├── requirements.txt ├── replit.nix ├── static ├── pexels-pixabay-256431.jpg ├── style.css └── popper.min.js ├── .replit ├── pyproject.toml ├── LICENSE ├── templates ├── index.html └── recommendation.html ├── README.md ├── main.py └── poetry.lock /requirements.txt: -------------------------------------------------------------------------------- 1 | flask 2 | requests 3 | -------------------------------------------------------------------------------- /replit.nix: -------------------------------------------------------------------------------- 1 | { pkgs }: { 2 | deps = [ 3 | ]; 4 | } -------------------------------------------------------------------------------- /static/pexels-pixabay-256431.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/parveen-14/CollegeProject/HEAD/static/pexels-pixabay-256431.jpg -------------------------------------------------------------------------------- /.replit: -------------------------------------------------------------------------------- 1 | entrypoint = "main.py" 2 | modules = ["python-3.10:v18-20230807-322e88b"] 3 | 4 | hidden = [".pythonlibs"] 5 | 6 | [nix] 7 | channel = "stable-23_05" 8 | 9 | [deployment] 10 | run = ["python3", "main.py"] 11 | deploymentTarget = "cloudrun" -------------------------------------------------------------------------------- /static/style.css: -------------------------------------------------------------------------------- 1 | /* Additional styling for recommendation.html */ 2 | 3 | /* Card animations */ 4 | .card { 5 | transition: transform 0.2s; 6 | } 7 | 8 | .card:hover { 9 | transform: scale(1.05); 10 | } 11 | 12 | /* Recommended Books heading */ 13 | .header-text { 14 | color: #333; 15 | font-size: 24px; 16 | font-weight: bold; 17 | text-align: center; 18 | } 19 | 20 | /* API Response Data styles */ 21 | .api-response-frame { 22 | width: 80%; 23 | height: 400px; 24 | margin: 0 auto; 25 | border: 1px solid #ccc; 26 | overflow: auto; 27 | } 28 | -------------------------------------------------------------------------------- /pyproject.toml: -------------------------------------------------------------------------------- 1 | [tool.poetry] 2 | name = "python-template" 3 | version = "0.1.0" 4 | description = "" 5 | authors = ["Your Name "] 6 | 7 | [tool.poetry.dependencies] 8 | python = ">=3.10.0,<3.11" 9 | requests = "^2.31.0" 10 | flask = "^3.0.0" 11 | scikit-learn = "^1.3.1" 12 | 13 | [tool.pyright] 14 | # https://github.com/microsoft/pyright/blob/main/docs/configuration.md 15 | useLibraryCodeForTypes = true 16 | exclude = [".cache"] 17 | 18 | [tool.ruff] 19 | # https://beta.ruff.rs/docs/configuration/ 20 | select = ['E', 'W', 'F', 'I', 'B', 'C4', 'ARG', 'SIM'] 21 | ignore = ['W291', 'W292', 'W293'] 22 | 23 | [build-system] 24 | requires = ["poetry-core>=1.0.0"] 25 | build-backend = "poetry.core.masonry.api" -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2023 Irfan Mulla 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /templates/index.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | Book Recommendation App 7 | 8 | 9 | 10 | 25 | 26 | 27 | 28 |
29 |

Book Recommendation App

30 |

Find the perfect book for your mood!

31 |
32 | 33 | 34 |
35 |

Discover Your Next Favorite Book

36 |

Choose your preferences to get personalized book recommendations.

37 |
38 | 39 | 40 |
41 |
42 |
43 |
44 | 45 | 52 |
53 |
54 | 55 | 62 |
63 |
64 | 65 | 72 |
73 |
74 |
75 | 76 |
77 |
78 |
79 | 80 | 81 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | -------------------------------------------------------------------------------- /templates/recommendation.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | Book Recommendations 5 | 6 | 42 | 43 | 44 | 45 | 46 |
47 | 48 | 66 |
67 | 68 |
69 | 70 | 71 |
72 | 73 | 91 |
92 | 93 |
94 | 95 | 96 |
97 | 98 |
99 |

Raw API Response

100 |
{{ raw_response | tojson(indent=2) }}
101 |
102 |
