├── imgs
└── non-hair-FFHQ.png
└── README.md
/imgs/non-hair-FFHQ.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/oneThousand1000/non-hair-FFHQ/HEAD/imgs/non-hair-FFHQ.png
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # non-hair-FFHQ
2 | The non-hair-FFHQ dataset is a high-quality image dataset that contains 6,000 non-hair FFHQ portraits, based on [ stylegan2-ada](https://github.com/NVlabs/stylegan2-ada-pytorch) and [ffhq-dataset](https://github.com/NVlabs/ffhq-dataset).
3 |
4 | 
5 |
6 | The dataset is built by our HairMapper method.
7 |
8 | > **HairMapper: Removing Hair from Portraits Using GANs**
9 | > [Yiqian Wu](https://onethousandwu.com/), [Yongliang Yang](http://www.yongliangyang.net/), [Xiaogang Jin](http://www.cad.zju.edu.cn/home/jin)*.
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10 |
11 |
12 |
13 | [](https://onethousandwu.com/HairMapper.github.io/)
14 | [](https://openaccess.thecvf.com/content/CVPR2022/html/Wu_HairMapper_Removing_Hair_From_Portraits_Using_GANs_CVPR_2022_paper.html)
15 | [](http://www.cad.zju.edu.cn/home/jin/cvpr2022/Supplementary_Materials.pdf)
16 | [](https://youtu.be/UNtgpphVR2w)
17 | [](https://github.com/oneThousand1000/non-hair-FFHQ)
18 | [](https://github.com/oneThousand1000/HairMapper)
19 |
20 |
21 |
22 |
23 | We apply our method on FFHQ images (all images have licenses that allow **free use, redistribution, and adaptation for non-commercial purposes**) and present a [non-hair-FFHQ](https://github.com/oneThousand1000/non-hair-FFHQ) dataset that contains 6,000 non-hair portraits to inspire and facilitate more works in the future.
24 |
25 | ## Overview
26 |
27 | Google drive link of the dataset : https://drive.google.com/drive/folders/1CbyFYDTUqWRneyuDlVznY4XG-8pLhoAS?usp=sharing.
28 |
29 | | dir | information |
30 | | ------------------------------------------------------------ | ------------------------------- |
31 | | ├ [hair](https://drive.google.com/drive/folders/1ItALK5S9vYY6pwG_hN3sV1rrA7puivuM?usp=sharing) | original images, `{img_id}.png` |
32 | | └ [non-hair](https://drive.google.com/drive/folders/1hOp-ulk11_FismlQ8nr57HdJfJTxen_D?usp=sharing) | results images , `{img_id}.png` |
33 |
34 | ## Code
35 |
36 | https://github.com/oneThousand1000/HairMapper
37 |
38 | ## Agreement
39 |
40 | The non-hair-FFHQ dataset is available for **non-commercial research purposes** only.
41 |
42 |
43 |
44 | ## Related Works
45 |
46 | > **A Style-Based Generator Architecture for Generative Adversarial Networks**
47 | > Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)
48 | > https://arxiv.org/abs/1812.04948
49 |
50 | > **Training Generative Adversarial Networks with Limited Data**
51 | > Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila
52 | > https://arxiv.org/abs/2006.06676
53 |
54 |
55 |
56 | ## Citation
57 |
58 | ```
59 | @InProceedings{Wu_2022_CVPR,
60 | author = {Wu, Yiqian and Yang, Yong-Liang and Jin, Xiaogang},
61 | title = {HairMapper: Removing Hair From Portraits Using GANs},
62 | booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
63 | month = {June},
64 | year = {2022},
65 | pages = {4227-4236}
66 | }
67 | ```
68 |
69 |
70 | ## Contact
71 |
72 | [jin@cad.zju.edu.cn](mailto:jin@cad.zju.edu.cn)
73 |
74 | onethousand@zju.edu.cn
75 |
76 | onethousand1250@gmail.com
77 |
78 |
--------------------------------------------------------------------------------