├── retos ├── readme.md └── Reto Pandas 1 - cotiza el fin de mes.ipynb ├── sorteo_cursos ├── readme.md ├── acertantes_reto.pkl └── Sorteo aleatorio.ipynb ├── Proyecto Hurst └── readme.md ├── Pandas para Valores └── readme.md ├── README.md ├── Ejemplos ├── Fondos España.html ├── Scraping Finacial Times.ipynb └── Filtro Super Bandpass de Jonh Ehlers.ipynb └── LICENSE /retos/readme.md: -------------------------------------------------------------------------------- 1 | # Retos de aprendizaje. 2 | -------------------------------------------------------------------------------- /sorteo_cursos/readme.md: -------------------------------------------------------------------------------- 1 | # SORTEO DE 10 CUPONES DE CURSOS GRATIS DE UDEMY 2 | -------------------------------------------------------------------------------- /sorteo_cursos/acertantes_reto.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/paduel/Python_para_Trading/HEAD/sorteo_cursos/acertantes_reto.pkl -------------------------------------------------------------------------------- /Proyecto Hurst/readme.md: -------------------------------------------------------------------------------- 1 | # Proyecto Hurst 2 | 3 | En este proyecto formativo utilizamos un analisis de los valores del SP500 con el exponente de Hurst para conocer mejor las capacidades de Python en el analisis de mercados financieros. 4 | -------------------------------------------------------------------------------- /Pandas para Valores/readme.md: -------------------------------------------------------------------------------- 1 | Notebooks sobre el uso de Pandas para analisis de series temporales de activos financieros creados por [@Paduel](https://t.me/paduel) para el grupo de Telegram ['Python para Trading'](https://t.me/pythontrading). 2 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Python-para-Trading 2 | Repositorio del canal de Telegram [Python para Trading](https://t.me/pythontrading) 3 | 4 | Este repositorio contiene los archivos, recursos y notebook del canal con el fin de conocer como utilizar Python para hacer análisis cuantitativo de datos financieros, elaborar y probar estrategias de inversión y desarrollar algoritmos automáticos de trading. 5 | -------------------------------------------------------------------------------- /sorteo_cursos/Sorteo aleatorio.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 8, 6 | "metadata": { 7 | "ExecuteTime": { 8 | "end_time": "2020-08-01T09:26:56.263368Z", 9 | "start_time": "2020-08-01T09:26:56.254767Z" 10 | } 11 | }, 12 | "outputs": [ 13 | { 14 | "data": { 15 | "text/plain": [ 16 | "358153729 Saulavi10 -- Saúl\n", 17 | "122613367 Green584 -- Green\n", 18 | "881259234 Jose_Angel_Gallego -- José Angel Gallego\n", 19 | "713893297 SN -- Jose\n", 20 | "14452707 robcs -- Rob\n", 21 | "756972308 Acecm -- Jesús\n", 22 | "127495549 Bukosabino -- Darío\n", 23 | "509044117 SN -- DàŃï\n", 24 | "345474554 kayinAx -- Alexis\n", 25 | "158472869 cthemudo -- cthemudo\n", 26 | "947517889 AnubisEC -- Daniel\n", 27 | "1017278321 SN -- Ignacio\n", 28 | "279435734 scgrm -- Sergio\n", 29 | "176554974 SN -- Javier\n", 30 | "385058364 SN -- Tony\n", 31 | "731316909 SN -- Marcos\n", 32 | "12139654 SN -- Angel Manuel\n", 33 | "344216061 yokinfx -- Joaquin\n", 34 | "347691591 SN -- Benjamí\n", 35 | "347429783 juanmi23 -- Juan\n", 36 | "1152839534 SN -- John\n", 37 | "994467022 the_emmo -- the_emmo\n", 38 | "9010383 Tradefish1 -- Raul\n", 39 | "483669082 rilocer -- Damian\n", 40 | "16644449 Eliats -- J\n", 41 | "600889583 TradingEntreTiburones -- Trading Entre Tiburones\n", 42 | "761138150 Profefacu -- Gaston\n", 43 | "dtype: object" 44 | ] 45 | }, 46 | "execution_count": 8, 47 | "metadata": {}, 48 | "output_type": "execute_result" 49 | } 50 | ], 51 | "source": [ 52 | "import pandas as pd\n", 53 | "\n", 54 | "acertantes = pd.read_pickle('acertantes_reto.pkl')\n", 55 | "acertantes" 56 | ] 57 | }, 58 | { 59 | "cell_type": "code", 60 | "execution_count": 10, 61 | "metadata": { 62 | "ExecuteTime": { 63 | "end_time": "2020-08-01T09:40:46.117804Z", 64 | "start_time": "2020-08-01T09:40:46.106740Z" 65 | } 66 | }, 67 | "outputs": [ 68 | { 69 | "name": "stdout", 70 | "output_type": "stream", 71 | "text": [ 72 | "483669082 rilocer -- Damian\n", 73 | "713893297 SN -- Jose\n", 74 | "176554974 SN -- Javier\n", 75 | "509044117 SN -- DàŃï\n", 76 | "12139654 SN -- Angel Manuel\n", 77 | "158472869 cthemudo -- cthemudo\n", 78 | "347691591 SN -- Benjamí\n", 79 | "14452707 robcs -- Rob\n", 80 | "127495549 Bukosabino -- Darío\n", 81 | "279435734 scgrm -- Sergio\n", 82 | "dtype: object\n" 83 | ] 84 | } 85 | ], 86 | "source": [ 87 | "numero_suerte = 57\n", 88 | "afortunados = acertantes.sample(10, random_state=numero_suerte)\n", 89 | "print(afortunados)" 90 | ] 91 | }, 92 | { 93 | "cell_type": "code", 94 | "execution_count": null, 95 | "metadata": {}, 96 | "outputs": [], 97 | "source": [] 98 | } 99 | ], 100 | "metadata": { 101 | "kernelspec": { 102 | "display_name": "Python 3", 103 | "language": "python", 104 | "name": "python3" 105 | }, 106 | "language_info": { 107 | "codemirror_mode": { 108 | "name": "ipython", 109 | "version": 3 110 | }, 111 | "file_extension": ".py", 112 | "mimetype": "text/x-python", 113 | "name": "python", 114 | "nbconvert_exporter": "python", 115 | "pygments_lexer": "ipython3", 116 | "version": "3.7.7" 117 | }, 118 | "latex_envs": { 119 | "LaTeX_envs_menu_present": true, 120 | "autoclose": false, 121 | "autocomplete": true, 122 | "bibliofile": "biblio.bib", 123 | "cite_by": "apalike", 124 | "current_citInitial": 1, 125 | "eqLabelWithNumbers": true, 126 | "eqNumInitial": 1, 127 | "hotkeys": { 128 | "equation": "Ctrl-E", 129 | "itemize": "Ctrl-I" 130 | }, 131 | "labels_anchors": false, 132 | "latex_user_defs": false, 133 | "report_style_numbering": false, 134 | "user_envs_cfg": false 135 | }, 136 | "varInspector": { 137 | "cols": { 138 | "lenName": 16, 139 | "lenType": 16, 140 | "lenVar": 40 141 | }, 142 | "kernels_config": { 143 | "python": { 144 | "delete_cmd_postfix": "", 145 | "delete_cmd_prefix": "del ", 146 | "library": "var_list.py", 147 | "varRefreshCmd": "print(var_dic_list())" 148 | }, 149 | "r": { 150 | "delete_cmd_postfix": ") ", 151 | "delete_cmd_prefix": "rm(", 152 | "library": "var_list.r", 153 | "varRefreshCmd": "cat(var_dic_list()) " 154 | } 155 | }, 156 | "types_to_exclude": [ 157 | "module", 158 | "function", 159 | "builtin_function_or_method", 160 | "instance", 161 | "_Feature" 162 | ], 163 | "window_display": false 164 | } 165 | }, 166 | "nbformat": 4, 167 | "nbformat_minor": 4 168 | } 169 | -------------------------------------------------------------------------------- /Ejemplos/Fondos España.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | Awesome-pyecharts 6 | 7 | 8 | 9 | 10 |
11 | 329 | 330 | 331 | -------------------------------------------------------------------------------- /Ejemplos/Scraping Finacial Times.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Scraping Finacial Times" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 1, 13 | "metadata": { 14 | "ExecuteTime": { 15 | "end_time": "2021-02-27T20:49:42.559265Z", 16 | "start_time": "2021-02-27T20:49:42.314677Z" 17 | } 18 | }, 19 | "outputs": [], 20 | "source": [ 21 | "import pandas as pd" 22 | ] 23 | }, 24 | { 25 | "cell_type": "code", 26 | "execution_count": 2, 27 | "metadata": { 28 | "ExecuteTime": { 29 | "end_time": "2021-02-27T20:49:42.565002Z", 30 | "start_time": "2021-02-27T20:49:42.561099Z" 31 | } 32 | }, 33 | "outputs": [], 34 | "source": [ 35 | "def risk(isin: str):\n", 36 | " url_base = 'https://markets.ft.com/data/funds/tearsheet/'\n", 37 | " currency='USD'\n", 38 | "\n", 39 | " periods = {0: '1 year', 1: '3 years', 2: '5 years'}\n", 40 | " url = f'{url_base}risk?s={isin}:{currency}'\n", 41 | "\n", 42 | " tables = pd.read_html(url, index_col=0)\n", 43 | "\n", 44 | " table_df = {}\n", 45 | " for num, name in periods.items():\n", 46 | " table_df[name] = pd.concat([tables[num], tables[num+1]])\n", 47 | " return pd.concat(table_df, 1) " 48 | ] 49 | }, 50 | { 51 | "cell_type": "code", 52 | "execution_count": 3, 53 | "metadata": { 54 | "ExecuteTime": { 55 | "end_time": "2021-02-27T20:49:42.572556Z", 56 | "start_time": "2021-02-27T20:49:42.566771Z" 57 | } 58 | }, 59 | "outputs": [], 60 | "source": [ 61 | "def performance(isin: str):\n", 62 | " url_base = 'https://markets.ft.com/data/funds/tearsheet/'\n", 63 | " currency = 'USD'\n", 64 | "\n", 65 | " url = f'{url_base}performance?s={isin}:{currency}'\n", 66 | "\n", 67 | " return pd.read_html(url, index_col=0)[0]" 68 | ] 69 | }, 70 | { 71 | "cell_type": "code", 72 | "execution_count": 4, 73 | "metadata": { 74 | "ExecuteTime": { 75 | "end_time": "2021-02-27T20:49:42.578432Z", 76 | "start_time": "2021-02-27T20:49:42.574862Z" 77 | } 78 | }, 79 | "outputs": [], 80 | "source": [ 81 | "def historical(isin: str):\n", 82 | " url_base = 'https://markets.ft.com/data/funds/tearsheet/'\n", 83 | " currency = 'USD'\n", 84 | "\n", 85 | " url = f'{url_base}historical?s={isin}:{currency}'\n", 86 | "\n", 87 | " historical = pd.read_html(url, index_col=0)[0]\n", 88 | " historical.index = pd.to_datetime(historical.index.str.split(', ').str[-2:].str.join(' '))\n", 89 | " return historical" 90 | ] 91 | }, 92 | { 93 | "cell_type": "code", 94 | "execution_count": 5, 95 | "metadata": { 96 | "ExecuteTime": { 97 | "end_time": "2021-02-27T20:49:46.057954Z", 98 | "start_time": "2021-02-27T20:49:42.581059Z" 99 | } 100 | }, 101 | "outputs": [ 102 | { 103 | "data": { 104 | "text/html": [ 105 | "
\n", 106 | "\n", 119 | "\n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | "
1 year3 years5 years
FundCategory averageFundCategory averageFundCategory average
Alpha37.39--6.83--6.83--
Beta1.03--1.1--1.1--
Information ratio4.43--0.73--0.73--
R squared+81.90--+81.90--+75.40--
Sharpe ratio+2.76--+2.76--+1.39--
Standard deviation24.76%--24.76%--23.66%--
\n", 194 | "
" 195 | ], 196 | "text/plain": [ 197 | " 1 year 3 years 5 years \\\n", 198 | " Fund Category average Fund Category average Fund \n", 199 | "Alpha 37.39 -- 6.83 -- 6.83 \n", 200 | "Beta 1.03 -- 1.1 -- 1.1 \n", 201 | "Information ratio 4.43 -- 0.73 -- 0.73 \n", 202 | "R squared +81.90 -- +81.90 -- +75.40 \n", 203 | "Sharpe ratio +2.76 -- +2.76 -- +1.39 \n", 204 | "Standard deviation 24.76% -- 24.76% -- 23.66% \n", 205 | "\n", 206 | " \n", 207 | " Category average \n", 208 | "Alpha -- \n", 209 | "Beta -- \n", 210 | "Information ratio -- \n", 211 | "R squared -- \n", 212 | "Sharpe ratio -- \n", 213 | "Standard deviation -- " 214 | ] 215 | }, 216 | "execution_count": 5, 217 | "metadata": {}, 218 | "output_type": "execute_result" 219 | } 220 | ], 221 | "source": [ 222 | "isin ='LU1548497426'\n", 223 | "\n", 224 | "risk(isin)" 225 | ] 226 | }, 227 | { 228 | "cell_type": "code", 229 | "execution_count": 6, 230 | "metadata": { 231 | "ExecuteTime": { 232 | "end_time": "2021-02-27T20:49:46.984547Z", 233 | "start_time": "2021-02-27T20:49:46.060161Z" 234 | } 235 | }, 236 | "outputs": [ 237 | { 238 | "data": { 239 | "text/html": [ 240 | "
\n", 241 | "\n", 254 | "\n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | "
5 years3 years1 year6 months3 months1 month
Allianz Global Investors Fund - Allianz Global Artificial Intelligence AT USD--+33.46%+93.86%+36.06%+10.94%-3.55%
Sector Equity Technology+25.87%+23.73%+52.60%+19.69%+11.46%-2.61%
Fund quartile--1st1st1st1st2nd
Funds in category176240373433465478
\n", 305 | "
" 306 | ], 307 | "text/plain": [ 308 | " 5 years 3 years 1 year \\\n", 309 | "Allianz Global Investors Fund - Allianz Global ... -- +33.46% +93.86% \n", 310 | "Sector Equity Technology +25.87% +23.73% +52.60% \n", 311 | "Fund quartile -- 1st 1st \n", 312 | "Funds in category 176 240 373 \n", 313 | "\n", 314 | " 6 months 3 months 1 month \n", 315 | "Allianz Global Investors Fund - Allianz Global ... +36.06% +10.94% -3.55% \n", 316 | "Sector Equity Technology +19.69% +11.46% -2.61% \n", 317 | "Fund quartile 1st 1st 2nd \n", 318 | "Funds in category 433 465 478 " 319 | ] 320 | }, 321 | "execution_count": 6, 322 | "metadata": {}, 323 | "output_type": "execute_result" 324 | } 325 | ], 326 | "source": [ 327 | "performance(isin)" 328 | ] 329 | }, 330 | { 331 | "cell_type": "code", 332 | "execution_count": 7, 333 | "metadata": { 334 | "ExecuteTime": { 335 | "end_time": "2021-02-27T20:49:47.994883Z", 336 | "start_time": "2021-02-27T20:49:46.987198Z" 337 | } 338 | }, 339 | "outputs": [ 340 | { 341 | "data": { 342 | "text/html": [ 343 | "
\n", 344 | "\n", 357 | "\n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | "
OpenHighLowCloseVolume
Date
2021-02-2630.9330.9330.9330.93----
2021-02-2532.5632.5632.5632.56----
2021-02-2432.2132.2132.2132.21----
2021-02-2332.4132.4132.4132.41----
2021-02-2233.1233.1233.1233.12----
2021-02-1932.8932.8932.8932.89----
2021-02-1833.2133.2133.2133.21----
2021-02-1733.6133.6133.6133.61----
2021-02-1633.8133.8133.8133.81----
2021-02-1233.5833.5833.5833.58----
2021-02-1133.1933.1933.1933.19----
2021-02-1033.4033.4033.4033.40----
2021-02-0933.2133.2133.2133.21----
2021-02-0832.7332.7332.7332.73----
2021-02-0532.2432.2432.2432.24----
2021-02-0431.7831.7831.7831.78----
2021-02-0331.6731.6731.6731.67----
2021-02-0231.4331.4331.4331.43----
2021-02-0130.4030.4030.4030.40----
2021-01-2930.5330.5330.5330.53----
2021-01-2830.2830.2830.2830.28----
\n", 547 | "
" 548 | ], 549 | "text/plain": [ 550 | " Open High Low Close Volume\n", 551 | "Date \n", 552 | "2021-02-26 30.93 30.93 30.93 30.93 ----\n", 553 | "2021-02-25 32.56 32.56 32.56 32.56 ----\n", 554 | "2021-02-24 32.21 32.21 32.21 32.21 ----\n", 555 | "2021-02-23 32.41 32.41 32.41 32.41 ----\n", 556 | "2021-02-22 33.12 33.12 33.12 33.12 ----\n", 557 | "2021-02-19 32.89 32.89 32.89 32.89 ----\n", 558 | "2021-02-18 33.21 33.21 33.21 33.21 ----\n", 559 | "2021-02-17 33.61 33.61 33.61 33.61 ----\n", 560 | "2021-02-16 33.81 33.81 33.81 33.81 ----\n", 561 | "2021-02-12 33.58 33.58 33.58 33.58 ----\n", 562 | "2021-02-11 33.19 33.19 33.19 33.19 ----\n", 563 | "2021-02-10 33.40 33.40 33.40 33.40 ----\n", 564 | "2021-02-09 33.21 33.21 33.21 33.21 ----\n", 565 | "2021-02-08 32.73 32.73 32.73 32.73 ----\n", 566 | "2021-02-05 32.24 32.24 32.24 32.24 ----\n", 567 | "2021-02-04 31.78 31.78 31.78 31.78 ----\n", 568 | "2021-02-03 31.67 31.67 31.67 31.67 ----\n", 569 | "2021-02-02 31.43 31.43 31.43 31.43 ----\n", 570 | "2021-02-01 30.40 30.40 30.40 30.40 ----\n", 571 | "2021-01-29 30.53 30.53 30.53 30.53 ----\n", 572 | "2021-01-28 30.28 30.28 30.28 30.28 ----" 573 | ] 574 | }, 575 | "execution_count": 7, 576 | "metadata": {}, 577 | "output_type": "execute_result" 578 | } 579 | ], 580 | "source": [ 581 | "historical(isin)" 582 | ] 583 | } 584 | ], 585 | "metadata": { 586 | "kernelspec": { 587 | "display_name": "Python 3", 588 | "language": "python", 589 | "name": "python3" 590 | }, 591 | "language_info": { 592 | "codemirror_mode": { 593 | "name": "ipython", 594 | "version": 3 595 | }, 596 | "file_extension": ".py", 597 | "mimetype": "text/x-python", 598 | "name": "python", 599 | "nbconvert_exporter": "python", 600 | "pygments_lexer": "ipython3", 601 | "version": "3.7.7" 602 | }, 603 | "latex_envs": { 604 | "LaTeX_envs_menu_present": true, 605 | "autoclose": false, 606 | "autocomplete": true, 607 | "bibliofile": "biblio.bib", 608 | "cite_by": "apalike", 609 | "current_citInitial": 1, 610 | "eqLabelWithNumbers": true, 611 | "eqNumInitial": 1, 612 | "hotkeys": { 613 | "equation": "Ctrl-E", 614 | "itemize": "Ctrl-I" 615 | }, 616 | "labels_anchors": false, 617 | "latex_user_defs": false, 618 | "report_style_numbering": false, 619 | "user_envs_cfg": false 620 | }, 621 | "varInspector": { 622 | "cols": { 623 | "lenName": 16, 624 | "lenType": 16, 625 | "lenVar": 40 626 | }, 627 | "kernels_config": { 628 | "python": { 629 | "delete_cmd_postfix": "", 630 | "delete_cmd_prefix": "del ", 631 | "library": "var_list.py", 632 | "varRefreshCmd": "print(var_dic_list())" 633 | }, 634 | "r": { 635 | "delete_cmd_postfix": ") ", 636 | "delete_cmd_prefix": "rm(", 637 | "library": "var_list.r", 638 | "varRefreshCmd": "cat(var_dic_list()) " 639 | } 640 | }, 641 | "types_to_exclude": [ 642 | "module", 643 | "function", 644 | "builtin_function_or_method", 645 | "instance", 646 | "_Feature" 647 | ], 648 | "window_display": false 649 | } 650 | }, 651 | "nbformat": 4, 652 | "nbformat_minor": 4 653 | } 654 | -------------------------------------------------------------------------------- /retos/Reto Pandas 1 - cotiza el fin de mes.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "ExecuteTime": { 7 | "end_time": "2020-02-09T20:33:28.734309Z", 8 | "start_time": "2020-02-09T20:33:28.732194Z" 9 | } 10 | }, 11 | "source": [ 12 | "# Reto Pandas 1\n", 13 | "\n" 14 | ] 15 | }, 16 | { 17 | "cell_type": "markdown", 18 | "metadata": {}, 19 | "source": [ 20 | "Texto del reto propuesto en el grupo de telegram Python para Tranding:\n", 21 | "\n", 22 | "Buenos días. Os propongo un reto / ejercicio de Pandas, para quien quiera practicar y mejorar.\n", 23 | "\n", 24 | "con el dataframe data que obtenemos con este código\n", 25 | "\n", 26 | " # Si no está instalado el módulo yfinance puedes hacerlo con \n", 27 | " # pip install yfinance\n", 28 | "\n", 29 | " import yfinance as yf\n", 30 | " data = yf.download('^GSPC')\n", 31 | "\n", 32 | "\n", 33 | "Añadir una nueva columna donde el valor sea 1 los días en que el mes al que pertenece tuvo cotización el último día natural de ese mes, y -1 si no hubo cotización, por vacaciones o fin de semanas.\n", 34 | "\n", 35 | "Así por ejemplo todos los días de cotización del mes de enero de 2020, llevarían un 1, mientras que los días de noviembre de 2019, llevarían un -1.