├── .github
└── workflows
│ └── aws_stac_catalogs.yml
├── .gitignore
├── LICENSE
├── README.md
├── aws_stac_catalogs.ipynb
├── aws_stac_catalogs.json
├── aws_stac_catalogs.py
├── aws_stac_catalogs.tsv
├── datasets
├── amazonia.yaml
├── asf-event-data.yaml
├── brazil-data-cubes.yaml
├── capella_opendata.yaml
├── cbers.yaml
├── deafrica-alos-jers.yaml
├── deafrica-chirps.yaml
├── deafrica-crop-extent.yaml
├── deafrica-fractional-cover.yaml
├── deafrica-geomad.yaml
├── deafrica-landsat.yaml
├── deafrica-mangrove.yaml
├── deafrica-ndvi_anomaly.yaml
├── deafrica-ndvi_climatology_ls.yaml
├── deafrica-sentinel-1.yaml
├── deafrica-sentinel-2.yaml
├── deafrica-waterbodies.yaml
├── deafrica-wofs.yaml
├── esa-worldcover-vito-composites.yaml
├── esa-worldcover-vito.yaml
├── glo-30-hand.yaml
├── io-lulc.yaml
├── its-live-data.yaml
├── jaxa-alos-palsar2-scansar.yaml
├── jaxa-usgs-nasa-kaguya-tc-dtms.yaml
├── jaxa-usgs-nasa-kaguya-tc.yaml
├── jaxa-usgs-nasa-kaguya-tc_monoscopic.yaml
├── maxar-open-data.yaml
├── nasa-usgs-controlled-mro-ctx-dtms.yaml
├── nasa-usgs-europa-dtms.yaml
├── nasa-usgs-europa-mosaics.yaml
├── nasa-usgs-europa-observations.yaml
├── nasa-usgs-lunar-orbiter-laser-altimeter.yaml
├── nasa-usgs-mars-hirise-dtms.yaml
├── nasa-usgs-mars-hirise.yaml
├── nasa-usgs-themis-mosaics.yaml
├── nasa-usgs-themis-mosasics.yaml
├── noaa-coastal-lidar.yaml
├── noaa-ufs-coastal-pds.yaml
├── nz-elevation.yaml
├── nz-imagery.yaml
├── palsar-2-scansar-flooding-in-bangladesh.yaml
├── palsar-2-scansar-flooding-in-rwanda.yaml
├── palsar2-scansar-turkey-syria.yaml
├── pgc-arcticdem.yaml
├── pgc-earthdem.yaml
├── pgc-rema.yaml
├── radiant-mlhub.yaml
├── rcm-ceos-ard.yaml
├── satellogic-earthview.yaml
├── sentinel-1-rtc-indigo.yaml
├── sentinel-2-l2a-cogs.yaml
├── sentinel-2.yaml
├── sentinel-3.yaml
├── sentinel-products-ca-mirror.yaml
├── sentinel5p.yaml
├── umbra-open-data.yaml
├── usgs-landsat.yaml
├── usgs-lidar.yaml
├── venus-l2a-cogs.yaml
└── wb-light-every-night.yaml
└── requirements.txt
/.github/workflows/aws_stac_catalogs.yml:
--------------------------------------------------------------------------------
1 | name: aws_catalog
2 | on:
3 | workflow_dispatch:
4 | schedule:
5 | - cron: "25 3 * * *" # https://crontab.guru/
6 |
7 | jobs:
8 | build:
9 | runs-on: ubuntu-latest
10 | steps:
11 | - name: checkout repo content
12 | uses: actions/checkout@v3
13 |
14 | - name: setup python
15 | uses: actions/setup-python@v4
16 | with:
17 | python-version: "3.10"
18 |
19 | - name: install python packages
20 | run: |
21 | python -m pip install --upgrade pip
22 | pip install -r requirements.txt
23 | - name: execute python script
24 | run: |
25 | python aws_stac_catalogs.py
26 | - name: file_check
27 | run: ls -l -a
28 | - name: commit files
29 | continue-on-error: true
30 | run: |
31 | today=$(date +"%Y-%m-%d")
32 | git config --local user.email "action@github.com"
33 | git config --local user.name "GitHub Action"
34 | git add -A
35 | git commit -m "Updated datasets ${today} UTC" -a
36 | git pull origin master
37 | - name: push changes
38 | continue-on-error: true
39 | uses: ad-m/github-push-action@master
40 | with:
41 | github_token: ${{ secrets.GITHUB_TOKEN }}
42 | branch: master
43 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | open-data-registry-main.zip
10 | open-data-registry-main/
11 | .vscode/
12 |
13 | # Distribution / packaging
14 | .Python
15 | build/
16 | develop-eggs/
17 | dist/
18 | downloads/
19 | eggs/
20 | .eggs/
21 | lib/
22 | lib64/
23 | parts/
24 | sdist/
25 | var/
26 | wheels/
27 | pip-wheel-metadata/
28 | share/python-wheels/
29 | *.egg-info/
30 | .installed.cfg
31 | *.egg
32 | MANIFEST
33 |
34 | # PyInstaller
35 | # Usually these files are written by a python script from a template
36 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
37 | *.manifest
38 | *.spec
39 |
40 | # Installer logs
41 | pip-log.txt
42 | pip-delete-this-directory.txt
43 |
44 | # Unit test / coverage reports
45 | htmlcov/
46 | .tox/
47 | .nox/
48 | .coverage
49 | .coverage.*
50 | .cache
51 | nosetests.xml
52 | coverage.xml
53 | *.cover
54 | *.py,cover
55 | .hypothesis/
56 | .pytest_cache/
57 |
58 | # Translations
59 | *.mo
60 | *.pot
61 |
62 | # Django stuff:
63 | *.log
64 | local_settings.py
65 | db.sqlite3
66 | db.sqlite3-journal
67 |
68 | # Flask stuff:
69 | instance/
70 | .webassets-cache
71 |
72 | # Scrapy stuff:
73 | .scrapy
74 |
75 | # Sphinx documentation
76 | docs/_build/
77 |
78 | # PyBuilder
79 | target/
80 |
81 | # Jupyter Notebook
82 | .ipynb_checkpoints
83 |
84 | # IPython
85 | profile_default/
86 | ipython_config.py
87 |
88 | # pyenv
89 | .python-version
90 |
91 | # pipenv
92 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
93 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
94 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
95 | # install all needed dependencies.
96 | #Pipfile.lock
97 |
98 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
99 | __pypackages__/
100 |
101 | # Celery stuff
102 | celerybeat-schedule
103 | celerybeat.pid
104 |
105 | # SageMath parsed files
106 | *.sage.py
107 |
108 | # Environments
109 | .env
110 | .venv
111 | env/
112 | venv/
113 | ENV/
114 | env.bak/
115 | venv.bak/
116 |
117 | # Spyder project settings
118 | .spyderproject
119 | .spyproject
120 |
121 | # Rope project settings
122 | .ropeproject
123 |
124 | # mkdocs documentation
125 | /site
126 |
127 | # mypy
128 | .mypy_cache/
129 | .dmypy.json
130 | dmypy.json
131 |
132 | # Pyre type checker
133 | .pyre/
134 |
135 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2022-2023, Qiusheng Wu
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # aws-open-data-stac
2 |
3 | [](https://colab.research.google.com/github/giswqs/aws-open-data-stac/blob/master/aws_stac_catalogs.ipynb)
4 | [](https://mybinder.org/v2/gh/giswqs/aws-open-data-stac/HEAD?labpath=aws_stac_catalogs.ipynb)
5 | [](https://opensource.org/licenses/MIT)
6 |
7 | ## Introduction
8 |
9 | The [AWS Open Data](https://registry.opendata.aws/) program hosts a lot of publicly available geospatial datasets. Some of these datasets are available as [SpatioTemporal Asset Catalog (STAC)](https://stacspec.org/) endpoints. This repo compiles the list of all AWS Open geospatial datasets with a STAC endpoint as a CSV file and as a JSON file, making it easier to find and use them programmatically. The list is updated daily.
10 |
11 | A complete list of AWS open datasets as individual YAML files is available [here](https://github.com/awslabs/open-data-registry).
12 |
13 | ## Usage
14 |
15 | This repo provides the list of AWS open geospatial datasets with a STAC endpoint in two formats:
16 |
17 | - Tab separated values (TSV) file: [aws_stac_catalogs.tsv](https://github.com/giswqs/aws-open-data-stac/blob/master/aws_stac_catalogs.tsv)
18 | - JSON file: [aws_stac_catalogs.json](https://github.com/giswqs/aws-open-data-stac/blob/master/aws_stac_catalogs.json)
19 |
20 | The TSV file can be easily read into a Pandas DataFrame using the following code:
21 |
22 | ```python
23 | import pandas as pd
24 |
25 | url = 'https://github.com/giswqs/aws-open-data-stac/raw/master/aws_stac_catalogs.tsv'
26 | df = pd.read_csv(url, sep='\t')
27 | df.head()
28 | ```
29 |
30 | ## Related Projects
31 |
32 | - A list of open datasets on AWS: [aws-open-data](https://github.com/giswqs/aws-open-data)
33 | - A list of open geospatial datasets on AWS: [aws-open-data-geo](https://github.com/giswqs/aws-open-data-geo)
34 | - A list of open geospatial datasets on AWS with a STAC endpoint: [aws-open-data-stac](https://github.com/giswqs/aws-open-data-stac)
35 | - A list of STAC endpoints from stacindex.org: [stac-index-catalogs](https://github.com/giswqs/stac-index-catalogs)
36 | - A list of geospatial datasets on Microsoft Planetary Computer: [Planetary-Computer-Catalog](https://github.com/giswqs/Planetary-Computer-Catalog)
37 | - A list of geospatial datasets on Google Earth Engine: [Earth-Engine-Catalog](https://github.com/giswqs/Earth-Engine-Catalog)
38 | - A list of geospatial datasets on NASA's Common Metadata Repository (CMR): [NASA-CMR-STAC](https://github.com/giswqs/NASA-CMR-STAC)
39 | - A list of geospatial data catalogs: [geospatial-data-catalogs](https://github.com/giswqs/geospatial-data-catalogs)
40 |
--------------------------------------------------------------------------------
/aws_stac_catalogs.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "a89a128d-f74e-449f-adb6-e6e217df1c65",
6 | "metadata": {},
7 | "source": [
8 | "[](https://colab.research.google.com/github/giswqs/aws-open-data-stac/blob/master/aws_stac_catalogs.ipynb)\n",
9 | "[](https://mybinder.org/v2/gh/giswqs/aws-open-data-stac/HEAD?labpath=aws_stac_catalogs.ipynb)\n",
10 | "[](https://opensource.org/licenses/MIT)"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": null,
16 | "id": "0b655880-c912-48ad-8ade-10d9fe7e1812",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "import pandas as pd"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": null,
26 | "id": "63171939-2173-4948-ac8b-896d5bbff5c2",
27 | "metadata": {},
28 | "outputs": [],
29 | "source": [
30 | "url = 'https://github.com/giswqs/aws-open-data-stac/raw/master/aws_stac_catalogs.tsv'\n",
31 | "df = pd.read_csv(url, sep='\\t')"
32 | ]
33 | },
34 | {
35 | "cell_type": "code",
36 | "execution_count": null,
37 | "id": "15c26beb-c5a1-4d72-8aea-a1399d1970ae",
38 | "metadata": {},
39 | "outputs": [],
40 | "source": [
41 | "df"
42 | ]
43 | }
44 | ],
45 | "metadata": {
46 | "kernelspec": {
47 | "display_name": "Python 3",
48 | "language": "python",
49 | "name": "python3"
50 | },
51 | "language_info": {
52 | "codemirror_mode": {
53 | "name": "ipython",
54 | "version": 3
55 | },
56 | "file_extension": ".py",
57 | "mimetype": "text/x-python",
58 | "name": "python",
59 | "nbconvert_exporter": "python",
60 | "pygments_lexer": "ipython3",
61 | "version": "3.9.13"
62 | }
63 | },
64 | "nbformat": 4,
65 | "nbformat_minor": 5
66 | }
67 |
--------------------------------------------------------------------------------
/aws_stac_catalogs.py:
--------------------------------------------------------------------------------
1 | import json
2 | import os
3 | import shutil
4 | import yaml
5 | import leafmap
6 | import pandas as pd
7 |
8 | url = "https://github.com/awslabs/open-data-registry/archive/refs/heads/main.zip"
9 | out_dir = "open-data-registry-main"
10 | zip_file = "open-data-registry-main.zip"
11 |
12 | if os.path.exists(out_dir):
13 | shutil.rmtree(out_dir)
14 |
15 | if os.path.exists(zip_file):
16 | os.remove(zip_file)
17 |
18 | leafmap.download_file(url, output=zip_file, unzip=True)
19 |
20 |
21 | in_dir = os.path.join(out_dir, "datasets")
22 |
23 | files = leafmap.find_files(in_dir, ext=".yaml")
24 |
25 | print(f"Total number of AWS open datasets: {len(files)}")
26 |
27 | datasets = []
28 | names = {}
29 |
30 | for file in files:
31 | dataset = {}
32 | with open(file, "r") as f:
33 | dataset = yaml.safe_load(f)
34 |
35 | if "Deprecated" in dataset:
36 | continue
37 |
38 | tags = dataset.get("Tags", [])
39 | name = dataset.get("Name", "")
40 |
41 | if "stac" in tags:
42 |
43 | basename = os.path.basename(file)
44 | out_file = os.path.join("datasets", basename)
45 |
46 | shutil.copy(file, out_file)
47 |
48 | resources = dataset.get("Resources", [])
49 |
50 | for resource in resources:
51 |
52 | if "Explore" in resource:
53 |
54 | names[name] = names.get(name, 0) + 1
55 |
56 | for resource in resources:
57 |
58 | if "Explore" in resource:
59 | explore = resource["Explore"][0]
60 | url = explore[explore.find("http") : -1]
61 |
62 | resource.pop("Explore")
63 |
64 | item = {}
65 |
66 | resource["Description"] = resource["Description"].replace(
67 | "Water Observations from Space ", ""
68 | )
69 | resource["Description"] = resource["Description"].replace(
70 | "",
71 | "",
72 | )
73 | resource["Description"] = resource["Description"].replace(
74 | "Scenes and metadata for ", ""
75 | )
76 | if names[name] > 1:
77 | item["Name"] = (
78 | f"{name} - {resource['Description'].replace(name, '')}"
79 | )
80 | else:
81 | item["Name"] = name
82 |
83 | item["Name"] = item["Name"].replace("/", "-").replace("- -", "-")
84 | item["Name"] = item["Name"].split(".")[0]
85 | item["Name"] = item["Name"].split(",")[0]
86 | item["Name"] = item["Name"].split("|")[0]
87 | item["Name"] = item["Name"].replace("JAXA - USGS - ", "")
88 | item["Name"] = item["Name"].replace(
89 | "ESA WorldCover Sentinel-1 and Sentinel-2 10m Annual Composites - ",
90 | "",
91 | )
92 |
93 | item["Endpoint"] = url
94 |
95 | for key in resource:
96 | item[key] = resource[key]
97 |
98 | datasets.append(item)
99 |
100 |
101 | print(f"Total number of STAC datasets: {len(datasets)}")
102 |
103 | df = pd.DataFrame(datasets)
104 | df = df.sort_values(by="Name")
105 | df.to_csv("aws_stac_catalogs.tsv", index=False, sep="\t")
106 |
107 | data = json.loads(df.to_json(orient="records"))
108 |
109 | with open("aws_stac_catalogs.json", "w") as f:
110 | json.dump(data, f, indent=4)
111 |
--------------------------------------------------------------------------------
/datasets/amazonia.yaml:
--------------------------------------------------------------------------------
1 | Name: Amazonia EO satellite on AWS
2 | Description: |
3 | Imagery acquired
4 | by Amazonia-1 satellite.
5 | The
6 | image files are recorded and processed by Instituto Nacional de Pesquisas
7 | Espaciais (INPE) and are converted to Cloud Optimized Geotiff
8 | format in order to optimize its use for cloud based applications.
9 | WFI Level 4 (Orthorectified) scenes are being
10 | ingested daily starting from 08-29-2022, the complete
11 | Level 4 archive will be ingested by the end of October 2022.
12 | Documentation: http://www.inpe.br/amazonia1
13 | Contact: https://lists.osgeo.org/mailman/listinfo/cbers-pds
14 | ManagedBy: "[Frederico Liporace](https://github.com/fredliporace)"
15 | UpdateFrequency: Daily
16 | Collabs:
17 | ASDI:
18 | Tags:
19 | - satellite imagery
20 | Tags:
21 | - aws-pds
22 | - agriculture
23 | - earth observation
24 | - geospatial
25 | - imaging
26 | - satellite imagery
27 | - sustainability
28 | - disaster response
29 | - stac
30 | - cog
31 | License: https://creativecommons.org/licenses/by-sa/3.0/
32 | Resources:
33 | - Description: Amazonia 1 imagery (COG files, quicklooks, metadata)
34 | ARN: arn:aws:s3:::brazil-eosats
35 | Region: us-west-2
36 | Type: S3 Bucket
37 | RequesterPays: False
38 | Explore:
39 | - '[STAC V1.0.0 endpoint](https://stac.scitekno.com.br/v100)'
40 | - '[stacindex](https://stacindex.org/catalogs/cbers)'
41 | - Description: STAC static catalog
42 | ARN: arn:aws:s3:::br-eo-stac-1-0-0
43 | Region: us-west-2
44 | Type: S3 Bucket
45 | RequesterPays: False
46 | - Description: Notifications for new quicklooks
47 | ARN: arn:aws:sns:us-west-2:599544552497:NewAM1Quicklook
48 | Region: us-west-2
49 | Type: SNS Topic
50 | - Description: Topic that receives STAC V1.0.0 items as new scenes are ingested
51 | ARN: arn:aws:sns:us-west-2:769537946825:br-eo-stac-prod-stacitemtopic4BCE3141-Z8he7LYjqXFe
52 | Region: us-west-2
53 | Type: SNS Topic
54 | DataAtWork:
55 | Tutorials:
56 | - Title: Keeping a SpatioTemporal Asset Catalog (STAC) Up To Date with SNS/SQS
57 | URL: https://aws.amazon.com/blogs/publicsector/keeping-a-spatiotemporal-asset-catalog-stac-up-to-date-with-sns-sqs/
58 | AuthorName: Frederico Liporace
59 | Services:
60 | - Amazon SNS
61 | - AWS Lambda
62 | - Amazon DynamoDB
63 | - Title: The Evolution of ASDI's Data Infrastructure
64 | URL: https://developmentseed.org/blog/2023-10-20-asdi
65 | AuthorName: Sean Harkins
66 | Services:
67 | - Amazon SNS
68 | - AWS Lambda
69 | - Amazon ECR
70 | - Amazon S3
71 | - Amazon Athena
72 | Tools & Applications:
73 | - Title: STAC V1.0.0 endpoint
74 | URL: https://stac.scitekno.com.br/v100
75 | AuthorName: Frederico Liporace
76 | AuthorURL: https://github.com/fredliporace
77 | - Title: Amazonia 1 stactools package
78 | URL: https://github.com/stactools-packages/amazonia-1
79 | AuthorName: Frederico Liporace
80 | AuthorURL: https://github.com/fredliporace
81 | - Title: Amazonia 1 stactools-pipeline
82 | URL: https://github.com/developmentseed/stactools-pipelines/pull/33
83 | AuthorName: Frederico Liporace
84 | AuthorURL: https://github.com/fredliporace
85 |
86 |
--------------------------------------------------------------------------------
/datasets/asf-event-data.yaml:
--------------------------------------------------------------------------------
1 | Name: ASF SAR Data Products for Disaster Events
2 | Description: >
3 | synthetic Aperture Radar (SAR) data is a powerful tool for monitoring and assessing disaster events and can provide
4 | valuable insights for researchers, scientists, and emergency response teams.
5 |
6 | The Alaska Satellite Facility (ASF) curates this collection of (primarily) SAR and SAR-derived satellite data products
7 | from a variety of data sources for disaster events.
8 | Documentation: https://asf-event-data.s3.us-west-2.amazonaws.com/README.md
9 | Contact: https://asf.alaska.edu/asf/contact-us/
10 | ManagedBy: "[The Alaska Satellite Facility (ASF)](https://asf.alaska.edu/)"
11 | UpdateFrequency: >
12 | Irregular, in response to disaster events
13 | Tags:
14 | - aws-pds
15 | - disaster response
16 | - satellite imagery
17 | - geospatial
18 | - cog
19 | - stac
20 | License: This data falls under the terms and conditions of the [Creative Commons Zero (CC0) 1.0 Universal License](https://creativecommons.org/publicdomain/zero/1.0/) unless otherwise noted.
21 | Citation:
22 | Resources:
23 | - Description: ASF Event data S3 bucket
24 | ARN: arn:aws:s3:::asf-event-data
25 | Region: us-west-2
26 | Type: S3 Bucket
27 | Explore:
28 | - '[Browse Bucket](https://asf-event-data.s3.amazonaws.com/index.html)'
29 | - Description: Notifications for new event data
30 | ARN: arn:aws:sns:us-west-2:654654592981:asf-event-data-object_created
31 | Region: us-west-2
32 | Type: SNS Topic
33 | DataAtWork:
34 | Tools & Applications:
35 | - Title: ASF Event Search
36 | URL: https://search.asf.alaska.edu/#/?searchType=Event%20Search
37 | AuthorName: Alaska Satellite Facility
38 | AuthorURL: https://asf.alaska.edu/
39 | Publications:
40 | - Title: Event Search Manual
41 | URL: https://docs.asf.alaska.edu/vertex/events/
42 | AuthorName: Alaska Satellite Facility
43 | AuthorURL: https://asf.alaska.edu/
44 | - Title: SARVIEWS Events Collection
45 | URL: https://docs.asf.alaska.edu/datasets/events_about/
46 | AuthorName: Alaska Satellite Facility
47 | AuthorURL: https://asf.alaska.edu/
48 | DeprecatedNotice:
49 | ADXCategories:
50 | - Environmental Data
51 |
--------------------------------------------------------------------------------
/datasets/brazil-data-cubes.yaml:
--------------------------------------------------------------------------------
1 | Name: Earth Observation Data Cubes for Brazil
2 | Description: "Earth observation (EO) data cubes produced from analysis-ready data (ARD) of CBERS-4, Sentinel-2 A/B and Landsat-8 satellite images for Brazil. The datacubes are regular in time and use a hierarchical tiling system. Further details are described in [Ferreira et al. (2020)](https://www.mdpi.com/2072-4292/12/24/4033)."
3 | Documentation: http://brazildatacube.org/en/home-page-2/
4 | Contact: brazildatacube@inpe.br
5 | ManagedBy: "[INPE - Brazil Data Cube](http://brazildatacube.org/)"
6 | UpdateFrequency: New EO data cubes are added as soon as there are produced by the Brazil Data Cube project.
7 | DeprecatedNotice: This dataset is deprecated and will be removed from AWS Open Data in the near future. If you have any questions or require assistance, please contact us at [data.support@inpe.br].
8 | Tags:
9 | - earth observation
10 | - satellite imagery
11 | - geoscience
12 | - geospatial
13 | - image processing
14 | - open source software
15 | - cog
16 | - stac
17 | - aws-pds
18 | License: |
19 | The EO data cubes are produced from free and open images of CBERS-4, Landsat-8 and Sentinel-2 satellites. Data usage is subject to Terms and Conditions for the use and distribution of [Landsat data](https://www.usgs.gov/centers/eros/data-citation?qt-science_support_page_related_con=0#qt-science_support_page_related_con), Legal Notice on the use and distribution of [Sentinel-2 data](https://sentinel.esa.int/documents/247904/690755/Sentinel_Data_Legal_Notice/) and License for use and distribution of [CBERS data](https://creativecommons.org/licenses/by-sa/3.0/). When using data produced by the Brazil Data Cube, please acknowledge the work of the Brazilian National Institute for Space Research (INPE) in producing such data.
20 | CBERS-4 image courtesy of the National Institute for Space Research (INPE).
21 | Landsat-8 image courtesy of the U.S. Geological Survey.
22 | Sentinel-2 (ESA) image courtesy of the Copernicus SciHub.
23 | Sentinel-2 Cloud-Optimized GeoTIFFs data 2017-2018, was accessed on June/2021 from https://registry.opendata.aws/sentinel-2-l2a-cogs.
24 | Resources:
25 | - Description: Earth Observation Data Cubes for Brazil - Sentinel 2A/2B
26 | ARN: arn:aws:s3:::bdc-sentinel-2
27 | Region: us-west-2
28 | Type: S3 Bucket
29 | RequesterPays: False
30 | Explore:
31 | - '[BDC STAC V0.9.0 endpoint](https://bdc-sentinel-2.s3.us-west-2.amazonaws.com/catalog.json)'
32 | - Description: Earth Observation Data Cubes for Brazil - CBERS 4
33 | ARN: arn:aws:s3:::bdc-cbers
34 | Region: us-west-2
35 | Type: S3 Bucket
36 | RequesterPays: False
37 | Explore:
38 | - '[BDC STAC V0.9.0 endpoint](https://bdc-cbers.s3.us-west-2.amazonaws.com/catalog.json)'
39 | - Description: Notifications for new EO Data Cubes Sentinel-2 scenes
40 | ARN: arn:aws:sns:us-west-2:896627514407:bdc-sentinel-2-object_created
41 | Region: us-west-2
42 | Type: SNS Topic
43 | - Description: Notifications for new EO Data Cubes CBERS scenes
44 | ARN: arn:aws:sns:us-west-2:896627514407:bdc-cbers-object_created
45 | Region: us-west-2
46 | Type: SNS Topic
47 | DataAtWork:
48 | Tutorials:
49 | - Title: Using Python to Access Image Collections Data (Jupyter notebook)
50 | URL: https://github.com/brazil-data-cube/code-gallery/blob/master/jupyter/Python/stac/stac-aws-introduction.ipynb
51 | AuthorName: Brazil Data Cube
52 | AuthorURL: https://brazil-data-cube.github.io/
53 | - Title: Tile Map Service to view Image Collections from Brazil Data Cube Catalog
54 | URL: https://github.com/brazil-data-cube/code-gallery/blob/master/jupyter/Python/tiler/bdc-tiler_introduction.ipynb
55 | AuthorName: Brazil Data Cube
56 | AuthorURL: https://brazil-data-cube.github.io
57 | Tools & Applications:
58 | - Title: rstac - R library to query and download Image Collections from Brazil Data Cube Catalog on Amazon S3
59 | URL: https://github.com/brazil-data-cube/rstac
60 | AuthorName: Brazil Data Cube
61 | AuthorURL: https://brazil-data-cube.github.io
62 | - Title: cube-builder-aws - Application to generate data cubes on AWS environment.
63 | URL: https://github.com/brazil-data-cube/cube-builder-aws
64 | AuthorName: Brazil Data Cube
65 | AuthorURL: https://brazil-data-cube.github.io
66 | Publications:
67 | - Title: "Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products."
68 | URL: https://www.mdpi.com/2072-4292/12/24/4033
69 | AuthorName: K. R. Ferreira, et al.
70 | - Title: Using Remote Sensing Images and Cloud Services on AWS to Improve Land Use and Cover Monitoring
71 | URL: https://ieeexplore.ieee.org/abstract/document/9165649
72 | AuthorName: K. R. Ferreira, et al.
73 | - Title: Building Earth Observation Data Cubes on AWS
74 | URL: https://www.proquest.com/openview/070d2a753cc88d26535c98293171a5ac/1?
75 | AuthorName: Ferreira, K R; Queiroz, G R; Marujo, R F B; Costa, R W.
76 |
--------------------------------------------------------------------------------
/datasets/capella_opendata.yaml:
--------------------------------------------------------------------------------
1 | Name: Capella Space Synthetic Aperture Radar (SAR) Open Dataset
2 | Description: |
3 | Open Synthetic Aperture Radar (SAR) data from Capella Space. Capella Space is an information services company
4 | that provides on-demand, industry-leading, high-resolution synthetic aperture radar (SAR) Earth observation
5 | imagery. Through a constellation of small satellites, Capella provides easy access to frequent, timely, and
6 | flexible information affecting dozens of industries worldwide. Capella's high-resolution SAR satellites are
7 | matched with unparalleled infrastructure to deliver reliable global insights that sharpen our understanding
8 | of the changing world – improving decisions about commerce, conservation, and security on Earth. Learn more
9 | at www.capellaspace.com.
10 | Documentation: Documentation is available under [support.capellaspace.com](https://support.capellaspace.com/)
11 | Contact: opendata@capellaspace.com
12 | ManagedBy: "[Capella Space](https://www.capellaspace.com/)"
13 | UpdateFrequency: New data is added quarterly.
