├── .gitignore
├── scripts
├── .gitignore
├── build_forward_operator.m
├── read_2020_Nov_18.m
└── read_2020_Feb_04.m
├── setup.jpg
├── functions
└── print_info_md.m
└── readMe.md
/.gitignore:
--------------------------------------------------------------------------------
1 | data/
--------------------------------------------------------------------------------
/scripts/.gitignore:
--------------------------------------------------------------------------------
1 | *.asv
--------------------------------------------------------------------------------
/setup.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/openspyrit/spihim/HEAD/setup.jpg
--------------------------------------------------------------------------------
/scripts/build_forward_operator.m:
--------------------------------------------------------------------------------
1 | % Build the forward operator corresponding to the SPIHIM datasets.
2 | % It requires some SPIRIT functions.
3 |
4 | % Author: N Ducros
5 | % Institution: University of Lyon, CREATIS
6 | % Last Update: 20-May-2021
7 | %
8 | % This code is given freely under Creative Commons %Attribution-ShareAlike
9 | % 4.0 International license (CC-BY-SA 4.0)
10 | % http://creativecommons.org/licenses/by-sa/4.0/
11 |
12 | N = 64;
13 |
14 | %% Full Hadamard matrix
15 | H = hadpatmat(N);
16 |
17 | %% Save
18 | filename = fullfile('../data',sprintf('Hadamard_64x64_forward_stl10_unlabeled.mat'));
19 | save(filename,'H');
20 |
21 | %% Read data
22 | myfolder = 'D:\Creatis\Programmes\Experimental\SPAS\Data\2020_Jan_C';
23 | savingName = 'siemensStar2b';
24 | [M,opt,par,spec] = read_Hadamard_spectro(myfolder, savingName);
25 |
26 | %% H: full forward, m0: measurement vector padded with zeros
27 | m0 = reshape(sum(M,3),[],1);
28 | f0 = H'*m0;
29 | figure; imagesc(reshape(f0,64,64)); axis image
30 |
31 | %% H1: reduced forward, m1: acquired coefficients only
32 | ind_opt = par.pattern_indices(2:2:end)/2;
33 | m1 = m0(ind_opt);
34 | H1 = H(ind_opt,:);
35 | f1 = H1'*m1;
36 | figure; imagesc(reshape(f1,64,64)); axis image
--------------------------------------------------------------------------------
/functions/print_info_md.m:
--------------------------------------------------------------------------------
1 | % PRINT_INFO_MD Print dataset info to generat table for markdown file
2 | %
3 | % READ_HADAMARD_SPECTRO(FOLDER, SAVING_NAME)
4 | % reads the dataset SAVING_NAME the folder FOLDER
5 | %
6 | % READ_HADAMARD_SPECTRO(..., plotopt) specifies the plot option
7 | % - plotopt = 'grayscale' to plot a grayscale image
8 | % - plotopt = 'color' to plot a color image
9 | %
10 | % READ_HADAMARD_SPECTRO(..., lambda_min, lambda_max) specifies the
11 | % spectral range for color plot, by default [430-680] nm.
12 | %
13 | % --------
14 | % Example.
15 | % PRINT_INFO_MD;
16 |
17 | % Author: N Ducros
18 | % Institution: University of Lyon, CREATIS
19 | % Last Update: 30-Nov-2020
20 | %
21 | % This code is given freely under Creative Commons %Attribution-ShareAlike
22 | % 4.0 International license (CC-BY-SA 4.0)
23 | % http://creativecommons.org/licenses/by-sa/4.0/
24 |
25 |
26 |
27 | function print_info_md(folder)
28 |
29 | %% Get filenames
30 | if nargin == 1, dirmat = dir(fullfile(folder,'*_raw.mat')); end
31 | if nargin == 0, folder='./'; dirmat = dir(fullfile(folder,'*_raw.mat')); end
32 |
33 | disp('Filename | $`M`$ | $`\Delta t`$ (ms) | Comment |');
34 | disp('|--|--:|--:|--|');
35 |
36 | %%
37 | for ii=1:length(dirmat)
38 |
39 | %% LOAD mat-file and print main acquisition parametres
40 | load(fullfile(folder, dirmat(ii).name));
41 | fprintf('%s | %i | %i | |\n', dirmat(ii).name, par.number_patterns, par.CT*1e3);
42 |
43 | end
--------------------------------------------------------------------------------
/scripts/read_2020_Nov_18.m:
--------------------------------------------------------------------------------
1 | % Read the measurements acquired during the 18-Nov-2020 session.