\n", 36 | "\n", 37 | "Hay varías formas de conseguir esto, veamos cual nos gusta más. Obviamente se puede hacer sin bucles usando pandas 😁😉" 38 | ] 39 | }, 40 | { 41 | "cell_type": "code", 42 | "execution_count": null, 43 | "metadata": {}, 44 | "outputs": [], 45 | "source": [] 46 | }, 47 | { 48 | "cell_type": "markdown", 49 | "metadata": { 50 | "ExecuteTime": { 51 | "end_time": "2020-02-09T20:35:40.098319Z", 52 | "start_time": "2020-02-09T20:35:40.096450Z" 53 | } 54 | }, 55 | "source": [ 56 | "## Código base" 57 | ] 58 | }, 59 | { 60 | "cell_type": "code", 61 | "execution_count": 5, 62 | "metadata": { 63 | "ExecuteTime": { 64 | "end_time": "2020-02-09T20:21:19.401445Z", 65 | "start_time": "2020-02-09T20:21:18.754667Z" 66 | } 67 | }, 68 | "outputs": [ 69 | { 70 | "name": "stdout", 71 | "output_type": "stream", 72 | "text": [ 73 | "[*********************100%***********************] 1 of 1 completed\n" 74 | ] 75 | } 76 | ], 77 | "source": [ 78 | "# Si no está instalado el módulo yfinance puedes hacerlo con \n", 79 | "# pip install yfinance\n", 80 | "\n", 81 | "import yfinance as yf\n", 82 | "import pandas as pd\n", 83 | "data_base = yf.download('^GSPC')" 84 | ] 85 | }, 86 | { 87 | "cell_type": "code", 88 | "execution_count": null, 89 | "metadata": {}, 90 | "outputs": [], 91 | "source": [] 92 | }, 93 | { 94 | "cell_type": "markdown", 95 | "metadata": {}, 96 | "source": [ 97 | "# Propuestas :" 98 | ] 99 | }, 100 | { 101 | "cell_type": "markdown", 102 | "metadata": {}, 103 | "source": [ 104 | "## Pau @pauet7 - 1ª " 105 | ] 106 | }, 107 | { 108 | "cell_type": "code", 109 | "execution_count": 2, 110 | "metadata": { 111 | "ExecuteTime": { 112 | "end_time": "2020-02-09T20:20:32.655909Z", 113 | "start_time": "2020-02-09T20:20:32.650578Z" 114 | } 115 | }, 116 | "outputs": [], 117 | "source": [ 118 | "import calendar\n", 119 | "import datetime\n", 120 | "data = data_base.copy()" 121 | ] 122 | }, 123 | { 124 | "cell_type": "code", 125 | "execution_count": 3, 126 | "metadata": { 127 | "ExecuteTime": { 128 | "end_time": "2020-02-09T20:20:38.590228Z", 129 | "start_time": "2020-02-09T20:20:33.469115Z" 130 | } 131 | }, 132 | "outputs": [ 133 | { 134 | "name": "stdout", 135 | "output_type": "stream", 136 | "text": [ 137 | "643 ms ± 19.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" 138 | ] 139 | } 140 | ], 141 | "source": [ 142 | "%%timeit\n", 143 | "data['last_open_day'] = data.index.map(lambda x: datetime.datetime(x.year, x.month, calendar.monthrange(x.year, x.month)[1]))\n", 144 | "data['signal'] = data.apply(lambda x: 1 if x['last_open_day'] in data.index else -1, axis=1)" 145 | ] 146 | }, 147 | { 148 | "cell_type": "code", 149 | "execution_count": 4, 150 | "metadata": { 151 | "ExecuteTime": { 152 | "end_time": "2020-02-09T20:20:51.790571Z", 153 | "start_time": "2020-02-09T20:20:51.780840Z" 154 | } 155 | }, 156 | "outputs": [ 157 | { 158 | "data": { 159 | "text/plain": [ 160 | "Date\n", 161 | "1927-12-30 -1\n", 162 | "1928-01-03 1\n", 163 | "1928-01-04 1\n", 164 | "1928-01-05 1\n", 165 | "1928-01-06 1\n", 166 | " ..\n", 167 | "2020-02-03 -1\n", 168 | "2020-02-04 -1\n", 169 | "2020-02-05 -1\n", 170 | "2020-02-06 -1\n", 171 | "2020-02-07 -1\n", 172 | "Name: signal, Length: 23135, dtype: int64" 173 | ] 174 | }, 175 | "execution_count": 4, 176 | "metadata": {}, 177 | "output_type": "execute_result" 178 | } 179 | ], 180 | "source": [ 181 | "data['signal']" 182 | ] 183 | }, 184 | { 185 | "cell_type": "markdown", 186 | "metadata": {}, 187 | "source": [ 188 | "## Pau @pauet7 - 2ª" 189 | ] 190 | }, 191 | { 192 | "cell_type": "code", 193 | "execution_count": 12, 194 | "metadata": {}, 195 | "outputs": [], 196 | "source": [ 197 | "data = data_base.copy()" 198 | ] 199 | }, 200 | { 201 | "cell_type": "code", 202 | "execution_count": 8, 203 | "metadata": { 204 | "ExecuteTime": { 205 | "end_time": "2020-02-09T20:22:17.985047Z", 206 | "start_time": "2020-02-09T20:22:13.752217Z" 207 | } 208 | }, 209 | "outputs": [ 210 | { 211 | "name": "stdout", 212 | "output_type": "stream", 213 | "text": [ 214 | "531 ms ± 19.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" 215 | ] 216 | } 217 | ], 218 | "source": [ 219 | "%%timeit\n", 220 | "data['last_open_day'] = data.index.map(lambda x: pd.to_datetime(x) + pd.tseries.offsets.MonthEnd(0))\n", 221 | "data['signal'] = data.apply(lambda x: 1 if x['last_open_day'] in data.index else -1, axis=1)" 222 | ] 223 | }, 224 | { 225 | "cell_type": "code", 226 | "execution_count": 9, 227 | "metadata": { 228 | "ExecuteTime": { 229 | "end_time": "2020-02-09T20:22:32.347293Z", 230 | "start_time": "2020-02-09T20:22:32.340669Z" 231 | } 232 | }, 233 | "outputs": [ 234 | { 235 | "data": { 236 | "text/plain": [ 237 | "Date\n", 238 | "1927-12-30 -1\n", 239 | "1928-01-03 1\n", 240 | "1928-01-04 1\n", 241 | "1928-01-05 1\n", 242 | "1928-01-06 1\n", 243 | " ..\n", 244 | "2020-02-03 -1\n", 245 | "2020-02-04 -1\n", 246 | "2020-02-05 -1\n", 247 | "2020-02-06 -1\n", 248 | "2020-02-07 -1\n", 249 | "Name: signal, Length: 23135, dtype: int64" 250 | ] 251 | }, 252 | "execution_count": 9, 253 | "metadata": {}, 254 | "output_type": "execute_result" 255 | } 256 | ], 257 | "source": [ 258 | "data['signal']" 259 | ] 260 | }, 261 | { 262 | "cell_type": "code", 263 | "execution_count": 7, 264 | "metadata": {}, 265 | "outputs": [], 266 | "source": [ 267 | "data = data_base.copy()" 268 | ] 269 | }, 270 | { 271 | "cell_type": "code", 272 | "execution_count": 19, 273 | "metadata": {}, 274 | "outputs": [ 275 | { 276 | "name": "stdout", 277 | "output_type": "stream", 278 | "text": [ 279 | "543 ms ± 17.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" 280 | ] 281 | } 282 | ], 283 | "source": [ 284 | "%%timeit \n", 285 | "data['last_open_day'] = data.index.map(lambda x: pd.to_datetime(x) + pd.tseries.offsets.MonthEnd(0))\n", 286 | "data['signal'] = data.apply(lambda x: 1 if x['last_open_day'] in data.index else -1, axis=1)" 287 | ] 288 | }, 289 | { 290 | "cell_type": "code", 291 | "execution_count": null, 292 | "metadata": {}, 293 | "outputs": [], 294 | "source": [] 295 | }, 296 | { 297 | "cell_type": "markdown", 298 | "metadata": {}, 299 | "source": [ 300 | "## Antonio A @init_S - 1ª" 301 | ] 302 | }, 303 | { 304 | "cell_type": "code", 305 | "execution_count": 10, 306 | "metadata": { 307 | "ExecuteTime": { 308 | "end_time": "2020-02-09T20:24:01.976288Z", 309 | "start_time": "2020-02-09T20:24:01.973453Z" 310 | } 311 | }, 312 | "outputs": [], 313 | "source": [ 314 | "data = data_base.copy()" 315 | ] 316 | }, 317 | { 318 | "cell_type": "code", 319 | "execution_count": 11, 320 | "metadata": { 321 | "ExecuteTime": { 322 | "end_time": "2020-02-09T20:25:30.966127Z", 323 | "start_time": "2020-02-09T20:24:10.678474Z" 324 | } 325 | }, 326 | "outputs": [], 327 | "source": [ 328 | "data.loc[:,'rounded_time'] = data.index.to_period('M')\n", 329 | "data.loc[:, 'signal'] = data['rounded_time'].apply(lambda x: 1 if x in data[data.index.is_month_end].index.to_period('M') else -1)" 330 | ] 331 | }, 332 | { 333 | "cell_type": "code", 334 | "execution_count": 15, 335 | "metadata": { 336 | "ExecuteTime": { 337 | "end_time": "2020-02-09T20:25:59.672111Z", 338 | "start_time": "2020-02-09T20:25:59.667521Z" 339 | } 340 | }, 341 | "outputs": [ 342 | { 343 | "data": { 344 | "text/plain": [ 345 | "Date\n", 346 | "1927-12-30 -1\n", 347 | "1928-01-03 1\n", 348 | "1928-01-04 1\n", 349 | "1928-01-05 1\n", 350 | "1928-01-06 1\n", 351 | " ..\n", 352 | "2020-02-03 -1\n", 353 | "2020-02-04 -1\n", 354 | "2020-02-05 -1\n", 355 | "2020-02-06 -1\n", 356 | "2020-02-07 -1\n", 357 | "Name: signal, Length: 23135, dtype: int64" 358 | ] 359 | }, 360 | "execution_count": 15, 361 | "metadata": {}, 362 | "output_type": "execute_result" 363 | } 364 | ], 365 | "source": [ 366 | "data['signal']" 367 | ] 368 | }, 369 | { 370 | "cell_type": "code", 371 | "execution_count": null, 372 | "metadata": {}, 373 | "outputs": [], 374 | "source": [] 375 | }, 376 | { 377 | "cell_type": "markdown", 378 | "metadata": {}, 379 | "source": [ 380 | "## Antonio A @init_S - 2ª" 381 | ] 382 | }, 383 | { 384 | "cell_type": "code", 385 | "execution_count": 13, 386 | "metadata": { 387 | "ExecuteTime": { 388 | "end_time": "2020-02-09T20:25:48.631668Z", 389 | "start_time": "2020-02-09T20:25:48.628615Z" 390 | } 391 | }, 392 | "outputs": [], 393 | "source": [ 394 | "import numpy as np\n", 395 | "data = data_base.copy()" 396 | ] 397 | }, 398 | { 399 | "cell_type": "code", 400 | "execution_count": 14, 401 | "metadata": { 402 | "ExecuteTime": { 403 | "end_time": "2020-02-09T20:25:54.548875Z", 404 | "start_time": "2020-02-09T20:25:49.541486Z" 405 | } 406 | }, 407 | "outputs": [ 408 | { 409 | "name": "stdout", 410 | "output_type": "stream", 411 | "text": [ 412 | "61.9 ms ± 535 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" 413 | ] 414 | } 415 | ], 416 | "source": [ 417 | "%%timeit \n", 418 | "data.loc[:,'rounded_time'] = data.index.to_period('M')\n", 419 | "data.loc[:, 'signal'] = np.where(data['rounded_time'].isin(data[data.index.is_month_end].index.to_period('M')), 1, -1)" 420 | ] 421 | }, 422 | { 423 | "cell_type": "code", 424 | "execution_count": 16, 425 | "metadata": { 426 | "ExecuteTime": { 427 | "end_time": "2020-02-09T20:26:04.188417Z", 428 | "start_time": "2020-02-09T20:26:04.182226Z" 429 | } 430 | }, 431 | "outputs": [ 432 | { 433 | "data": { 434 | "text/plain": [ 435 | "Date\n", 436 | "1927-12-30 -1\n", 437 | "1928-01-03 1\n", 438 | "1928-01-04 1\n", 439 | "1928-01-05 1\n", 440 | "1928-01-06 1\n", 441 | " ..\n", 442 | "2020-02-03 -1\n", 443 | "2020-02-04 -1\n", 444 | "2020-02-05 -1\n", 445 | "2020-02-06 -1\n", 446 | "2020-02-07 -1\n", 447 | "Name: signal, Length: 23135, dtype: int64" 448 | ] 449 | }, 450 | "execution_count": 16, 451 | "metadata": {}, 452 | "output_type": "execute_result" 453 | } 454 | ], 455 | "source": [ 456 | "data['signal']" 457 | ] 458 | }, 459 | { 460 | "cell_type": "code", 461 | "execution_count": null, 462 | "metadata": {}, 463 | "outputs": [], 464 | "source": [] 465 | }, 466 | { 467 | "cell_type": "markdown", 468 | "metadata": {}, 469 | "source": [ 470 | "## Dario @Bukosabino - 1ª" 471 | ] 472 | }, 473 | { 474 | "cell_type": "code", 475 | "execution_count": 17, 476 | "metadata": { 477 | "ExecuteTime": { 478 | "end_time": "2020-02-09T20:26:17.038291Z", 479 | "start_time": "2020-02-09T20:26:17.035469Z" 480 | } 481 | }, 482 | "outputs": [], 483 | "source": [ 484 | "data = data_base.copy()" 485 | ] 486 | }, 487 | { 488 | "cell_type": "code", 489 | "execution_count": 18, 490 | "metadata": { 491 | "ExecuteTime": { 492 | "end_time": "2020-02-09T20:26:26.443033Z", 493 | "start_time": "2020-02-09T20:26:18.949813Z" 494 | } 495 | }, 496 | "outputs": [ 497 | { 498 | "name": "stdout", 499 | "output_type": "stream", 500 | "text": [ 501 | "9.29 ms ± 268 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" 502 | ] 503 | } 504 | ], 505 | "source": [ 506 | "%%timeit\n", 507 | "last_day_month_market = data.groupby([data.index.year, data.index.month]).tail(1).index\n", 508 | "data['signal']=pd.DataFrame(index=last_day_month_market, \n", 509 | " data=last_day_month_market.is_month_end.astype(int)).reindex(data.index).fillna(method='backfill')[0]\n", 510 | "data['signal']=np.where(data['signal']==0,-1,data['signal'])" 511 | ] 512 | }, 513 | { 514 | "cell_type": "code", 515 | "execution_count": 19, 516 | "metadata": { 517 | "ExecuteTime": { 518 | "end_time": "2020-02-09T20:26:26.450311Z", 519 | "start_time": "2020-02-09T20:26:26.445226Z" 520 | } 521 | }, 522 | "outputs": [ 523 | { 524 | "data": { 525 | "text/plain": [ 526 | "Date\n", 527 | "1927-12-30 -1.0\n", 528 | "1928-01-03 1.0\n", 529 | "1928-01-04 1.0\n", 530 | "1928-01-05 1.0\n", 531 | "1928-01-06 1.0\n", 532 | " ... \n", 533 | "2020-02-03 -1.0\n", 534 | "2020-02-04 -1.0\n", 535 | "2020-02-05 -1.0\n", 536 | "2020-02-06 -1.0\n", 537 | "2020-02-07 -1.0\n", 538 | "Name: signal, Length: 23135, dtype: float64" 539 | ] 540 | }, 541 | "execution_count": 19, 542 | "metadata": {}, 543 | "output_type": "execute_result" 544 | } 545 | ], 546 | "source": [ 547 | "data['signal']" 548 | ] 549 | }, 550 | { 551 | "cell_type": "code", 552 | "execution_count": null, 553 | "metadata": {}, 554 | "outputs": [], 555 | "source": [] 556 | }, 557 | { 558 | "cell_type": "markdown", 559 | "metadata": {}, 560 | "source": [ 561 | "## Dario @Bukosabino - 2ª" 562 | ] 563 | }, 564 | { 565 | "cell_type": "code", 566 | "execution_count": 20, 567 | "metadata": { 568 | "ExecuteTime": { 569 | "end_time": "2020-02-09T20:26:33.767729Z", 570 | "start_time": "2020-02-09T20:26:33.764875Z" 571 | } 572 | }, 573 | "outputs": [], 574 | "source": [ 575 | "data = data_base.copy()" 576 | ] 577 | }, 578 | { 579 | "cell_type": "code", 580 | "execution_count": 21, 581 | "metadata": { 582 | "ExecuteTime": { 583 | "end_time": "2020-02-09T20:26:44.604543Z", 584 | "start_time": "2020-02-09T20:26:36.435229Z" 585 | } 586 | }, 587 | "outputs": [ 588 | { 589 | "name": "stdout", 590 | "output_type": "stream", 591 | "text": [ 592 | "10.2 ms ± 752 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" 593 | ] 594 | } 595 | ], 596 | "source": [ 597 | "%%timeit\n", 598 | "last_day_month_market = data.groupby([data.index.year, data.index.month]).tail(1).index\n", 599 | "data['signal']=pd.Series(index=last_day_month_market, data=last_day_month_market.is_month_end.astype(int)).reindex(data.index).fillna(method='backfill').values\n", 600 | "data['signal']=np.where(data['signal']==0,-1,data['signal'])" 601 | ] 602 | }, 603 | { 604 | "cell_type": "code", 605 | "execution_count": 24, 606 | "metadata": { 607 | "ExecuteTime": { 608 | "end_time": "2020-02-09T20:27:27.145210Z", 609 | "start_time": "2020-02-09T20:27:27.140927Z" 610 | } 611 | }, 612 | "outputs": [ 613 | { 614 | "data": { 615 | "text/plain": [ 616 | "Date\n", 617 | "1927-12-30 -1\n", 618 | "1928-01-03 1\n", 619 | "1928-01-04 1\n", 620 | "1928-01-05 1\n", 621 | "1928-01-06 1\n", 622 | " ..\n", 623 | "2020-02-03 -1\n", 624 | "2020-02-04 -1\n", 625 | "2020-02-05 -1\n", 626 | "2020-02-06 -1\n", 627 | "2020-02-07 -1\n", 628 | "Name: signal, Length: 23135, dtype: int64" 629 | ] 630 | }, 631 | "execution_count": 24, 632 | "metadata": {}, 633 | "output_type": "execute_result" 634 | } 635 | ], 636 | "source": [ 637 | "data['signal']" 638 | ] 639 | }, 640 | { 641 | "cell_type": "code", 642 | "execution_count": null, 643 | "metadata": {}, 644 | "outputs": [], 645 | "source": [] 646 | }, 647 | { 648 | "cell_type": "markdown", 649 | "metadata": {}, 650 | "source": [ 651 | "## Paduel @paduel - 1ª" 652 | ] 653 | }, 654 | { 655 | "cell_type": "code", 656 | "execution_count": 22, 657 | "metadata": { 658 | "ExecuteTime": { 659 | "end_time": "2020-02-09T20:26:58.533431Z", 660 | "start_time": "2020-02-09T20:26:58.530895Z" 661 | } 662 | }, 663 | "outputs": [], 664 | "source": [ 665 | "data = data_base.copy()" 666 | ] 667 | }, 668 | { 669 | "cell_type": "code", 670 | "execution_count": 25, 671 | "metadata": { 672 | "ExecuteTime": { 673 | "end_time": "2020-02-09T20:27:48.770455Z", 674 | "start_time": "2020-02-09T20:27:37.970327Z" 675 | } 676 | }, 677 | "outputs": [ 678 | { 679 | "name": "stdout", 680 | "output_type": "stream", 681 | "text": [ 682 | "13.5 ms ± 1.35 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" 683 | ] 684 | } 685 | ], 686 | "source": [ 687 | "%%timeit\n", 688 | "data['signal'] = data.index.to_frame().Date.groupby([data.index.year, data.index.month]).transform('last').dt.is_month_end.mul(2).sub(1)" 689 | ] 690 | }, 691 | { 692 | "cell_type": "code", 693 | "execution_count": 306, 694 | "metadata": {}, 695 | "outputs": [ 696 | { 697 | "data": { 698 | "text/plain": [ 699 | "Date\n", 700 | "1927-12-30 -1\n", 701 | "1928-01-03 1\n", 702 | "1928-01-04 1\n", 703 | "1928-01-05 1\n", 704 | "1928-01-06 1\n", 705 | " ..\n", 706 | "2020-02-03 -1\n", 707 | "2020-02-04 -1\n", 708 | "2020-02-05 -1\n", 709 | "2020-02-06 -1\n", 710 | "2020-02-07 -1\n", 711 | "Name: signal, Length: 23135, dtype: int64" 712 | ] 713 | }, 714 | "execution_count": 306, 715 | "metadata": {}, 716 | "output_type": "execute_result" 717 | } 718 | ], 719 | "source": [ 720 | "data['signal']" 721 | ] 722 | }, 723 | { 724 | "cell_type": "code", 725 | "execution_count": null, 726 | "metadata": {}, 727 | "outputs": [], 728 | "source": [] 729 | }, 730 | { 731 | "cell_type": "markdown", 732 | "metadata": {}, 733 | "source": [ 734 | "## Paduel @paduel - 2ª" 735 | ] 736 | }, 737 | { 738 | "cell_type": "code", 739 | "execution_count": 28, 740 | "metadata": { 741 | "ExecuteTime": { 742 | "end_time": "2020-02-09T20:29:34.499749Z", 743 | "start_time": "2020-02-09T20:29:34.496910Z" 744 | } 745 | }, 746 | "outputs": [], 747 | "source": [ 748 | "data = data_base.copy()" 749 | ] 750 | }, 751 | { 752 | "cell_type": "code", 753 | "execution_count": 29, 754 | "metadata": { 755 | "ExecuteTime": { 756 | "end_time": "2020-02-09T20:29:42.366203Z", 757 | "start_time": "2020-02-09T20:29:35.085596Z" 758 | } 759 | }, 760 | "outputs": [ 761 | { 762 | "name": "stdout", 763 | "output_type": "stream", 764 | "text": [ 765 | "8.97 ms ± 162 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" 766 | ] 767 | } 768 | ], 769 | "source": [ 770 | "%%timeit\n", 771 | "_d = data.index.to_frame().groupby([data.index.year, data.index.month]).last().squeeze()\n", 772 | "data['signal'] = pd.Series(_d.dt.is_month_end.mul(2).sub(1).values, index=_d.values).reindex(data.index).bfill()" 773 | ] 774 | }, 775 | { 776 | "cell_type": "code", 777 | "execution_count": 30, 778 | "metadata": { 779 | "ExecuteTime": { 780 | "end_time": "2020-02-09T20:29:42.372847Z", 781 | "start_time": "2020-02-09T20:29:42.367971Z" 782 | } 783 | }, 784 | "outputs": [ 785 | { 786 | "data": { 787 | "text/plain": [ 788 | "Date\n", 789 | "1927-12-30 -1.0\n", 790 | "1928-01-03 1.0\n", 791 | "1928-01-04 1.0\n", 792 | "1928-01-05 1.0\n", 793 | "1928-01-06 1.0\n", 794 | " ... \n", 795 | "2020-02-03 -1.0\n", 796 | "2020-02-04 -1.0\n", 797 | "2020-02-05 -1.0\n", 798 | "2020-02-06 -1.0\n", 799 | "2020-02-07 -1.0\n", 800 | "Name: signal, Length: 23135, dtype: float64" 801 | ] 802 | }, 803 | "execution_count": 30, 804 | "metadata": {}, 805 | "output_type": "execute_result" 806 | } 807 | ], 808 | "source": [ 809 | "data['signal']" 810 | ] 811 | }, 812 | { 813 | "cell_type": "code", 814 | "execution_count": null, 815 | "metadata": {}, 816 | "outputs": [], 817 | "source": [] 818 | }, 819 | { 820 | "cell_type": "code", 821 | "execution_count": null, 822 | "metadata": {}, 823 | "outputs": [], 824 | "source": [] 825 | }, 826 | { 827 | "cell_type": "markdown", 828 | "metadata": { 829 | "ExecuteTime": { 830 | "end_time": "2020-02-09T20:30:55.805524Z", 831 | "start_time": "2020-02-09T20:30:55.797010Z" 832 | } 833 | }, 834 | "source": [ 835 | "# Bonus" 836 | ] 837 | }, 838 | { 839 | "cell_type": "markdown", 840 | "metadata": {}, 841 | "source": [ 842 | "Todos los métodos anteriores dan un -1 a los días del mes en curso cuando aún no tenemos datos para saber si el último día habrá o no cotización. Por lo que habría que añadir un código que corrigiera eso.