├── mario_dqn ├── __init__.py ├── assets │ ├── dqn.png │ └── mario.gif ├── requirements.txt ├── mario_dqn_config.py ├── evaluate.py ├── model.py ├── mario_dqn_main.py ├── README.md ├── wrapper.py └── policy.py ├── .gitignore ├── README.md └── LICENSE /mario_dqn/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | __pycache__ 2 | exp* 3 | *video* -------------------------------------------------------------------------------- /mario_dqn/assets/dqn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/opendilab/DI-adventure/HEAD/mario_dqn/assets/dqn.png -------------------------------------------------------------------------------- /mario_dqn/assets/mario.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/opendilab/DI-adventure/HEAD/mario_dqn/assets/mario.gif -------------------------------------------------------------------------------- /mario_dqn/requirements.txt: -------------------------------------------------------------------------------- 1 | torch==1.10.0 2 | git+http://github.com/opendilab/DI-engine@main 3 | gym-super-mario-bros==7.4.0 4 | gym==0.25.1 5 | opencv-python==4.6.0.66 6 | tensorboard==2.10.1 7 | grad-cam -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # DI-adventure 2 | 3 | Decision intelligence adventure for beginners, have fun and explore it! 4 | 5 | # Adventure List 6 | | No | Environment | Algorithm | Visualization | Docs and Related Links | 7 | | :--: | :--------------------------------------: | :---------------------------------: | :--------------------------------:|:---------------------------------------------------------: | 8 | | 1 | [mario](https://github.com/Kautenja/gym-super-mario-bros) | [DQN](https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf) | ![mario](./mario_dqn/assets/mario.gif) | [DQN doc](https://di-engine-docs.readthedocs.io/en/latest/12_policies/dqn.html)
[DQN中文文档](https://di-engine-docs.readthedocs.io/zh_CN/latest/12_policies/dqn_zh.html)| 9 | 10 | # License 11 | DI-adventure is released under the Apache 2.0 license. 12 | -------------------------------------------------------------------------------- /mario_dqn/mario_dqn_config.py: -------------------------------------------------------------------------------- 1 | """ 2 | config 配置文件,这一部分主要包含一些超参数的配置,大家只用关注 model 中的参数即可 3 | """ 4 | from easydict import EasyDict 5 | 6 | mario_dqn_config = dict( 7 | # 实验结果的存放路径 8 | exp_name='exp/mario_dqn_seed0', 9 | # mario环境相关 10 | env=dict( 11 | # 用来收集经验(experience)的mario环境的数目 12 | # 请根据机器的性能自行增减 13 | collector_env_num=8, 14 | # 用来评估智能体性能的mario环境的数目 15 | # 请根据机器的性能自行增减 16 | evaluator_env_num=8, 17 | # 评估轮次 18 | n_evaluator_episode=8, 19 | # 训练停止的分数(3000分可以认为通关1-1,停止训练以节省计算资源) 20 | stop_value=3000 21 | ), 22 | policy=dict( 23 | # 是否使用 CUDA 加速(必要) 24 | cuda=True, 25 | # 神经网络模型相关参数 26 | model=dict( 27 | # 网络输入的张量形状 28 | obs_shape=[1, 84, 84], 29 | # 有多少个可选动作 30 | action_shape=7, 31 | # 网络结构超参数 32 | encoder_hidden_size_list=[32, 64, 128], 33 | # 是否使用对决网络 Dueling Network 34 | dueling=False, 35 | ), 36 | # n-step TD 37 | nstep=3, 38 | # 折扣系数 gamma 39 | discount_factor=0.99, 40 | # 训练相关参数 41 | learn=dict( 42 | # 每次利用相同的经验更新网络的次数 43 | update_per_collect=10, 44 | # batch size大小 45 | batch_size=32, 46 | # 学习率 47 | learning_rate=0.0001, 48 | # target Q-network更新频率 49 | target_update_freq=500, 50 | ), 51 | # 收集经验相关,每次收集96个transition进行一次训练 52 | collect=dict(n_sample=96, ), 53 | # 评估相关,每2000个iteration评估一次 54 | eval=dict(evaluator=dict(eval_freq=2000, )), 55 | other=dict( 56 | # epsilon-greedy算法 57 | eps=dict( 58 | type='exp', 59 | start=1., 60 | end=0.05, 61 | decay=250000, 62 | ), 63 | # replay buffer大小 64 | replay_buffer=dict(replay_buffer_size=100000, ), 65 | ), 66 | ), 67 | ) 68 | mario_dqn_config = EasyDict(mario_dqn_config) 69 | main_config = mario_dqn_config 70 | mario_dqn_create_config = dict( 71 | env_manager=dict(type='subprocess'), 72 | policy=dict(type='dqn'), 73 | ) 74 | mario_dqn_create_config = EasyDict(mario_dqn_create_config) 75 | create_config = mario_dqn_create_config 76 | # you can run `python3 -u mario_dqn_main.py` -------------------------------------------------------------------------------- /mario_dqn/evaluate.py: -------------------------------------------------------------------------------- 1 | """ 2 | 智能体评估函数 3 | """ 4 | import torch 5 | from ding.utils import set_pkg_seed 6 | from mario_dqn_config import mario_dqn_config, mario_dqn_create_config 7 | from model import DQN 8 | from policy import DQNPolicy 9 | from ding.config import compile_config 10 | from ding.envs import DingEnvWrapper 11 | import gym_super_mario_bros 12 | from gym_super_mario_bros.actions import SIMPLE_MOVEMENT, COMPLEX_MOVEMENT 13 | from nes_py.wrappers import JoypadSpace 14 | from wrapper import MaxAndSkipWrapper, WarpFrameWrapper, ScaledFloatFrameWrapper, FrameStackWrapper, \ 15 | FinalEvalRewardEnv, RecordCAM 16 | 17 | action_dict = {2: [["right"], ["right", "A"]], 7: SIMPLE_MOVEMENT, 12: COMPLEX_MOVEMENT} 18 | action_nums = [2, 7, 12] 19 | 20 | 21 | def wrapped_mario_env(model, cam_video_path, version=0, action=2, obs=1): 22 | return DingEnvWrapper( 23 | JoypadSpace(gym_super_mario_bros.make("SuperMarioBros-1-1-v"+str(version)), action_dict[int(action)]), 24 | cfg={ 25 | 'env_wrapper': [ 26 | lambda env: MaxAndSkipWrapper(env, skip=4), 27 | lambda env: WarpFrameWrapper(env, size=84), 28 | lambda env: ScaledFloatFrameWrapper(env), 29 | lambda env: FrameStackWrapper(env, n_frames=obs), 30 | lambda env: FinalEvalRewardEnv(env), 31 | lambda env: RecordCAM(env, cam_model=model, video_folder=cam_video_path) 32 | ] 33 | } 34 | ) 35 | 36 | 37 | def evaluate(args, state_dict, seed, video_dir_path, eval_times): 38 | # 加载配置 39 | cfg = compile_config(mario_dqn_config, create_cfg=mario_dqn_create_config, auto=True, save_cfg=False) 40 | # 实例化DQN模型 41 | model = DQN(**cfg.policy.model) 42 | # 加载模型权重文件 43 | model.load_state_dict(state_dict['model']) 44 | # 生成环境 45 | env = wrapped_mario_env(model, args.replay_path, args.version, args.action, args.obs) 46 | # 实例化DQN策略 47 | policy = DQNPolicy(cfg.policy, model=model).eval_mode 48 | # 设置seed 49 | env.seed(seed) 50 | set_pkg_seed(seed, use_cuda=cfg.policy.cuda) 51 | # 保存录像 52 | env.enable_save_replay(video_dir_path) 53 | eval_reward_list = [] 54 | # 评估 55 | for n in range(eval_times): 56 | # 环境重置,返回初始观测 57 | obs = env.reset() 58 | eval_reward = 0 59 | while True: 60 | # 策略根据观测返回所有动作的Q值以及Q值最大的动作 61 | Q = policy.forward({0: obs}) 62 | # 获取动作 63 | action = Q[0]['action'].item() 64 | # 将动作传入环境,环境返回下一帧信息 65 | obs, reward, done, info = env.step(action) 66 | eval_reward += reward 67 | if done or info['time'] < 250: 68 | print(info) 69 | eval_reward_list.append(eval_reward) 70 | break 71 | print('During {}th evaluation, the total reward your mario got is {}'.format(n, eval_reward)) 72 | print('Eval is over! The performance of your RL policy is {}'.format(sum(eval_reward_list) / len(eval_reward_list))) 73 | print("Your mario video is saved in {}".format(video_dir_path)) 74 | try: 75 | del env 76 | except Exception: 77 | pass 78 | 79 | 80 | if __name__ == "__main__": 81 | import argparse 82 | parser = argparse.ArgumentParser() 83 | parser.add_argument("--seed", "-s", type=int, default=0) 84 | parser.add_argument("--checkpoint", "-ckpt", type=str, default='./exp/v0_1a_7f_seed0/ckpt/ckpt_best.pth.tar') 85 | parser.add_argument("--replay_path", "-rp", type=str, default='./eval_videos') 86 | parser.add_argument("--version", "-v", type=int, default=0, choices=[0,1,2,3]) 87 | parser.add_argument("--action", "-a", type=int, default=7, choices=[2,7,12]) 88 | parser.add_argument("--obs", "-o", type=int, default=1, choices=[1,4]) 89 | args = parser.parse_args() 90 | mario_dqn_config.policy.model.obs_shape=[args.obs, 84, 84] 91 | mario_dqn_config.policy.model.action_shape=args.action 92 | ckpt_path = args.checkpoint 93 | video_dir_path = args.replay_path 94 | state_dict = torch.load(ckpt_path, map_location='cpu') 95 | evaluate(args, state_dict=state_dict, seed=args.seed, video_dir_path=video_dir_path, eval_times=1) 96 | -------------------------------------------------------------------------------- /mario_dqn/model.py: -------------------------------------------------------------------------------- 1 | """ 2 | 神经网络模型定义 3 | """ 4 | from typing import Union, Optional, Dict, Callable, List 5 | import torch 6 | import torch.nn as nn 7 | 8 | from ding.utils import SequenceType, squeeze 9 | from ding.model.common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, MultiHead 10 | 11 | 12 | class DQN(nn.Module): 13 | 14 | mode = ['compute_q', 'compute_q_logit'] 15 | 16 | def __init__( 17 | self, 18 | obs_shape: Union[int, SequenceType], 19 | action_shape: Union[int, SequenceType], 20 | encoder_hidden_size_list: SequenceType = [128, 128, 64], 21 | dueling: bool = True, 22 | head_hidden_size: Optional[int] = None, 23 | head_layer_num: int = 1, 24 | activation: Optional[nn.Module] = nn.ReLU(), 25 | norm_type: Optional[str] = None 26 | ) -> None: 27 | """ 28 | Overview: 29 | Init the DQN (encoder + head) Model according to input arguments. 30 | Arguments: 31 | - obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84]. 32 | - action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3]. 33 | - encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \ 34 | the last element must match ``head_hidden_size``. 35 | - dueling (:obj:`dueling`): Whether choose ``DuelingHead`` or ``DiscreteHead(default)``. 36 | - head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network. 37 | - head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output 38 | - activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \ 39 | if ``None`` then default set it to ``nn.ReLU()`` 40 | - norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \ 41 | ``ding.torch_utils.fc_block`` for more details. 42 | """ 43 | super(DQN, self).__init__() 44 | # For compatibility: 1, (1, ), [4, 32, 32] 45 | obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) 46 | if head_hidden_size is None: 47 | head_hidden_size = encoder_hidden_size_list[-1] 48 | # FC Encoder 49 | if isinstance(obs_shape, int) or len(obs_shape) == 1: 50 | self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) 51 | # Conv Encoder 52 | elif len(obs_shape) == 3: 53 | self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) 54 | else: 55 | raise RuntimeError( 56 | "not support obs_shape for pre-defined encoder: {}, please customize your own DQN".format(obs_shape) 57 | ) 58 | # Head Type 59 | if dueling: 60 | head_cls = DuelingHead 61 | else: 62 | head_cls = DiscreteHead 63 | multi_head = not isinstance(action_shape, int) 64 | if multi_head: 65 | self.head = MultiHead( 66 | head_cls, 67 | head_hidden_size, 68 | action_shape, 69 | layer_num=head_layer_num, 70 | activation=activation, 71 | norm_type=norm_type 72 | ) 73 | else: 74 | self.head = head_cls( 75 | head_hidden_size, action_shape, head_layer_num, activation=activation, norm_type=norm_type 76 | ) 77 | 78 | 79 | def forward(self, x: torch.Tensor, mode: str='compute_q_logit') -> Dict: 80 | assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) 81 | return getattr(self, mode)(x) 82 | 83 | 84 | def compute_q(self, x: torch.Tensor) -> Dict: 85 | r""" 86 | Overview: 87 | DQN forward computation graph, input observation tensor to predict q_value. 88 | Arguments: 89 | - x (:obj:`torch.Tensor`): Observation inputs 90 | Returns: 91 | - outputs (:obj:`Dict`): DQN forward outputs, such as q_value. 92 | ReturnsKeys: 93 | - logit (:obj:`torch.Tensor`): Discrete Q-value output of each action dimension. 