2 | % First measurement with Laurent using fast acquisition Labview software
3 |
4 | % Author: N Ducros
5 | % Institution: University of Lyon, CREATIS
6 | % Last Update: 25-Nov-20
7 | %
8 | % This code is given freely under Creative Commons %Attribution-ShareAlike
9 | % 4.0 International license (CC-BY-SA 4.0)
10 | % http://creativecommons.org/licenses/by-sa/4.0/
11 |
12 |
13 | %% User-defined
14 | clc; close all; clear;
15 | folder = 'D:\Creatis\Programmes\Experimental\SPAS\Data\2020_Nov'; %% Please Update!!
16 |
17 | %% Read no object, lamp no diffuser
18 | savingName = 'noObject_10ms';
19 |
20 | figure('Name', savingName);
21 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
22 |
23 | %% Read no object, lamp no diffuser
24 | savingName = 'noObject_01ms';
25 |
26 | figure('Name', savingName);
27 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
28 |
29 | %% Read linear variable filter
30 | savingName = 'variableFilter_10ms';
31 |
32 | figure('Name', savingName);
33 | readRecPlot_Hadamard_spectro(folder, savingName,'Color',600,700);
34 |
35 | %% Read linear variable filter
36 | savingName = 'variableFilter_01ms';
37 |
38 | figure('Name', savingName);
39 | readRecPlot_Hadamard_spectro(folder, savingName,'Color',600,700);
40 |
41 | %% Read linear variable filter
42 | savingName = 'variableFilter_B_10ms';
43 |
44 | figure('Name', savingName);
45 | readRecPlot_Hadamard_spectro(folder,savingName, 'Color',450,550);
46 |
47 | %% Read linear variable filter
48 | savingName = 'variableFilter_B_01ms';
49 |
50 | figure('Name', savingName);
51 | readRecPlot_Hadamard_spectro(folder, savingName,'Color',450,550);
52 |
53 | %% Read linear variable filter
54 | nflip = 10; % integration time in ms
55 | savingName = 'variableFilter_C_10ms';
56 |
57 | figure('Name', savingName);
58 | readRecPlot_Hadamard_spectro(folder, savingName,'Color',520,620);
59 |
60 | %% Star sector
61 | savingName = 'starSector_01ms';
62 |
63 | figure('Name', savingName);
64 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
65 |
66 | %% Star sector with variable filter
67 | savingName = 'starSector_variableFilter_C_10ms';
68 |
69 | figure('Name', savingName);
70 | readRecPlot_Hadamard_spectro(folder, savingName,'Color',520,620);
71 |
--------------------------------------------------------------------------------
/scripts/read_2020_Feb_04.m:
--------------------------------------------------------------------------------
1 | % Read the measurements acquired during the 18-Nov-2020 session.
2 |
3 | % Author: N Ducros
4 | % Institution: University of Lyon, CREATIS
5 | % Last Update: 25-Nov-20
6 | %
7 | % This code is given freely under Creative Commons %Attribution-ShareAlike
8 | % 4.0 International license (CC-BY-SA 4.0)
9 | % http://creativecommons.org/licenses/by-sa/4.0/
10 |
11 |
12 | %% User-defined
13 | clc; close all; clear;
14 | folder = 'D:\Creatis\Programmes\Experimental\SPAS\Data\2020_Jan_C'; %% Please Update!!