103 | 104 | 105 | 106 | 107 | 108 | 109 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Book Recommendation App 2 | 3 | # Languages and Farmeworks Used 4 | 5 | ![HTML5](https://img.shields.io/badge/html5-%23E34F26.svg?style=for-the-badge&logo=html5&logoColor=white) 6 | ![CSS3](https://img.shields.io/badge/css3-%231572B6.svg?style=for-the-badge&logo=css3&logoColor=white) 7 | ![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54) 8 | ![Flask](https://img.shields.io/badge/flask-%23000.svg?style=for-the-badge&logo=flask&logoColor=white) 9 | ![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white) 10 | ![Replit](https://img.shields.io/badge/Replit-DD1200?style=for-the-badge&logo=Replit&logoColor=white) 11 | ![Visual Studio Code](https://img.shields.io/badge/Visual%20Studio%20Code-0078d7.svg?style=for-the-badge&logo=visual-studio-code&logoColor=white) 12 | ![Git](https://img.shields.io/badge/git-%23F05033.svg?style=for-the-badge&logo=git&logoColor=white) 13 | ![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white) 14 | 15 | # GitHub Stats 16 | 17 | ![GitHub repo size](https://img.shields.io/github/repo-size/fury-05/BookRecomendApp?style=for-the-badge) 18 | ![GitHub](https://img.shields.io/github/license/fury-05/BookRecomendApp?style=for-the-badge) 19 | ![GitHub release (latest by date)](https://img.shields.io/github/v/release/fury-05/BookRecomendApp?style=for-the-badge) 20 | ![GitHub contributors](https://img.shields.io/github/contributors/fury-05/BookRecomendApp?style=for-the-badge) 21 | ![GitHub issues](https://img.shields.io/github/issues/fury-05/BookRecomendApp?style=for-the-badge) 22 | ![GitHub pull requests](https://img.shields.io/github/issues-pr/fury-05/BookRecomendApp?style=for-the-badge) 23 | ![GitHub last commit](https://img.shields.io/github/last-commit/fury-05/BookRecomendApp?style=for-the-badge) 24 | 25 | The Book Recommendation App is an open-source project designed to provide personalized book recommendations to users based on their category, genre, and mood preferences. It uses a content-based filtering algorithm to enhance recommendation relevance. 26 | 27 | ## Features 28 | 29 | - User-friendly web interface for inputting preferences. 30 | - Utilizes the Google Books API for book data. 31 | - Enhanced recommendations using content-based filtering. 32 | - Detailed README and instruction for contribution. 33 | 34 | ## Language 35 | 36 | - Python 3.9 37 | 38 | ## Getting Started 39 | 40 | To run this project locally, follow these instructions: 41 | 42 | 1. Clone this repository: 43 | 44 | ```bash 45 | git clone https://github.com/fury-05/Book-Recommendation-App.git 46 | ``` 47 | 48 | 2. Change to the project directory: 49 | 50 | ```bash 51 | cd Book-Recommendation-App 52 | ``` 53 | 54 | 3. Install the required packages: 55 | 56 | ```bash 57 | pip install -r requirements.txt 58 | ``` 59 | 60 | 4. Set up the Google Books API key: 61 | - Obtain a Google Books API key and add it to your environment or create a Replit Secrets variable named "google_api_key". 62 | 63 | 5. Set up the New York Times API key: 64 | - Obtain a New York Times API key and add it to your environment or create a Replit Secrets variable named "nyt_api_key". 65 | 66 | ## Usage 67 | 68 | 6. Run the application: 69 | 70 | ```bash 71 | python main.py 72 | ``` 73 | 74 | 7. Access the app in your web browser at `http://localhost:5000`. 75 | 76 | ## Contributing 77 | 78 | We welcome contributions from the community to enhance and refine the Book Recommendation App. If you'd like to contribute, please follow these steps: 79 | 80 | 1. Fork this repository to your GitHub account. 81 | 82 | 2. Clone your forked repository: 83 | 84 | ```bash 85 | git clone https://github.com/YourUsername/Book-Recommendation-App.git 86 | ``` 87 | 88 | 3. Create a new branch for your feature or bug fix: 89 | 90 | ```bash 91 | git checkout -b feature/your-feature-name 92 | ``` 93 | 94 | 4. Make your changes and commit them: 95 | 96 | ```bash 97 | git commit -m "Add your feature description" 98 | ``` 99 | 100 | 5. Push your changes to your GitHub repository: 101 | 102 | ```bash 103 | git push origin feature/your-feature-name 104 | ``` 105 | 106 | 6. Create a pull request (PR) from your GitHub repository to the main repository. 107 | 108 | 7. Await approval from the project maintainers to merge your PR. 109 | 110 | ## License 111 | 112 | This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. 113 | 114 | ## Version 115 | 116 | Version 1.1.0 117 | 118 | ## Acknowledgments 119 | 120 | We appreciate your contributions to make the Book Recommendation App even better! 