94 | Shapes: 95 | - x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape`` 96 | - logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape`` 97 | Examples: 98 | >>> model = DQN(32, 6) # arguments: 'obs_shape' and 'action_shape' 99 | >>> inputs = torch.randn(4, 32) 100 | >>> outputs = model(inputs) 101 | >>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 6]) 102 | """ 103 | x = self.encoder(x) 104 | x = self.head(x) 105 | return x 106 | 107 | 108 | def compute_q_logit(self, x: torch.Tensor) -> Dict: 109 | x = self.encoder(x) 110 | x = self.head(x) 111 | return x['logit'] -------------------------------------------------------------------------------- /mario_dqn/mario_dqn_main.py: -------------------------------------------------------------------------------- 1 | """ 2 | 智能体训练入口,包含训练逻辑 3 | """ 4 | from tensorboardX import SummaryWriter 5 | from ding.config import compile_config 6 | from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer 7 | from ding.envs import SyncSubprocessEnvManager, DingEnvWrapper, BaseEnvManager 8 | from wrapper import MaxAndSkipWrapper, WarpFrameWrapper, ScaledFloatFrameWrapper, FrameStackWrapper, \ 9 | FinalEvalRewardEnv 10 | from policy import DQNPolicy 11 | from model import DQN 12 | from ding.utils import set_pkg_seed 13 | from ding.rl_utils import get_epsilon_greedy_fn 14 | from mario_dqn_config import mario_dqn_config 15 | from gym_super_mario_bros.actions import SIMPLE_MOVEMENT, COMPLEX_MOVEMENT 16 | from nes_py.wrappers import JoypadSpace 17 | from functools import partial 18 | import os 19 | import gym_super_mario_bros 20 | 21 | 22 | # 动作相关配置 23 | action_dict = {2: [["right"], ["right", "A"]], 7: SIMPLE_MOVEMENT, 12: COMPLEX_MOVEMENT} 24 | action_nums = [2, 7, 12] 25 | 26 | 27 | # mario环境 28 | def wrapped_mario_env(version=0, action=7, obs=1): 29 | return DingEnvWrapper( 30 | # 设置mario游戏版本与动作空间 31 | JoypadSpace(gym_super_mario_bros.make("SuperMarioBros-1-1-v"+str(version)), action_dict[int(action)]), 32 | cfg={ 33 | # 添加各种wrapper 34 | 'env_wrapper': [ 35 | # 默认wrapper:跳帧以降低计算量 36 | lambda env: MaxAndSkipWrapper(env, skip=4), 37 | # 默认wrapper:将mario游戏环境图片进行处理,返回大小为84X84的图片observation 38 | lambda env: WarpFrameWrapper(env, size=84), 39 | # 默认wrapper:将observation数值进行归一化 40 | lambda env: ScaledFloatFrameWrapper(env), 41 | # 默认wrapper:叠帧,将连续n_frames帧叠到一起,返回shape为(n_frames,84,84)的图片observation 42 | lambda env: FrameStackWrapper(env, n_frames=obs), 43 | # 默认wrapper:在评估一局游戏结束时返回累计的奖励,方便统计 44 | lambda env: FinalEvalRewardEnv(env), 45 | # 以下是你添加的wrapper 46 | ] 47 | } 48 | ) 49 | 50 | 51 | def main(cfg, args, seed=0, max_env_step=int(3e6)): 52 | # Easydict类实例,包含一些配置 53 | cfg = compile_config( 54 | cfg, 55 | SyncSubprocessEnvManager, 56 | DQNPolicy, 57 | BaseLearner, 58 | SampleSerialCollector, 59 | InteractionSerialEvaluator, 60 | AdvancedReplayBuffer, 61 | seed=seed, 62 | save_cfg=True 63 | ) 64 | # 收集经验的环境数量以及用于评估的环境数量 65 | collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num 66 | # 收集经验的环境,使用并行环境管理器 67 | collector_env = SyncSubprocessEnvManager( 68 | env_fn=[partial(wrapped_mario_env, version=args.version, action=args.action, obs=args.obs) for _ in range(collector_env_num)], cfg=cfg.env.manager 69 | ) 70 | # 评估性能的环境,使用并行环境管理器 71 | evaluator_env = SyncSubprocessEnvManager( 72 | env_fn=[partial(wrapped_mario_env, version=args.version, action=args.action, obs=args.obs) for _ in range(evaluator_env_num)], cfg=cfg.env.manager 73 | ) 74 | 75 | # 为mario环境设置种子 76 | collector_env.seed(seed) 77 | evaluator_env.seed(seed, dynamic_seed=False) 78 | # 为torch、numpy、random等package设置种子 79 | set_pkg_seed(seed, use_cuda=cfg.policy.cuda) 80 | 81 | # 采用DQN模型 82 | model = DQN(**cfg.policy.model) 83 | # 采用DQN策略 84 | policy = DQNPolicy(cfg.policy, model=model) 85 | 86 | # 设置学习、经验收集、评估、经验回放等强化学习常用配置 87 | tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) 88 | learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) 89 | collector = SampleSerialCollector( 90 | cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name 91 | ) 92 | evaluator = InteractionSerialEvaluator( 93 | cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name 94 | ) 95 | replay_buffer = AdvancedReplayBuffer(cfg.policy.other.replay_buffer, tb_logger, exp_name=cfg.exp_name) 96 | 97 | # 设置epsilon greedy 98 | eps_cfg = cfg.policy.other.eps 99 | epsilon_greedy = get_epsilon_greedy_fn(eps_cfg.start, eps_cfg.end, eps_cfg.decay, eps_cfg.type) 100 | 101 | # 训练以及评估 102 | while True: 103 | # 根据当前训练迭代数决定是否进行评估 104 | if evaluator.should_eval(learner.train_iter): 105 | stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) 106 | if stop: 107 | break 108 | # 更新epsilon greedy信息 109 | eps = epsilon_greedy(collector.envstep) 110 | # 经验收集器从环境中收集经验 111 | new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs={'eps': eps}) 112 | # 将收集的经验放入replay buffer 113 | replay_buffer.push(new_data, cur_collector_envstep=collector.envstep) 114 | # 采样经验进行训练 115 | for i in range(cfg.policy.learn.update_per_collect): 116 | train_data = replay_buffer.sample(learner.policy.get_attribute('batch_size'), learner.train_iter) 117 | if train_data is None: 118 | break 119 | learner.train(train_data, collector.envstep) 120 | if collector.envstep >= max_env_step: 121 | break 122 | 123 | 124 | if __name__ == "__main__": 125 | from copy import deepcopy 126 | import argparse 127 | parser = argparse.ArgumentParser() 128 | # 种子 129 | parser.add_argument("--seed", "-s", type=int, default=0) 130 | # 游戏版本,v0 v1 v2 v3 四种选择 131 | parser.add_argument("--version", "-v", type=int, default=0, choices=[0,1,2,3]) 132 | # 动作集合种类,包含[["right"], ["right", "A"]]、SIMPLE_MOVEMENT、COMPLEX_MOVEMENT,分别对应2、7、12个动作 133 | parser.add_argument("--action", "-a", type=int, default=7, choices=[2,7,12]) 134 | # 观测空间叠帧数目,不叠帧或叠四帧 135 | parser.add_argument("--obs", "-o", type=int, default=1, choices=[1,4]) 136 | args = parser.parse_args() 137 | mario_dqn_config.exp_name = 'exp/v'+str(args.version)+'_'+str(args.action)+'a_'+str(args.obs)+'f_seed'+str(args.seed) 138 | mario_dqn_config.policy.model.obs_shape=[args.obs, 84, 84] 139 | mario_dqn_config.policy.model.action_shape=args.action 140 | main(deepcopy(mario_dqn_config), args, seed=args.seed) -------------------------------------------------------------------------------- /mario_dqn/README.md: -------------------------------------------------------------------------------- 1 | # 强化学习大作业代码配置与运行 2 | > 同学们不要对于RL背后的数学原理和复杂的代码逻辑感到困扰,首先是本次大作业会很少涉及到这一部分,仓库中对这一部分都有着良好的封装;其次是有问题(原理或者代码实现上的)可以随时提问一起交流,方式包括但不限于: 3 | > - github issue: https://github.com/opendilab/DI-adventure/issues 4 | > - 课程微信群 5 | > - 开发者邮箱: opendilab@pjlab.org.cn 6 | 7 | ## 1. Baseline 代码获取与环境安装 8 | > mario环境的安装教程在网络学堂上,可以自行取用,需要注意: 9 | > 1. 请选择3.8版本的python以避免不必要的版本问题; 10 | > 2. 通过键盘与环境交互需要有可以用于渲染的显示设备,大部分服务器不能胜任,可以选择本地设备或者暂时跳过这一步,对后面没有影响; 11 | > 3. GPU服务器对于强化学习大作业是必须的,如果没有足够的计算资源(笔记本电脑可能难以承担)可能无法顺利完成所有实验; 12 | ### 深度学习框架 PyTorch 安装 13 | 这一步有网上有非常多的教程,请自行搜索学习,这里不予赘述。 