15 |
16 | %% Read no object
17 | savingName = 'whiteLED1a';
18 |
19 | figure('Name', savingName);
20 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
21 |
22 | %% Read paper sheet
23 | savingName = 'paperSheet1b';
24 |
25 | figure('Name', savingName);
26 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
27 |
28 | %% Read paper sheet
29 | savingName = 'paperSheet2b';
30 |
31 | figure('Name', savingName);
32 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
33 |
34 | %% Read paper sheet
35 | savingName = 'paperSheet4b';
36 |
37 | figure('Name', savingName);
38 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
39 |
40 | %% Read grayscale siemens star target
41 | savingName = 'siemensStar1a';
42 |
43 | figure('Name', savingName);
44 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
45 |
46 | %% Read grayscale siemens star target
47 | savingName = 'siemensStar1b';
48 |
49 | figure('Name', savingName);
50 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
51 |
52 | %% Read grayscale siemens star target
53 | savingName = 'siemensStar2a';
54 |
55 | figure('Name', savingName);
56 | readRecPlot_Hadamard_spectro(folder,savingName, 'Color');
57 |
58 | %% Read grayscale siemens star target
59 | savingName = 'siemensStar2b';
60 |
61 | figure('Name', savingName);
62 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
63 |
64 | %% Read grayscale siemens star target
65 | savingName = 'siemensStar4a';
66 |
67 | figure('Name', savingName);
68 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
69 |
70 | %% Read grayscale siemens star target
71 | savingName = 'siemensStar4b';
72 |
73 | figure('Name', savingName);
74 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
75 |
76 | %% Read grayscale siemens star target
77 | savingName = 'siemensStar8a';
78 |
79 | figure('Name', savingName);
80 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
81 |
82 | %% Read grayscale siemens star target
83 | savingName = 'siemensStar8b';
84 |
85 | figure('Name', savingName);
86 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
87 |
88 |
89 | %% Read COLOR siemens star target
90 | savingName = 'siemensStarColor1b';
91 |
92 | figure('Name', savingName);
93 | readRecPlot_Hadamard_spectro(folder,savingName, 'Color');
94 |
95 | %% Read COLOR siemens star target
96 | savingName = 'siemensStarColor2b';
97 |
98 | figure('Name', savingName);
99 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
100 |
101 | %% Read COLOR siemens star target
102 | savingName = 'siemensStarColor4b';
103 |
104 | figure('Name', savingName);
105 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
106 |
107 | %% Read COLOR siemens star target
108 | savingName = 'siemensStarColor4c';
109 |
110 | figure('Name', savingName);
111 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
112 |
113 | %% Read COLOR siemens star target
114 | savingName = 'siemensStarColor8d';
115 |
116 | figure('Name', savingName);
117 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
118 |
119 | %% Read COLOR siemens star target
120 | savingName = 'SiemensColor8a';
121 |
122 | figure('Name', savingName);
123 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
124 |
125 | %% Read COLOR siemens star target
126 | savingName = 'SiemensColor8b';
127 |
128 | figure('Name', savingName);
129 | readRecPlot_Hadamard_spectro(folder, savingName,'Color');
130 |
--------------------------------------------------------------------------------
/readMe.md:
--------------------------------------------------------------------------------
1 | # Single-Pixel Hyperspectral Imaging (SPIHIM) Datasets
2 |
3 | # Version 1.0 and later
4 |
5 | Our datasets are made publicly available following FAIR (findability, accessibility, interoperability, reusability) principles through the pilot warehouse
6 | * https://pilot-warehouse.creatis.insa-lyon.fr/#collection/6140ba6929e3fc10d47dbe3e
7 |
8 | *Reference:*
9 | * G. Beneti-Martin, L Mahieu-Williame, T Baudier, N Ducros, "OpenSpyrit: an Ecosystem for Reproducible Single-Pixel Hyperspectral Imaging," Optics Express, Vol. 31, No. 10, (2023). [DOI](https://doi.org/10.1364/OE.483937). [Main PDF](https://hal.science/hal-03910077). [Supplemental document](https://hal.science/hal-03910077v1/file/revised%20%281%29.pdf).
10 |
11 | # Version 0
12 |
13 | *License:* The SPIHIM datasets are distributed under the Creative Commons Attribution 4.0 International license ([CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/))
14 |
15 | *Reference:* Please reference this work
16 | * A Lorente Mur, B Montcel, F Peyrin, N Ducros. Deep neural networks for single-pixel compressive video reconstruction. SPIE Photonics Europe, Proc. vol. 11351, Unconventional Optical Imaging II, pp.27, Apr 2020, France. [⟨hal-02547800⟩](https://hal.archives-ouvertes.fr/hal-02547800/)
17 |
18 | *Contact:* nicolas.ducros@insa-lyon.fr, CREATIS Laboratory, University of Lyon, France.