121 | 122 | --- 123 | 124 | -------------------------------------------------------------------------------- /main.py: -------------------------------------------------------------------------------- 1 | from flask import Flask, request, render_template 2 | import requests 3 | import os 4 | from sklearn.metrics.pairwise import cosine_similarity 5 | from sklearn.feature_extraction.text import TfidfVectorizer 6 | 7 | app = Flask(__name__) 8 | 9 | # Retrieve the API key from Replit Secrets for Google Books API 10 | API_KEY = os.environ.get("REPLIT_SECRET_google_api_key") 11 | 12 | # Retrieve the API key from Replit Secrets for The New York Times Best Sellers API 13 | NYT_API_KEY = os.environ.get("nyt_api_key") 14 | 15 | # Define the Google Books API URL 16 | API_URL = "https://www.googleapis.com/books/v1/volumes" 17 | 18 | # Define options for category, genre, and mood 19 | categories = ["Fiction", "Nonfiction", "Science Fiction", "Mystery", "Fantasy"] 20 | genres = ["Adventure", "Romance", "Thriller", "Science", "History"] 21 | moods = ["Happy", "Sad", "Exciting", "Mysterious", "Inspiring"] 22 | 23 | # Function to fetch and process trending book data from The New York Times Best Sellers API 24 | def fetch_trending_books(): 25 | try: 26 | url = f"https://api.nytimes.com/svc/books/v3/lists/current/hardcover-fiction.json?api-key={NYT_API_KEY}" 27 | 28 | trending_response = requests.get(url) 29 | trending_response.raise_for_status() 30 | 31 | trending_data = trending_response.json() 32 | 33 | trending_books = [] 34 | 35 | heading = "Top Trending Books from The New York Times for Today" 36 | for i, book in enumerate(trending_data.get("results", {}).get("books", [])): 37 | title = book.get("title", "Unknown Title") 38 | authors = ", ".join(book.get("author", ["Unknown Author"])).replace(",", "") 39 | release_date = book.get("first_publish_date", "Unknown Date") 40 | book_cover = book.get("book_image", "No Cover") 41 | 42 | trending_books.append({ 43 | "title": title, 44 | "authors": authors, 45 | "release_date": release_date, 46 | "book_cover": book_cover, 47 | }) 48 | 49 | if i == 9: # Limit to the top 10 trending books 50 | break 51 | 52 | return heading, trending_books 53 | except Exception as e: 54 | # Print the exception for debugging 55 | print(f"Error fetching trending books: {e}") 56 | return "", [] # Return an empty list and an empty heading in case of an error 57 | 58 | # Function to process book data and generate recommendations 59 | def process_books(data, category, genre, mood): 60 | recommendations = [] 61 | book_descriptions = [] 62 | 63 | for item in data.get("items", []): 64 | volume_info = item.get("volumeInfo") 65 | title = volume_info.get("title", "Unknown Title") 66 | authors = ", ".join(volume_info.get("authors", ["Unknown Author"])).replace(",", "") 67 | release_date = volume_info.get("publishedDate", "Unknown Date") 68 | book_cover = volume_info.get("imageLinks", {}).get("thumbnail", "No Cover") 69 | description = volume_info.get("description", "") 70 | 71 | book_info = f"{title} {authors} {release_date} {description}" 72 | book_descriptions.append(book_info) 73 | 74 | recommendations.append({ 75 | "title": title, 76 | "authors": authors, 77 | "release_date": release_date, 78 | "book_cover": book_cover, 79 | }) 80 | 81 | vectorizer = TfidfVectorizer() 82 | tfidf_matrix = vectorizer.fit_transform(book_descriptions) 83 | 84 | user_preference = f"{category} {genre} {mood}" 85 | user_vector = vectorizer.transform([user_preference]) 86 | 87 | cosine_similarities = cosine_similarity(user_vector, tfidf_matrix) 88 | 89 | similar_books_indices = cosine_similarities.argsort()[0][::-1] 90 | top_similar_indices = similar_books_indices[:10] 91 | 92 | final_recommendations = [recommendations[i] for i in top_similar_indices] 93 | 94 | return final_recommendations 95 | 96 | @app.route("/", methods=["GET", "POST"]) 97 | def index(): 98 | heading, trending_books = fetch_trending_books() # Fetch top 10 trending books from The New York Times 99 | 100 | if request.method == "POST": 101 | category = request.form.get("category") 102 | genre = request.form.get("genre") 103 | mood = request.form.get("mood") 104 | 105 | query = f"{category}+{genre}+{mood}" 106 | 107 | params = {"q": query, "key": API_KEY} 108 | response = requests.get(API_URL, params=params) 109 | 110 | data = response.json() 111 | 112 | enhanced_recommendations = process_books(data, category, genre, mood) 113 | 114 | return render_template("recommendation.html", enhanced_recommendations=enhanced_recommendations, trending_books=trending_books, heading=heading, raw_response=data) 115 | 116 | return render_template("index.html", categories=categories, genres=genres, moods=moods, trending_books=trending_books, heading=heading) 117 | 118 | if __name__ == "__main__": 119 | app.run(host="0.0.0.0") 120 | -------------------------------------------------------------------------------- /static/popper.min.js: -------------------------------------------------------------------------------- 1 | /** 2 | * @popperjs/core v2.10.2 - MIT License 3 | */ 4 | 5 | "use strict";!