14 | Collabs:
15 | ASDI:
16 | Tags:
17 | - satellite imagery
18 | Tags:
19 | - aws-pds
20 | - cog
21 | - stac
22 | - earth observation
23 | - satellite imagery
24 | - geospatial
25 | - image processing
26 | - computer vision
27 | - synthetic aperture radar
28 | License: |
29 | [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)
30 | Resources:
31 | - Description: Capella Space Open Data in COG format
32 | ARN: arn:aws:s3:::capella-open-data/data/
33 | Region: us-west-2
34 | Type: S3 Bucket
35 | RequesterPays: False
36 | Explore:
37 | - '[STAC Catalog](https://capella-open-data.s3.us-west-2.amazonaws.com/stac/catalog.json)'
38 | - '[STAC Browser](https://radiantearth.github.io/stac-browser/#/external/capella-open-data.s3.us-west-2.amazonaws.com/stac/catalog.json)'
39 | - Description: Capella Space Open Data in TileDB format
40 | ARN: arn:aws:s3:::capella-open-data/data/tiledb/
41 | Region: us-west-2
42 | Type: S3 Bucket
43 | RequesterPays: False
44 | DataAtWork:
45 | Tutorials:
46 | - Title: Scaling GEO Images in QGIS
47 | URL: https://support.capellaspace.com/hc/en-us/articles/7124025490964-Scaling-GEO-Images-in-QGIS
48 | AuthorName: Capella Space
49 | AuthorURL: https://www.capellaspace.com/
50 | Tools & Applications:
51 | - Title: Python SDK for api.capellaspace.com
52 | URL: https://capella-console-client.readthedocs.io/en/main/
53 | AuthorName: Capella Space
54 | AuthorURL: https://www.capellaspace.com/
55 | - Title: Single Look Complex data reader for Capella SLC images - python module to convert Capella SLC data into an amplitude image.
56 | URL: https://github.com/capellaspace/tools/tree/master/capella-slc-reader
57 | AuthorName: Capella Space
58 | AuthorURL: https://www.capellaspace.com/
59 | Publications:
60 | - Title: Radar Generalized Image Quality Equation Applied to Capella Open Dataset
61 | URL: https://ieeexplore.ieee.org/document/9764201/
62 | AuthorName: Wade Schwartzkopf, Jason Brown, Gordon Farquharson, Craig Stringham, Michael Duersch, Jordan Heemskerk
63 | - Title: Analyzing LiDAR and SAR data with Capella Space and TileDB
64 | URL: https://tiledb.com/blog/analyzing-lidar-and-sar-data-with-capella-space-and-tiledb
65 | AuthorName: Stavros Papadopoulos
66 | - Title: Open SAR data and scalable analytics
67 | URL: https://medium.com/tiledb/open-sar-data-and-scalable-analytics-bfd1a5257e9
68 | AuthorName: Norman Barker
69 |
--------------------------------------------------------------------------------
/datasets/cbers.yaml:
--------------------------------------------------------------------------------
1 | Name: CBERS on AWS
2 | Description: |
3 | Imagery acquired
4 | by the China-Brazil Earth Resources Satellite (CBERS), 4 and 4A.
5 | The
6 | image files are recorded and processed by Instituto Nacional de Pesquisas
7 | Espaciais (INPE) and are converted to Cloud Optimized Geotiff
8 | format in order to optimize its use for cloud based applications.
9 | Contains all CBERS-4 MUX, AWFI, PAN5M and
10 | PAN10M scenes acquired since
11 | the start of the satellite mission and is daily updated with
12 | new scenes.
13 | CBERS-4A MUX Level 4 (Orthorectified) scenes are being
14 | ingested starting from 04-13-2021. CBERS-4A WFI Level 4 (Orthorectified)
15 | scenes are being ingested starting from 10-12-2022.
16 | CBERS-4A WPM Level 4 (Orthorectified) scenes are being ingested starting from 03-27-2022.
17 | Documentation: https://github.com/fredliporace/cbers-on-aws
18 | Contact: https://lists.osgeo.org/mailman/listinfo/cbers-pds
19 | ManagedBy: "[Frederico Liporace](https://github.com/fredliporace)"
20 | UpdateFrequency: Daily
21 | Collabs:
22 | ASDI:
23 | Tags:
24 | - satellite imagery
25 | Tags:
26 | - aws-pds
27 | - agriculture
28 | - earth observation
29 | - geospatial
30 | - imaging
31 | - satellite imagery
32 | - disaster response
33 | - stac
34 | - cog
35 | License: https://creativecommons.org/licenses/by-sa/3.0/
36 | Resources:
37 | - Description: CBERS imagery (COG files, quicklooks, metadata)
38 | ARN: arn:aws:s3:::brazil-eosats
39 | Region: us-west-2
40 | Type: S3 Bucket
41 | RequesterPays: False
42 | Explore:
43 | - '[STAC V1.0.0 endpoint](https://stac.scitekno.com.br/v100)'
44 | - '[stacindex](https://stacindex.org/catalogs/cbers)'
45 | - Description: STAC static catalog
46 | ARN: arn:aws:s3:::br-eo-stac-1-0-0
47 | Region: us-west-2
48 | Type: S3 Bucket
49 | RequesterPays: False
50 | - Description: Notifications for new CBERS 4A quicklooks, all sensors
51 | ARN: arn:aws:sns:us-west-2:599544552497:NewCB4AQuicklook
52 | Region: us-west-2
53 | Type: SNS Topic
54 | - Description: Notifications for new CBERS 4 quicklooks, all sensors
55 | ARN: arn:aws:sns:us-west-2:599544552497:NewCB4Quicklook
56 | Region: us-west-2
57 | Type: SNS Topic
58 | - Description: Topic that receives STAC V1.0.0 items as new scenes are ingested
59 | ARN: arn:aws:sns:us-west-2:769537946825:br-eo-stac-prod-stacitemtopic4BCE3141-Z8he7LYjqXFe
60 | Region: us-west-2
61 | Type: SNS Topic
62 | DataAtWork:
63 | Tutorials:
64 | - Title: Keeping a SpatioTemporal Asset Catalog (STAC) Up To Date with SNS/SQS
65 | URL: https://aws.amazon.com/blogs/publicsector/keeping-a-spatiotemporal-asset-catalog-stac-up-to-date-with-sns-sqs/
66 | AuthorName: Frederico Liporace
67 | Services:
68 | - Amazon SNS
69 | - AWS Lambda
70 | - Amazon DynamoDB
71 | Tools & Applications:
72 | - Title: STAC V1.0.0 endpoint
73 | URL: https://stac.scitekno.com.br/v100
74 | AuthorName: Scitekno
75 | AuthorURL: https://github.com/fredliporace/cbers-2-stac
76 | - Title: EOS Land Viewer
77 | URL: https://eos.com/landviewer/
78 | AuthorName: Earth Observing System
79 | AuthorURL: https://eos.com/
80 | - Title: CBERS timelapse GIF generator
81 | URL: https://github.com/fredliporace/cbersgif
82 | AuthorName: Frederico Liporace
83 | AuthorURL: https://github.com/fredliporace
84 | - Title: aws-sat-api-py
85 | URL: https://github.com/RemotePixel/aws-sat-api-py
86 | AuthorName: Remote Pixel
87 | AuthorURL: http://remotepixel.ca/
88 | - Title: rio-tiler
89 | URL: https://github.com/mapbox/rio-tiler
90 | AuthorName: Mapbox
91 | AuthorURL: https://www.mapbox.com/
92 | - Title: cbers-tiler
93 | URL: https://github.com/mapbox/cbers-tiler
94 | AuthorName: Mapbox
95 | AuthorURL: https://www.mapbox.com/
96 | - Title: CBERS static STAC catalog served by stac-browser
97 | URL: https://cbers.stac.cloud
98 | AuthorName: Radiant Earth
99 | AuthorURL: https://github.com/radiantearth/stac-browser
100 | - Title: Forest Monitor
101 | URL: http://brazildatacube.dpi.inpe.br/forest-monitor/
102 | AuthorName: Brazil Datacube, INPE
103 | AuthorURL: http://brazildatacube.org/
104 | Publications:
105 | - Title: Using Remote Sensing Images and Cloud Services on AWS to Improve Land Use and Cover Monitoring
106 | URL: https://ieeexplore.ieee.org/abstract/document/9165649
107 | AuthorName: K. R. Ferreira, et al.
108 |
--------------------------------------------------------------------------------
/datasets/deafrica-alos-jers.yaml:
--------------------------------------------------------------------------------
1 | Name: Digital Earth Africa ALOS PALSAR, ALOS-2 PALSAR-2 and JERS-1
2 | Description: |
3 | The ALOS/PALSAR annual mosaic is a global 25 m resolution dataset that combines data from many images captured by JAXA’s PALSAR and PALSAR-2 sensors on ALOS-1 and ALOS-2 satellites respectively. This product contains radar measurement in L-band and in HH and HV polarizations. It has a spatial resolution of 25 m and is available annually for 2007 to 2010 (ALOS/PALSAR) and 2015 to 2020 (ALOS-2/PALSAR-2).
4 | The JERS annual mosaic is generated from images acquired by the SAR sensor on the Japanese Earth Resources Satellite-1 (JERS-1) satellite. This product contains radar measurement in L-band and HH polarization. It has a spatial resolution of 25 m and is available for 1996.
5 | This mosaic data is part of a global dataset provided by the Japan Aerospace Exploration Agency (JAXA) Earth Observation Research Center.
6 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/ALOS_PALSAR_annual_mosaic_specs.html
7 | Contact: helpdesk@digitalearthafrica.org
8 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
9 | UpdateFrequency: As available, generally annually.
10 | Collabs:
11 | ASDI:
12 | Tags:
13 | - satellite imagery
14 | Tags:
15 | - aws-pds
16 | - agriculture
17 | - earth observation
18 | - satellite imagery
19 | - geospatial
20 | - natural resource
21 | - disaster response
22 | - synthetic aperture radar
23 | - deafrica
24 | - stac
25 | - cog
26 | License: |
27 | Data is available for free under the [terms of use](https://earth.jaxa.jp/policy/en.html).
28 | Resources:
29 | - Description: ALOS PALSAR ALOS-2 PALSAR-2 data
30 | ARN: arn:aws:s3:::deafrica-input-datasets/alos_palsar_mosaic
31 | Region: af-south-1
32 | Type: S3 Bucket
33 | RequesterPays: False
34 | Explore:
35 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/alos_palsar_mosaic)'
36 | - Description: "[S3 Inventory](https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html#storage-inventory-contents)"
37 | ARN: arn:aws:s3:::deafrica-input-datasets-inventory
38 | Region: af-south-1
39 | Type: S3 Bucket
40 | - Description: Bucket creation event notification, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message sent contain all object creation events.
41 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-input-datasets-topic
42 | Region: af-south-1
43 | Type: SNS Topic
44 | DataAtWork:
45 | Tutorials:
46 | - Title: Digital Earth Africa Training
47 | URL: http://learn.digitalearthafrica.org/
48 | AuthorName: Digital Earth Africa Contributors
49 | Tools & Applications:
50 | - Title: "Digital Earth Africa Explorer (ALOS PALSAR and ALOS-2 PALSAR-2)"
51 | URL: https://explorer.digitalearth.africa/products/alos_palsar_mosaic
52 | AuthorName: Digital Earth Africa Contributors
53 | - Title: "Digital Earth Africa Explorer (JERS)"
54 | URL: https://explorer.digitalearth.africa/products/jers_sar_mosaic
55 | AuthorName: Digital Earth Africa Contributors
56 | - Title: "Digital Earth Africa web services"
57 | URL: https://ows.digitalearth.africa
58 | AuthorName: Digital Earth Africa Contributors
59 | - Title: "Digital Earth Africa Map"
60 | URL: https://maps.digitalearth.africa/
61 | AuthorName: Digital Earth Africa Contributors
62 | - Title: "Digital Earth Africa Sandbox"
63 | URL: https://sandbox.digitalearth.africa/
64 | AuthorName: Digital Earth Africa Contributors
65 | - Title: "Digital Earth Africa Notebook Repo"
66 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
67 | AuthorName: Digital Earth Africa Contributors
68 | - Title: "Digital Earth Africa Geoportal"
69 | URL: https://www.africageoportal.com/pages/digital-earth-africa
70 | AuthorName: Digital Earth Africa Contributors
71 | Publications:
72 | - Title: "Introduction to DE Africa"
73 | URL: https://youtu.be/Wkf7N6O9jJQ
74 | AuthorName: Dr Fang Yuan
75 |
--------------------------------------------------------------------------------
/datasets/deafrica-chirps.yaml:
--------------------------------------------------------------------------------
1 | Name: Digital Earth Africa CHIRPS Rainfall
2 | Description: |
3 | Digital Earth Africa (DE Africa) provides free and open access to a copy of the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) monthly and daily products over Africa. The CHIRPS rainfall maps are produced and provided by the Climate Hazards Center in collaboration with the US Geological Survey, and use both rain gauge and satellite observations.
4 | The CHIRPS-2.0 Africa Monthly dataset is regularly indexed to DE Africa from the CHIRPS monthly data. The CHIRPS-2.0 Africa Daily dataset is likewise indexed from the CHIRPS daily data. Both products have been converted to cloud-opitmized GeoTIFFs, and can be accessed through DE Africa’s Open Data Cube. This means the full archive of CHIRPS daily and monthly rainfall can be easily used for inspection or analysis across DE Africa platforms, including the user-interactive DE Africa Map.
5 | For more information on the dataset, see the [CHIRPS website](https://www.chc.ucsb.edu/data/chirps).
6 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/CHIRPS_specs.html
7 | Contact: helpdesk@digitalearthafrica.org
8 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
9 | UpdateFrequency: Monthly.
10 | Collabs:
11 | ASDI:
12 | Tags:
13 | - satellite imagery
14 | Tags:
15 | - aws-pds
16 | - agriculture
17 | - climate
18 | - earth observation
19 | - food security
20 | - geospatial
21 | - meteorological
22 | - satellite imagery
23 | - sustainability
24 | - deafrica
25 | - stac
26 | - cog
27 | License: |
28 | To the extent possible under the law, Pete Peterson has waived all copyright and related or neighboring rights to CHIRPS. CHIRPS data is in the public domain as registered with Creative Commons.
29 | Resources:
30 | - Description: CHIRPS daily rainfall
31 | ARN: arn:aws:s3:::deafrica-input-datasets/rainfall_chirps_daily
32 | Region: af-south-1
33 | Type: S3 Bucket
34 | RequesterPays: False
35 | Explore:
36 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/rainfall_chirps_daily)'
37 | - Description: CHIRPS monthly rainfall
38 | ARN: arn:aws:s3:::deafrica-input-datasets/rainfall_chirps_monthly
39 | Region: af-south-1
40 | Type: S3 Bucket
41 | RequesterPays: False
42 | Explore:
43 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/rainfall_chirps_monthly)'
44 | - Description: "[S3 Inventory](https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html#storage-inventory-contents)"
45 | ARN: arn:aws:s3:::deafrica-input-datasets-inventory
46 | Region: af-south-1
47 | Type: S3 Bucket
48 | - Description: Bucket creation event notification, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message sent contain all object creation events.
49 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-input-datasets-topic
50 | Region: af-south-1
51 | Type: SNS Topic
52 | DataAtWork:
53 | Tutorials:
54 | - Title: "Rainfall - Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)"
55 | URL: https://docs.digitalearthafrica.org/en/latest/sandbox/notebooks/Datasets/Rainfall_CHIRPS.html
56 | AuthorName: Digital Earth Africa Contributors
57 | - Title: Digital Earth Africa Training
58 | URL: http://learn.digitalearthafrica.org/
59 | AuthorName: Digital Earth Africa Contributors
60 | Tools & Applications:
61 | - Title: "Digital Earth Africa Explorer (CHIRPS daily rainfall)"
62 | URL: https://explorer.digitalearth.africa/products/rainfall_chirps_daily
63 | AuthorName: Digital Earth Africa Contributors
64 | - Title: "Digital Earth Africa Explorer (CHIRPS monthly rainfall)"
65 | URL: https://explorer.digitalearth.africa/products/rainfall_chirps_monthly
66 | AuthorName: Digital Earth Africa Contributors
67 | - Title: "Digital Earth Africa web services"
68 | URL: https://ows.digitalearth.africa
69 | AuthorName: Digital Earth Africa Contributors
70 | - Title: "Digital Earth Africa Map"
71 | URL: https://maps.digitalearth.africa/
72 | AuthorName: Digital Earth Africa Contributors
73 | - Title: "Digital Earth Africa Sandbox"
74 | URL: https://sandbox.digitalearth.africa/
75 | AuthorName: Digital Earth Africa Contributors
76 | - Title: "Digital Earth Africa Notebook Repo"
77 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
78 | AuthorName: Digital Earth Africa Contributors
79 | - Title: "Digital Earth Africa Geoportal"
80 | URL: https://www.africageoportal.com/pages/digital-earth-africa
81 | AuthorName: Digital Earth Africa Contributors
82 | Publications:
83 | - Title: "Introduction to DE Africa"
84 | URL: https://youtu.be/Wkf7N6O9jJQ
85 | AuthorName: Dr Fang Yuan
86 | - Title: "The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes"
87 | URL: https://www.nature.com/articles/sdata201566
88 | AuthorName: Chris Funk, Pete Peterson, Martin Landsfeld, Diego Pedreros, James Verdin, Shraddhanand Shukla, Gregory Husak, James Rowland, Laura Harrison, Andrew Hoell and Joel Michaelsen
89 |
90 |
91 |
--------------------------------------------------------------------------------
/datasets/deafrica-crop-extent.yaml:
--------------------------------------------------------------------------------
1 | Name: Digital Earth Africa Cropland Extent Map (2019)
2 | Description: |
3 | Digital Earth Africa's cropland extent map (2019) shows the estimated location of croplands in Africa for the period January to December 2019. Cropland is defined as: "a piece of land of minimum 0.01 ha (a single 10m x 10m pixel) that is sowed/planted and harvest-able at least once within the 12 months after the sowing/planting date." This definition will exclude non-planted grazing lands and perennial crops which can be difficult for satellite imagery to differentiate from natural vegetation.
4 | This provisional cropland extent map has a resolution of 10m, and was built using Copernicus Sentinel-2 satellite images from 2019. The cropland extent map was produced using extensive training data from regions across Africa, coupled with a Random Forest machine learning model. The continental service contains maps built separately for eight Agro-Ecological Zones (AEZs). For a detailed exploration of the methods used to produce the cropland extent map, read the Jupyter Notebooks in DE Africa’s crop-mask GitHub repository.
5 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/Cropland_extent_specs.html
6 | Contact: helpdesk@digitalearthafrica.org
7 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
8 | UpdateFrequency: To be defined.
9 | Collabs:
10 | ASDI:
11 | Tags:
12 | - satellite imagery
13 | Tags:
14 | - aws-pds
15 | - agriculture
16 | - earth observation
17 | - food security
18 | - geospatial
19 | - satellite imagery
20 | - sustainability
21 | - deafrica
22 | - stac
23 | - cog
24 | License: |
25 | DE Africa makes this data available under the Creative Commons Attribute 4.0 license https://creativecommons.org/licenses/by/4.0/.
26 | Resources:
27 | - Description: Cropland extent map 2019
28 | ARN: arn:aws:s3:::deafrica-services/crop_mask
29 | Region: af-south-1
30 | Type: S3 Bucket
31 | RequesterPays: False
32 | Explore:
33 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/crop_mask)'
34 | - Description: "[S3 Inventory](https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html#storage-inventory-contents)"
35 | ARN: arn:aws:s3:::deafrica-services-inventory
36 | Region: af-south-1
37 | Type: S3 Bucket
38 | - Description: Bucket creation event notification, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message sent by the s3 bucket for all object create events.
39 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-services-topic
40 | Region: af-south-1
41 | Type: SNS Topic
42 | DataAtWork:
43 | Tutorials:
44 | - Title: Digital Earth Africa Training
45 | URL: http://learn.digitalearthafrica.org/
46 | AuthorName: Digital Earth Africa Contributors
47 | Tools & Applications:
48 | - Title: "Digital Earth Africa Explorer (Cropland Extent Map)"
49 | URL: https://explorer.digitalearth.africa/products/crop_mask
50 | AuthorName: Digital Earth Africa Contributors
51 | - Title: "Digital Earth Africa web services"
52 | URL: https://ows.digitalearth.africa
53 | AuthorName: Digital Earth Africa Contributors
54 | - Title: "Digital Earth Africa Map"
55 | URL: https://maps.digitalearth.africa/
56 | AuthorName: Digital Earth Africa Contributors
57 | - Title: "Digital Earth Africa Sandbox"
58 | URL: https://sandbox.digitalearth.africa/
59 | AuthorName: Digital Earth Africa Contributors
60 | - Title: "Digital Earth Africa Notebook Repo"
61 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
62 | AuthorName: Digital Earth Africa Contributors
63 | - Title: "Digital Earth Africa Geoportal"
64 | URL: https://www.africageoportal.com/pages/digital-earth-africa
65 | AuthorName: Digital Earth Africa Contributors
66 | Publications:
67 | - Title: "Cropland Extent is now available for the entire African continent"
68 | URL: https://www.digitalearthafrica.org/media-center/blog/cropland-extent-now-available-entire-african-continent
69 | AuthorName: Digital Earth Africa Contributors
70 | - Title: "Co-Production of a 10-m Cropland Extent Map for Continental Africa using Sentinel-2, Cloud Computing, and the Open-Data-Cube"
71 | URL: https://agu2021fallmeeting-agu.ipostersessions.com/Default.aspx?s=BA-E4-89-84-15-50-25-89-AE-A8-EF-C5-32-7D-19-EE
72 | AuthorName: Chad Burton, Fang Yuan, Chong Ee-Faye, Meghan Halabisky, David Ongo, Fatou Mar, Victor Addabor, Bako Mamane and Sena Adimou
73 |
74 |
75 |
--------------------------------------------------------------------------------
/datasets/deafrica-fractional-cover.yaml:
--------------------------------------------------------------------------------
1 | Name: Digital Earth Africa Fractional Cover
2 | Description: |
3 | Fractional cover (FC) describes the landscape in terms of coverage by green vegetation, non-green vegetation (including deciduous trees during autumn, dry grass, etc.) and bare soil. It provides insight into how areas of dry vegetation and/or bare soil and green vegetation are changing over time. The product is derived from Landsat satellite data, using an algorithm developed by the [Joint Remote Sensing Research Program](https://www.jrsrp.org.au/).
4 | Digital Earth Africa's FC service has two components. Fractional Cover is estimated from each Landsat scene, providing measurements from individual days. Fractional Cover Annual Summary (Percentiles) provides 10th, 50th, and 90th percentiles estimated independently for the green vegetation, non-green vegetation, and bare soil fractions observed in each calendar year (1st of January - 31st December).
5 | While the scene based Fractional Cover can be used to study dynamic processes, the annual summaries make it easier to analyse year to year changes. The percentiles provide robust estimates of the low, median and high proportion values observed for each cover type in a year, which can be used to characterise the land cover.
6 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/Fractional_Cover_specs.html
7 | Contact: helpdesk@digitalearthafrica.org
8 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
9 | UpdateFrequency: New scene-level data is added as new Landsat data is available. New summaries are available soon after data is available for a year.
10 | Collabs:
11 | ASDI:
12 | Tags:
13 | - satellite imagery
14 | Tags:
15 | - aws-pds
16 | - agriculture
17 | - disaster response
18 | - earth observation
19 | - geospatial
20 | - natural resource
21 | - satellite imagery
22 | - sustainability
23 | - deafrica
24 | - stac
25 | - cog
26 | License: |
27 | DE Africa makes this data available under the Creative Commons Attribute 4.0 license https://creativecommons.org/licenses/by/4.0/.
28 | Resources:
29 | - Description: Fractional Cover data
30 | ARN: arn:aws:s3:::deafrica-services/fc_ls
31 | Region: af-south-1
32 | Type: S3 Bucket
33 | RequesterPays: False
34 | Explore:
35 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/fc_ls)'
36 | - Description: Fractional Cover Annual Summary data
37 | ARN: arn:aws:s3:::deafrica-services/fc_ls_summary_annual
38 | Region: af-south-1
39 | Type: S3 Bucket
40 | RequesterPays: False
41 | Explore:
42 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/fc_ls_summary_annual)'
43 | - Description: "[S3 Inventory](https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html#storage-inventory-contents)"
44 | ARN: arn:aws:s3:::deafrica-services-inventory
45 | Region: af-south-1
46 | Type: S3 Bucket
47 | - Description: New scene notifications, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message contains entire STAC record for each new Item
48 | ARN: arn:aws:sns:af-south-1:565417506782:deafrica-landsat-wofs
49 | Region: af-south-1
50 | Type: SNS Topic
51 | - Description: Bucket creation event notification, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message sent by the s3 bucket for all object create events.
52 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-services-topic
53 | Region: af-south-1
54 | Type: SNS Topic
55 | DataAtWork:
56 | Tutorials:
57 | - Title: Digital Earth Africa Training
58 | URL: http://learn.digitalearthafrica.org/
59 | AuthorName: Digital Earth Africa Contributors
60 | Tools & Applications:
61 | - Title: "Digital Earth Africa Explorer (Fractional Cover)"
62 | URL: https://explorer.digitalearth.africa/products/fc_ls
63 | AuthorName: Digital Earth Africa Contributors
64 | - Title: "Digital Earth Africa Explorer (Fractional Cover Annual Summary)"
65 | URL: https://explorer.digitalearth.africa/products/fc_ls_summary_annual
66 | AuthorName: Digital Earth Africa Contributors
67 | - Title: "Digital Earth Africa web services"
68 | URL: https://ows.digitalearth.africa
69 | AuthorName: Digital Earth Africa Contributors
70 | - Title: "Digital Earth Africa Map"
71 | URL: https://maps.digitalearth.africa/
72 | AuthorName: Digital Earth Africa Contributors
73 | - Title: "Digital Earth Africa Sandbox"
74 | URL: https://sandbox.digitalearth.africa/
75 | AuthorName: Digital Earth Africa Contributors
76 | - Title: "Digital Earth Africa Notebook Repo"
77 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
78 | AuthorName: Digital Earth Africa Contributors
79 | - Title: "Digital Earth Africa Geoportal"
80 | URL: https://www.africageoportal.com/pages/digital-earth-africa
81 | AuthorName: Digital Earth Africa Contributors
82 | Publications:
83 | - Title: "Introduction to DE Africa"
84 | URL: https://youtu.be/Wkf7N6O9jJQ
85 | AuthorName: Dr Fang Yuan
86 |
--------------------------------------------------------------------------------
/datasets/deafrica-landsat.yaml:
--------------------------------------------------------------------------------
1 | Name: Digital Earth Africa Landsat Collection 2 Level 2
2 | Description: |
3 | Digital Earth Africa (DE Africa) provides free and open access to a copy of Landsat Collection 2 Level-2 products over Africa. These products are produced and provided by the United States Geological Survey (USGS).
4 | The Landsat series of Earth Observation satellites, jointly led by USGS and NASA, have been continuously acquiring images of the Earth’s land surface since 1972. DE Africa provides data from Landsat 5, 7 and 8 satellites, including historical observations dating back to late 1980s and regularly updated new acquisitions.
5 | New Level-2 Landsat 7 and Landsat 8 data are available after 15 to 27 days from acquisition. See Landsat Collection 2 Generation Timeline for details.
6 | USGS Landsat Collection 2 was released early 2021 and offers improved processing, geometric accuracy, and radiometric calibration compared to previous Collection 1 products. The Level-2 products are endorsed by the Committee on Earth Observation Satellites (CEOS) to be Analysis Ready Data for Land (CARD4L)-compliant. This internationally recognized certification ensures these products have been processed to a minimum set of requirements and organized into a form that allows immediate analysis with a minimum of additional user effort and interoperability both through time and with other datasets.
7 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/Landsat_C2_SR_specs.html https://docs.digitalearthafrica.org/en/latest/data_specs/Landsat_C2_ST_specs.html
8 | Contact: helpdesk@digitalearthafrica.org
9 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
10 | UpdateFrequency: New Landsat data are added regularly, usually within a few hours of them being available in the usgs-landsat bucket.
11 | Collabs:
12 | ASDI:
13 | Tags:
14 | - satellite imagery
15 | Tags:
16 | - aws-pds
17 | - agriculture
18 | - earth observation
19 | - satellite imagery
20 | - geospatial
21 | - natural resource
22 | - disaster response
23 | - deafrica
24 | - stac
25 | - cog
26 | License: |
27 | There are no restrictions on Landsat data downloaded from the USGS; it can be used or
28 | redistributed as desired. USGS request that you include a [statement of the data source](https://www.usgs.gov/centers/eros/data-citation?qt-science_support_page_related_con=0#qt-science_support_page_related_con)
29 | when citing, copying, or reprinting USGS Landsat data or images.
30 | Resources:
31 | - Description: Landsat scenes and metadata
32 | ARN: arn:aws:s3:::deafrica-landsat
33 | Region: af-south-1
34 | Type: S3 Bucket
35 | RequesterPays: False
36 | Explore:
37 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/)'
38 | - Description: "[S3 Inventory](https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html#storage-inventory-contents) files"
39 | ARN: arn:aws:s3:::deafrica-landsat-inventory
40 | Region: af-south-1
41 | Type: S3 Bucket
42 | - Description: New scene notifications, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message contains entire STAC ST and SR record for each new Item
43 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-landsat-scene-topic
44 | Region: af-south-1
45 | Type: SNS Topic
46 | - Description: Bucket creation event notification, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message sent by deafrica-landsat s3 bucket all object create events.