19 |
20 | ## Setup Description
21 | ### Hardware
22 | The set-up is depicted below and in detail [[ALM2020](https://hal.archives-ouvertes.fr/hal-02547800/document)]. The telecentric lens (TL; Edmund Optics 62901) is positioned such that its image side projects the image of the sample (S) onto the digital micro-mirror device (DMD; vialux V-7001), which is positioned at the object side of the lens. The object is transparent and is illuminated by a LED lamp (L; Thorlabs LIUCWHA/M00441662). The DMD can implement different light patterns by reflection of the incident light onto a relay lens (RL), which projects the light into an optical fiber (OF; Thorlabs FT1500UMT 0.39NA). This optical fiber is connected to a compact spectrometer (SM; BWTek examplar BRC115P-V-ST1). A filter wheel (FW) containing neutral optical densities is placed behind the lamp to reduce the light flux
23 |
24 | 
25 | ### Mathematical Model
26 | The setup acquires M = α HF where F in **R** n x λ represents the sample hypercube, H in **R** m x n the measurement matrix, and α is a multiplicative factor that depends on and the optical density. The measurement matrix contains the patterns that are uploaded onto the DMD. Here, m represents the number of patterns, n the number of pixels of the patterns, and λ the number of spectral bins.
27 |
28 | The multiplicative factor is given by α = φ 10-OD Δt (in photons), where φ (in photons/s) represents the given light flux, OD is neutral optical density and Δt is the integration time.
29 |
30 | ### Hadamard Acquisitions
31 | We acquire Hadamard patterns that we split into positive and negative parts, which are concatenated in the measurement matrix. Precisely, Hm contains the positive parts and Hm+1 the negative parts, such that Hm - Hm+1 is a Hadamard pattern.
32 |
33 | We sequentially upload onto the DMD all of the m = 2 x 4096 Hadamard (split) patterns of dimension n = 64 x 64 pixels. The patterns in PNG format can be downloaded [here](https://www.creatis.insa-lyon.fr/~ducros/Spihim/Hadamard_64x64.zip).
34 |
35 | We acquire different datasets for the same object by selecting different neutral densities OD and different integration times Δt.
36 |
37 | ## Summary of the SPIHIM datasets
38 | The following datasets are provided
39 | * 04-Feb-2020 session ([description](#04-Feb-2020-session)). [Download zip](https://www.creatis.insa-lyon.fr/~ducros/Spihim/spihim_2020-Feb-04.zip).
40 | * 11-Jun-2020 session ([description](#11-Jun-2020-session)). [Download zip](https://www.creatis.insa-lyon.fr/~ducros/Spihim/spihim_2020-Jun-11.zip).
41 | * 01-Jul-2020 session ([description](#01-Jul-2020-session)). [Download zip](https://www.creatis.insa-lyon.fr/~ducros/Spihim/spihim_2020-Jul-01.zip)
42 | * 18-Nov-2020 session ([description](#18-Nov-2020-session)). [Download zip](https://www.creatis.insa-lyon.fr/~ducros/Spihim/spihim_2020-Nov-18.zip)
43 | * All datasets compatible with the SPYRIT deep reconstruction networks (e.g., [Comp-Net](https://github.com/openspyrit/spyrit-examples/tree/master/2021_Optics_express)). [Download zip](https://www.creatis.insa-lyon.fr/~ducros/Spihim/spihim_2020_nets.zip)
44 |
45 | We provide the description of each measurement session in the sections below.
46 |
47 | ## Data Reading, measurement matrix, and reconstruction
48 |
49 | Based on [SPIRiT](https://github.com/nducros/SPIRIT), we provide matlab scripts that
50 |
51 | * read, reconstruct and plot the datasets (see `./scripts/read_*_.m`)
52 | * build the forward operator H that maps the image of the sample the onto the measured Hadamard coefficients (see `./scripts/build_forward_operator.m`)
53 |
54 | The (full) Hadamard matrix H in **R** n x n can be downloaded [here](https://www.creatis.insa-lyon.fr/~ducros/Spihim/Hadamard_64x64_forward_stl10_unlabeled.mat). It applies to a measurement vector in **R** n, where the missing coefficients have been field with zeros. To compute the (reduced) measurement matrix H in **R** m x n, see `./scripts/build_forward_operator.m`.