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?t(exports):"function"==typeof define&&define.amd?define(["exports"],t):t((e="undefined"!=typeof globalThis?globalThis:e||self).Popper={})}(this,(function(e){function t(e,t){return{width:(e=e.getBoundingClientRect()).width/1,height:e.height/1,top:e.top/1,right:e.right/1,bottom:e.bottom/1,left:e.left/1,x:e.left/1,y:e.top/1}}function n(e){return null==e?window:"[object Window]"!==e.toString()?(e=e.ownerDocument)&&e.defaultView||window:e}function o(e){return{scrollLeft:(e=n(e)).pageXOffset,scrollTop:e.pageYOffset}}function r(e){return e instanceof n(e).Element||e instanceof Element}function i(e){return e instanceof n(e).HTMLElement||e instanceof HTMLElement}function a(e){return"undefined"!=typeof ShadowRoot&&(e instanceof n(e).ShadowRoot||e instanceof ShadowRoot)}function s(e){return e?(e.nodeName||"").toLowerCase():null}function f(e){return((r(e)?e.ownerDocument:e.document)||window.document).documentElement}function p(e){return t(f(e)).left+o(e).scrollLeft}function c(e){return n(e).getComputedStyle(e)}function l(e){return e=c(e),/auto|scroll|overlay|hidden/.test(e.overflow+e.overflowY+e.overflowX)}function u(e,r,a){void 0===a&&(a=!1);var c=i(r);i(r)&&r.getBoundingClientRect();var u=f(r);e=t(e);var d={scrollLeft:0,scrollTop:0},m={x:0,y:0};return(c||!c&&!a)&&(("body"!==s(r)||l(u))&&(d=r!==n(r)&&i(r)?{scrollLeft:r.scrollLeft,scrollTop:r.scrollTop}:o(r)),i(r)?((m=t(r)).x+=r.clientLeft,m.y+=r.clientTop):u&&(m.x=p(u))),{x:e.left+d.scrollLeft-m.x,y:e.top+d.scrollTop-m.y,width:e.width,height:e.height}}function d(e){var n=t(e),o=e.offsetWidth,r=e.offsetHeight;return 1>=Math.abs(n.width-o)&&(o=n.width),1>=Math.abs(n.height-r)&&(r=n.height),{x:e.offsetLeft,y:e.offsetTop,width:o,height:r}}function m(e){return"html"===s(e)?e:e.assignedSlot||e.parentNode||(a(e)?e.host:null)||f(e)}function h(e){return 0<=["html","body","#document"].indexOf(s(e))?e.ownerDocument.body:i(e)&&l(e)?e:h(m(e))}function v(e,t){var o;void 0===t&&(t=[]);var r=h(e);return e=r===(null==(o=e.ownerDocument)?void 0:o.body),o=n(r),r=e?[o].concat(o.visualViewport||[],l(r)?r:[]):r,t=t.concat(r),e?t:t.concat(v(m(r)))}function g(e){return i(e)&&"fixed"!==c(e).position?e.offsetParent:null}function b(e){for(var t=n(e),o=g(e);o&&0<=["table","td","th"].indexOf(s(o))&&"static"===c(o).position;)o=g(o);if(o&&("html"===s(o)||"body"===s(o)&&"static"===c(o).position))return t;if(!o)e:{if(o=-1!==navigator.userAgent.toLowerCase().indexOf("firefox"),-1===navigator.userAgent.indexOf("Trident")||!i(e)||"fixed"!==c(e).position)for(e=m(e);i(e)&&0>["html","body"].indexOf(s(e));){var r=c(e);if("none"!==r.transform||"none"!==r.perspective||"paint"===r.contain||-1!==["transform","perspective"].indexOf(r.willChange)||o&&"filter"===r.willChange||o&&r.filter&&"none"!==r.filter){o=e;break e}e=e.parentNode}o=null}return o||t}function y(e){function t(e){o.add(e.name),[].concat(e.requires||[],e.requiresIfExists||[]).forEach((function(e){o.has(e)||(e=n.get(e))&&t(e)})),r.push(e)}var n=new Map,o=new Set,r=[];return e.forEach((function(e){n.set(e.name,e)})),e.forEach((function(e){o.has(e.name)||t(e)})),r}function w(e){var t;return function(){return t||(t=new Promise((function(n){Promise.resolve().then((function(){t=void 0,n(e())}))}))),t}}function x(e){return e.split("-")[0]}function O(e,t){var n=t.getRootNode&&t.getRootNode();if(e.contains(t))return!0;if(n&&a(n))do{if(t&&e.isSameNode(t))return!0;t=t.parentNode||t.host}while(t);return!1}function j(e){return Object.assign({},e,{left:e.x,top:e.y,right:e.x+e.width,bottom:e.y+e.height})}function E(e,r){if("viewport"===r){r=n(e);var a=f(e);r=r.visualViewport;var s=a.clientWidth;a=a.clientHeight;var l=0,u=0;r&&(s=r.width,a=r.height,/^((?!chrome|android).)*safari/i.test(navigator.userAgent)||(l=r.offsetLeft,u=r.offsetTop)),e=j(e={width:s,height:a,x:l+p(e),y:u})}else i(r)?((e=t(r)).top+=r.clientTop,e.left+=r.clientLeft,e.bottom=e.top+r.clientHeight,e.right=e.left+r.clientWidth,e.width=r.clientWidth,e.height=r.clientHeight,e.x=e.left,e.y=e.top):(u=f(e),e=f(u),s=o(u),r=null==(a=u.ownerDocument)?void 0:a.body,a=U(e.scrollWidth,e.clientWidth,r?r.scrollWidth:0,r?r.clientWidth:0),l=U(e.scrollHeight,e.clientHeight,r?r.scrollHeight:0,r?r.clientHeight:0),u=-s.scrollLeft+p(u),s=-s.scrollTop,"rtl"===c(r||e).direction&&(u+=U(e.clientWidth,r?r.clientWidth:0)-a),e=j({width:a,height:l,x:u,y:s}));return e}function D(e,t,n){return t="clippingParents"===t?function(e){var t=v(m(e)),n=0<=["absolute","fixed"].indexOf(c(e).position)&&i(e)?b(e):e;return r(n)?t.filter((function(e){return r(e)&&O(e,n)&&"body"!