\n", 843 | "A continuación una propuesta one liner que evita ese problema." 844 | ] 845 | }, 846 | { 847 | "cell_type": "markdown", 848 | "metadata": {}, 849 | "source": [ 850 | "## Paduel @paduel 3º" 851 | ] 852 | }, 853 | { 854 | "cell_type": "code", 855 | "execution_count": 31, 856 | "metadata": { 857 | "ExecuteTime": { 858 | "end_time": "2020-02-09T20:30:31.457873Z", 859 | "start_time": "2020-02-09T20:30:31.455272Z" 860 | } 861 | }, 862 | "outputs": [], 863 | "source": [ 864 | "data = data_base.copy()" 865 | ] 866 | }, 867 | { 868 | "cell_type": "code", 869 | "execution_count": 36, 870 | "metadata": { 871 | "ExecuteTime": { 872 | "end_time": "2020-02-09T20:31:04.042758Z", 873 | "start_time": "2020-02-09T20:31:02.219288Z" 874 | } 875 | }, 876 | "outputs": [ 877 | { 878 | "name": "stdout", 879 | "output_type": "stream", 880 | "text": [ 881 | "22.6 ms ± 1.74 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" 882 | ] 883 | } 884 | ], 885 | "source": [ 886 | "%%timeit\n", 887 | "data['signal'] = data.Close.reindex(pd.date_range(data.index[0], data.index[-1], freq='M')).gt(0).replace(False,-1).reindex(pd.date_range(data.index[0], data.index[-1], freq='D')).bfill().reindex(data.index)" 888 | ] 889 | }, 890 | { 891 | "cell_type": "code", 892 | "execution_count": 34, 893 | "metadata": { 894 | "ExecuteTime": { 895 | "end_time": "2020-02-09T20:30:55.794640Z", 896 | "start_time": "2020-02-09T20:30:55.788006Z" 897 | } 898 | }, 899 | "outputs": [ 900 | { 901 | "data": { 902 | "text/plain": [ 903 | "Date\n", 904 | "1927-12-30 -1.0\n", 905 | "1928-01-03 1.0\n", 906 | "1928-01-04 1.0\n", 907 | "1928-01-05 1.0\n", 908 | "1928-01-06 1.0\n", 909 | " ... \n", 910 | "2020-02-03 NaN\n", 911 | "2020-02-04 NaN\n", 912 | "2020-02-05 NaN\n", 913 | "2020-02-06 NaN\n", 914 | "2020-02-07 NaN\n", 915 | "Name: signal, Length: 23135, dtype: float64" 916 | ] 917 | }, 918 | "execution_count": 34, 919 | "metadata": {}, 920 | "output_type": "execute_result" 921 | } 922 | ], 923 | "source": [ 924 | "data['signal']" 925 | ] 926 | }, 927 | { 928 | "cell_type": "code", 929 | "execution_count": 357, 930 | "metadata": {}, 931 | "outputs": [ 932 | { 933 | "data": { 934 | "text/plain": [ 935 | "Date\n", 936 | "2020-01-27 1.0\n", 937 | "2020-01-28 1.0\n", 938 | "2020-01-29 1.0\n", 939 | "2020-01-30 1.0\n", 940 | "2020-01-31 1.0\n", 941 | "2020-02-03 NaN\n", 942 | "2020-02-04 NaN\n", 943 | "2020-02-05 NaN\n", 944 | "2020-02-06 NaN\n", 945 | "2020-02-07 NaN\n", 946 | "Name: signal, dtype: float64" 947 | ] 948 | }, 949 | "execution_count": 357, 950 | "metadata": {}, 951 | "output_type": "execute_result" 952 | } 953 | ], 954 | "source": [ 955 | "data['signal'].tail(10)" 956 | ] 957 | }, 958 | { 959 | "cell_type": "code", 960 | "execution_count": null, 961 | "metadata": {}, 962 | "outputs": [], 963 | "source": [] 964 | } 965 | ], 966 | "metadata": { 967 | "hide_input": false, 968 | "kernelspec": { 969 | "display_name": "python372", 970 | "language": "python", 971 | "name": "python372" 972 | }, 973 | "language_info": { 974 | "codemirror_mode": { 975 | "name": "ipython", 976 | "version": 3 977 | }, 978 | "file_extension": ".py", 979 | "mimetype": "text/x-python", 980 | "name": "python", 981 | "nbconvert_exporter": "python", 982 | "pygments_lexer": "ipython3", 983 | "version": "3.7.2" 984 | }, 985 | "latex_envs": { 986 | "LaTeX_envs_menu_present": true, 987 | "autoclose": false, 988 | "autocomplete": true, 989 | "bibliofile": "biblio.bib", 990 | "cite_by": "apalike", 991 | "current_citInitial": 1, 992 | "eqLabelWithNumbers": true, 993 | "eqNumInitial": 1, 994 | "hotkeys": { 995 | "equation": "Ctrl-E", 996 | "itemize": "Ctrl-I" 997 | }, 998 | "labels_anchors": false, 999 | "latex_user_defs": false, 1000 | "report_style_numbering": false, 1001 | "user_envs_cfg": false 1002 | }, 1003 | "toc": { 1004 | "base_numbering": 1, 1005 | "nav_menu": {}, 1006 | "number_sections": true, 1007 | "sideBar": true, 1008 | "skip_h1_title": false, 1009 | "title_cell": "Tabla de Contenido", 1010 | "title_sidebar": "Contenidos", 1011 | "toc_cell": false, 1012 | "toc_position": {}, 1013 | "toc_section_display": true, 1014 | "toc_window_display": false 1015 | } 1016 | }, 1017 | "nbformat": 4, 1018 | "nbformat_minor": 2 1019 | } 1020 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /Ejemplos/Filtro Super Bandpass de Jonh Ehlers.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "medium-scoop", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "from yfinance import download\n", 11 | "import matplotlib.pyplot as plt\n", 12 | "import pandas as pd\n", 13 | "import numpy as np" 14 | ] 15 | }, 16 | { 17 | "cell_type": "markdown", 18 | "id": "threaded-department", 19 | "metadata": {}, 20 | "source": [ 21 | "## Filtro Super Bandpass de Jonh Ehlers\n", 22 | "\n", 23 | "Referencia: http://traders.com/Documentation/FEEDbk_docs/2016/07/TradersTips.html" 24 | ] 25 | }, 26 | { 27 | "cell_type": "code", 28 | "execution_count": 2, 29 | "id": "least-novel", 30 | "metadata": {}, 31 | "outputs": [], 32 | "source": [ 33 | "def super_bandpass(data_base, flen = 40, slen = 60, column='Close'):\n", 34 | " '''Función que devuelve un dataframe con el filtro super bandpass calculado'''\n", 35 | " \n", 36 | " data = data_base.copy()\n", 37 | " \n", 38 | " a1= 5/flen\n", 39 | " a2= 5/slen\n", 40 | "\n", 41 | " pb = [data[column].iloc[:2].mean()] * 2\n", 42 | " # pb = [0, 0]\n", 43 | " for f in range(2, data.shape[0]):\n", 44 | " pb_n = (a1 - a2) * data[column].iloc[f] + (a2*(1 - a1) - a1 * (1 - a2))* data[column].iloc[f - 1] + ((1 - a1) + (1 - a2))*(pb[f-1])- (1 - a1)* (1 - a2)*(pb[f-2])\n", 45 | " pb += [pb_n]\n", 46 | " data['PB'] = pb\n", 47 | "\n", 48 | " data['RMS+'] = data['PB'].pow(2).rolling(50).sum().div(50).pow(.5)\n", 49 | " data['RMS-'] = -data['RMS+']\n", 50 | "\n", 51 | " data['Sell Signal'] = data['PB'].lt(data['RMS+']) & data['PB'].shift().gt(data['RMS+'].shift())\n", 52 | " data['Buy Signal'] = data['PB'].gt(data['RMS-']) & data['PB'].shift().lt(data['RMS-'].shift())\n", 53 | " \n", 54 | " return data" 55 | ] 56 | }, 57 | { 58 | "cell_type": "code", 59 | "execution_count": 3, 60 | "id": "combined-sleeve", 61 | "metadata": {}, 62 | "outputs": [], 63 | "source": [ 64 | "def plot_super_bandpass(data):\n", 65 | " '''Función para graficar el filtro super bandapass'''\n", 66 | " fig, axs = plt.subplots(2, 1, sharex=True, gridspec_kw={'height_ratios': [2, 1]})\n", 67 | " axs[1].fill_between(data.index, data['RMS+'], data['RMS-'], color='g', alpha=.2)\n", 68 | " data['Close'].plot(ax=axs[0])\n", 69 | " data['Sell Signal'].mul(data['Close']).replace({0: np.nan}).plot(marker='v', color='r', ax=axs[0])\n", 70 | " data['Buy Signal'].mul(data['Close']).replace({0: np.nan}).plot(marker='^', color='g', ax=axs[0])\n", 71 | " data['PB'].plot(color='orange', figsize=(18, 12), ax=axs[1])\n", 72 | " data['Sell Signal'].mul(data['PB']).replace({0: np.nan}).plot(marker='v', color='r', ax=axs[1])\n", 73 | " data['Buy Signal'].mul(data['PB']).replace({0: np.nan}).plot(marker='^', color='g', ax=axs[1])" 74 | ] 75 | }, 76 | { 77 | "cell_type": "code", 78 | "execution_count": 4, 79 | "id": "leading-composition", 80 | "metadata": { 81 | "scrolled": true 82 | }, 83 | "outputs": [ 84 | { 85 | "name": "stdout", 86 | "output_type": "stream", 87 | "text": [ 88 | "[*********************100%***********************] 1 of 1 completed\n" 89 | ] 90 | } 91 | ], 92 | "source": [ 93 | "symbol = 'MMM'\n", 94 | "data = download(symbol, auto_adjust=True)" 95 | ] 96 | }, 97 | { 98 | "cell_type": "code", 99 | "execution_count": 5, 100 | "id": "fatty-interference", 101 | "metadata": {}, 102 | "outputs": [ 103 | { 104 | "data": { 105 | "text/html": [ 106 | "
\n", 107 | "\n", 120 | "\n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | "
OpenHighLowCloseVolumePBRMS+RMS-Sell SignalBuy Signal
Date
1970-01-021.4377191.4459161.4360801.437719720001.441819NaNNaNFalseFalse
1970-01-051.4393601.4475571.4393601.4459184464001.441819NaNNaNFalseFalse
1970-01-061.4459171.4606711.4442771.4606711760001.427414NaNNaNFalseFalse
1970-01-071.4606711.4721461.4573921.4688671648001.401334NaNNaNFalseFalse
1970-01-081.4688681.4918191.4655891.4885403040001.366637NaNNaNFalseFalse
.................................
2022-01-03178.320007179.089996175.839996177.74000519307000.0576610.487951-0.487951FalseFalse
2022-01-04178.479996181.259995178.029999180.22999625222000.2119750.483902-0.483902FalseFalse
2022-01-05177.130005181.779999177.000000179.49000529524000.3027070.482993-0.482993FalseFalse
2022-01-06180.880005181.279999177.539993178.00000025054000.3102450.483415-0.483415FalseFalse
2022-01-07178.130005180.490005177.220001179.94999728002000.3943090.483950-0.483950FalseFalse
\n", 295 | "

13123 rows × 10 columns

\n", 296 | "
" 297 | ], 298 | "text/plain": [ 299 | " Open High Low Close Volume PB \\\n", 300 | "Date \n", 301 | "1970-01-02 1.437719 1.445916 1.436080 1.437719 72000 1.441819 \n", 302 | "1970-01-05 1.439360 1.447557 1.439360 1.445918 446400 1.441819 \n", 303 | "1970-01-06 1.445917 1.460671 1.444277 1.460671 176000 1.427414 \n", 304 | "1970-01-07 1.460671 1.472146 1.457392 1.468867 164800 1.401334 \n", 305 | "1970-01-08 1.468868 1.491819 1.465589 1.488540 304000 1.366637 \n", 306 | "... ... ... ... ... ... ... \n", 307 | "2022-01-03 178.320007 179.089996 175.839996 177.740005 1930700 0.057661 \n", 308 | "2022-01-04 178.479996 181.259995 178.029999 180.229996 2522200 0.211975 \n", 309 | "2022-01-05 177.130005 181.779999 177.000000 179.490005 2952400 0.302707 \n", 310 | "2022-01-06 180.880005 181.279999 177.539993 178.000000 2505400 0.310245 \n", 311 | "2022-01-07 178.130005 180.490005 177.220001 179.949997 2800200 0.394309 \n", 312 | "\n", 313 | " RMS+ RMS- Sell Signal Buy Signal \n", 314 | "Date \n", 315 | "1970-01-02 NaN NaN False False \n", 316 | "1970-01-05 NaN NaN False False \n", 317 | "1970-01-06 NaN NaN False False \n", 318 | "1970-01-07 NaN NaN False False \n", 319 | "1970-01-08 NaN NaN False False \n", 320 | "... ... ... ... ... \n", 321 | "2022-01-03 0.487951 -0.487951 False False \n", 322 | "2022-01-04 0.483902 -0.483902 False False \n", 323 | "2022-01-05 0.482993 -0.482993 False False \n", 324 | "2022-01-06 0.483415 -0.483415 False False \n", 325 | "2022-01-07 0.483950 -0.483950 False False \n", 326 | "\n", 327 | "[13123 rows x 10 columns]" 328 | ] 329 | }, 330 | "execution_count": 5, 331 | "metadata": {}, 332 | "output_type": "execute_result" 333 | } 334 | ], 335 | "source": [ 336 | "data_sbp = super_bandpass(data)\n", 337 | "data_sbp" 338 | ] 339 | }, 340 | { 341 | "cell_type": "code", 342 | "execution_count": 6, 343 | "id": "pursuant-writing", 344 | "metadata": {}, 345 | "outputs": [ 346 | { 347 | "data": { 348 | "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAAKMCAYAAABb+uuIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXSb99028OsWswwys8PMnJRxK3fFldu1Y3jGz9b13dMxd9BuXXFtV2bmNknDzGhmS7aYpfv9Q2A7Jsm2LMP1OWenqfCXJkuk6/6CIIoiiIiIiIiIiIiSIUn3AYiIiIiIiIho/GGgQERERERERERJY6BAREREREREREljoEBERERERERESWOgQERERERERERJY6BAREREREREREmTpfsAAGAymcTy8vJ0H4OIiIiIiIiITrFz506zKIo5p94+JgKF8vJy7NixI93HICIiIiIiIqJTCIJQ29ftbHkgIiIiIiIioqQxUCAiIiIiIiKipDFQICIiIiIiIqKkMVAgIiIiIiIioqQxUCAiIiIiIiKipDFQICIiIiIiIqKkMVAgIiIiIiIioqQxUCAiIiIiIiKipDFQICIiIiIiIqKkMVAgIiIiIiIioqQxUCAiIiIiIiKipDFQICIiIiIiIqKkMVAgIiIiIiIioqQxUCAiIqIR0+bw4or7P8PJdme6j0JEREQpxkCBiIgojarNLrTYvOk+xojZWdOJXXVWPLShKt1HISIiohRjoEBERJRGtz66Dfe+cSjdxxgxdR1uAMAru5tgcwfSfBoiIiJKJQYKREREadJq96LG4kaj1ZPuo4yY2g435FIBnkAIz++sT/dxiIiIKIUYKBAREaXJjppOAIDZ6UvzSUZOncWN2QUGLC3LxJNbahEOi+k+EhEREaUIAwUiIqI02VHbASASKIjixPjiXdvhQmm2FjeuKkONxY0NJ8zpPhIRERGlCAMFIiKiNNlZG6lQ8AbCcPqCaT7N8AVCYTRZvSjL0uDCuQUw6ZT4z6aadB+LiIiIUoSBAhERURq4/UEcbLKj0KgCAJid/jSfaPgaOz0IhUWUZmugkElw/fISfHS0DfXRQY1EREQ0sTBQICIiSoM99VaEwiLOn5sPYGLMUaiNBgdlWRoAwPUryiARBDy5tTadxyIiIqIUYaBARESUBjujAxnPmx0NFBzjP1Cos7gAAGXZWgBAvlGF82bn4dnt9fAGQuk8GhEREaUAAwUiIqI02FHbiWm5OkzJjXz5nhAVChY3lDIJcvXK+G03rSqH1R3A63ub0ngyIiIiSgUGCkRERKMsHBaxq64TS8szkaVRQBCA9gkwQ6Guw43SLA0kEiF+28rKLEzP0+E/m2snzCYLIiIiimCgQERENMqOtznh8AaxpCwLMqkEWRrFhKhQqOtwoyxb0+M2QRBw48oy7G+0YU+9NT0HIyIiopRgoEBERDTKdtR2AACWlmUCAHL0SrSP8xkKoihGKxS0ve67fHExdEoZntjM4YxEREQTCQMFIiKiUbazphMmnSJ+Nd+kU477CoV2pw9ufwilWepe9+mUMly5uAhv7Gse9z9PIiIi6sJAgYiIaJTtqO3EkrJMCEJk1oBJN7SWh7E0k6DOEl0Zmd27QgEAblxVBn8ojB++sA8Hm2yjeTQiIiJKkUEDBUEQSgRB+FgQhMOCIBwUBOFb0duzBEF4XxCE49F/ZnZ7zo8FQTghCMJRQRDOT+VPgIiIaDxpc3hR1+HG0rKs+G0mnRJmR+JDGUVRxNPb6jD//72Hj4+2peKYSQmGwrjvw+OQSQTMLND3+ZipuXp8+5xp2HTSgs//dSN+986RUT4lERERjbREKhSCAL4riuIsACsBfE0QhNkAfgTgQ1EUpwH4MPrviN53LYA5AC4AcL8gCNJUHJ6IiGi82VnTCQBYUh7P4WHSK+EJhODyBQd9vsMbwDef2YMfv7QfDl8QW05aUnbWRIiiiHteO4gNx834xWVzUWDs3fIQ8+1zpmPLj8/GubPz8NimGjgT+PkSERHR2DVooCCKYrMoiruiP3YAOAygCMClAB6PPuxxAJdFf3wpgGdEUfSJolgN4ASA5SN8biIionFpR20nFDIJ5hQa4reZdEoAGLTt4UCjDRf/bSPe3NeE758/A9PzdDjZ7hyxs4miiL9+eBwfHWnt936r248DjTa8c6AFf3rvKC77x2d4amsd7jq9EtcuLx30PYwaOb58eiXc/hDe2tc8YmcnIiKi0SdL5sGCIJQDWARgK4A8URSbgUjoIAhCbvRhRQC2dHtaQ/Q2IiKiSW9nbScWFBuhlHUV7+XouwKFvmYQiKKIJ7bU4hdvHEaWVoFn7lyF5RVZONRkH9F5BFVmF/70/jEAwPlz8rCkLBMNnR40dnoi/7R6elQVSARgYUkG/vdzM3HH2sqE32dxaSYqc7R4bkc9rl5Wgt+9cwQ7ajpx/w2L4+EKERERjX0JBwqCIOgAvAjg26Io2mODpPp6aB+39ZoaJQjCnQDuBIDS0sGvaBAREY133kAIB5tsuP2UL98mnQIA+lwd6fIF8b3n9+LtAy04c0YO/nj1QmRpI4+fkqPF2wea4QuGegQUQ3WgMRJOXL+iFC/tasC7B1uhV8lQnKlBSZYGq6ZkozhTHf2fBmXZGuhV8qTfRxAEXL20BL95+wh+9dZhPLi+CgBw3YNb8N8vrYwHLERERDS2JRQoCIIgRyRMeEoUxZeiN7cKglAQrU4oABCbCtUAoKTb04sBNJ36mqIoPgjgQQBYunTp2BlTTURElCJ7660IhEQsLcvscXtO9Kp8u7P3YMZHNlbj7QMt+PGFM/GldZWQSLpy+ym5OoRFoNbixvS8vochJuNgkx0KmQQ/v2QOfnThTIgiYFQnHxgk4opFRfj9u0fx4PoqnDUzF7evrcAdj+/A9f/egle/vgYaRVJFlBOWNxDCZf/4DCsrs/GjC2dCJedYKiIiGjsS2fIgAHgYwGFRFP/U7a7XANwc/fHNAF7tdvu1giAoBUGoADANwLaROzIREdH4tKM2OpDxlEAhS6uAIADmPioUXt/XhOXlWbjr9Ck9wgQAmJKjAwCcbEtujkK12YVHP6tGKNwzzz/QaMOsfD3kUgkMKnnKwgQAyDWocOmCQswtMuC+axdizVQTHrxpCY63OfG7d46m7H3Hm0arB0daHHhsUw2uuH8TmqyedB+JiIgoLpEtD2sA3AjgLEEQ9kT/9zkAvwFwriAIxwGcG/13iKJ4EMBzAA4BeAfA10RRDKXk9EREROPIztpOTMnRIjPashAjk0qQqVH0Gsp4rNWBY61OfH5+QZ+vV5kTmbeQzGDGt/c34+K/bcTPXz+ET491rZwURREHGm2YU2RM+LWG6/dXLcDrX18bb5tYNy0Ht6wux2ObarClKr3bK8aKNnvk98Sdp1XieJsDj35WneYTERERdUlky8NGURQFURTni6K4MPq/t0RRtIiieLYoitOi/+zo9pxfiqI4RRTFGaIovp3anwIREdHYFw6L2FnbiaVlWX3eb9L1DhTe3NcMQQAunJff53M0ChmKMtQ4kUCFQiAUxi/eOISvPLULU3N1yNDI8fLuro7Ehk4P7N4g5haOXqAglQg4dSbTDy6YgbJsDb7/wt6E1mhOdG0OLwDg6qXFKM7UoNnmTfOJxob3D7Xi8U016T4GEdGkl0iFAhEREQ3TyXYnbJ4AlpRn9nm/SaeEudsMBVEU8eb+ZqyoyEKuXtXv61bmaHGy3TXge7favbj+31vw0MZq3LyqDM/dtQoXzy/Eewdb4PAGAHQNZJxbZBjopVJOo5Dh919YgIZOD37z9pG0nmUsaLVHAoRcgwo5emW8YmEys7r9+N7ze/HXD4+n+yhERJMeAwUiIqJREJufcOpAxphMjQJWd1egcLTVgRNtTnx+fuGArzs1V4eT7U6IYt/zjTedNOPzf92AA4123HftQvz80rlQyCS4bFERfMEw3jnQAgA40GSDTCKMyHDH4VpekYXb1lTgiS212HTCnO7jpFWr3Qe1XAq9UoY8gwqtDlYo/PXDE7B5ArC4/PAG2FVLRJRODBSIiIhGwc7aTmRrFagwafu836CWw+bpKvH/8HBkvsEFc/pud4iZkqOD2x9Ci73nF01/MIz7PjiOGx7aCqNajte+vgaXLiyK37+4NANl2Rq8sqcRAHCg0Y5pefoxs0Xge+fNQKVJi++/sA/OSdz60ObwIdeghCAIyNMr0Wr39hseTQbVZhee2FKD3OhqUQ6pJCJKLwYKREREo2BnbScWl2X2mhkQk6GRw+4JxL8sttq9yNDIkRP94tSfrk0PXW0PB5tsuOTvG/HnD47h4gWFePXrazHtlMoDQRBw2cIibDppwdPb6nCg0Ya5heltd+hOrZDi91ctQLPNg1+9dTjdx0mbVrsXedGWlzyDCt5AGI4UBCybTphxpMU+4q870n7z9mHIpRLcfdFsAECTlRUbRETpxECBiIgoxZptHlSbXb3WRXZnVMvhD4XhiZZwW90BZCSwtnFqbiRQiH0ZtLkDuPmRbeh0+/Hvm5bivmsXQaeU9fncL64oxYw8PX780n5YXH7MHcUND4lYUpaJO9ZV4r9b67D+WHu6j5MWbXYvcg2RUCn2zzb7yH6J3nTSjBsf2YafvnxgRF83WU5fELc+ug1/fv9YfBhld1urLHj3YCu+cvoULCzJAMAKBSKidGOgQERElGIPrq+CVCLgc3P7Xv8IRAIFALB5IkMSO91+GDWKfh8fY9IpMKvAgPs/OYlmmwe/f+8IOlx+PHLLMpw7O2/A5+YaVHj7W+vwwpdX4atnTMElCwae15AO/3PudEzJ0eJHL+6DPTpAcrIQRRFtDh/yDJEKhdhwztYRHMxYa3Hhq0/tQlgUsbveGh/SmQ77G2z4+Gg77vvwONb85iN8fKRrrWk4LOKXbx1GvkGFO9ZVIs+ggiAAjQwUiIjSioECERFRCrXZvfjv1jpcvqgIpdmafh93aqBg8wSQqRm8QkEQBPztukXwBUK4+ZFteGprHW5eXY45Ca5/FAQBS8uz8IMLZiJTO3iAMdpU8kjrQ5PNiyc216b7OKPK6QvC7Q/F5wXkRSsUWkeoQsHhDeCOx3dAFIFfXz4PobCILVUdgz8xRWotkbadJ25fjnyjCv/89GT8vtf2NmFfgw3fP38G1AopFDIJcvVKVigQEaUZAwUiIqIUenB9FYJhEV8/c+qAj4sHCu6uCoVEWh6ASNvDr6+cj2OtTuTolPifc6cP79BjzOLSTKyZmo0nNtciEAqn+zgjIhwW4fEPvKEgVokQr1AwjFyFQigs4tvP7EGV2YUHvrgYly8uglouxcbjQ28tOdHmgGsY8x1qO9yQSwWsnmLCtctKsbW6A7UWF7yBEH73zhHMLTLg8kVdg0ULM9RosjFQICJKJwYKREREKWJ2+vDk1lpcurAQ5f1sd4iJBQrWaIWC1R1ARgItDzGXLCjE778wHw/etBR6VWJBxHhy6+oKtNi9ePdgS7qPMiL++P5RrP3tRzje6uj3MbE5ArHZCTqlDDqlrM/5Asn6/btH8eGRNtxz8WysnmqCUibFisosbBjims5gKIxL/v4ZHv2seshnqrW4UJKlgVQi4IrFRZAIwAs7G/Dwxmo02bz4yedmQyLpGmpamKHmUEYiojRjoEBERJNKp8uPE23OUXmvN/Y2wRsI48unTxn0sd1bHoKhMBzeIDISaHno7qqlJfFhdRPNWTNzUZatwaOf1aT7KCPiSLMDFpcfX3xoa7zU/1Rt0UqE2OyEyI+V8dv78/GRNiz9xQe49O8b8b8v74cv2LMS4uXdDfjnpydx/YpS3LiyLH772qkmVLW7hjSXoMPlh9sfQn3H0CsGasxulGVF2oIKjGqcNj0Hz26vx/0fn8C5s/Owakp2j8cXZajRaPVM6jWaRETpxkCBiIgmlV++dRiX/eOzYZVmJ+qNfc2Yma/H9FNWNvbFGA0P7J5AfI5CZhIVChOdRCLgplXl2FnbiX0N1nQfZ9garR7MKjAgEArj+n9v7fNLfGxWQmx2AhCpVhhshsL2mg50uHyQSAT8d2sddtdZ4/ftruvED1/cjxUVWfj5JXN6rDFdNy0HAIbU9tDujIQcZufQ2jFEUUStxYWy7K5KnquXlqDN4YMvGMaPL5zZ6zmFRhX8wTAsLv+Q3pOIiIaPgQIREU0aoijisxNmOH1BvLW/OaXv1WzzYEdtJz4/r//NDt3pFDJIhEirQ6ztIdkKhYku1j+/NY2DA0dKo9WD5eWZeOL2FbB7Arjhoa29WhnaHD5oFNIeaz/zDCq0DtLyENsM8a8blwAADjZFVoo6fUHc9cRO5BmUeOCGJZBLe34MnJ6nQ65eiQ3Hk297aHdEgoT2IQYKZqcfLn8I5d0Gl549KxeFRhVuW1uByhxdr+cUZqgBcHUkEVE6MVAgIqJJo67DjWZb5MvY8zsaUvpeb+2P9Pp/fn5igYJEIsColsPmCcDqjlxxNSY4lHGyyNTIoZBKYHaN3NrEdLB7A3B4gyjMUGNukRGP3bYMrXYvbnxoGzq7XW1vtXuj6xG7qgjyDCq02n0Dlvm32r3I1SuRq1fBpFPiUDRQ2F7dgTaHD7+4bB6y+tjoEdn4kRkPIJIRDxQcQ/u1qeuItH2UdZs1opRJ8cn3z+yzOgFgoEBENBYwUCAiokljS5UFAHDF4iJsq+lAtbnv3vWR8Oa+JswuMPR5ZbU/XYECWx76IggCTDoFzI7xXeIe+wJclBn5QrykLAsP3bQU1RYXbnpkG+zeyK9/m92HHL2yx3Nz9Ur4g2HYPf237LQ7fPGNEHMKDTjYZAMA7KzthFQiYFl5Zr/PrTTpUNfhTnqbhtnpj/5z4LCjPzVmNwCgPLvn8FKFTNIjUOmuKB4ocDAjEVG6MFAgIqJJY/NJC0w6JX5w/szoBPn6lLxPo9WDXXXWhKsTYmKBQqebLQ/9ydYpYRnnFQqxQCF2hR0AVk814Z83LMbhZjtue3Q7PP4Q2hze+MrImPjqyAHaHmIVCkAkUDjR5oQvGMKO2g7MLjBAo5D1+9wKkxahsIj6DndSP6dYZUIgJMZngCSj1uKCROgKCRKRoZFDLZeyQoGIKI0YKBAR0aQgiiK2VHVgZWUW8o0qnD49By/ubEQoPPIT4j+Lrt47b3ZeUs8zqOWwdmt5SGZt5GRh0imGPPhvpO1vsOH8P69PaCvCU1tr8eqeRgBAY2fk8cWnfHk+a2Ye7rt2EXbWdeLbz+5Gq92HvFMqFGL/3t9gRn8wjE53IB5EzCk0IhgWcajJjr31Niwp6786AQAqciIVAslW73SfnTCUtocaixtFmWooZIl/NBUEAYUZKjTZGCgQEaULAwUiIpoUai1utNi9WFkZWT139dIStNi92DCEifaDOdHmhEImSardAYgECLEtDxIB0Cv7v5I8WWXrlLA4x0bLw4MbqnC01YHHN9UM+th/r6/CA5+cBAA0Wr1QSCUw6ZS9Hvf5+QX46edn492DrfAEQr0qFGL/3trP6sjYF/vuFQoA8MLOBngCoUEDhUrT0AIFs8MHqSTSmjCUQKHW4urV7pCIwgw1GtnyQESUNgwUiIhoUtgcnZ8Q22V/9qw8ZGrkKRnOeLLNiUqTNv4FK1FGtSza8uBHhkYBSZLPnwxM0UBhKH36I8ns9OGdA82QSwU8s60Obn//Mw1EUUSzzYvjbU54/CE0WT0oyFD1++t725py3LCyFACQbzy15WHgCoWuVZOR55VmaaBTyvDy7kh1xGCBQoZGgUyNHFVDqFCYEq1uGMqmh9oON8q6bXhIVFGGOl7xQUREo4+BAhERTWh/ePco1v72I/z89YPI0SvjV2AVMgkuW1SE9w+19pisPxJOtDsxJcnqBKDnDIUMbnjok0mngD8Uht3b/xf40fD8jgYEQiJ+cdlc2L1BvLSrsd/HWt0B+IJhhMIiDjXb0Wj1oNDY/6wAQRDw/y6eg/uuXYhzZvVsm9EoZNCrZGjrJ1Boi1YuxIY5SiQCZhXo4faHUGhU9Zjb0J8KkxbV7UlWKDh9mFUQqYZItkLB6vbD6g4MqUKhwKiG2emDP5jcEEkiIhoZDBSIiGhCe3l3IxRSCa5ZWoLfXDGvx8T4q5aUwB8Kx3vbR4I3EEJ9hxtTcocWKITCIho7PTByIGOfsnWRuRLpnKMQDot4elsdVlRk4eqlJZhfbMRjm2r6rZqIrSoFgH0NVjRZPfEND/2RSSW4dGER1Appr/tm5uvxweE2eAOhXve1OXpWKACROQoAsHiQ6oSYCpMuqZYHXzAEqzuASpMOCpkk6QqFWktkAGRpVvIVCvnGSHDSNsCQSiIiSh0GCkRENGEFQmE02zy4aH4Bfn7pXJx9ytXe2YUGzC0y4LkRbHuosbgQFoGpQwwUgEg/OVdG9i02dyCdcxQ+OdaGug43vriyDIIg4JbV5TjR5sSG4+Y+H99i7yrJ31VnRavdm1ClQH++dfZ0NFo9eHJLba/72uyRWQbZ2q7fP7OjcxSWJhgoVOZo0WL3DtjG0V3s1yJHr0SOTpl0hcLxNmf0fZP//0wsOGmxMVAgIkoHBgpERDRhtdi8CItAcWb/Vz6vXlqCQ812HGi0jch7noh+OYr1kyfDqI58CWTLQ/+ytZFAIV0VCnZvAHe/chDl2RqcPycSUH1+fgFMOiUe62c4Y6xCYU6hAZ8caYv8nhxGoLB2mgnrppnw949PwO7tuaKx1e5Fjk7ZYz7DadNysKg0o1eg1p+KaFtQjTmx1ZGxX4scvRImvRLmJMOeI812KGWS+PsmoyDaOtLSTwsIERGlFgMFIiKasOo7Il+IigcoL79kQSEUUgle2DkyVQon2pwQBKDSNPQKBYArI/tj0kf+u1jSFCj87JUDaLF78edrFkIpi7QjKGVS3LCyFB8daeuzVaDF5oVEiAwCdfgiV/2HU6EAAD+8YCas7gAe/LSqx+1tDl98cGNMvlGFl7+6BiUJthRUJLnpIVaRMNQKhaOtDkzP0yc9xBQA8lmhQESUVgwUiIhowmqITn8f6ItUhkaB8+bk4ZU9jfAFe/ekJ+tkuwtFGeo+e98H0zNQYIVCX7I0CggCkr4KPhLeOdCCV/Y04ZtnTcOi0p7tA9evKIVcKvS5QrLZ5kWuXoVFpRnx2wozVL0el4y5RUZcvKAQD22s6jGgsdUeea/hiA1HrDY7E3p8j0BBn3ygcLjZgZn5+uQOGWVQy6CSSxgoEBGlCQMFIiKasOo73ZAIvVfvnerqpSWwugP44FDbsN/zRJtzSPMTAPQYxJjJQKFPMqkEmRpFWloePj3WDqNajq+dOaXXfbl6FS6eX4jnd9T3akNosXmRb1RhXpExfttwKxQA4HvnTUcwJOIvHx6P39beR4VCstQKKQqMqoRXR8Z+LbK1CuToFOhw+RAKJ7bWs93hg9npw4whBgqCIKDAqGbLAxFRmjBQICKiCauh04MCoxpy6cB/3a2ZakKBUYXndtQP6/3CYRFVQ1wZCaDH3AQjWx76la1VpGUoY0OnG2XZGsj6+f1065oKuPwhvHDKkM9mmwcFRhVMOiWKMtQw6RRQyZOvYDlVWbYW168oxbPb61HV7oQ/GIbF5UfeMCsUgEjbw8FGe0KtJe0OHwwqGVRyKXL0SoRFoCPBVaxHWxwAEF85ORR5BiVaGSgQEaUFAwUiIpqw6jvcA85PiJFKBHxhSTE2HG8f1heTRqsHvmB4yBUKGoUUsmgfOSsU+mfSKdNSodBo9Qz4+2lesRFLyjLx+Oaa+BV6URTRHK1QAIDTZ+RgQXHGiJ3pG2dNg1ImwR/eOxr/bzLcCgUAWFaehaOtDiz/1Ye44/EdaLJ6+n1su9OHHH3kPWP/7N72sKOmA2/vb+5zreaRFjsADLnlAYjMUWhmywMRUVowUCAiogmrodOT8CC61VNMCIvAybbE+sb7EtvwMNRAQRCE+ByFDDUrFPqTrVPAkuAV8JEiiiIaOz0DbgwBgFvXlKPW4sbHRyLtMw5fEG5/CAXRQOGXl83Fw7csG7Fz5eiV+NK6Sry1vwXvHWwBELliP1zfPmca3v7WOtx1WiU2nzTjgr+sx6t7GhHuo5XB7PDH13nGA4VouPHpsXZc/9BWfOWpXfj607th8/RsBznS4oBJp0S2buhnzjOq0Gb39RlYjLRmRzNOf+x0tDhbUv5eRETjAQMFIiKakHzBEFod3oQqFICugYin9r8nY0+9FQCG3PLQ/Rwcytg/k04Jc5KD/4ar3emDLxge9PfT+XPyUWBUxVdIxoYF5kfXGwpC8psMBvOl0yqRrVXgD+8dA4BhD2UEIuecVWDADy6Yibe+tQ5TcnX41jN7cM6fP8V/NtfAGd1WAfSsUIgFC+0OHzYeN+PO/+zAlBwdvnPOdLx7oAWfu28Dttd0xJ97pMWOWQVDr04AgAKDCv5QOOE2i+G4d/292Fi3Efd+em/K34uIaDxgoEBERBNSk9ULUQRKBrmiHGNQywAAdk9wkEf2LRAK49nt9Vg3zYQs7dCrC2KDGRko9M+kU8DhC8IbGP5WjkTFNoYMFijIpRLcsLIMG0+YcazVES/FLxhkMOhw6JQyfOOsqfEv+SPR8tBdWbYWz9+1Cn+5ZiH0Shl+9upBrPrVh7j3jUOotbjQ7ugdKDy7vQ63PrYNFSYtnrpjBb51zjS88JXVkEkFXPOvzfjz+8fgC4ZwvNWJGXnDCxRi7SSpbnuo7mzAQ7seQVgM49E9j7JKgYgIDBSIiGiCauh0Axj8C2CMoZ8KBVEUcf6f1+OJzTUDPv/9Q61osXtx06rypM/anVEth0wiQKeUDet1JrJYefxotj3EAoWijMEDquuXl0Ipk+DRz2rQYos8L9+QukABAK5fUYaSLDUkApCtHdlAAYhs17hsURFe/fpavPTV1ThzZi4e31SDM/7wCZy+YDxI0Cpl0Cqk2F7TiZWV2Xj2rlXxgG1hSQbe/OY6XLaoCPd9eBwX/20jfMEwZg5jICMA5EX/26ZyMGM4LOKSx76DQCgSYoXEEKsUiIjAQIGIiCao+o7oFeUEZyjoFDIIAnr1eDt9QRxtdWDjCfOAz39sUw2KM9U4a2bu0A4claGWI0MjT0lp/EQR+/KayAaCkRILqIoSCKgytQpcvqgIL+9uwOHmyBaDvBQHCgqZBH+8aiG+e94MSCWp/b2zuDQTf71uET770Vn4+plTUZmjxbLyrPj9F8wtwJfWVeDRW5bFW3hidEoZ/nT1Qtx37UI0WyMBwHAGMgJAQbSdJJWrI+95cwMO2l4DhEgViD/kZ5UCEREAXv4gIqJxKRAKIxQWI/8TRYhhICSKEBD5QtfQ6YZMIiR8ZVgiEaBXymA/JVCIXfU81tr/sMbDzXZsq+7A/35u5rC/zN22tgJnzcob1mtMdNm6yBXv0Vwd2dDpQaZGnnDlyC1ryvHM9no8va0OJp0SClnqr+Esr8jC8oqswR84QvIMKnz3vBn47nkzetz+x6sXDPrcSxcWYXFpJjZXWTCncHgVCiadAhIBaE1Ry8Nz2+vxl22/gUQmonuTTaxK4R+f/0dK3peIaDxgoEBEROPO9poOXPfgFgT7mDgPABfNL0AgFEZhhjqpL/gGtRx2b88ZCi22yFXwGosL3kAIKrm0x/2iKOLP7x+DSi7B1UtLkvyZ9Da/OAPzR3Ct4ESUo+u5SWA0NCSw4aG7mfkGrKrMxuYqC6ancH7CeFaSpUl4C8tAZFIJcvTKlMxQ2HjcjP99eT/kuhNwBnqGjf6QH5saNo34exIRjScMFIiIaNx5fW8T5FIJvnveNEgEQCoRIBEESASgyebFg+urAABrpmYn9bpGtbxXhUKsjFoUI2sh5xYZe9z/2t4mvHeoFT++cCYyNFz1OBrSU6HgTnp44K1ryrG5yhIfGkipk29QjXjLw7FWB77y5E5MydFh11cOwqCSY0uVBdc+uAWP3LIUZ81kJREREQMFIiIaV0RRxIeH27B2mglfOWNKn4+ZW2TE957bi0pTcusbDSp5r6GM3Qe9HWt19AgU2hxe3PPaQSwqzcAd6yqTei8aOo1ChgyNHHUd7lF5P1EU0djpwdlJzsc4e1Ye5hcbsbg0M0Uno5h8owrVZtewXuORjdV4c38z/nz1QqgUEtz66HaoFFI8cusyGFSRWRDzi42QSgTsqrUyUCAiAgMFIiJKo6MtDkgEoNykhVyaWI/5sVYnGq0efOOsqf0+5pIFhVhQbERmkusbDWoZasw9v6S22LzQK2XwBcM42uqI3y6KIn768gG4/SH8/gsLUj4Ij3qama/H4Wb7qLxXu9MHXzCcVMsDEKmcee3ra1N0Kuou36DCppOWIT9fFEU8vLEajVYPLv3HRuQZVOhw+fHcXatQlNE1iFOjkGF2gQE7aztH4thEROMeAwUiIkoLhzeAi/62AYGQCIVUgsocLWbk6zE9T4+Z+XosLcuCUSPv9bwPDrcCAM4c5GpxWbY26TP1V6FQkKGCRBBwrKUrUOje6jA1N7lKCBq+WQUGPLOtHqGwmLIw5/+9dhAObxDXrygFkPgKUhp9+UY1HN4g7N5AvJogGfsbbfGg8s39zTja6sCDNy7FvGJjr8cuLs3AczsaEAyFIYsGoW5/EHKpJOFglIhoomCgQEREaVFtdiEQEnHL6nKo5FIcbbFjR00nXt3TBABYUZGFZ+9a1et5Hx1pw7wiY0rW8BnU8l5rI1vtXuQZVMjSKrCjJnJVkq0O6TerwABPIIRaiwuVOSMf6Oyo6cBjm2oAAC326ArSJCsUaPQsKIl88d9y0oLz5uQP+vhwWESNxYVsnRJGtRxv7W+BTCLg9rUVuOv0KWjs9GBGP+ssF5dl4vHNtTjS0tUCdfk/NqEkS4N/37SEK1+JaFJhoEBERGkR63e+bnlpjw/udm8Av3n7CJ7bXg+PPwS1omurQofLj111nfjmWdNSciaDSg63P4RAKBy/0thi92J6nh7lJi1e3dMEhzfAVocxYHZBZNXg4WbHiAcKoijiF28eRp5BiSk5Onx2IlJKX8QKhTFraVkWtAopPj3WPmCgcLTFgfs+PIYNx81weIOYmqvDK19bg7cPNGP1VFN8sGp/YQIALCmLzMTYWduJuUVGtDm8ONrqwNFWB17f14xLFhSO7E+OiGgMY10WERGlRa0lMqugLLvnVV+DSo5zZ+chGBaxu75nn/IHh1shisDZs5IbjpcogzqSszuiqyODoTDaHT7kG1XxCf9/fO8Y3jvUiu+dN52tDmk0NVcHqURIyRyFN/Y1Y0+9Fd89bwb+ePUCGFSRIZA6Ja/DjFUKmQSrp5rw6bF2iGLvdbKNVg++9/xeXHDfemw4bsZF8wvwvfOmo6rdiRsf3opaixufmzt4ZQMAFGWoUWhUYWt1JGjaVWsFAOTolfj5awfR6Rq97SNEROnGvxmJiCgtaswuFBhVUMmlve5bUpYJQQC2VXdg9RQTgMhV48c31WBKjhZzC3v3NY8EozrSe233BJClVcDs9CMsAnkGFaZHA4XHNtVgUWkGbl/LVod0UsmlmJKjHfFAwRcM4bfvHMHMfD2uXFwMqUTAv25cimabZ0Tfh0be6dNz8P6hVlSZXZgSrVqxuv24/5OTkfYVEbhjbQW+esbU+MBWmVSC37x9BFKJkFCrBAAIgoCVldlYfzwSXuyu64RCKsHDNy/FFfdvwh/eO4pfXj4vVT9NIqIxhYECERGlRbXFhfJ+BicaVHLMLjBge01H/LYtVR042GTHr6+YB0mK2gxiw9xigxlje+3zDCoUZ6qhlksREkW2OowRM/NHftr+fzbVoqHTgydvXxH/NV41JXtE34NS4/TpOQCAT4+2ozRLg4c2VOP+T07A6QviysXF+M6503tsbACAu06rREOnG6IIZCWxFWZFZRZe2t2Ik+1O7KrrxJwiA+YXZ+CMGbk9/twiIproGCgQEVFa1FrcOH+AK4LLyrPwzPY6+INhKGQSPLShCtlaBS5fVJSyMxniFQqRlocWWyRQyDeoIJEI+NqZU1CcqWGrwxgxq8CA1/Y2weYO9LkRJFmdLj/+9tFxnDEjB2unmUbghDSaSrI0mJKjxTsHW/DJsXasP9aOs2fm4vsXzMDMfEOfzxEEAb+4LPlqgpWVkZBpw3Ez9jXYcMPKMgBAZY4W64+3IxwWUxZ8EhGNJQwUiIho1Nk8AXS4/Kgw9T81f3lFFh7bVIMDTTYYVHJ8eKQN3zp7Wp8tEiMlNkMhtumhzRGtUDAqAQBfT9EwSBqaWQWRNpTDLfb4F7zh+OtHx+H0BfHjC2cN+7UoPU6fnotHPquGVCLgN1fMw7XLS1PyPqVZGuQbVPjP5lr4gmEsKs0AAJRna+EPhtFk83ArCBFNChzKSEREo64muuGhrJ+WByBSoQAAr+9twjee3g2lTIIbV5Wl9Fy9Wh5sXsgkAkxaZUrfl4ama9ND/3MU6jvc+NN7R/Hmvma0RltY+lJtduGJzbW4ZlnJgBP+aWy7YnERpuXq8Mgty1IWJgCRyoYVlVnxbTWLSyObHypMkT/TYrcTEU10rFAgIqJRV2OJfNiOffjuS45eiUqTFo9+VgOdUoYHb1oKky61X+wN3YYyApEZCrl6JUuXx6gcvRJZWgWOtjj6fcy/N1ThP5trAQAyiYBNPzoLuQZVr8f99u0jUMgk+M6501N2Xkq9uUVGvP8/p4/Ke62szMare5qQb1ChMDqbIfZnWo3ZhXXTckblHERE6cQKBSIiGnU1ZjcEIVI2PJDPzStAebYGL3xlVXzgWippFVJIJUK8QqHV7kWesfeXTxobBEFAYYZqwMqDjcfNWDfNhN9dOR/BsIiT7b2vHG+v6cA7B1vw5dOnIFfPX29KzIqKSBXV4rKM+G15BiXUcimqWKFARJMEKxSIiGjU1VhcKDD0vTKyu++eNx3fPW86BGF0KgQEQYBBJesxlDG2LpLGphydEmanv8/7Gq0eVJlduH5FKZZFv/w1WXuufxRFEb988zDyDErcsa4i5eeliaPCpMUVi4pw8cLC+G2CIKDcpI23dRERTXSsUCAiolFXY3GhfIB2hxhBEEYtTIgxqOXdKhR8yOujPJ7GDpNOiXaHr8/7Nh5vBwCsm5aDgmilyamBQl2HG3vqrbjrtCnQKHidhRInCAL+dM1CnDkjt8ftlSYtaizuNJ2KiGh0MVAgIqJRV2NOLFBIB4NKDrsnAIc3AKcvyEBhjMvRK2Fx+RAOi73u23DcjFy9EtPzdFDJpTDpFGiy9QwUdtdZAWBEtkQQAUC5SYO6DjcCoXC6j0JElHIMFIiIqF81Zhe+//zeAXvUk2VzB9DpDqBigA0P6WRQy2DzBHCgMbI5YEa+Ls0nooGYdEoEQmJ81WdMOCxi00kL1k41xatcCoxqNFp7/l7eXdcJjUKK6Xn8daaRUZ6tRSgsoqHTM/iDiYjGOQYKRETUp911nbjigU14fmcDnt1eP2Kv+8HhVgCRaexjkUElh90bxO76TgDAopLMNJ+IBpKjj2z+MDt7tj0carajw+XH2mmm+G2FGSo0n9LysLveivnFRsik/EhEI6MyJ7Y60pnmkxARpR7/9iQiol7ePdiC6/69BTqlDFNzdfjwSNuIvfZ/Ntdgaq4OKyuzRuw1R1Ks5WF3nRUVJi0ytYp0H4kGEFsleuochQ3HzQCAtVO7BwpqNFk9EMVIe4Q3EMKhJjsWMjSiEVSeHQsUOEeBiCY+BgpERNTD45tq8OUnd2JmvgEvfXU1LltYiL311n4H3yVjd10n9jbYcPOqslEftpgoo0YOWzRQWFSake7j0CBy9JHAp/2UCoWNJ9oxI0+P3G4zMIoy1HD5Q/EtHgebbAiGRf4604jK0ipgUMm46YGIJgUGCkREBCDSc/6rtw7jntcO4pxZeXj6Syth0ilx1sw8AMDHR4dfpfD4phrolDJcvrh42K+VKgaVDL5gGGanD4tKeeV6rMvRRQKD7qsjvYEQttd09mh3ACIVCkBknSTQNZBxUUlG6g9Kk4YgCKgwaVHNQIGIJgEGCkREBG8ghG88sxsPrq/CzavK8M8blkCtkAIAZhXoUWBU4aPDyQUKW6osuOPx7Xh5dwPMTh9e2tWAN/c34wtLiqFTjt31fAa1PP7jxbxyPeYZ1DIopJIeFTTbqjvgD4b7DRSaugUKRRnqHlUMRCOhnIECEU0Sg36iEwThEQAXAWgTRXFu9LYFAP4JQAegBsAXRVG0R+/7MYDbAYQAfFMUxXdTc3QiIhopj3xWjTf3NeMnn5uFO9ZV9GhHEAQBZ83MxSu7G+ELhqCUSQd9PV8whB++uA/1HW580C2IKMlS4/a1FSn5OYyIRYtw0549uCn277+N/nPhQmD37vSciQYkCAJMOkWPoYwbT5ihkEqwoqLnnI7CjEhwEFsduaeebS2UGhUmLV7b2wRvIASVfPA/M4mIxqtEKhQeA3DBKbc9BOBHoijOA/AygO8DgCAIswFcC2BO9Dn3C4LAP0WJiMa43XVWTMnR4kunVfY52+DsWblw+UPYWtWR0Os99lkNai1uPHLLMvz3jhX4n3On48WvrMKn3zsTJVmakT7+yFm1CiH5KUMYFQpg9er0nIcSYtIre1QobDhuxuKyDGgUPa+bmLRKKKQSNFo9aLZ50Gj1YCHbHSgFKkxaiCJQ18HBjEQ0sQ0aKIiiuB7AqZ8gZwBYH/3x+wCujP74UgDPiKLoE0WxGsAJAMtH6KxERJQih5vtmFVg6Pf+lZXZEISunvOBtDt8+NtHJ3D2zFycMSMXq6ea8M2zp2FJWRYkkrE5iDHu7rshSE75q1EqBe6+Oz3noYTk6JTxCoV2hw+Hm+1YNy2n1+MkEgEFGSo0Wb14c18zAOCMGbmjelaaHCpMkU0PVe1seyCiiW2oMxQOALgk+uOrAJREf1wEoPuy8obobb0IgnCnIAg7BEHY0d7ePsRjEBHRcNm9ATR0egYMFDQKGUqzNDjW5hj09f7w7lH4giH85POzRvKYo6OgAN4bboRPGr2yrVAAt94K5Oen91w0IJOuq0Jh08ne6yK7KzCq0Gz14JU9jZhfbMTUXN2onZMmj/JooFBjYaBARBPbUAOF2wB8TRCEnQD0AGKjlfu69CT29QKiKD4oiuJSURSX5uT0vopARESj40hzJCSYPUCgAADTcnU43jpwoHCg0YbndtbjltXlqMwZn1/UNPf+HAp5NFBgdcK4kKNXwuLyIxwWseG4GUa1HHOLjH0+tjBDjQNNNhxotOOyhX1e8yAaNoNKjmytgqsjiWjCG1KgIIriEVEUzxNFcQmApwGcjN7VgK5qBQAoBtA0vCMSEVEqHW62A8CAFQoAMC1Pj2qzC4FQuM/7RVHEz18/iCyNAt84e9qIn3PUFBRAuPVWQCJhdcI4YdIpEAqL6HT7sfG4GWumZkPaT3tNUYYa3kAYUomAixcUjvJJaTKpMGlRxUCBiCa4IQUKgiDkRv8pAfBTRDY+AMBrAK4VBEEpCEIFgGkAto3EQYmIKDUON9uRqZEjz6Ac8HHT83QIhETU9lPC++b+Zmyv6cR3z5sBg0re52PGjbvvBtauZXXCOJGjj2xv2FLVgRa7F2un9l/5GFsduXaqCTn6gX/PEw1HuUnLCgUimvAGDRQEQXgawGYAMwRBaBAE4XYA1wmCcAzAEUQqEB4FAFEUDwJ4DsAhAO8A+JooiqFUHZ6IiIYvNpCxr+0O3U3L1QMAjrU6e93nDYTw67eOYFaBAdcsK+l1/7hTUAB8+imrE8YJky6ymePl3Y0AgHXT+p6fAACl0S0jVyxmuwOlVoVJizaHD05fMN1HISJKGdlgDxBF8bp+7rqvn8f/EsAvh3MoIiIaHaGwiKOtDnxxRdmgj52So4MgAMdaHfjcvIIe9z24vgqNVg/+ePWCfkvNiVIlVmnwydE2lGVrBlxNuqoyGw/dtBRnzeR2B0qt2KaHGrOr35keRETj3VCHMhIR0QRQbXbBGwgPOj8BANQKKUqzNDh+SoVCs82DBz45iQvn5mNlZXaqjkrUL1M0UAiGxX63O8RIJALOmZ039leY0rhXns1ND0Q08TFQICKaxLoGMuoTevy0XB2On7I68rdvH0FIFPG/nxuHayJpQtArZVDKIh9pBmp3IBpN5aZIpUx1OwMFIpq4GCgQEU1ih5vtkEkETM1NbMXjqZsedtZ24pU9TfjSuooBy8yJUkkQBJh0SkgEYNUUBgo0NmgUMuQbVKhmhQIRTWAMFIiIJrGT7U6UZWuglEkTevy03MimhxqzC+GwiP97/SBy9Up89YypKT4p0cCKMtVYXJoJo3qcbxihCaXCpEU1Nz0Q0QQ26FBGIiKauGotbpRF+3wTMT0v0hqxq64TW6os2Ntgwx+vWgCtkn+dUHr9iQNBaQwqN2nxzoHmdB+DiChl+AmQiGiSEkURdR3upAYpTsnRQSIAP3xxPwBgQUkGLl/E9XuUfsWZbLmhsafSpEWnOwCr248MjSLdxyEiGnEMFIiIJimz0w+3P4Sy7MS/iKkVUvzzhiVotnlhUMtw1gxOyyci6k95dHVktdmFRaUMFIho4mGgQEQ0SdV1RPp6kwkUAOC8OfmpOA4R0YRTEd30UGNxYVFpZppPQ0Q08jiUkYhokqoxuwEApVmJz1AgIqLElWRpIBG4OpKIJi4GCkREk1RthxuCAJRkqdN9FCKiCUkpk6IoU41qizvdRyEiSgkGCkREk1SdxYVCozrhlZFERJS8CpMO1WZnuo9BRJQSDBSIiCap2g43SrM4GZ+IKJUqsjWoMbshimK6j0JENOIYKBARTVJ1FnfSAxmJiCg55SYtnL4g2p2+dB+FiGjEMVAgIpqEnL4gLC4/ShkoEBGlVEV0dWRsEC4R0UTCQIGIaBKqtURXRnLDAxFRSnUFCtz0QEQTDwMFIqJxThRFtNi8ST2nLjpxnC0PRESpVZShhlwqoIqBAhFNQAwUiIjGuU+PtWP1bz6MVx0korYjEiiw5YGIKLVkUglKsjSsUCCiCYmBAhHROHe0xYGwCBxudiT8nFqLG5kaOQwqeQpPRkREAFCRrUV1t0BBFEV8crSNmx+IaNxjoEBENM41Wj0AgJokKhTqOlwozeb8BCKi0VBh0qLG4kI4HAkQNp204JZHt+OzE5Y0n4yIaHgYKBARjXONnZFAIamWB4sbZVlsdyAiGg3lJi18wTBa7JF5NyfbnQCA422JV5YREY1FDBSIiMa5WIVCdYL9uf5gGE1WD8o5P4GIaFRURjc9xP6cjq2QrGrnXAUiGt8YKBARjXNdFQqJ7ThvtHoQFsGWByKiUVJ+SqAQqyhLNAgmIhqrGCgQEY1jNk8ADl8QBpUMzTYvPP7QoM+JzVrgykgiotGRb1BBJZd0BQodsQoFZzqPRUQ0bAwUiIjGsaZou8PqKSYAQF3H4FUKddFKBs5QICIaHRKJgPJsLWrMLoTCIuosbsilApoSDIKJiMYqBgpERONYrN1hzdRsAImVz9Za3FDLpcjRK1N6NiIi6lIeXR3ZYvfCHwpjeUUWALY9ENH4xkCBiGicqO9wY1+DtcdtsYGMq6dGKhT62/RwoNGGDpcfQHRlZJYGgiCk7rBERNRDRY4WdR3ueJvDmTNyATBQIKLxjYECEdE48fPXD+ErT+7qcVuj1QOlTIJKkxZZWkV8PkJMMBTGb94+gov+thH/9/pBAJEKhVLOTyAiGlUV2VoEwyI+O2EBAJwxIwcA5ygQ0fgmS/cBiIhocKIoYnddJzrcfviDYShkkTy4sdODogw1BEFAWbYmvooMANodPnzz6d3YXGWBSafAJ8faEQyFUdfhxunTc9L1UyEimpQqciKbHj452gaFVIIKkw4FRhUrFIhoXGOFAhHROFDf4YHF5YcoAs02T/z2BqsHRZlqAJGrX7EKhZ21Hbjobxuwq64Tf7hqAe65eA6s7gDeP9QKXzDMDQ9ERKOsPLqq90iLAyVZakglAipMWpxkoEBE4xgDBSKicWB3fWf8xw2dXYFCrEIBAMqytWi2efGvT0/imn9tgUouxctfXYMvLCnGumkmSATg8c01AIDS6AdbIiIaHSadAjplpDg4Fi5U5mhR3e6EKIrpPBoR0ZAxUCAiGgf21FvjP45tdvAGQjA7ffFAodwUqTr49dtHcMaMXLz29bWYXWgAAGRoFFhcmoktVR0AuDKSiGi0CUKkIgFAfI5NhUkHuzcIS3RoLhHReMNAgYhoHNhTb8XCkgxIBKChMzInoSm64aEwGigsLs1Erl6JH1wwAw/euARGtbzHa8QGgEklQrxNgoiIRk95NFDoXqEAcNMDEY1fDBSIiMY4fzCMg012LCvPRL5BFW95iK2MjIUDJVkabPvJOfjqGVMhkfReCXlGdEVZUYYacin/+CciGm2xCoXYHJvpeXoAwMFGW9rOREQ0HPxESUQ0xh1utsMfDGNhSSaKMzVoiAYJsdaHWMvDYGYXGJCjV8avkBER0eiaX2SETCLEg4SiDDVKszTYGF0lSUQ03nBtJBHRGBebn7CwNAMfHlZja3VkDsKBJhu0Cmm85WEwEomAf924JD4UjIiIRtfZs3Kx+cdnI0evjN+2ZqoJr+9tQiAUZvUYEY07/FOLiGiM21NvRY5eiUKjCsWZajTbPAiEwthVa8Wi0kxI+2hv6M/i0sz4lTEiIhpdgiD0CBMAYN00E5y+IPY1WHs9/kSbE194YBP+9+X9o3RCIqLkMFAgIhrjYgMZBUFAcaYGYRE42e7EkRY7Fpdlpvt4REQ0DKunZEMQgA3HzfHbRFHEE1tqcdHfNmBHbSc+O2Ee4BWIiNKHgQIR0RhmdftRbXZhYUkGgK4BjG/ua0ZYBJYwUCAiGtcyNArMLzLGQ4N2hw+3PbYdd79yAMsrsnHF4iI027wQRTHNJyUi6o2BAhHRGBabn7AoGigURwOFV/c0AUA8aCAiovFrzVQTdtdZ8eqeRlzwl/XYdNKC/3fxbDx+6zIsKM6APxiGxeVP9zGJiHphoEBENIbtqbdCEIB5xUYAQIFRDUEA6jrcmJ6ng1EtT/MJiYhouNZOMyEYFvGtZ/Ygz6DC699Yi1vWVEAQBBQYVQCApuiGHyKisYSjvomIxrA99VZMy9VBr4oEBwqZBPkGFZptXrY7EBFNEEvKMrG8IguLSzPxnXOnQSmTxu+LbfJpsnoxvzhdJyQi6hsDBSKiMUoUReytt+Lc2Xk9bo9sevBicSkDBSKiiUApk+K5u1b1eV8sUGi2RSoU/MEw7N4ATDpln48nIhpNbHkgIhqjai1udLoDWFjSMzgoin645IYHIqKJL1Mjh1Imibc8/PPTkzjnT58iEAqn+WRERAwUiIjGrNhAxlMHL66ako0FJRmoNGlH/1BERDSqBEFAUYYaTTYvAGBnbSes7gCOtjjSfDIiIgYKRERj1p56K9RyKabn6Xrcfs2yUrz6tTUQBCFNJyMiotFUkKFCc7RC4XCzHUBX6ExElE4MFIiIxqjd9VbMKzZCJuUf1UREk1mBUY0mqxcWpw9tDh8AYC8DhQltZ20nvvH0bry6pxEefyjdxyHqF4cyEhGNQb5gCIeb7Lh1TXm6j0JERGlWmKFGm8OLA02R6gS9SoZ9DbY0n4pS6e39zXh9bxNe39sErUKKC+YW4IrFRVhZmQ2phBWKNHYwUCAiGoMONdnhD4V7zU8gIqLJp9CoQlgEPjnaBgC4bGERntxaC6cvCJ2SH+cnonanD8WZavz+Cwvw8u4GvL2/BS/uakC+QYXz5+Shwx3A8VYHlHIpcvVKfOOsqZhfnJHuY9MkxDpaIqIxKD6QsTQjrecgIqL0K4hu9/noSBty9EqcNSsXoggcaGSVwkTV7vAhV6/EqinZ+N0XFmD7T8/B369fhDmFBjy1tQ676zpRlKGGQSXDx0fa8NKuxnQfmSYpRppERGPQnnor8gxKFBjV6T4KERGlWVGGCkBknfC6aSYsiF6J3ltvxcrK7DSejFKl3eFDZU7XNieVXIqL5hfiovmFCIdFSLq1PZz9x0/Qavem45hErFAgIhqL9tRb2e5AREQA0CNcnl1gQJZWgZIsNfY2WNN3KEqpdqcPOXpln/dJTpmhkG9UMVCgtGGgQEQ0xnS4/Ki1uLGwJDPdRyEiojFAq5TBoIoUFs8qMAAAFhRnYG89Wx4mIn8wDKs7gBydKqHH5+lVaLX7Unwqor4xUCAiGmNiq8BYoUBERDGF0TkKMwv0ACJ/RzRaPWix8cr0RGNxRcKB/ioUTpVnVKHN4UU4LKbyWER9YqBARAOyuv3Yz9VUo2p3vRUSAZhfbEz3UYiIaIwozFBDIZVgSo4OALB6igkAsPGEOZ3HGnPCYRE7ajrwm7eP4OMjbYM+vtPlxxOba+D2B0fhdP378HArXt/bBCAyPwFIIlDQKxEIiehw+1N2PqL+MFAgogE9+lkNrvrXJoSYeo+aPfVWTM/TQ8tVYEREFPX5eQW4YWUZ5NLIx/eZ+XqYdEqsP9ae5pONnmZHM05/7HS0OFv6vN8bCOGiv23EF/65Gf/89CRue3w7/ru1bsDX/OmrB3D3qwdx6d8/w7FWx7DO1+nyY1t1R9LPE0UR//fGIfzhvaMAkg8U8o2R1gjOUaB0YKBARAOyewPwBsLx8jtKrZPtTuys6cAiroskIqJurlxSjJ9dPDv+7xKJgNOmmbDxhHnSlLrfu/5ebKzbiHs/vbfP+x/5rBqHmu34v0vnYPtPzsGZM3Lxvy/vx5Nbavt8/MbjZry5rxkXzS9Ap9uPS//+GRqtniGd7UCjDRf9bSOu/tdmNNuSe40qswu1FjcaOj0IhMJJBwq5BgYKlD4MFIhoQL5gGADQxmE/Kddo9eDGh7ZCrZDirtOmpPs4REQ0xq2bbkKHy4+DTfZ0HyXlmh3NeHT3owiLYTy8+xGcMNf3uL/D5ccDH5/EObNycdOqcuTolfjXjUuwpCwTj3xW3ev1fMEQfvbqAZRla/CHqxbg/i8ugScQwpHm5P9bbj5pwRf+uQl2TwAAsC/JVtGPDkdaM0JhEfUd7nigYNIpEnp+XjxQ4Gc1Gn2DBgqCIDwiCEKbIAgHut22UBCELYIg7BEEYYcgCMu73fdjQRBOCIJwVBCE81N1cCIaHf5ooMDUOzVEUcQz2+rwgxf24sr7N8HhC+Lx25aj3KQd/MlERDSprZ2aAwBYf3xk2x7MTh+e2lqLYCg8oq87HPeuvxeBcAgA4AsGsfi+L+PC+zbgp6/sx8u7G/C7d47A5Q/ihxfMjD9HLpXgvNl5qGp3xb+kxzy8sRpVZhf+3yVzoJJLkR/9Um5xJT+H4JXdjVDKpHj72+sgESLVCkCkBeMP7x7FS7sa0DbA56iPjrRBKYt8Las2u9Du9MGolkMpkyb0/rnRSgYO6KR0SKRB9zEAfwfwn263/Q7Az0VRfFsQhM9F//0MQRBmA7gWwBwAhQA+EARhuiiKoZE9NhGNFl88UGDqnQrHWp340Uv7kamRY26REd85dzrmFHIYIxERDS5Hr8TsAgPWH2vH186cOiKvubO2E199aida7T4UZqhx5ozcEXnd4Wh2NOPRPY8iJEYqACAE4VV8CK36a3hltxtPbonMSbhueQmm5el7PHdFZTYAYFt1Bz4/vwBApCLwbx+ewHmz8+I/v6xoNUDHEAKFug43puRoUZypwbRcfTxQePdgC/7+8Yn442bk6bF2mglrp5mwoiILGoUMdm8A22s6cNXSYjy9rT4SKDh8Cbc7AJHgxKRToM3BQGEsEEURNzy8FVcvLcGlC4vSfZyUGzRQEEVxvSAI5afeDMAQ/bERQFP0x5cCeEYURR+AakEQTgBYDmDzyByXiEabLxDJA1tYoZASsT7Lh25eiiVlWWk+DRERjTfrppvw8IZq2NwBGDXyhJ7z+KYa1FrcuPuiWRAEAUDkS9Djm2rwizcPoyAjcrX+UJN9TAQK966/F2GxZ7WEIIjIK3oTz97xdxxrdeBQkx3nzsnr9dw5hQZoFFJsq7bEA4V7Xz8EEWKPmRRahRQKmWTIgcKy8kwAwNwiIz491g5RFLHhuBlGtRxP3L4cn52wYOOJdjyxpRYPb6yGXCrgysXFWFCSgWBYxJWLi/HW/hbUWCKBQqLtDjF5BhUv/owRFpcfn52woKHTg4vmF0IqEbruc/qgVcqgkidWfTIeDHWGwrcB/F4QhHoAfwDw4+jtRQC6NzQ1RG/rRRCEO6PtEjva2yfPdFqi8aZrhgIDhVSIzabI1avSfBIiIhqPLppXCBHAbY9vh8MbSOg5T2+rwyOfVePN/c0AALc/iG89swf/7/VDOGNGDt74xjoUZ6pxeAjzBFJhc8Nm+EM9v+j7Q35satgEqUTArAIDrlxSDIOqd6Ail0qwpCwTW6PbFz452oZ3DrbgG2dNQ3GmJv44QRBg0ipgcSYXKPiDYTTZPCjNjrQqzisywOz0odXuw8bjZqyZmo35xRn4yhlT8NQdK7HvnvPwxO3Lce2yUjy/swE/fmk/MjRyLCrNRLlJi2qzC2anDzlJfi7IM6jY8jBG1He4AQC1Fjc+OdpzdenPXjuIC+/bkI5jpcxQA4WvAPiOKIolAL4D4OHo7UIfj+1z7Kwoig+KorhUFMWlOTk5QzwGEaWaLxipUOAMhdSIlScmU9pIREQUM6/YiL9ftwh76624+ZFtg4YK3kAIx9ucAIB7Xj2InbUduOwfn+GNfU34/vkz8OCNS2FUyzG7wIBDYyRQ2H3Xbqy/vg1lnjew8YvtEO8RId4jYvdduxN6/oqKLBxpcaDV7sU9rx1EpUmLO9ZV9Hpclk6BjiS3WjV0uiGKQGlWJJyYVxxpW3x5dyNa7N74nIsYlVyKddNycO9lc/HKV9dgUWkGrlteCqlEQKVJixpzZChjji65zwV5BtWgLQ/BUDjh0ImGrr4zUn2qlEnw2KaaHvedaHViSs7EmpM11EDhZgAvRX/8PCJtDUCkIqGk2+OK0dUOQUTjEGcojKxmmwe/futwfNBVm8MHg2pilb4REdHounBeAf5+/SLsa7Dhpke2wT7Al8ZjrQ6EwiK+dfY02L0BXPnAZpidfvznthX42plTIYmWZ88qMKDG7ILHPzZGoe2PziWYO4Q5Q7E5Cl97ahdqLW78/NI5fQ48zNIqk255qItejS7LjgQKswoMkAiRoY8AsG6aqd/nzis24uWvrokPkizP1qLR6oHLH0r6QkOeQQmz0x8fpt2d0xfEwxurcfrvP8HC/3sfv3rrMNz+YFKvT4mLVSjcvrYCG46bcbzVASAS6FSZnZiaqx/o6ePOUAOFJgCnR398FoDj0R+/BuBaQRCUgiBUAJgGYNvwjkhE6eQLxL74skJhJDyysRr/Wl+Fo9G/XNrsvvj+aCIioqG6YG4B/n79YuxvsOGmh/sPFQ5FV0xevqgIP7toNs6ckYM3vrEWa0/54jurwICwCBxtdSAcFvHIxur43J90ONBoQ2mWJuE5Ed3NLzZCIZNgR20nPj+vAOum9V0dna1VJL3lIR4oRCsUNAoZpuToYHb6UJ6tQUmWZqCn91Bu6nps8oFC5LNEu7PrAlDsIsaqX3+Ie984hMIMFS5dUIgH11fhwvs2wOljqJAKDZ1uZGkVuH1tBRQyCf67LTI0tLbDjUBIxLRcXZpPOLIGHcooCMLTAM4AYBIEoQHAPQC+BOA+QRBkALwA7gQAURQPCoLwHIBDAIIAvsYND0TjW6zlwez0IxAKQy4dag5Joijirf0tAID6Dg/mFBrR5vDG1z0RERENxwVz83H/Fxfja//dhRsf3ob/3LYcRnXPL+AHm+zQKWUozdLgxlXluHFVeZ+vNacwMn/9cLMdbl8Q//fGIYTCIr50WmWqfxp92t9ow/yijCE9VymTYnFpBvY12PDTi2b1+7gsrSL5CgWLGyq5pEcAMK/IiONtzl4hzWAquq2MTjZQiK29bLF54fGH8PePjuONfc0QAVw4Nx93rKvEwpIMAMBp03Pw7Wf3YF+9FaunJndGGlxDpwclmWpk65RYWpaJ7TWR+R3HWyOtRtPyJlmgIIridf3ctaSfx/8SwC+HcygiGjv83XZQtzsiK6RoaPY12NBojVzdaeiMXNFoc/iwtCwzncciIqIJ5Lw5+bj/i0vw1ad24qaHt+I/t6/oESocbLJhdoEh3trQn+JMNfRKGQ412bGlygIAA7ZSpJLV7Ud9hwfXLy8b8mv84rJ5sHsDKDD2/zkmS6uA2x+CNxBKuBWxtsON0ixNfFsGENn08NLuxn4rIfpT3j1QSHKGQq4h8vhDzXb85f1j8AXDuHl1OW5ZXd6rSmJNNEQ40uJgoJAC9R1uzCmKtOYsLMnAg+ur4A2EcKItUp06JWdiBQq81EhEA/IFwvHUm4MZh+etA82QSQSo5BI0dHogiiLaHGx5ICKikXXu7Dw88MUl2Ndow2Of1cRvD4VFHG52YHahof8nRwmCgJkFemyttuDtA5HqOoc3PSXyBxojbRrzipKfnxAzNVeHxaUDB/jZ2siqxmTaHuqjgUJ3Fy0owK1rynH69OQCBYNKHl8XOdQKhd+8dRgObxAvfmU17r5odp8tFzl6JbK1ChxtcST1HjS4UFhEo9WDkugGkYXRtaAHGm043uZEUYYaWuWg1/THFQYKRDQgXzAc/4uSgxmHLtLu0Iw1U00oz9aiodMNuycIfzDMlgciIhpx58zOQ1mWBsdau7401lhc8ARC8XaGwcwuMOBYqxP+YBgKqSRtFQoHmqIDGYsSO/dQZUUDhY4EV0eKooi6DjdKs3pO7c/Vq3DPxXOGNHC5PFsLidB1lkRlahSQSwW4/CH84IIZmJE/8OC/6Xn6+DwnGjmtdi8CIRElWZFKmIWlGQCAPfVWHG91Trh2B4CBAhENwhcMxdNtVigM3cEmO+o7PPj8vAIUZ2rQ0OmJD7pkhQIREaVCZY4OJ9ud8X8/GB3ImEiFAhAZzAhE5ilU5mjTVqHQ0OlGpkaODE1yX7KTla2LVSgkdgHF7PTD7Q+hNGvk2kFnFuhRlKmGdJCWlFNJJAIqTTqsnpKN29b0Xol5qhn5ehyLDtykkRPb8BCrUMjVq1CUocbuOitOtjsn3EBGgIECEQ1AFEX4gmHkG5WQSQQGCsPw5v5mSCUCzp2dh+JMdTRQiHxgYYUCERGlQqVJixqLK/6l8WCTDXKpgGkJrq2bVxxpMbh2WQkMKjkcaapQaLX74lsMUilLG/n7ONHBjF0rI7WDPDJxP7hgJp7+0sohPffZu1bi0VuXDTofAwBm5uvh9ofQ0Jm+zR0TUX30v2dxZlfItLAkAx8daYMvGE74/3vjCQMFIupXICRCFAG1XIpcvZItD0MkiiLe3t+M1VOykalVoDhTDacvGO9dZKBARESpUJmjgzcQRlN03eOhJjum5+mhkCX2FWBOoREvfHkVrl9RBr1KlrYKhTa7d1Sq+eItDy4/vIEQzvvzp3jvYEu/j6/rcAFAUqshB2NQyVGcObTXy9AooJQl1mYxPdoScaTFPqT3SrdGqwce/+gsE3xw/Unc+Z8dEMXBqznqO9wQBKDolEDBE4icdSpbHohoMomtjFTKpMg1qOIl+pScQ8121Fjc+Ny8AgBdHzx21nUCYMsDERGlRmVO5Mp5VXukSmFvvRXzi5MbbLi0PAtSiZDWQKHF7kW+IfXhu0Elg1wqwOLy41CzHcdanXhlT2O/j6+zeCAIPa9GjxfT8yKBwrFxOEchHBbxufs24MH1VSl/L28ghH98fBLvHWrFrujntoE0dHqQp1f1CHYWRNd1ApHhoBMNAwUi6pcvGFkZqZRLkGdQsuVhiN7e3wKpRMD5c/IBdH3w2F3bCY1CCt0Em/ZLRERjQ1eg4MSJdifs3iCWlGUN6bX0aWp5CIVFtDtGp+VBEARkahTocPpxsDEyCPKzExaE+pgzYPME8P7hFhQa1UMavphuOqUMJVlqHBmHmx7aHD7YPAHURitEUun1vU2weQKQSQQ8sbl20MfXd7rjAxlj5hUZIZUIyDMoYVDJ+3nm+MVAgYj65Y8FCjIJ8gwqtjwMQWy7w8rKrHgpZayUscnmZbsDERGlTI5OCb1ShiqzCztrI1dXl5QNvDqxP7EKhUTKvkeSxelDWBy9ar4srQIWlx/7o4GCzROI/zjG7PThuge34GiLAz/9/KxROVcqzMjTj8vVkQ2dkdkV5gS3cQzHk1tqMTVXhxtWluGt/S0wOwf+LNzQ4Y4PZIxRK6SYX2wc1trTsYyBAhH1K16hIJMiz6CCzROANzA6/WoTxdFWB6rMrni7AwAY1XLoVZGqhFw92x2IiCg1BEFAZY4WVe2RQCFLq0B59tD68/UqOYJhMd4LPlpiFzPyRimAz9YpYHH5cKDRHl+vufF4e/z+RqsHV/9zM6rMTvz7pqW4sNvf7+PNjHw9qs2ueIvreBEbJGl2pPZC1956K/Y22HDjyjLcsLIM/lAYz+2o7/EYly+IE20OrD/Wjme21aHF7kVxHzM1HrxxKX7/hQUpPW+6sM6WiPrVNUNBggxNpETL5gmMy9K+dHlrXzMkAuLtDjElmRocarYjZxR6QomIaPKqzNFha5UFTVYPFpdmQhCSW0cYEwvCHd4gNIrR+woRa7ccjZYHILLpoaq9A+0OH+48rRIAsOG4GV8/axpOtDlx48Nb4fQF8eTtK7C0fGjtI2PFjHwDgmERJ9tcCa8SHQu6KhRSGyg8uaUWGoUUly8ugkElx+op2fjbhyfw2p4miCLQbPPAfspcEZlE6LMKKGcCV6QyUCCifvkCXTMUNIpIiOAepYm6E8VbB1qwoiIbJl3Pv0iKM9U41GxnywMREaVUpUmLl3dHBgtetbRkyK/TFSgERu3LPQC0OkY3UMjWKtBsi7znvCIjQqKIRzZWY2uVBV95ahckAvDsnavG1Rfw/iyKDgvcdNI8rn4+9R2RCgWLy49wWExoTWayvIEQ3j7Qgs/NK4jPPfjRhTPx0IZqeAMhiABWVGahwKhGYYYq/s88gwpy6eRqAmCgQET96t7yoJZHeibd/vRMeB6PjrU6cKLNiZtXlfW6LzZHgS0PRESUSpU5XVPlhzo/AQAM6siXqlOvyKZaq90HQQBMOsWovF9s3hEAzC0yQq+S41+fVuG6f29BgVGNJ+9YgQqTdlTOkmolWRrMzNfj/UOtuGNdZbqPk7AGa6RCIRQWYfUEevyajZRPj7XD6Qvi4gWF8dvmF2fgr9ctGvH3Gu8mV3xCREmJtTwoZF0VCqO183cieGt/MwQBOH9ufq/7YhOA89jyQEREKRTb9CCTCEmvjOzO0K3lYTS12b0w6ZSQjdJV39iXU6NajuJMNZaWZ0KvlKEyR4cXvrJqwoQJMWfPysWO2k5Y3akZcBgKi7j0H5/hhZ0N/T7G5gmg1pL4xoaGTg8U0d8PqWp7eGNfMzI1kTYHGhgDBSLqV7zlQSaBmi0PSXtrfzOWlWf1WYUQmwA8mmWjREQ0+VSYtBAEYE6RcVgzkPTRsu9kV0cGQmHsrO0Y8naIFrsX+aP4d2V2NFCYV2SEIAhQyaV461vr8OrX1qDAqB7k2ePPObPyEAqL+ORo++APHoITbU7srbfid+8c6Xew9y/eOISL/7YxoSrYUFhEk9WDOUWRFo1UDGb0+EP48HArLphbMOnaF4aC/4WIqF89Wx6iFQrc8pCQE20OHGt14nN9VCcAwOkzcvDrK+ZhZSWTbyIiSh2VXIrTpuXgomFuI9APsULhN28fwZUPbMbbB1qG9L6tdt+oVvPFKhRiX1iBSGuAVjkxO8UXFGfApFPig8OtKXn9vQ1WAECbw9drQwIAhMMiPj7aDrs3iHcS+D3SavciEBKxMDr/oT0FFQofHWmD2x/CxfPH7waP0cRAgYj65Q91bXlgy0Ny3tof+Uuxv3VScqkE1y0vhTQFg4SIiIi6e/y25fjSacPrkR9KhcKBRhse/awaggD84d2jCIbCSb9vm92L3FGsUCjL1kImEbBqkgT+EomAs2fm4tOj7fAHk//1Gcy+Biv0ShmWlmXigU9O9lpReaTFEW9beH5H/20RMbGVkbFAwewc+VaNV/c0wqRTYsUk+T0wXAwUiKhfPbc8RJJ5tjwkZmdtJ2YVGNjSQEREE4JWIYVESLxCIRQW8ZNXDiBLq8Dvv7AAVWYXnkvgC2N3/mAYFpcfeaM4wDjfqMLOn56LM2bkjtp7ptvZs3Lh8AWxvaZjxF97X4MNc4uM+ObZ09Bs8/YKDdYfj7Ra3LCyFJurLKizuAd8vdjKyDmFRsgkwojPUHjnQDPeO9SKa5eV8KJPghgoEFG/erQ8xGcocMtDIlrtXhRlTLxeSyIimpwEQYBOKUs4UHhjXxP21lvx08/PxpWLi7C0LBN/+eBYUpWOsXL20R5gbNTIR/X90m3tNBOUMgnePzSybQ++YAiHm+1YUJKBddNMWF6ehT++dxQdrq6qgg3H2zEjT4+vnjEVggC8sGvg0Cm2MrI4U41snWJEZyjUd7jxgxf2YX5xJAChxDBQIKJ+xcrS2PKQvFa7F/lGbnAgIqKJQ6+Sw55gy8P2mg7oVTJcurAQgiDge+fPQJvDh1f3NCb8fq12LwAOME41jUKGNVNN+PBIa7/DM9872IItVZakXvdwswOBkIgFxZEBl7+4fC4c3iB+9dZhAJGLVNurO7FumgmFGWqsnWrCizsbEA73P8CzodONXL0SKrkUJp1yxCoUAqEwvvnMboRF4G/XLYJCxq/JieJ/KSLqV/ctD3KpBHKpADeHMg7KGwih0x0Y1RJNIiKiVNOrZLB7EqtQONriwIw8PQQhUja+oiILU3K0eH6A9YGnaosGCrlcsZxy58zKQ32HB8danT1ud/mC+J/n9uDOJ3bit+8cSeo190UHMs6PzjuYnqfHXadX4oWdDXj/UCu2VnXAHwrjtOk5AICrlpag0erB5gGCi4ZOD0qyIpuyIoHCyMxQ+NP7x7C7zopfXzEPZdkTazVoqjFQIKJ++YJhSCVCfPezSi5lhUIC2h2xEk0GCkRENHEYVPKEhjKKoogjLQ7MyNfHbxMEAVctLcHO2k6cbHcO8OwurXb+fTpazp4VmRnRfdvD4WY7Lv77Rry8uxEmnSLpDR97620w6RQoNHb9+n3jrGmoMGnxpf/swJef3AmlTILlFVkAgPNm58GgkvW5DSKmwepGcWakpXSkKhTWH2vHA5+cxHXLS3DxgsJhv95kw0CBiPrlC4ag6LZ/V6OQcoZCAuIlmkZ+ACIioolDr0pshkKzzQuHN4iZ3QIFALhiURGkEgEvJFil0GL3Qi4VkKVRDOm8lLg8gwrzi4344HCk7eHJLbW49B+fwekN4qk7VuDMGblw+ZL7DLivwYr5xRnxKhUgcnHq5a+uxq+vmIc1U024bW0FVNHV5Cq5FJcuLMI7B1pg8/QOroKhMJqs3q5AQa+Axenvt00jEW0OL/7nuT2YnqfDzy6aM+TXmcwYKBBRv3zBMJTy7oGCDJ7AyK8Ummha4j2fLNEkIqKJQ6+SweEbvELhaKsDADAj39Dj9lyDCqdPz8FLuxoQGqBPPqah04M8gwoSTtsfFWfPzMOeeivufGInfvrKAayszMZb31qH1VNM0CplcCYRKDh9QZxod2JBcUav+zI0Cly3vBSP3LIMP7xgZo/7rlpaDF8wjDf2NfV63oEmO0JhEdPzIkFVjk4JfyiccBvOqUJhEd95dg+cviD+cf3i+ABySg4DBSLqlz8YhrLbUBq1XApPiisUvIEQnttej5se2Ya99daUvleqxEo081miSUREE4heJU+oQuFoSzRQyNP3uu+qJcVotfvw949ODDh8DwAONtkwu8Aw4GNo5Jw9KxeiCHx0pA0/vGAmHrtlGUy6yMURnVIGly+YcDXA/gYbRBGYX2JM6gzzioyYkafvc8Xoh4dbIRGA06ZFZi7EztY+xLaHBz45gc9OWPDzS+ZgWh+/VykxsnQfgIjGLl8wDKWsK62NtDykZoaCLxjCk1vq8I+PT8TXCc0vMmJBdJBPskRRxO56KxaV9Cy1Gw2tdi8UMgmM6sm1doqIiCa2WMuDKIrwh8KQSyR9Vg8cbXGgwKjqc/3iObPzcMGcfPz5g2PYdNKMP169AMWZml6Pc/qCqDa7cNnCopT8XKi3OYUG3H3RbCwqzcDi0swe92mVMoRFwBMIQaMY/CtkbCBjXxUKA4nM2ijGL948jOOtjh5f9D843IalZVnI1EZaYGKBgtnpw9RcXVLvs72mA396/xguWVCIq5eWJPVc6okVCkTUL18w1LNCIUWBQp3FjXP+9CnufeMQ5hQa8PSXVqIkS43aDveQX3NXXSeuuH8TtlZ3jOBJE9Nq9yLfoBr1IIOIiCiVDGo5QmERnkAIVz6wCef86VPsrO399+yRFke8LP1UcqkED9ywGL/7wnwcbLLjwr9swIs7G3pd+T7UZIcoAnOLWKEwWgRBwO1rK3qFCQCgU0VChETbHvY12FCcqUaWNvn5F5cvKoJMIvTYCNLQ6cbhZnt8eCQQmaEAAJYkNz10uvz45tO7UZKlwS8vn8vPa8PEQIGI+uULnDpDITVbHu598xA6nH7857bleOL2FVg1JRtlWVrUWVxDfs2T7ZHn1piH/hpD1Wr3cn4CERFNOProl8ojLQ4caLSjvtONL/xzM+5941D880EgFMbJNmevgYzdCYKAq5eW4O1vrcOsAgO++/xefOXJXfEKRQA40GgDAMwtSq5knlJDp4xUrLp8iX0O3NtgTbo6ISZbp8RZM3Px0q4GBEKR2V0fHWkDEKlwieleoZAoURTx/Rf2wez04e/XLYZexWrS4WKgQET96t3yIIM7MLIzFDadNOP9Q6346plT43uIAaA0WzOsCoXGTg8AoMnqGfYZk9Vq9yGX8xOIiGiCiX35ev9QZLXg019aiRtWlOHhjdW48L712FbdgVqLC/5QuMfKyP6UZGnw9J0r8aMLZ+KjI20478/rsbXKAgA40GRDrl6JXD3/Ph0LtNE2h0Q2PVicPjR0erAgyfkJ3V29tARmpx+fHG0HEGl3qDBpMSWnq7UhU6OAREguUNhZ24kPDrfiB+fPxLxihlUjgYECEfXr1JYHlXxkKxRCYRG/eOMwijLUuH1tRY/7yrI0sLoDPdYGJbMWKBYkNFq9SZ/L6vZje83QWiVEUYy3PBAREU0ksQqFdw+2IFMjx+LSTNx72Vz890srEBJFXPPgZvzoxf0AkFCgAABSiYAvnz4Fr359DbRKKX744j6EwyIONNpYnTCG6JSRX/tEhnLua4hUl8wfYoUCAJwxIwcmnRLP76jHrrpObDlpwdkzc3s8RioRkKVVoMWW+Ge9k+1OAMD5c/KHfDbqiYECEfXLd8qWh5EeyvjirgYcarbjhxfOjO8gjinLjgxoqrNEqhRueGgrfvrKgYRfuzEaKDTbkq9Q+MN7R/HFf29FMJT8ikyHLwi3P8SWByIimnAM0UChqt2FlZXZ8YGMq6eY8M63TsNNK8uwo7YTUonQ40pyImYVGPDd82agxuLGuwdbcKLNibmFnJ8wVsRmKCRSobC3wQpBGF67ikwqwRWLi/DeoVZccf8mqOQSXNXH8MSlZVl4/3Ar3AluIau1uCGTCCjM4IWfkcItD0TUL1+g95YHTyAEURSHPcDG5Qvi9+8exaLSDFw8v6DX/aVZWgBAbYcLpdkabDxhxsYTwIVzC7B2mmnQ148FCsm2PIiiiI+PtMMfCqPD7U+61LLNHknJ81ihQEREE0z3fvPVU7J73KdVyvDzS+fi4gWFaHf4el0oSMSFc/ORZ1Di/944hLDI+QljiTZaoeBK4Iv7vgYbpubo4lUNQ3XTqjIcaXHg7Jm5uHJJcZ+v96XTKvDOwRY8v6MBN68uH/Q1azvcKM5UQybldfWRwv+SRNQvfygMxSlbHkQxUrkwXP/89CTaHT7cfdHsPsOJ0miFQq3FHV89pJZL8ZNX9sMbGLhKIhwW0RxtdWiyeZNqlTje5oyHEWZHclODgcj8BICBAhERTTyxlgcAWHVKoBCztDwLF87rfaEgEXKpBF9cUYbmaAk7A4WxI/ZlfrAtD6IoYl+Ddchrv7srztTgP7ctx82ry/sNJ5aUZWFxaQYe2liFUHjwz3t1FjdKs7XDPht1YaBARP3yBXrOUNBErzYMt+2hyerBg+urcPGCwj5XEwGRv7hMOgXqLG7srouUzv3l2oWotbjx1w+PD/j6ZqcP/lAYU3K08AfDsLgSDwY+jk4Rjr1OsmJ9fAwUiIhooolVKOTolUm3NCTquuWlUEglyNIqUGDk36VjRbxCYZBAocnmhdnpx4JRHHh452mVqO/w4N2DLYM+ttbiQlmWZhRONXkwUCCifvmCp66NjPxlkmifWn9+984RAMAPL5gx4ONKszSo7XBhd10npuXqcP6cfHxhSTEeXF+Fw832fp/XEK0wWFaeBQDxaoVEfHy0LX4FxuJKPFD47nN78c9PT6LVEQsUOEOBiIgmFq1CCqlEwKrK7GG3PvYnR6/EV86YgmuWlaTsPSh5sYtKzkGGMu6rtwIY3kDGZJ07Ox/l2Rr8a33VgFWpVrcfdm8wPqeLRgYDBSLq16lrI9WKyI+Hs+lhT70Vr+xpwh3rKlCcOfAf6GXZWtRa3Nhdb8Wikkglw08+NwsGtRw/fml/v6VtsZWRS6OBQmOCcxQc3gB21HTikgWFABJveTjR5sCLuxrwm7eP4NXdTdCrZPHwhYiIaKIQBAG/unwuvnHW1JS+z3fOnY4fXjAzpe9ByZFIBOiUMjh9A38G3NNghVwqYGZBYls+RoJUIuD2dZXYW2/F9prOfh9XEx30XcoKhRHFQIGI+nXq2kj1MFseRFHEL944BJNOia+cMfiHkbJsDZptXljdASwqzQAAZGoV+NlFs7Gn3oqnttb2+bymeIVCJIRIdNPDZyfMCIZFXLKgEAqpBOYEKxRe39sMQQCm5+lwtNXBlZFERDRhXbOsFNPyRu/LIo0dWqV00JaHffU2zCow9LggNRq+sLgYmRo5Hlxf1e9jai0uAJELVjRyGCgQUZ9CYRGBkNhrywMw9EDh7QMt2FHbie+dNz2hyb/dS9IWl3XNWrh0YSHWTTPhd+8c7TMsaLR6YFDJUJqlgVImSXjTw6fH2qFXybCkLBPZOkVCFQqiKOL1fU1YWZGNh25aBr1KhqJMdULvR0RERDReaJUyOAdoew2HRRxotGHBKLY7xKgVUty4qhwfHG7FyXZnn4+pY4VCSjBQIKI++aObHLrPUIi3PASGNkPhzf3NKDCq+twj3JfY6ki9Uoap3YY/CYKAX142D8FwGPe8erDX8xo7PSjMUEMQBBRmqNGU4AyFHTWdWFqWCZlUApNOmdBQxkPNdlS1u3DxgkKUZmvw8lfX4N5L5yb0fkRERETjhU4pG7BCocrsgsMXxPxRHMjY3U2ryqCQSfDQhuo+76/tcCNXr4x/nqWRwUCBiPrkC0aqEHpseYjOBfD4h7Y28miLA3OLjJBKEhuyFKtQWFCSAckpzynN1uDb50zHe4da8c6BnlN9G60eFEerBAozVGhKoOXB5gngeJszvnXCpFMkNJTx9b3NkEkEXDA3HwAwNVeHEibfRERENMHolLIBhzLG1nyPxMrIoTDplLhycTFe3NXQ50WhOoubAxlTgIECEfUpXqHQZ8tD8hUKvmAI1WYXZiTRd5mtVaDCpMVZM3P7vP/2tRWYVWDAPa8dgMMbiN/eaPWgKCMSKBQY1Qm1POyuiwzxWRJtrcjWKQdteQiFRby+twlrp5mQpVUk9HMiIiIiGo+0ShmcA1Qo7K23QqOQpmylaCLuWFeBQCiM/2yq6XVfbYcrXv1KI4eBAhH1yRcNFBSyvloekp+hUNXuQigsYnp+4oGCIAj46Lun49Y15X3eL5dK8Osr5qHN4cPv3z0KALB7A3B4g/E5BoUZarQ5fAiEBq6q2FVnhUToStVNOiUsLt+A64feP9SCRqsHX1hSnPDPiYiIiGg80illcA1wUWlvgy2pStRUmJKjwzmz8vCfLbXw+EN4/1Arvv3MbtR3uNFq97FCIQW414yI+tR3y8PQhzIea3UAQFIVCgAG3UG9sCQDN68qx+Oba3DZoqL4JorCaIVCUYYKogi02LwDtiLsqu3EzHwDtNFhkSadAoGQCLsnCKNG3uvxoijigU9OoixbgwvnFiT1cyIiIiIabyJbHvr+DOgPhnGo2Y5bVpeP7qH6cOdplXj/UCvuenInNhxvhyhGBm8DYKCQAqxQIKI+eQOxloeuPyZUsqEHCkdbHJBJBFSYRr7U7Hvnz0C+QYWvPLkT33l2DwD0aHkAgGZb/4MZQ2ERe+qtWFyWEb/NpFMCQL+rIzeftGBvgw13nlaZ1iSeiIiIaDTolPJ+Zygca3XAHwynbSBjd0vLMrGwJAPrj7XjnFl5eObOlfHPatzwMPJYoUBEffLFtzx0zVCQSASo5BJ4hjBD4VirA1NydD1aKEaKTinDn69ZiD++dxQKmQRXLy3G7EIDgK4k+mevHsDtaytw8YJCqGI/p0WLgD17IAVwoPsLLlwI03PvAwDMDl+fvYAPfHoyPvyHiIiIaKLTKaXwh8LwB8O9Ps8daYlUos4uMKTjaD0IgoDfXjkfm0+aceOqckglAl7+6hp8cLg1LSstJzoGCkTUp75aHoDIpoehVCgcaXFgUXSDQiqsrMzG819e3ev2smwt/nT1AjzwyUl8/4V9+PXbR3Dd8hLcsLIMBatWAYcOAf5uwxcVCmD1amTrIkMWzc7egxk/ONSKDcfN+MEFM7rCCSIiIqIJLNYW6vIFoZD1HEZdZ3FBIgDFmWOjAmBGvh4zus3tKsnS4NY1FWk80cTFlgci6lO8QuGUQEEtl8KTZKDg9AXR0OnBjLz0TP29YnEx3vvOaXjqjhVYXJqJ+z85ibW//Rg/nnMpgjilXUEqBe6+O97ycOrqyBabF99/YS9mFxhw+1r+xURERESTQyxQ6GvTQ22HG4UZ6pRUotLYxgoFIuqTL9B7bSQQGcyY7JaH49GBjNOTHMg4kgRBwJqpJqyZakKdxY0nttTg2e31mD3nLFyz730oQsFIdcKttwL5+cgKixCESMtDTCgs4jvP7oE3EMZfr1vU678NERER0USli1Uo9NH6Wmtxc+DhJMUIiYj65A/FZiic2vIgTbrlIb7hIYmVkalUmq3BTz4/Gzt+ei6ufvVBKOTRbDVanQAAUomALI0CZldXy8M/Pz2JzVUW/PySOZiam74dy0RERESjLRYo9DWYsdbiQmnWyA/eprGPgQLF7aztwDPb6nDfB8fx8ZE2BKJfKGly8gX6nqGgViTf8nC0xQm1XIqSMdJXF6OQSaAsKY5UJUgk8eqEGJNOGa9Q2FXXiT+9fwwXzS/AVUs5iJGIiIgml/5aHuzeADrdAVYoTFJseSAAwIk2J658YHOP2zI1cnxuXgEuWVCIZeVZkHA13qQSm6Fwai+cWi5Fu7PvVYr9Odxsx/Q83dj9PXT33cDBg/HqhBiTXgGz0we7N4BvPbMbBUYVfnn5PAjCGP15EBEREaVIvOXB1/PCUp3FDQAo40rGSYmBAgGIlCkBwMM3L8XqKSZsPGHGa3ub8NKuRjy1tQ5fPWMKfnDBzDSfkkZT11DGU2coyOD2uxN+nXBYxIFGGy5dVDii5xtRBQXAp5/2ujlbq8SeDit+8vIBNFm9eO6uVTCq5Wk4IBEREVF6aZWRz4SuUyoUamOBQjZbHiYjBgoEAGi2eQEAcwqNUCukOHd2Hs6dnQeXL4g7Ht+Btw+0jPlAYWuVBd5gGKdPz0n3USaE/tZGJtvyUGNxweELYn5Rxkgeb1SYdErUdbhR1+HG98+fgSVlqVt7SURERDSW6ZWRiyqntjzUdkQuTJay5WFS4gwFAgA02zyQSgTk6JU9btcqZThjRg6qzS60O5Ircx9NohiZvn/zI9vwvef3wuENpPtI417XlofhDWXc32gDAMwrNo7c4UaJSR/ZsbyqMhtfPn1Kmk9DRERElD6xCoVTA4U6ixsmnSLeEkGTCwMFAgA0W73I0ysh7aPHfVlFFgBgR03HaB8rYVVmF5psXiwrz8RLuxrw+b9uxMEmW7qPNa75gmEoZJJe8wKSrVDY12CDUibBtHG4FWFpWRYWFBvx52sW9vn/DSIiIqLJQiaVQCmT9NnyUMr5CZMWAwUCEGl5KMhQ93nf3EIjVHIJto3hQOGzE2YAwB+uWoDn7loFfzCMy+/fhGe316X5ZOOXLxjqVZ0AABq5DP5QGMEEt4Dsb7BhTqEBMun4++NmeUUWXv36WuQbVek+ChEREVHa6ZQyOH1BeAMhnGhzAgDqOtycnzCJjb9P+JQSzTYPCvr50qSQSbCoJBPbx3CgsPG4GcWZapRmabC0PAtvfnMtlpdn4Ycv7sf3n98LbyC5NYcE+IPhXgMZgUjLAwB4EvhvGgqLONBkw/zijJE+HhERERGNMq1SBpcviP99aT/O/8t67KjpQJPNwwqFSYyBAkEUxUiFwgBXYZdVZOFQk31MziYIhsLYXGXB2qmmeHl+tk6Jx29bjm+eNRXP72zA5fdvQo3ZleaTji/eQLjPCgVVLFBIoO2hqt0Jtz+EeUXjb34CEREREfWkU8pwtNWJV/c2IRQW8eUnd0EUgTIOZJy0Bg0UBEF4RBCENkEQDnS77VlBEPZE/1cjCMKebvf9WBCEE4IgHBUE4fwUnZtGUIfLD18wjAJj3y0PALCsPBNhEdhVZx29gyVof6MNDm8Qa6aaetwulQj4n/Nm4NFbl6HZ5sHFf9uIdw+2pOmU44/TF+hzuI5GHgkUEhnMuK8hMsdi/jgcyEhEREREPemUMhxutkMA8Nsr58HsjAxtZ6AweSVSofAYgAu63yCK4jWiKC4URXEhgBcBvAQAgiDMBnAtgDnR59wvCELvmmkaU2IrIwsz+q9QWFyaCalEGJODGWPzE1ZPye7z/jNn5OKNb6xFRY4WX35yJ463OkbzeOOWwxuEXtU7UMjSRTYfvL63adDX2N9og0YhRWXO+BvISEREREQ9xTY9XLKwENcsK8UXV5RCJhFQYeJnvclq0EBBFMX1APr8FilE6suvBvB09KZLATwjiqJPFMVqACcALB+hs1KKxAKF/AEqFLRKGeYUGrCteuwFChtPmDG7wIBsnbLfxxRnavDILcsgFQS8sLNhFE83fvUXKKybasIlCwrxx/eP4b4PjkMUxT6f7wuGsP54O+YWGrkhgYiIiGgC0EarV+86LbJO++eXzME73z4NWVpFOo9FaTTcGQrrALSKong8+u9FAOq73d8Qva0XQRDuFARhhyAIO9rb24d5DBqOZpsHAFA4yCT7ZeVZ2FNvhS848gMOX93TiJ+/fjDp59VaXNha3YGzZ+UO+liTTokzZuTipd2NCW8omMwc3gD0Knmv22VSCf58zUJcubgYf/7gGP7w3tE+Q4U/vHsUVe0u3Hla5Wgcl4iIiIhS7MolxfjBBTMwI18PIPK5cOo4XA1OI2e4gcJ16KpOAIC+LkP2eflSFMUHRVFcKori0pycnGEeg4aj2eaFXCrANMAVfiASKPiCYRxotI34GV7f24wnNtcmHVY8vLEaMomAG1aWJfT4LywpRrvDhw3HzUM55qTSX4UCEJlP8fsvzMd1y0vwj49P4pdvHu4RKqw/1o5/b6jGDStLcc7svNE6MhERERGl0JkzcvHVM6am+xg0hgw5UBAEQQbgCgDPdru5AUBJt38vBjB4ozWlVbPVgzyDCpJBytKXlWcCALZVd474GZqsHgTDIo63OhN+TqfLj+d3NODShUXIMwxcXRFz1sxcZGrkeGEX2x4GIooi7N4ADOreFQoxEomAX10+D7esLsdDG6txz2sHEQ6LONxsx7ef3YNpuTr85HOzR/HUREREREQ0moZToXAOgCOiKHb/ZvYagGsFQVAKglABYBqAbcM5IKVe0yArI2OydUpU5mixPQWDGWNtF4eb7Qk/56mttfAEQrhjXUXCz1HIJLh0YRHeP9gKq9uf8PPs3gDc/mCv21vtXvzqrcMJrVAcT3zBMAIhsd8KhRhBEHDPxbNx52mV+M/mWnz96V247t9boJRJ8OBNS6FWcCYrEREREdFENfC3BQCCIDwN4AwAJkEQGgDcI4riw4hsc+je7gBRFA8KgvAcgEMAggC+JorixPqmNQE12zxYVJKZ0GOXl2fhrf3NCIfFQSsaEuX2B9HpDgAAjrQktoEhHBbx+OZanDY9BzPzDUm931VLi/HYphq8uKsRt6/tCiOcviBqzC5Um12Rf1oi/6y1uGFx+TE1V4f3vn1aj5/3n98/hme216MoQ42bV5cndY6xzO6N/Hr0NUPhVIIg4McXzoRCKsHfPz6Bogw1nrlzJUqyuD6IiIiIiGgiGzRQEEXxun5uv6Wf238J4JfDOxaNlnBYRKvNh4J5ibUMLCvPwjPb63GszZH0F/n+NFm98R8nWqFQbXGh3eHD988rSPr95hQasbg0A09uqcWtq8th8wRw3b+39Aoz8g0qlJs0OG9OHgIhES/sbMDW6g6siq6nbLR68GK0deLhjdW4YWXZhNlm4PBGqjEMg1QoxAiCgO+dPwNLyjIxp9CA3ARbUIiIiIiIaPxK7NsCTVgWlx/+UBgFCX4BXF6RBQDYXt0xgoFCpN2hMkeLw812iKKIyEbS/u1rsAIA5pcYh/Sej/z1LmQcPQh8H8gE8E70dtuMOWj6eBPKsjXQKLr+7+ENhPDuwRY8v6M+Hig8+OlJiCLw08/Pwi/ePIz3DrbgwnnJBxxjUSxQGKzl4VRnzhx82wYREREREU0Mw93yQONcbHZBQYY6occXZ6qRb1BhW83IDWaMneHsmbnodAfQavcN+py99Tao5VJMzRnamhrdGWvhl57yZVmhgPHs0zGrwNAjTAAAlVyKSxYU4q0DzbB7A2hzePH09npcubgYt66pQGmWBg9uqErovf+7tQ7//PTkkM49WuyeSMuDIYGWByIiIiIimpwYKExi4bCIf3x8AlKJgJnRXbKDEQQByyqysL26o8eawOFotHohESJraIBI28OhJjt+9OI+WJx9hwv7GqyYU2iATDq038Kye+6BID1lYKBUCtx9d7/PuXppCbyBMO7/+CRufGgbwmERXzljCqQSAbevrcDuOit21g4+sPLZHfV4fkf9kM49WroqFBgoEBERERFR3xgoTGIPfHoS7x5sxY8vnImybG3Cz1tWnokWuxcNnZ4ROUdTdG3lnKJI+8K+Bhu+8+wePLO9Htc8uAWtdm+PxwdDYRxssmN+ccbQ37SgAP4bbuqqUlAogFtvBfLz+33K/GIjZuTp8c9PT6LV4cWjty5DuSny3+2qpcUwquV4cP3gVQqNnW7YohUAY5UjPpSRXVFERERERNQ3BgqT1Ppj7fjDe0dx8YLCHpsOErGsPDpHYYTWRzZZPSgwqmBUy1GUocaD60/iaKsDXz9zKpqtHlz1z82o73DHH3+s1QlfMIwFQ5yfEKP9xc+hkEe/MA9SnQBEqjO+c+40nDUzF69/fS3WTcuJ36dRyHDjyjK8d6gVNWZXv6/h9gdhdvphdQdGrMIjFYY6Q4GIiIiIiCYPBgqTUH2HG994ejdm5Onx2yvnDToA8VQz8vQwqGQjGigURmc4zCowwOUP4bzZefje+TPw5B0rYHX7cdU/N+NkuxNAt4GMw6lQAICCgkhVgkQyaHVCzAVzC/DILcv6XIl40+oyyCUSPLyxut/nN0arOoJhEQ5fcOhnTzGHNwBBALQKBgpERERERNQ3BgqTjMcfwl1P7IQoivjXjUt6DR9MhEQiYGl5FrZVDz9QEEURTTYviqKBwtLyTOhVMvy/S+YAABaVZuLZu1YhGA7jmn9txuFmO/Y22KBXyVDWx5f6pN19N7B27aDVCYnI1atw2aJCPL+zHp0uf5+P6d4mYnWN3bYHuzcInVIGyQRZg0lERERERCOPgcIkIooifvLyfhxuseO+axclNTfhVMvKs3Cy3dXv0MREWVx++IPheIXCl9ZVYtOPzor/OxCpWnj2rlWQSyW45l+b8cnRNswvNo7Ml92CAuDTTxOqTkjEHesq4Q2E8eSW2j7vb+jsat3odPcdOowFdm+AGx6IiIiIiGhADBQmkcc31eCl3Y34zjnTcebM3GG91vKKTADA9mGuj2yyRq7YxwIEqUToc7PAlBwdnrtrFTI0CjTbvMNvd0iR6Xl6nDEjB49vroE3EOp1f323CoWxHCg4vEHOTyAiIiIiogExUJgkdtR04BdvHsY5s3Lx9TOnDvv15hYZoZBJhj1HoStQUA362JIsDZ7/8ipcvqgIVy4uHtb7ptKX1lXC7PTj1T2Nve5r6HRDLo1UVljdY7flwcEKBSIiIiIiGgQDhUniwfVVyNIq8KdrFo5Iq4BSJsXCkgzsGGag0GiNrIQsNKoHeWREnkGFP1+zEFNzdcN631RaPSUbswsM+PeGaoTDPTc5NHR6MDPfAACwskKBiIiIiIjGMQYKk0AoLGJLlQVnzsgd0avOi0szcbDJjmAoPOTXaLZ6oJZLkaGZOFfDBUHAl06rwIk2Jz491t7jvvoON+YURgKFzjFcoWD3BhgoEBERERHRgBgoTBA2d6DfL/aHmuywe4NYPTV7RN9zSo4WwbDYY3NBdw5vAF//7y4cb3X0+xpNNg8KM1RJr64c6y6aX4h8gwoPrq+K3+b0BdHpDqAsWwuDSjYOKhQmTshDREREREQjj4HCBODxh3Da7z/GRX/biAONtl73bzppBgCsqhzZQKEyJ7Ilosrs7PP+hzZU4419zfjrRyf6fY26DjeKM0dg/eMYI5dKcOuacmyussR/TRqjwUtxphqZWsWYrVAQRREObxAGNSsUiIiIiIiofwwUJoBddZ2weQKotbhx6T8+wxv7mnrcv+mkBVNzdcg1DD74MBmVpsgcg6p2V6/7Olx+PLShCgqZBG/vb0ar3dvrMaIoosbsRoVp6Osrx7LrVpRCp5Th3xsiVQr1HZGVkSVZGmRoFGN2y4MnEEIoLLJCgYiIiIiIBsRAYQLYWt0BiQC8/z+nId+gwmt7ugIFfzCM7TUdWD1lZKsTACBTq0CGRo5qc+9A4YFPTsATCOFfNyxBSBTx1JbaXo+xuPxw+oIoz554FQoAYFDJcc2yEryxrxlNVg8aOiOBQnGmGpka+Zjd8uDwBgGAMxSIiIiIiGhADBQmgK1VFswpNKI4U4M5hYYeX/D3NVjh9odSEigAQIVJG3+/g002nPOnT3HhfRvw+KZaXLG4GGfOzMVZM3Lx32118AVDPZ5bE31e2QStUACAW9eUAwB+9upBnGx3QS2XIlurQOYYrlCweyJBBysUiIiIiIhoIAwUxjlvIITd9VasqMgCAFTkaFFrcSMUXVe4+aQFggCsqEh9oPDmvmbUmF0oylBh9dRs/M+50wEAt6wph9npx5v7mns8t8YSuWJfnj1xA4XiTA1+8rlZ+OBwK57YUoviTDUEQUCGRg7bGK1QsLNCgYiIiIiIEsBAYZzb12CDPxjGiujAxUqTFv5QGE3WyADAbTUdmJGnR6ZWkZL3rzRp0Wzzwu0PYmt1B+YVG/HQzcvw2K3LUZihBgCsnWrClBwtHttUA1EU48+tMbsglQgozlSn5GxjxW1rK/C36xZBIZWgLBqeZGoUcPiCCAxj5WaqOLyRoGMkV4wSEREREdHEw0BhnNtaFalAWFaeCQCoiA1KNLsgiiL2N9qwsCQjZe8fe79DTXbsa7BiZR+bJARBwC2ry7GvwYbd9db47dUWF4oz1ZBLJ/5vw4sXFOLNb67Fzy+dAwDI0ES+rI/FOQqxGQoGVigQEREREdEAJv43uQlua3WkAiFDE6lAiG1MqG53otHqgdUdwJwiY8reP/Z+L+5qQCAkxlsvTnXF4mLolTI8vqkmflutxTWh2x1ONS1Pj6Jo1Ubs18s6BucodA1lZIUCERERERH1j4HCOBYIhbGztrNHVYBJp4BeKUO12YUDjXYAwNxCQ8rOEAsUXtvTBKlEwNLyvgMFrVKGq5aW4M19zWize+MrIyfqhofBZEYrFDrHZIVCbCgjKxSIiIiIiKh/DBTGsf2NNngCISzvVhUgCAIqcrSoMrtwsMkGqUTArILUBQpqhRSFRhVc/hDmFhmhU/b/JfSmVWWRFZJb67pWRk7gDQ8DyYxWKIzFTQ92bwBSiQCNQpruoxARERER0RjGQGEc21rVAQA9AgWga/PCgUYbpubooJKn9othRU4kFFjZT7tDTLlJizNn5OKprXU41uqI3DaJWh6665qhMLqBgiiK2FnbMeAwSIc3CJ1SBkEQRvFkREREREQ03jBQGMe2VVswNVcHk07Z4/YKkxaNVg/21Fsxpyh11Qnd3w9AnwMZT3Xz6nKYnT7c//FJAJj0FQqjPZTxme31uPKBzXh1T1O/j3F4gzCo2e5AREREREQDY6AwToXCInbUdPaqTgAiX/BFMdKfPy+FAxljFpdmwqiWY2l008RA1k01oTJHi40nzJBKhPiQwslGo5BCIZWM6gyFY60O/Pz1gwCAPfWd/T7O4Q1Ar+RARiIiIiIiGhgDhXHqUJMdDl+wz60KldFVjgAwdxQChcsXFWHr/56d0FYAiSSyQhIAijLUUMgm529BQRCQoZGPWsuDNxDCN/67GzqlDLMKDNjfYOvzcUdbHNhw3Ixpebo+7yciIiIiIoqZnN/mJoCt1RYAwIqK3m0G5abI5gRBQEoHMsYIgpDUnIYrFhdDp5TFWyUmq0yNYtSGMr57sAVHWx349RXzsW6aCYebHfAHe85R8PhD+Pp/d0GvkuOnn589KuciIiIiIqLxi43S49TW6g6UZWuQb1T1uk+vkiNHr4ReJRtw60K66JQyPHzzUmRE5whMVkaNfNRaHj483AaTToGzZ+bCGwjBHwrjWKujRwXL/71xCMfbnPjPbcuRo1cO8GpEREREREQMFMalcFjE9poOnDc7r9/HXLm4GEb12O2DX5HAAMeJLlMjR7XZlfL3CYTC+ORoG86fkw+JRMD84kiIsL/RFg8U3tzXjKe31eGu0ytx2vSclJ+JiIiIiIjGP7Y8jEPH2hywugN9tjvE/OjCmfjKGVNG8VSUrCytAh2u1Fco7KjphN0bxNmzIgFUaZYGBpUM+6JzFOo73PjRS/uwsCQD3ztvRsrPQ0REREREEwMDhXFoa1UHAGBFZe+BjDR+5OpVsLh8CITCgz94GD460gqFVIJ100wAIjMv5hdnYH+jFYFQGN98ZjcgAn+7bhHkUv6RQEREREREieG3h3Foa7UFRRlqFGdq0n0UGoZ8owqiCLQ5fCl9nw8Pt2HllGxou83TmFtkxNEWB3779hHsrrPiV1fMQ0kWfz8REREREVHiGCiMM6IoYlt1R5/rIml8yTdEBmq22Lwpe4+qdieqzC6cMyu3x+3zi40IhEQ8tLEa1y4rwcULClN2BiIiIiIimpgYKIwzJ9tdMDv9bHeYAGIbOlrtqQsU3j7QAgA4a2bPQGFedBjj1Fwd7rl4Tsren4iIiIiIJi5ueRhntlZbAADLBxjISONDqisURFHEizsbsLwiq1d7THGmGvdcPBtnzsiFWiFNyfsTEREREdHExkBhnNlW3YFcvRLl2ex3H+8yNHIoZJKUVSjsqbeiyuzCXadX9rpPEATcuqYiJe9LRERERESTA1sexhFRFLG1qgMrKrMhCEK6j0PDJAgC8g0qNKeoQuHFXQ1QyiT43LyClLw+ERERERFNbgwUxpG6Djda7F4s50DGCSPfqEJLCioUfMEQXt/bjPPn5EOvko/46xMRERERETFQGEf2NdgAAEtKM9N8Ehop+QZVSloePjrcBpsngCuXFI/4axMREREREQEMFMaVhk4PAKCM8xMmjHyjCi02L0RRHNHXfXFXI3L1SqydahrR1yUiIiIiIophoDCONFrdyNDIoVVyluZEkWdQwRcMw+YJjNhrWpw+fHK0DZcvKoJUwlkbRERERESUGvxmOgZ1uPx450AL9tR3QqeU42cXzwYANHZ6UJShTvPpaCTFVkc227zI0ChG5DVf29uEYFjEFYvZ7kBERERERKnDQGEM+t07R/DM9nrIpQICIRHfOmcajGo5Gq0elGdr0308GkH5xkig0GL3YlaBYURe88VdDZhbZMCMfP2IvB4REREREVFf2PIwBpmdfszM1+Mf1y8GAFS1OyGKYqRCIZMVChNJLFBoHaHVkUdbHDjQaMcVi1idQEREREREqcVAYQxyeAMwqOWYkqsDAFS1u2B1B+Dyh9jyMMHk6pX4/+zdd3wjd53/8deMepd7t7f33bRNA0JC770fcHAHBDi4H6F37g4CRzvKUY96dA4IPQkl9BBIskk22d6Lve7d6hrN/P7QWtuLd21Ltt/PPPbhjTya+WgtyZrPfL6fj2EwbaMjf3x/F27T4OmXNk/L/kRERERERM5ECYUKNJGxiPrdtFcHcZsG+wYSHBktTnhoVYXCvOJxmdSEfNMyOrJgO/zkgSPcsLKO2rBvGqITERERERE5MyUUKtBENk/E78HjMmmvCbJ/IFkaGdkS18jI+aYx5qNnGpY83Ll3kP6JLM9RM0YREREREZkFSihUoImMRcRf7Je5pDZ8QoWCeijMP43RAL3TkFD48f1dxAIeHr26fhqiEhEREREROTslFCqM4zgnJBSW1oc4NJSiczhFwOOiKugpc4Qy3RpjF7/kYSKT59fbennaJU343K5pikxEREREROTMlFCoMOl8gYLtEPEXEwdLa8PkCjZ/3z9ES1UAwzDKHKFMt5WNUUZSeX61tee0388XbN72owf56QNHcBwHgHSugFWwS9vcvqWXTN7m2VruICIiIiIis8Rd7gDkRBMZC+CECgWAnb0TXL+irmxxycx54ZVt/ODeTt754y1c3l5FfdR/wvcfODzKDzZ18YNNXfxmey9u0+RX23p5zuWt/Oez1wPwo/u7WFIb4rK2eBkegYiIiIiILESqUKgwE5k8QKlCYUltuPQ99U+Ynzwuk0++4FJSuQJvu+WhUhXCpL/vH8Iw4PWPWsZvtvXxx139LKoJ8pMHupjI5OkcTnHPgWGefXmLKlhERERERGTWqEKhwpxcoVAV8lIV9DCSymtk5Dy2rD7Mu568mn/7+Ta+c/dhXnJNR+l7f9s3xJqmKG95wkpeed1i/B4XO3sneObn/sovH+qhfzwLwLO03EFERERERGaRKhQqzGRCIeo/lutZWlesUmiJK6Ewn730mg6uW17LB2/dwf6BBACZfIH7D49wzZIaAOJBL36Pi0taY6xoCPP9ezv58QNdXLukRs8PERERERGZVUooVJjJhELYd2yaw5K6Yh8FVSjMb6Zp8PHnXYLXbfLGHzyIVbDZ3DlK1rJLCYVJhmHw/I1tPNg5yqGhFM++vKVMUYuIiIiIyEKlhEKFOdZD4ViFwoqGCABtVcGyxCSzpyHq50PPWs+DnaN89g97S/0Trlpcfcq2z7ysBbdpEPC4eNL6pjJEKyIiIiIiC9k5eygYhvE14KlAv+M46467/V+B1wMWcKvjOG87evs7gVcABeD/OY7z65kIfL46uYcCwIuuamd5Q+SU7v8yPz1lQxN37GjhM7/fS3Pcz9rmKLGA55TtasM+bnzkEgIeF2Gf2qGIiIiIiMjsOp+zkP8FPgt8c/IGwzAeBTwD2OA4TtYwjPqjt68BXgisBZqBOwzDWOE4TmG6A5+vJjJ5DANC3mM/mpDPrZGRC8y/P30td+8fonM4zRMe0XjG7d72xFWzGJWIiIiIiMgx51zy4DjOn4Hhk25+LfBhx3GyR7fpP3r7M4DvO46TdRznALAXuGoa4533xjMWYZ8b09T4v4UsFvDwX8+/FK/L5DGrG8odjoiIiIiIyCkutIfCCuA6wzDuNgzjT4ZhXHn09hag87jtuo7edgrDMG40DGOTYRibBgYGLjCM+WciYxH1n1reLgvPtUtr2PofT+DapTXn3lhERERERGSWXWhCwQ1UAdcAbwV+YBiGAZzusrpzuh04jvMlx3E2Oo6zsa5O5fyTJjL5E/onyMLmdatvqoiIiIiIVKYLPVvpAn7sFN0D2EDt0dvbjtuuFei+uBAXlomMpYSCiIiIiIiIVLwLTSj8FHg0gGEYKwAvMAj8HHihYRg+wzAWA8uBe6YhzgVjIpsnoiUPIiIiIiIiUuHOZ2zk94AbgFrDMLqAfwO+BnzNMIytQA54meM4DrDNMIwfANspjpN8nSY8TE0iY7GkVhUKIiIiIiIiUtnOeebqOM6LzvCtl5xh+w8CH7yYoOaDgu2wo2ecdS2xKd1PSx5ERERERERkLlDHtxly25YenvqZOzkymp7S/YoJBS15EBERERERkcqmhMIM2dufAGBgInve98nkC+QKtioUREREREREpOIpoTBDOodTAIyn8+d9n4mMBUBUCQURERERERGpcEoozJDOkaMJhcxUEgrFbbXkQURERERERCqdEgozpHO42DthPG2d930mKxS05EFEREREREQqnRIKMyBrFeibyABTrVCYTCioQkFEREREREQqmxIKM+DISBrHKf59aj0UJpc8qEJBREREREREKpsSCjOgc+TYqMgLq1BQQkFEREREREQqmxIKM2BywkPA4yolCc7HZPIh4tOSBxEREREREalsSijMgM6RFF6XyZK60JSWPCSyxeRDWBUKIiIiIiIiUuGUUJgBXcNpWqsCxIMexqdQoTCRsQh5XbhMYwajExEREREREbl4SijMgM6RFK3VQaJ+z5SbMmrCg4iIiIiIiMwFSijMgM7hFG1VgWJCYYpNGdWQUUREREREROYCnb1Os4lMnpFUnrbqIEOJLOPpcy952NEzzrf/fog/7hpgfUtsFqIUERERERERuThKKEyzzuHiyMi2qiB5yyadL5CzbAwDPnTbDq5ZUsPj1zSQK9jcvqWXb//9EJsOjeBzmzx1QzOvuX5JmR+BiIiIiIiIyLkpoTDNOkeKIyPbqgMMJrJAsWrhyGiar//1IF//60HWt8Q4MppmOJljUU2Q9zxlNc+9opV40FvO0EVERERERETOmxIK0+zAYBIoVijsG0gAxd4IPWMZAF513WL+sGuAKxdV8ZJrOnj40lpMTXUQERERERGROUYJhWl2x/Y+VjVGqAp5iR6d2DCeydN7NKHw6uuX8u6nrClniCIiIiIiIiIXTVMeplHPWJpNh0Z46oYmgNIIyPF0sULB4zKo1rIGERERERERmQeUUJhGt23pBeDJ64sJhWigWABSrFBI0xD1a3mDiIiIiIiIzAtKKEyj27b0sLopypK6MMCxJQ/pPD1jGZpi/nKGJyIiIiIiIjJtlFCYJt2jae47brkDQDRwXA+F8QyNsUC5whMRERERERGZVkooTJPbtvQAx5Y7AIS8LkwDxlShICIiIiIiIvOMEgrT5LYtPaxpirK4NlS6zTAMogEPh4ZS5CybxqgSCiIiIiIiIjI/KKEwDY6Mprn/8ChPOW65w6So38OevgSAKhRERERERERk3lBCYRrcfnS5w1PWnyahEHCzb6CYUGhUQkFERERERETmCSUUpsGtW3pY2xxl0XHLHSZF/R4s2wGgSU0ZRUREREREZJ5QQuEidY2keOAMyx3g2OhIl2lQF/HNZmgiIiIiIiIiM0YJhYt0+5Ze4PTLHQAifjcA9REfLtOYtbhEREREREREZpISChfp1i09rGuJ0lFz6nIHgGigWKGg/gkiIiIiIiIynyihcBE6h1Ns7hzlKeubz7jN5JIHTXgQERERERGR+UQJhYtw+9YzT3eYFA0Ulzw0RtWQUUREREREROYPJRQuwq1belnfEqO9JnjGbVShICIiIiIiIvOREgoXqHM4xYOdZ57uMEk9FERERERERGQ+UkLhAt225dzLHQCW1YeJ+t2sbY7ORlgiIiIiIiIis8Jd7gDmqtu29LChNUZb9ZmXOwAsrg3x0L8/YZaiEhEREREREZkdSihcoJufuZ5kzip3GCIiIiIiIiJloYTCBVrfGit3CCIiIiIiIiJlox4KIiIiIiIiIjJlSiiIiIiIiIiIyJQpoSAiIiIiIiIiU6aEgoiIiIiIiIhMmRIKIiIiIiIiIjJlSiiIiIiIiIiIyJQpoSAiIiIiIiIiU6aEgoiIiIiIiIhMmRIKIiIiIiIiIjJlSiiIiIiIiIiIyJQpoSAiIiIiIiIiU6aEgoiIiIiIiIhMmRIKIiIiIiIiIjJlSiiIiIiIiIiIyJQZjuOUOwYMwxgADpU7jmlQCwyWO4gKFAPGyh3ELNFzYGGZzZ/3QnodzRV6vc890/k60s9fJi3E54J+Jx2zEH/+cszF/Pzn2uuow3GcupNvrIiEwnxhGMYmx3E2ljuOSmMYxpccx7mx3HHMBj0HFpbZ/HkvpNfRXKHX+9wzna8j/fxl0kJ8Luh30jEL8ecvx1zMz3++vI605EFmwy/KHYDIPKDXkcjF0+tIZHrotSRy8ebF60gJBZlxjuPMixeLSDnpdSRy8fQ6Epkeei2JXLz58jpSQmF6fancAUjZ6TmwsOjnvbDp57+w6ecvk/RcWNj081/YFvzPXz0URERERERERGTKVKEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZUooiIiIiIiIiMiUKaEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZUooiIiIiIiIiMiUKaEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZUooiIiIiIiIiMiUKaEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZUooiIiIiIiIiMiUKaEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZUooiIiIiIiIiMiUKaEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZUooiIiIiIiIiMiUKaEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZUooiIiIiIiIiMiUKaEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZUooiIiIiIiIiMiUKaEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZUooiIiIiIiIiMiUKaEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZUooiIiIiIiIiMiUKaEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZUooiIiIiIiIiMiUKaEgIiIiIiIiIlOmhIKIiIiIiIiITJkSCiIiIiIiIiIyZe5yBwBQW1vrLFq0qNxhiIiIiIiIiMhJ7rvvvkHHcepOvr0iEgqLFi1i06ZN5Q5DRERERERERE5iGMah092uJQ8iIiIiIiIiMmVKKIiIiIiIiIjIlCmhICIiIiIiIiJTpoSCiIiIiIiIiEyZEgoiIiIiIiIiMmVKKIiIyLnlRmHPFyHdW+5IRERERKRCKKEgIiJnZqVgy3/AzxbBva+FPz8DCtlyRyUiIiIiFUAJBREROb2Bv8Htl8GWf4fGx8BlH4ehe+D+N5U7MhERERGpAO5yByAiIhWmkIGH3gc7/wuCbfDo30Hjo4vfy/TCjo9D7cNg8YvLG6eIiIiIlJUSCiIicszgPfD3l8H4Tlj2arjsY+CJHPv+Jf8Jg38rLn+oexiEF5cvVhEREREpKy15EBGRYl+Eze+C314LVgIe9Wu46osnJhMATDdc+20wDLjrJWBb5YlXRERERMpOFQoiIlJc4rDjo7Dkn+HyT4A3duZtw4vgyi/CXf8Av1wFrkAxwYBxdAPj2P/7amD5v0DrM8BQDltERERkPlFCQURkoctPwN4vQvsL4Jqvnt99Fr0I0t0weBc4ztEbnaN/OHbb2Fb4y7MhurpY8VD/yBP3M/BXmNhTHEuZG4X8GOSP/r3+elh100U+OBERERGZKUooiIgsdPv/F/LjsOqNU7vf6jcDbz77NrYFnbfAg++CO66HFf8Ka98Jvjp44G2w65Mnbu+JgicGpge6fgp2Dta8bWpxiYiIiMisUEJBRGQhc2zY9WmovRZqr57+/Ztu6HgBtDwVNr8Tdn8G9nwewkthYncxwbDqjeCNgzsKputYXHe9GDa/vbhsYukrpj82EREREbkoSiiIiCxkR34JiX1wyYdm9jjuEGz8b1jxetj3Vej9DVz1JVj2qtNvb5hwzTcgNwL33Ajeamh71szGKCIiIiJTYjilta/TuFPDaAO+CTQCNvAlx3E+fabtN27c6GzatGna4xARkbNwbPj11ZAdgKftLVYTVBorCb97LIw8AI+6HRoeVe6IRERERBYcwzDucxxn48m3z1TLbQt4s+M4q4FrgNcZhrFmho4lIiIX4tD/wfAm2PCBykwmQLGy4YZbIbIM/vgU2Pvl45pAioiIiEg5zUhCwXGcHsdx7j/69wlgB9AyE8cSEZELUMgWGyVWXQqLXlzuaM7OVw2P/h3UPaK4/OGPT4bdn4OBu4rTIKZq4K7isot8YtpDFREREVlIZvySlGEYi4DLgLtPuv1G4EaA9vb2mQ5DRGRhyieKoxvHtkPNVRBfV7zCv+1DkDwIV/+22K+g0gUa4FG/gp2fhO0fhp5fHfuevxFiq4ujKaOrIbYG6q8rToo4npWCB99zbLLE5rfDqjfDitcVp0uIiIiIyJTMSA+F0s4NIwz8Cfig4zg/PtN26qEgIjINCrlis8Ph+2H0QRh5qNhwkaPv84YbVr+leNvhH0Lbc+G6H5Y15AviOJDqKj7GsR0wvuPo1+3F8ZcAddfB9T8HVwB2fAy6fl7c3s7B8tdB+/Ngx0eh+zbwVsHKm2Dl/ytOmxARERGRE5yph8KMJRQMw/AAvwR+7TjOJ862rRIKIiIXwS4UxzHu/K/iiTZGsedA/BKIb4CqS4pjGnd+HPb/bzGxsOEDsPqtx8Y0zgeOA+ke6L4VNr0OIivBsWB8ZzHBUHsNtDytWL0waWgTbLsZun5WrFJY9SZY9965UbUhIiIiMktmNaFgGIYBfAMYdhznpnNtr4SCiMhF2PvlYm+B+uuLFQgNjyo2MzydgbvAE4H4+tmNcbb13gF/fhb4auDK/4HmJ5x9+5EH4aH3wZGfw6N+A02Pm504RUREROaAMyUUZqqHwsOBlwJbDMPYfPS2dzmOc9sMHU9EZOE6+O1i74DH/AEM4+zb1j1sdmIqt8bHwtP3gzsM7sC5t6+6BK79JvwoDsP3KqEgIiIich5mJKHgOM6dwDk+1cqckR0qrkN2B8sdiYicLNkJ/X8uLmE4VzJhofHXTW17bwwiK2Do3pmJR0RERGSe0SJRObve38HPl8LPFxfHtNn5ckckIsc79P3i144XlTeO+aJ6IwxrCZ6IiIjI+ZjxsZEyh+37GtzzaoiuBF8dbHo97PwUXPqhYnd4XQ0VKb9D34WaqyGytNyRzA81G4v/puleCDSWO5oSx3GwHZuCUyh+tQul/y/YBfJ2nqyVJVvIkivkSt8HMAwDAwPTME/5u9flJegJ4nP58Lv9+Nw+TDWkFBERkfOkhIKcyrHhofcW59Q3Pg4e8cNi9/Pu24tz2+98fvEE5rKPQv0jyx2tyMI1tgNGNsPlnyp3JPNH9ZXFr8P3QctTZv3wWStLxsqQLWRJ5VJM5CaKf7ITlJoony6X64BpmLhMFy7DhXGGhK/jODhHx4g6jlNKSEzu0zRMwt4wNYEaaoI1hDwh3KYbl+lSokFEREROoYSCnMhx4G//CAe/A0tfBVd+DkxP8XstT4amJ8CBbxYTDndcD4v/Ea79RnljFlmodn6iOAKy4/nljmT+qLq0ODJy6N5pSSg4joNlW+TtPPlCnrydp2AXsGyLXCFHrpAjb+fJWBlG06Pk7XwxGXA0QeB1efG4PFQHqmflhN5xHLKFLF3jXewf2V+KBcA0i/GU/phevG4v1YFqYr4YPrdvxuMTERGRyqKEgpxo4C/FZMLa98CG95+6rMF0wdJ/go4XwgNvhj1fgDXvgNjq8sQrslAN3wf7vgqr3giBpnJHM2/Y7iBEVmEP/p1EZrR08m/ZFvlCHsu2sLFLV/odxzn2d5zStrlCjqxVXH4w+T0DA8cpfjWM4rID0zBxGS5cpouoL4rLdJX18RuGgd/tx+/2n/I927FLyy3S+TRJJ4llWxwcPYjjOER9UZoiTVQHqol4I2V/LCIiIjLzlFCQE+3/RnHM2tp3nL1HgjtQTDrs+QJ03gKx98xejCILnePApn8tTjFY975yRzOnZK0siVyCkfQIaStdPPE/2ncgV8hxzdNeS3THfky2E6eqdL/x1Uv4+8+/UOo9AGAcXSdw/P8bhoHLKC4PCHqCRLyRMy4/mGsmEyBu8/QfHTJWhr1Deyk4BUzDJOKLEPKECHlCBDwBfG4fXpcXn8unagYREZF5QgkFOcZKweEfQvvzwB069/bBZqh7ePE+65RQEJk1B74Jg3+Dq79WHHUoZ5SxMkxkJxhMDdKf7CdtpQFwGS48pqfUGyDgDhDyhMhceTmRvYcw8oXSPmyvh8xVl1MTrCnXw5gTjq9ssB2bXCHHaGaUwdQglm0Ve0AYxWUVTeEmOuIdxP3xeZNwERERWYiUUJBjOn8C1gQsftn536ftuXD/G2F8N0RXzFxsIlI0vqc4caXuEbBkCq/VecxxnFKPgsmeBBPZCXoSPSRyCRzHwevyEvKECHvDZ91Xz02vpPb/fobBsYQCpknPTa+c4Ucxv5iGedplE1D8eY1kRuju7CYeiLOiZgU1gRolFkREROYgJRTkmAPfgNAiqL/u/O/T9pxiQqHzFlj7zhkLTUSAQgbufB6YXnjYd4vNAxeggl1gNDNK90Q3w+lhMlamdPV7kstwEfKEqAvWTWnfVkMtg89/GnXf+zGGVaxOGHzB07Dqa6f5UZzEKeDJDlBwR7DPp0JsDjMMg6gvStQXJZVPce+Re4n5Y6ysWUl1oFqJBRERkTlECQUpSnVD7x2w7r1TO0kJtUHNNcVlD0ooiMys+98Eow/C9b8svvYWEMdxGMuO0TPRQ9d4F5Zt4XP5CHqChDyhaT0J7XnjjdT9308Be8arEww7z+Id7yE2+CdMxyIRvYRdl391xo5XaYKeIEFPkGQuyd1dd1MdqGZ5zXLi/riaOoqIiMwBSihIUc+vAAfanzv1+3a8oFilMPDXYk8FEZl+h35QbIK6+i3TMs5wrkjn0/Qkejg0eohMIYPX9BLzxWb0ZNNqqGX8GVcR+9HfGXvGNTNXneA4dOy6maqB39Hf/Dzc+RGqB+7Akx0g75taZcVcF/KGCHlDxcTCkbsxMAh6gkR9UWL+GBFvBL/bT9ATVKJBRM7JcZzSZJrJP6XJPJOzcE/a/oT/P7rN8RN9Tv7e6RzfrHeyUe/k15O3OXm7ye9NNv89/v6T24pUIiUUpKjnN8XRc7F1U7/vslfB9o/AA2+Dx9159ukQIjJ1E/vg7lcWq4Eu+VC5o5kRtmOTtbJkC9lSI8XJhn6mYRLzxYj6orMWz+G3vo11W56D9fyqc298gZoOfomavls5sug19C56Jf7EXqoH7iA2dCeDzc+aseNWssnEAkC+kGc8O15q6mgYBj6XjxU1K2gMNyqxILLA5Ao5UvkUyVySjJUpjem1bKs04jdv50uTe0rn/ef5sdTAOGuyYNY4gEFp1DBwwmOYTDC4DBdet/dYtZ632Cco4A4Q8oYwF+iySJl9SigI2AXo/S20PO3CkgHuEGx4P9xzI3T9BNqePf0xiixUhSzc+Xww3fCI74PpKXdE08ayLY6MH+Hw2GFS+dSxD3IOeFwevC4vdcG6slyVybW0M/bJhxNN3VMc0znNMdT0/ILmQ19msPFp9Ha8AoBMaClZXxOxoT8v2ITC8TwuDx7Xic/3XCHHg30PsntoN6trV1MfrteHZpF5LJlL0p/sp3uim/HsOBhgYuIyXBiGURpna2DgMl0YGIQ8IWK++T0B6fgKDMu2GEoN0ZvopWAXcAwHl+Ei7osT8hbH9gbcAdymu/i+anoIeoKqeJBpo4SCwMj9kBuGpsdf+D6W/BPs/CRsfkcxMTGPTnpEyuqBtxZfo4/8KYQ6yh3NtJhMJOwe2o1lW8R8sYrs8j9Wez3x3XcSSO4lHV4+bfuNjNxDx+6bGa+6ikMr3n0sWWEYjNVeR23PzzAKGRzX6ackGIUMwcRughPb8acPM9D0bDLhZdMWXyXzurw0hBrIWBnu77mfsDfMqtpV1IXKk3gSkeln2RaDyUH2j+5nLDOGaZqEPWHqQ/XlDq1iGIaBy3DhwoUHzylTdSar/lLJVLGCwymcUH3hc/noiHfQEGooVYWJXCglFKS43AGg8XEXvg/TDZd9FP70NNj9OVh107SEJrKgHb4Fdn8GVt4Erc8odzQXzbItuse72TO8h3whT9wfP+UKdCUZrX0kbXs+yuLt72T/2o+RCS2+6H36E3tZuvWtZIKL2Lf2o8X3zuOM1VxH/ZEfEBndxHjNIwBw5ceID/6R0Pg2ghPbCSb3YDjFsZaO4aKq/3fsvPyr5AKtFx3fXOF3+/GH/WSsDJu6NxHzx1hevVyJBZE5JGsVl7hlC1lSuRTj2XEmchMkcglsxybijSiJcIFMwyTgCZzx+/lCnj3De9g1uIvaYC2t0VbC3rCWSsgFMU5uQlIOGzdudDZt2lTuMBauO66HfAKedN/F7cdx4A9PhKG74Wl7wL+wmoqJTKvEfrj9coisKPYmcXnLHdEFm2uJhOOFRzaxZPu7MO0Me9d9gkTVxgvelyc7wKr7Xw5OgZ2X/y95f+Mp2xh2jkv++ljGqh/OUONTiYxuoq77FlyFFJYrTCq6hmRkLcnIWlLRNbisJCsfeCWWO8Kuy7+K5a25iEc7d6XzaSZyEwQ9QaoD1cT9xVJfv9uP3+3XB2SRCmE7NoPJQfaO7GUsM1ZMADrFE2Cf24fHLC53U2Jw9iRyieL4ZRxMw6TKX0VNsKbUDDfgKS6XEDEM4z7HcU75IKSEwkKXH4cf1RQ7x1/6nxe/v7EdcNuG4hKIq7908fsTWYgKOfjtI2BiNzzpAQhf/JXx2eI4TrEp1tEGi8lckn3D+8gWslT5q+ZMIuF4nmw/Kza/Gtv0s2Pjdy+on4JpJVm5+UZ86U52Xfol0pFVZ9x28bZ3UD1wBwAOJsP1j6ev7SWkwytOO9Y3NLaFFQ++hkR0PXsu+RwYC7dZYa6QKz33bOxSx/SwN0xHrEPNHEXKpGAX6E30sntoNxkrQ9gbJugJljssOYnt2GSsDBkrQ+FoJRwO+Nw+4v441YFqGsON+Ny+8gYqZXGmhILSTQuZlYS/vwIcC5qfPD37jK2GFf8Kuz4Fi18C9Y+cnv2KLCSb3w7D98J1t1R0MsGyLYbTwyRyCSayxTLVRC5xwjpNA6M0+m+uyvvq6el4BYt3/jvR4b+WliKcL8POsXTrWwgk9rJ3/SfOmkwA6Fz+NoYbnoLliZH1N2P5zj62Mhlbz+Hlb2PRrg/Q0Pkt+tpfPqX45hOvy4vX5SVCpHSb4zhkC1ke6nuI3UO7WV6znIZQw5xMbonMNbZj0zPRU0okzPbEHpka0zAJeoKnJHsmp+70J/vZNbSL5dXLaYu1qXJBAFUoLFyJA/DnZ8LYVrjkw8UKhekqL8uNwa+vgtwQPP5uiCydnv3KwuE4cPgHUHsthNrLHc3sGvhrsTph+evgys+WO5rTsh2bvkQfOwZ2kClkSiWqHrPYlX9elpfbFuvufhZ5Xx27Lvvq+b9fOgWWbHsHVYN/4MCq/2C48SkzE5/jsHj7O6ka/AM7L/sqqegFjABeALJWlvHsOKZpsii+iOZIM2FvuNxhicxLQ6khtvVvI5lPEvPFdFV7npi8mOB3+1lTt4b6UL2WqCwQWvIgx/T9Ae58XnFc5MO/D81PmP5jjO+B31wD/np4/F3gnblZ7jIP7f4cbHo9eKKw8bNQfQUMbYJgM9TfcEoju3nDzhf7JuTH4CnbwVN5Jzoj6RG2D2xnLDNG3B9fUB8Q6478gPY9H2X3JZ9nouqqc9/BcWjf/SHqen5C59I30d/2DzManys/zupNL8a00+y55PPFJRJyWpZtMZYZo+AUiPqiLI4vpipQhc/tm58JMZFZkCvkSOQSjGfG6Uv2MZQeIuqNnrU5oMxdGSvDWHaM2mAtq2pXqfJkAVBCQYpXfXd/Fu5/Y7HR2yN/BtHpG4V2ir4/wR8eVzzWDbdDqG3mjiXzx8hm+PXVxeUyhXTxiv3x/PXQ/gLoeBHUXjN9lTWVYMfHi2MiH/nTipvqkCvk2D20m8Njhwl7wgtyzJRRyLDu7mfizQ2SjKxltPZ6RmtvIBNcfNrnYfP+z9F0+Ov0tP8z3Uv+ZVZi9KU6WfHgazALafZs+Cyp6JpZOe5cls6nSeQTxf9xwO/xE/aGi388YQKeAHF/XL0XRE5SsAv0J/sZTg8zkBognU8DZy6bl/lpIjtBykrRHmtnSdUS/dznMSUUFrpCFu79F9j/NWh5Gjzs28WrvzOt9/fwl2eBOwKPuh3i62f+mDJ3WUm4/bLi1yc9WKxsOfjt4veqryg2KTz4PTjyC7CzEFpUTCwsetHcf26le+HnS6HxsXD9z8odDVC8+pDMJRlJj3Bw7CC2Y1Ptr17QpY2eTC81fbcXxzhObAMgE2hjtPYGRuoeQyqyFpwCrfs/Q0PXdxhoejaHV7xzVhNf3vQRVjz4Wty5EQ6s+SBjteplMxWWbZEr5MgVcli2hY2N23DTHmunJdqiJRIiwFhmjC39WxjPjhNwBwi4A+pLsoA5jsNIZgTLtqgL1RH3xYn5YwQ8AYKeoCq/5gklFBa6e18Hez4P694L6//9tJ3CZ8zIQ/DHJ4GVKF55bXjU7B1b5pYt74ct/waP+f3Znyf5cej8KRz6LvTeAU4BYmth6Sth5RvmZtXCfW+E3Z+Bp+6EyLKyhJDMJRnNjDKYGmQoPUSukMNxHNymm4g3og+LJ/FkB4gN/on44J+IjN6L6VgkI2uwTT+Rsfvpb3k+ncveXJapC+7sIMu2vongxA4Gmp9LOryMnL+ZrL+ZnK8Rx7VwlqpMB8u2GM+OY9kWVf4qltUsoyZQs6CTa7IwWbbF/uH97B3Zu2Cr1eTMJqdEZK0slmMBxebMYW+YhlAD7fF2vHN4DPZCp4TCQpYZhJ+1waKXlm+UY/JwMakwsQeu+SYsemF54pDKle6FXyyDpifCdT86//tl+uHwj4qVDIN/g8s/AaveOHNxzoR0D/x8CXS8EK75+qwf3rItDowcYO/w3uIscJdPc6enyLQSVPf9ioau7+LN9HB4xTsYairvshWjkKFj181UD/wWY3L811E5by3p0HIOrXofeV9dmSKcm5K5JMl8kpAnxMraldSF6nT1TRaE4fQwW/q2kLbS1ARq9LyX8+I4Tqm/hmEYrKhZQWu0VcvI5iAlFBayrTfDQ+8tNnmLrS5fHLkR+POzoP9PcNnHYNWbj11Jzo1BdnB6JkKM7YDEPgi2QqAVfDVz84r1QnPPa2DfV4vP0wvp7eE48Jdnw5Ffwg23FZMLB74JD/su1J5HA71yuu+mYn+Tp+6a1akojuMwkBxg28A2coUc1YFqfUC8WI6Ny0pS8ETOve1scQp4sgP4Mj14M914Mz34Mt1U9f+WbKCNXZd9CdutMv6pylgZxrPjRHwRWiOtBL1BfC4ffrcfr8ur6gWZNzJWhp2DO+ke7ybqU5NFuXCaEDG3zWpCwTCMrwFPBfodxznn7ColFGZQIQs/WwRVlxZ7GJRbIQt/+8fiSMDlr4MrPgnZIfjdDTC+Gxa9uLgk40JOqvr+CFs/AH2/P/F2l7+YWAi1QXQNXPqh2ekfIeev+9fwpyfD8tfDxk9f+H5yo/CrjcWEEoArCOEl8KT7wazQcv10H/yso/jcv+ars3bY8ew4uwZ3MZAaIOaL4Xf7Z+3YUhkiw39n+ZY3kIhdyp4Nn8ExVYZ6ISZ7jdiODUc/FxsYhDwhIr4IEV+EqC+qhJ3MOY7j0JPoYVv/NgwM4v64Tv5kWmSsTHFaVCDO6trVVAU0DW4umO2EwiOBBPBNJRTKbP834O8vh0f9GpoeX+5oihwbNr+92NG+/gbI9kPiICx+KRz4BhQyEF1dbE7X9myouw7OVRZ18LvFREWgGZb/C9RfD5keSHZCuuvY18G7ofZquOFXFTmSb8FxbNj2n8UKmthaeOwfixUlF2N0K2z7UPF5kBuCPz8TLvlPWPuO6Yh4+m3/GGx+GzxlB8RWzfjhMlaGfcP7ODR2iKA7SMRXQVfSZdZV997G4p3vY7jusRxY86HZ7a8zjzmOQ97Ol5o75u08UV+UVbWrlFiQiuU4DmkrTSKXYDA1SH+yn2QuSU2gRj10ZEYkc0kmchMsji9mec1yPc8q3KwveTAMYxHwSyUUysix4bYNxb8/eUvllf0f+Bbc/ariB9gbbi024UsdKSYH+n5fXBpRSIO/oZhYaH8e1D3yxORCfqLYbHLzO4tJhOt/DmcrNT58C/z1BVD38GJSwa2yvbLJjRaTQEd+AR3/UOzv4Z6B5k5/fjb03A6PvqP4c68kjgO3rQNPDB5/14wdxnZsUvkUg8lBdg3twjRMqvxVutIkADQc/hat+z9Nf8vz6Wt9MYZjk/U3wQX20HDlx2k8/HWy/haSsQ2kQ0vL0piy0qTyKRK5BH63n454B3XBOsLesF6HUlaO49Cf7Kc30ctgapBcIYeBgdflJegJ6gRPZpzjOAynh3GbblpjrVQHqol4I/jcah5caSouoWAYxo3AjQDt7e1XHDp0aEbiWNAO/aB48vyw71VuE8SxneDkTz/yz0pC921w+Idw5FYopMBfDy1PLy5jSB2Bnl8Xb295Ojz8++eXIDj4fbjhRXCap5xz6SXY99134m0ce40YGJiGuaA/ADqOg2VbJ/y7nMw0zNKf0xp5EP7yHEgegss/CSteN3MJr9QR+PXVkD5SXFZw6YeL/TUqweA98Jur4aovwbJXTcsuJ68wpfIpRtOjDKWHGMuOUbALmIZJ3B9Xs0U5kePQuu+TNHR9t3ST5QozUXUV6dASCu4olidKwR3D8kSx3DEKnhiWO3Jq0sGxWbrlTcSH7yzdVHAFSUbWkYytJxHdwER844KeMpEv5BnLjWHbNn63n4gvUhy75zk2es/r8pZ6MYjMlIJdYNfgLvaP7CfsDasZr5RVrpAjmUtiORaO4xDyhKgP11MTqKEqUKXnZgWouITC8VShMAMcG25bX7wC+uQt514yUOmsJHT/qphc6L6tWNXgry8umVjyT1B7zQknpAW7gGVbFJwCBbtwwteslaXuZY/Cd+s+DOvYIQoeN13PfwI7/v31GBic8No46VzXbbjxur