55 |
56 | The acquisition is such that the patterns with maximum variance are acquired first. We provide [here](https://www.creatis.insa-lyon.fr/~ducros/Spihim/Hadamard_64x64_cov_stl10_unlabeled.mat) the covariance matrix used to defined the acquisition order ; it was computed on the [STL-10](https://ai.stanford.edu/~acoates/stl10/) image dataset.
57 |
58 | ## Description of the SPIHIM datasets
59 | #### 04-Feb-2020 session
60 | We acquired four samples:
61 | * A [star sector target](https://www.thorlabs.com/thorproduct.cfm?partnumber=R1L1S2P) printed on a paper sheet in black an white
62 | * A [star sector target](https://www.thorlabs.com/thorproduct.cfm?partnumber=R1L1S2P) printed on a paper sheet printed in color according to a Hue color wheel
63 | * A paper sheet with no printing
64 | * No object, i.e., the illumination LED lamp directly
65 |
66 | Filename | M | Δt (ms) | Comment |
67 | |--|--:|--:|--|
68 | SiemensBW1a_raw.mat | 408 | 4 | black and white star sector |
69 | SiemensColor8a_raw.mat | 408 | 32 | color star sector |
70 | SiemensColor8b_raw.mat | 1228 | 32 | color star sector |
71 | mydata_raw.mat | 512 | 4 | |
72 | paperSheet1b_raw.mat | 1228 | 4 | paper sheet |
73 | paperSheet2b_raw.mat | 1228 | 8 | paper sheet |
74 | paperSheet4b_raw.mat | 1228 | 16 | paper sheet |
75 | siemensStar1a_raw.mat | 408 | 4 | black and white star sector |
76 | siemensStar1b_raw.mat | 1228 | 4 | black and white star sector |
77 | siemensStar2a_raw.mat | 408 | 8 | black and white star sector |
78 | siemensStar2b_raw.mat | 1228 | 8 | black and white star sector |
79 | siemensStar4a_raw.mat | 408 | 16 | black and white star sector |
80 | siemensStar4b_raw.mat | 1228 | 16 | black and white star sector |
81 | siemensStar8a_raw.mat | 408 | 32 | black and white star sector |
82 | siemensStar8b_raw.mat | 1228 | 32 |black and white star sector |
83 | siemensStarColor1b_raw.mat | 1228 | 4 | color star sector |
84 | siemensStarColor2b_raw.mat | 1228 | 8 | color star sector |
85 | siemensStarColor4b_raw.mat | 1228 | 16 | color star sector |
86 | siemensStarColor4c_raw.mat | 2456 | 16 | color star sector |
87 | siemensStarColor8d_raw.mat | 4096 | 32 | color star sector |
88 | whiteLED1a_raw.mat | 408 | 4 | no object |
89 |
90 |
91 | #### 11-Jun-2020 session
92 | First, we acquired the LED source directly with no sample
93 |
94 | Filename | Δt (ms) | OD (-)| Comment |
95 | |--|--:|--:|--|
96 | noObjectD_1_0.0_raw.mat | 4 | 0.0 | Saturate
97 | noObjectD_1_0.3_01_raw.mat | 4 | 0.3 | Repeat same measurement 4x to simulate longer Δt while avoiding saturation