14 | > 请安装 1.10.0 版本以避免不必要的环境问题 15 | ### opencv-python 安装 16 | - 在对特征空间的修改中需要对马里奥游戏传回的图像进行处理,代码中使用的是 OpenCV 工具包,安装方法如下 17 | ```bash 18 | pip install opencv-python 19 | ``` 20 | ### Baseline 代码获取 21 | - 这次课程专门创建了 DI-advanture 仓库作为算法 baseline,推荐通过以下方式获取: 22 | ```bash 23 | git clone https://github.com/opendilab/DI-adventure 24 | ``` 25 | 如果出现网络问题,也可以直接去到 DI-advanture 的仓库手动下载后解压。这样做的缺陷是需要手动初始化 git 与设置远端仓库地址: 26 | ```bash 27 | # 如果您是通过手动解压的方式才需要执行以下内容 28 | git init 29 | git add * && git commit -m 'init repo' 30 | git remote set-url origin https://github.com/opendilab/DI-adventure.git 31 | ``` 32 | 推荐使用 git 作为代码管理工具,记录每一次的修改,推荐 [git 教程](https://www.liaoxuefeng.com/wiki/896043488029600)。 33 | ### 强化学习库 DI-engine 安装 34 | - 由于这次大作业的目标不是强化学习算法,因此代码中使用了开源强化学习库 DI-engine 作为具体的强化学习算法实现,安装方法如下: 35 | ```bash 36 | # clone主分支到本地 37 | git clone https://github.com/opendilab/DI-engine.git 38 | cd DI-engine 39 | git checkout 4c607d400d3290a27ad1e5b7fa8eeb4c2a1a4745 40 | pip install -e . 41 | ``` 42 | - (OPTIONAL)由于DI-adventure在不断更新,如果您目前使用的是老版本的DI-adventure,可能需要通过以下方式同步更新: 43 | ```bash 44 | # 1. 更新DI-engine 45 | cd DI-engine 46 | git pull origin main 47 | git checkout 4c607d400d3290a27ad1e5b7fa8eeb4c2a1a4745 48 | pip install -e . 49 | # 2. 更新DI-adventure 50 | cd DI-adventure 51 | # 确认'origin'指向远端仓库‘git@github.com:opendilab/DI-adventure.git’ 52 | git remote -v 53 | # 以下这步如果出现各种例如merge conflict问题,可以借助互联网或咨询助教帮助解决。 54 | # 或者直接重新安装DI-adventure,注意保存自己的更改。 55 | git pull origin main 56 | ``` 57 | - 修改 gym 版本 58 | ```bash 59 | # DI-engine这里可能会将gym版本改为0.25.2,需要手动改回来 60 | pip install gym==0.25.1 61 | ``` 62 | - 安装grad-cam以保存CAM(Class Activation Mapping,类别激活映射图) 63 | ```bash 64 | pip install grad-cam 65 | ``` 66 | ## 2. Baseline 代码运行 67 | - 项目结构 68 | ```bash 69 | . 70 | ├── LICENSE 71 | ├── mario_dqn --> 本次大作业相关代码:利用DQN算法训练《超级马里奥兄弟》智能体 72 | │ ├── assets 73 | │ │ ├── dqn.png --> 流程示意图 74 | │ │ └── mario.gif --> mario游戏gif示意图 75 | │ ├── evaluate.py --> 智能体评估函数 76 | │ ├── __init__.py 77 | │ ├── mario_dqn_main.py --> 智能体训练入口,包含训练的逻辑 78 | │ ├── mario_dqn_config.py --> 智能体配置文件,包含参数信息 79 | │ ├── model.py --> 神经网络结构定义文件 80 | │ ├── policy.py --> 策略逻辑文件,包含经验收集、智能体评估、模型训练的逻辑 81 | │ ├── README.md 82 | │ ├── requirements.txt --> 项目依赖目录 83 | │ └── wrapper.py --> 各式各样的装饰器实现 84 | └── README.md 85 | ``` 86 | 87 | - 神经网络结构 88 | ![](assets/dqn.png) 89 | - 代码运行 90 | 91 | 推荐使用[tmux](http://www.ruanyifeng.com/blog/2019/10/tmux.html)来管理实验。 92 | ```bash 93 | cd DI-adventure/mario_dqn 94 | # 对于每组参数,如果有服务器,计算资源充足,推荐设置三个种子(例如seed=0/1/2)进行3组实验,否则先运行一个seed。 95 | python3 -u mario_dqn_main.py -s -v -a -o 96 | # 以下命令的含义是,设置seed=0,游戏版本v0,动作数目为7(即SIMPLE_MOVEMENT),观测通道数目为1(即不进行叠帧)进行训练。 97 | python3 -u mario_dqn_main.py -s 0 -v 0 -a 7 -o 1 98 | ``` 99 | 训练到与环境交互3,000,000 steps时程序会自动停止,运行时长依据机器性能在3小时到10小时不等,这里如果计算资源充足的同学可以改成5,000,000 steps(main函数中设置max_env_step参数)。程序运行期间可以看看代码逻辑。 100 | ## 3. 智能体性能评估 101 | ## tensorboard 查看训练过程中的曲线 102 | - 首先安装 tensorboard 工具: 103 | ```bash 104 | pip install tensorboard 105 | ``` 106 | - 查看训练日志: 107 | ```bash 108 | tensorboard --logdir 109 | ``` 110 | ### tensorboard 中指标含义如下 111 | tensorboard结果分为 buffer, collector, evaluator, learner 四个部分,以\_iter结尾表明横轴是训练迭代iteration数目,以\_step结尾表明横轴是与环境交互步数step。 112 | 一般而言会更加关注与环境交互的步数,即 collector/evaluator/learner\_step。 113 | #### evaluator 114 | 评估过程的一些结果,最为重要!展开evaluator_step,主要关注: 115 | - reward_mean:即为任务书中的“episode return”。代表评估分数随着与环境交互交互步数的变化,一般而言,整体上随着交互步数越多(训练了越久),分数越高。 116 | - avg_envstep_per_episode:每局游戏(一个episode)马里奥平均行动了多少step,一般而言认为比较长一点会好;如果很快死亡的话envstep就会很短,但是也不排除卡在某个地方导致超时的情况;如果在某一step突然上升,说明学到了某一个很有用的动作使得过了某一个难关,例如看到坑学会了跳跃。 117 | #### collector 118 | 探索过程的一些结果,展开collector_step,其内容和evaluator_step基本一致,但是由于探索过程加了噪声(epsilon-greedy),一般reward_mean会低一些。 119 | #### learner 120 | 学习过程的一些结果,展开learner_step: 121 | - q_value_avg:Q-Network的输出变化,在稳定后一般是稳固上升; 122 | - target_q_value_avg:Target Q-Network的输出变化,和Q-Network基本上一致; 123 | - total_loss_avg:损失曲线,一般不爆炸就不用管,这一点和监督学习有很大差异,思考一下是什么造成了这种差异? 124 | - cur_lr_avg:学习率变化,由于默认不使用学习率衰减,因此会是一条直线; 125 | #### buffer 126 | DQN是off-policy算法,因此会有一个replay buffer用以保存数据,本次大作业不用太关注buffer; 127 | 128 | 总体而言,看看evaluator_step/reward_mean,目标是在尽可能少的环境交互步数能达到尽可能高的回报,一般而言3000分可以认为通关1-1。 129 | 130 | ## 对智能体性能进行评估,并保存录像: 131 | ```bash 132 | python3 -u evaluate.py -ckpt -v -a -o 133 | ``` 134 | - 此外该命令还会保存评估时的游戏录像(eval_videos/rl-video-xxx.mp4),与类别激活映射CAM(eval_videos/merged.mp4),以供查看,请确保您的 ffmpeg 软件可用。 135 | - 评估时由于mario环境是确定性的(这个比较特殊),同时DQN是确定性(deterministic)策略,因此结果不会因为seed的改变而改变。但训练时由于需要探索,因此多个seed是必要的。 136 | 137 | 具体而言,对于你想要分析的智能体,从: 138 | 1. tensorboard结果曲线; 139 | 2. 游戏录像; 140 | 3. 类别激活映射CAM; 141 | 142 | 三个角度入手分析即可。 143 | # 4. 特征处理 144 | - 包括对于观测空间(observation space)、动作空间(action space)和奖励空间(reward space)的处理; 145 | - 这一部分主要使用 wrapper 来实现,什么是 wrapper 可以参考: 146 | 1. [如何自定义一个 ENV WRAPPER](https://di-engine-docs.readthedocs.io/zh_CN/latest/04_best_practice/env_wrapper_zh.html) 147 | 2. [Gym Documentation Wrappers](https://www.gymlibrary.dev/api/wrappers/) 148 | 149 | 可以对以下特征空间更改进行尝试: 150 | ### 观测空间(observation space) 151 | - 图像降采样,即将游戏版本从`v0`更改为`v1`,游戏版本的内容请参照[mario游戏仓库](https://github.com/Kautenja/gym-super-mario-bros):`-v 1`; 152 | - 堆叠四帧作为输入,即输入变为`(4,84,84)`的图像:`-o 4`; 153 | - 叠帧wrapper可以将连续多帧的图像叠在一起送入网络,补充mario运动的速度等单帧图像无法获取的信息; 154 | - 图像内容简化(尝试游戏版本`v2`、`v3`的效果):`-v 2/3`; 155 | ### 动作空间(action space) 156 | - 动作简化,将 `SIMPLE_ACTION` 替换为 `[['right'], ['right', 'A']]`:`-a 2`; 157 | - mario提供了不同的[按键组合](https://github.com/Kautenja/gym-super-mario-bros/blob/master/gym_super_mario_bros/actions.py),有时候简化动作种类能有效降低训练前期学习的困难,但可能降低操作上限; 158 | - 增加动作的多样性,将 `SIMPLE_ACTION` 替换为 `COMPLEX_MOVEMENT`:`-a 12`; 159 | - 也许能提高上限; 160 | - 粘性动作 sticky action(给环境添加 `StickyActionWrapper`,方式和其它自带的 wrapper 相同,即`lambda env: StickyActionWrapper(env)`) 161 | - 粘性动作的含义是,智能体有一定概率直接采用上一帧的动作,可以增加环境的随机性; 162 | ### (拓展)奖励空间(reward space) 163 | 164 | 目前mario的奖励请参照[mario游戏仓库](https://github.com/Kautenja/gym-super-mario-bros) 165 | - 尝试给予金币奖励(给环境添加 `CoinRewardWrapper`,方式和其它自带的 wrapper 相同); 166 | - 能否让mario学会吃金币呢; 167 | - 稀疏 reward,只有死亡和过关才给reward(给环境添加 `SparseRewardWrapper`,方式和其它自带的 wrapper 相同) 168 | - 完全目标导向。稀疏奖励是强化学习想要落地必须克服的问题,有时候在结果出来前无法判断中途的某个动作的好坏; 169 | 170 | **由于同学们计算资源可能不是特别充分,这里提示一下,图像降采样、图像内容简化、叠帧、动作简化是比较有效能提升性能的方法!