47 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-landsat-topic
48 | Region: af-south-1
49 | Type: SNS Topic
50 | DataAtWork:
51 | Tutorials:
52 | - Title: Digital Earth Africa Training
53 | URL: http://learn.digitalearthafrica.org/
54 | AuthorName: Digital Earth Africa Contributors
55 | Tools & Applications:
56 | - Title: "Digital Earth Africa Explorer (LS8 Surface Reflectance)"
57 | URL: https://explorer.digitalearth.africa/products/ls8_sr
58 | AuthorName: Digital Earth Africa Contributors
59 | - Title: "Digital Earth Africa Explorer (LS8 Surface Temperature)"
60 | URL: https://explorer.digitalearth.africa/products/ls8_st
61 | AuthorName: Digital Earth Africa Contributors
62 | - Title: "Digital Earth Africa Explorer (LS7 Surface Reflectance)"
63 | URL: https://explorer.digitalearth.africa/products/ls7_sr
64 | AuthorName: Digital Earth Africa Contributors
65 | - Title: "Digital Earth Africa Explorer (LS7 Surface Temperature)"
66 | URL: https://explorer.digitalearth.africa/products/ls7_st
67 | AuthorName: Digital Earth Africa Contributors
68 | - Title: "Digital Earth Africa Explorer (LS5 Surface Reflectance)"
69 | URL: https://explorer.digitalearth.africa/products/ls5_sr
70 | AuthorName: Digital Earth Africa Contributors
71 | - Title: "Digital Earth Africa Explorer (LS5 Surface Temperature)"
72 | URL: https://explorer.digitalearth.africa/products/ls5_st
73 | AuthorName: Digital Earth Africa Contributors
74 | - Title: "Digital Earth Africa web services"
75 | URL: https://ows.digitalearth.africa
76 | AuthorName: Digital Earth Africa Contributors
77 | - Title: "Digital Earth Africa Map"
78 | URL: https://maps.digitalearth.africa/
79 | AuthorName: Digital Earth Africa Contributors
80 | - Title: "Digital Earth Africa Sandbox"
81 | URL: https://sandbox.digitalearth.africa/
82 | AuthorName: Digital Earth Africa Contributors
83 | - Title: "Digital Earth Africa Notebook Repo"
84 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
85 | AuthorName: Digital Earth Africa Contributors
86 | - Title: "Digital Earth Africa Geoportal"
87 | URL: https://www.africageoportal.com/pages/digital-earth-africa
88 | AuthorName: ESRI
89 | Publications:
90 | - Title: "Introduction to DE Africa"
91 | URL: https://youtu.be/Wkf7N6O9jJQ
92 | AuthorName: Dr Fang Yuan
93 |
--------------------------------------------------------------------------------
/datasets/deafrica-mangrove.yaml:
--------------------------------------------------------------------------------
1 | Name: Digital Earth Africa Global Mangrove Watch
2 | Description: |
3 | The Global Mangrove Watch (GMW) dataset is a result of the collaboration between Aberystwyth University (U.K.), solo Earth Observation (soloEO; Japan), Wetlands International the World Conservation Monitoring Centre (UNEP-WCMC) and the Japan Aerospace Exploration Agency (JAXA). The primary objective of producing this dataset is to provide countries lacking a national mangrove monitoring system with first cut mangrove extent and change maps, to help safeguard against further mangrove forest loss and degradation.
4 | The Global Mangrove Watch dataset (version 2) consists of a global baseline map of mangroves for 2010 and changes from this baseline for six epochs i.e. 1996, 2007, 2008, 2009, 2015 and 2016. Annual maps are planned from 2018 and onwards. The dataset can be used to identify mangrove ecosystems and monitor changes in mangrove extent. This is important in applications such as quantifying ‘blue carbon’, mitigating risks from natural disasters, and prioritising restoration activities. For more information on the Global Watch Mangrove product see the Global Mangrove Watch website.
5 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/Global_Mangrove_Watch_specs.html
6 | Contact: helpdesk@digitalearthafrica.org
7 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
8 | UpdateFrequency: To be defined.
9 | Collabs:
10 | ASDI:
11 | Tags:
12 | - satellite imagery
13 | Tags:
14 | - aws-pds
15 | - natural resource
16 | - earth observation
17 | - coastal
18 | - geospatial
19 | - satellite imagery
20 | - sustainability
21 | - deafrica
22 | - stac
23 | - cog
24 | - land cover
25 | License: |
26 | DE Africa makes this data available under the Creative Commons Attribute 4.0 license https://creativecommons.org/licenses/by/4.0/.
27 | Resources:
28 | - Description: Global Mangrove Watch
29 | ARN: arn:aws:s3:::deafrica-input-datasets/gmw
30 | Region: af-south-1
31 | Type: S3 Bucket
32 | RequesterPays: False
33 | Explore:
34 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/gmw)'
35 | - Description: "[S3 Inventory](https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html#storage-inventory-contents)"
36 | ARN: arn:aws:s3:::deafrica-services-inventory
37 | Region: af-south-1
38 | Type: S3 Bucket
39 | - Description: Bucket creation event notification, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message sent by the s3 bucket for all object create events.
40 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-input-datasets-topic
41 | Region: af-south-1
42 | Type: SNS Topic
43 | DataAtWork:
44 | Tutorials:
45 | - Title: Digital Earth Africa Training
46 | URL: http://learn.digitalearthafrica.org/
47 | AuthorName: Digital Earth Africa Contributors
48 | - Title: Digital Earth Africa Global Mangrove Watch Notebook
49 | URL: https://docs.digitalearthafrica.org/en/latest/sandbox/notebooks/Datasets/Global_Mangrove_Watch.html
50 | AuthorName: Digital Earth Africa Contributors
51 | - Title: Digital Earth Africa Monitoring Mangrove Extents Notebook
52 | URL: https://docs.digitalearthafrica.org/en/latest/sandbox/notebooks/Real_world_examples/Mangrove_analysis.html
53 | AuthorName: Digital Earth Africa Contributors
54 | Tools & Applications:
55 | - Title: "Global Mangrove Watch online platform"
56 | URL: https://www.globalmangrovewatch.org/
57 | AuthorName: Global Mangrove Alliance
58 | AuthorURL: https://www.mangrovealliance.org/
59 | - Title: "Digital Earth Africa Explorer (Global Mangrove Watch)"
60 | URL: https://explorer.digitalearth.africa/products/gmw
61 | AuthorName: Digital Earth Africa Contributors
62 | - Title: "Digital Earth Africa web services"
63 | URL: https://ows.digitalearth.africa
64 | AuthorName: Digital Earth Africa Contributors
65 | - Title: "Digital Earth Africa Map"
66 | URL: https://maps.digitalearth.africa/
67 | AuthorName: Digital Earth Africa Contributors
68 | - Title: "Digital Earth Africa Sandbox"
69 | URL: https://sandbox.digitalearth.africa/
70 | AuthorName: Digital Earth Africa Contributors
71 | - Title: "Digital Earth Africa Notebook Repo"
72 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
73 | AuthorName: Digital Earth Africa Contributors
74 | - Title: "Digital Earth Africa Geoportal"
75 | URL: https://www.africageoportal.com/pages/digital-earth-africa
76 | AuthorName: Digital Earth Africa Contributors
77 | Publications:
78 | - Title: "Time series for nature: Preserving mangroves in Zanzibar"
79 | URL: https://www.digitalearthafrica.org/why-digital-earth-africa/impact-stories/time-series-nature-preserving-mangroves-zanzibar
80 | AuthorName: Digital Earth Africa Contributors
81 | - Title: "Climate Next: How data and community can save Zanzibar’s mangroves"
82 | URL: https://www.aboutamazon.com/news/aws/climate-next-how-data-and-community-can-save-zanzibars-mangroves
83 | AuthorName: Amazon Staff
84 | - Title: "Zanzibar: The Essential Mangrove | Climate Next by AWS"
85 | URL: https://www.youtube.com/watch?v=FVmcEaemfmA
86 | AuthorName: Amazon Web Services (AWS)
87 |
88 |
89 |
--------------------------------------------------------------------------------
/datasets/deafrica-ndvi_anomaly.yaml:
--------------------------------------------------------------------------------
1 | Name: Digital Earth Africa Monthly Normalised Difference Vegetation Index (NDVI) Anomaly
2 | Description: |
3 | Digital Earth Africa’s Monthly NDVI Anomaly service provides estimate of vegetation condition, for each caldendar month, against the long-term baseline condition measured for the month from 1984 to 2020 in the NDVI Climatology.
4 |
5 | A standardised anomaly is calculated by subtracting the long-term mean from an observation of interest and then dividing the result by the long-term standard deviation. Positive NDVI anomaly values indicate vegetation is greener than average conditions, and are usually due to increased rainfall in a region. Negative values indicate additional plant stress relative to the long-term average. The NDVI anomaly service is therefore effective for understanding the extent, intensity and impact of a drought.Abrupt and significant negative anomalies may also be caused by fire disturbance.
6 |
7 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/NDVI_Anomaly_specs.html
8 | Contact: helpdesk@digitalearthafrica.org
9 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
10 | UpdateFrequency: From September 2022, the Monthly NDVI Anomaly is generated as a low latency product, i.e. anomaly for a month is generated on the 5th day of the following month. This ensures data is available shortly after the end of a month and all Landat 9 and Sentinel-2 observations are included. Not all landsat 8 observations for the month will be used, because the Landsat 8 Surface Refelectance product from USGS has a latency of over 2 weeks ([see Landsat Collection 2 Generation Timeline (https://www.usgs.gov/media/images/landsat-collection-2-generation-timeline)).
11 |
12 | Collabs:
13 | ASDI:
14 | Tags:
15 | - satellite imagery
16 | Tags:
17 | - aws-pds
18 | - agriculture
19 | - disaster response
20 | - earth observation
21 | - geospatial
22 | - natural resource
23 | - satellite imagery
24 | - deafrica
25 | - stac
26 | - cog
27 | License: |
28 | DE Africa makes this data available under the Creative Commons Attribute 4.0 license https://creativecommons.org/licenses/by/4.0/.
29 | Resources:
30 | - Description: Monthly Normalised Difference Vegetation Index (NDVI) Anomaly
31 | ARN: arn:aws:s3:::deafrica-services/ndvi_anomaly
32 | Region: af-south-1
33 | Type: S3 Bucket
34 | RequesterPays: False
35 | Explore:
36 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/ndvi_anomaly)'
37 | - Description: "[S3 Inventory](https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html#storage-inventory-contents)"
38 | ARN: arn:aws:s3:::deafrica-services-inventory
39 | Region: af-south-1
40 | Type: S3 Bucket
41 | - Description: New scene notifications, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message contains entire STAC record for each new Item
42 | ARN: arn:aws:sns:af-south-1:565417506782:deafrica-landsat-wofs
43 | Region: af-south-1
44 | Type: SNS Topic
45 | - Description: Bucket creation event notification, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message sent by the s3 bucket for all object create events.
46 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-services-topic
47 | Region: af-south-1
48 | Type: SNS Topic
49 | DataAtWork:
50 | Tutorials:
51 | - Title: Digital Earth Africa Training
52 | URL: http://learn.digitalearthafrica.org/
53 | AuthorName: Digital Earth Africa Contributors
54 | Tools & Applications:
55 | - Title: "Digital Earth Africa Explorer (Monthly Normalised Difference Vegetation Index (NDVI) Anomaly)"
56 | URL: https://explorer.digitalearth.africa/products/ndvi_anomaly
57 | AuthorName: Digital Earth Africa Contributors
58 | - Title: "Digital Earth Africa web services"
59 | URL: https://ows.digitalearth.africa
60 | AuthorName: Digital Earth Africa Contributors
61 | - Title: "Digital Earth Africa Map"
62 | URL: https://maps.digitalearth.africa/
63 | AuthorName: Digital Earth Africa Contributors
64 | - Title: "Digital Earth Africa Sandbox"
65 | URL: https://sandbox.digitalearth.africa/
66 | AuthorName: Digital Earth Africa Contributors
67 | - Title: "Digital Earth Africa Notebook Repo"
68 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
69 | AuthorName: Digital Earth Africa Contributors
70 | - Title: "Digital Earth Africa Geoportal"
71 | URL: https://www.africageoportal.com/pages/digital-earth-africa
72 | AuthorName: Digital Earth Africa Contributors
73 |
74 | Publications:
75 | - Title: "Digital Earth Africa releases new Rolling Monthly GeoMAD continental service"
76 | URL: https://www.digitalearthafrica.org/media-center/blog/digital-earth-africa-releases-new-rolling-monthly-geomad-continental-service
77 | AuthorName: Digital Earth Africa Contributors
78 | - Title: "Mean NDVI and Anomalies"
79 | URL: https://www.digitalearthafrica.org/platform-resources/services/mean-ndvi-and-anomalies
80 | AuthorName: Digital Earth Africa Contributors
81 |
--------------------------------------------------------------------------------
/datasets/deafrica-ndvi_climatology_ls.yaml:
--------------------------------------------------------------------------------
1 | Name: Digital Earth Africa Normalised Difference Vegetation Index (NDVI) Climatology
2 | Description: |
3 | Digital Earth Africa’s NDVI climatology product represents the long-term average baseline condition of vegetation for every Landsat pixel over the African continent. Both mean and standard deviation NDVI climatologies are available for each calender month.
4 |
5 | Some key features of the product are:
6 |
7 | - NDVI climatologies were developed using harmonized Landsat 5,7,and 8 satellite imagery.
8 | - Mean and standard deviation NDVI climatologies are produced for each calender month, using a temporal baseline period from 1984-2020 (inclusive)
9 | - Datasets have a spatial resolution of 30 metres
10 |
11 |
12 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/ndvi_climatology_ls.html
13 | Contact: helpdesk@digitalearthafrica.org
14 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
15 | UpdateFrequency: N/A.
16 |
17 |
18 | Collabs:
19 | ASDI:
20 | Tags:
21 | - satellite imagery
22 | Tags:
23 | - aws-pds
24 | - agriculture
25 | - disaster response
26 | - earth observation
27 | - geospatial
28 | - natural resource
29 | - agriculture
30 | - satellite imagery
31 | - deafrica
32 | - stac
33 | - cog
34 | License: |
35 | DE Africa makes this data available under the Creative Commons Attribute 4.0 license https://creativecommons.org/licenses/by/4.0/.
36 | Resources:
37 | - Description: Normalised Difference Vegetation Index (NDVI) Climatology
38 | ARN: arn:aws:s3:::deafrica-services/ndvi_climatology_ls
39 | Region: af-south-1
40 | Type: S3 Bucket
41 | RequesterPays: False
42 | Explore:
43 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/ndvi_climatology_ls)'
44 | - Description: "[S3 Inventory](https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html#storage-inventory-contents)"
45 | ARN: arn:aws:s3:::deafrica-services-inventory
46 | Region: af-south-1
47 | Type: S3 Bucket
48 | - Description: New scene notifications, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message contains entire STAC record for each new Item
49 | ARN: arn:aws:sns:af-south-1:565417506782:deafrica-landsat-wofs
50 | Region: af-south-1
51 | Type: SNS Topic
52 | - Description: Bucket creation event notification, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message sent by the s3 bucket for all object create events.
53 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-services-topic
54 | Region: af-south-1
55 | Type: SNS Topic
56 | DataAtWork:
57 | Tutorials:
58 | - Title: Digital Earth Africa Training
59 | URL: http://learn.digitalearthafrica.org/
60 | AuthorName: Digital Earth Africa Contributors
61 | Tools & Applications:
62 | - Title: "Digital Earth Africa Explorer(Normalised Difference Vegetation Index (NDVI) Climatology)"
63 | URL: https://explorer.digitalearth.africa/products/ndvi_climatology_ls
64 | AuthorName: Digital Earth Africa Contributors
65 | - Title: "Digital Earth Africa web services"
66 | URL: https://ows.digitalearth.africa
67 | AuthorName: Digital Earth Africa Contributors
68 | - Title: "Digital Earth Africa Map"
69 | URL: https://maps.digitalearth.africa/
70 | AuthorName: Digital Earth Africa Contributors
71 | - Title: "Digital Earth Africa Sandbox"
72 | URL: https://sandbox.digitalearth.africa/
73 | AuthorName: Digital Earth Africa Contributors
74 | - Title: "Digital Earth Africa Notebook Repo"
75 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
76 | AuthorName: Digital Earth Africa Contributors
77 | - Title: "Digital Earth Africa Geoportal"
78 | URL: https://www.africageoportal.com/pages/digital-earth-africa
79 | AuthorName: Digital Earth Africa Contributors
80 |
81 | Publications:
82 | - Title: "Mean NDVI and Anomalies"
83 | URL: https://www.digitalearthafrica.org/platform-resources/services/mean-ndvi-and-anomalies
84 | AuthorName: Digital Earth Africa Contributors
85 |
86 |
87 |
88 |
--------------------------------------------------------------------------------
/datasets/deafrica-sentinel-1.yaml:
--------------------------------------------------------------------------------
1 | Name: Digital Earth Africa Sentinel-1 Radiometrically Terrain Corrected
2 | Description: |
3 | DE Africa’s Sentinel-1 backscatter product is developed to be compliant with the CEOS Analysis Ready Data for Land (CARD4L) specifications.
4 | The Sentinel-1 mission, composed of a constellation of two C-band Synthetic Aperture Radar (SAR) satellites, are operated by European Space Agency (ESA) as part of the Copernicus Programme. The mission currently collects data every 12 days over Africa at a spatial resolution of approximately 20 m.
5 | Radar backscatter measures the amount of microwave radiation reflected back to the sensor from the ground surface. This measurement is sensitive to surface roughness, moisture content and viewing geometry. DE Africa provides Sentinel-1 backscatter as Radiometrically Terrain Corrected (RTC) gamma-0 (γ0) where variation due to changing observation geometries has been mitigated.
6 | The dual polarisation backcastter time series can be used in applications for forests, agriculture, wetlands and land cover classification. SAR’s ability to ‘see through’ clouds makes it critical for mapping and monitoring land cover changes in the wet tropics.
7 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/Sentinel-1_specs.html
8 | Contact: helpdesk@digitalearthafrica.org
9 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
10 | UpdateFrequency: New Sentinel-1 data are added regularly.
11 | Collabs:
12 | ASDI:
13 | Tags:
14 | - satellite imagery
15 | Tags:
16 | - aws-pds
17 | - agriculture
18 | - earth observation
19 | - satellite imagery
20 | - geospatial
21 | - natural resource
22 | - disaster response
23 | - deafrica
24 | - stac
25 | - cog
26 | - synthetic aperture radar
27 | License: |
28 | Access to Sentinel data is free, full and open for the broad Regional, National, European and International user community. View [Terms and Conditions](https://scihub.copernicus.eu/twiki/do/view/SciHubWebPortal/TermsConditions).
29 | Resources:
30 | - Description: Sentinel-1 tiles and metadata
31 | ARN: arn:aws:s3:::deafrica-sentinel-1
32 | Region: af-south-1
33 | Type: S3 Bucket
34 | RequesterPays: False
35 | Explore:
36 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/s1_rtc)'
37 | - Description: "[S3 Inventory](https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html#storage-inventory-contents)"
38 | ARN: arn:aws:s3:::deafrica-sentinel-1-inventory
39 | Region: af-south-1
40 | Type: S3 Bucket
41 | - Description: New scene notifications, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message contains entire STAC record for each new Item.
42 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-sentinel-1-scene-topic
43 | Region: af-south-1
44 | Type: SNS Topic
45 | - Description: Bucket creation event notification, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message sent by deafrica-sentinel-1 s3 bucket all object create events.
46 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-sentinel-1-topic
47 | Region: af-south-1
48 | Type: SNS Topic
49 | DataAtWork:
50 | Tutorials:
51 | - Title: Digital Earth Africa Training
52 | URL: http://learn.digitalearthafrica.org/
53 | AuthorName: Digital Earth Africa Contributors
54 | - Title: Water detection with Sentinel-1
55 | URL: https://docs.digitalearthafrica.org/en/latest/sandbox/notebooks/Real_world_examples/Radar_water_detection.html
56 | NotebookURL: https://github.com/mseehaber/dea_sagemaker/blob/master/s1rtc-load-analysis.ipynb
57 | AuthorName: Madeleine Seehaber
58 | Services:
59 | - Amazon SageMaker Studio Lab
60 | Tools & Applications:
61 | - Title: "Digital Earth Africa Explorer"
62 | URL: https://explorer.digitalearth.africa/products/s1_rtc/extents
63 | AuthorName: Digital Earth Africa Contributors
64 | - Title: "Digital Earth Africa web services"
65 | URL: https://ows.digitalearth.africa
66 | AuthorName: Digital Earth Africa Contributors
67 | - Title: "Digital Earth Africa Map"
68 | URL: https://maps.digitalearth.africa/
69 | AuthorName: Digital Earth Africa Contributors
70 | - Title: "Digital Earth Africa Sandbox"
71 | URL: https://sandbox.digitalearth.africa/
72 | AuthorName: Digital Earth Africa Contributors
73 | - Title: "Digital Earth Africa Notebook Repo"
74 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
75 | AuthorName: Digital Earth Africa Contributors
76 | - Title: "Digital Earth Africa Geoportal"
77 | URL: https://www.africageoportal.com/pages/digital-earth-africa
78 | AuthorName: Digital Earth Africa Contributors
79 | Publications:
80 | - Title: "Introduction to DE Africa"
81 | URL: https://youtu.be/Wkf7N6O9jJQ
82 | AuthorName: Dr Fang Yuan
83 | - Title: "An Operational Analysis Ready Radar Backscatter Dataset for the African Continent"
84 | URL: https://doi.org/10.3390/rs14020351
85 | AuthorName: Fang Yuan, Marko Repse, Alex Leith, Ake Rosenqvist, Grega Milcinski, Negin F. Moghaddam, Tishampati Dhar, Chad Burton, Lisa Hall, Cedric Jorand and Adam Lewis
86 |
--------------------------------------------------------------------------------
/datasets/deafrica-sentinel-2.yaml:
--------------------------------------------------------------------------------
1 | Name: Digital Earth Africa Sentinel-2 Level-2A
2 | Description: |
3 | The Sentinel-2 mission is part of the European Union Copernicus programme for Earth observations. Sentinel-2 consists of twin satellites, Sentinel-2A (launched 23 June 2015) and Sentinel-2B (launched 7 March 2017). The two satellites have the same orbit, but 180° apart for optimal coverage and data delivery. Their combined data is used in the Digital Earth Africa Sentinel-2 product.
4 | Together, they cover all Earth’s land surfaces, large islands, inland and coastal waters every 3-5 days.
5 | Sentinel-2 data is tiered by level of pre-processing. Level-0, Level-1A and Level-1B data contain raw data from the satellites, with little to no pre-processing. Level-1C data is surface reflectance measured at the top of the atmosphere. This is processed using the Sen2Cor algorithm to give Level-2A, the bottom-of-atmosphere reflectance (Obregón et al, 2019). Level-2A data is the most ideal for research activities as it allows further analysis without applying additional atmospheric corrections.
6 | The Digital Earth Africa Sentinel-2 dataset contains Level-2A data of the African continent. Digital Earth Africa does not host any lower-level Sentinel-2 data.
7 | Note that this data is a subset of the Sentinel-2 COGs dataset.
8 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/Sentinel-2_Level-2A_specs.html
9 | Contact: helpdesk@digitalearthafrica.org
10 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
11 | UpdateFrequency: New Sentinel-2 scenes are added regularly, usually within few hours after they are available on Copernicus OpenHub.
12 | Collabs:
13 | ASDI:
14 | Tags:
15 | - satellite imagery
16 | Tags:
17 | - aws-pds
18 | - agriculture
19 | - earth observation
20 | - satellite imagery
21 | - geospatial
22 | - natural resource
23 | - disaster response
24 | - deafrica
25 | - stac
26 | - cog
27 | License: |
28 | Access to Sentinel data is free, full and open for the broad Regional, National, European and International user community. View [Terms and Conditions](https://scihub.copernicus.eu/twiki/do/view/SciHubWebPortal/TermsConditions).
29 | Resources:
30 | - Description: Sentinel-2 scenes and metadata
31 | ARN: arn:aws:s3:::deafrica-sentinel-2
32 | Region: af-south-1
33 | Type: S3 Bucket
34 | RequesterPays: False
35 | Explore:
36 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/s2_l2a)'
37 | - Description: "[S3 Inventory](https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html#storage-inventory-contents)"
38 | ARN: arn:aws:s3:::deafrica-sentinel-2-inventory
39 | Region: af-south-1
40 | Type: S3 Bucket
41 | - Description: New scene notifications, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message contains entire STAC record for each new Item.
42 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-sentinel-2-scene-topic
43 | Region: af-south-1
44 | Type: SNS Topic
45 | - Description: Bucket creation event notification, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message sent by deafrica-sentinel-2 s3 bucket all object create events.
46 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-sentinel-2-topic
47 | Region: af-south-1
48 | Type: SNS Topic
49 | DataAtWork:
50 | Tutorials:
51 | - Title: Use Sentinel-2 data in the Open Data Cube
52 | URL: https://github.com/opendatacube/cube-in-a-box
53 | AuthorName: Alex Leith
54 | - Title: Digital Earth Africa Training
55 | URL: http://learn.digitalearthafrica.org/
56 | AuthorName: Digital Earth Africa Contributors
57 | - Title: Downloading and streaming data using STAC metadata
58 | URL: https://docs.digitalearthafrica.org/en/latest/sandbox/notebooks/Frequently_used_code/Downloading_data_with_STAC.html
59 | AuthorName: Digital Earth Africa Contributors
60 | Tools & Applications:
61 | - Title: "Digital Earth Africa Explorer"
62 | URL: https://explorer.digitalearth.africa/products/s2_l2a/extents
63 | AuthorName: Digital Earth Africa Contributors
64 | - Title: "Digital Earth Africa web services"
65 | URL: https://ows.digitalearth.africa
66 | AuthorName: Digital Earth Africa Contributors
67 | - Title: "Digital Earth Africa Map"
68 | URL: https://maps.digitalearth.africa/
69 | AuthorName: Digital Earth Africa Contributors
70 | - Title: "Digital Earth Africa Sandbox"
71 | URL: https://sandbox.digitalearth.africa/
72 | AuthorName: Digital Earth Africa Contributors
73 | - Title: "Digital Earth Africa Notebook Repo"
74 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
75 | AuthorName: Digital Earth Africa Contributors
76 | - Title: "Digital Earth Africa Geoportal"
77 | URL: https://www.africageoportal.com/pages/digital-earth-africa
78 | AuthorName: Digital Earth Africa Contributors
79 | Publications:
80 | - Title: "Introduction to DE Africa"
81 | URL: https://youtu.be/Wkf7N6O9jJQ
82 | AuthorName: Dr Fang Yuan
83 |
--------------------------------------------------------------------------------
/datasets/deafrica-waterbodies.yaml:
--------------------------------------------------------------------------------
1 | Name: DE Africa Waterbodies Monitoring Service
2 | Description: |
3 | The Digital Earth Africa continental Waterbodies Monitoring Service identifies more than 700,000 water bodies from over three decades of satellite observations. This service maps persistent and seasonal water bodies and the change in their water surface area over time. Mapped water bodies may include, but are not limited to, lakes, ponds, man-made reservoirs, wetlands, and segments of some river systems.On a local, regional, and continental scale, this service helps improve our understanding of surface water dynamics and water availability and can be used for monitoring water bodies such as wetlands, lakes and dams in remote and/or inaccessible locations.
4 |
5 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/Waterbodies_specs.html
6 | Contact: helpdesk@digitalearthafrica.org
7 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
8 | UpdateFrequency: Single historical extent derived from the full temporal range.
9 | Collabs:
10 | ASDI:
11 | Tags:
12 | - satellite imagery
13 | Tags:
14 | - aws-pds
15 | - agriculture
16 | - disaster response
17 | - earth observation
18 | - geospatial
19 | - natural resource
20 | - satellite imagery
21 | - water
22 | - deafrica
23 | - stac
24 | - cog
25 | License: |
26 | DE Africa makes this data available under the Creative Commons Attribute 4.0 license https://creativecommons.org/licenses/by/4.0/.
27 | Resources:
28 | - Description: DE Africa Waterbodies
29 | ARN: arn:aws:s3:::deafrica-services/waterbodies
30 | Region: af-south-1
31 | Type: S3 Bucket
32 | RequesterPays: False
33 | Explore:
34 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/waterbodies)'
35 | DataAtWork:
36 | Tutorials:
37 | - Title: "Digital Earth Africa Training"
38 | URL: http://learn.digitalearthafrica.org
39 | AuthorName: Digital Earth Africa Contributors
40 | Tools & Applications:
41 | - Title: "Digital Earth Africa Map"
42 | URL: https://maps.digitalearth.africa
43 | AuthorName: Digital Earth Africa Contributors
44 | - Title: "Digital Earth Africa Sandbox"
45 | URL: https://sandbox.digitalearth.africa
46 | AuthorName: Digital Earth Africa Contributors
47 | - Title: "Digital Earth Africa Notebook Repo"
48 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
49 | AuthorName: Digital Earth Africa Contributors
50 | - Title: "Digital Earth Africa Geoportal"
51 | URL: https://www.africageoportal.com/pages/digital-earth-africa
52 | AuthorName: Digital Earth Africa Contributors
53 | Publications:
54 | - Title: "Waterbodies Monitoring Service"
55 | URL: https://www.digitalearthafrica.org/node/601
56 | AuthorName: Digital Earth Africa Contributors
57 |
--------------------------------------------------------------------------------
/datasets/deafrica-wofs.yaml:
--------------------------------------------------------------------------------
1 | Name: Digital Earth Africa Water Observations from Space
2 | Description: |
3 | Water Observations from Space (WOfS) is a service that draws on satellite imagery to provide historical surface water observations of the whole African continent. WOfS allows users to understand the location and movement of inland and coastal water present in the African landscape. It shows where water is usually present; where it is seldom observed; and where inundation of the surface has been observed by satellite.