98 | noObjectD_1_0.3_02_raw.mat | 4 | 0.3 |
99 | noObjectD_1_0.3_03_raw.mat | 4 | 0.3 |
100 | noObjectD_1_0.3_04_raw.mat | 4 | 0.3 |
101 | noObjectD_1_0.3_raw.mat | 4 | 0.3 |
102 | noObjectD_1_0.6_raw.mat | 4 | 0.6 |
103 | noObjectD_1_1.0_raw.mat | 4 | 1.0 |
104 | noObjectD_1_1.3_raw.mat | 4 | 1.3 |
105 |
106 | Second, we acquired the [star sector target](https://www.thorlabs.com/thorproduct.cfm?partnumber=R1L1S2P)
107 |
108 | Filename | Δt (ms) | OD (-)| Comment |
109 | |--|--:|--:|--|
110 | starSectorD_2_0.0_01_raw.mat | 8 | 0.0 | Repeat same measurement 4x to simulate longer Δt while avoiding saturation
111 | starSectorD_2_0.0_02_raw.mat | 8 | 0.0 |
112 | starSectorD_2_0.0_03_raw.mat | 8 | 0.0 |
113 | starSectorD_2_0.0_04_raw.mat | 8 | 0.0 |
114 | starSectorD_2_0.0_05_raw.mat | 8 | 0.0 |
115 | starSectorD_2_0.0_06_raw.mat | 8 | 0.0 |
116 | starSectorD_2_0.0_07_raw.mat | 8 | 0.0 |
117 | starSectorD_2_0.0_08_raw.mat | 8 | 0.0 |
118 | starSectorD_2_0.0_09_raw.mat | 8 | 0.0 |
119 | starSectorD_2_0.0_10_raw.mat | 8 | 0.0 |
120 | starSectorD_2_0.0_raw.mat | 8 | 0.0 |
121 | starSectorD_2_0.3_raw.mat | 8 | 0.3 |
122 | starSectorD_2_0.6_raw.mat | 8 | 0.6 |
123 | starSectorD_2_1.0_raw.mat | 8 | 1.0 |
124 | starSectorD_2_1.3_raw.mat | 8 | 1.3 |
125 |
126 | Third, we acquire the [star sector target](https://www.thorlabs.com/thorproduct.cfm?partnumber=R1L1S2P) that was off-centered
127 |
128 | Filename | Δt (ms) | OD (-)| Comment |
129 | |--|--:|--:|--|
130 | R1L1S2P_1_0.0_raw.mat | 4 | 0.0 | Shows the 'R1L1S2P' writing
131 | R1L1S2P_1_0.3_raw.mat | 4 | 0.3 |
132 | R1L1S2P_1_0.6_raw.mat | 4 | 0.6 |
133 | R1L1S2P_1_1.0_raw.mat | 4 | 1.0 |
134 | R1L1S2P_1_1.3_raw.mat | 4 | 1.3 |
135 | Thorlabs_1_0.0_raw.mat | 4 | 0.0 | Shows the 'THORLABS' writing
136 | Thorlabs_1_0.3_raw.mat | 4 | 0.3 |
137 | Thorlabs_1_0.6_raw.mat | 4 | 0.6 |
138 |
139 | Finally, we acquire images from the STL10 databaset
140 |
141 | Filename | Δt (ms) | OD (-)| Comment |
142 | |--|--:|--:|--|
143 | stl10_01_32ms_cp_raw.mat | 32 | 0.0 | horse displayed on my cell phone (cp)
144 | stl10_01_32ms_ps_raw.mat | 32 | 0.0 | horse printed on a paper sheet (ps)
145 | stl10_01_64ms_ps_raw.mat | 64 | 0.0 | horse printed on a paper sheet (ps)
146 | stl10_08_32ms_ps_raw.mat | 32 | 0.0 | bird printed on a paper sheet (ps)
147 |
148 | #### 01-Jul-2020 session
149 | First, we acquired the LED source directly with no sample. Note that the `noObjectF1` series and the `noObjectF2` series refer to two different positions of the LED lamp.
