├── docs └── images │ ├── wechat.jpg │ ├── ags-paradigm.jpg │ └── future_timeline.jpg ├── LICENSE └── README.md /docs/images/wechat.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/openags/Awesome-AI-Scientist-Papers/HEAD/docs/images/wechat.jpg -------------------------------------------------------------------------------- /docs/images/ags-paradigm.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/openags/Awesome-AI-Scientist-Papers/HEAD/docs/images/ags-paradigm.jpg -------------------------------------------------------------------------------- /docs/images/future_timeline.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/openags/Awesome-AI-Scientist-Papers/HEAD/docs/images/future_timeline.jpg -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2024 universea 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 2 | # Awesome AI Scientist Papers 3 | 4 | 5 | [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome) 6 | ![PRs Welcome](https://img.shields.io/badge/PRs-Welcome-green) 7 | ![Stars](https://img.shields.io/github/stars/universea/Awesome-AI-Scientist-Papers) 8 | ![Visitors](https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fgithub.com%2Funiversea%2FAwesome-AI-Scientist-Papers.git&label=Visitors&countColor=%2337d67a&style=flat&labelStyle=none) 9 | [![GitHub license](https://img.shields.io/github/license/universea/Awesome-AI-Scientist-Papers)](https://github.com/universea/Awesome-AI-Scientist-Papers/blob/main/LICENSE) 10 | 11 | Welcome to the **Awesome AI Scientist Papers** repository! This project aims to curate a collection of important papers to the field of AI/Robot Scientist. 12 | 13 |

14 | Futrue timeline 15 |
16 | Scaling Laws in Scientific Discovery with AI Scientists and Robot Scientists. 17 |

18 | 19 | ## Table of Contents 20 | 21 | - [Papers](#papers) 22 | - [Survey](#survey) 23 | - [News](#news) 24 | - [Benchmark](#benchmark) 25 | - [Cite](#cite) 26 | 27 | 28 | ## Papers 29 | 30 | - [Scaling Laws in Scientific Discovery with AI and Robot Scientists](https://arxiv.org/abs/2503.22444), Pengsong Zhang, Heng Zhang et al., arXiv, 2025 31 | 32 | - [Towards Data-Centric Automatic R&D](https://arxiv.org/abs/2404.11276), Haotian Chen et al., arXiv, 2024 33 | 34 | - [Mlr-copilot: Autonomous machine learning research based on large language models agents](https://arxiv.org/pdf/2408.14033), Ruochen Li et al., arXiv, 2024 35 | 36 | - [The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery](https://www.arxiv.org/abs/2408.06292), Chris Lu et al., arXiv, 2024 37 | 38 | - [Autonomous Generalist Scientist: Towards and Beyond Human-Level Scientific Research with Agentic and Embodied AI and Robots](http://dx.doi.org/10.13140/RG.2.2.35148.01923), Pengsong Zhang, Heng Zhang et al., ResearchGate, 2024 39 | 40 | - [ChatGPT as Research Scientist: Probing GPT’s capabilities as a Research Librarian, Research Ethicist, Data Generator, and Data Predictor](https://doi.org/10.1073/pnas.2404328121), Steven A. Lehr et al., PNAS, 2024 41 | 42 | 43 |
44 | Autonomous Literature Review 45 | 46 | - [SurveyX: Academic Survey Automation via Large Language Models](https://arxiv.org/abs/2502.14776), Xun Liang et al., arXiv, 2025 47 | 48 | - [PaSa: An LLM Agent for Comprehensive Academic Paper Search](https://arxiv.org/abs/2501.10120), Yichen He et al., arXiv, 2025 49 | 50 | - [SCILITLLM: HOW TO ADAPT LLMS FOR SCIENTIFIC LITERATURE UNDERSTANDING](https://arxiv.org/pdf/2408.15545), Sihang Li et al., arXiv, 2024 51 | 52 | - [AutoSurvey: Large Language Models Can Automatically Write Surveys](https://arxiv.org/pdf/2406.10252), Wenjin Yao et al., arXiv, 2024 53 | 54 | - [LLMs4Synthesis: Leveraging Large Language Models for Scientific Synthesis](https://arxiv.org/abs/2409.18812), Hamed Babaei Giglou et al., arXiv, 2024 55 | 56 | - [PubTator 3.0: an AI-powered literature resource for unlocking biomedical knowledge](https://doi.org/10.1093/nar/gkae235), Chih-Hsuan Wei et al., Nucleic Acids Research, 2024 57 | 58 | - [PubMed and beyond: biomedical literature search in the age of artificial intelligence](https://doi.org/10.1016/j.ebiom.2024.104988), Qiao Jin et al., eBioMedicine, 2024 59 | 60 |