** 171 | 172 | 以下是非常缺少计算资源和时间,最小限度需要完成的实验任务: 173 | 1. baseline(即`v0+SIMPLE MOVEMENT+1 Frame`)跑一个seed看看结果; 174 | 2. 尝试简化动作空间的同时进行叠帧(即`v0+[['right'], ['right', 'A']]+4 Frame`)跑一个seed看看; 175 | 3. 观测空间去除冗余信息(即`v1+[['right'], ['right', 'A']]+4 Frame`)跑一个seed看看,如果没通关则试试换个seed; 176 | 4. 从tensorboard、可视化、CAM以及对特征空间的修改角度分析通关/没有通过的原因。 177 | 178 | 对于有充足计算资源的同学,推荐增加实验的seed、延长实验步长到5M、更换其它游戏版本、尝试其它动作观测空间组合,使用其它的wrapper、以及free style; 179 | 180 | --- 181 | **新增:一些实验[结果](https://github.com/opendilab/DI-adventure/blob/results/mario_dqn/README.md)供大家参考!** 182 | **新增:分析[思路/范例](https://github.com/opendilab/DI-adventure/tree/analysis/mario_dqn)供大家参考!** 183 | # 对于大作业任务书的一些补充说明: 184 | **如果不知道接下来要做什么了,请参考任务书或咨询助教!!!** 185 | - “3.2【baseline 跑通】(3)训练出能够通关简单级别关卡(1-1 ~~,1-2~~ )的智能体”。 考虑到算力等因素,大家只需要关注关卡1-1即可。 186 | - “3.2【baseline 跑通】~~(5)查看网络预测的 Q 值与实际 Q 值,判断当前是否存在高估或者低估问题;~~”。没有提供实际Q值,这一点要求去掉。 187 | - “3.4【结果分析】20 分”,不需要每一组参数都分析,选择有代表性或你想要分析的参数与wrapper组合,从tensorboard结果曲线、评估视频与CAM激活图三个方面出发分析即可。由于视频无法放入实验报告与海报,对有意思的部分进行截图插入即可。 188 | 189 | # Update 190 | ## 11.30 191 | - 修复了evaluate.py以及mario_dqn_main.py中,预设动作维度不正确的bug,该bug曾经导致无法使用COMPLEX_MOVEMENT。感谢邹岷强同学的反馈。 192 | ## 12.08 193 | - 修复了因为DI-engine更新导致的FinalEvalRewardEnv wrapper不可用的bug,感谢吴天鹤同学的反馈。 194 | ## 12.09 195 | - 润色了一下注释,不影响程序运行。 196 | -------------------------------------------------------------------------------- /mario_dqn/wrapper.py: -------------------------------------------------------------------------------- 1 | """ 2 | wrapper定义文件 3 | """ 4 | from typing import Union, List, Tuple, Callable 5 | from ding.envs.env_wrappers import MaxAndSkipWrapper, WarpFrameWrapper, ScaledFloatFrameWrapper, FrameStackWrapper, \ 6 | FinalEvalRewardEnv 7 | import gym 8 | import numpy as np 9 | import cv2 10 | from pytorch_grad_cam import GradCAM 11 | import torch 12 | from ding.torch_utils import to_ndarray 13 | import os 14 | import warnings 15 | import copy 16 | 17 | 18 | # 粘性动作wrapper 19 | class StickyActionWrapper(gym.ActionWrapper): 20 | """ 21 | Overview: 22 | A certain possibility to select the last action 23 | Interface: 24 | ``__init__``, ``action`` 25 | Properties: 26 | - env (:obj:`gym.Env`): the environment to wrap. 27 | - ``p_sticky``: possibility to select the last action 28 | """ 29 | 30 | def __init__(self, env: gym.Env, p_sticky: float=0.25): 31 | super().__init__(env) 32 | self.p_sticky = p_sticky 33 | self.last_action = 0 34 | 35 | def action(self, action): 36 | if np.random.random() < self.p_sticky: 37 | return_action = self.last_action 38 | else: 39 | return_action = action 40 | self.last_action = action 41 | return return_action 42 | 43 | 44 | # 稀疏奖励wrapper 45 | class SparseRewardWrapper(gym.Wrapper): 46 | """ 47 | Overview: 48 | Only death and pass sparse reward 49 | Interface: 50 | ``__init__``, ``step`` 51 | Properties: 52 | - env (:obj:`gym.Env`): the environment to wrap. 53 | """ 54 | 55 | def __init__(self, env: gym.Env): 56 | super().__init__(env) 57 | 58 | def step(self, action): 59 | obs, reward, done, info = self.env.step(action) 60 | dead = True if reward == -15 else False 61 | reward = 0 62 | if info['flag_get']: 63 | reward = 15 64 | if dead: 65 | reward = -15 66 | return obs, reward, done, info 67 | 68 | 69 | # 硬币奖励wrapper 70 | class CoinRewardWrapper(gym.Wrapper): 71 | """ 72 | Overview: 73 | add coin reward 74 | Interface: 75 | ``__init__``, ``step`` 76 | Properties: 77 | - env (:obj:`gym.Env`): the environment to wrap. 78 | """ 79 | 80 | def __init__(self, env: gym.Env): 81 | super().__init__(env) 82 | self.num_coins = 0 83 | 84 | def step(self, action): 85 | obs, reward, done, info = self.env.step(action) 86 | reward += (info['coins'] - self.num_coins) * 10 87 | self.num_coins = info['coins'] 88 | return obs, reward, done, info 89 | 90 | 91 | # CAM相关,不需要了解 92 | def dump_arr2video(arr, video_folder): 93 | fourcc = cv2.VideoWriter_fourcc(*'MP4V') 94 | fps = 6 95 | size = (256, 240) 96 | out = cv2.VideoWriter(video_folder + '/cam_pure.mp4', fourcc, fps, size) 97 | out1 = cv2.VideoWriter(video_folder + '/obs_pure.mp4', fourcc, fps, size) 98 | out2 = cv2.VideoWriter(video_folder + '/merged.mp4', fourcc, fps, size) 99 | for frame, obs in arr: 100 | frame = (255 * frame).astype('uint8').squeeze(0) 101 | frame_c = cv2.resize(cv2.applyColorMap(frame, cv2.COLORMAP_JET), size) 102 | out.write(frame_c) 103 | 104 | obs = cv2.cvtColor(obs, cv2.COLOR_RGB2BGR) 105 | out1.write(obs) 106 | 107 | merged_frame = cv2.addWeighted(obs, 0.6, frame_c, 0.4, 0) 108 | out2.write(merged_frame) 109 | # assert False 110 | 111 | 112 | def get_cam(img, model): 113 | target_layers = [model.encoder.main[0]] 114 | input_tensor = torch.from_numpy(img).unsqueeze(0) 115 | 116 | # Construct the CAM object once, and then re-use it on many images: 117 | cam = GradCAM(model=model, target_layers=target_layers, use_cuda=True) 118 | targets = None 119 | 120 | # You can also pass aug_smooth=True and eigen_smooth=True, to apply smoothing. 121 | grayscale_cam = cam(input_tensor=input_tensor, targets=targets) 122 | 123 | # In this example grayscale_cam has only one image in the batch: 124 | return grayscale_cam 125 | 126 | 127 | def capped_cubic_video_schedule(episode_id): 128 | if episode_id < 1000: 129 | return int(round(episode_id ** (1.0 / 3))) ** 3 == episode_id 130 | else: 131 | return episode_id % 1000 == 0 132 | 133 | 134 | class RecordCAM(gym.Wrapper): 135 | 136 | def __init__( 137 | self, 138 | env, 139 | cam_model, 140 | video_folder: str, 141 | episode_trigger: Callable[[int], bool] = None, 142 | step_trigger: Callable[[int], bool] = None, 143 | video_length: int = 0, 144 | name_prefix: str = "rl-video", 145 | ): 146 | super(RecordCAM, self).