==s(e)})):[]}(e):[].concat(t),(n=(n=[].concat(t,[n])).reduce((function(t,n){return n=E(e,n),t.top=U(n.top,t.top),t.right=z(n.right,t.right),t.bottom=z(n.bottom,t.bottom),t.left=U(n.left,t.left),t}),E(e,n[0]))).width=n.right-n.left,n.height=n.bottom-n.top,n.x=n.left,n.y=n.top,n}function L(e){return e.split("-")[1]}function P(e){return 0<=["top","bottom"].indexOf(e)?"x":"y"}function M(e){var t=e.reference,n=e.element,o=(e=e.placement)?x(e):null;e=e?L(e):null;var r=t.x+t.width/2-n.width/2,i=t.y+t.height/2-n.height/2;switch(o){case"top":r={x:r,y:t.y-n.height};break;case"bottom":r={x:r,y:t.y+t.height};break;case"right":r={x:t.x+t.width,y:i};break;case"left":r={x:t.x-n.width,y:i};break;default:r={x:t.x,y:t.y}}if(null!=(o=o?P(o):null))switch(i="y"===o?"height":"width",e){case"start":r[o]-=t[i]/2-n[i]/2;break;case"end":r[o]+=t[i]/2-n[i]/2}return r}function k(e){return Object.assign({},{top:0,right:0,bottom:0,left:0},e)}function A(e,t){return t.reduce((function(t,n){return t[n]=e,t}),{})}function B(e,n){void 0===n&&(n={});var o=n;n=void 0===(n=o.placement)?e.placement:n;var i=o.boundary,a=void 0===i?"clippingParents":i,s=void 0===(i=o.rootBoundary)?"viewport":i;i=void 0===(i=o.elementContext)?"popper":i;var p=o.altBoundary,c=void 0!==p&&p;o=k("number"!=typeof(o=void 0===(o=o.padding)?0:o)?o:A(o,N)),p=e.rects.popper,a=D(r(c=e.elements[c?"popper"===i?"reference":"popper":i])?c:c.contextElement||f(e.elements.popper),a,s),c=M({reference:s=t(e.elements.reference),element:p,strategy:"absolute",placement:n}),p=j(Object.assign({},p,c)),s="popper"===i?p:s;var l={top:a.top-s.top+o.top,bottom:s.bottom-a.bottom+o.bottom,left:a.left-s.left+o.left,right:s.right-a.right+o.right};if(e=e.modifiersData.offset,"popper"===i&&e){var u=e[n];Object.keys(l).forEach((function(e){var t=0<=["right","bottom"].indexOf(e)?1:-1,n=0<=["top","bottom"].indexOf(e)?"y":"x";l[e]+=u[n]*t}))}return l}function W(){for(var e=arguments.length,t=Array(e),n=0;n=(y.devicePixelRatio||1)?"translate("+e+"px, "+d+"px)":"translate3d("+e+"px, "+d+"px, 0)",h)):Object.assign({},o,((t={})[g]=s?d+"px":"",t[v]=m?e+"px":"",t.transform="",t))}function H(e){return e.replace(/left|right|bottom|top/g,(function(e){return ee[e]}))}function S(e){return e.replace(/start|end/g,(function(e){return te[e]}))}function C(e,t,n){return void 0===n&&(n={x:0,y:0}),{top:e.top-t.height-n.y,right:e.right-t.width+n.x,bottom:e.bottom-t.height+n.y,left:e.left-t.width-n.x}}function q(e){return["top","right","bottom","left"].some((function(t){return 0<=e[t]}))}var N=["top","bottom","right","left"],V=N.reduce((function(e,t){return e.concat([t+"-start",t+"-end"])}),[]),I=[].concat(N,["auto"]).reduce((function(e,t){return e.concat([t,t+"-start",t+"-end"])}),[]),_="beforeRead read afterRead beforeMain main afterMain beforeWrite write afterWrite".split(" "),U=Math.max,z=Math.min,F=Math.round,X={placement:"bottom",modifiers:[],strategy:"absolute"},Y={passive:!0},G={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(e){var t=e.state,o=e.instance,r=(e=e.options).scroll,i=void 0===r||r,a=void 0===(e=e.resize)||e,s=n(t.elements.popper),f=[].concat(t.scrollParents.reference,t.scrollParents.popper);return i&&f.forEach((function(e){e.addEventListener("scroll",o.update,Y)})),a&&s.addEventListener("resize",o.update,Y),function(){i&&f.forEach((function(e){e.removeEventListener("scroll",o.update,Y)})),a&&s.removeEventListener("resize",o.update,Y)}},data:{}},J={name:"popperOffsets",enabled:!0,phase:"read",fn:function(e){var t=e.state;t.modifiersData[e.name]=M({reference:t.rects.reference,element:t.rects.popper,strategy:"absolute",placement:t.placement})},data:{}},K={top:"auto",right:"auto",bottom:"auto",left:"auto"},Q={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(e){var t=e.state,n=e.options;e=void 0===(e=n.gpuAcceleration)||e;var o=n.adaptive;o=void 0===o||o,n=void 0===(n=n.roundOffsets)||n,e={placement:x(t.placement),variation:L(t.placement),popper:t.elements.popper,popperRect:t.rects.popper,gpuAcceleration:e},null!=t.modifiersData.popperOffsets&&(t.styles.popper=Object.assign({},t.styles.popper,R(Object.assign({},e,{offsets:t.modifiersData.popperOffsets,position:t.options.strategy,adaptive:o,roundOffsets:n})))),null!=t.modifiersData.arrow&&(t.styles.arrow=Object.assign({},t.styles.arrow,R(Object.assign({},e,{offsets:t.