61 | 62 |
63 | Proposal, Idea Generation 64 | 65 | - [AgentRxiv: Towards Collaborative Autonomous Research](https://arxiv.org/abs/2503.18102), Samuel Schmidgall et al., arXiv, 2025 66 | 67 | - [Agent Laboratory: Using LLM Agents as Research Assistants](https://arxiv.org/abs/2503.18102), Samuel Schmidgall et al., arXiv, 2025 68 | 69 | - [An empirical investigation of the impact of ChatGPT on creativity](https://doi.org/10.1038/s41562-024-01953-1), Byung Cheol Lee et al., Nature Human Behaviour, 2024 70 | 71 | - [Nova: An Iterative Planning and Search Approach to Enhance Novelty and Diversity of LLM Generated Ideas](https://arxiv.org/abs/2410.14255), Xiang Hu et al., arXiv, 2024 72 | 73 | - [Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation](https://arxiv.org/pdf/2410.09403), Haoyang Su et al., arXiv, 2024 74 | 75 | - [Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers](https://arxiv.org/abs/2409.04109), Chenglei Si et al., arXiv, 2024 76 | 77 | - [ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models](https://doi.org/10.48550/arXiv.2404.07738), Jinheon Baek et al., arXiv, 2024 78 | 79 | - [Forecasting high-impact research topics via machine learning on evolving knowledge graphs](https://arxiv.org/abs/2402.08640), Xuemei Gu et al., arXiv, 2024 80 | 81 | - [Large Language Models are Zero Shot Hypothesis Proposers](https://arxiv.org/abs/2311.05965), Biqing Qi et al., arXiv, 2023 82 | 83 | - [SciMON: Scientific Inspiration Machines Optimized for Novelty](https://arxiv.org/abs/2305.14259), Qingyun Wang et al., arXiv, 2023 84 | 85 |
86 | 87 | 88 |
89 | Virtual, Digital, Agent, Experimentation 90 | 91 | - [The Virtual Lab of AI agents designs new SARS-CoV-2 nanobodies](https://www.nature.com/articles/s41586-025-09442-9), Kyle Swanson et al., Nature, 2025 92 | 93 | - [aiXiv: A Next-Generation Open Access Ecosystem for Scientific Discovery Generated by AI Scientists](https://arxiv.org/abs/2508.15126), Pengsong Zhang et al., arXiv, 2025 94 | 95 | - [AI Mathematician: Towards Fully Automated Frontier Mathematical Research](https://arxiv.org/abs/2505.22451), Yuanhang Liu et al., arXiv, 2025 96 | 97 | - [NovelSeek: When Agent Becomes the Scientist -- Building Closed-Loop System from Hypothesis to Verification](https://arxiv.org/abs/2505.16938), Bo Zhang et al., arXiv, 2025 98 | 99 | - [Large language models for scientific discovery in molecular property prediction](https://www.nature.com/articles/s42256-025-00994-z), Yizhen Zheng et al., Nature Machine Intelligence, 2025 100 | 101 | - [Towards an AI co-scientist](https://storage.googleapis.com/coscientist_paper/ai_coscientist.pdf), Juraj Gottweis et al., Google, 2025 102 | 103 | - [Agent Laboratory: Using LLM Agents as Research Assistants](https://arxiv.org/abs/2501.04227), Samuel Schmidgall et al., arXiv, 2025 104 | 105 | - [The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery](https://www.arxiv.org/abs/2408.06292), Chris Lu et al., arXiv, 2024 106 | 107 | - [SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning](https://www.arxiv.org/abs/2409.05556), Alireza Ghafarollahi et al., arXiv, 2024 108 | 109 | - [Empowering Biomedical Discovery with AI Agents](https://arxiv.org/abs/2404.02831), Shanghua Gao et al., arXiv, 2024 110 | 111 | - [Intelligent software for laboratory automation](https://doi.org/10.1016/j.tibtech.2004.07.010), Ken E. Whelan et al., Trends in Biotechnology, 2004 112 | 113 |
114 | 115 | 116 |
117 | Physical, Robot, Experimentation 118 | 119 | - [Augmenting large language models with chemistry tools](https://www.nature.com/articles/s42256-024-00832-8), Andres M. Bran et al., Nature Machine Intelligence, 2024 120 | 121 | - [ORGANA: A Robotic Assistant for Automated Chemistry Experimentation and Characterization](https://arxiv.org/abs/2401.06949), Kourosh Darvish et al., Matter, 2024 122 | 123 | - [MatPilot: an LLM-enabled AI Materials Scientist under the Framework of Human-Machine Collaboration](https://arxiv.org/abs/2411.08063), Ziqi Ni et al., arXiv, 2024 124 | 125 | - [Autonomous mobile robots for exploratory synthetic chemistry](https://www.nature.com/articles/s41586-024-08173-7), Tianwei Dai et al., Nature, 2024 126 | 127 | - [A multi-agent-driven robotic AI chemist enabling autonomous chemical research on demand](https://doi.org/10.26434/chemrxiv-2024-w953h-v2), Tao Song et al., Chemrxiv, 2024 128 | 129 | - [Autonomous chemical research with large language models](https://www.nature.com/articles/s41586-023-06792-0), Daniil A. Boiko et al., Nature, 2023 130 | 131 | - [An ontology for a Robot Scientist](https://doi.org/10.1093/bioinformatics/btl207), Larisa N. Soldatova et al., Bioinformatics, 2006 132 | 133 |
134 | 135 | 136 |
137 | Manuscript 138 | 139 | - [CiteSee: Augmenting Citations in Scientific Papers with Persistent and Personalized Historical Context](https://arxiv.org/abs/2302.07302), Joseph Chee Chang et al., arXiv, 2023 140 | 141 | - [Beyond Summarization: Designing AI Support for Real-World Expository Writing Tasks](https://arxiv.org/abs/2304.02623), Zejiang Shen et al., arXiv, 2023 142 | 143 |
144 | 145 | 146 |
147 | Peer Review 148 | 149 | - [Automated scholarly paper review: Concepts, technologies, and challenges](https://doi.org/10.1016/j.inffus.2023.101830), Jialiang Lin et al., Information Fusion, 2023 150 | 151 | - [Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis](https://doi.org/10.48550/arXiv.2407.12857), Jianxiang Yu et al., arXiv, 2024 152 | 153 | - [MARG: Multi-Agent Review Generation for Scientific Papers](https://arxiv.org/abs/2401.04259), Mike D'Arcy et al., arXiv, 2024 154 | 155 | 156 |
157 | 158 | ## Survey 159 | 160 | - [Synergy of robotics and microfluidics for intelligent micro-and nanomanipulation](https://doi.org/10.1063/5.0275644), Mengmeng Xi, Pengsong Zhang et al., Biomicrofluidics, 2025 161 | 162 | - [Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials](https://arxiv.org/abs/2409.04481), Yizhen Zheng et al., arXiv, 2024 163 | 164 | - [Towards Scientific Discovery with Generative AI: Progress, Opportunities, and Challenges](https://arxiv.org/abs/2412.11427), Chandan K Reddy et al., arXiv, 2024 165 | 166 | - [Bridging AI and Science: Implications from a Large-Scale Literature Analysis of AI4Science](https://arxiv.org/abs/2412.09628), Yutong Xie et al., arXiv, 2024 167 | 168 | - [Paradigm shifts from data-intensive science to robot scientists](https://doi.org/10.1016/j.scib.2024.09.029), Xin Li et al., Science Bulletin, 2024 169 | 170 | - [A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery](https://arxiv.org/abs/2406.10833), Yu Zhang et al., arXiv, 2024 171 | 172 | - [Artificial Intelligence, Scientific Discovery, and Product Innovation](https://doi.org/10.1186%2F1759-4499-2-1), Toner-Rodgers Aidan, aidantr.github.io, 2024 173 | 174 | - [AI for Science: AI enabled scientific facility transforms fundamental research](https://bulletinofcas.researchcommons.org/journal/vol39/iss1/8/), Xiaokang Yang, Bulletin of Chinese Academy of Sciences, 2024 175 | 176 | - [Towards robot scientists for autonomous scientific discovery](https://doi.org/10.1186%2F1759-4499-2-1), Andrew Sparkes et al., Automated experimentation, 2010 177 | 178 | ## News 179 | 180 | - [Accelerating Discovery in Natural Science Laboratories with AI and Robotics: Perspectives and Challenges from the 2024 IEEE ICRA Workshop, Yokohama, Japan](https://arxiv.org/abs/2501.06847), Andrew I. Cooper et al., IEEE ICRA Workshop, 2024 181 | 182 | - [A new golden age of discovery](https://storage.googleapis.com/deepmind-media/DeepMind.com/Assets/Docs/a-new-golden-age-of-discovery_nov-2024.pdf), Conor