__init__(env) 147 | self._env = env 148 | self.cam_model = cam_model 149 | 150 | if episode_trigger is None and step_trigger is None: 151 | episode_trigger = capped_cubic_video_schedule 152 | 153 | trigger_count = sum([x is not None for x in [episode_trigger, step_trigger]]) 154 | assert trigger_count == 1, "Must specify exactly one trigger" 155 | 156 | self.episode_trigger = episode_trigger 157 | self.step_trigger = step_trigger 158 | self.video_recorder = [] 159 | 160 | self.video_folder = os.path.abspath(video_folder) 161 | # Create output folder if needed 162 | if os.path.isdir(self.video_folder): 163 | warnings.warn( 164 | f"Overwriting existing videos at {self.video_folder} folder (try specifying a different `video_folder` for the `RecordVideo` wrapper if this is not desired)" 165 | ) 166 | os.makedirs(self.video_folder, exist_ok=True) 167 | 168 | self.name_prefix = name_prefix 169 | self.step_id = 0 170 | self.video_length = video_length 171 | 172 | self.recording = False 173 | self.recorded_frames = 0 174 | self.is_vector_env = getattr(env, "is_vector_env", False) 175 | self.episode_id = 0 176 | 177 | def reset(self, **kwargs): 178 | observations = super(RecordCAM, self).reset(**kwargs) 179 | if not self.recording: 180 | self.start_video_recorder() 181 | return observations 182 | 183 | def start_video_recorder(self): 184 | self.close_video_recorder() 185 | 186 | video_name = f"{self.name_prefix}-step-{self.step_id}" 187 | if self.episode_trigger: 188 | video_name = f"{self.name_prefix}-episode-{self.episode_id}" 189 | 190 | base_path = os.path.join(self.video_folder, video_name) 191 | self.video_recorder = [] 192 | 193 | self.recorded_frames = 0 194 | self.recording = True 195 | 196 | def _video_enabled(self): 197 | if self.step_trigger: 198 | return self.step_trigger(self.step_id) 199 | else: 200 | return self.episode_trigger(self.episode_id) 201 | 202 | def step(self, action): 203 | time_step = super(RecordCAM, self).step(action) 204 | observations, rewards, dones, infos = time_step 205 | 206 | # increment steps and episodes 207 | self.step_id += 1 208 | if not self.is_vector_env: 209 | if dones: 210 | self.episode_id += 1 211 | elif dones[0]: 212 | self.episode_id += 1 213 | 214 | if self.recording: 215 | self.video_recorder.append( 216 | (get_cam(observations, model=self.cam_model), copy.deepcopy(self.env.render(mode='rgb_array'))) 217 | ) 218 | self.recorded_frames += 1 219 | if self.video_length > 0: 220 | if self.recorded_frames > 10000: 221 | self.close_video_recorder() 222 | else: 223 | if not self.is_vector_env: 224 | if dones or infos['time'] < 250: 225 | self.close_video_recorder() 226 | elif dones[0]: 227 | self.close_video_recorder() 228 | 229 | elif self._video_enabled(): 230 | self.start_video_recorder() 231 | 232 | return time_step 233 | 234 | def close_video_recorder(self) -> None: 235 | if self.recorded_frames > 0: 236 | dump_arr2video(self.video_recorder, self.video_folder) 237 | self.video_recorder = [] 238 | self.recording = False 239 | self.recorded_frames = 0 240 | 241 | def seed(self, seed: int) -> None: 242 | self._env.seed(seed) -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /mario_dqn/policy.py: -------------------------------------------------------------------------------- 1 | """ 2 | DQN算法 3 | """ 4 | from typing import List, Dict, Any, Tuple 5 | from collections import namedtuple 6 | import copy 7 | import torch 8 | 9 | from ding.torch_utils import Adam, to_device 10 | from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, get_nstep_return_data, get_train_sample 11 | from ding.model import model_wrap 12 | from ding.utils.data import default_collate, default_decollate 13 | 14 | from ding.policy import Policy 15 | from ding.policy.common_utils import default_preprocess_learn 16 | 17 | 18 | class DQNPolicy(Policy): 19 | r""" 20 | Overview: 21 | Policy class of DQN algorithm, extended by Double DQN/Dueling DQN/PER/multi-step TD. 22 | 23 | Config: 24 | == ==================== ======== ============== ======================================== ======================= 25 | ID Symbol Type Default Value Description Other(Shape) 26 | == ==================== ======== ============== ======================================== ======================= 27 | 1 ``type`` str dqn | RL policy register name, refer to | This arg is optional, 28 | | registry ``POLICY_REGISTRY`` | a placeholder 29 | 2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff- 30 | | erent from modes 31 | 3 ``on_policy`` bool False | Whether the RL algorithm is on-policy 32 | | or off-policy 33 | 4 ``priority`` bool False | Whether use priority(PER) | Priority sample, 34 | | update priority 35 | 5 | ``priority_IS`` bool False | Whether use Importance Sampling Weight 36 | | ``_weight`` | to correct biased update. If True, 37 | | priority must be True. 38 | 6 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | May be 1 when sparse 39 | | ``factor`` [0.95, 0.999] | gamma | reward env 40 | 7 ``nstep`` int 1, | N-step reward discount sum for target 41 | [3, 5] | q_value estimation 42 | 8 | ``learn.update`` int 3 | How many updates(iterations) to train | This args can be vary 43 | | ``per_collect`` | after collector's one collection. Only | from envs. Bigger val 44 | | valid in serial training | means more off-policy 45 | 9 | ``learn.multi`` bool False | whether to use multi gpu during 46 | | ``_gpu`` 47 | 10 | ``learn.batch_`` int 64 | The number of samples of an iteration 48 | | ``size`` 49 | 11 | ``learn.learning`` float 0.001 | Gradient step length of an iteration. 50 | | ``_rate`` 51 | 12 | ``learn.target_`` int 100 | Frequence of target network update. | Hard(assign) update 52 | | ``update_freq`` 53 | 13 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some 54 | | ``done`` | calculation. | fake termination env 55 | 14 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from 56 | | call of collector. | different envs 57 | 15 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1 58 | | ``_len`` 59 | 16 | ``other.eps.type`` str exp | exploration rate decay type | Support ['exp', 60 | | 'linear']. 61 | 17 | ``other.eps.`` float 0.95 | start value of exploration rate | [0,1] 62 | | ``start`` 63 | 18 | ``other.eps.`` float 0.1 | end value of exploration rate | [0,1] 64 | | ``end`` 65 | 19 | ``other.eps.`` int 10000 | decay length of exploration | greater than 0. set 66 | | ``decay`` | decay=10000 means 67 | | the exploration rate 68 | | decay from start 69 | | value to end value 70 | | during decay length. 