34XX4CngBelxeX4cJtunGZLlymq3RCbWDgMl343X78bv+0lrpOltXajo3jODg4J/z9+Nss28J2bGzHLv5bHP33cBwHm5PuM/l3nNK2mUKGVC6FZVun/HucGNSxf6/JiQEhb4iQJ0TYGybe80vCD74ZxxMn/7Dv4Kq/DpfhmtkkTX6iuLRi5yeKV0rXvB1WvwXcwZk75vm457XFZT7P6gFv7KJ3l8gl2DGwg8HUYOl5F3AH8Ll9KrGWs3Ns4oN/wmVNAA7hsYeIjNyNN9uPgX3Gu+W89YzWXs9o7fWkwyup7b6FloNf5PDytzFW/XBC41sIjz1IePwhAom9GBRIB5ewb91/kQ22zd7jq1CWbZEv5Mnb+dLvrMn3UMdxiPqi1IXqqPJXEfaG8bv9CzqhLdMnV8ixuWczQ+kh6oJ1el5JxckVcqTyKbKFLGFPmMubLyfs1XLlclJCYaGZC9UJ02ByFM1kU6yx7BiDqUGS+eQZ7gCGYRDt6+OaR70MI3/sW7bfx5a//Qyrvvacxy3YhdJJ+uSHwJNP6I9vzjV5Nd/AIOgJEvVFCXuL85tdhuuEk73JbSdfm7ZjU3AK5Kwc2UK29HjTVpp0Pn3GSoHjjzv52EvfM4xSsuP4DxHG0aAnb5v8voGB23SXEibnazJ5kbfz5At5Wo58l5WdX2U4sp7Ny95JzlNVOo7H5SHqi9IQaiDuj89MKXDiADzwNuj8EQTb4NKPQscLyrMcqJCBHzdCy1PhYd++qF1ZtsXBkYPsHt5NwB0g6lPTUZkmjo3LSuCyxnHnx3Bb47jyY6W/BxK7iQ3fhWlnS3cZangSB1e9/5TXlWmliI78jY5dHwKnwP61H2ai+prZfkRzSsbKkM6nS4lcl+GiJlBDXaiOiC+Cx/TgcXnwmB6dEMp5S+fT3N9zP2krTZVfzfCk8iVyCTJWhssaL6M+XF/ucBYsJRRmwGQJccX9Es+Nwa8uB9M3J6sTHMchW8iSsTKnXFXPF4pXcbKFLOPZcRK5RPGKDoBDqUz0fNZdLX3TG4nf8hewwPZ6GHzRM+j80Mw27ju+UVe+kMdyLE7JB0w+nZzJL05pqYXLdJUqISb/VNzz7wy86S7W3vN8xmoezv41/3lKqXTBLpQSJbZj43P7aAo3URusJeKL4HP5pu+x9v0J7r8JRjbDkpfDNV+fnv2er3Qv/PVF0P9HeMwfoOGGC9qN4zgMpgbZ2r+VbCFLtb9ac51l1plWitD4QwSS+zDtLH2t/4DjOvPUEG+6m6Vb34Qv08P2jd8hF6iQJUhzQMEukLbSZKzMsYTx0S9ed/H3X8AdoC5UR3WgmqCnzFVYUnFS+RT3HLkH27aJ+S++Mk5ktuQKOYbTw6yoWcHS6qWqvCyD2Z7y8D3gBqAW6AP+zXGcM85Dm4sJBcdx+POhP5POp3GbxfJ3r6v4x+fyEffHifgihL3h2X3COw7c+Xzo+gk85o9Q/4jZO/YFOHm993B6mLHsGJZtFU8ejyufN47+N7mcYPLf+0L/fd19g6y/9qmYWQvHa7Ltzv8j27J4+h7cPBMae4iOXTfjssYxHJtUZDUT8ctIxC4nGVlzzgZuS7e8mcjIPWy7+hbyvnNnly3bIpFLkC/kcQwHE5OgJ1hKqkw+D45famIaZmlpidt0l6o/JqssJr8CGI6Nb/1ijN0Dpx780kvhgQcu5J/p3EY2wx+fXGxKeeUXYMnLprwL27EZTg+za3AXY9kxjX2UOceb7mb1fS8mG2hj12VfxanUsa5zyGTFnGVbxeo1w6EmUMOSqiWaLCFAsTLhniP3YDu2KtlkTrIdm4HUAPWhetbXr1fjxll2poTCjHS3cBznRTOx30qTzqepC9WVyt8LdoGElWDMGaNrvKt0ZTnmj1Efqi+Vcc9ok6Xdny2Wc1/60YpIJmSsDKl8qtTTIGtlyRayZK1iBcJodpSCXTihz0DMF5uVq6xWQy2DL3gmdd/6EcYjbdbteR6ZzlZS0TUkI2tIRtaRjqzEdmkSBEBs6C/4U4cYbHoahlMgNL6V1v1/BaBg+klGN5CIX8ZQw5NOueIYHbqL+NCf6Fr8+vNKJgC4TTdxf7z0/5PNIG3HxnKK645txy71fZj8+7kaRh5vzRUbadt/+wm9NGyvh9HLVjE6sr/UIM1tuktVIsf/meoSEMb3wB+eUKweesLdp29GepLJZT2Ty12SuST7R/aTsTKEvWEaQg3nf3yRCpELNHNo5XtZuu1ttO77JJ3L3lp5k4jmmMmqNaC0zjiRS3DvkXvxu/0sr1lOQ6hBXfsXqKyVZVP3Jgp2QZUJMmeZhklDqIGRzAh3dd7F5U2X6/lcAWZsycNUzNUKhV/v/TV1obpzbjdZxj3ZbCnkDVEdqD6ho7PHLJ60eF3eC/9lX8jBLbVHRyLeWpZ54rZjM5GdYCg9RPdENxPZiVKlweTVYZfpKl09LnezOHffIEv+5Z30fPRlhNx7CE5sJzSxHW+2DwAHk3RoCanIGkbqH8d49bVli7Xclmx9G4HkXrZd/ePSbe7cMOGxBwiPPkBk7H4CiT1gmAw2Pp2B5ueQDi+npvcXtO35OHlfPduv/D6OWTldy4tVKk/DzB5rpmH7PHR+71kUqlzsbnkpYJyxCaXjOPjdfsLeMDF/jKgvSsAdKHVnP2GJRuoI/PbhYKXgcXdCdMUp+5psQDSeHWcoNUQynySVT53QV8M0TKK+qLq/y7zQuveTNHR9h77WF9G19E1KKsyQrFVcJghQH66nOdJcqvLzurzqwTDP5Qt57u2+l3Q+fUKiXmQumxzFu7ZuLW2xNr2HzYJZrVCQYwzDKCYOPMeucucKOfqT/cc6Op8k4o3QHGkuzmH1Rc7/hHvo72BNFMfPzeJJejqfZjw7Tl+yj95ELwW7gMtwEfKGqA9VduMUq6GW3bd8GYAJjlV0uLODhCa2lxIM8cE/UdN7K7su+zLJ2IZyhVtW/tRBMsGOE26zvNWM1j2G0brHAODJDtB4+H+p7f4xdT0/oWD6cdkZxuNXcXD1f1RUMgEmq1SeQe33foKZL4AbzOvydKR/AGnI1z+KRPzys+/DtshYGcbHxovLM3BKybOwN4zLdOHJT7DmwdfgzQ6y57L/IZNKYaQeBI6tiU7lU6X3AwOj2AvE5aMmUKNfkjJvdS29CRybhq7vYdgWncvfpqTCDPC5fdS563Ach/HMOP2J/hMSpZPvOVFflNZocQ68+rHMD+l8mm0D20jkEtQEasodjsi0CXqCeF1etvRvoT/ZT3Okmag/SsgT0uemWaYKhQt0vhUKFyJjZUjkEtiOjcfloS3aRnOkmYgvcvY7Pvhu2P4ReM7QtIygO36CQsbKFMuurSyZQqa0dGHydsdxCLgDpTXu841pJViz6R/Asdmx8bsUPAts7aFT4LI/X0d/6ws4svQN59zcnR0kOnov4bHNpIOLGWh5flkqZs5HsUrhGZjZLLbPQ9fP/x9jS69n9X0vZSJ+OfvXfeyC9ms7NvlCHqOQYu3WmwgndrN1zccYjV12wpKMyT4QHpdHa5xlYXIcWvZ/hsbOb9Ld8Sp6Fr+63BEtOJNLyrKFLKl8CrfpZlF8Ec2RZkLeULnDkynKWlmGUkMcHj/MSHoEj+mhKqBpDjJ/TWQnSFtpoLj8qzZYS0Oogag/qlGT00gVCnPIZFM5KF79PDx2mP0j+4n6oiypWlIqdz6lw3/Pr6H2motKJqTyKQaSA/Ql+hjLjp1QQTE5OnCyIZ7LcBHyhIj55v/aJdsdZv+aD7HqgVfQsev97F/70Yo9QZ4J3kwPppMjE+g498aA5atluOFJDDc8aYYju3jFKoWnUfetWxh84TMYWFdsATPY9EwaOr+FN9NDzt805f2ahonfNFm67X1EJnawf+1HyNc9An00FzmJYXBkyb/izo/RfOjL5L01DLY8t9xRLSiGURzd63F5CHvDWLbFgdED7B3eS12wjo54h6oWKpxlWwwmB+kc72QoNQQGhDyVXykqMh0ivkjpwmvBLhQrpxN9ODh0xDpYUbui1GNGpp/+ZSuc23RTHagGimVrm3s3n9CTIOApVgWE7TQrh+8ntertOLkEPpfvhF4Mk52fJ0cwTjaRnPz7RG6i2PMgN4GJScgTIu6P64rpcVLRdXQteQNt+z5B++7/5PCKdy2Y0lx/6hAA2eD5JRTmmp6bXklg9z56bnpl6bb+lufR0Plt6o784LyqMk7hFFi0433ERv7GwZXvZbTuUdMYscg8YxgcWvFO3PlhOvZ8mNDENrqWvnHhVYNVCLfppiZQg+M4JPNJNnVvwm26aY22UhOsKfVduKi+TzJtslaWTT2bGMuMEfaEqQ3WquRbFiyX6SLsDRP2hnEch87xToYzw1zaeKmqFWaIEgpzyMm9GCZLFNP5NIH+X2Pg8JDRyNjhO0vjFg2MYnn1ceMXT8fELPY8CCqTfTb9rS/CnR+h6fDXcQw3XUtvwnHN/5E1kwmFTHBReQOZIcf30piU9zcyUvco6rp/TN5by3D9E7B8tee9z5b9n6d64Ld0Lfl/DDU9Y7pDFpl/TDf7136EpoNfofHwN4gN38WhFe9krPaGcke2YBmGUfpgbtkW3RPdHBo7dOI2GAQ9Qar8VTRGGon747oSOItyhRybejaRyWc09UfkJIZhUBusJZFLcOfhO7m04VIaI43lDmve0Tv+HHZ8iWLD+INY7hje+mupM4oliY7jKEM93QyD7sX/gmnnaOj6DvHBP9Lb/jIGm58zr+eo+9OHsNxRLE+83KHMqu7Fr8GXPkLbvk/Suu/TjFddxXDDkxmtvQHbHTzj/XzJgzR0fpvBxqfT1/6PsxixyNzmmF66l/wLI3WPZtHO97Ns61sYrn88ncveiuXVGvByOnmU7yTbsbFsi/5kP50TnZiY1IXqaA43Ew/ES0s4ZfpNViak82mq/Hp9iJxJ2BvG5/JxX899LE4v1hKIaaZ/yfnAtoiN/I3xqqvAOLa+UcmEGWIYdC29idGa62g++CXa936cuu5b6Fz+Niaqrix3dDOiNOFhgT2nssFF7Nz4LfzJA1T33U513+0s3vk+CmaA0bob6G95EanomlPu17rvU9guP0eW/GsZohaZ+9KRVey84hs0HP4GTYe+QmTkHjqXv42R+seXOzQ5iWmYpfGTcGx89AOJB4Di2ubGUCNVgarSEgm36daH+YuUtbJs6t5ExsoomSByHjwuDw2hBjrHOxnJjLCydiUBdwCf26f3o4ukf715oKHrO3hyQww3PLncoSwchkGiaiO7qzYSG/wzbXv/ixUPvpbh+sfTtfQm8r75tXTElzrEeNU15Q6jbDKhxXQv+Re6F7+G0NhD1PTdSlX/b6npu53RmuvI+lvwZnvJe+vI+RuJD99J15L/pyuqIhfBMT30Lnolo7U3sGjX+1my/V3sM1ylMbVSmUzDLC2TgOLkqoOjB9k7sre0jeM4mIaJz+3D7/YT98epDdYS8Ubwuef/MsKLlbEy3HvkXnJ27rRVIyJyescvgdh0ZFNxObhTHK0b88WI+qJEfBH8bj8BT6CUKJWz09jICzSTYyOnwps+wtp7n8941TXsW/9fZY1lITMKGRoPf4PGw9/AMd10L7qR/pYXwjzIeJpWgsvuvIEji19Hb8c/lTucimFaCeq7vk9D13cxHIucrwFvpgeXnSHrb2HbVT/EMfWLSGRa2BZr730BBVeAnVd8a8FVS81HjuNQcApYtkXGypC38+AUKxoaQg1UB6uJeCNq+niSVD7FPUfuwbZtYv75P2VLZDZYtkXWypIr5LAcq3R7e6ydjliHxucepbGR85Hj0L7noziYHF7+1nJHs6A5Lj89i1/NUONTaN/zMdr2fYranp9zePnbSFSd8rqbU/ypwwDFJQ9SYrvD9C56Jb0d/0yxA6qBYecIjT1Ezt+oZILIdDLd9La9lEW7byYyumneLi9bSAzDwG0Ulz4c32chY2U4MHqAPcN7MAyDqC9KbbCWkCdUWjLhMT2lrwtpeWcil+CernswDVPJBJFp5DbduL1uQscN97Ydm+7xbg6NHiLuj9MR6yDmjxH0BBfU+875UEJhDosP/I7Y8F/pXPpG8n51LK0EuUAre9d/ithQcRnEygdfw3D9E+hc9pY5W/7uT09OeFBC4bSOG63qmN45n0ASqVTDDU+i5cAXaDj8TSUU5jG/239KgqFzrBPLtnAc59jEqqPjs+tCdTSFm0of9OeriewEdx+5G4/p0eg7kVlgGiZVgeJn93Q+zUP9D+Hg4DbcVAWqiPqi+N1+XIYLl+nCwMA0zNIfl+nCZbhOST5MLvk6fnLfXKeEwhxlWgna9n6cVHgl/S0vKHc4cjzDYKz2esarrj66DOJ/MQtp9q3/RLkjuyC+1GEcDLKBtnKHIiILmOPy0d/6QloOfI5AYjfp8IpyhySz4OQEw/EmG0D2J/txHIeAJ0BDqIGaYA0hT4iAJ4B5XNJ3LinYBSZyE4xlxuhL9DGYHiTijczrpIlIpQp4AqUEQMEukM6nGcuMYdnF5REOR1sITHYSOE0Bg4FR2s5jerhh0Q24TNepG85BSijMUS37P4cnN8y+dZ+YF+v056PJZRAAzYe+jC95kGxoUXmDugCe3ACWp1ol/CJSdgPNz6H5wBep6r9DCQU5pQFkvpCne6Kbg6MHMQwDAwO/21+aKuExPbhMF16XF5fpwu/24zlu5HPezpOzcuTtPBkrU7p9cl8GRnGphunG5/YRcBebtvnd/mkpg85aWfqSffQl+hhOD2NjYxomQXeQ+mC9yqxFKoDLdBE0gxec3DMKGQZSI8eSEPOAzkTnoOD4Vuq6f8RAy/NPO7JOKstAy/No7PwmDV3f4fDKd5c7nCnz5IbIe2vKHYaICAVPlFR4BeHxB8sdilQgj8tD3BUv/f9k48eCXWz+mCvksB279KdgF7Adu3Q10cAolS+bhnnCFcXjFexCcb9O4dixzeJIuqZIE3F/fEpXHi3bomeih52DOyk4BUKeEDWBGiUQROah9t0fZnFyPyx97Ly5KDw/HsVCYlt07P4QeW8tRxa/ttzRyHmwvNUMNTyFmt5f0r34NVhz7OS8mFCoLncYIiIAJGKXUtfzYww7j2NqAoCc2fGNH2eaZVv0J/vpHO/EwMDr9pYqI9yGG7fLXWom6TaK8dgUl2wMpgaxHZvqQPWsxCoi5VHdeyu1fb9kb/OLiMyj1/r8eSQLRP2R7xNM7Gbf2o9gu9WUZ67oa3sxtT0/Ycm2t5OIXcZY9cNJxi8td1jnxZMbIhNcXO4wREQASMQuoeHI9wgkdpGKrit3OCJAsUv85OQFx3FOqITI2TkyVgYHh4JdwMHBcRwMw8BjelSNILIA+JIHad/9YSZil7Gv+cUsKndA00gJhTnEk+mj+cD/MFpzHaO1jy53ODIF2WAHPYteRU3vL2ns/CY1vb9ky7W3njAhoCI5Du7csJY8iEjFSMQuBSA8tnnBJRQCEzuxvNXkffXlDkXOwjCOLp1gfjRcE5EL5Nh07LqZ2NBf8eSHsNwxDqy+GadQ4Z//p0gJhTmktuenmHaGzmVvAWWy55yeRTfSs+hGqvp+xZId7yE0voVk7JJyh3VWLmsC08lryYOIVAzLV0vG30p4bDP9bS8pdzizxpvuZvX9L8PBxUDL8+hp/ycK3vjF7dRxCE5so7r/N1QN/A5PdhDb9DBa9ygOrnq/PmuIzAGRkXto3/2fDDQ/Z0G9J84F9V3fp7b354zUPYZUaDmjtTeQ9zdAcqDcoU0rJRTmCsehpu82JqquJBdoKXc0chHGah6BbXioGvhdxScU3LlhAPLe2jJHIiJyTCJ2KbHhO8FxFsxJb0PnN3EwGKl7NPVd36Om52f0dvwz/S0vwHH5Tnuf0NhDxAf/QH/rP5D31RVvdByCiZ1U9f+Gqv478GV7sA0P49XXkm54Mr5MNzV9tzMRv4KhpmfO3gOcIlduFNPOkPc3ljsUkfJwCrTs/3zxvcFw07L/s4xXX0smtLTckQnFJQ4tBz7HaM117F/z4Xn9u0oJhTkiNL4FX+YI3YteVe5Q5CLZ7jDj1dcQH/g9XUvfWNFvMJ7cIFBsLCkiUikSsUup7fslvvQhssFF5Q5nxnmy/dT2/IyhxqdxeOW76e34J1r2fYbW/f9N3ZEfcmTJ6xipf3xpGZ07O0jbvk9S3f9rAGp7fk7X0n/Flz5C1cAd+NOdOIaL8aqr6V78asZqrqfgiRQP5th4coO07f0k41XXFq+mVRCzkKah89s0HP4mpp1huOFJdC9+LTl/U7lDE5k9tsWinf9BTf/tDDQ9i96Of2b1ppfQsetmdl32FTC03KasHIfFO/8N2/RzaMW7K/qz/nSYXws45rHqvtuxTR+jtTeUOxSZBiN1j8GX7SU4sb3coZyVJz9ZoaAeCiJSOUp9FEY3lzWO2dLQ+S0Mx6a3/eUAZEJL2bfhU+y+5PMUPBGW7HgPq+5/OeHR+wiNPcTq+15CfPCP9HS8gu1XfJusv5lFu26m8fA3yfmbObjyPTz4sN+wd8N/M9z41GPJBADD5ODK94JToGP3B8Gxy/OgT+YUqOn5KWvvfhbNB/+H8epr6Wt9MVUDv2PVff+IWUiXO0KRWeHJ9rNk+zup6b+dI4tfx+GV7ybnb6Jz+VsIj2+h8fA3yx3ighcevY/QxDa6lvwrlm/+V/mqQmEusC2q+3/DaM0jNdlhnhireSSO4aJq4PekomvLHc4ZeXJDAOQ9SiiISOXIBjuw3DHC4w8x1PzMcoczo1z5Ceq6f8xQw5NOWfI4UXUVO674NtV9t9Fy4Aus3PxqHExy/iZ2XP5ZMuFlAOy6/GuER+8jHV6J5a065zFzgVaOLH0D7Xs+QkPnt+hrf9mMPLbzFR3+Gy37Pk0wuZdEZB37136Y5NGk0ljNI1j54Guo6v8NQ03PKGucIjPGKRAd/ht13T8mNnQn4NC59I30t724tMlw/ROJDf6ZlgOfwzHc9LW/tHzxLnB1PT/GckcYbnhiuUOZFUoozAHxwT/itsYYbnhyuUORaVLwRBmPX0V88A8cWfqv5Q7njNy5YRzDRcETLXcoIiLHGAbJ6DpC41vLHcmMiw/8DtPOMtDy/NNvYJgMNz6VkbrHUt/1ffzpQ3QtvYmCJ1baxDE9TFRfM6XjDjQ/l/DofbTs/zzJ6AYS8csu5mFcEG+mh/bd/0ls+C6y/hb2rfkwo3WPOaF8OBG/gnRwCXXdtyihIPOOJ9NLbc/PqO39Od5sH3lPDb3t/8hg0zPJBVpP3NgwOLD6AwC07v90sfl3dC3p0FIyoaXkfI3zvvS+ErhzI8QHfs9A83NxXP5yhzMrlFCocJ5MH+17Pkw6uISx6mvLHY5Mo/Hqq2nb9yncueGK7VHgyQ2S91RX/nhLEVlwktF1RIfvwrQS87p6r6bvNjKBDlKR1WfdznH56et4+fQd2DA4tPI9BBO7WLz9ney44tuzWrpb0/1T2vZ9AoDOpTcx0PJ8HNN72jgHmp9N+96PE5jYSTqyatZiFJlJNT0/pWPXhwCH8epr6Vz2ZkZrHgnmWU7fTDcH1txMfl8tVf2/pWrw96VvFVxBMsHFJKNr6W37RzU0nSE1vb/AdCwGm59d7lBmzYydJRiG8UTDMHYZhrHXMIx3zNRx5jPDzrNk+zsx7Rz71n707G8gMuckj85PD40/VOZIzsyTG1L/BBGpSInoegwcQhXei+ZieDK9RMbuZ6jhSWW5smi7w+xf+1FcVoKl296KUcjOynGjQ39l0e6bSUbWsn3j9+lve8npkwlHDTc8Bdv0Udf941mJT2SmufJjtO77bxKxS9h69c/Yu+G/Ga179PmdCxguupa9mS0P+xWbH/57dl76FQ6teCdDjU+j4ApS2/1T1t3zHJoPfAGcwsw/mAXEnzxAXfctTMQuJRNaUu5wZs2MJBQMw3ABnwOeBKwBXmQYxpqZONZ8Vt/1HcLjD3Fw5fvIhhaVOxyZZqnwamzDTXhsS7lDOaNKrp4QkYUtFSn2nwmNV+576MWq7v8VQFnX4abDyzm4+j8Ij2+hY/fNmFbq9Bs6DlV9v8abPnJRxzOtJB27P0Q6uIS9Gz5NLtB8zvsUPBGG6x9Pdf+vzhyfSIULjT1EbPBP4Dg0HfoaLivB4eVvP6/XwJkUPFGS8UsZbH4Oncvfyp5Lv8C2q29htPYGmg59ldqen03jI1iYvOkuGg99ndX3voi19z4Pb6aHvrby9p2ZbTN1yfsqYK/jOPsBDMP4PvAMYP5eRpgBVf2/IxHdwGj9Y8sdiswAx+UjHV5Z0R+GPbkh0uHl5Q5DROQUBU+EdHDRvO6jUNN3O4nohlPXSs+y0brH0L3oRpoPfonY4F8YanoaA83PIxtsL21T0/szFu26mYy/lZ1XfOvEyRFT0LL/s3iy/ey/7KtnrUo42WDTM6jt/QXxwT8w3PiUCzq2SLmERzax/KH/h+nkGK+6ivDo/Qw1Pq3UWHU65fxNHFh9M57sAC37P8dI3aMpeOLTfpz5zChkqOu+her+3xCa2AZAIrqBw8vewmjdY8j76soc4eyaqSUPLUDncf/fdfS2EsMwbjQMY5NhGJsGBgZmKIy5y5MdIJTYwVjNdeUORWZQIrqh+EZkW+UO5VSOjSc/rCUPIlKxkpGjjRkdp9yhTC/HofHQVwkk9zFUIQ2ZexbdyM7LvspYzSOoO/JD1t3zbJY9+K/EBv9CYGIn7Xs+RjK8Cm+2l8U73nNB4yYDE7uo6/4R/S0vIBnbMKX7JqOXkPW3UNN365SPK1JOobHNLNv6JrKBVrqW/D9C41txDDfdi18zcwc1DA4vfxsuK0HzgS/O3HHmI9ti6ba30bbvk+AU6Fry/9hyzS/YdfnXGGh94YJLJsDMVSicbqHfCb/tHcf5EvAlgI0bN86zTwIXLzr0VwBGlVCY15Kx9TQc+R7B5J5zNtyaba78OIZTwFJCQUQqVDK6jtq+X+LNdJ8yUnGucueGadv7car7f8NQ/RMZanp6uUMqScYuIRm7hK7sTdT2/JS67ltYtvWNOJjkvTXs3fDfVA38jvY9H6Ft78fpXPZmMFznvf+mQ1+h4ArRs+jVUw/OMBhqeDJNh76CJ9tP3lc/9X2IzAbHwZfuIjy2mZq+XxIZvY+Mv5Xdl3wey1fLUMOTcVsTM35imgkvo7/l+dQf+T7DDU8hGVs/o8ebL1r3fZrY8F0cWv4OBlueW+5wKsJMJRS6gLbj/r8V6J6hY81L8aG/kPU1kgktLXcoMoMS0eIVmNDYQxWXUPDkhwCKUx5ERCrQsea2W+d8QsGf2EtD1/eo7rsdw8nTtfj19LW/rCLHvFm+WnoXvZLe9pdTNfgHqvp/Q1/bP2J5qxlofi6+dCcNXd/Flz7C/jUfPK8pHP7EXqoG/0B3xysveLnEcMOTaD70Zar7fkVf+z9e0D5EpptppQhObCc8voXQ+EOExrfiyY8AkPU3c2Tx6xhoflZp2YHlq521iSrdi19NfPCPLN7xHrZv/M68npgzHWp6fk7Dke/R1/IiJROOM1MJhXuB5YZhLAaOAC8E/mGGjjXvGIUskZG7GWp8WkV+kJDpk/c1kPPWERrfwgAvKHc4J/DkjiYUVKEgIhUqHVqGbfoIjW9lpOEJ5Q5n6hyb6PDfaOj6LtGRu7FNH0NNT6Ov5UVzoxmz6Wak/nGM1D/u2G2GQdeyN5EJdtC+56Osu/uZDDY9i8GmZ5416dN06KsUXEH6W190weFkg+0kouup7rtNCQWpCLGBP7Jkx7sx7eKElEygg7GaR5CMricR3VCcBFDG0dy2O8yBNTez8oEbad/9YQ6u/oDOPc7Am+6mbe/HGY9vpGvpG8odTkWZkYSC4ziWYRivB34NuICvOY6zbSaONR9FRu/DZWcYq3lEuUORmWYYJKPrCY8/VFwDXEFv4u7cMAB57+zNHRcRmRLTTSq0nEByb7kjmbLQ2GY6dn2QQOoAOW/tKVcp57rB5ueQCq+k6dDXaTz8vzQd/joZfysTVVcW/8SvxPJWgeNQ3XcrVQN30Nv+Mgqe2EUdd7jhybTv+QihsS0q4Zayig3+hSXb30EqvIqeRa8kGV1Xka/vZOwSuhe9ipaDX2S8+hqGG59a7pAqj2OzaNd/AAaHVv3b+Y3vXEBm7F/DcZzbgNtmav/zWWz4Tgqmn4n4xnKHIrNgrOZhVA3+nuq+2yqqM7UnNwigsZEiUtEyocXEhu4qdxhT4zi07/kYLivJgVXvZ6T+cTimp9xRTbtUdB371v8X3nQ3saE/Ex25h+r+31DX85Pi90PLcUwvoYltJCLr6Gt76UUfc6jhKTQf+CJNh77M3g3/fdH7E5kKo5Clpu82IqObiA/8nnR4BXsu+WzFLyXo7fgnoiP30L77IySjG06Y4CJQ130LkdH7OLjyveT8TeUOp+KUr8ZGzigysolE7DIcl6/cocgsGGp8GonoJbTt/TiebOVMPPHkhrENDwX3ha1lFRGZDenQUjz5IVz50XKHct6CE9sJJnbR2/FPDDc+eV4mE46XCzQz0PpC9q3/BJsf/jt2XP6/HFn8L1ieOC5rnEMr3s2uy7920dUJALY7SG/7S4kN30VorHLHMsv81L7no3Ts/iDh0fsYbngiezZUfjIBAMPFgdXvxzE9LN7+bgw7X+6IKodToOHwN5mIXcZQY+U0ya0kSihUGFdulEBqP4n45eUORWaL4eLgqn/DtHO07/5QxYw/82T7i8sdKmgZhojIyTLBxQAEkgfKHMn5q+u+hYIZYKjhSeUOZfaZblLRdfR2/DN7Lv0C267+CYPNz5rWdeQDzc/HcsdoOvTladunyLmERjdT2/szeltfwpZrb+fQqn+j4ImWO6zzlvc3cmjlewkldrDygVcQGnuw3CFVhNjQnfiyPfS3vlCfic9ACYUKExl7AICJ+GVljkRmUzbYzpHF/0J86C9U91XGSqFgYifp8PJyhyEiclaZ0BIA/Kn9ZY7k/LjyE1T3/5rhhifOjSuXc9DxVQodO/6d4PjWiknWS2VzH21IPWW2RcfuD5H1NdKz+NVz9sRztO5R7F99M57sAKseeAWLt70Tb3phD+qrO/JDct56RmuuL3coFUsJhQoTHrsf2/SRiqwtdygyy/pbX1ha+uDODpY1FtNKEEgdJBlZU9Y4RETOJedrpOAK4p8jFQo1fb/EtLMMNj+73KHMa/0tL6S/+XlUDfyO1fe/nNWbXkztkR9hWslyhyYVqqbnp1xy1xOo6fnplO/b0PVdAqn9dC5/K7YrMP3BzaKRhiey7eof093xKuJDf2btPc+lef9nMa1EuUObdb7UIWIjf2eg+dlqxHgWSijMEG+mh8aDX8Gwc1O6X2T0fhLR9fN+PaWchuHi4Kr3Ydo5OnZ/sKxXU0ITOwBIRZXYEpEKZxhkgosIJCu8QsFxaDj8LVr3foqJ2KWkIqvLHdG85rj8dK54Ow897HYOLX8HAB17PsyGvz2J9l0fxJs+UuYIpZJ4Mr207f0kDi7a93wM/xTeT9y5IZoOfZXR6kcwVjs/rmLbrgA9i1/N1qtuYaT+MTQd/l/W3f1sokN3lju0WVXX/SNsw81g0zPLHUpFU0JhBhh2jiVb30rLwS9S3fer876faSUIJHarf8IClg12HLf04fayxRGcKE55TYb1gVdEKl86tLTilzy07/4Qrfs/zWjt9exd/6lyh7Ng2O4wgy3PZcfG77Dj8v9lpO4x1PTdxur7/vGCmjYOpgZ51S9exWCqvJWEMo0ch0W7PgCOza7LvkzBFWTJ9ndS0/1T6rq+jyfTe9a7Nx/4AqadoWvZTbMT7yzK+xs5uPoD7Lj8fym4w7Tu+3S5Q5o1ZiFNTc8vGK17NJZPI9TPRgmFC3X/m9iw7yM0HfwSVX2/JjCxs1RG17L/s4QSO8l7qqjv+t55X2kOj23GwGEipoTCQlYJSx9C49vJ+lsoeONlOb6IyFRkgovx5gZx5cfLHcpp+ZIHqe35Kf0tz2f/2o+od0I5GAap6DoOrfo3tm/8PpY7wooHX0Ns8M9T2s1X7v8Km3s385X7v3JR4Tjq6VARXPkxFu14H9GRu+la+gaSsQ0cXPUf+FMHWbT7Ztr3fpy1976A6t5fYth5XPkJ3NlBvOku/Im9xAb/SG3Pz+hveQHZ4KJyP5wZk4quY7j+8fhThzAKmXKHMyuq+36Fu5Cgv/n55Q6l4mkxyIXKj1OV2I5/+E8YHPulkPPW4s0N0t/yfFKhFSzafTPh0ftIVG08875sC2+2l6qB32EbbpLRdbPwAKRiHV36sGbTP9Cx+4PsW/eJWW/uE5zYTjK6flaPKSJyodLHNWZMxi4tbzCn0dD1bRzTS0/HK+dss7b5JBtsY9flX2PZlptYuvUtHF7xdgabn3PabY1ChtD4ViJj95Pov5tf7nwQB/jlrp9y44YXUx1tK23rOA6JXILMcSdcBgYOpyYPJm93cDAcg5A3RNATnPbHKmcWG/wTHbs/hDs/SnfHq0p9TcZrHsZD1/4Kw87iKqRo3/0hFu/8dxbv/PfT7ifviRdf2/NcOrQMA5tAcj+paPl7bEWH/4ZjuJmIXTb9/Q0ch7ojPyQVWk4ydsn07nseUkLhQl39Ff5U82vq/RF86S786UP4U4fxpQ6BYdC15A2AQ+v+z1B/5PskY5fgTx3Em+nGm+nFl+7Cl+7Enz6MN9ON6VgAjMevxHH5y/vYpOyKSx9eS9u+TxEd/ivjNY+YtWO7c8P4sr0MRF4wa8cUEbkYmWAxoRBIVl5CwZ0dpKb3Voaano7lrS53OHKU5a1mx4bPsXT7u+nY/Z9EB/6E7Q7imH7yvnrAITy2mdD4Vkwnj4PBjcNRbAzAwbYt/u93r+TlT/w2GdxYjoWBQX2onjXRNXhMDy7ThWmYuIziV9MwS7dBMQGRsTKMZcbYN7KP/mQ/Vf4qPC710ZpJrvwobXv+i5r+20mFVrBn/adJR1adsI3lrQIgD+y+9H+o6b0VT24Q2/Rhu/zFr6Yf2+UnFV41p8ZDXqh0eAUAgeTusicUPJlelj30BgxsLHeMwaan09v+Mgqe+LTsPzT+IMHkbg6teJeSwOdBCYWL5Lj8ZMLLyISXnfb7A83PpvHw/3LpX64rJQ0ACqafbKCddHg5I3WPJhtoIxtoJ3XSG5osXP0tL6Tx8Dep7fnZrCYUghPbAUhWQPZZROR85PyNFEx/eSc9OA6Gk8cspI/+yeCy09T2/BTDsehrfUn5YltAJk/SM1aGvJ3HOO5kwMAoLTUwDAO36WbL6g+w9MAXqRq9G8dxcBXSePPDAIyHlnGo4ekMR9az19XMN297Pbmj988B3x0a4h1b3054yUuJJXfjNQxcyXrwPROqrzhnrIZhEPAECHgC1Ifr6Z7oZs/QHkazo+CAz+0j6AniVnf5aRMf+APtuz+M2xqle9GN9Lb/07kboRsuhpqePjsBVrBsoJWCGSCQ2FvuUKjt+SngcHDle4gO/52Gzm9T2/0T+tr/kf7WF13UpA13bojmA1/CcoUZbnjStMU8n+kdaob1t/4D3kwPeV8DqfAKsoFWcr4GLG+NMl5ydqab4YYnUnfkB7jyo9OWdT2X0Pg2HAxSYSW3RGSOMEzS4RVU9/+akfrHkYxtmJXDBiZ2snTrW3Fb45iFDAaF0243XPdYssG2035PLl7GypDMJSk4BQzDIO6Psyi8iKg/is/lO6Ey4PiKgVKyYdGjT9hfwcphFdIEXH4CQIth8KXb//WU4xYMN5888BCfS74V3CFwBSE3BLs/C0/ZCsGW834MpmHSGm2lNdpKKp9iIjvBQHKA/lQ/WSuLaZhUB6pL1Q0yRY5N256PUt/9I1Lhley55DOlK+5yngyTdHgZwcTu8sZhW8WLbdUPY6jpmQw1PZOexF5aDnyOlgOfp/7I/xWXsDQ9c0pLIdy5ERo6v0n9kR9g2Hm6lr7hrIkJx3GwHRuHo18dp/R327Ep2IXioqajtxsU328M4/TLoOYyJRRmmOWt4uCam8sdhsxRQ41PpaHru1T3/ZqB1pldgmAUstT03Uptz0/JBBdju0MzejwRkel0aMW7WLb1zazYfCOdy95SXBM/w4n7hq7v4rbGGWx8erEM2hXAdgUomIET/j8Z0Qjei+E4DgWngGVbWLZFvpDHsq3Sh/KIL8KymmVUB6qJeCO4TNdFHc/l9uJye0+47Z4j95ArnDgKPGdb3OVdBU/6P4itBdMFE3vhtkvg7lfADbdf0HMw6AkS9ARpCDfgOA5pK03XWBd7hvdQF6y76Me34DgOrXs/QX33j+htfQlHlrx++tfcLxDp0HKqBn5bbDhfpgujseE78eYGONz89tJtmfAy9q3/JKGxzbTs/ywdez5MQ9d36FryBsbqbjjr/lz5URo6v0191/9h2lmGG55AT8eryAbbT9guY2VI5VOl5U044HV7MQ0Tt+HGNItf3aYbl+nC5/LhNt0nJC9t2wYobmPMn9exXk0iFSwdXkEqtIKavltnLKFgWgnqjvyIhq7v4ckPkYysoXPZm2fkWCIiMyUTXsaOK77F4h3vpWPPhwlNbOPw8rfPWF8iV36Mqv47GGx6Bl3L9Z45nQp2gbSVJp1P4+BgGiY+t4+AO0DUFyXgLi4T8Ll9hL1h/O6Z7z31wKsfOL8NI8vgso/CptfD3v+B5a+5qOMahkHQE2RF7QrcLjfb+7dTF6rTMogpaDz0VRqOfJ++1hdzZOkbVCF8EVLhFdT1/BhPto+8v7EsMdR1/5ict46x6lOXAydjl7L70i8TG7qTlgOfZdm2t3Bo+TsYbHnuKdu68uM0dH2H+q7vYRbSjNQ/nu6OV5ENLSptY9kWY9kxCk6BiDfC4vhiqgJVBD1BfG6fKoaO0ruRSIUbanwqbfs+gT+5j0xo6bTt150dpKHru9R134KrkGSs6hr62m9mIr5Rv2xFZE4qeKLsXf9Jmg5+meZDXyaQ2MP+dR8j52+a9mPV9N2G6eQYbH7WtO97obEdm3Q+TdpKY2PjMlzUBetYXr2cqD9KyBM6oRdCxVv+Wuj6KTzwFmh8HESm53f3kqoluAwXW/u3UhusVVLhPLhyozQd/jrDdY+la+lN+nxzkdJHe8YFE7sZK0NCoa7r/4gO/604VeNMz3/DYKz2Osarr2bJtrfTsefDYBilSS6Gnafx8Ndp6PwOrkKS4brH0rPoVWRCS7Edm5yVIVfIkS1kMTFZXLWYpkgTYa/G/Z6J3olEKtxwwxNp2f/f1B35EZ0r3n7uO5yDOzdC4+GvU3fkRxiOxUjdY+htf9kpHY5FROYkw6Rn8atJRVazaMf7WL3pJexf80Emqq+ZvmM4DrXdPyYRWad12OdhMmGQt/MU7AI2NjhwdEkxBgY1wRoWVy0m7o8T8obm9pU/w4Srvwa3rYe/vwwe86ficohp0BHvwOPysLl3M9X+ak2EOIe6nh9j2ll6Ft2oZMI0SIeWAxBI7mGs9pHTtt/g+Faq+39DwRWi4A5hH/1acIWwTR+uQpLo8N+p7/4hozWPpLf9Zefcp2N62b/2IyzZ+jY6dv8nrvwE/a0vZOm2txEbvovB6uvY1/JSRvxtxfei1AAGBhFfhPpQPTF/jPpQPV6X95zHWuiUUBCpcJa3muGGJ1HT+wu6F7/6opozetNdrL7vpbisJEONT6G3/Z/VKExE5qWx2key84pvsnTrW1i25Sa2X/mDU9bEXqjw2GYCqQMcXPneadnffJTOp0laSWynWHFQG6gl6A0ScBeXKrhNNx7Tg9t043f7519fgFAbXPHfxYTCzk/AmrdO266bI824DBf3dd9HVaBKJzxnYNh56o78kLGqa8iElpQ7nHnBdofI+lsIJPZM2z4NO8eS7e/Gm+kFbIyzNCzsb3kBncveBOfZf8Axvexf9zEW7fx3Wg98lvruH+LJ9vNQx+vJLX4Z1b4Yi3xRfG4ffrcfn8s3t6qhKoQSCiJzQF/ri6nt/QV1R35E76JXXvB+WvZ/FsPOs33jd8846lREZL7IBtvZfekXWPf3Z9Jy4HPsX/uRadlvbc+PKbhCjNQ/flr2Nx84jkMynyz1PYj746yqWUVVoIqwNzy3Kw4u1OKXQtdP4KH3QPOTIL5u2nbdEG5gY/NG7uu5j7g/rqTCacQHfoc3N8Chle8pdyjzSiq