Griffin et al., Google DeepMind, 2024 183 | 184 | - [Transforming science labs into automated factories of discovery](https://doi.org/10.1126/scirobotics.adm6991), Angelos Angelopoulos, Science Robotics, 2024 185 | 186 | - [Researchers built an ‘AI Scientist’ — what can it do?](https://doi.org/10.1038/d41586-024-02842-3), Davide Castelvecchi et al., Nature, 2024 187 | 188 | - [How to Enter the Chen Institute & Science Prize for AI Accelerated Research](https://www.science.org/content/page/how-enter-chen-institute-science-prize-ai-accelerated-research), ChenSciencePrize@aaas.org et al., Science, 2024 189 | 190 | - [Advancing scientific discovery with the aid of robotics](https://www.science.org/doi/10.1126/scirobotics.adt3842), Amos Matsiko, Science Robotics, 2024 191 | 192 | 193 | ## Benchmark 194 | - [CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark](https://arxiv.org/pdf/2409.11363v1), Zachary S. Siegel et al., arXiv, 2024 195 | 196 | - [CiteBench: A benchmark for Scientific Citation Text Generation](https://arxiv.org/abs/2212.09577), Martin Funkquist et al., Conference on Empirical Methods in Natural Language Processing, 2022 197 | 198 | ## Timeline 199 | 200 |

201 | Futrue timeline 202 |
203 | This timeline illustrates key milestones and future predictions in the development of autonomous AI Scientist and Robot Scientist. 204 |

205 | 206 | 207 | ## Discussions 208 | 209 | We love connecting with the community to discuss AI and Robot Scientist research, share insights, and collaborate on groundbreaking ideas! Join us on the following platforms: 210 | 211 | - **Discord**: Dive into our Discord server to engage in real-time discussions with researchers and enthusiasts worldwide. 212 | [Join Discord](https://discord.gg/6ADEMFsT) 213 | 214 | - **Slack**: Connect with us on Slack for professional conversations, paper discussions, and networking with the AI research community. 215 | [Join Slack](https://join.slack.com/t/awesome-ai-scientist/shared_invite/zt-35r3m9jeq-yT48jva9uqfIDDE5GCjoBQ) 216 | 217 | - **WeChat Group**: Join our WeChat group researchers to discuss papers, share updates, and collaborate. 218 | Scan the QR code or contact an admin (pengsong dot zhang@mail.utoronto.ca) to join: 219 | 220 |

221 | wechat group 222 |
223 | Wechat group. 224 |

225 | 226 | We’re excited to hear your thoughts and contributions in our community! 227 | 228 | ## Contributing 229 | 230 | We welcome contributions to make this repository a richer resource for the AI and Robot Scientist community! To contribute: 231 | 232 | 1. **Add Papers**: Suggest new papers by submitting a pull request with the paper’s title, authors, link, and publication details in the appropriate section. 233 | 2. **Enhance Content**: Propose improvements to categories, summaries, or timelines. 234 | 3. **Report Issues**: Open an issue for typos, broken links, or suggestions. 235 | 236 | ## Cite 237 | ``` 238 | bibtex 239 | @article{zhang2025scaling, 240 | title={Scaling Laws in Scientific Discovery with AI and Robot Scientists}, 241 | author={Zhang, Pengsong and Zhang, Heng and Xu, Huazhe and Xu, Renjun and Wang, Zhenting and Wang, Cong and Garg, Animesh and Li, Zhibin and Ajoudani, Arash and Liu, Xinyu}, 242 | journal={arXiv preprint arXiv:2503.22444}, 243 | year={2025} 244 | } 245 | 246 | @article{zhangautonomous, 247 | title={Autonomous Generalist Scientist: Towards and Beyond Human-Level Scientific Research with Agentic and Embodied AI and Robots}, 248 | author={Zhang, Pengsong and Zhang, Heng and Xu, Huazhe and Xu, Renjun and Wang, Zhenting and Wang, Cong and Garg, Animesh and Li, Zhibin and Liu, Xinyu and Ajoudani, Arash}, 249 | journal={ResearchGate preprint RG.2.2.35148.01923}, 250 | year={2024} 251 | } 252 | ``` 253 | ## License 254 | MIT 255 | --------------------------------------------------------------------------------