Meta-Learning using Runge-Kutta Methods [[paper](https://arxiv.org/abs/1910.07368)] 553 | - Daniel Jiwoong Im, Yibo Jiang, Nakul Verma --arXiv 554 | 555 | Learning to Optimize in Swarms [[paper](https://arxiv.org/pdf/1911.03787.pdf)] 556 | - Yue Cao, Tianlong Chen, Zhangyang Wang, Yang Shen --arXiv 2019 557 | 558 | Meta-Learning with Warped Gradient Descent [[paper](https://arxiv.org/pdf/1909.00025.pdf)] 559 | - Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Hujun Yin, Raia Hadsell --ICLR 2020 560 | 561 | Learning to Generalize to Unseen Tasks with Bilevel Optimization [[paper](https://arxiv.org/pdf/1908.01457.pdf)] 562 | - Hayeon Lee, Donghyun Na, Hae Beom Lee, Sung Ju Hwang --arXiv 2019 563 | 564 | Learning to Optimize [[paper](https://arxiv.org/abs/1606.01885)] 565 | - Ke Li Jitendra Malik --ICLR 2017 566 | 567 | Gradient-based Hyperparameter Optimization through Reversible Learning [[paper](https://arxiv.org/pdf/1502.03492.pdf)] 568 | - Dougal Maclaurin, David Duvenaud, Ryan P. Adams --ICML 2016 569 | 570 | ### Continuous time 571 | 572 | Continuous-Time Meta-Learning with Forward Mode Differentiation [[paper](https://openreview.net/forum?id=57PipS27Km)] 573 | - Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, Pierre-Luc Bacon --ICLR 2022 574 | 575 | Meta-learning using privileged information for dynamics [[paper](https://arxiv.org/pdf/2104.14290.pdf)] 576 | - Ben Day, Alexander Norcliffe, Jacob Moss, Pietro Liò --ICLR 2020 #Learning to Learn and SimDL 577 | 578 | ## Theory 579 | 580 | Near-Optimal Task Selection with Mutual Information for Meta-Learning [[paper](https://www.comp.nus.edu.sg/~lowkh/pubs/aistats2022.pdf)] 581 | - Chen, Yizhou; Zhang, Shizhuo; Low, Bryan Kian Hsiang --AISTATS 2022 582 | 583 | Learning Tensor Representations for Meta-Learning [[paper](https://arxiv.org/abs/2201.07348)] 584 | - Samuel Deng, Yilin Guo, Daniel Hsu, Debmalya Mandal --AISTATS 2022 585 | 586 | Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably? [[paper](https://chentianyi1991.github.io/bamaml_aistats2022.pdf)] 587 | - Lisha Chen, Tianyi Chen --AISTATS 2022 588 | 589 | Unraveling Model-Agnostic Meta-Learning via The Adaptation Learning Rate [[paper](https://openreview.net/forum?id=3rULBvOJ8D2)] 590 | - Yingtian Zou, Fusheng Liu, Qianxiao Li --ICLR 2022 591 | 592 | Task Relatedness-Based Generalization Bounds for Meta Learning [[paper](https://openreview.net/forum?id=A3HHaEdqAJL)] 593 | - Jiechao Guan, Zhiwu Lu --ICLR 2022 594 | 595 | How Tight Can PAC-Bayes be in the Small Data Regime? [[paper](https://arxiv.org/pdf/2106.03542.pdf)] 596 | - Andrew Y. K. Foong, Wessel P. Bruinsma, David R. Burt, Richard E. Turner --NeurIPS 2021 597 | 598 | A Representation Learning Perspective on the Importance of Train-Validation Splitting in Meta-Learning [[paper](https://arxiv.org/pdf/2106.15615.pdf)] 599 | - Nikunj Saunshi, Arushi Gupta, and Wei Hu --ICML 2021 600 | 601 | Bilevel Optimization: Convergence Analysis and Enhanced Design [[paper](http://proceedings.mlr.press/v139/ji21c/ji21c.pdf)] 602 | - Kaiyi Ji, Junjie Yang, Yingbin Liang --ICML 2021 603 | 604 | How Important is the Train-Validation Split in Meta-Learning? [[paper](https://arxiv.org/abs/2010.05843)] 605 | - Yu Bai, Minshuo Chen, Pan Zhou, Tuo Zhao, Jason D. Lee, Sham Kakade, Huan Wang, Caiming Xiong --ICML 2021 606 | 607 | Information-Theoretic Generalization Bounds for Meta-Learning and Applications [[paper](https://arxiv.org/pdf/2005.04372.pdf)] 608 | - Sharu Theresa Jose, Osvaldo Simeone --arXiv 2021 609 | 610 | 611 | Modeling and Optimization Trade-off in Meta-learning [[paper](https://proceedings.neurips.cc/paper/2020/hash/7fc63ff01769c4fa7d9279e97e307829-Abstract.html)] 612 | - Katelyn Gao, Ozan Sener --NeurIPS 2020 613 | 614 | A Closer Look at the Training Strategy for Modern Meta-Learning [[paper](https://proceedings.neurips.cc/paper/2020/hash/0415740eaa4d9decbc8da001d3fd805f-Abstract.html)] 615 | - JIAXIN CHEN, Xiao-Ming Wu, Yanke Li, Qimai LI, Li-Ming Zhan, Fu-lai Chung --NeurIPS 2020 616 | 617 | Why Does MAML Outperform ERM? An Optimization Perspective [[paper](https://arxiv.org/pdf/2010.14672.pdf)] 618 | - Liam Collins, Aryan Mokhtari, Sanjay Shakkottai --arXiv 2020 619 | 620 | Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk Minimization [[paper](https://arxiv.org/pdf/2011.02872.pdf)] 621 | - Sharu Theresa