4 | They are generated using the WOfS classification algorithm on Landsat satellite data. There are several WOfS products available for the African continent including scene-level data and annual or all time summaries.
5 | Documentation: https://docs.digitalearthafrica.org/en/latest/data_specs/Landsat_WOfS_specs.html
6 | Contact: helpdesk@digitalearthafrica.org
7 | ManagedBy: "[Digital Earth Africa](https://www.digitalearthafrica.org/)"
8 | UpdateFrequency: New scene-level data is added as new Landsat data is available. New summaries are available soon after data is available for a year.
9 | Collabs:
10 | ASDI:
11 | Tags:
12 | - satellite imagery
13 | Tags:
14 | - aws-pds
15 | - agriculture
16 | - disaster response
17 | - earth observation
18 | - geospatial
19 | - natural resource
20 | - satellite imagery
21 | - water
22 | - deafrica
23 | - stac
24 | - cog
25 | License: |
26 | DE Africa makes this data available under the Creative Commons Attribute 4.0 license https://creativecommons.org/licenses/by/4.0/.
27 | Resources:
28 | - Description: Water Observations from Space data
29 | ARN: arn:aws:s3:::deafrica-services/wofs_ls
30 | Region: af-south-1
31 | Type: S3 Bucket
32 | RequesterPays: False
33 | Explore:
34 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/wofs_ls)'
35 | - Description: Water Observations from Space Annual Summary data
36 | ARN: arn:aws:s3:::deafrica-services/wofs_ls_summary_annual
37 | Region: af-south-1
38 | Type: S3 Bucket
39 | RequesterPays: False
40 | Explore:
41 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/wofs_ls_summary_annual)'
42 | - Description: Water Observations from Space All-Time Summary data
43 | ARN: arn:aws:s3:::deafrica-services/wofs_ls_summary_alltime
44 | Region: af-south-1
45 | Type: S3 Bucket
46 | RequesterPays: False
47 | Explore:
48 | - '[STAC V1.0.0 endpoint](https://explorer.digitalearth.africa/stac/collections/wofs_ls_summary_alltime)'
49 | - Description: "[S3 Inventory](https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html#storage-inventory-contents)"
50 | ARN: arn:aws:s3:::deafrica-services-inventory
51 | Region: af-south-1
52 | Type: S3 Bucket
53 | - Description: New scene notifications, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message contains entire STAC record for each new Item
54 | ARN: arn:aws:sns:af-south-1:565417506782:deafrica-landsat-wofs
55 | Region: af-south-1
56 | Type: SNS Topic
57 | - Description: Bucket creation event notification, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message sent by the s3 bucket for all object create events.
58 | ARN: arn:aws:sns:af-south-1:543785577597:deafrica-services-topic
59 | Region: af-south-1
60 | Type: SNS Topic
61 | DataAtWork:
62 | Tutorials:
63 | - Title: Digital Earth Africa Training
64 | URL: http://learn.digitalearthafrica.org/
65 | AuthorName: Digital Earth Africa Contributors
66 | Tools & Applications:
67 | - Title: "Digital Earth Africa Explorer (Water Observations from Space)"
68 | URL: https://explorer.digitalearth.africa/products/wofs_ls
69 | AuthorName: Digital Earth Africa Contributors
70 | - Title: "Digital Earth Africa Explorer (Water Observations from Space Annual Summary)"
71 | URL: https://explorer.digitalearth.africa/products/wofs_ls_summary_annual
72 | AuthorName: Digital Earth Africa Contributors
73 | - Title: "Digital Earth Africa Explorer (Water Observations from Space All-Time Summary)"
74 | URL: https://explorer.digitalearth.africa/products/wofs_ls_summary_alltime
75 | AuthorName: Digital Earth Africa Contributors
76 | - Title: "Digital Earth Africa web services"
77 | URL: https://ows.digitalearth.africa
78 | AuthorName: Digital Earth Africa Contributors
79 | - Title: "Digital Earth Africa Map"
80 | URL: https://maps.digitalearth.africa/
81 | AuthorName: Digital Earth Africa Contributors
82 | - Title: "Digital Earth Africa Sandbox"
83 | URL: https://sandbox.digitalearth.africa/
84 | AuthorName: Digital Earth Africa Contributors
85 | - Title: "Digital Earth Africa Notebook Repo"
86 | URL: https://github.com/digitalearthafrica/deafrica-sandbox-notebooks
87 | AuthorName: Digital Earth Africa Contributors
88 | - Title: "Digital Earth Africa Geoportal"
89 | URL: https://www.africageoportal.com/pages/digital-earth-africa
90 | AuthorName: Digital Earth Africa Contributors
91 | Publications:
92 | - Title: "Water Observations from Space: accurate maps of surface water through time for the continent of Africa"
93 | URL: https://agu2021fallmeeting-agu.ipostersessions.com/Default.aspx?s=E9-AF-34-FE-69-38-18-49-15-E0-0F-89-21-74-C0-29
94 | AuthorName: Meghan Halabisky, Kenneth Mubea, Fatou Mar, Fang Yuan, Chad Burton, Eloise Birchall, Negin F. Moghaddam, Sena Ghislain Adimou, Bako Mamane, David Ongo, Edward Boamah, Ee-Faye Chong, Nikita Gandhi, Alex Leith, Lisa Hall and Adam Lewis
95 | - Title: "Analysing effects of drought on inundation extent and vegetation cover dynamics in the Okavango Delta"
96 | URL: https://agu2021fallmeeting-agu.ipostersessions.com/?s=7A-85-3A-E6-1F-5F-19-87-39-23-90-F1-DC-57-5C-E9
97 | AuthorName: Kelebogile Mfundisi, Kenneth Mubea, Fang Yuan, Chad Burton and Edward Boamah
98 |
--------------------------------------------------------------------------------
/datasets/esa-worldcover-vito-composites.yaml:
--------------------------------------------------------------------------------
1 | Name: ESA WorldCover Sentinel-1 and Sentinel-2 10m Annual Composites
2 | Description: The WorldCover 10m Annual Composites were produced, as part of the European Space Agency (ESA) WorldCover project, from the yearly Copernicus Sentinel-1 and Sentinel-2 archives for both years 2020 and 2021. These global mosaics consists of four products composites. A Sentinel-2 RGBNIR yearly median composite for bands B02, B03, B04, B08. A Sentinel-2 SWIR yearly median composite for bands B11 and B12. A Sentinel-2 NDVI yearly percentiles composite (NDVI 90th, NDVI 50th NDVI 10th percentiles). A Sentinel-1 GAMMA0 yearly median composite for bands VV, VH and VH/VV (power scaled). Each product is delivered as a series of Cloud-Optimized GeoTIFFs (COGs) in WSG84 projection in a grid of 1 by 1 degrees and at 0.3 arc seconds resolution (approx. 10m), except for the SWIR composite which is delivered at 0.6 arc seconds (approx. 20m). The Sentinel-2 composites were produced from the L2A archive. The GAMMA0 composite was produced by pre-processing the Sentinel-1 GRD products using [GAMMA software](https://www.gamma-rs.ch/).
3 | Documentation: More information is available on the products' [GitHub](https://github.com/ESA-WorldCover/esa-worldcover-datasets) and on WorldCover project [website](https://esa-worldcover.org/en/data-access).
4 | Contact: https://esa-worldcover.org/en/contact
5 | ManagedBy: "[VITO](https://vito.be)"
6 | UpdateFrequency: Not updated.
7 | Collabs:
8 | ASDI:
9 | Tags:
10 | - satellite imagery
11 | Tags:
12 | - aws-pds
13 | - earth observation
14 | - agriculture
15 | - satellite imagery
16 | - geospatial
17 | - natural resource
18 | - sustainability
19 | - cog
20 | - disaster response
21 | - mapping
22 | - synthetic aperture radar
23 | - land cover
24 | - land use
25 | - machine learning
26 | - stac
27 | License: "CC-BY 4.0"
28 | Citation: "To cite the dataset in a publication please refer to the [Citation section](https://esa-worldcover.org/en/data-access)/[DOI v200](https://doi.org/10.5281/zenodo.7254221)/[DOI v100](https://doi.org/10.5281/zenodo.5571936)."
29 | Resources:
30 | - Description: ESA WorldCover S2 composites. The bucket contains the 3 Sentinel-2 L2A annual composites for the years 2020 and 2021. A 4 bands RGBNIR yearly median composite (B02, B03, B04, B08), a 2 bands SWIR yearly median composite (B11, B12) and a 3 bands NDVI yearly percentiles composite (NDVI p90, NDVI p50, NDVI p10).
31 | ARN: arn:aws:s3:::esa-worldcover-s2
32 | Region: eu-central-1
33 | Type: S3 Bucket
34 | RequesterPays: False
35 | Explore:
36 | - '[Products Grid](https://esa-worldcover.s3.eu-central-1.amazonaws.com/esa_worldcover_grid_composites.fgb)'
37 | - '[WorldCover Viewer](https://viewer.esa-worldcover.org/worldcover/?layer=WORLDCOVER_2021_S2_NDVI)'
38 | - Description: ESA WorldCover S1 composites. The bucket contains 1 Sentinel-1 annual composite for the years 2020 and 2021. A 3 bands GAMMA0 yearly median composite (VV, VH, VH/VV), power scaled.
39 | ARN: arn:aws:s3:::esa-worldcover-s1
40 | Region: eu-central-1
41 | Type: S3 Bucket
42 | RequesterPays: False
43 | Explore:
44 | - '[Products Grid](https://esa-worldcover.s3.eu-central-1.amazonaws.com/esa_worldcover_grid_composites.fgb)'
45 | - '[WorldCover Viewer](https://viewer.esa-worldcover.org/worldcover/?layer=WORLDCOVER_2021_S1_VVVHratio)'
46 | DataAtWork:
47 | Tutorials:
48 | - Title: Exploring the datasets
49 | URL: https://github.com/ESA-WorldCover/esa-worldcover-datasets
50 | AuthorName: VITO
51 | AuthorURL: https://esa-worldcover.org
52 | Tools & Applications:
53 | - Title: WorldCover Viewer
54 | URL: https://viewer.esa-worldcover.org/worldcover/
55 | AuthorName: VITO
56 | AuthorURL: https://esa-worldcover.org/en
57 | Publications:
58 | - Title: ESA WorldCover 10 m 2021 v200
59 | URL: https://doi.org/10.5281/zenodo.7254221
60 | AuthorName: Zanaga, D., Van De Kerchove, R.,Daems, D.,De Keersmaecker, W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., Lesiv, M., Herold, M., Tsendbazar, N.E., Xu, P., Ramoino, F., Arino, O.
61 | - Title: Release of the 10 m WorldCover map
62 | URL: https://blog.vito.be/remotesensing/release-of-the-10-m-worldcover-map
63 | AuthorName: Ruben Van De Kerchove
64 | - Title: ESA WorldCover 10 m 2021 v200 - Product User Manual
65 | URL: https://esa-worldcover.s3.eu-central-1.amazonaws.com/v200/2021/docs/WorldCover_PUM_V2.0.pdf
66 | AuthorName: VITO
67 |
68 |
69 |
--------------------------------------------------------------------------------
/datasets/esa-worldcover-vito.yaml:
--------------------------------------------------------------------------------
1 | Name: ESA WorldCover
2 | Description: The European Space Agency (ESA) WorldCover product provides global land cover maps for 2020 & 2021 at 10 m resolution based on Copernicus Sentinel-1 and Sentinel-2 data. The WorldCover product comes with 11 land cover classes and has been generated in the framework of the ESA WorldCover project, part of the 5th Earth Observation Envelope Programme (EOEP-5) of the European Space Agency. A first version of the product (v100), containing the 2020 map was released in October 2021. The 2021 map was released in October 2022 using an improved algorithm (v200). The WorldCover 2020 and 2021 maps were generated with different algorithm versions and therefore changes between the maps should be treated with caution as these contain both real land cover changes as well as changes due to the used algorithms.
3 |
4 | Documentation: Documentation is available [here](https://esa-worldcover.org/en/data-access).
5 | Contact: https://esa-worldcover.org/en/contact
6 | ManagedBy: "[VITO](https://vito.be)"
7 | UpdateFrequency: Yearly.
8 | Collabs:
9 | ASDI:
10 | Tags:
11 | - satellite imagery
12 | Tags:
13 | - aws-pds
14 | - earth observation
15 | - agriculture
16 | - satellite imagery
17 | - geospatial
18 | - natural resource
19 | - sustainability
20 | - cog
21 | - disaster response
22 | - mapping
23 | - synthetic aperture radar
24 | - land cover
25 | - land use
26 | - machine learning
27 | - stac
28 | License: "CC-BY 4.0"
29 | Citation: "To cite the dataset in a publication please refer to the [Citation section](https://esa-worldcover.org/en/data-access)/[DOI v200](https://doi.org/10.5281/zenodo.7254221)/[DOI v100](https://doi.org/10.5281/zenodo.5571936)."
30 | Resources:
31 | - Description: ESA WorldCover in a S3 bucket
32 | ARN: arn:aws:s3:::esa-worldcover
33 | Region: eu-central-1
34 | Type: S3 Bucket
35 | RequesterPays: False
36 | Explore:
37 | - '[STAC endpoint](https://services.terrascope.be/stac/)'
38 | DataAtWork:
39 | Tutorials:
40 | - Title: Exploring the dataset (STAC API examples)
41 | URL: https://github.com/ESA-WorldCover/esa-worldcover-datasets
42 | AuthorName: VITO
43 | AuthorURL: https://esa-worldcover.org
44 | - Title: Global Fire Spread Prediction System
45 | URL: https://github.com/SatelliteVu/SatelliteVu-AWS-Disaster-Response-Hackathon
46 | AuthorName: SatelliteVu
47 | AuthorURL: https://www.satellitevu.com/
48 | Tools & Applications:
49 | - Title: WorldCover Viewer
50 | URL: https://viewer.esa-worldcover.org/worldcover/
51 | AuthorName: VITO
52 | AuthorURL: https://esa-worldcover.org/en
53 | - Title: TerraScope Viewer
54 | URL: https://viewer.terrascope.be/
55 | AuthorName: TerraScope
56 | AuthorURL: https://terrascope.be/en/about-us
57 | - Title: ESA Viewer 2020
58 | URL: https://worldcover2020.esa.int/viewer
59 | AuthorName: ESA
60 | AuthorURL: https://worldcover2020.esa.int/
61 | - Title: ESA Viewer 2021
62 | URL: https://worldcover2021.esa.int/viewer
63 | AuthorName: ESA
64 | AuthorURL: https://worldcover2021.esa.int/
65 | - Title: WorldCover GEE App
66 | URL: https://vitorsveg.users.earthengine.app/view/worldcover
67 | AuthorName: VITO
68 | AuthorURL: https://esa-worldcover.org
69 | Publications:
70 | - Title: ESA WorldCover 10 m 2020 v100
71 | URL: https://doi.org/10.5281/zenodo.5571936
72 | AuthorName: Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, Linlin, Tsendbazar, N.E., Ramoino, F., Arino, O., 2021.
73 | - Title: ESA WorldCover 10 m 2021 v200
74 | URL: https://doi.org/10.5281/zenodo.7254221
75 | AuthorName: Zanaga, D., Van De Kerchove, R.,Daems, D.,De Keersmaecker, W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., Lesiv, M., Herold, M., Tsendbazar, N.E., Xu, P., Ramoino, F., Arino, O.
76 | - Title: Release of the 10 m WorldCover map
77 | URL: https://blog.vito.be/remotesensing/release-of-the-10-m-worldcover-map
78 | AuthorName: Ruben Van De Kerchove
79 | - Title: ESA WorldCover 10 m 2020 v100 - Product User Manual
80 | URL: https://esa-worldcover.s3.eu-central-1.amazonaws.com/v100/2020/docs/WorldCover_PUM_V1.0.pdf
81 | AuthorName: VITO
82 | - Title: ESA WorldCover 10 m 2021 v200 - Product User Manual
83 | URL: https://esa-worldcover.s3.eu-central-1.amazonaws.com/v200/2021/docs/WorldCover_PUM_V2.0.pdf
84 | AuthorName: VITO
85 | - Title: WorldCover taking it to the next level
86 | URL: https://blog.vito.be/remotesensing/worldcover2021
87 | AuthorName: Ruben Van De Kerchove
88 | - Title: "Fusing GEDI with earth observation data for large area aboveground biomass mapping"
89 | URL: https://doi.org/10.1016/j.jag.2022.103108
90 | AuthorName: Yuri Shendryk
91 | - Title: "The world's most populated and greenest megacities (and how we found out)"
92 | URL: https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/mapping/worlds-greenest-megacities/
93 | AuthorName: Michael Dangermond, Emily Meriam
94 |
95 |
--------------------------------------------------------------------------------
/datasets/glo-30-hand.yaml:
--------------------------------------------------------------------------------
1 | Name: Global 30m Height Above Nearest Drainage (HAND)
2 | Description: >
3 | Height Above Nearest Drainage (HAND) is a terrain model that normalizes topography to the relative heights along the
4 | drainage network and is used to describe the relative soil gravitational potentials or the local drainage potentials.
5 | Each pixel value represents the vertical distance to the nearest drainage. The HAND data provides near-worldwide land
6 | coverage at 30 meters and was produced from the 2021 release of the Copernicus GLO-30 Public DEM as distributed in the
7 | [Registry of Open Data on AWS](https://registry.opendata.aws/copernicus-dem/).
8 | Documentation: https://glo-30-hand.s3.us-west-2.amazonaws.com/readme.html
9 | Contact: https://asf.alaska.edu/asf/contact-us/
10 | ManagedBy: "[The Alaska Satellite Facility (ASF)](https://asf.alaska.edu/)"
11 | UpdateFrequency: >
12 | None, except HAND may be updated if the[ Copernicus GLO-30 Public](https://registry.opendata.aws/copernicus-dem/)
13 | dataset is updated.
14 | Tags:
15 | - aws-pds
16 | - elevation
17 | - hydrology
18 | - agriculture
19 | - disaster response
20 | - satellite imagery
21 | - geospatial
22 | - cog
23 | - stac
24 | License: >
25 | Copyright 2022 Alaska Satellite Facility (ASF). Produced using the Copernicus WorldDEM™-30 © DLR e.V. 2010-2014
26 | and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights
27 | reserved. The use of the HAND data falls under the terms and conditions of the
28 | [Creative Commons Zero (CC0) 1.0 Universal License](https://creativecommons.org/publicdomain/zero/1.0/).
29 | Citation:
30 | Resources:
31 | - Description: GLO-30 HAND S3 bucket
32 | ARN: arn:aws:s3:::glo-30-hand
33 | Region: us-west-2
34 | Type: S3 Bucket
35 | Explore:
36 | - '[STAC V1.0.0 endpoint](https://stac.asf.alaska.edu/collections/glo-30-hand)'
37 | - '[Via STAC Browser](https://radiantearth.github.io/stac-browser/#/external/stac.asf.alaska.edu/collections/glo-30-hand)'
38 | - Description: Notifications for new data
39 | ARN: arn:aws:sns:us-west-2:879002409890:glo-30-hand-object_created
40 | Region: us-west-2
41 | Type: SNS Topic
42 | DataAtWork:
43 | Tutorials:
44 | - Title: Search the GLO-30 HAND Catalog in Python
45 | URL: https://github.com/ASFHyP3/OpenData/blob/main/glo-30-hand/search-hand-notebook.ipynb
46 | NotebookURL: https://github.com/ASFHyP3/OpenData/blob/main/glo-30-hand/search-hand-notebook.ipynb
47 | AuthorName: Alaska Satellite Facility
48 | AuthorURL: https://asf.alaska.edu/
49 | - Title: Generate your own HAND data in Python
50 | URL: https://github.com/ASFHyP3/OpenData/blob/main/glo-30-hand/generate-hand-notebook.ipynb
51 | NotebookURL: https://github.com/ASFHyP3/OpenData/blob/main/glo-30-hand/generate-hand-notebook.ipynb
52 | AuthorName: Alaska Satellite Facility
53 | AuthorURL: https://asf.alaska.edu/
54 | Tools & Applications:
55 | - Title: GLO-30 HAND Webmap
56 | URL: https://asf-daac.maps.arcgis.com/apps/mapviewer/index.html?webmap=6b82a2e4ccd343d5ba73dc04d386e4ee
57 | AuthorName: Alaska Satellite Facility
58 | AuthorURL: https://asf.alaska.edu/
59 | - Title: GLO-30 HAND ImageServer
60 | URL: https://gis.asf.alaska.edu/arcgis/rest/services/GlobalHAND/GLO30_HAND/ImageServer
61 | AuthorName: Alaska Satellite Facility
62 | AuthorURL: https://asf.alaska.edu/
63 | Publications:
64 | - Title: 'AGU 2022: A New Global 30m HAND Dataset to Support Hydrological Services and Applications'
65 | URL: https://docs.google.com/presentation/d/1GzHn4bQrqqKj6DFFXwQ9zIvN7-etSjyIpHz3fQmxO0s/edit#slide=id.p
66 | AuthorName: Joseph H. Kennedy, et al.
67 | AuthorURL: https://jhkennedy.org/
68 | ADXCategories:
69 | - Environmental Data
70 |
--------------------------------------------------------------------------------
/datasets/io-lulc.yaml:
--------------------------------------------------------------------------------
1 | Name: 10m Annual Land Use Land Cover (9-class)
2 | Description: |
3 | This dataset, produced by Impact Observatory, Microsoft, and Esri, displays a global map of land use and land cover (LULC)
4 | derived from ESA Sentinel-2 imagery at 10 meter resolution for the years 2017 - 2023.
5 |
6 | Each map is a composite of LULC predictions for 9 classes throughout the year
7 | in order to generate a representative snapshot of each year.
8 |
9 | This dataset was generated by Impact Observatory, which used billions of human-labeled pixels
10 | (curated by the National Geographic Society) to train a deep learning model for land classification.
11 | Each global map was produced by applying this model to the Sentinel-2 annual scene collections
12 | from the Mircosoft Planetary Computer. Each of the maps has an assessed average accuracy of over 75%.
13 |
14 | These maps have been improved from Impact Observatory’s previous release and provide
15 | a relative reduction in the amount of anomalous change between classes,
16 | particularly between “Bare” and any of the vegetative classes
17 | “Trees,” “Crops,” “Flooded Vegetation,” and “Rangeland”.
18 | This updated time series of annual global maps is also re-aligned to match the ESA UTM tiling grid for Sentinel-2 imagery.
19 |
20 | Data can be accessed directly from the Registry of Open Data on AWS, from the [STAC 1.0.0 endpoint](https://api.impactobservatory.com/stac-aws/collections/io-10m-annual-lulc/items), or from the [IO Store](https://www.impactobservatory.com/maps-for-good/) for a specific Area of Interest (AOI).
21 |
22 | Documentation: https://www.impactobservatory.com/global_maps
23 | Contact: hello@impactobservatory.com
24 | ManagedBy: "[Impact Observatory](https://www.impactobservatory.com/)"
25 | UpdateFrequency: A new year is made available annually, each January. A new time series was provided July 2023 to reduce anomalous change.
26 | Collabs:
27 | ASDI:
28 | Tags:
29 | - ecosystems
30 | Tags:
31 | - aws-pds
32 | - earth observation
33 | - environmental
34 | - geospatial
35 | - satellite imagery
36 | - sustainability
37 | - stac
38 | - cog
39 | - land cover
40 | - land use
41 | - machine learning
42 | - mapping
43 | - planetary
44 | License: "[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)"
45 | Resources:
46 | - Description: 10m Annual Land Use Land Cover (9-class)
47 | ARN: arn:aws:s3:::io-10m-annual-lulc
48 | Region: us-west-2
49 | Type: S3 Bucket
50 | Explore:
51 | - '[STAC 1.0.0 endpoint](https://api.impactobservatory.com/stac-aws/collections/io-10m-annual-lulc/items)'
52 | DataAtWork:
53 | Tools & Applications:
54 | - Title: View the dataset on UN Biodiversity Lab Map Viewer
55 | URL: https://map.unbiodiversitylab.org/earth?basemap=grayscale&coordinates=20,0,2&layers=10m-annual-land-use-land-cover-9-class-01_100
56 | AuthorName: United Nations Development Programme
57 | Publications:
58 | - Title: Global land use / land cover with Sentinel 2 and deep learning
59 | URL: https://ieeexplore.ieee.org/document/9553499
60 | AuthorName: K. Karra, C. Kontgis, Z. Statman-Weil, J. C. Mazzariello, M. Mathis and S. P. Brumby
61 | - Title: Mapping the world with unmatched frequency
62 | URL: https://medium.com/impactobservatoryinc/mapping-the-world-with-unmatched-frequency-54a83527f138
63 | AuthorName: Mark Hannel
64 | - Title: '‘Very Dire’: Devastated by Floods, Pakistan Faces Looming Food Crisis'
65 | URL: https://www.nytimes.com/2022/09/11/world/asia/pakistan-floods-food-crisis.html
66 | AuthorName: New York Times
67 | - Title: These maps from satellite data show how much Earth has changed in only five years
68 | URL: https://www.fastcompany.com/90729824/these-maps-from-satellite-data-show-how-much-earth-has-changed-in-only-five-years
69 | AuthorName: Fast Company
70 | - Title: The world's most populated and greenest megacities (and how we found out)
71 | URL: https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/mapping/worlds-greenest-megacities/
72 | AuthorName: Esri
73 |
--------------------------------------------------------------------------------
/datasets/jaxa-alos-palsar2-scansar.yaml:
--------------------------------------------------------------------------------
1 | Name: PALSAR-2 ScanSAR CARD4L (L2.2)
2 | Description: |
3 | The 25 m PALSAR-2 ScanSAR is normalized backscatter data of PALSAR-2 broad area observation mode with observation width of 350 km.
4 | The SAR imagery was ortho-rectificatied and slope corrected using the ALOS World 3D - 30 m (AW3D30) Digital Surface Model.
5 | Polarization data are stored as 16-bit digital numbers (DN).
6 | The DN values can be converted to gamma naught values in decibel unit (dB) using the following equation:
7 | γ0 = 10*log10(DN2) - 83.0 dB
8 | CARD4L stands for CEOS Analysis Ready Data for Land (Level 2.2) data are ortho-rectified and radiometrically terrain-corrected.
9 | This dataset is compatible with the [Committee on Earth Observation (CEOS)](https://ceos.org/) [Analysis Ready Data for LAND (CARD4L)](https://ceos.org/ard/files/PFS/NRB/v5.5/CARD4L-PFS_NRB_v5.5.pdf) standard.
10 |
11 | Documentation: https://www.eorc.jaxa.jp/ALOS/en/dataset/palsar2_l22_e.htm
12 | Contact: aproject@jaxa.jp
13 | ManagedBy: "[JAXA](https://www.jaxa.jp/)"
14 | UpdateFrequency: Every month after 42 days observed
15 | Collabs:
16 | ASDI:
17 | Tags:
18 | - satellite imagery
19 | Tags:
20 | - aws-pds
21 | - agriculture
22 | - earth observation
23 | - satellite imagery
24 | - geospatial
25 | - natural resource
26 | - sustainability
27 | - disaster response
28 | - synthetic aperture radar
29 | - deafrica
30 | - stac
31 | - cog
32 | License: |
33 | Data is available for free under the [terms of use](https://earth.jaxa.jp/policy/en.html).
34 | Resources:
35 | - Description: PALSAR-2 ScanSAR CARD4L
36 | ARN: arn:aws:s3:::jaxaalos2/palsar2/L2.2/Africa/
37 | Region: us-west-2
38 | Type: S3 Bucket
39 | RequesterPays: False
40 | DataAtWork:
41 | Tutorials:
42 | Tools & Applications:
43 | Publications:
44 | - Title: "ALOS series Open and Free Data"
45 | URL: https://www.eorc.jaxa.jp/ALOS/en/dataset/alos_open_and_free_e.htm
46 | AuthorName: JAXA EORC
47 |
48 |
--------------------------------------------------------------------------------
/datasets/jaxa-usgs-nasa-kaguya-tc-dtms.yaml:
--------------------------------------------------------------------------------
1 | Name: JAXA / USGS / NASA Kaguya/SELENE Terrain Camera Digital Terrain Models
2 | Description: |
3 | The Japan Aerospace EXploration Agency (JAXA) SELenological and ENgineering Explorer (SELENE) mission’s Kaguya spacecraft was launched on September 14, 2007 and science operations around the Moon started October 20, 2007. The primary mission in a circular polar orbit 100-km above the surface lasted from October 20, 2007 until October 31, 2008. An extended mission was then conducted in lower orbits (averaging 50km above the surface) from November 1, 2008 until the SELENE mission ended with Kaguya impacting the Moon on June 10, 2009. These data are digital terrain models derived using the NASA Ames Stereo Pipeline (ASP) and the Kaguya stereoscopic data. Digital terrain models (DTMs) in this data set were bundle adjusted and aligned to Lunar Orbiter Laser Altimeter (LOLA) shot data. The sensor model intrinsics used for these data have been re-estimated to reduce inter-DTM horizontal and vertical errors. Data are controlled to LOLA using the ASP pc_align program. Data co-register at orthoimage resolution (11-37 meters per pixel). At image resolution horizontal offsets are measurable. Horizontal precision is measures to be better than 30 meters per pixel on average. Vertical errors are mean centered to zero. An assessment of overlapping DTMs showed vertical precision on the order of 4 meters. Spacecraft jitter and unmodelled lense distortion at the observation edges is believed to be the major contributor to the vertical errors. To create these analysis ready data, we have taken the ASP genreated data, map projected the data to a stereopair centered orthographic projection and converted to a Cloud Optimized GeoTiff (COG) for online streaming. These data use a priori spacecraft ephemerides (for the nominal mission) and improved, but not controlled spacecraft ephemerides for the extended mission. These data co-register with other LOLA controlled data to the aforementioned horizontal and vertical accuracies.