71 | == ==================== ======== ============== ======================================== ======================= 72 | """ 73 | 74 | config = dict( 75 | type='dqn', 76 | # (bool) Whether use cuda in policy 77 | cuda=False, 78 | # (bool) Whether learning policy is the same as collecting data policy(on-policy) 79 | on_policy=False, 80 | # (bool) Whether enable priority experience sample 81 | priority=False, 82 | # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. 83 | priority_IS_weight=False, 84 | # (float) Discount factor(gamma) for returns 85 | discount_factor=0.97, 86 | # (int) The number of step for calculating target q_value 87 | nstep=1, 88 | learn=dict( 89 | # (bool) Whether to use multi gpu 90 | multi_gpu=False, 91 | # How many updates(iterations) to train after collector's one collection. 92 | # Bigger "update_per_collect" means bigger off-policy. 93 | # collect data -> update policy-> collect data -> ... 94 | update_per_collect=3, 95 | # (int) How many samples in a training batch 96 | batch_size=64, 97 | # (float) The step size of gradient descent 98 | learning_rate=0.001, 99 | # ============================================================== 100 | # The following configs are algorithm-specific 101 | # ============================================================== 102 | # (int) Frequence of target network update. 103 | target_update_freq=100, 104 | # (bool) Whether ignore done(usually for max step termination env) 105 | ignore_done=False, 106 | ), 107 | # collect_mode config 108 | collect=dict( 109 | # (int) Only one of [n_sample, n_episode] shoule be set 110 | # n_sample=8, 111 | # (int) Cut trajectories into pieces with length "unroll_len". 112 | unroll_len=1, 113 | ), 114 | eval=dict(), 115 | # other config 116 | other=dict( 117 | # Epsilon greedy with decay. 118 | eps=dict( 119 | # (str) Decay type. Support ['exp', 'linear']. 120 | type='exp', 121 | # (float) Epsilon start value 122 | start=0.95, 123 | # (float) Epsilon end value 124 | end=0.1, 125 | # (int) Decay length(env step) 126 | decay=10000, 127 | ), 128 | replay_buffer=dict(replay_buffer_size=10000, ), 129 | ), 130 | ) 131 | 132 | def default_model(self) -> Tuple[str, List[str]]: 133 | """ 134 | Overview: 135 | Return this algorithm default model setting for demonstration. 136 | Returns: 137 | - model_info (:obj:`Tuple[str, List[str]]`): model name and mode import_names 138 | 139 | .. note:: 140 | The user can define and use customized network model but must obey the same inferface definition indicated \ 141 | by import_names path. For DQN, ``ding.model.template.q_learning.DQN`` 142 | """ 143 | return 'dqn', ['ding.model.template.q_learning'] 144 | 145 | def _init_learn(self) -> None: 146 | """ 147 | Overview: 148 | Learn mode init method. Called by ``self.__init__``, initialize the optimizer, algorithm arguments, main \ 149 | and target model. 150 | """ 151 | self._priority = self._cfg.priority 152 | self._priority_IS_weight = self._cfg.priority_IS_weight 153 | # Optimizer 154 | self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) 155 | 156 | self._gamma = self._cfg.discount_factor 157 | self._nstep = self._cfg.nstep 158 | 159 | # use model_wrapper for specialized demands of different modes 160 | self._target_model = copy.deepcopy(self._model) 161 | self._target_model = model_wrap( 162 | self._target_model, 163 | wrapper_name='target', 164 | update_type='assign', 165 | update_kwargs={'freq': self._cfg.learn.target_update_freq} 166 | ) 167 | self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') 168 | self._learn_model.reset() 169 | self._target_model.reset() 170 | 171 | def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]: 172 | """ 173 | Overview: 174 | Forward computation graph of learn mode(updating policy). 175 | Arguments: 176 | - data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \ 177 | np.ndarray or dict/list combinations. 178 | Returns: 179 | - info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \ 180 | recorded in text log and tensorboard, values are python scalar or a list of scalars. 181 | ArgumentsKeys: 182 | - necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done`` 183 | - optional: ``value_gamma``, ``IS`` 184 | ReturnsKeys: 185 | - necessary: ``cur_lr``, ``total_loss``, ``priority`` 186 | - optional: ``action_distribution`` 187 | """ 188 | data = default_preprocess_learn( 189 | data, 190 | use_priority=self._priority, 191 | use_priority_IS_weight=self._cfg.priority_IS_weight, 192 | ignore_done=self._cfg.learn.ignore_done, 193 | use_nstep=True 194 | ) 195 | if self._cuda: 196 | data = to_device(data, self._device) 197 | # ==================== 198 | # Q-learning forward 199 | # ==================== 200 | self._learn_model.train() 201 | self._target_model.train() 202 | # Current q value (main model) 203 | q_value = self._learn_model.forward(data['obs'], mode='compute_q')['logit'] 204 | # Target q value 205 | with torch.no_grad(): 206 | target_q_value = self._target_model.forward(data['next_obs'], mode='compute_q')['logit'] 207 | # Max q value action (main model) 208 | target_q_action = self._learn_model.forward(data['next_obs'], mode='compute_q')['action'] 209 | 210 | data_n = q_nstep_td_data( 211 | q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], data['weight'] 212 | ) 213 | value_gamma = data.get('value_gamma') 214 | loss, td_error_per_sample = q_nstep_td_error(data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma) 215 | 216 | # ==================== 217 | # Q-learning update 218 | # ==================== 219 | self._optimizer.zero_grad() 220 | loss.backward() 221 | if self._cfg.learn.multi_gpu: 222 | self.sync_gradients(self._learn_model) 223 | self._optimizer.step() 224 | 225 | # ============= 226 | # after update 227 | # ============= 228 | self._target_model.update(self._learn_model.state_dict()) 229 | return { 230 | 'cur_lr': self._optimizer.defaults['lr'], 231 | 'total_loss': loss.item(), 232 | 'q_value': q_value.mean().item(), 233 | 'target_q_value': target_q_value.mean().item(), 234 | 'priority': td_error_per_sample.abs().tolist(), 235 | # Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard. 236 | # '[histogram]action_distribution': data['action'], 237 | } 238 | 239 | def _monitor_vars_learn(self) -> List[str]: 240 | return ['cur_lr', 'total_loss', 'q_value', 'target_q_value'] 241 | 242 | def _state_dict_learn(self) -> Dict[str, Any]: 243 | """ 244 | Overview: 245 | Return the state_dict of learn mode, usually including model and optimizer. 