Jose, Osvaldo Simeone, Giuseppe Durisi --arXiv 2020 622 | 623 | The Advantage of Conditional Meta-Learning for Biased Regularization and Fine-Tuning [[paper](https://arxiv.org/abs/2006.09486)] 624 | - Giulia Denevi, Massimiliano Pontil, Carlo Ciliberto --NeurIPS 2020 625 | 626 | Convergence of Meta-Learning with Task-Specific Adaptation over Partial Parameters [[paper](https://arxiv.org/abs/2006.09486)] 627 | - Kaiyi Ji, Jason D. Lee, Yingbin Liang, H. Vincent Poor --NeurIPS 2020 628 | 629 | Meta-learning for mixed linear regression [[paper](https://proceedings.icml.cc/static/paper_files/icml/2020/6124-Paper.pdf)] 630 | - Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, Sewoong Oh --ICML 2020 631 | 632 | Tailoring: encoding inductive biases by optimizing unsupervised objectives at prediction time 633 | - Ferran Alet, Kenji Kawaguchi, Maria Bauza, Nurallah Giray Kuru, Tomás Lozano-Pérez, Leslie Pack Kaelbling --NeurIPS 2020 #Meta-Learning 634 | 635 | A Theoretical Analysis of the Number of Shots in Few-Shot Learning [[paper](https://openreview.net/forum?id=HkgB2TNYPS)] 636 | - Tianshi Cao, Marc T Law, Sanja Fidler --ICLR 2020 637 | 638 | Efficient Meta Learning via Minibatch Proximal Update [[paper](https://papers.nips.cc/paper/8432-efficient-meta-learning-via-minibatch-proximal-update)] 639 | - Pan Zhou, Xiaotong Yuan, Huan Xu, Shuicheng Yan, Jiashi Feng --NeurIPS 2019 640 | 641 | On the Convergence Theory of Gradient-Based Model-Agnostic Meta-Learning Algorithms [[paper](https://arxiv.org/pdf/1908.10400.pdf)] 642 | - Alireza Fallah, Aryan Mokhtari, Asuman Ozdaglar --arXiv 2019 643 | 644 | Meta-learners' learning dynamics are unlike learners' [[paper](https://arxiv.org/abs/1905.01320)] 645 | - Neil C. Rabinowitz --arXiv 2019 646 | 647 | Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior [[paper](https://arxiv.org/pdf/1811.09558.pdf)] 648 | - Zi Wang, Beomjoon Kim, Leslie Pack Kaelbling --NeurIPS 2018 649 | 650 | Incremental Learning-to-Learn with Statistical Guarantees [[paper](https://arxiv.org/abs/1803.08089)] 651 | - Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil --UAI 2018 652 | 653 | Meta-learning by adjusting priors based on extended PAC-Bayes theory [[paper](https://arxiv.org/pdf/1711.01244.pdf)] 654 | - Ron Amit , Ron Meir --ICML 2018 655 | 656 | Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm [[paper](https://arxiv.org/pdf/1710.11622.pdf)] 657 | - Chelsea Finn, Sergey Levine --ICLR 2018 658 | 659 | On the Convergence of Model-Agnostic Meta-Learning [[paper](http://noahgolmant.com/writings/maml.pdf)] 660 | - Noah Golmant 661 | 662 | Fast Rates by Transferring from Auxiliary Hypotheses [[paper](https://arxiv.org/pdf/1412.1619.pdf)] 663 | - Ilja Kuzborskij, Francesco Orabona --arXiv 2014 664 | 665 | Algorithmic Stability and Meta-Learning [[paper](http://www.jmlr.org/papers/volume6/maurer05a/maurer05a.pdf)] 666 | - Andreas Maurer --JMLR 2005 667 | 668 | 669 | ### Online convex optimization 670 | PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees [[paper](http://proceedings.mlr.press/v139/rothfuss21a/rothfuss21a.pdf)] 671 | - Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, Andreas Krause --ICML 2021 672 | 673 | Meta-learning with Stochastic Linear Bandits [[paper](https://arxiv.org/abs/2005.04372)] 674 | - Leonardo Cella, Alessandro Lazaric, Massimiliano Pontil --arXiv 2020 675 | 676 | Bayesian Online Meta-Learning with Laplace Approximation [[paper](https://arxiv.org/abs/2005.00146)] 677 | - Pau Ching Yap, Hippolyt Ritter, David Barber --arXiv 2020 678 | 679 | Online Meta-Learning on Non-convex Setting [[paper](https://arxiv.org/abs/1910.10196)] 680 | - Zhenxun Zhuang, Yunlong Wang, Kezi Yu, Songtao Lu --arXiv 2019 681 | 682 | Adaptive Gradient-Based Meta-Learning Methods [[paper](https://arxiv.org/pdf/1906.02717.pdf)] 683 | - Mikhail Khodak, Maria-Florina Balcan, Ameet Talwalkar --NeurIPS 2019 684 | 685 | Learning-to-Learn Stochastic Gradient Descent with Biased Regularization [[paper](https://arxiv.org/abs/1903.10399)] 686 | - Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, Massimiliano Pontil --NeurIPS 2019 687 | 688 | Provable Guarantees for Gradient-Based Meta-Learning 689 | - Mikhail Khodak Maria-Florina Balcan Ameet Talwalkar --arXiv 2019 690 | 691 | --------------------------------------------------------------------------------