4 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/moon/kaguyatc/
5 | Contact: https://answers.usgs.gov/
6 | ManagedBy: "[NASA](https://www.nasa.gov)"
7 | UpdateFrequency: The Kaguya/SELENE mission has completed. At least one update to this dataset is planned to address identified issues with the nominal swath width evening observations.
8 | Tags:
9 | - aws-pds
10 | - planetary
11 | - elevation
12 | - stac
13 | - cog
14 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
15 | Citation: https://doi.org/10.5066/P13D7VMG
16 | Resources:
17 | - Description: Digital terrain models, orthoimages, shaded reliefs, and quality assurance documents
18 | ARN: arn:aws:s3:::astrogeo-ard/moon/kaguya/terrain_camera/usgs_dtms/
19 | Region: us-west-2
20 | Type: S3 Bucket
21 | Explore:
22 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/api/collections/kaguya_terrain_camera_usgs_dtms)'
23 | DataAtWork:
24 | Tutorials:
25 | - Title: "Discovering and Downloading Data via the Command Line"
26 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
27 | AuthorName: J. Laura
28 | AuthorURL: https://astrogeology.usgs.gov
29 | - Title: "Discovering and Downloading Data with Python"
30 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
31 | AuthorName: J. Laura
32 | AuthorURL: https://astrogeology.usgs.gov
33 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
34 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
35 | AuthorName: J. Laura
36 | AuthorURL: https://astrogeology.usgs.gov
37 | Tools & Applications:
38 | - Title: PySTAC Client
39 | URL: https://github.com/stac-utils/pystac-client
40 | AuthorName: PySTAC-Client Contributors
41 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
42 |
--------------------------------------------------------------------------------
/datasets/jaxa-usgs-nasa-kaguya-tc.yaml:
--------------------------------------------------------------------------------
1 | Name: JAXA / USGS / NASA Kaguya/SELENE Terrain Camera Observations
2 | Description: |
3 | The Japan Aerospace EXploration Agency (JAXA) SELenological and ENgineering Explorer (SELENE) mission’s Kaguya spacecraft was launched on September 14, 2007 and science operations around the Moon started October 20, 2007. The primary mission in a circular polar orbit 100-km above the surface lasted from October 20, 2007 until October 31, 2008. An extended mission was then conducted in lower orbits (averaging 50km above the surface) from November 1, 2008 until the SELENE mission ended with Kaguya impacting the Moon on June 10, 2009. These data were collected in monoscopic observing mode. To create these analysis ready data, we have taken the JAXA Data ARchives and Transmission System (DARTS) archived data, map projected the data to equirectangular or polar stereographic (pole centered) based on the center latitude of the observation, and converted to a Cloud Optimized GeoTiff (COG) for online streaming. These data use a priori spacecraft ephemerides (for the nominal mission) and improved, but not controlled spacecraft ephemerides for the extended mission. Therefore, these uncontrolled data are not guaranteed to co-register with other data sets.
4 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/moon/kaguyatc/
5 | Contact: https://answers.usgs.gov/
6 | ManagedBy: "[NASA](https://www.nasa.gov)"
7 | UpdateFrequency: The Kaguya/SELENE mission has completed. No updates to this dataset are planned.
8 | Tags:
9 | - aws-pds
10 | - planetary
11 | - satellite imagery
12 | - stac
13 | - cog
14 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
15 | Citation: https://doi.org/10.5066/P9SH5YNV
16 | Resources:
17 | - Description: Scenes and metadata for monoscopic observing mode
18 | ARN: arn:aws:s3:::astrogeo-ard/moon/kaguya/terrain_camera/monoscopic/uncontrolled/
19 | Region: us-west-2
20 | Type: S3 Bucket
21 | Explore:
22 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/api/collections/kaguya_terrain_camera_monoscopic_uncontrolled_observations)'
23 | - Description: Scenes and metadata for stereoscopic observing mode
24 | ARN: arn:aws:s3:::astrogeo-ard/moon/kaguya/terrain_camera/stereoscopic/uncontrolled/
25 | Region: us-west-2
26 | Type: S3 Bucket
27 | Explore:
28 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/api/collections/kaguya_terrain_camera_stereoscopic_uncontrolled_observations)'
29 | - Description: Scenes and metadata for spectral profiler (spsupport) observing mode
30 | ARN: arn:aws:s3:::astrogeo-ard/moon/kaguya/terrain_camera/spsupport/uncontrolled/
31 | Region: us-west-2
32 | Type: S3 Bucket
33 | Explore:
34 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/api/collections/kaguya_terrain_camera_spsupport_uncontrolled_observations)'
35 | DataAtWork:
36 | Tutorials:
37 | - Title: "Discovering and Downloading Data via the Command Line"
38 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
39 | AuthorName: J. Laura
40 | AuthorURL: https://astrogeology.usgs.gov
41 | - Title: "Discovering and Downloading Data with Python"
42 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
43 | AuthorName: J. Laura
44 | AuthorURL: https://astrogeology.usgs.gov
45 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
46 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
47 | AuthorName: J. Laura
48 | AuthorURL: https://astrogeology.usgs.gov
49 | Tools & Applications:
50 | - Title: PySTAC Client
51 | URL: https://github.com/stac-utils/pystac-client
52 | AuthorName: PySTAC-Client Contributors
53 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
54 |
--------------------------------------------------------------------------------
/datasets/jaxa-usgs-nasa-kaguya-tc_monoscopic.yaml:
--------------------------------------------------------------------------------
1 | Name: JAXA / USGS / NASA Kaguya/SELENE Terrain Camera Monoscopic Observations
2 | Description: |
3 | The Japan Aerospace EXploration Agency (JAXA) SELenological and ENgineering Explorer (SELENE) mission’s Kaguya spacecraft was launched on September 14, 2007 and science operations around the Moon started October 20, 2007. The primary mission in a circular polar orbit 100-km above the surface lasted from October 20, 2007 until October 31, 2008. An extended mission was then conducted in lower orbits (averaging 50km above the surface) from November 1, 2008 until the SELENE mission ended with Kaguya impacting the Moon on June 10, 2009. These data were collected in monoscopic observing mode. To create these analysis ready data, we have taken the JAXA Data ARchives and Transmission System (DARTS) archived data, map projected the data to equirectangular or polar stereographic (pole centered) based on the center latitude of the observation, and converted to a Cloud Optimized GeoTiff (COG) for online streaming. These data use a priori spacecraft ephemerides (for the nominal mission) and improved, but not controlled spacecraft ephemerides for the extended mission. Therefore, these uncontrolled data are not guaranteed to co-register with other data sets.
4 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/moon/kaguyatc/
5 | Contact: https://answers.usgs.gov/
6 | ManagedBy: "[NASA](https://www.nasa.gov)"
7 | UpdateFrequency: The Kaguya/SELENE has completed. No updates to this dataset are planned.
8 | Tags:
9 | - aws-pds
10 | - planetary
11 | - satellite imagery
12 | - stac
13 | - cog
14 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
15 | Citation: https://doi.org/10.5066/P9SH5YNV
16 | Resources:
17 | - Description: Scenes and metadata
18 | ARN: arn:aws:s3:::astrogeo-ard/moon/kaguya/terrain_camera/monoscopic/uncontrolled/
19 | Region: us-west-2
20 | Type: S3 Bucket
21 | Explore:
22 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/api/collections/kaguya_terrain_camera_monoscopic_uncontrolled_observations)'
23 | DataAtWork:
24 | Tutorials:
25 | - Title: "Discovering and Downloading Data via the Command Line"
26 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
27 | AuthorName: J. Laura
28 | AuthorURL: https://astrogeology.usgs.gov
29 | - Title: "Discovering and Downloading Data with Python"
30 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
31 | AuthorName: J. Laura
32 | AuthorURL: https://astrogeology.usgs.gov
33 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
34 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
35 | AuthorName: J. Laura
36 | AuthorURL: https://astrogeology.usgs.gov
37 | Tools & Applications:
38 | - Title: PySTAC Client
39 | URL: https://github.com/stac-utils/pystac-client
40 | AuthorName: PySTAC-Client Contributors
41 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
42 |
--------------------------------------------------------------------------------
/datasets/maxar-open-data.yaml:
--------------------------------------------------------------------------------
1 | Name: Maxar Open Data Program
2 | Description: |
3 | Pre and post event high-resolution satellite imagery in support of emergency planning, risk assessment,
4 | monitoring of staging areas and emergency response, damage assessment, and recovery. These images are generated
5 | using the [Maxar ARD](https://ard.maxar.com/docs) pipeline, tiled on an organized grid in analysis-ready
6 | cloud-optimized formats.
7 | Documentation: https://www.maxar.com/open-data
8 | Contact: https://www.maxar.com/open-data
9 | UpdateFrequency: New data is released in response to activations. Older data may be migrated to the ARD format as needed.
10 | Collabs:
11 | ASDI:
12 | Tags:
13 | - disaster response
14 | Tags:
15 | - aws-pds
16 | - earth observation
17 | - disaster response
18 | - geospatial
19 | - satellite imagery
20 | - cog
21 | - stac
22 | License: Creative Commons Attribution Non Commercial 4.0
23 | ManagedBy: "[Maxar](https://www.maxar.com/)"
24 | Resources:
25 | - Description: Imagery and metadata
26 | ARN: arn:aws:s3:::maxar-opendata
27 | Region: us-west-2
28 | Type: S3 Bucket
29 | Explore:
30 | - '[STAC Browser](https://radiantearth.github.io/stac-browser/#/external/maxar-opendata.s3.dualstack.us-west-2.amazonaws.com/events/catalog.json)'
31 | - '[STAC Catalog](https://stacindex.org/catalogs/maxar-open-data-catalog-ard-format#/)'
32 | DataAtWork:
33 | Tutorials:
34 | - Title: ARD Deliverables and File Structure
35 | URL: https://ard.maxar.com/docs/ard-order-delivery/about-ard-order-delivery/
36 | AuthorName: Maxar Open Data
37 | AuthorURL: https://www.maxar.com/open-data
38 | - Title: ARD and Command Line Tools
39 | URL: https://ard.maxar.com/docs/working-with-ard/command-line-tools/
40 | AuthorName: Maxar Open Data
41 | AuthorURL: https://www.maxar.com/open-data
42 | - Title: "Data Access (SDK tutorial)"
43 | URL: https://ard.maxar.com/docs/sdk/sdk/data-access/
44 | AuthorName: Maxar Open Data
45 | AuthorURL: https://www.maxar.com/open-data
46 | - Title: "Visualizing Maxar Open Data with SageMaker Studio Lab"
47 | URL: https://github.com/giswqs/maxar-open-data/
48 | NotebookURL: https://github.com/giswqs/maxar-open-data/blob/master/examples/maxar_open_data.ipynb
49 | AuthorName: Qiusheng Wu
50 | AuthorURL: https://geography.utk.edu/about-us/faculty/dr-qiusheng-wu/
51 | Services:
52 | - Amazon SageMaker Studio Lab
53 | - Title: "Visualizing Turkey & Syria Earthquake Maxar Open Data with SageMaker Studio Lab"
54 | URL: https://github.com/giswqs/maxar-open-data/
55 | NotebookURL: https://github.com/giswqs/maxar-open-data/blob/master/examples/turkey_earthquake.ipynb
56 | AuthorName: Qiusheng Wu
57 | AuthorURL: https://geography.utk.edu/about-us/faculty/dr-qiusheng-wu/
58 | Services:
59 | - Amazon SageMaker Studio Lab
60 | - Title: "Maxar Open Data - Leafmap"
61 | URL: https://leafmap.org/notebooks/67_maxar_open_data/
62 | AuthorName: Qiusheng Wu
63 | AuthorURL: https://geography.utk.edu/about-us/faculty/dr-qiusheng-wu/
64 | Tools & Applications:
65 | - Title: Maxar ARD SDK (max-ard)
66 | URL: https://ard.maxar.com/docs/sdk/
67 | AuthorName: Maxar Open Data
68 | AuthorURL: https://www.maxar.com/open-data
69 | - Title: MGP Xpress
70 | URL: https://xpress.maxar.com/
71 | AuthorName: MGP Xpress
72 | AuthorURL: https://xpress-docs.maxar.com/Home.htm#
73 | Publications:
74 | - Title: "Using Data from Earth Observation to Support Sustainable Development Indicators: An Analysis of the Literature and Challenges for the Future"
75 | URL: https://doi.org/10.3390/su14031191
76 | AuthorName: Ana Andries, Stephen Morse, Richard J. Murphy, Jim Lynch, and Emma R. Woolliams
77 | - Title: "Disaster, Infrastructure and Participatory Knowledge The Planetary Response Network"
78 | URL: https://eprints.lancs.ac.uk/id/eprint/167032/1/Simmons_et_al_2022_CSTP_PRN_Paper_Special_Issue_Accepted_Version.pdf
79 | AuthorName: Brooke Simmons, Chris Lintott, Steven Reece, et al.
80 | - Title: " Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami"
81 | URL: https://doi.org/10.1080/19475705.2022.2147455
82 | AuthorName: Riantini Virtriana et al.
83 |
--------------------------------------------------------------------------------
/datasets/nasa-usgs-controlled-mro-ctx-dtms.yaml:
--------------------------------------------------------------------------------
1 | Name: NASA / USGS Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) Targeted DTMs
2 | Description: |
3 | As of March, 2023 the Mars Reconnaissance Orbiter (MRO) High Resolution Science Experiment (HiRISE) sensor has collected more than 5000 targeted stereopairs. During HiRISE acquisition, the Context Camera (CTX) also collects lower resolution, higher spatial extent context images. These CTX acquisitions are also targeted stereopairs. This data set contains targeted CTX DTMs and orthoimages, created using the NASA Ames Stereopipeline. These data have been created using relatively controlled CTX images that have been globally bundle adjusted using the USGS Integrated System for Imagers and Spectrometers (ISIS) jigsaw application. Relative control at global scale reduces common issues such as spacecraft jitter in the resulting DTMs. DTMs were aligned as part of 26 different groupings to the ultimate MOLA product using an iterative pc_align approach. Therefore, all DTMs and orthoimages are absolutely controlled to MOLA, a proxy product for the Mars geodetic coordinate reference frame.
4 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/mars/ctxdtms/
5 | Contact: https://answers.usgs.gov/
6 | ManagedBy: "[NASA](https://www.nasa.gov)"
7 | UpdateFrequency: Updated as new stereoapirs are processed
8 | Tags:
9 | - aws-pds
10 | - planetary
11 | - satellite imagery
12 | - elevation
13 | - stac
14 | - cog
15 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
16 | Citation: https://doi.org/10.5066/P9JKVWR3
17 | Resources:
18 | - Description: DTMs, orthoimages, error images, and quality assurance metrics
19 | ARN: arn:aws:s3:::astrogeo-ard/mars/mro/ctx/controlled/usgs/
20 | Region: us-west-2
21 | Type: S3 Bucket
22 | Explore:
23 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/collections/mro_ctx_controlled_usgs_dtms)'
24 | DataAtWork:
25 | Tutorials:
26 | - Title: "Discovering and Downloading Data via the Command Line"
27 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
28 | AuthorName: J. Laura
29 | AuthorURL: https://astrogeology.usgs.gov
30 | - Title: "Discovering and Downloading Data with Python"
31 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
32 | AuthorName: J. Laura
33 | AuthorURL: https://astrogeology.usgs.gov
34 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
35 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
36 | AuthorName: J. Laura
37 | AuthorURL: https://astrogeology.usgs.gov
38 | Tools & Applications:
39 | - Title: PySTAC Client
40 | URL: https://github.com/stac-utils/pystac-client
41 | AuthorName: PySTAC-Client Contributors
42 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
43 |
--------------------------------------------------------------------------------
/datasets/nasa-usgs-europa-dtms.yaml:
--------------------------------------------------------------------------------
1 | Name: NASA / USGS Controlled Europa DTMs
2 | Description: |
3 | Knowledge of a planetary surface’s topography is necessary to understand its geology and enable landed mission operations. The Solid State Imager (SSI) on board NASA’s Galileo spacecraft acquired more than 700 images of Jupiter’s moon Europa. Although moderate- and high-resolution coverage is extremely limited, repeat coverage of a small number of sites enables the creation of digital terrain models (DTMs) via stereophotogrammetry. Here we provide stereo-derived DTMs of five sites on Europa. The sites are the bright band Agenor Linea, the crater Cilix, the crater Pwyll, pits and chaos adjacent to Rhadamanthys Linea, and ridged plains near Yelland Linea. We generated the DTMs using BAE’s SOCET SET® software and each was manually edited to correct identifiable errors from the automated stereo matching process. Additionally, we used the recently updated image pointing information provided by the U.S. Geological Survey (Bland, et al., 2021), which ties the DTMs to an existing horizontal datum and enables the DTMs to easily be used in coordination with that globally controlled image set. The DTMs are of the highest quality achievable with Galileo data and are therefore suitable for most scientific analysis. However, there are inherent uncertainties in the DTMs including horizontal resolutions that are typically 1–2 km (~10x the image pixel scale) and expected vertical precision (the root mean square (RMS) uncertainty in a point elevation) of 10s–100s of m. The DTMs and their uncertainties are discussed in detail in the documentation.
4 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/jupiter/europa/europa_controlled_usgs_dtms/
5 | Contact: https://answers.usgs.gov/
6 | ManagedBy: "[NASA](https://www.nasa.gov)"
7 | UpdateFrequency: HiRISE data will be updated as new releases are made to the Planetary Data System.
8 | Tags:
9 | - aws-pds
10 | - planetary
11 | - satellite imagery
12 | - stac
13 | - cog
14 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
15 | Citation: https://doi.org/10.5066/P99HX1H3
16 | Resources:
17 | - Description: Scenes and metadata
18 | ARN: arn:aws:s3:::astrogeo-ard/jupiter/europa/galileo_voyager/usgs_controlled_dtms/
19 | Region: us-west-2
20 | Type: S3 Bucket
21 | Explore:
22 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/api/collections/galileo_usgs_photogrammetrically_controlled_dtms?.language=en)'
23 | DataAtWork:
24 | Tutorials:
25 | - Title: "Discovering and Downloading Data via the Command Line"
26 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
27 | AuthorName: J. Laura
28 | AuthorURL: https://astrogeology.usgs.gov
29 | - Title: "Discovering and Downloading Data with Python"
30 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
31 | AuthorName: J. Laura
32 | AuthorURL: https://astrogeology.usgs.gov
33 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
34 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
35 | AuthorName: J. Laura
36 | AuthorURL: https://astrogeology.usgs.gov
37 | Tools & Applications:
38 | - Title: PySTAC Client
39 | URL: https://github.com/stac-utils/pystac-client
40 | AuthorName: PySTAC-Client Contributors
41 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
42 |
--------------------------------------------------------------------------------
/datasets/nasa-usgs-europa-mosaics.yaml:
--------------------------------------------------------------------------------
1 | Name: NASA / USGS Europa Controlled Observation Mosaics
2 | Description: |
3 | The Solid State Imager (SSI) on NASA's Galileo spacecraft acquired more than 500 images of Jupiter's moon, Europa. These images vary from relatively low-resolution hemispherical imaging, to high-resolution targeted images that cover a small portion of the surface. Here we provide a set of 92 image mosaics generated from minimally processed, projected Galileo images with photogrammetrically improved locations on Europa's surface.
4 | These images provide users with nearly the entire Galileo Europa imaging dataset at its native resolution and with improved relative image locations. The Solid State Imager on NASA's Galileo spacecraft provided the only moderate- to high-resolution images of Jupiter's moon, Europa. Unfortunately, uncertainty in the position and pointing of the spacecraft, as well as the position and orientation of Europa, when the images were acquired resulted in significant errors in image locations on the surface. The result of these errors is that images acquired during different Galileo orbits, or even at different times during the same orbit, are significantly misaligned (errors of up to 100 km on the surface).
5 | The dataset provides a set of individual images that can be used for scientific analysis and mission planning activities.
6 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/jupiter/europa/galileo_sequence_mosaics/
7 | Contact: https://answers.usgs.gov/
8 | ManagedBy: "[NASA](https://www.nasa.gov)"
9 | UpdateFrequency: No future updates planned.
10 | Tags:
11 | - aws-pds
12 | - planetary
13 | - satellite imagery
14 | - stac
15 | - cog
16 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
17 | Citation: https://doi.org/10.5066/P9VKKK7C
18 | Resources:
19 | - Description: Scenes and metadata
20 | ARN: arn:aws:s3:::astrogeo-ard/jupiter/europa/galileo_voyager/usgs_controlled_mosaics/
21 | Region: us-west-2
22 | Type: S3 Bucket
23 | Explore:
24 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/api/collections/galileo_usgs_photogrammetrically_controlled_mosaics)'
25 | DataAtWork:
26 | Tutorials:
27 | - Title: "Discovering and Downloading Data via the Command Line"
28 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
29 | AuthorName: J. Laura
30 | AuthorURL: https://astrogeology.usgs.gov
31 | - Title: "Discovering and Downloading Data with Python"
32 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
33 | AuthorName: J. Laura
34 | AuthorURL: https://astrogeology.usgs.gov
35 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
36 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
37 | AuthorName: J. Laura
38 | AuthorURL: https://astrogeology.usgs.gov
39 | Tools & Applications:
40 | - Title: PySTAC Client
41 | URL: https://github.com/stac-utils/pystac-client
42 | AuthorName: PySTAC-Client Contributors
43 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
44 |
--------------------------------------------------------------------------------
/datasets/nasa-usgs-europa-observations.yaml:
--------------------------------------------------------------------------------
1 | Name: NASA / USGS Europa Controlled Observations
2 | Description: |
3 | The Solid State Imager (SSI) on NASA's Galileo spacecraft acquired more than 500 images of Jupiter's moon, Europa. These images vary from relatively low-resolution hemispherical imaging, to high-resolution targeted images that cover a small portion of the surface. Here we provide a set of 481 minimally processed, projected Galileo images with photogrammetrically improved locations on Europa's surface. These individual images were subsequently used as input into a set of 92 observation mosaics.
4 | These images provide users with nearly the entire Galileo Europa imaging dataset at its native resolution and with improved relative image locations. The Solid State Imager on NASA's Galileo spacecraft provided the only moderate- to high-resolution images of Jupiter's moon, Europa. Unfortunately, uncertainty in the position and pointing of the spacecraft, as well as the position and orientation of Europa, when the images were acquired resulted in significant errors in image locations on the surface. The result of these errors is that images acquired during different Galileo orbits, or even at different times during the same orbit, are significantly misaligned (errors of up to 100 km on the surface).
5 | The dataset provides a set of individual images that can be used for scientific analysis and mission planning activities.
6 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/jupiter/europa/galileo_individual_images/
7 | Contact: https://answers.usgs.gov/
8 | ManagedBy: "[NASA](https://www.nasa.gov)"
9 | UpdateFrequency: No future updates planned.
10 | Tags:
11 | - aws-pds
12 | - planetary
13 | - satellite imagery
14 | - stac
15 | - cog
16 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
17 | Citation: https://doi.org/10.5066/P9VKKK7C
18 | Resources:
19 | - Description: Scenes and metadata
20 | ARN: arn:aws:s3:::astrogeo-ard/jupiter/europa/galileo_voyager/usgs_controlled_observations/
21 | Region: us-west-2
22 | Type: S3 Bucket
23 | Explore:
24 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/api/collections/galileo_usgs_photogrammetrically_controlled_observations)'
25 | DataAtWork:
26 | Tutorials:
27 | - Title: "Discovering and Downloading Data via the Command Line"
28 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
29 | AuthorName: J. Laura
30 | AuthorURL: https://astrogeology.usgs.gov
31 | - Title: "Discovering and Downloading Data with Python"
32 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
33 | AuthorName: J. Laura
34 | AuthorURL: https://astrogeology.usgs.gov
35 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
36 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
37 | AuthorName: J. Laura
38 | AuthorURL: https://astrogeology.usgs.gov
39 | Tools & Applications:
40 | - Title: PySTAC Client
41 | URL: https://github.com/stac-utils/pystac-client
42 | AuthorName: PySTAC-Client Contributors
43 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
44 |
--------------------------------------------------------------------------------
/datasets/nasa-usgs-lunar-orbiter-laser-altimeter.yaml:
--------------------------------------------------------------------------------
1 | Name: NASA / USGS Lunar Orbiter Laser Altimeter Cloud Optimized Point Cloud
2 | Description: |
3 | The lunar orbiter laser altimeter (LOLA) has collected and released almost 7 billion individual laser altimeter returns from the lunar surface. This dataset includes individual altimetry returns scraped from the Planetary Data System (PDS) LOLA Reduced Data Record (RDR) Query Tool, V2.0. Data are organized in 15˚ x 15˚ (longitude/latitude) sections, compressed and encoded into the Cloud Optimized Point Cloud (COPC) file format, and collected into a Spatio-Temporal Asset Catalog (STAC) collection for query and analysis. The data are in latitude, longitude, and radius (X, Y, Z) format with the proper IAU 2015 30100 well-known text projection string. These data are in the -180 to 180, center longitude 0 domain. Users of this data set are encouraged to use the Point Data Abstract Library (PDAL) STAC driver to query at the collection level or the COPC driver to query individual COPC tiles within the dataset. Queries of these data using bounding boxes, buffered points, or other geometries should use the -180 to 180 longitude domain (converting from 0-360, clone 180 as needed).
4 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/moon/lola/
5 | Contact: https://answers.usgs.gov/
6 | ManagedBy: "[NASA](https://www.nasa.gov)"
7 | UpdateFrequency: Intermittent as new LOLA RDR data are released and processing capabilities become available.
8 | Tags:
9 | - aws-pds
10 | - planetary
11 | - elevation
12 | - lidar
13 | - stac
14 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
15 | Citation: https://doi.org/10.5066/P9V5JIWH
16 | Resources:
17 | - Description: Lunar Orbiter Laser Altimeter (LOLA) Reduced Data Record (RDR) point cloud in Cloud Optimized Point Cloud (COPC) format.
18 | ARN: arn:aws:s3:::astrogeo-ard/moon/lro/lola/
19 | Region: us-west-2
20 | Type: S3 Bucket
21 | Explore:
22 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/api/collections/lunar_orbiter_laser_altimeter)'
23 | DataAtWork:
24 | Tutorials:
25 | - Title: "Discovering and Downloading Data via the Command Line"
26 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
27 | AuthorName: J. Laura
28 | AuthorURL: https://astrogeology.usgs.gov
29 | - Title: "Discovering and Downloading Data with Python"
30 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
31 | AuthorName: J. Laura
32 | AuthorURL: https://astrogeology.usgs.gov
33 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
34 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
35 | AuthorName: J. Laura
36 | AuthorURL: https://astrogeology.usgs.gov
37 | Tools & Applications:
38 | - Title: PySTAC Client
39 | URL: https://github.com/stac-utils/pystac-client
40 | AuthorName: PySTAC-Client Contributors
41 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
42 | - Title: Point Data Abstraction Library (PDAL)
43 | URL: https://pdal.io/
44 | AuthorName: PDAL Contributors
45 | AuthorURL: https://github.com/PDAL/PDAL
46 |
--------------------------------------------------------------------------------
/datasets/nasa-usgs-mars-hirise-dtms.yaml:
--------------------------------------------------------------------------------
1 | Name: NASA / USGS Released HiRISE Digital Terrain Models
2 | Description: |
3 | These data are digital terrain models (DTMs) created by multiple different institutions and released to the Planetary Data System (PDS) by the University of Arizona. The data are processed from the Planetary Data System (PDS) stored JP2 files, map projected, and converted to Cloud Optimized GeoTiffs (COGs) for efficient remote data access. These data are controlled to the Mars Orbiter Laser Altimeter (MOLA). Therefore, they are a proxy for the geodetic coordinate reference frame. These data are not guaranteed to co-register with an uncontrolled products (e.g., the uncontrolled High Resolution Science Imaging Experiment (HiRISE) Reduced Data Record (RDR) data). Data are released using simple cylindrical (planetocentric positive East, center longitude 0, -180 - 180 longitude domain) or a pole centered polar stereographic projection. Data are projected to the appropriate IAU Well-known Text v2 (WKT2) represented projection.