150 |
151 | Filename | Δt (ms) | OD (-)| Comment |
152 | |--|--:|--:|--|
153 | noObjectF1_1_0.3_01_raw.mat | 4 | 0.3 | Repeat same measurement 15x to simulate longer Δt while avoiding saturation
154 | noObjectF1_1_0.3_02_raw.mat | 4 | 0.3 |
155 | noObjectF1_1_0.3_03_raw.mat | 4 | 0.3 |
156 | noObjectF1_1_0.3_04_raw.mat | 4 | 0.3 |
157 | noObjectF1_1_0.3_05_raw.mat | 4 | 0.3 |
158 | noObjectF1_1_0.3_06_raw.mat | 4 | 0.3 |
159 | noObjectF1_1_0.3_07_raw.mat | 4 | 0.3 |
160 | noObjectF1_1_0.3_08_raw.mat | 4 | 0.3 |
161 | noObjectF1_1_0.3_09_raw.mat | 4 | 0.3 |
162 | noObjectF1_1_0.3_10_raw.mat | 4 | 0.3 |
163 | noObjectF1_1_0.3_11_raw.mat | 4 | 0.3 |
164 | noObjectF1_1_0.3_12_raw.mat | 4 | 0.3 |
165 | noObjectF1_1_0.3_13_raw.mat | 4 | 0.3 |
166 | noObjectF1_1_0.3_14_raw.mat | 4 | 0.3 |
167 | noObjectF1_1_0.3_15_raw.mat | 4 | 0.3 |
168 | noObjectF1_1_0.3_raw.mat | 4 | 0.3 |
169 | noObjectF1_1_0.6_raw.mat | 4 | 0.6 |
170 | noObjectF2_1_0.3_01_raw.mat | 4 | 0.3 | Not the same LED lamp position as in the `noObjectF1` series. We repeat same measurement 9x to simulate longer Δt while avoiding saturation
171 | noObjectF2_1_0.3_02_raw.mat | 4 | 0.3 |
172 | noObjectF2_1_0.3_03_raw.mat | 4 | 0.3 |
173 | noObjectF2_1_0.3_04_raw.mat | 4 | 0.3 |
174 | noObjectF2_1_0.3_05_raw.mat | 4 | 0.3 |
175 | noObjectF2_1_0.3_06_raw.mat | 4 | 0.3 |
176 | noObjectF2_1_0.3_07_raw.mat | 4 | 0.3 |
177 | noObjectF2_1_0.3_08_raw.mat | 4 | 0.3 |
178 | noObjectF2_1_0.3_09_raw.mat | 4 | 0.3 |
179 | noObjectF2_1_0.3_raw.mat | 4 | 0.3 | Not the same LED lamp position as in the `noObjectF1` series
180 | noObjectF2_1_0.6_raw.mat | 4 | 0.6 |
181 | noObjectF2_1_1.0_raw.mat | 4 | 1.0 |
182 | noObjectF2_1_1.3_raw.mat | 4 | 1.3 |
183 |
184 | Filename | Δt (ms) | OD (-)| Comment |
185 | |--|--:|--:|--|
186 | stl10_03_1_0.0_raw.mat | | |
187 | stl10_05_1.5_0.0_01_raw.mat | | |
188 | stl10_05_1.5_0.0_02_raw.mat | | |
189 | stl10_05_1.5_0.0_03_raw.mat | | |
190 | stl10_05_1.5_0.0_04_raw.mat | | |
191 | stl10_05_1.5_0.0_05_raw.mat | | |
192 | stl10_05_1.5_0.0_06_raw.mat | | |
193 | stl10_05_1_0.0_raw.mat | | |
194 | stl10_05_1_0.3_raw.mat | | |
195 | stl10_05_1_0.6_raw.mat | | |
196 |
197 | #### 18-Nov-2020 session
198 | Contrary to previous datasets, the DMD frequency is set to 1 kHz and the DMD patterns are 4-bit (see `par.DMD_fr` and `par.bitplane`).
199 |
200 | Filename | M | Δt (ms) | Comment |
201 | |--|--:|--:|--|
202 | noObject_01ms_raw.mat | 8192 | 1 | |
203 | noObject_10ms_raw.mat | 8192 | 10 | |
204 | starSector_01ms_raw.mat | 8192 | 1 | Starsector in the image plane |
205 | starSector_variableFilter_C_10ms_raw.mat | 8192 | 10 | Starsector in the image plane, filter between lamp and image plane |
206 | variableFilter_01ms_raw.mat | 8192 | 1 | Filter in the image plane |
207 | variableFilter_10ms_raw.mat | 8192 | 10 | Filter in the image plane|
208 | variableFilter_B_01ms_raw.mat | 8192 | 1 | Filter in the image plane |
209 | variableFilter_B_10ms_raw.mat | 8192 | 10 | Filter in the image plane |
210 | variableFilter_C_10ms_raw.mat | 8192 | 10 | Filter in the image plane `|`
211 |
--------------------------------------------------------------------------------