246 | Returns: 247 | - state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring. 248 | """ 249 | return { 250 | 'model': self._learn_model.state_dict(), 251 | 'target_model': self._target_model.state_dict(), 252 | 'optimizer': self._optimizer.state_dict(), 253 | } 254 | 255 | def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: 256 | """ 257 | Overview: 258 | Load the state_dict variable into policy learn mode. 259 | Arguments: 260 | - state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before. 261 | 262 | .. tip:: 263 | If you want to only load some parts of model, you can simply set the ``strict`` argument in \ 264 | load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ 265 | complicated operation. 266 | """ 267 | self._learn_model.load_state_dict(state_dict['model']) 268 | self._target_model.load_state_dict(state_dict['target_model']) 269 | self._optimizer.load_state_dict(state_dict['optimizer']) 270 | 271 | def _init_collect(self) -> None: 272 | """ 273 | Overview: 274 | Collect mode init method. Called by ``self.__init__``, initialize algorithm arguments and collect_model, \ 275 | enable the eps_greedy_sample for exploration. 276 | """ 277 | self._unroll_len = self._cfg.collect.unroll_len 278 | self._gamma = self._cfg.discount_factor # necessary for parallel 279 | self._nstep = self._cfg.nstep # necessary for parallel 280 | self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_sample') 281 | self._collect_model.reset() 282 | 283 | def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]: 284 | """ 285 | Overview: 286 | Forward computation graph of collect mode(collect training data), with eps_greedy for exploration. 287 | Arguments: 288 | - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ 289 | values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. 290 | - eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step. 291 | Returns: 292 | - output (:obj:`Dict[int, Any]`): The dict of predicting policy_output(action) for the interaction with \ 293 | env and the constructing of transition. 294 | ArgumentsKeys: 295 | - necessary: ``obs`` 296 | ReturnsKeys 297 | - necessary: ``logit``, ``action`` 298 | """ 299 | data_id = list(data.keys()) 300 | data = default_collate(list(data.values())) 301 | if self._cuda: 302 | data = to_device(data, self._device) 303 | self._collect_model.eval() 304 | with torch.no_grad(): 305 | output = self._collect_model.forward(data, mode='compute_q', eps=eps) 306 | if self._cuda: 307 | output = to_device(output, 'cpu') 308 | output = default_decollate(output) 309 | return {i: d for i, d in zip(data_id, output)} 310 | 311 | def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]: 312 | """ 313 | Overview: 314 | For a given trajectory(transitions, a list of transition) data, process it into a list of sample that \ 315 | can be used for training directly. A train sample can be a processed transition(DQN with nstep TD) \ 316 | or some continuous transitions(DRQN). 317 | Arguments: 318 | - data (:obj:`List[Dict[str, Any]`): The trajectory data(a list of transition), each element is the same \ 319 | format as the return value of ``self._process_transition`` method. 320 | Returns: 321 | - samples (:obj:`dict`): The list of training samples. 322 | 323 | .. note:: 324 | We will vectorize ``process_transition`` and ``get_train_sample`` method in the following release version. \ 325 | And the user can customize the this data processing procecure by overriding this two methods and collector \ 326 | itself. 327 | """ 328 | data = get_nstep_return_data(data, self._nstep, gamma=self._gamma) 329 | return get_train_sample(data, self._unroll_len) 330 | 331 | def _process_transition(self, obs: Any, policy_output: Dict[str, Any], timestep: namedtuple) -> Dict[str, Any]: 332 | """ 333 | Overview: 334 | Generate a transition(e.g.: ) for this algorithm training. 335 | Arguments: 336 | - obs (:obj:`Any`): Env observation. 337 | - policy_output (:obj:`Dict[str, Any]`): The output of policy collect mode(``self._forward_collect``),\ 338 | including at least ``action``. 339 | - timestep (:obj:`namedtuple`): The output after env step(execute policy output action), including at \ 340 | least ``obs``, ``reward``, ``done``, (here obs indicates obs after env step). 341 | Returns: 342 | - transition (:obj:`dict`): Dict type transition data. 343 | """ 344 | transition = { 345 | 'obs': obs, 346 | 'next_obs': timestep.obs, 347 | 'action': policy_output['action'], 348 | 'reward': timestep.reward, 349 | 'done': timestep.done, 350 | } 351 | return transition 352 | 353 | def _init_eval(self) -> None: 354 | r""" 355 | Overview: 356 | Evaluate mode init method. Called by ``self.__init__``, initialize eval_model. 357 | """ 358 | self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') 359 | self._eval_model.reset() 360 | 361 | def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: 362 | """ 363 | Overview: 364 | Forward computation graph of eval mode(evaluate policy performance), at most cases, it is similar to \ 365 | ``self._forward_collect``. 366 | Arguments: 367 | - data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ 368 | values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. 369 | Returns: 370 | - output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env. 371 | ArgumentsKeys: 372 | - necessary: ``obs`` 373 | ReturnsKeys 374 | - necessary: ``action`` 375 | """ 376 | data_id = list(data.keys()) 377 | data = default_collate(list(data.values())) 378 | if self._cuda: 379 | data = to_device(data, self._device) 380 | self._eval_model.eval() 381 | with torch.no_grad(): 382 | output = self._eval_model.forward(data, mode='compute_q') 383 | if self._cuda: 384 | output = to_device(output, 'cpu') 385 | output = default_decollate(output) 386 | return {i: d for i, d in zip(data_id, output)} --------------------------------------------------------------------------------