4 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/mars/hirise_dtms/
5 | Contact: https://answers.usgs.gov/
6 | ManagedBy: "[NASA](https://www.nasa.gov)"
7 | UpdateFrequency: HiRISE DTMs will be updated as new releases are made by the University of Arizona to the Planetary Data System.
8 | Tags:
9 | - aws-pds
10 | - planetary
11 | - satellite imagery
12 | - stac
13 | - cog
14 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
15 | Citation: https://doi.org/10.5066/P9VQTS7V
16 | Resources:
17 | - Description: Scenes and metadata
18 | ARN: arn:aws:s3:::astrogeo-ard/mars/mro/hirise/controlled/dtm
19 | Region: us-west-2
20 | Type: S3 Bucket
21 | Explore:
22 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/api/collections/mro_hirise_socet_dtms)'
23 | DataAtWork:
24 | Tutorials:
25 | - Title: "Discovering and Downloading Data via the Command Line"
26 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
27 | AuthorName: J. Laura
28 | AuthorURL: https://astrogeology.usgs.gov
29 | - Title: "Discovering and Downloading Data with Python"
30 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
31 | AuthorName: J. Laura
32 | AuthorURL: https://astrogeology.usgs.gov
33 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
34 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
35 | AuthorName: J. Laura
36 | AuthorURL: https://astrogeology.usgs.gov
37 | Tools & Applications:
38 | - Title: PySTAC Client
39 | URL: https://github.com/stac-utils/pystac-client
40 | AuthorName: PySTAC-Client Contributors
41 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
42 |
--------------------------------------------------------------------------------
/datasets/nasa-usgs-mars-hirise.yaml:
--------------------------------------------------------------------------------
1 | Name: NASA / USGS Uncontrolled HiRISE RDRs
2 | Description: |
3 | These data are red and color Reduced Data Record (RDR) observations collected and originally processed by the High Resolution Imaging Science Experiment (HiRISE) team. The mdata are processed from the Planetary Data System (PDS) stored RDRs, map projected, and converted to Cloud Optimized GeoTiffs (COGs) for efficient remote data access. These data are not photogrammetrically controlled and use a priori NAIF SPICE pointing. Therefore, these data will not co-register with controlled data products. Data are released using simple cylindrical (planetocentric positive East, center longitude 0, -180 - 180 longitude domain) or a pole centered polar stereographic projection. Data are projected to the appropriate IAU Well-known Text v2 (WKT2) represented projection.
4 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/mars/uncontrolled_hirise/
5 | Contact: https://answers.usgs.gov/
6 | ManagedBy: "[NASA](https://www.nasa.gov)"
7 | UpdateFrequency: HiRISE data will be updated as new releases are made to the Planetary Data System.
8 | Tags:
9 | - aws-pds
10 | - planetary
11 | - satellite imagery
12 | - stac
13 | - cog
14 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
15 | Citation: https://doi.org/10.5066/P944DLP8
16 | Resources:
17 | - Description: Scenes and metadata
18 | ARN: arn:aws:s3:::astrogeo-ard/mars/mro/hirise/uncontrolled_rdr_observations/
19 | Region: us-west-2
20 | Type: S3 Bucket
21 | Explore:
22 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/collections/mro_hirise_uncontrolled_observations)'
23 | DataAtWork:
24 | Tutorials:
25 | - Title: "Discovering and Downloading Data via the Command Line"
26 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
27 | AuthorName: J. Laura
28 | AuthorURL: https://astrogeology.usgs.gov
29 | - Title: "Discovering and Downloading Data with Python"
30 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
31 | AuthorName: J. Laura
32 | AuthorURL: https://astrogeology.usgs.gov
33 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
34 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
35 | AuthorName: J. Laura
36 | AuthorURL: https://astrogeology.usgs.gov
37 | Tools & Applications:
38 | - Title: PySTAC Client
39 | URL: https://github.com/stac-utils/pystac-client
40 | AuthorName: PySTAC-Client Contributors
41 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
42 |
--------------------------------------------------------------------------------
/datasets/nasa-usgs-themis-mosaics.yaml:
--------------------------------------------------------------------------------
1 | Name: NASA / USGS Controlled THEMIS Mosaics
2 | Description: |
3 | These data are infrared image mosaics, tiled to the Mars quadrangle, generated using Thermal Emission Imaging System (THEMIS) images from the 2001 Mars Odyssey orbiter mission. The mosaic is generated at the full resolution of the THEMIS infrared dataset, which is approximately 100 meters/pixel. The mosaic was absolutely photogrammetrically controlled to an improved Viking MDIM network that was develop by the USGS Astrogeology processing group using the Integrated Software for Imagers and Spectrometers. Image-to-image alignment precision is subpixel (i.e., <100m). These 8-bit, qualitative data are released as losslessly compressed Cloud Optimized GeoTiffs (COGs). Data are released using simple cylindrical (planetocentric positive East, center longitude 0, -180 to 180 longitude domain).
4 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/mars/themis_controlled_mosaics/
5 | Contact: https://answers.usgs.gov/
6 | ManagedBy: "[NASA](https://www.nasa.gov)"
7 | UpdateFrequency: None planned.
8 | Tags:
9 | - aws-pds
10 | - planetary
11 | - satellite imagery
12 | - stac
13 | - cog
14 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
15 | Citation: https://doi.org/10.5066/P96FA04Z
16 | Resources:
17 | - Description: Scenes and metadata
18 | ARN: arn:aws:s3:::astrogeo-ard/mars/mo/themis/controlled_mosaics/
19 | Region: us-west-2
20 | Type: S3 Bucket
21 | Explore:
22 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/api/collections/mo_themis_controlled_mosaics)'
23 | DataAtWork:
24 | Tutorials:
25 | - Title: "Discovering and Downloading Data via the Command Line"
26 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
27 | AuthorName: J. Laura
28 | AuthorURL: https://astrogeology.usgs.gov
29 | - Title: "Discovering and Downloading Data with Python"
30 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
31 | AuthorName: J. Laura
32 | AuthorURL: https://astrogeology.usgs.gov
33 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
34 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
35 | AuthorName: J. Laura
36 | AuthorURL: https://astrogeology.usgs.gov
37 | Tools & Applications:
38 | - Title: PySTAC Client
39 | URL: https://github.com/stac-utils/pystac-client
40 | AuthorName: PySTAC-Client Contributors
41 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
42 |
--------------------------------------------------------------------------------
/datasets/nasa-usgs-themis-mosasics.yaml:
--------------------------------------------------------------------------------
1 | Name: NASA / USGS Controlled THEMIS Mosaics
2 | Description: |
3 | These data are infrared image mosaics, tiled to the Mars quadrangle, generated using Thermal Emission Imaging System (THEMIS) images from the 2001 Mars Odyssey orbiter mission. The mosaic is generated at the full resolution of the THEMIS infrared dataset, which is approximately 100 meters/pixel. The mosaic was absolutely photogrammetrically controlled to an improved Viking MDIM network that was develop by the USGS Astrogeology processing group using the Integrated Software for Imagers and Spectrometers. Image-to-image alignment precision is subpixel (i.e., <100m). These 8-bit, qualitative data are released as losslessly compressed Cloud Optimized GeoTiffs (COGs). Data are released using simple cylindrical (planetocentric positive East, center longitude 0, -180 to 180 longitude domain).
4 | Documentation: https://stac.astrogeology.usgs.gov/docs/data/mars/themis_controlled_mosaics/
5 | Contact: https://answers.usgs.gov/
6 | ManagedBy: "[NASA](https://www.nasa.gov)"
7 | UpdateFrequency: None planned.
8 | Tags:
9 | - aws-pds
10 | - planetary
11 | - satellite imagery
12 | - stac
13 | - cog
14 | License: "[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)"
15 | Citation: https://doi.org/10.5066/P96FA04Z
16 | Resources:
17 | - Description: Scenes and metadata
18 | ARN: arn:aws:s3:::astrogeo-ard/mars/mo/themis/controlled_mosaics/
19 | Region: us-west-2
20 | Type: S3 Bucket
21 | Explore:
22 | - '[STAC Catalog](https://stac.astrogeology.usgs.gov/browser-dev/#/collections/mo_themis_controlled_mosaics)'
23 | DataAtWork:
24 | Tutorials:
25 | - Title: "Discovering and Downloading Data via the Command Line"
26 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/cli/
27 | AuthorName: J. Laura
28 | AuthorURL: https://astrogeology.usgs.gov
29 | - Title: "Discovering and Downloading Data with Python"
30 | URL: https://stac.astrogeology.usgs.gov/docs/tutorials/basicpython/
31 | AuthorName: J. Laura
32 | AuthorURL: https://astrogeology.usgs.gov
33 | - Title: "Querying for Data in an ROI and Loading it into QGIS"
34 | URL: https://stac.astrogeology.usgs.gov/docs/examples/to_qgis/
35 | AuthorName: J. Laura
36 | AuthorURL: https://astrogeology.usgs.gov
37 | Tools & Applications:
38 | - Title: PySTAC Client
39 | URL: https://github.com/stac-utils/pystac-client
40 | AuthorName: PySTAC-Client Contributors
41 | AuthorURL: https://github.com/stac-utils/pystac-client/graphs/contributors
42 |
--------------------------------------------------------------------------------
/datasets/noaa-coastal-lidar.yaml:
--------------------------------------------------------------------------------
1 | Name: NOAA Coastal Lidar Data
2 | Description: Lidar (light detection and ranging) is a technology that can measure the 3-dimentional location of objects, including the solid earth surface. The data consists of a point cloud of the positions of solid objects that reflected a laser pulse, typically from an airborne platform. In addition to the position, each point may also be attributed by the type of object it reflected from, the intensity of the reflection, and other system dependent metadata. The NOAA Coastal Lidar Data is a collection of lidar projects from many different sources and agencies, geographically focused on the coastal areas of the United States of America. The data is provided in Entwine Point Tiles (EPT; https://entwine.io) format, which is a lossless streamable octree of the point cloud, and in LAZ format. Datasets are maintained in their original projects and care should be taken when merging projects. The coordinate reference system for the data is The NAD83(2011) UTM zone appropriate for the center of each data set for EPT and geographic coordinates for LAZ. Vertically they are in the orthometric datum appropriate for that area (for example, NAVD88 in the mainland United States, PRVD02 in Puerto Rico, or GUVD03 in Guam). The geoid model used is reflected in the data set resource name.
The data are organized under directories entwine and laz for the EPT and LAZ versions respectively. Some datasets are not in EPT format, either because the dataset is already in EPT on the USGS public lidar site, they failed to build or their content does not work well in EPT format. Topobathy lidar datasets using the topobathy domain profile do not translate well to EPT format.
3 | Documentation: https://coast.noaa.gov/digitalcoast/data/coastallidar.html and https://coast.noaa.gov/digitalcoast/data/jalbtcx.html. A table providing the dataset names and links is at https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/index.html
4 | Contact: For any questions regarding data delivery or any general questions regarding the NOAA Open Data Dissemination (NODD) Program, email the NODD Team at nodd@noaa.gov. For general questions or feedback about the data, please submit inquiries through the NOAA Office for Coastal Management Contact Form https://coast.noaa.gov/contactform/.
5 |
We also seek to identify case studies on how NOAA data is being used and will be featuring those stories in joint publications and in upcoming events. If you are interested in seeing your story highlighted, please share it with the NODD team by emailing nodd@noaa.gov
6 | ManagedBy: "[NOAA](https://www.noaa.gov/)"
7 | UpdateFrequency: Periodically, as new data becomes available
8 | Collabs:
9 | ASDI:
10 | Tags:
11 | - elevation
12 | Tags:
13 | - aws-pds
14 | - climate
15 | - elevation
16 | - disaster response
17 | - geospatial
18 | - lidar
19 | - stac
20 | License: NOAA data disseminated through NODD are open to the public and can be used as desired.
21 |
22 |
23 | NOAA makes data openly available to ensure maximum use of our data, and to spur and encourage exploration and innovation throughout the industry. NOAA requests attribution for the use or dissemination of unaltered NOAA data. However, it is not permissible to state or imply endorsement by or affiliation with NOAA. If you modify NOAA data, you may not state or imply that it is original, unaltered NOAA data.
24 | Resources:
25 | - Description: NOAA Coastal Lidar Dataset
26 | ARN: arn:aws:s3:::noaa-nos-coastal-lidar-pds
27 | Region: us-east-1
28 | Type: S3 Bucket
29 | Explore:
30 | - '[STAC V1.0.0 endpoint](https://noaa-nos-coastal-lidar-pds.s3.us-east-1.amazonaws.com/entwine/stac/catalog.json)'
31 | - Description: NOAA Coastal Lidar Dataset New Dataset Notification
32 | ARN: arn:aws:sns:us-east-1:709902155096:NewCoastalLidarObject
33 | Region: us-east-1
34 | Type: SNS Topic
35 | DataAtWork:
36 | Tools & Applications:
37 | - Title: OpenTopography access and processing of NOAA Coastal Lidar Data
38 | URL: https://portal.opentopography.org/datasets
39 | AuthorName: OpenTopography
40 | AuthorURL: https://opentopography.org/
41 |
--------------------------------------------------------------------------------
/datasets/nz-elevation.yaml:
--------------------------------------------------------------------------------
1 | Name: New Zealand Elevation
2 | Description: |
3 | The New Zealand Elevation dataset consists of New Zealand's publicly owned digital elevation models and digital surface models, which are freely available to use under an open licence. The dataset contains 1m resolution grids derived from LiDAR data. Point clouds are not included in the initial release.
4 |
5 | All of the elevation files are [Cloud Optimised GeoTIFFs](https://www.cogeo.org/) using LERC compression for the main grid and LERC compression with lower max_z_error for the overviews. These elevation files are accompanied by [STAC metadata](https://stacspec.org/). The elevation data is organised by region and survey.
6 | Documentation: https://github.com/linz/elevation
7 | Contact: elevation@linz.govt.nz
8 | ManagedBy: "[Toitū Te Whenua Land Information New Zealand](https://www.linz.govt.nz)"
9 | UpdateFrequency: New elevation data will regularly be added, as part of being published to the LINZ Data Service and LINZ Basemaps.
10 |
11 | Tags:
12 | - aws-pds
13 | - elevation
14 | - earth observation
15 | - stac
16 | - cog
17 | - geospatial
18 |
19 | License: Toitū Te Whenua Land Information New Zealand does not own the copyright for all of the elevation data that is available in this bucket. Licensors are contained in the STAC Collection file accompanying each elevation data survey. Licensed for re-use under "[CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)".
20 | Citation: Licensed by (insert the licensor) for re-use under [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/).
21 |
22 | Resources:
23 | - Description: New Zealand Elevation with accompanying metadata
24 | ARN: arn:aws:s3:::nz-elevation
25 | Region: ap-southeast-2
26 | Type: S3 Bucket
27 |
28 | DataAtWork:
29 | Tutorials:
30 | - Title: Browsing the s3://nz-elevation bucket
31 | URL: https://github.com/linz/elevation/blob/master/docs/usage.md
32 | AuthorName: Toitū Te Whenua Land Information New Zealand
33 | AuthorURL: https://www.linz.govt.nz
34 |
35 | - Title: Elevation survey naming and path conventions
36 | URL: https://github.com/linz/elevation/blob/master/docs/naming.md
37 | AuthorName: Toitū Te Whenua Land Information New Zealand
38 | AuthorURL: https://www.linz.govt.nz
39 |
40 | Tools & Applications:
41 | - Title: LINZ Basemaps
42 | URL: https://basemaps.linz.govt.nz
43 | AuthorName: Toitū Te Whenua Land Information New Zealand
44 | AuthorURL: https://www.linz.govt.nz
45 |
46 | - Title: LINZ Data Service
47 | URL: https://data.linz.govt.nz
48 | AuthorName: Toitū Te Whenua Land Information New Zealand
49 | AuthorURL: https://www.linz.govt.nz
50 |
51 | - Title: LINZ Topographic Workflows - Bulk elevation data processing with Kubernetes and Argo Workflows
52 | URL: https://github.com/linz/topo-workflows
53 | AuthorName: Toitū Te Whenua Land Information New Zealand
54 | AuthorURL: https://www.linz.govt.nz
55 |
56 | Publications:
57 | - Title: Stress Detection in New Zealand Kauri Canopies with WorldView-2 Satellite and LiDAR Data
58 | URL: https://doi.org/10.3390/rs12121906
59 | AuthorName: Jane J. Meiforth, Henning Buddenbaum, Joachim Hill, James D. Shepherd and John R. Dymond
60 |
61 | - Title: Dairy farming exposure and impacts from coastal flooding and sea level rise in Aotearoa-New Zealand
62 | URL: https://doi.org/10.1016/j.ijdrr.2023.104079
63 | AuthorName: Heather Craig, Alec Wild and Ryan Paulik
64 |
65 | - Title: "Underpinning Terroir with Data: Integrating Vineyard Performance Metrics with Soil and Climate Data to Better Understand Within-Region Variation in Marlborough, New Zealand"
66 | URL: https://doi.org/10.1155/2023/8811402
67 | AuthorName: R. G. V. Bramley, J. Ouzman, A. P. Sturman, G. J. Grealish, C. E. M. Ratcliff and M. C. T. Trought
68 |
--------------------------------------------------------------------------------
/datasets/nz-imagery.yaml:
--------------------------------------------------------------------------------
1 | Name: New Zealand Imagery
2 | Description: |
3 | The New Zealand Imagery dataset consists of New Zealand's publicly owned aerial and satellite imagery, which is freely available to use under an open licence. The dataset ranges from the latest high-resolution aerial imagery down to 5cm in some urban areas to lower resolution satellite imagery that provides full coverage of mainland New Zealand, Chathams and other offshore islands. It also includes historical imagery that has been scanned from film, orthorectified (removing distortions) and georeferenced (correctly positioned) to create a unique and crucial record of changes to the New Zealand landscape.
4 | All of the imagery files are [Cloud Optimised GeoTIFFs](https://www.cogeo.org/) using lossless WEBP compression for the main image and lossy WEBP compression for the overviews. These image files are accompanied by [STAC metadata](https://stacspec.org/). The imagery is organised by region and survey.
5 | Documentation: https://github.com/linz/imagery
6 | Contact: imagery@linz.govt.nz
7 | ManagedBy: "[Toitū Te Whenua Land Information New Zealand](https://www.linz.govt.nz)"
8 | UpdateFrequency: New imagery will regularly be added, as part of being published to the LINZ Data Service and LINZ Basemaps.
9 |
10 | Tags:
11 | - aws-pds
12 | - aerial imagery
13 | - satellite imagery
14 | - earth observation
15 | - stac
16 | - cog
17 | - geospatial
18 |
19 | License: Toitū Te Whenua Land Information New Zealand does not own the copyright for all of the imagery that is available in this bucket. Licensors are contained in the STAC Collection file accompanying each imagery survey. Licensed for re-use under "[CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)".
20 | Citation: Licensed by (insert the licensor) for re-use under [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/).
21 |
22 | Resources:
23 | - Description: New Zealand Imagery with accompanying metadata
24 | ARN: arn:aws:s3:::nz-imagery
25 | Region: ap-southeast-2
26 | Type: S3 Bucket
27 |
28 | DataAtWork:
29 | Tutorials:
30 | - Title: Browsing the s3://nz-imagery bucket
31 | URL: https://github.com/linz/imagery/blob/master/docs/usage.md
32 | AuthorName: Toitū Te Whenua Land Information New Zealand
33 | AuthorURL: https://www.linz.govt.nz
34 |
35 | - Title: Imagery survey naming and path conventions
36 | URL: https://github.com/linz/imagery/blob/master/docs/naming.md
37 | AuthorName: Toitū Te Whenua Land Information New Zealand
38 | AuthorURL: https://www.linz.govt.nz
39 |
40 | - Title: "ArcGIS Workflows: NZ Imagery from a public AWS S3 bucket"
41 | URL: https://storymaps.arcgis.com/collections/e6d212054d9744f399fcbed00a75ee43
42 | AuthorName: Eagle Technology
43 | AuthorURL: https://www.eagle.co.nz/
44 |
45 | Tools & Applications:
46 | - Title: LINZ Basemaps
47 | URL: https://basemaps.linz.govt.nz
48 | AuthorName: Toitū Te Whenua Land Information New Zealand
49 | AuthorURL: https://www.linz.govt.nz
50 |
51 | - Title: LINZ Data Service
52 | URL: https://data.linz.govt.nz
53 | AuthorName: Toitū Te Whenua Land Information New Zealand
54 | AuthorURL: https://www.linz.govt.nz
55 |
56 | - Title: LINZ Topographic Workflows - Bulk imagery processing with Kubernetes and Argo Workflows
57 | URL: https://github.com/linz/topo-workflows
58 | AuthorName: Toitū Te Whenua Land Information New Zealand
59 | AuthorURL: https://www.linz.govt.nz
60 |
61 | Publications:
62 | - Title: A Boundary Regulated Network for Accurate Roof Segmentation and Outline Extraction
63 | URL: https://doi.org/10.3390/rs10081195
64 | AuthorName: Guangming Wu, Zhiling Guo, Xiaodan Shi, Qi Chen, Yongwei Xu, Ryosuke Shibasaki and Xiaowei Shao
65 |
66 | - Title: Semantic Segmentation of Urban Buildings from VHR Remote Sensing Imagery Using a Deep Convolutional Neural Network
67 | URL: https://doi.org/10.3390/rs11151774
68 | AuthorName: Yaning Yi, Zhijie Zhang, Wanchang Zhang, Chuanrong Zhang, Weidong Li and Tian Zhao
69 |
70 | - Title: Deep Learning and Phenology Enhance Large-Scale Tree Species Classification in Aerial Imagery during a Biosecurity Response
71 | URL: https://doi.org/10.3390/rs13091789
72 | AuthorName: Grant D. Pearse, Michael S. Watt, Julia Soewarto and Alan Y. S. Tan
73 |
74 | - Title: A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning
75 | URL: https://doi.org/10.1007/978-3-319-46487-9_48
76 | AuthorName: T. Nathan Mundhenk, Goran Konjevod, Wesam A. Sakla & Kofi Boakye
77 |
--------------------------------------------------------------------------------
/datasets/palsar-2-scansar-flooding-in-bangladesh.yaml:
--------------------------------------------------------------------------------
1 | Name: PALSAR-2 ScanSAR Tropical Cycolne Mocha (L2.1)
2 | Description: Tropical Cyclone Mocha began to form in the Bay of Bengal on 11 May 2023 and continues to intensify as it moves towards Myanmar and Bangladesh.Cyclone Mocha is the first storm to form in the Bay of Bengal this year and is expected to hit several coastal areas in Bangladesh on 14 May with wind speeds of up to 175 km/h.After made its landfall in the coast between Cox’s Bazar (Bangladesh) and Kyaukphyu (Myanmar) near Sittwe (Myanmar). At most, Catastrophic Damage-causing winds was possible especially in the areas of Rakhine State and Chin State, and Severe Damage-causing winds is possible in the areas of Rakhine, Chin, Magway, and Sagaing ([source] TAOS Model, DisasterAWARE). Bangladesh were preparing to evacuate over 500,000 people as the World Meteorological Organisation (WMO) has warned of big humanitarian impacts once the storm makes landfall. Due to its intensity, Cyclone Mocha is expected to inundate several low-lying areas of the delta nation of Bangladesh which could consequently cause landslides.576 cyclone shelters are ready to provide refuge to those evacuated however damage to infrastructure and agriculture would be devastating.Myanmar ? POTENTIAL OF A CATASTROPHIC DISASTER. An estimated 8.7 Million people, 1.9M households, and $35.3 Billion (USD) of infrastructure (total replacement value) were potentially exposed to moderate to severe damaging winds in accordance with AHA Centre.JAXA has responded to the Tropical Cyclone MOCHA by conducting emergency disaster observations and providing data as requested through the International Disaster Charter and Sentinel Asia. The 25 m PALSAR-2 ScanSAR is normalized backscatter data of PALSAR-2 broad area observation mode with observation width of 350 km. Polarization data are stored as 16-bit digital numbers (DN). The DN values can be converted to gamma naught values in decibel unit (dB) using the following equation sigma zero = 10*log10(DN2) - 83.0 dB. Included in this dataset are ALOS-2 PALSAR-2 ScanSAR 2.1 data. Level 2.1 data is orthorectified from level 1.1 data by using digital elevation model. Pixel spacing is selectable depending on observation modes. Image coordinate in map projection is geocoded.
3 | UpdateFrequency: As available.
4 | License: Data is available for free under the terms of use.
5 | Documentation: https://www.eorc.jaxa.jp/ALOS/en/dataset/alos_open_and_free_e.htm, https://www.eorc.jaxa.jp/ALOS/en/dataset/palsar2_l22_e.htm
6 | ManagedBy: "[JAXA](https://www.jaxa.jp/)"
7 | Contact: aproject@jaxa.jp
8 | Tags:
9 | - aws-pds
10 | - agriculture
11 | - cog
12 | - disaster response
13 | - earth observation
14 | - geospatial
15 | - natural resource
16 | - satellite imagery
17 | - stac
18 | - sustainability
19 | - synthetic aperture radar
20 | DataAtWork:
21 | Tutorials:
22 | Tools & Applications:
23 | Publications:
24 | - Title: "ALOS series Open and Free Data by JAXA EORC"
25 | URL: https://www.eorc.jaxa.jp/ALOS/en/dataset/alos_open_and_free_e.htm
26 | AuthorName: JAXA EORC
27 | Resources:
28 | - Description: PALSAR-2 ScanSAR L2.2
29 | ARN: arn:aws:s3:::jaxaalos2/palsar2-scansar/Bangladesh/
30 | Region: us-west-2
31 | Type: S3 Bucket
32 | RequesterPays: False
33 |
--------------------------------------------------------------------------------
/datasets/palsar-2-scansar-flooding-in-rwanda.yaml:
--------------------------------------------------------------------------------
1 | Name: PALSAR-2 ScanSAR Flooding in Rwanda (L2.1)
2 | Description: Torrential rainfall triggered flooding and landslides in many parts of Rwanda. The hardest-hit districts were Ngororero, Rubavu, Nyabihu, Rutsiro and Karongi. According to reports, 14 people have died in Karongi, 26 in Rutsiro, 18 in Rubavu, 19 in Nyabihu and 18 in Ngororero.Rwanda National Police reported that the Mukamira-Ngororero and Rubavu-Rutsiro roads are impassable due to flooding and landslide debris. UNITAR on behalf of United Nations Office for the Coordination of Humanitarian Affairs (OCHA) / Regional Office for Southern & Eastern Africa in cooperation with Rwanda Space Agency (RSA) was activated International Disaster Charter. JAXA has responded to the flood event in Rwanda by conducting emergency disaster observations and providing data as requested by OCHA and RSA through the International Disaster Charter. The 25 m PALSAR-2 ScanSAR is normalized backscatter data of PALSAR-2 broad area observation mode with observation width of 350 km. Polarization data are stored as 16-bit digital numbers (DN). The DN values can be converted to gamma naught values in decibel unit (dB) using the following equation sigma zero = 10*log10(DN2) - 83.0 dB. Included in this dataset are ALOS-2 PALSAR-2 ScanSAR 2.1 data. Level 2.1 data is orthorectified from level 1.1 data by using digital elevation model. Pixel spacing is selectable depending on observation modes. Image coordinate in map projection is geocoded.
3 | UpdateFrequency: As available.
4 | License: Data is available for free under the terms of use.
5 | Documentation: https://www.eorc.jaxa.jp/ALOS/en/dataset/alos_open_and_free_e.htm, https://www.eorc.jaxa.jp/ALOS/en/dataset/palsar2_l22_e.htm
6 | ManagedBy: "[JAXA](https://www.jaxa.jp/)"
7 | Contact: aproject@jaxa.jp
8 | Tags:
9 | - aws-pds
10 | - agriculture
11 | - cog
12 | - deafrica
13 | - disaster response
14 | - earth observation
15 | - geospatial
16 | - natural resource
17 | - satellite imagery
18 | - stac
19 | - sustainability
20 | - synthetic aperture radar
21 | DataAtWork:
22 | Tutorials:
23 | Tools & Applications:
24 | Publications:
25 | - Title: "ALOS series Open and Free Data by JAXA EORC"
26 | URL: https://www.eorc.jaxa.jp/ALOS/en/dataset/alos_open_and_free_e.htm
27 | AuthorName: JAXA EORC
28 | Resources:
29 | - Description: PALSAR-2 ScanSAR L1.1 & L2.2
30 | ARN: arn:aws:s3:::jaxaalos2/palsar2-scansar/Rwanda/
31 | Region: us-west-2
32 | Type: S3 Bucket
33 | RequesterPays: False
34 |
--------------------------------------------------------------------------------
/datasets/palsar2-scansar-turkey-syria.yaml:
--------------------------------------------------------------------------------
1 | Name: PALSAR-2 ScanSAR Turkey & Syria Earthquake (L2.1 & L1.1)
2 | Description: |
3 | JAXA has responded to the Earthquake events in Turkey and Syria by conducting emergency disaster observations and providing data as requested by the Disaster and Emergency Management Authority (AFAD), Ministry of Interior in Turkey, through Sentinel Asia and the International Disaster Charter. Additional information on the event and dataset can be found [here](https://earth.jaxa.jp/en/earthview/2023/02/14/7381/index.html). The 25 m PALSAR-2 ScanSAR is normalized backscatter data of PALSAR-2 broad area observation mode with observation width of 350 km. Polarization data are stored as 16-bit digital numbers (DN). The DN values can be converted to gamma naught values in decibel unit (dB) using the following equation: γ0 = 10*log10(DN2) - 83.0 dB. Included in this dataset are ALOS PALSAR Level 1.1 and 2.1 data. Level 1.1 is range and single look azimuth compressed data represented by complex I and Q channels to preserve the magnitude and phase information. Range coordinate is in slant range. In the case of ScanSAR mode, an image file is generated per each scan. Level 2.1 data is orthorectified from level 1.1 data by using digital elevation model. Pixel spacing is selectable depending on observation modes. Image coordinate in map projection is geocoded.