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:n})))),t.attributes.popper=Object.assign({},t.attributes.popper,{"data-popper-placement":t.placement})},data:{}},Z={name:"applyStyles",enabled:!0,phase:"write",fn:function(e){var t=e.state;Object.keys(t.elements).forEach((function(e){var n=t.styles[e]||{},o=t.attributes[e]||{},r=t.elements[e];i(r)&&s(r)&&(Object.assign(r.style,n),Object.keys(o).forEach((function(e){var t=o[e];!1===t?r.removeAttribute(e):r.setAttribute(e,!0===t?"":t)})))}))},effect:function(e){var t=e.state,n={popper:{position:t.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(t.elements.popper.style,n.popper),t.styles=n,t.elements.arrow&&Object.assign(t.elements.arrow.style,n.arrow),function(){Object.keys(t.elements).forEach((function(e){var o=t.elements[e],r=t.attributes[e]||{};e=Object.keys(t.styles.hasOwnProperty(e)?t.styles[e]:n[e]).reduce((function(e,t){return e[t]="",e}),{}),i(o)&&s(o)&&(Object.assign(o.style,e),Object.keys(r).forEach((function(e){o.removeAttribute(e)})))}))}},requires:["computeStyles"]},$={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(e){var t=e.state,n=e.name,o=void 0===(e=e.options.offset)?[0,0]:e,r=(e=I.reduce((function(e,n){var r=t.rects,i=x(n),a=0<=["left","top"].indexOf(i)?-1:1,s="function"==typeof o?o(Object.assign({},r,{placement:n})):o;return r=(r=s[0])||0,s=((s=s[1])||0)*a,i=0<=["left","right"].indexOf(i)?{x:s,y:r}:{x:r,y:s},e[n]=i,e}),{}))[t.placement],i=r.x;r=r.y,null!=t.modifiersData.popperOffsets&&(t.modifiersData.popperOffsets.x+=i,t.modifiersData.popperOffsets.y+=r),t.modifiersData[n]=e}},ee={left:"right",right:"left",bottom:"top",top:"bottom"},te={start:"end",end:"start"},ne={name:"flip",enabled:!0,phase:"main",fn:function(e){var t=e.state,n=e.options;if(e=e.name,!t.modifiersData[e]._skip){var o=n.mainAxis;o=void 0===o||o;var r=n.altAxis;r=void 0===r||r;var i=n.fallbackPlacements,a=n.padding,s=n.boundary,f=n.rootBoundary,p=n.altBoundary,c=n.flipVariations,l=void 0===c||c,u=n.allowedAutoPlacements;c=x(n=t.options.placement),i=i||(c!==n&&l?function(e){if("auto"===x(e))return[];var t=H(e);return[S(e),t,S(t)]}(n):[H(n)]);var d=[n].concat(i).reduce((function(e,n){return e.concat("auto"===x(n)?function(e,t){void 0===t&&(t={});var n=t.boundary,o=t.rootBoundary,r=t.padding,i=t.flipVariations,a=t.allowedAutoPlacements,s=void 0===a?I:a,f=L(t.placement);0===(i=(t=f?i?V:V.filter((function(e){return L(e)===f})):N).filter((function(e){return 0<=s.indexOf(e)}))).length&&(i=t);var p=i.reduce((function(t,i){return t[i]=B(e,{placement:i,boundary:n,rootBoundary:o,padding:r})[x(i)],t}),{});return Object.keys(p).sort((function(e,t){return p[e]-p[t]}))}(t,{placement:n,boundary:s,rootBoundary:f,padding:a,flipVariations:l,allowedAutoPlacements:u}):n)}),[]);n=t.rects.reference,i=t.rects.popper;var m=new Map;c=!0;for(var h=d[0],v=0;vi[O]&&(y=H(y)),O=H(y),w=[],o&&w.push(0>=j[b]),r&&w.push(0>=j[y],0>=j[O]),w.every((function(e){return e}))){h=g,c=!1;break}m.set(g,w)}if(c)for(o=function(e){var t=d.find((function(t){if(t=m.get(t))return t.slice(0,e).every((function(e){return e}))}));if(t)return h=t,"break"},r=l?3:1;0=3.2)"] 154 | dotenv = ["python-dotenv"] 155 | 156 | [[package]] 157 | name = "idna" 158 | version = "3.4" 159 | description = "Internationalized Domain Names in Applications (IDNA)" 160 | optional = false 161 | python-versions = ">=3.5" 162 | files = [ 163 | {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"}, 164 | {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, 165 | ] 166 | 167 | [[package]] 168 | name = "itsdangerous" 169 | version = "2.1.2" 170 | description = "Safely pass data to untrusted environments and back." 171 | optional = false 172 | python-versions = ">=3.7" 173 | files = [ 174 | {file = "itsdangerous-2.1.2-py3-none-any.whl", hash = "sha256:2c2349112351b88699d8d4b6b075022c0808887cb7ad10069318a8b0bc88db44"}, 175 | {file = "itsdangerous-2.1.2.tar.gz", hash = "sha256:5dbbc68b317e5e42f327f9021763545dc3fc3bfe22e6deb96aaf1fc38874156a"}, 176 | ] 177 | 178 | [[package]] 179 | name = "jinja2" 180 | version = "3.1.2" 181 | description = "A very fast and expressive template engine." 