8gmBi17Ttr77r//BljrB7w2eZqLoKs5DGVUjispKYhSSuQpqCK0TeW31BfRsc08OB1R8g762l7sgP2LbsHbSufwvVgeppewwLnRIK80jBLpAtZMkVcqXuxwbHRpMYGLgMF4ZhlEYnGRi4TBce0zP/rg7MI5nwMsaqH0b9kR/Q1/ZSHJdvyvsIjT1E9cAddC+6UckEEVkwLG8NfW0vofnQlwmObyUVvbiTOld+lKr+3zHY9IyLmnU+F9mOXfqMkS/ksRyrtHTBwKA2WMuKmhVUBapmpVFixTMMuOp/4NZ18Ld/hMf/HabxxL8+XM/G5o1s6t6kpMJp1Hd9n0ygg/Hqa8sdyrySiF1C1eAf8GT6yPsbLmpf7twITYe+wlj1w0rL0mx3CNsdIj/1j7pnVHAc7mv6BxqW/AtrGy/X+9M0U0Jhjknn02SsDAWngOM4pfWHOOBxeYj5YzSEGwh5QvjcxVfi5LilXCFXGrU0+adgF8cwjefGydt5XIaLiDeiX0oVqK/tpax48LXU9P7itN1qz8pxaN33KfLeGvpaXzIzAYqIVKi+tpdQ1/1jWvf9N7sv/Z+LWktd07uwmjFOVh6k8qniZwRfpNjnwBMi5A3hdXnxuDwE3AGt5z8df30xqfCXZ8O2m2HD+6d193WhulJSIeKNEPAsrCTXmfhSnYQnttK59KZiTwuZNhNVVwEQGb2X4canXviOjn42NQuZYsPMGZKxMoxlxlhZu5LFVYsXZrXUDFNCYQ6wbIvx7DiWbRH1RVkUX0TQE8Tr9hZ/kZsevC7vRVUY2I5NIpdgMDXIodFDjGZHMY7+53P58Lg8pZmpWltUHhPxjUzELqXlwBcYrXs0lvf8S7Xig78nPP4QB1e8B9sdnMEoRUQqj+0O0dPxz7Tv/RjBie2komsvbEeOQ23PwmjGaNkWo9lRbNumLljHmro1VAWqNFngQrQ9Cxa9FLZ9CFqeBjVXTuvu60J1XNl8JbuHd9Of6sfEnLVxmpWqauA3AIzUPbbMkcw/6dAy8p440ZF7Liqh0Hzwi9T03Up3xytnpMdF1soykZvAbbq5uvVqaoI1034MKdJvhQpl2RbJXJKsncVluOiIddAcaSbii8zI8UzDJOqLEvVFWRxfTCqfImNlSOVTjGZGmchNkMqnyBVypSUUkwyMBf+La1YYBodXvIvVm15M297/4sCaD57f3ew8Lfs/Szq0lKGmp81wkCIilWm44Ym07f0E8cE/XnBCodiM8SAHV75vmqOrDMdXI3hcHpZVLaMp0kTQo0T0Rdv439D/h+LShyfeD+7prSSoDdVSG6ollU8xmBzk8Phh+pP9mKZJzBtbcNUjVf13kIhuuKA193IOhslE/EoiI/eC41xQxVdd1//RdOirDDY+g55Fr56WsLJWllQ+Rd7JgwNhb5hF8UV0xDt0jjLDlFAoI9uxS0sOSn8cC8dx8Lq8NEWaqA/VE/fHZ/WKgGEYhLzFUsYaamiLHZsCMLl8YjLefCHPWGaMnkQPA6kBHMfB5/IR8oZ0FWMGZEJL6O34Z5oP/g9DDU9ivOYR57xPbfct+NOd7Fn/6fPuiitT5zgOuUKuNLv4hCVJxyn1NTmal3OMYq+Tye/5XD4CnoBePyLTrOCJMRG/gvjgH+le8roL2kdt92QzxsdNc3Szx3Ec8naefCFP3s6Xei5Nfq82WMuq2lXUBmvVW2k6eePFUZJ/eDw8+G644hMzcpigJ0h7vJ32eHux8jQ5yM6hnUS8kQVzUuVLHiSY3MPhZW8pdyjz1kTVlVQP/BZf6hDZ0KIp3Tcyci9te/+L0ZrrObTinRc9znM8O07aShP1RWmPt1MTqCHsDZeWfsvM0yfWWVKwC6StYv8D27ExMDBNk4A7gN/tJ+aOEXAHCHqCRHwRwt5wRS4tMAwDt+E+4WSnKlDFoqpF5Ao5xrPj9CX66En0kC/kMU0Tv8tfWi5hGqY+oFyk3vaXU9X/W9r3fJRt8Y04rjN8QHAc/Kn9NB/8MuNVVzFe/bDZDXSOsx27lDizHRvHcYpfKX6dvO34OeohT4iaYA1xf7y4LMnlLTY/NY4uIDru6/HHyRfy5Ao5UvkUw+lhhtJDZK1saTsDA4/pweMqLm9SskHkwozWXk/73o/hSx0kG1w0pfu68qNUDczdZowZK8NEbgLHcQh7w4R9YUKeEGFvGK+ruITS7/brQ/hManocLP8X2PUpWP4aiM7sspmwN0zYGybmj/G3rr9hGuaC6JFVPfAbHAxG6x5T7lDmrfGjfRSiI3czMIWEgifTy+Lt7yQT7ODA6vfDRXyecRyHwfQgUV+Uq1quIuQNXfC+5OLoU+kMmTw5yBVyYIDbcFMTrGFJ1RJi/hhBT3DenRR4XV5qg7XUBmtZXbeaRC7BSHqE4fRw6aptzip2hwbAKL4ZuAwXAU8xsaJGKefmmB4OL38bKx98DY2Hv0HP4mOlYqaVIjJ6L7Hhu4gO3YUv24NteOla8oaLzgDPFcc3HC2d+B939c3BKSYC4IS/TyYGHMcpTUIJuAMEPIHSrHSX6Sol1NymG4/Lg8/tw+fy4XP7Lvj5O3nVaLIiyHGc0sSWrJUlY2VI5BIk80nGs+NkrSwBd6BiE48ilWoyoRAf/BN97YumdN+a3luPNmN89swENwOOX8IQ8UXYUL+B6mD1grlSXZHWvhP2fB4O/wDWzc44w6pAFRubNrKpZxM1gZp59/nzZFX9d5CIXUbeV1fuUOatnL+FrL+ZyOi9DLS+4Pzu5Ngs2f4uTDvPvnUfw3ZfeAIgX8gzlB5icdViVtas1MXKMpvf7ygzzYCB5MCpZc0OBDwBmiPN1ARrCHlCBD3BBfXB//ieDB3xjhO+N7nUI2/nSeVTjGfHGU4PM5wepmAXSldxfS4fbtN92jGXC12iaiPD9Y+n8fA3SMQuIZjYQ3T4LsJjD2A6FgVXkIn4lfR2vJyx6ofP2TWEjuOQttKk8qnT9u4oLR04rkrA4/Lgd/sJe8N4XMWr+pPPnclqARMT0zx222SXcrfpPiF5UC6GYeB3+4sf+k+6WOg4DiOZEQ6MHqBvoq9Y4eSPlSdQkTkm728kGV5NfPCP9LW/7Pzv6DjUdf+YRHQ96fDymQtwmkw2I7Mdm/pQPesb1lPlr1pQn0MqVrAVah8Gh384awkFKI6YvLTxUh7oeYDaYO28TSr4UocJpPZrucNMMwwm4lcSH/gd2NZ5VRpU9f+G8PhDHFj171OuEDteMldMkl7WdBnNkeYL3o9Mn2l/NzEM43nAvwOrgascx9k03ceoBIZhcEXTFQDFq5ZHS/pLVzHn6Rv1dDANE9Nl4nF5CHqC1AZrWVK1pHTymM6nSeaTjGXGyBay5At5CnaBjJ2hYBcoOMUrz8eXg3td3tJV4rlich3r5FX0SaX19Mc9PpfpOiWZ0rX0JmJDd7LiodcDkA4tpb/1RYxVP5xk7BIcc242YMoX8iRyCfJOHhOT6kA1bdE2Qt5QqQrglATBcbfN9w/MhmFQHaimOlDNePU4e4b30DvRS9wf11VHkfMwWncDLQe+gCc7cN5XMMNjD+BPH+Jge2U0Y8wX8mSsTKkiCzjh4kbQHWR5zXIaQg0qA65E7c+D+98I47tnfNnD8ZojzdiOzYO9D87bpEJs6E4AxmquK3Mk899YzcOp7f0Z4bHNJKo2nnVbw87RcuDzpMIrGG548gUfcyg9hM/l4+HtD5+xRvUydTPxTrIVeDbwPzOw74pSF1Ip1XQyDIOgJ0jQE6SGGjjLRVfLtkql4Ol8mrHsGMPpYQZTg6Vkw+QJp2mYJ/RvmCxXn26T5fSTa+sn/z4Zb66Qo2AXih/6nKPNLz2h0pVxAwOb4va2XfzqUGyCmbEy5AvHmmcVT5oNMsvfSzDTy1BsIzl/w7F1+rnUKev2XabrhJPucpyAH//vMNnc8/jKAwcHv8tPW6yNulAdUV90Xn7gmS5RX5Qrmq5gIDrA1v6tJHIJqvxVquIROYuRusfRfOB/aDj8DbqWn/sqpj95gPbdH8ZyhRmuf/wsRHgi27FLv+sKFMApLpOqDdaWlmWdXGU1l5LrC1L7c4sJhc4fwdp3zeqhW6OtGBg82PcgVf6qeddTITZ8J+ngYnKBlnKHMu+NV1+LbfqID/7xnAmFuiM/wpfpZveGz8IFLA8t2AWG0kM0hBtYV79u3j1v57pp/6TuOM4OYN5fJZTycptu3F536cpLK61A8YQ1lU+RzqeLje7sYtf9fCFf+v9UPkW2kD37AZyT/v9cT+ejCQKX4SqduLsMF6Zp4jbcBD1BYv5Yabym3+3HY3qm/DpxHKd0Rao4UeAKslaWyNGqjYJdwOZYw8CCU8C2i80Fc3YOq2BRcAql2wtO4Wj4Jy4dKD3+o8mPEx7/0f83zvKPcvLyhEk+l4+IL0LAXfwA7HP78Lq8peoev9tPwDP3mp2VW12ojus6ruPAyAH2Du9VXxKRs8gG2xlsegb13T9koOX5ZIPtp93OnRuhuu9Wmg98EdsVYP+6j565Ce40OL4RrGVbpd9TpmFS5a+iNdpK1Bcl5A2pGmmuC7ZC7bXFZQ+znFAAaIm24DE93NdzHxFvZN783jWtJOHR++lvfVG5Q1kQbFeA8aqriA/+ia5lbz5jr67Q2BaaDn6JsaprmKi+ZkrHcByHVD7FRG6CVbWrWFK1ROeYFahsl/4Mw7gRuBGgvf30v8xFpsptuku9G85msofD5FX/yWUUpQZ9R51u3f7JlQ6TJ8Sz8QZnGEapL8B0fgA4XZPCycc+uSRjMolxfMPDM8V4fGXI5L+R1+XVlfMZ5DbdLK9ZTlOkif5kf6kvyeTPaTKxpSuXItC96NVU9/2Klv2fYf+6j5VuN+wcsaE7qem9ldjwnRhOgfH4VRxc/R/T2uDNsi0mshPknXwxOetQmvwU8AQIuAPE/DFivhghb0iJwfmo/Xlw/5tgYi9Els364evD9Tys7WFs6t5EtpAl7o/PegzTLTpyN6ZjMXYeI7VleozWXk986C8EErtJR1ae8v34wB9YvOM95Lx1HF7xznPuz3Zs0vk0aSuNjY1JMaG6um61KsMr2AUlFAzDuAM4XZe3dzuO87Pz2YfjOF8CvgSwcePG01/OFJkhLrNYSaCrPEXH92s4ZzWGVLTJMWHH9yVJ5pKMZEbomehhLDlGdaBaS0lkQbN8tfS2v4yWg1+kY+d/MBG/ktD4Fqr7f4PbGiPvraGv9R8YbnjytDVhdByHRC5B2krjdXlpi7VRH6ovVqwdXa4gC0jrM4sJhe7bYOX/K0sIMX+Mh7c/nC19W+hP9gPF5HTQE8Tn8s25K8GxoTuxXGES0UvKHcqCMVZzHQ4G8aE/nZJQqO/8Lq37Pkkyuo596z6B5a06436yVpax7Bgu00VNoIbFVYuJ+qKEvWFdjJoDLui3l+M4j53uQEREZHod35ekLlTH0qqlHBk/wq6hXdjYVPurdeVTFqy+tpfgT3cSH/gDtb2/wDZ9jNbewFDDU4oz1qfpBN92bFL5FMl8koZwAxviG4j743rtLXThxRBZDj2/LltCAYr9OK5suZJcIUcil2A0M0p/sp+h9BC2Y+N3+89Z9VkRHJvY8F8Zr7522l67cm6Wt4ZkdAPxwT/Rs+jG4o1Ogda9n6LhyPcYqX0UB1Z/4IzLxSYnVxmGweVNl1MXqtN74xykV5yIyALhMl20x9tpCDdwYPQAB0YO4HP5NHZSFiTH5efg6v8A2yKY3EMm0IbtDl/QviaX0RV72+RKS8Ycx8Fluqj2V3NJ4yXzoqxcplHTE2Df16CQBVd5l6N5Xd7SBKElVUuwbItELsHuwd30JfqoCdZUdBVNy/7P4skNMVKva56zbaTu0bTt+yTNB75Ab/vLWbTjfVQN/oG+1n+ga+kbwDh9hcF4dpyMlaE12sqKmhVakjmHGSevGb/oHRrGs4DPAHXAKLDZcZwnnO0+GzdudDZtmpfTJUVEKlYil2Dn4E76E/3E/DEtARKZokQuQTKXxOvyEvaFiXgjRH1RAp5AaZTxhTTglQXiyK3wp6fCo++AxseUO5rTsh2brrEudgzuKDUIrbTnc03PT1m062b6m59L5/K3n7E5oMwMw87TvvvD1Pb+DMsdw2WN07nszQy0vvC026fzacaz49SF6lhZu3JuVMAIAIZh3Oc4zikjPaY9oXAhlFAQESkPx3EYSA6wbWAbuUKOqC+qcUwiZ3F8L4SaYA0ralao8kAujJWEH1UXlzxc9rFzb19G6XyaPUN76BrvqqgEdGTkXpY/9HrG41eyd/2ntNyhXByH+q7v0tj5TQ4vfwejdY86ZZNcIcdoZpSQJ8Ta+rVUB6orLjklZ6eEgoiInFG+kOfQ6CGOTBwhlU9hGAYGRqnrvNY0ykJn2RZjmTEKToH6cD1Lq5YqkSAX73ePgewAPPmhckdyXgaTg2zp30K+kC/7CaEveZBVD/wTeW8dOy//2gUvWZLpZzs2WStLtpAlX8iDAV7Ty8ralTRFmvSZYo46U0JBaTwREcHj8rCsZhnLapaRK+RI5pKMZ8cZSA0wnB7Gsi2q/dV4XJ5yhyoyayzbImNlSOVTuEwXHfEOWqIthL06cZFp0vQE2Px2SHVDsLnc0ZxTbaiWR7Q/gj3Dezg4epCIN0LQE5z1OFy5UZZtuQnH8LB3/aeUTKgAlm0xmhnFwcE0TOK+OPXheuL+OAF3gKAnqIkN85QSCiIicgKvy4s34KUqUEVHvAPbselN9LKtfxtARa6hFbkYGStDMpfEduwTRuf6XD5ivhiraldVfFM6maMmEwq9v4ElLy93NOfF4/Kwpm4NjeFGdgzsYCA5QHHqtIHf7cfv9s/Ya2UwNci7fvcO/q8hjzfbz+5L/4dcoPITMfOZ7dgMZ4YxMFhes5ymcBN+t1+fExYQ/WYUEZGzMg2T5kgz1YFq9g7v5fDoYULekK7Sypxm2Rbj2XEs2yLii7CiZgVBbxCfy4fX5cXn9qksV2ZefAP4G4vjI+dIQmFSdaCah7c/nHwhTzKfZCI7wWBqkOH0MLlCDo/pIe6PT+uJ5Vfu+zKbezfzyTS8+YYPkYytn7Z9y9SNZcbIFrIsrlrM4vhiTWpYoJRQEBGR8+J3+1lXv462aBvbB7bTn+wn7A3jd/t14iVzRsbKMJYdw2N6aI+10xxpJuKLlDssWagMA5oeD923gl2AOVgS7nF5iLvixP1x2mJtOI5DKp9iz/Aeuse7CXvDhLyhiz7OYGqQX+z+GTbwtQkXTw9fTu3Fhy8XIGNlGM2M0hBuYFXtKl1gWOCUUBARkSmJ+WNc03oNA8kBDoweYDQzSsEuFEvFHTAMA4/pwevy4nF5VCYuFSGVTzGRmyDqi3J54+XUheq0nlcqQ9MT4MA3YeR+qLmy3NFcNMMwCHlDXNp4Ke2xdnYO7qQv2XfR/Ra+cv9XcJwCAAVMvnL/V3jHI94xXWHLecgVcoxkRgh6glzZfCV1oTotbRAlFEREZOoMw6A+XE99uB4ofsjIWllyhRwZK8NEboKJ7AQTuQkyVoaoN0rAEyhz1LJQTDZTzBVyFJwCjuMQ9UW5uuXqsnemFzlF4+MAo7jsYR4kFI5XHajm2tZrGUwNsntoN32JvgtaMlesTvgFuaPT6fJ2nl/s/gWvvPyV1AZVpzDdTp7S4OBgGAZel5dLGi6hMdyohKyUKKEgIiIXzevy4nV5T7ndcRwGU4PsGtpFX7KPmK9y5pfL/DKRnSBtpTEMo9hM0R8j7o8T8UYIeAKEPCElEqQy+eug+vJiQmHde8odzbQzDIO6UB21wVpGMiPsG95Hf7If0zBLvzs8puesJ6hfuf8r2EerEybZjq0qhWmStbKkrTR5O4/jOLhNNzFfjNpQbWlKg9/tV48EOS0lFEREZMZMfpCsCdYwkBxg1+Au+pP9RH1RJRZkWkxkJ0hZKepD9VzSeAlhb1jjTWXuaXoCbP8I5MbAGyt3NDPCMAyqA9VUt1QzkZ1gJDNSqmSbbJCKUUxEh73hE5ZHPNT/EHnbOmF/eTvPQ/0PzfbDmDcs22IsO0bBLhD1RWmNtlIdqCbkDRFwB5SAlfNmOEdLh8pp48aN8lJdowAAGmlJREFUzqZNm8odhoiIzDDbsUuJhWQ+qcSCXLBELkEyl6Q+VM/ymuXE/PPzJEwWiP4/wx3Xw9VfgaWvKHc0ZZEv5EsjXCf787gMFzF/DLfppmXvp6g/8gM2X/dHHPPUijg5PcdxsGzrhD95O4/X5aUj1kFztPmielvIwmEYxn2O42w8+XZVKIiIyKwxDZOGcAN1oboTKhYMDEzDxOf2lRo66uqInE4qn2IiO0F1oJoNbRuoClSVOySRi1d7LcQvgbtfBeO7YMMHwLWwyss9Lg8el4eIL0JjpJGJ7AR9iT4Ojx8ma2VZOnIv4+GV5BwDt+Pod8RJbMcu9THK23kADIr/Rn63n4A7QMwfI+AOUB2sJu6Pa0KTTAslFEREZNYdn1hI5BJkrAypXIqx7BiJXIKh9BC2Y2MaJjFfTCXsC9jxH5JzhRwxf4yrW9VcUeYZ0wOPvwseeAvs+Bj03gEP+w7EVpc7srKJ+CJEfBGWVi8lkeonvGk//e0vJVvIMpYd44Qq69O9FRz9tmEYpaT1md4zjJN2MLmdgXHe9yke8lhMjuPg4JS+ns7ptnEcpzQ1qfT1uMdoYBS3N5wTYnAZLiK+CC3RFmoCNYS8IbwuryYtyYzTM0xERMrGNEyivihRXxSOG1PuOA5pK01vopeDowfJZrL4XD4ivoiuqMxjjuOUJoNMfog//kNybbCWmkCNEgkyP7mDcOXnoemJcPcr4FdXwOWfgGWvhgX8nDcMg0hiJzh5GhY9i4aW64Hi+4Xt2BScArZjF/9uF7Bsi4JToGAXb7dsi4JdKG13wok7nPZkf3Lfkyf7p7vfyfedPLk3DbOYwDBNTExM0yx9/4RExeT2x21nYuIyXaUkyOTX4/8tJpmGidt04zbdeMziiGa9N0o5KKEgIiIVxzAMgp4gS6qWsCi+iNHMKEfGj9Az0UPBKRD0BNW1fx5xHIex7BjZQpamcBPNkWb8bj9+t1/LX2ThaX061DwEf3s53Pta6L4Nrv5qcRrEQjVwZ/Fr7cNKNxmGgctw4ULjC0XKSQkFERGpaKZhFjuDB6pZXbeakfQIneOd9Cf7j23kFNffHn+1RjOy54bx7DjpfJrmaDNLq5YS8UXKHZJI+QWa4FG3w67/hs1vhzufD4/9Q7mjKp/eO6DqUvBVlzsSETmJEgoiIjJnuE03daE66kJ15Ao50vni3OyslSWVT5X+jGZHKdgFTNMk6A5qBFaFKVUkWFkaIg1c0XxFcdmLiBxjmLDqJsiPwZb/gEw/+OvLHdXss5Iw+FdYeVO5IxGR01BCQURE5iSvy4vXdfrRYbZj8//bu/Moueoy4ePfp5ckTQhJgJAgwYCy70tAcUQWB4ThFdQBR5yjKG64oIALMuOCOB5x3BGUYcajLI6O+sqwKCOoiC8wDiA7irxCANlCRBJCyNLLM3/c252i7SyVru7qqvv9nNOnq6vurfrVeZ5769bTv+XZVc/y9PKnWfjsQp5a/hRJMSt4T2cPPd09zsUwTmqXLOsd6GVV/yoyky2nbcm2M7e1kCCty1avhrvOhEd/DC9+a7NbM/6e/BUM9MKcw5rdEkkjsKAgSWo7tZM9zpsxj76BPpatWsaSlUtYtGzR0CoSIwliaOhER3QMTXw1ONGWPR3WrH+gn2W9y1ZPqpjFOOcpXVOYOmkqm3ZtyrTJ05g1dRZTuqY0u7lSa5i5N/RsBY9eUc2CwuNXQ+cUmPXyZrdE0ggsKEiS2l5XRxfTp0xn+pTpvHD6C4f+a96f/UMzgA/9F72/l+f6nmNFb7GW98r+lSzvW05vf+/qmb4Hl/OCv1jSa7igmDistkjR2dE5VKxoZZnJir4VLOtdxgADdEUXszeezeyps4eWLOvu6LYII41GRNFL4cGLoX9F8eW6Sp64BmYdCF09zW6JpBFYUJAkVU5E0N3ZTTfdde9bu9TY8NtJDi1P9rwCRTm3w8r+lcXcD2WBon+g/3mFiCCGhnI0c2LJgRxgee9yVvavpH+gf2i4yPOUhZSZPTPZecbOzJwyk6mTprZ8kUSakLZ6NfzhfFj4S3jBEc1uzfh57jFYcg9se0KzWyJpDSwoSJJUh9p1xEfslVBHDSAz6c9+evt7Wd63nGdXPcvSlUtZumopz6x8hr7sKzdc/dpBDPVuGOzt0NXRVSyfVmcBYiAH6O3vHZrboG+gb+g1NttoM7bu2ZopXVPo7Ogc6mUx/LYFBGkczDkUOjeCRy+vVkHhiWuK31se3tx2SFojCwqSJDVJRNAVxVCInu4eNu15/pJovf3FkIsVfSv+YlhGXxa/B4sRy1Yto2+gryhy1A7JgDUO0eiIDqZ2T2XGlBlMmzyNaZOm0dPdQ09Xj8tuShNJ5xTY8lXw0Pdg5w/Bxi9qdovGXiY88C2YMgdm7N7s1khaAwsKkiRNUN2d3XR3drPxpI3Xa/vBHg8DOUBmPr83Bc/vXRER9i6QWsleZ8PVL4VfHgWH/zdMmtHsFo2tBRfDk9fBfucXS2hKmpA8OiVJahMRxQoVkzonMblr8ur5GMrCxODEkA5VkFrQJjvAgZfCs/fD9X8Ha1ippi2sfApu+yBsfgBs945mt0bSWng1IUmSJLWC2QfBvufAE1fDAxc2uzWNkwnPPQKPXQV3fgJ+fiisetreCVILaPiQh4j4PPBqYBVwP/DWzFzc6NeRJEmSKme7d8KDl8DtH4G5x8DkTde9z0Tz1C3w1E2w5G5YfBcsvht6FxePRQfM3Ade8k2YuUdTmylp3cZiDoVrgDMysy8iPgecAZw+Bq8jSZIkVUt0wPyvw3/tA3f8A+x/frNbtP4GeuHWD8F95xR/d08vJlyc94bi94zdYOZe0L1JU5spaf01vKCQmVfX/Plr4NhGv4YkSZJUWTP3gB1Oht9/teixsOk+zW7RuvU+A9cdXUy0uOMpsNNpsNFciJHW35XUKsZ6UNKJwFUjPRAR74yIWyLilkWLFo1xMyRJkqQ2svuZMHkzuPXUYg6CiSwT/vstsOh6OOAi2PfLMHVriwlSG9iggkJE/Cwi7h7h55iabf4R6AO+M9JzZOYFmTk/M+fPmjVrw1ovSZIkVdGk6bDHWfDkr+CRS8f2tZY9DFftA49euWH7/+7zRRv3/jxs+6bGtk1SU0WOQUUzIk4ATgJemZnPrWv7+fPn5y233NLwdkiSJElta6APrtoL+pfDYTdCz+zGv0b/KvjZK+Cp/4EZe8KRt9XXs2DRDcX+Wx8Lf/U9eyVILSoifpOZ84ff3/AhDxFxBMUkjEevTzFBkiRJ0gbo6CqWkVz2MFyxPfz2c9C/orGvcduHimLC1sfC4jtg4bXrv+9AL9x0EvTMhZf8m8UEqQ2NxRwK5wLTgGsi4vaIaKGpZyVJkqQWMudQOOpumH0w3P5RuHIXePiHo59X4U//Az9/Jdz3NdjxVHjZJTBlNtz7pfV/jvvOK5aG3Per0D1tdO2RNCE1vKCQmdtl5taZuVf5c1KjX0OSJElSaZMd4aDL4dBroGsqXH8c/Owg+PNv6n+uxffAr14LV78UFt8J+3wZ9v5n6JwM278XHvsxLLl33c+z/HG48xOw5ZEw95h1by+pJY31Kg+SJEmSxsOcvy7mONjvfHjmXviv/WDBJeu377ML4MY3w092h4W/gN3PgqMfgJ1OKYZWAGx/EnT2wLWHwUP/seZeEP0r4YY3wMAqmH+OQx2kNjYmkzLWy0kZJUmSpAZatQR+fkgxYeNRv13zl/rlj8Pdn4H7L4DohB1Ohl1OL5akHMmffg03vweevg16XgAz9oAZu6/+2WSnYt6EBRfCy/4dtjl+7N6jpHGzpkkZu5rRGEmSJEljaNJ02PEU+PUJxUSKcw79y21+fy7c/pFi8sQXvx12+xhstNXan3fzl8KrboYHL4YnfgFL7oLf/6LojQAQHZADsPuZFhOkCrCHgiRJktSO+lfAf86FLQ6GA3+4+v5MuOOMYlWIFxwF+34Fpm234a8z0AdL/z8svqv4mbwZ7PgBhzpIbcQeCpIkSVKVdE6BF70N7v0iPPcIbDS3KCbcfBL84QLY/t2w79ego3N0r9PRBdN3Ln7mvb4xbZfUEpyUUZIkSWpX27+rGIJwy/tg+UK49bSimLDLGTD/vNEXEyRVmj0UJEmSpHa18Ytgz8/AXZ+Ey+bBwMpiOMKen3FIgqRRs6AgSZIktbNdz4CtXwe3nwFTt4F9vmgxQVJDWFCQJEmS2t0mO8IrftTsVkhqM86hIEmSJEmS6mZBQZIkSZIk1c2CgiRJkiRJqpsFBUmSJEmSVDcLCpIkSZIkqW4WFCRJkiRJUt0iM5vdBiJiEfBQs9vRAJsDf2p2Iyag6cCSZjdinJgD1TKe8a7ScdQqPN5bTyOPI+OvQVXMBT+TVqti/LXaaOLfasfRvMycNfzOCVFQaBcRcUtmzm92OyaaiLggM9/Z7HaMB3OgWsYz3lU6jlqFx3vraeRxZPw1qIq54GfSalWMv1YbTfzb5ThyyIPGwxXNboDUBjyOpNHzOJIaw2NJGr22OI4sKGjMZWZbHCxSM3kcSaPncSQ1hseSNHrtchxZUGisC5rdADWdOVAtxrvajH+1GX8NMheqzfhXW+Xj7xwKkiRJkiSpbvZQkCRJkiRJdbOgIEmSJEmS6mZBQZIkSVqDiIhmt0GSJioLCnXyQ6XajH+1RMSmNbeNfcVExMERMavZ7VDzRMQHI+Lw8rbngOqaNnjDPKgm415txn/tLCisp4g4JiIuBPZsdls0/ox/tUTEERHxK+ArEfFFgHQG28qoif/fAyub3R6Nv4g4PCJ+CpwOvBk8B1RRRBwWEdcDX4iIj4B5UDVe/1Wb8V8/Xc1uQCuIiEOATwO9wAER8VBmPt3kZmmMRURkZhr/aiirzx3A24ATgc8CtwEXRcSRmXlVM9unsVXGP4C/A/4FeFtm/qC5rdJ4KnOgG/gEcBDFOWASsF9EdAN9fpmsjoiYC5wJnA38EvheRGyWmacPXh80s30ae17/VZPX//Wzh8L6WQAcDnwYeAmwR3Obo7E27GJhAfAqjH/bGox3ZvYD1wMvz8zLgBXAk8A9EdExuG0Tm6oxUBP/AeAx4CLgD+Vjx0XE3PILpfFvUzU5sAq4LDMPzMyfAE8Db8jMXr9Atr9hx/dOwF2ZeUVmLgXOA06NiO3LLxueC9qf1/8V4/X/hrGgMIKIeE9E/G15O4A/ZuYTmfkLYCFwUERs1dRGasxExPuAH0XEqRExJzMfzMzHjX97GhbvLTPzt5nZFxH7AP8JbEPR7flLg7s0p6UaCzXxPy0iNqcoKN0JfCMi7gVeD3wN+PrgLs1pqcbKCOeAm8v7uzPzOuCBiDiyua3UWBuWB5sA9wEvj4gDyk22AO4BPtasNmpsef1fbV7/bzgLCjUiYlpEnE/R3fHCiOgqq1S1lejvADtQVKpq9/Uisw1ExGuBE4BzKCqRH4uIvWo2Mf5tZIR4/2NNvAf/M7k/8BHgLRExv/wvttrAsPjvDnwK2A64ErgWOD4zj6MYBvOaiNjX+LeXNZwDBsfK9kUxMetDQH+TmqhxMEIefI5i/pQvA++KiBso/lP9OmCviNjGHivtw+t/ef0/OhYUapRd2q7LzDkUF5TnlQ8NdX/JzDuBm4HdIuLQiDi9vN8PlvbwEuAbmXktxdjJBcD7Bx80/m1npHh/ACAzF2Tmw+XtZcD3gU2a1E6NjeHxfxD4cGY+BnwqM28DyMw/U/RW2bg5zdQYWts5IMvY9wCHAAwOfVLbGSkPPpWZ3wTeAZyamW8EHgZuAp5pVkPVeF7/C6//R6WyH4zDK0o1f19e/j4FOL4cK9cfEV0123wXeDvwH8DmIz2fWktN/B4A3giQmQ8BPwamRsTRNZsb/xa3jnhvNCzeRMTHgF2B345nOzU21hL/K4BpEXF0Zq6o2f7jFPG/d7zbqrFR5zn/EmD/iJhiD5X2spY8uByYGRGvLefPuKnc7tPAVGDpuDdWY8Lr/2pZy/c/r/9HobIFBYqZnIfUVCCXRURHZj5BMWb238r7+8pJeKZSdIe5C9gjMz9cu79aR0R0Dt6uid8Pgeci4pjy78cpZnfeJQobA1/F+LeceuNd7nNkFEuG7QAcW54X1II2MP4HRsS1FPH/28xcOH4tVqNtyDm/vK8H+B4Oe2gLdebBjuU+20fEZcBuFL0VesevxWq0kXLA6//KeN53X6//G6NyBYWIOCAifgB8PiJ2GTypRETn8K6MmflRYNtyn9kRsV/Z9fn9mXlUZj7ehLegUShjeRZAFjP6D94/eOH4NHAp8O6IiMxcQtHNeUp50lgBfMD4t4ZRxLunfPx3wEmZ+Wbj3XoaEP8Hgfdm5puMf2saRQ5MrrlQvCwz/9Uvka1rNJ/95eNPUJwLjraw2JrWlgNe/7e/iNg/Ii4BPhsRu8fqlbsGi0te/49CpQoKEbEFcC7wE+ApinGSJ0JxcsnMgbICNb1mt88BNwD/D9io3PbJ8Wy3GiMiTgAupJho5fXlfV3wvApjD/BTisrkBRHxAmBvijVoByvVxr8FjDLeq8rtHszMu8e77Rq9BsX/j5npMJcWNcoc6Bt8ntovH2o9DfrsX5qZj4x329UY68oBr//bV0R0RMQnKXqcXAV0Ae8F9oTnnd+9/h+FShUUKJLnvsz8FvBF4EfAMRGxE0BEfJqiy8tu5d9HAidTLBe3axbLR6l1PQocChwBfAGKE0RNL5UzKaqTs4EPUiwR8+/AYuDs8W+uRsl4V5vxlzkgMA+07hz4JF7/t6Vy3ptHgLdk5neAzwDzgKFhL54DRi/aeehHRLyGYizsHZn544iYBdwIHJGZ90exHNTJFJXHT1FUrz6emfeX++8CLM3MPzblDWhUauJ/Z2ZeWX5wdGRmbxTj4q/NzI+X224BfIWa+Jf3b5SZz41/61Uv411txl/mgMA80OhzwOv/1jbC97+NKJaB7crMlRHxfeDizLzCc0BjtGVBoSwc/CuwKUWF6SzgPZn5w4g4m2I8zCnl+JmXUaw7enoWy0MREZ12cWxda4j/uzLz0oiYlJmrImJXiuLSDsPHQ0YxKY8zebcI411txl/mgMA8UENywOv/Fra2+Nds0w1cR9Fj4b5h+3sO2EDtOuThxcANmfmKzDyfovvKaeVj3wV2ioi/LpPmKYouLithKJk8mbS2keI/OBvrqvID4x7gB5RdmcrubZTbeDJpLca72oy/zAGBeaDR54DX/61tjfGvsROwMDPvi4hpEbE/FJNzeg7YcG1TUIiIN0fEwWW3lt8AF5X3d1KsHX9PueldFMs/fSUitgNeCQTlMpImU2taj/jfVf4dwOASQW8HToiIp4E9Y9gsv5q4jHe1GX+ZAwLzQOZA1dUR/65yl80olod8C0VPld3LYkL7ddkfR13r3mTiKk8Ocyi6tQwA9wPvoFjWY+Fg16WI2Jly5tayYPDtcszMRykqVe/IzMXNeA/acHXGfyYMzeicETEP+DLF7L3vTWfyn/CMd7UZf5kDAvNA5kDVbWD8B1fueRVwPEXP9L/PzDvH/Q20oZatyJXJksA04NHMfCXwHuDPwAXDNj+cYvZWImIOQGb+M8W8Ci/PzN+NX8vVCKOI/6zyviXA2Zl5kB8mE5/xrjbjL3NAYB7IHKi6UcR/dnnflcDxmXmixYTGabkeCmWXlbOAzoj4CbAJ0A9DS8C8H3gsIg7K1cu8PAssiIizgNdFxBGZ+UhmrmrGe9CGa1D8/yYzHwZuasJbUB2Md7UZf5kDAvNA5kDVNSj+R2bmDc1of7trqR4KEXEQxfiYmcAfgE8DvcAhUU6qUVatzgLOLPfpBE6kqFBtAhySmY+Me+M1ag2M/8Pj3njVzXhXm/GXOSAwD2QOVF0D4+8yoGOk1XooDABfyMyLASJib2Bb4BPAN4B9o5hY5VKKJJtH8R7PBy7KzFub02w1iPGvFuNdbcZf5oDAPJA5UHXGf4JrqR4KFNWp75dVJ4AbgBdm5rcpusCcnMWki3OBgcx8KDPvz8xTTKa2YPyrxXhXm/GXOSAwD2QOVJ3xn+BaqqCQmc9l5spcvU7sYcCi8vZbgZ0j4krguxTJNzgTqNqA8a8W411txl/mgMA8kDlQdcZ/4mu1IQ/A0LiYBGYDl5d3LwX+AdgNWJCZj8LQmBq1EeNfLca72oy/zAGBeSBzoOqM/8TVUj0UagwA3cCfgD3KqtTHKbq5XD+YTGpbxr9ajHe1GX+ZAwLzQOZA1Rn/CSpatYATES8Fbix/vpWZ32xykzSOjH+1GO9qM/4yBwTmgcyBqjP+E1MrFxTmAm8CvpSZK5vdHo0v418txrvajL/MAYF5IHOg6oz/xNSyBQVJkiRJktQ8rTqHgiRJkiRJaiILCpIkSZIkqW4WFCRJkiRJUt0sKEiSJEmSpLpZUJAkSeslIvoj4vaIuCci7oiI0yJirdcSEbFNRLxxvNooSZLGjwUFSZK0vpZn5l6ZuStwGPA3wCfXsc82gAUFSZLakMtGSpKk9RIRz2bmxjV/vwi4GdgcmAdcDEwtH35fZt4YEb8GdgYWABcC5wBnAwcDk4HzMvNfxu1NSJKkhrGgIEmS1svwgkJ539PATsBSYCAzV0TE9sB3M3N+RBwMfCgz/0+5/TuBLTLznyJiMnADcFxmLhjP9yJJkkavq9kNkCRJLS3K393AuRGxF9AP7LCG7Q8H9oiIY8u/pwPbU/RgkCRJLcSCgiRJ2iDlkId+4EmKuRQWAntSzNG0Yk27ASdn5k/HpZGSJGnMOCmjJEmqW0TMAs4Hzs1i/OR04PHMHADeBHSWmy4FptXs+lPg3RHRXT7PDhExFUmS1HLsoSBJktZXT0TcTjG8oY9iEsYvlY99Hfi/EXEccC2wrLz/TqAvIu4Avg18lWLlh1sjIoBFwGvGp/mSJKmRnJRRkiRJkiTVzSEPkiRJkiSpbhYUJEmSJElS3SwoSJIkSZKkullQkCRJkiRJdbOgIEmSJEmS6mZBQZIkSZIk1c2CgiRJkiRJqpsFBUmSJEmSVLf/BeqnEzPWfWFGAAAAAElFTkSuQmCC\n", 349 | "text/plain": [ 350 | "
" 351 | ] 352 | }, 353 | "metadata": { 354 | "needs_background": "light" 355 | }, 356 | "output_type": "display_data" 357 | } 358 | ], 359 | "source": [ 360 | "plot_super_bandpass(data_sbp[-300:])" 361 | ] 362 | }, 363 | { 364 | "cell_type": "code", 365 | "execution_count": null, 366 | "id": "wireless-radius", 367 | "metadata": {}, 368 | "outputs": [], 369 | "source": [] 370 | } 371 | ], 372 | "metadata": { 373 | "kernelspec": { 374 | "display_name": "py37", 375 | "language": "python", 376 | "name": "py37" 377 | }, 378 | "language_info": { 379 | "codemirror_mode": { 380 | "name": "ipython", 381 | "version": 3 382 | }, 383 | "file_extension": ".py", 384 | "mimetype": "text/x-python", 385 | "name": "python", 386 | "nbconvert_exporter": "python", 387 | "pygments_lexer": "ipython3", 388 | "version": "3.7.9" 389 | } 390 | }, 391 | "nbformat": 4, 392 | "nbformat_minor": 5 393 | } 394 | --------------------------------------------------------------------------------