4 | Documentation: https://www.eorc.jaxa.jp/ALOS/en/dataset/alos_open_and_free_e.htm, https://www.eorc.jaxa.jp/ALOS/en/dataset/palsar2_l22_e.htm
5 | Contact: aproject@jaxa.jp
6 | ManagedBy: "[JAXA](https://www.jaxa.jp/)"
7 | UpdateFrequency: As available.
8 | Collabs:
9 | ASDI:
10 | Tags:
11 | - satellite imagery
12 | Tags:
13 | - aws-pds
14 | - agriculture
15 | - earth observation
16 | - satellite imagery
17 | - geospatial
18 | - natural resource
19 | - sustainability
20 | - disaster response
21 | - synthetic aperture radar
22 | - deafrica
23 | - stac
24 | - cog
25 | License: Data is available for free under the [terms of use](https://earth.jaxa.jp/policy/en.html).
26 | Resources:
27 | - Description: PALSAR-2 ScanSAR L1.1 & L2.2
28 | ARN: arn:aws:s3:::jaxaalos2/palsar2-scansar/Turkey-Syria-earthquake/
29 | Region: us-west-2
30 | Type: S3 Bucket
31 | RequesterPays: False
32 | DataAtWork:
33 | Tutorials:
34 | Tools & Applications:
35 | Publications:
36 | - Title: "ALOS series Open and Free Data"
37 | URL: https://www.eorc.jaxa.jp/ALOS/en/dataset/alos_open_and_free_e.htm
38 | AuthorName: JAXA EORC
39 | - Title: "ALOS-2 observations of earthquakes in southeastern Turkey in 2023"
40 | URL: https://earth.jaxa.jp/en/earthview/2023/02/14/7381/index.html
41 | AuthorName: JAXA EORC
42 |
43 |
--------------------------------------------------------------------------------
/datasets/pgc-arcticdem.yaml:
--------------------------------------------------------------------------------
1 | Name: ArcticDEM
2 | Description: ArcticDEM - 2m GSD Digital Elevation Models (DEMs) and mosaics from 2007 to the present. The ArcticDEM project seeks to fill the need for high-resolution time-series elevation data in the Arctic. The time-dependent nature of the strip DEM files allows users to perform change detection analysis and to compare observations of topography data acquired in different seasons or years. The mosaic DEM tiles are assembled from multiple strip DEMs with the intention of providing a more consistent and comprehensive product over large areas. ArcticDEM data is constructed from in-track and cross-track high-resolution (~0.5 meter) imagery acquired by the Maxar constellation of optical imaging satellites.
3 | Documentation: https://www.pgc.umn.edu/data/arcticdem/
4 | Contact: pgc-support@umn.edu
5 | ManagedBy: "[Polar Geospatial Center](https://www.pgc.umn.edu/)"
6 | UpdateFrequency: New DEM strips are added twice yearly. Mosaic products are added as soon as they are available.
7 | Collabs:
8 | ASDI:
9 | Tags:
10 | - satellite imagery
11 | Tags:
12 | - aws-pds
13 | - elevation
14 | - earth observation
15 | - geospatial
16 | - mapping
17 | - open source software
18 | - satellite imagery
19 | - cog
20 | - stac
21 | License: "[Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/)"
22 | Citation: "See PGC's [acknowledgement policy](https://www.pgc.umn.edu/guides/user-services/acknowledgement-policy/)"
23 | Resources:
24 | - Description: ArcticDEM DEM Mosaics
25 | ARN: arn:aws:s3:::pgc-opendata-dems/arcticdem/mosaics/
26 | Region: us-west-2
27 | Type: S3 Bucket
28 | Explore:
29 | - '[Browse Static STAC Catalog](https://polargeospatialcenter.github.io/stac-browser/#/external/pgc-opendata-dems.s3.us-west-2.amazonaws.com/arcticdem/mosaics.json)'
30 | - '[Dynamic STAC API Endpoint](https://stac.pgc.umn.edu/api/v1/)'
31 | - Description: ArcticDEM DEM Strips
32 | ARN: arn:aws:s3:::pgc-opendata-dems/arcticdem/strips/
33 | Region: us-west-2
34 | Type: S3 Bucket
35 | Explore:
36 | - '[Browse Static STAC Catalog](https://polargeospatialcenter.github.io/stac-browser/#/external/pgc-opendata-dems.s3.us-west-2.amazonaws.com/arcticdem/strips.json)'
37 | - '[Dynamic STAC API Guide](https://www.pgc.umn.edu/guides/stereo-derived-elevation-models/stac-access-static-and-dynamic-api/)'
38 | DataAtWork:
39 | Tutorials:
40 | - Title: PGC Dynamic STAC API Tutorial
41 | URL: https://polargeospatialcenter.github.io/pgc-code-tutorials/dynamic_stac_api/web_files/stac_api_demo_workflow.html
42 | AuthorName: Polar Geospatial Center
43 | Tools & Applications:
44 | - Title: ArcticDEM Explorer
45 | URL: https://arcticdem.apps.pgc.umn.edu/
46 | AuthorName: Polar Geospatial Center & ESRI
47 | - Title: OpenTopography access to ArcticDEM
48 | URL: https://doi.org/10.5069/G96Q1VFK
49 | AuthorName: OpenTopography
50 | AuthorURL: https://opentopography.org/
51 | Publications:
52 | - Title: "The surface extraction from TIN based search-space minimization (SETSM) algorithm"
53 | URL: https://doi.org/10.1016/j.isprsjprs.2017.04.019
54 | AuthorName: Myoung-Jong Noh, Ian M. Howat
55 | - Title: "Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions"
56 | URL: https://doi.org/10.1080/15481603.2015.1008621
57 | AuthorName: Myoung-Jong Noh, Ian M. Howat
58 | - Title: "Automatic relative RPC image model bias compensation through hierarchical image matching for improving DEM quality"
59 | URL: https://doi.org/10.1016/j.isprsjprs.2017.12.008
60 | AuthorName: Myoung-Jong Noh, Ian M. Howat
61 | - Title: "Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat"
62 | URL: https://doi.org/10.1038/s43247-020-0001-2
63 | AuthorName: Michalea D. King, Ian M. Howat, Salvatore G. Candela, Myoung J. Noh, Seongsu Jeong, Brice P. Y. Noël, Michiel R. van den Broeke, Bert Wouters, Adelaide Negrete
64 | - Title: "Future Evolution of Greenland's Marine-Terminating Outlet Glaciers"
65 | URL: https://doi.org/10.1029/2018JF004873
66 | AuthorName: Ginny A. Catania, Leigh A. Stearns, Twila A. Moon, Ellen M. Enderlin, R. H. Jackson
67 |
--------------------------------------------------------------------------------
/datasets/pgc-earthdem.yaml:
--------------------------------------------------------------------------------
1 | Name: EarthDEM
2 | Description: EarthDEM - 2m GSD Digital Elevation Models (DEMs) and mosaics from 2002 to the present. The EarthDEM project seeks to fill the need for high-resolution time-series elevation data in non-polar regions. The time-dependent nature of the strip DEM files allows users to perform change detection analysis and to compare observations of topography data acquired in different seasons or years. The mosaic DEM tiles are assembled from multiple strip DEMs with the intention of providing a more consistent and comprehensive product over large areas. EarthDEM data is constructed from in-track and cross-track high-resolution (~0.5 meter) imagery acquired by the Maxar constellation of optical imaging satellites. Only a portion of the worldwide EarthDEM dataset is available publicly. Federally-funded researchers may access the entire dataset via NASA CSDA's Smallsat Data Explorer (see Data at Work section).
3 | Documentation: https://www.pgc.umn.edu/data/earthdem/
4 | Contact: pgc-support@umn.edu
5 | ManagedBy: "[Polar Geospatial Center](https://www.pgc.umn.edu/)"
6 | UpdateFrequency: New DEM strips are added when allowed by licensing restrictions. Mosaic products are added as soon as they are available.
7 | Collabs:
8 | ASDI:
9 | Tags:
10 | - satellite imagery
11 | Tags:
12 | - aws-pds
13 | - elevation
14 | - earth observation
15 | - geospatial
16 | - mapping
17 | - open source software
18 | - satellite imagery
19 | - cog
20 | - stac
21 | License: "[Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/)"
22 | Citation: "See PGC's [acknowledgement policy](https://www.pgc.umn.edu/guides/user-services/acknowledgement-policy/)"
23 | Resources:
24 | - Description: EarthDEM DEM Strips
25 | ARN: arn:aws:s3:::pgc-opendata-dems/earthdem/strips/
26 | Region: us-west-2
27 | Type: S3 Bucket
28 | Explore:
29 | - '[Browse Static STAC Catalog](https://polargeospatialcenter.github.io/stac-browser/#/external/pgc-opendata-dems.s3.us-west-2.amazonaws.com/earthdem/strips.json)'
30 | - '[Dynamic STAC API Guide](https://www.pgc.umn.edu/guides/stereo-derived-elevation-models/stac-access-static-and-dynamic-api/)'
31 | DataAtWork:
32 | Tutorials:
33 | - Title: PGC Dynamic STAC API Tutorial
34 | URL: https://polargeospatialcenter.github.io/pgc-code-tutorials/dynamic_stac_api/web_files/stac_api_demo_workflow.html
35 | AuthorName: Polar Geospatial Center
36 | Tools & Applications:
37 | - Title: GLARS Data Viewer
38 | URL: https://glars.org/data/view-and-download/
39 | AuthorName: Great Lakes Alliance for Remote Sensing
40 | - Title: NASA CSDA SmallSat Data Explorer
41 | URL: https://csdap.earthdata.nasa.gov/
42 | AuthorName: NASA Commercial Smallsat Acquisition Program
43 | Publications:
44 | - Title: "Multi-Source EO for Dynamic Wetland Mapping and Monitoring in the Great Lakes Basin"
45 | URL: https://doi.org/10.3390/rs13040599
46 | AuthorName: Michael J. Battaglia, Sarah Banks, Amir Behnamian, Laura Bourgeau-Chavez, Brian Brisco, Jennifer Corcoran, Zhaohua Chen, Brian Huberty, James Klassen, Joseph Knight, Paul Morin, Kevin Murnaghan, Keith Pelletier, Lori White
47 | - Title: "The surface extraction from TIN based search-space minimization (SETSM) algorithm"
48 | URL: https://doi.org/10.1016/j.isprsjprs.2017.04.019
49 | AuthorName: Myoung-Jong Noh, Ian M. Howat
50 | - Title: "Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions"
51 | URL: https://doi.org/10.1080/15481603.2015.1008621
52 | AuthorName: Myoung-Jong Noh, Ian M. Howat
53 |
--------------------------------------------------------------------------------
/datasets/pgc-rema.yaml:
--------------------------------------------------------------------------------
1 | Name: Reference Elevation Model of Antarctica (REMA)
2 | Description: The Reference Elevation Model of Antarctica - 2m GSD Digital Elevation Models (DEMs) and mosaics from 2009 to the present. The REMA project seeks to fill the need for high-resolution time-series elevation data in the Antarctic. The time-dependent nature of the strip DEM files allows users to perform change detection analysis and to compare observations of topography data acquired in different seasons or years. The mosaic DEM tiles are assembled from multiple strip DEMs with the intention of providing a more consistent and comprehensive product over large areas. REMA data is constructed from in-track and cross-track high-resolution (~0.5 meter) imagery acquired by the Maxar constellation of optical imaging satellites.
3 | Documentation: https://www.pgc.umn.edu/data/rema/
4 | Contact: pgc-support@umn.edu
5 | ManagedBy: "[Polar Geospatial Center](https://www.pgc.umn.edu/)"
6 | UpdateFrequency: New DEM strips are added twice yearly. Mosaic products are added as soon as they are available.
7 | Collabs:
8 | ASDI:
9 | Tags:
10 | - satellite imagery
11 | Tags:
12 | - aws-pds
13 | - elevation
14 | - earth observation
15 | - geospatial
16 | - mapping
17 | - open source software
18 | - satellite imagery
19 | - cog
20 | - stac
21 | License: "[Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/)"
22 | Citation: "See PGC's [acknowledgement policy](https://www.pgc.umn.edu/guides/user-services/acknowledgement-policy/)"
23 | Resources:
24 | - Description: REMA DEM Mosaics
25 | ARN: arn:aws:s3:::pgc-opendata-dems/rema/mosaics/
26 | Region: us-west-2
27 | Type: S3 Bucket
28 | Explore:
29 | - '[Browse Static STAC Catalog](https://polargeospatialcenter.github.io/stac-browser/#/external/pgc-opendata-dems.s3.us-west-2.amazonaws.com/rema/mosaics.json)'
30 | - '[Dynamic STAC API Endpoint](https://stac.pgc.umn.edu/api/v1/)'
31 | - Description: REMA DEM Strips
32 | ARN: arn:aws:s3:::pgc-opendata-dems/rema/strips/
33 | Region: us-west-2
34 | Type: S3 Bucket
35 | Explore:
36 | - '[Browse Static STAC Catalog](https://polargeospatialcenter.github.io/stac-browser/#/external/pgc-opendata-dems.s3.us-west-2.amazonaws.com/rema/strips.json)'
37 | - '[Dynamic STAC API Guide](https://www.pgc.umn.edu/guides/stereo-derived-elevation-models/stac-access-static-and-dynamic-api/)'
38 | DataAtWork:
39 | Tutorials:
40 | - Title: PGC Dynamic STAC API Tutorial
41 | URL: https://polargeospatialcenter.github.io/pgc-code-tutorials/dynamic_stac_api/web_files/stac_api_demo_workflow.html
42 | AuthorName: Polar Geospatial Center
43 | Tools & Applications:
44 | - Title: REMA Explorer
45 | URL: https://rema.apps.pgc.umn.edu/
46 | AuthorName: Polar Geospatial Center & ESRI
47 | - Title: OpenTopography access to REMA
48 | URL: https://doi.org/10.5069/G9X63K5S
49 | AuthorName: OpenTopography
50 | AuthorURL: https://opentopography.org/
51 | Publications:
52 | - Title: "The Reference Elevation Model of Antarctica"
53 | URL: https://doi.org/10.5194/tc-13-665-2019
54 | AuthorName: Ian M. Howat, Claire Porter, Benjanim E. Smith, Myoung-Jong Noh, Paul Morin
55 | - Title: "The surface extraction from TIN based search-space minimization (SETSM) algorithm"
56 | URL: https://doi.org/10.1016/j.isprsjprs.2017.04.019
57 | AuthorName: Myoung-Jong Noh, Ian M. Howat
58 | - Title: "Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions"
59 | URL: https://doi.org/10.1080/15481603.2015.1008621
60 | AuthorName: Myoung-Jong Noh, Ian M. Howat
61 | - Title: "Automatic relative RPC image model bias compensation through hierarchical image matching for improving DEM quality"
62 | URL: https://doi.org/10.1016/j.isprsjprs.2017.12.008
63 | AuthorName: Myoung-Jong Noh, Ian M. Howat
64 | - Title: "Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet"
65 | URL: https://doi.org/10.1038/s41561-019-0510-8
66 | AuthorName: Morlighem, M., Rignot, E., Binder, T. et al.
67 |
--------------------------------------------------------------------------------
/datasets/radiant-mlhub.yaml:
--------------------------------------------------------------------------------
1 | Name: Radiant MLHub
2 | Description: Radiant MLHub is an open library for geospatial training data that hosts datasets generated by [Radiant Earth Foundation](https://www.radiant.earth/)'s team as well as other training data catalogs contributed by Radiant Earth’s partners. Radiant MLHub is open to anyone to access, store, register and/or share their training datasets for high-quality Earth observations. All of the training datasets are stored using a [SpatioTemporal Asset Catalog (STAC)](https://stacspec.org/) compliant catalog and exposed through a common API. Training datasets include pairs of imagery and labels for different types of machine learning problems including image classification, object detection, and semantic segmentation. Labels are generated from ground reference data and/or image annotation.
3 | Documentation: http://docs.mlhub.earth/
4 | Contact: support@radiant.earth
5 | ManagedBy: "[Radiant Earth Foundation](https://www.radiant.earth/)"
6 | UpdateFrequency: New training data catalogs are added on a rolling basis
7 | Tags:
8 | - aws-pds
9 | - labeled
10 | - machine learning
11 | - geospatial
12 | - earth observation
13 | - satellite imagery
14 | - environmental
15 | - cog
16 | - stac
17 | License: Access to Radiant MLHub data is free for everyone. Each dataset has its own license (usually CC-BY or CC-BY-SA). View [Terms of Service](https://www.radiant.earth/terms/).
18 | Resources:
19 | - Description: Radiant MLHub Training Data
20 | ARN: arn:aws:s3:::radiant-mlhub
21 | Region: us-west-2
22 | Type: S3 Bucket
23 | DataAtWork:
24 | Tutorials:
25 | - Title: How to access Radiant MLHub Data
26 | URL: https://github.com/radiantearth/mlhub-tutorials/blob/master/RadiantMLHub-intro.pdf
27 | AuthorName: Radiant Earth
28 | AuthorURL: https://www.radiant.earth/
29 | - Title: Radiant MLHub Tutorials with Jupyter Notebooks
30 | URL: https://github.com/radiantearth/mlhub-tutorials/tree/master/notebooks
31 | AuthorName: Kevin Booth
32 | AuthorURL: https://www.linkedin.com/in/kbgg/
33 | - Title: "Explore wind speed images from Amazon Sustainability Data Initiative (ASDI) hosted on S3 using SageMaker Studio Lab (SMSL)"
34 | URL: https://github.com/aws-samples/asdi-smsl-wind-speed-data/
35 | NotebookURL: https://github.com/aws-samples/asdi-smsl-wind-speed-data/blob/main/wind-speed-data.ipynb
36 | AuthorName: Frank Rubino
37 | Services:
38 | - Amazon SageMaker Studio Lab
39 | Tools & Applications:
40 | - Title: Radiant MLHub Dataset Registry
41 | URL: https://registry.mlhub.earth/
42 | AuthorName: Radiant Earth
43 | AuthorURL: https://www.radiant.earth/
44 | - Title: Challenge on Computer Vision for Crop Detection from Satellite Imagery
45 | URL: https://zindi.africa/competitions/iclr-workshop-challenge-2-radiant-earth-computer-vision-for-crop-recognition
46 | AuthorName: Radiant Earth
47 | AuthorURL: https://www.radiant.earth/
48 | Publications:
49 | - Title: A Guide for Collecting and Sharing Ground Reference Data for Machine Learning Applications
50 | URL: https://medium.com/radiant-earth-insights/a-guide-for-collecting-and-sharing-ground-reference-data-for-machine-learning-applications-90664930925e
51 | AuthorName: Yonah Bromberg Gaber
52 | AuthorURL: https://www.linkedin.com/in/yonahbg/
53 | - Title: Geo-Diverse Open Training Data as a Global Public Good
54 | URL: https://aws.amazon.com/blogs/publicsector/geo-diverse-open-training-data-as-a-global-public-good/
55 | AuthorName: Hamed Alemohammad
56 | AuthorURL: https://www.linkedin.com/in/hamedalemohammad/
57 | - Title: Creating a Machine Learning Commons for Global Development
58 | URL: https://medium.com/radiant-earth-insights/creating-a-machine-learning-commons-for-global-development-256ef3dd46aa
59 | AuthorName: Hamed Alemohammad
60 | AuthorURL: https://www.linkedin.com/in/hamedalemohammad/
61 |
--------------------------------------------------------------------------------
/datasets/rcm-ceos-ard.yaml:
--------------------------------------------------------------------------------
1 | Name: "RCM CEOS Analysis Ready Data | Données prêtes à l'analyse du CEOS pour le MCR"
2 | Description: "The [RADARSAT Constellation Mission (RCM)](https://www.asc-csa.gc.ca/eng/satellites/radarsat/) is Canada's third generation of Earth observation satellites. Launched on June 12, 2019, the three identical satellites work together to bring solutions to key challenges for Canadians. As part of ongoing [Open Government](https://open.canada.ca/en/about-open-government) efforts, NRCan produces a CEOS analysis ready data (ARD) of Canada landmass using a 30M Compact-Polarization standard coverage, every 12 days. RCM CEOS-ARD (POL) is the first ever polarimetric dataset [approved by the CEOS committee](https://ceos.org/ard/index.html#datasets). Previously, users were stuck ordering, downloading and processing RCM images (level 1) on their own, often with expensive software. This new dataset aims to remove these burdens with a new STAC catalog for discovery and direct download links.
3 |
4 |
5 |
6 |
7 | La mission de la Constellation RADARSAT (MCR) est la troisième génération de satellites d'observation de la Terre du Canada. Lancés le 12 juin 2019, les trois satellites identiques travaillent ensemble pour apporter des solutions aux principaux défis des Canadiens. Dans le cadre des efforts continus pour un gouvernement ouvert, RNCan produit des données prêtes à l'analyse CEOS (ARD) de la masse terrestre du Canada en utilisant une couverture standard de 30 m en polarisation compacte, tous les 12 jours. Les CEOS-ARD (POL) du MCR constituent le premier ensemble de données polarimétriques jamais [approuvé par le comité CEOS](https://ceos.org/ard/index.html#datasets). Auparavant, les utilisateurs étaient obligés de commander, de télécharger et de traiter eux-mêmes les images RCM (niveau 1), souvent à l'aide de logiciels coûteux. Ce nouvel ensemble de données vise à supprimer ces fardeaux avec un nouveau catalogue STAC à découvrir et à télécharger directement depuis S3."
8 | Documentation: https://www.asc-csa.gc.ca/eng/satellites/radarsat/
9 | Contact: eodms-sgdot@nrcan-rncan.gc.ca
10 | ManagedBy: "[Natural Resources Canada](https://www.nrcan.gc.ca/)"
11 | UpdateFrequency: "The initial dataset will be Canada-wide, 30M Compact-Polarization standard coverage, every 12 days, per mission revisit frequency.
12 |
13 |
14 |
15 |
16 | L'ensemble de données initial couvrira l'ensemble du Canada, une couverture standard de 30 metres de polarisation compacte, tous les 12 jours, par fréquence de revisite de mission."
17 | Tags:
18 | - aws-pds
19 | - agriculture
20 | - earth observation
21 | - satellite imagery
22 | - geospatial
23 | - sustainability
24 | - disaster response
25 | - synthetic aperture radar
26 | - stac
27 | - ceos
28 | - analysis ready data
29 | License: "RCM image products are available free of charge, to the broadest extent possible, in order to promote the development of innovative products and services derived from SAR data. The Government of Canada retains ownership of all RCM data and image products. Intellectual property rights to value-added products (VAPs) created from the RCM image products will remain with the creator of the VAP. Acceptable uses of RCM image products are set out in the [RCM Public User License Agreement](https://www.asc-csa.gc.ca/eng/satellites/radarsat/access-to-data/public-user-license-agreement.asp), which is provided with each RCM image product.
30 |
31 |
32 |
33 |
34 | Les produits d'image de la MCR sont disponibles sans frais, le plus possible accessibles, pour encourager la mise au point de produits et services novateurs dérivés des données RSO. Le gouvernement du Canada conserve la propriété de toutes les données et de tous les produits d'image de la MCR. Les droits de propriété intellectuelle sur les produits à valeur ajoutée (PVA) créés à partir des produits d'image de la MCR demeureront la propriété du créateur du PVA. Les utilisations acceptables des produits d'image de la MCR sont énoncées dans le [contrat de licence d'utilisation](https://www.asc-csa.gc.ca/fra/satellites/radarsat/acces-aux-donnees/contrat-licence-utilisation.asp) fourni avec chaque produit d'image de la MCR"
35 | Resources:
36 | - Description: RCM CEOS Analysis Ready Data. Données prêtes à l'analyse (DPA) du CEOS pour le MCR
37 | ARN: arn:aws:s3:::rcm-ceos-ard
38 | Region: ca-central-1
39 | Type: S3 Bucket
40 | Explore:
41 | - '[EODMS STAC for RCM CEOS ARD](https://www.eodms-sgdot.nrcan-rncan.gc.ca/stac/collections/rcm-ard/items/)'
42 | DataAtWork:
43 | Publications:
44 | - Title: Synthetic Aperture Radar (CEOS-ARD SAR)
45 | URL: https://ceos.org/ard/files/PFS/SAR/v1.1/CEOS-ARD_PFS_Synthetic_Aperture_Radar_v1.1.pdf
46 | AuthorName: Committee on Earth Observation Satellites (CEOS) for developing the CEOS ARD Standards. Specific acknowledgement to François Charbonneau (NRCan) for contributions to the standard development through CEOS committee membership as well as application to Canadian RADARSAT data.
47 | AuthorURL:
48 | - Title: CEOS Analysis Ready Data
49 | URL: https://ceos.org/ard/
50 | AuthorName: Committee on Earth Observation Satellites (CEOS)
51 | AuthorURL: https://ceos.org/
52 | - Title: Sentinel-1 Global Backscatter Model (S1GBM)
53 | URL: https://researchdata.tuwien.ac.at/records/n2d1v-gqb91
54 | AuthorName: TU Wien Research Data
55 | AuthorURL: https://researchdata.tuwien.ac.at/
56 | - Title: Copernicus Global Digital Elevation Model
57 | URL: https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM
58 | AuthorName: European Space Agency (ESA)
59 | AuthorURL: https://www.esa.int/
--------------------------------------------------------------------------------
/datasets/satellogic-earthview.yaml:
--------------------------------------------------------------------------------
1 | Name: Satellogic EarthView dataset
2 | Description: Satellogic EarthView dataset includes high-resolution satellite images captured over all continents. The dataset is organized in Hive partition format and hosted by AWS. The dataset can be accessed via STAC browser or aws cli. Each item of the dataset corresponds to a specific region and date, with some of the regions revisited for additional data. The dataset provides Top-of-Atmosphere (TOA) reflectance values across four spectral bands (Red, Green, Blue, Near-Infrared) at a Ground Sample Distance (GSD) of 1 meter, accompanied by comprehensive metadata such as off-nadir angles, sun elevation, and other pertinent details. Users should note that due to an artifact in region delineation, a small number of regions present overlaps.
3 | Documentation: https://satellogic-earthview.s3.us-west-2.amazonaws.com/index.html
4 | Contact: https://www.satellogic.com/
5 | ManagedBy: "[Satellogic](https://www.satellogic.com)"
6 | UpdateFrequency: New data will be made available periodically, with annual updates expected in the future covering the same or other new regions.
7 | Tags:
8 | - aws-pds
9 | - satellite imagery
10 | - earth observation
11 | - image processing
12 | - geospatial
13 | - computer vision
14 | - stac
15 | - cog
16 | License: "[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/deed.en)"
17 | Resources:
18 | - Description: Satellogic data includes TOA RGBN COG, VISUAL RGB COG files data and metadata
19 | ARN: arn:aws:s3:::satellogic-earthview
20 | Region: us-west-2
21 | Type: S3 Bucket
22 | RequesterPays: False
23 | Explore:
24 | - '[STAC Catalog](https://satellogic-earthview.s3.us-west-2.amazonaws.com/stac/catalog.json)'
25 | - '[STAC Browser](https://radiantearth.github.io/stac-browser/#/external/satellogic-earthview.s3.us-west-2.amazonaws.com/stac/catalog.json)'
26 | DataAtWork:
27 | Tutorials:
28 | - Title: Explore Satellogic EarthView in SageMaker Studio Lab (SMSL)
29 | URL: https://github.com/satellogic/satellogic-earthview/
30 | NotebookURL: https://github.com/satellogic/satellogic-earthview/blob/main/satellogic_earthview_exploration.ipynb
31 | AuthorName: Javier Marin
32 | Services:
33 | - Amazon SageMaker Studio Lab
34 | Publications:
35 | - Title: "EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision"
36 | URL: https://satellogic-earthview.s3.us-west-2.amazonaws.com/index.html
37 | AuthorName: Velázquez, Diego and Rodríguez, Pau and Alonso, Sergio and Gonfaus, Josep M. and González, Jordi and, Richarte, Gerardo and Marín, Javier and Bengio, Yoshua and Lacoste, Alexandre
38 |
--------------------------------------------------------------------------------
/datasets/sentinel-1-rtc-indigo.yaml:
--------------------------------------------------------------------------------
1 | Name: Analysis Ready Sentinel-1 Backscatter Imagery
2 | Description: |
3 | The [Sentinel-1 mission](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) is a constellation of
4 | C-band Synthetic Aperature Radar (SAR) satellites from the European Space Agency launched since 2014.
5 | These satellites collect observations of radar backscatter intensity day or night, regardless of the
6 | weather conditions, making them enormously valuable for environmental monitoring.
7 | These radar data have been processed from original Ground Range Detected (GRD) scenes into a Radiometrically
8 | Terrain Corrected, tiled product suitable for analysis. This product is available over the Contiguous United States (CONUS)
9 | since 2017 when Sentinel-1 data became globally available.
10 | Documentation: https://sentinel-s1-rtc-indigo-docs.s3-us-west-2.amazonaws.com/index.html
11 | Contact: For questions regarding data methodology or delivery, contact sentinel1@indigoag.com.
12 | ManagedBy: "[Indigo Ag, Inc.](https://www.indigoag.com/)"
13 | UpdateFrequency: Data updates are paused while we repair the processing pipeline, but the target is to update on a daily cadence for the dataset's spatial domain (CONUS).
14 | Collabs:
15 | ASDI:
16 | Tags:
17 | - satellite imagery
18 | Tags:
19 | - agriculture
20 | - aws-pds
21 | - disaster response
22 | - earth observation
23 | - environmental
24 | - geospatial
25 | - satellite imagery
26 | - cog
27 | - stac
28 | - synthetic aperture radar
29 | License: |
30 | The use of these data fall under the terms and conditions of the [Indigo Atlas Sentinel License](https://www.indigoag.com/forms/atlas-sentinel-license).
31 | Resources:
32 | - Description: Sentinel-1 RTC tiled data and metadata in a S3 bucket
33 | ARN: arn:aws:s3:::sentinel-s1-rtc-indigo
34 | Region: us-west-2
35 | Type: S3 Bucket
36 | Explore:
37 | - '[STAC V1.0.0 endpoint](https://scottyhq.github.io/sentinel1-rtc-stac/#/)'
38 | - Description: Simple Notification Service (SNS) topic for notification of new tile uploads
39 | ARN: arn:aws:sns:us-west-2:410373799403:sentinel-s1-rtc-indigo-object_created
40 | Region: us-west-2
41 | Type: SNS Topic
42 | DataAtWork:
43 | Tutorials:
44 | - Title: Compare Cloud-Optimized Geotiffs from Amazon Sustainability Data Initiative (ASDI) hosted on S3 using SageMaker Studio Lab (SMSL)
45 | URL: https://github.com/aws-samples/asdi-smsl-demo-delta
46 | NotebookURL: https://github.com/aws-samples/asdi-smsl-demo-delta/blob/main/Compare-GeoTiffs-S3.ipynb
47 | AuthorName: Gianfranco Rapino
48 | Services:
49 | - Amazon SageMaker Studio Lab
50 |
--------------------------------------------------------------------------------
/datasets/sentinel-3.yaml:
--------------------------------------------------------------------------------
1 | Name: Sentinel-3
2 | Description: This data set consists of observations from the Sentinel-3 satellite of the European Commission’s Copernicus Earth Observation Programme. Sentinel-3 is a polar orbiting satellite that completes 14 orbits of the Earth a day. It carries the Ocean and Land Colour Instrument (OLCI) for medium resolution marine and terrestrial optical measurements, the Sea and Land Surface Temperature Radiometer (SLSTR), the SAR Radar Altimeter (SRAL), the MicroWave Radiometer (MWR) and the Precise Orbit Determination (POD) instruments. The satellite was launched in 2016 and entered routine operational phase in 2017. Data is available from July 2017 onwards.
3 | Documentation: https://github.com/Sentinel-5P/data-on-s3/blob/master/DocsForAws/Sentinel3Description.md
4 | Contact: sentinel3@meeo.it
5 | ManagedBy: "[Meteorological Environmental Earth Observation](http://www.meeo.it/)"
6 | UpdateFrequency: Daily
7 | Collabs:
8 | ASDI:
9 | Tags:
10 | - satellite imagery
11 | Tags:
12 | - aws-pds
13 | - oceans
14 | - earth observation
15 | - environmental
16 | - geospatial
17 | - land
18 | - satellite imagery
19 | - cog
20 | - stac
21 | License: https://sentinel.esa.int/documents/247904/690755/Sentinel_Data_Legal_Notice
22 | Resources:
23 | - Description: Sentinel-3 Near Real Time Data (NRT) format
24 | ARN: arn:aws:s3:::meeo-s3/NRT/
25 | Region: eu-central-1
26 | Type: S3 Bucket
27 | - Description: Sentinel-3 Not Time Critical (NTC) format
28 | ARN: arn:aws:s3:::meeo-s3/NTC/
29 | Region: eu-central-1
30 | Type: S3 Bucket
31 | - Description: Sentinel-3 Short Time Critical (STC) format
32 | ARN: arn:aws:s3:::meeo-s3/STC/
33 | Region: eu-central-1
34 | Type: S3 Bucket
35 | - Description: Sentinel-3 Cloud Optimized GeoTIFF (COG) format
36 | ARN: arn:aws:s3:::meeo-s3-cog/
37 | Region: eu-central-1
38 | Type: S3 Bucket
39 | Explore:
40 | - '[STAC V1.0.0 endpoint](https://meeo-s3.s3.amazonaws.com/)'
41 | DataAtWork:
42 | Tutorials:
43 | - Title: Accessing Sentinel-3 Data on S3 by MEEO
44 | URL: https://github.com/Sentinel-5P/data-on-s3/blob/master/notebooks/Sentinel3_Tutorial.ipynb
45 | AuthorName: Meteorological Environmental Earth Observation
46 | AuthorURL: http://www.meeo.it/
47 | Tools & Applications:
48 | - Title: Sentinel-3 Toolbox
49 | URL: https://step.esa.int/main/toolboxes/sentinel-3-toolbox/
50 | AuthorName: European Space Agency
51 | AuthorURL: https://www.esa.int/
52 | - Title: Catalogue of data set
53 | URL: https://meeo-s3.s3.amazonaws.com/index.html#/?t=catalogs
54 | AuthorName: Meteorological Environmental Earth Observation
55 | AuthorURL: https://www.meeo.it/
56 | Publications:
57 | - Title: Sentinel-3 Document Library
58 | URL: https://sentinel.esa.int/web/sentinel/user-guides
59 | AuthorName: European Space Agency
60 | AuthorURL: https://www.esa.int/
61 |
--------------------------------------------------------------------------------
/datasets/sentinel-products-ca-mirror.yaml:
--------------------------------------------------------------------------------
1 | Name: "Sentinel Near Real-time Canada Mirror | Miroir Sentinel temps quasi réel du Canada"
2 | Description: "The official Government of Canada (GC) 🍁 Near Real-time (NRT) Sentinel Mirror connected to the [EU Copernicus programme](https://www.copernicus.eu), focused on Canadian coverage. In 2015, [Canada joined the Sentinel collaborative ground segment](https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Canada_joins_Sentinel_collaborative_ground_segment) which introduced an NRT Sentinel mirror site for users and programs inside the Government of Canada (GC). In 2022, the [Commission signed a Copernicus Arrangement with the Canadian Space Agency](https://defence-industry-space.ec.europa.eu/signature-copernicus-arrangement-between-canadian-space-agency-and-european-commission-2022-05-16_en) with the aim to share each other’s satellite Earth Observation data on the basis of reciprocity. Further to this arrangement as well as ongoing [Open Government](https://open.canada.ca/en/about-open-government) efforts, the private mirror was made open to the public, here on the AWS Open Dataset Registry.
3 |
4 |
5 |
6 |
7 | Le Sentinel Mirror officiel du gouvernement du Canada (GC) 🍁 en temps quasi réel (NRT) connecté au [programme Copernicus de l'UE] (https://www.copernicus.eu), axé sur la couverture canadienne. En 2015, [le Canada a rejoint le segment terrestre collaboratif Sentinel](https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Canada_joins_Sentinel_collaborative_ground_segment) qui a introduit un site miroir NRT Sentinel pour les utilisateurs et les programmes au sein du gouvernement du Canada (GC). . En 2022, la [Commission a signé un accord Copernicus avec l'Agence spatiale canadienne](https://defence-industry-space.ec.europa.eu/signature-copernicus-arrangement-between-canadian-space-agency-and-european-commission-2022-05-16_fr) dans le but de partager mutuellement les données satellitaires d'observation de la Terre sur la base de la réciprocité. Suite à cet arrangement ainsi qu'aux efforts continus de [gouvernement ouvert](https://open.canada.ca/en/about-open-government), le miroir privé a été rendu ouvert au public, ici sur le registre des ensembles de données ouvertes AWS."
8 | Documentation: https://sentinel.esa.int/web/sentinel/home
9 | Contact: eodms-sgdot@nrcan-rncan.gc.ca
10 | ManagedBy: "[Natural Resources Canada](https://www.nrcan.gc.ca/)"
11 | UpdateFrequency: "Sentinel-1 is an NRT dataset retrieved from ESA within 90 minutes of satellite downlink. Non-NRT Sentinel-2 and Sentinel-3 are also updated as quickly as possible based on Canada coverage and availability at the source.
12 |
13 |
14 |
15 |
16 | Sentinel-1 est un ensemble de données NRT récupéré de l'ESA dans les 90 minutes suivant la liaison descendante du satellite. Sentinel-2 et Sentinel-3 non NRT sont également récupérés le plus rapidement possible en fonction de la couverture du Canada et de la disponibilité à la source."
17 | Tags:
18 | - aws-pds
19 | - agriculture
20 | - earth observation
21 | - satellite imagery
22 | - geospatial
23 | - sustainability
24 | - disaster response
25 | - synthetic aperture radar
26 | - stac
27 | License: "The access and use of Copernicus Sentinel data is available on a free, full and open basis through the Copernicus Data Space Ecosystem and shall be governed by the Legal Notice on the use of Copernicus Sentinel Data and Service published here: https://sentinels.copernicus.eu/documents/247904/690755/Sentinel_Data_Legal_Notice."
28 | Resources:
29 | - Description: Sentinel data over Canada | Données sentinelles au Canada.
30 | ARN: arn:aws:s3:::sentinel-products-ca-mirror
31 | Region: ca-central-1
32 | Type: S3 Bucket
33 | Explore:
34 | - '[EODMS STAC for Sentinel products](https://www.eodms-sgdot.nrcan-rncan.gc.ca/stac/)'
35 |
36 |
--------------------------------------------------------------------------------
/datasets/sentinel5p.yaml:
--------------------------------------------------------------------------------
1 | Name: Sentinel-5P Level 2
2 | Description: This data set consists of observations from the Sentinel-5 Precursor (Sentinel-5P) satellite of the European Commission’s Copernicus Earth Observation Programme. Sentinel-5P is a polar orbiting satellite that completes 14 orbits of the Earth a day. It carries the TROPOspheric Monitoring Instrument (TROPOMI) which is a spectrometer that senses ultraviolet (UV), visible (VIS), near (NIR) and short wave infrared (SWIR) to monitor ozone, methane, formaldehyde, aerosol, carbon monoxide, nitrogen dioxide and sulphur dioxide in the atmosphere. The satellite was launched in October 2017 and entered routine operational phase in March 2019. Data is available from July 2018 onwards.
3 | Documentation: https://github.com/Sentinel-5P/data-on-s3/blob/master/DocsForAws/Sentinel5P_Description.md
4 | Contact: sentinel5p@meeo.it
5 | ManagedBy: "[Meteorological Environmental Earth Observation](http://www.meeo.it/)"
6 | UpdateFrequency: Daily
7 | Collabs:
8 | ASDI:
9 | Tags:
10 | - satellite imagery
11 | Tags:
12 | - aws-pds
13 | - air quality
14 | - atmosphere
15 | - earth observation
16 | - environmental
17 | - geospatial
18 | - satellite imagery
19 | - cog
20 | - stac
21 | License: https://sentinel.esa.int/documents/247904/690755/Sentinel_Data_Legal_Notice
22 | Resources:
23 | - Description: Sentinel-5p Near Real Time Data (NRTI). NetCDF format.
24 | ARN: arn:aws:s3:::meeo-s5p/NRTI/
25 | Region: eu-central-1
26 | Type: S3 Bucket
27 | - Description: Sentinel-5p Off Line Data (OFFL) NetCDF format.
28 | ARN: arn:aws:s3:::meeo-s5p/OFFL/
29 | Region: eu-central-1
30 | Type: S3 Bucket
31 | - Description: Sentinel-5p Reprocessed Data (RPRO) NetCDF format.
32 | ARN: arn:aws:s3:::meeo-s5p/RPRO/
33 | Region: eu-central-1
34 | Type: S3 Bucket
35 | - Description: Sentinel-5p Cloud Optimised GeoTIFF (COGT). TIFF format.
36 | ARN: arn:aws:s3:::meeo-s5p/COGT/
37 | Region: eu-central-1
38 | Type: S3 Bucket
39 | Explore:
40 | - '[STAC V1.0.0 endpoint](https://meeo-s5p.s3.amazonaws.com/index.html?t=catalogs)'
41 | DataAtWork:
42 | Tutorials:
43 | - Title: Accessing Sentinel-5P Data on S3 by MEEO
44 | URL: https://github.com/Sentinel-5P/data-on-s3/blob/master/notebooks/Sentinel5P_Tutorial.ipynb
45 | AuthorName: Meteorological Environmental Earth Observation
46 | AuthorURL: http://www.meeo.it/
47 | Tools & Applications:
48 | - Title: The Atmospheric Toolbox
49 | URL: https://atmospherictoolbox.org/
50 | AuthorName: European Space Agency
51 | AuthorURL: https://www.esa.int/
52 | - Title: Catalogue of data set
53 | URL: https://meeo-s5p.s3.amazonaws.com/index.html#/?t=catalogs
54 | AuthorName: Meteorological Environmental Earth Observation
55 | AuthorURL: https://www.meeo.it/
56 | Publications:
57 | - Title: Sentinel-5P TROPOMI Document Library
58 | URL: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-5p-tropomi/document-library
59 | AuthorName: European Space Agency
60 | AuthorURL: https://www.esa.int/
61 |
62 |
--------------------------------------------------------------------------------
/datasets/umbra-open-data.yaml:
--------------------------------------------------------------------------------
1 | Name: Umbra Synthetic Aperture Radar (SAR) Open Data
2 | Description: Umbra satellites generate the highest resolution Synthetic Aperture Radar (SAR) imagery ever offered from space, up to 16-cm resolution. SAR can capture images at night, through cloud cover, smoke and rain. SAR is unique in its abilities to monitor changes. The Open Data Program (ODP) features over twenty diverse time-series locations that are updated frequently, allowing users to experiment with SAR's capabilities. We offer single-looked spotlight mode in either 16cm, 25cm, 35cm, 50cm, or 1m resolution, and multi-looked spotlight mode. The ODP also features an assorted collection of over 250+ images and counting of various locations around the world, ranging from emergency response, to gee-whiz sites. If you have a suggestion for a new location, feedback on the dataset, or any questions, contact us at umbra.space/open-data.
3 | Documentation: https://help.umbra.space/product-guide
4 | Contact: help@umbra.space
5 | ManagedBy: "[Umbra](http://umbra.space/)"
6 | UpdateFrequency: New data is added frequently. The frequent updates enable users to analyze the time-series data to detect changes in each location. Umbra's goal is to provide the user with a deep understanding on what's possible with our data.
7 | Tags:
8 | - aws-pds
9 | - synthetic aperture radar
10 | - stac
11 | - satellite imagery
12 | - earth observation
13 | - image processing
14 | - geospatial
15 | License: |
16 | All data is provided with a Creative Commons License ([CC by 4.0](https://umbra.space/open-license)), which gives you the right to do just about anything you want with it.
17 | Resources:
18 | - Description: Umbra Spotlight collects including GEC, SICD, SIDD, CPHD data and metadata
19 | ARN: arn:aws:s3:::umbra-open-data-catalog
20 | Region: us-west-2
21 | Type: S3 Bucket
22 | RequesterPays: False
23 | Explore:
24 | - '[Browse Bucket](http://umbra-open-data-catalog.s3-website.us-west-2.amazonaws.com/)'
25 | - '[STAC Browser](https://radiantearth.github.io/stac-browser/#/external/s3.us-west-2.amazonaws.com/umbra-open-data-catalog/stac/catalog.json)'
26 |
--------------------------------------------------------------------------------
/datasets/usgs-lidar.yaml:
--------------------------------------------------------------------------------
1 | Name: USGS 3DEP LiDAR Point Clouds
2 | Description: The goal of the [USGS 3D Elevation Program ](https://www.usgs.gov/core-science-systems/ngp/3dep) (3DEP) is to collect elevation data in the form of light detection and ranging (LiDAR) data over the conterminous United States, Hawaii, and the U.S. territories, with data acquired over an 8-year period. This dataset provides two realizations of the 3DEP point cloud data. The first resource is a public access organization provided in [Entwine Point Tiles](https://entwine.io/entwine-point-tile.html) format, which a lossless, full-density, streamable octree based on [LASzip](https://laszip.org) (LAZ) encoding. The second resource is a [Requester Pays](https://docs.aws.amazon.com/AmazonS3/latest/dev/RequesterPaysBuckets.html) of the original, Raw LAZ (Compressed LAS) 1.4 3DEP format, and more complete in coverage, as sources with incomplete or missing CRS, will not have an ETP tile generated. Resource names in both buckets correspond to the USGS project names.
3 | Documentation: https://github.com/hobu/usgs-lidar/
4 | Contact: https://github.com/hobu/usgs-lidar
5 | ManagedBy: "[Hobu, Inc.](https://hobu.co)"
6 | UpdateFrequency: Periodically
7 | Collabs:
8 | ASDI:
9 | Tags:
10 | - elevation
11 | Tags:
12 | - aws-pds
13 | - agriculture
14 | - elevation
15 | - disaster response
16 | - geospatial
17 | - lidar
18 | - stac
19 | License: US Government Public Domain https://www.usgs.gov/faqs/what-are-terms-uselicensing-map-services-and-data-national-map
20 | Resources:
21 | - Description: Public access Entwine Point Tiles of most resources from the ``arn:aws:s3:::usgs-lidar`` bucket.
22 | ARN: arn:aws:s3:::usgs-lidar-public
23 | Region: us-west-2
24 | Type: S3 Bucket
25 | Explore:
26 | - '[STAC Catalog](https://usgs-lidar-stac.s3-us-west-2.amazonaws.com/ept/catalog.json)'
27 | - Description: A [Requester Pays](https://docs.aws.amazon.com/AmazonS3/latest/dev/RequesterPaysBuckets.html) Bucket of Raw LAZ 1.4 3DEP data. Data in this bucket is more complete in coverage than the EPT bucket, but it is not a complete 3DEP mirror. Some resources in this bucket also have incomplete and missing coordinate system information, which is why they might not be mirrored into the EPT bucket.
28 | ARN: arn:aws:s3:::usgs-lidar
29 | Region: us-west-2
30 | Type: S3 Bucket
31 | RequesterPays: True
32 | DataAtWork:
33 | Tutorials:
34 | - Title: Using Lambda Layers with USGS 3DEP LiDAR Point Clouds
35 | URL: https://github.com/hobu/usgs-lidar/tree/master/lambda
36 | AuthorName: Howard Butler
37 | AuthorURL: https://twitter.com/howardbutler
38 | Services:
39 | - AWS Lambda
40 | - Title: Extracting buildings and roads from AWS Open Data using Amazon SageMaker
41 | URL: https://aws.amazon.com/blogs/machine-learning/extracting-buildings-and-roads-from-aws-open-data-using-amazon-sagemaker/
42 | AuthorName: Yunzhi Shi, Tianyu Zhang, and Xin Chen
43 | Services:
44 | - Amazon SageMaker
45 | - Title: WebGL Visualization of USGS 3DEP Lidar Point Clouds with Potree and Plasio.js
46 | URL: https://usgs.entwine.io/
47 | AuthorName: Connor Manning
48 | AuthorURL: https://twitter.com/csmannin
49 | Tools & Applications:
50 | - Title: Jupyter Notebooks to enable programmatic access to cloud-hosted USGS 3D Elevation Program (3DEP) lidar data
51 | URL: https://github.com/OpenTopography/OT_3DEP_Workflows
52 | AuthorName: OpenTopography
53 | AuthorURL: https://opentopography.org/
54 | - Title: OpenTopography access to 3DEP lidar point cloud data
55 | URL: https://portal.opentopography.org/datasets
56 | AuthorName: OpenTopography
57 | AuthorURL: https://opentopography.org/
58 | - Title: Facebook Line of Sight Check
59 | URL: https://www.facebook.com/isptoolbox/line-of-sight-check/
60 | AuthorName: Facebook
61 | AuthorURL: https://www.facebook.com/isptoolbox/
62 | - Title: Equator - View, Process, and Download USGS 3DEP LiDAR data in-browser
63 | URL: https://equatorstudios.com/lidar-viewer/
64 | AuthorName: Equator Studios
65 | AuthorURL: https://equatorstudios.com
66 | Publications:
67 | - Title: USGS 3DEP Lidar Point Cloud Now Available as Amazon Public Dataset
68 | URL: https://www.usgs.gov/news/usgs-3dep-lidar-point-cloud-now-available-amazon-public-dataset
69 | AuthorName: Department of the Interior, U.S. Geological Survey
70 | AuthorURL: https://www.usgs.gov
71 | - Title: Statewide USGS 3DEP Lidar Topographic Differencing Applied to Indiana, USA
72 | URL: https://www.mdpi.com/2072-4292/14/4/847/htm
73 | AuthorName: Chelsea Phipps Scott, Matthew Beckley, Minh Phan, Emily Zawacki, Christopher Crosby, Viswanath Nandigam, and Ramon Arrowsmith
74 |
--------------------------------------------------------------------------------
/datasets/venus-l2a-cogs.yaml:
--------------------------------------------------------------------------------
1 | Name: VENUS L2A Cloud-Optimized GeoTIFFs
2 | Description: |
3 | The [Venµs science mission](https://www.theia-land.fr/en/product/venus/) is a joint research mission undertaken by CNES and ISA,
4 | the Israel Space Agency. It aims to demonstrate the effectiveness of high-resolution multi-temporal observation optimised through
5 | Copernicus, the global environmental and security monitoring programme. Venµs was launched from the Centre Spatial Guyanais by a
6 | VEGA rocket, during the night from 2017, August 1st to 2nd. Thanks to its multispectral camera (12 spectral bands in the visible
7 | and near-infrared ranges, with spectral characteristics provided [here](https://labo.obs-mip.fr/multitemp/?page_id=14229)), it
8 | acquires imagery every 1-2 days over 100+ areas at a spatial resolution of 4 to 5m. This dataset has been converted into Cloud
9 | Optimized GeoTIFFs (COGs). Additionally, SpatioTemporal Asset Catalog metadata are generated in a JSON file alongside the data.
10 | This dataset contains all of the Venus L2A datasets and will continue to grow as the Venus mission acquires new data over the
11 | preselected sites.
12 | Documentation: https://github.com/earthdaily/venus-on-aws/
13 | Contact: Klaus Bachhuber - klaus.bachhuber@earthdaily.com
14 | ManagedBy: "[EarthDaily Analytics](https://earthdaily.com/)"
15 | UpdateFrequency: New Venus data are added regularly
16 | Tags:
17 | - aws-pds
18 | - agriculture
19 | - earth observation
20 | - satellite imagery
21 | - geospatial
22 | - image processing
23 | - natural resource
24 | - disaster response
25 | - cog
26 | - stac
27 | - activity detection
28 | - environmental
29 | - land cover
30 | License: https://creativecommons.org/licenses/by-nc/4.0/
31 | Resources:
32 | - Description: Venus L2A dataset (COG) and metadata (STAC)
33 | ARN: arn:aws:s3:::venus-l2a-cogs
34 | Region: us-east-1
35 | Type: S3 Bucket
36 | RequesterPays: False
37 | Explore:
38 | - '[STAC Browser Venus L2A (COG) Catalog](https://radiantearth.github.io/stac-browser/#/external/venus-l2a-cogs.s3.us-east-1.amazonaws.com/catalog.json)'
39 | - Description: New Venus L2A dataset notifications, can subscribe with [Lambda](https://aws.amazon.com/lambda/) or [SQS](https://aws.amazon.com/sqs/). Message contains link to STAC record for each new dataset made available.
40 | ARN: arn:aws:sns:us-east-1:794383284256:venus-l2a-cogs-object_created
41 | Region: us-east-1
42 | Type: SNS Topic
43 |
--------------------------------------------------------------------------------
/datasets/wb-light-every-night.yaml:
--------------------------------------------------------------------------------
1 | Name: World Bank - Light Every Night
2 | Description: Light Every Night - World Bank Nighttime Light Data – provides open access to all nightly imagery and data from the Visible Infrared Imaging Radiometer Suite Day-Night Band (VIIRS DNB) from 2012-2020 and the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) from 1992-2013. The underlying data are sourced from the NOAA National Centers for Environmental Information (NCEI) archive. Additional processing by the University of Michigan enables access in Cloud Optimized GeoTIFF format (COG) and search using the Spatial Temporal Asset Catalog (STAC) standard. The data is published and openly available under the terms of the World Bank’s open data license.
3 | Documentation: https://worldbank.github.io/OpenNightLights/wb-light-every-night-readme.html
4 | Contact: Trevor Monroe tmonroe@worldbank.org; Benjamin P. Stewart bstewart@worldbankgroup.org; Brian Min brianmin@umich.edu; Kim Baugh kim.baugh@noaa.gov
5 | ManagedBy: "[World Bank Group](https://www.worldbank.org/en/home)"
6 | UpdateFrequency: Quarterly
7 | Collabs:
8 | ASDI:
9 | Tags:
10 | - satellite imagery
11 | Tags:
12 | - disaster response
13 | - earth observation
14 | - satellite imagery
15 | - aws-pds
16 | - stac
17 | - cog
18 | License: "[World Bank Open Database License (ODbL)](https://creativecommons.org/licenses/by/4.0/)"
19 | Resources:
20 | - Description: Light Every Night dataset of all VIIRS DNB and DMSP-OLS nighttime satellite data
21 | ARN: arn:aws:s3:::globalnightlight
22 | Region: us-east-1
23 | Type: S3 Bucket
24 | Explore:
25 | - '[STAC 1.0.0-beta.2 endpoint](https://stacindex.org/catalogs/world-bank-light-every-night#/)'
26 | DataAtWork:
27 | Tutorials:
28 | - Title: Open Nighttime Lights
29 | URL: https://worldbank.github.io/OpenNightLights/welcome.html
30 | AuthorName: Daynan Crull, Trevor Monroe
31 | AuthorURL: https://worldbank.github.io/OpenNightLights/welcome.html
32 | Tools & Applications:
33 | - Title: Global Scale Nightlight Time Series Dataset
34 | URL: https://nightlight.eoatlas.org
35 | AuthorName: Alameen Najjar
36 | AuthorURL: https://github.com/eoameen
37 | - Title: High Resolution Electricity Access Indicators (HREA) - Settlement-level measures of electricity access, reliability, and usage.
38 | URL: http://www-personal.umich.edu/~brianmin/HREA/
39 | AuthorName: Brian Min, Zachary O'Keeffe
40 | AuthorURL: http://www-personal.umich.edu/~brianmin/
41 | - Title: Twenty Years of India Lights
42 | URL: http://nightlights.io
43 | AuthorName: Kwawu Mensan Gaba, Brian Min, Anand Thakker, Christopher Elvidge
44 | AuthorURL: http://nightlights.io
45 | Publications:
46 | - Title: Nighttime lights compositing using the VIIRS day-night band - Preliminary results. Proceedings of the Asia-Pacific Advanced Network 35 (2013)70-86.
47 | URL: https://journals.sfu.ca/apan/index.php/apan/article/view/8/0
48 | AuthorName: Kimberly Baugh, Feng-Chi Hsu, Christopher D. Elvidge, and Mikhail Zhizhin.
49 | - Title: Mainstreaming Disruptive Technologies in Energy. World Bank Report. 2019
50 | URL: http://documents.worldbank.org/curated/en/305771562750007469/Mainstreaming-Disruptive-Technologies-in-Energy
51 | AuthorName: Kwawu Mensan Gaba, Brian Min, Olaf Veerman, Kimberly Baugh
52 | - Title: Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogrammetric Engineering and Remote Sensing, 63(6)727-734.
53 | URL: https://www.asprs.org/wp-content/uploads/pers/97journal/june/1997_jun_727-734.pdf
54 | AuthorName: Elvidge, C.D., Baugh, K.E., Kihn, E.A., Kroehl, H.W. and Davis, E.R.
55 | - Title: Power and the Vote - Elections and Electricity in the Developing World. Cambridge. 2015.
56 | URL: https://www.cambridge.org/core/books/power-and-the-vote/8091820171410B4FA557B6EBC3A5DD06
57 | AuthorName: Brian Min
58 | - Title: "Detection of Rural Electrification in Africa using DMSP-OLS Night Lights Imagery. International Journal of Remote Sensing"
59 | URL: https://openknowledge.worldbank.org/handle/10986/16192
60 | AuthorName: Brian Min, Kwawu Mensan Gaba, Ousmane Fall Sarr, Alassane Agalassou.
61 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | leafmap
2 | pyyaml
--------------------------------------------------------------------------------