182 | optional = false 183 | python-versions = ">=3.7" 184 | files = [ 185 | {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, 186 | {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, 187 | ] 188 | 189 | [package.dependencies] 190 | MarkupSafe = ">=2.0" 191 | 192 | [package.extras] 193 | i18n = ["Babel (>=2.7)"] 194 | 195 | [[package]] 196 | name = "joblib" 197 | version = "1.3.2" 198 | description = "Lightweight pipelining with Python functions" 199 | optional = false 200 | python-versions = ">=3.7" 201 | files = [ 202 | {file = "joblib-1.3.2-py3-none-any.whl", hash = "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9"}, 203 | {file = "joblib-1.3.2.tar.gz", hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1"}, 204 | ] 205 | 206 | [[package]] 207 | name = "markupsafe" 208 | version = "2.1.3" 209 | description = "Safely add untrusted strings to HTML/XML markup." 210 | optional = false 211 | python-versions = ">=3.7" 212 | files = [ 213 | {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa"}, 214 | {file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57"}, 215 | {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f"}, 216 | {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52"}, 217 | {file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00"}, 218 | {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6"}, 219 | {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779"}, 220 | {file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7"}, 221 | {file = "MarkupSafe-2.1.3-cp310-cp310-win32.whl", hash = "sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431"}, 222 | {file = "MarkupSafe-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559"}, 223 | {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c"}, 224 | {file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575"}, 225 | {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee"}, 226 | {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2"}, 227 | {file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9"}, 228 | {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc"}, 229 | {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9"}, 230 | {file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"}, 231 | {file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"}, 232 | {file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"}, 233 | {file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f698de3fd0c4e6972b92290a45bd9b1536bffe8c6759c62471efaa8acb4c37bc"}, 234 | {file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aa57bd9cf8ae831a362185ee444e15a93ecb2e344c8e52e4d721ea3ab6ef1823"}, 235 | {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffcc3f7c66b5f5b7931a5aa68fc9cecc51e685ef90282f4a82f0f5e9b704ad11"}, 236 | {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47d4f1c5f80fc62fdd7777d0d40a2e9dda0a05883ab11374334f6c4de38adffd"}, 237 | {file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f67c7038d560d92149c060157d623c542173016c4babc0c1913cca0564b9939"}, 238 | {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9aad3c1755095ce347e26488214ef77e0485a3c34a50c5a5e2471dff60b9dd9c"}, 239 | {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:14ff806850827afd6b07a5f32bd917fb7f45b046ba40c57abdb636674a8b559c"}, 240 | {file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8f9293864fe09b8149f0cc42ce56e3f0e54de883a9de90cd427f191c346eb2e1"}, 241 | {file = "MarkupSafe-2.1.3-cp312-cp312-win32.whl", hash = "sha256:715d3562f79d540f251b99ebd6d8baa547118974341db04f5ad06d5ea3eb8007"}, 242 | {file = "MarkupSafe-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:1b8dd8c3fd14349433c79fa8abeb573a55fc0fdd769133baac1f5e07abf54aeb"}, 243 | {file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"}, 244 | {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"}, 245 | {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"}, 246 | {file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e"}, 247 | {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc"}, 248 | {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48"}, 249 | {file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155"}, 250 | {file = "MarkupSafe-2.1.3-cp37-cp37m-win32.whl", hash = "sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0"}, 251 | {file = "MarkupSafe-2.1.3-cp37-cp37m-win_amd64.whl", hash = "sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24"}, 252 | {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4"}, 253 | {file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0"}, 254 | {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee"}, 255 | {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be"}, 256 | {file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e"}, 257 | {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8"}, 258 | {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3"}, 259 | {file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d"}, 260 | {file = "MarkupSafe-2.1.3-cp38-cp38-win32.whl", hash = "sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5"}, 261 | {file = "MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc"}, 262 | {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198"}, 263 | {file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b"}, 264 | {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58"}, 265 | {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e"}, 266 | {file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c"}, 267 | {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636"}, 268 | {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea"}, 269 | {file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e"}, 270 | {file = "MarkupSafe-2.1.3-cp39-cp39-win32.whl", hash = "sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2"}, 271 | {file = "MarkupSafe-2.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba"}, 272 | {file = "MarkupSafe-2.1.3.tar.gz", hash = "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad"}, 273 | ] 274 | 275 | [[package]] 276 | name = "numpy" 277 | version = "1.26.0" 278 | description = "Fundamental package for array computing in Python" 279 | optional = false 280 | python-versions = "<3.13,>=3.9" 281 | files = [ 282 | {file = "numpy-1.26.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f8db2f125746e44dce707dd44d4f4efeea8d7e2b43aace3f8d1f235cfa2733dd"}, 283 | {file = "numpy-1.26.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0621f7daf973d34d18b4e4bafb210bbaf1ef5e0100b5fa750bd9cde84c7ac292"}, 284 | {file = "numpy-1.26.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51be5f8c349fdd1a5568e72713a21f518e7d6707bcf8503b528b88d33b57dc68"}, 285 | {file = "numpy-1.26.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:767254ad364991ccfc4d81b8152912e53e103ec192d1bb4ea6b1f5a7117040be"}, 286 | {file = "numpy-1.26.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:436c8e9a4bdeeee84e3e59614d38c3dbd3235838a877af8c211cfcac8a80b8d3"}, 287 | {file = "numpy-1.26.0-cp310-cp310-win32.whl", hash = "sha256:c2e698cb0c6dda9372ea98a0344245ee65bdc1c9dd939cceed6bb91256837896"}, 288 | {file = "numpy-1.26.0-cp310-cp310-win_amd64.whl", hash = "sha256:09aaee96c2cbdea95de76ecb8a586cb687d281c881f5f17bfc0fb7f5890f6b91"}, 289 | {file = "numpy-1.26.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:637c58b468a69869258b8ae26f4a4c6ff8abffd4a8334c830ffb63e0feefe99a"}, 290 | {file = "numpy-1.26.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:306545e234503a24fe9ae95ebf84d25cba1fdc27db971aa2d9f1ab6bba19a9dd"}, 291 | {file = "numpy-1.26.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c6adc33561bd1d46f81131d5352348350fc23df4d742bb246cdfca606ea1208"}, 292 | {file = "numpy-1.26.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e062aa24638bb5018b7841977c360d2f5917268d125c833a686b7cbabbec496c"}, 293 | {file = "numpy-1.26.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:546b7dd7e22f3c6861463bebb000646fa730e55df5ee4a0224408b5694cc6148"}, 294 | {file = "numpy-1.26.0-cp311-cp311-win32.whl", hash = "sha256:c0b45c8b65b79337dee5134d038346d30e109e9e2e9d43464a2970e5c0e93229"}, 295 | {file = "numpy-1.26.0-cp311-cp311-win_amd64.whl", hash = "sha256:eae430ecf5794cb7ae7fa3808740b015aa80747e5266153128ef055975a72b99"}, 296 | {file = "numpy-1.26.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:166b36197e9debc4e384e9c652ba60c0bacc216d0fc89e78f973a9760b503388"}, 297 | {file = "numpy-1.26.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f042f66d0b4ae6d48e70e28d487376204d3cbf43b84c03bac57e28dac6151581"}, 298 | {file = "numpy-1.26.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5e18e5b14a7560d8acf1c596688f4dfd19b4f2945b245a71e5af4ddb7422feb"}, 299 | {file = "numpy-1.26.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f6bad22a791226d0a5c7c27a80a20e11cfe09ad5ef9084d4d3fc4a299cca505"}, 300 | {file = "numpy-1.26.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4acc65dd65da28060e206c8f27a573455ed724e6179941edb19f97e58161bb69"}, 301 | {file = "numpy-1.26.0-cp312-cp312-win32.whl", hash = "sha256:bb0d9a1aaf5f1cb7967320e80690a1d7ff69f1d47ebc5a9bea013e3a21faec95"}, 302 | {file = "numpy-1.26.0-cp312-cp312-win_amd64.whl", hash = "sha256:ee84ca3c58fe48b8ddafdeb1db87388dce2c3c3f701bf447b05e4cfcc3679112"}, 303 | {file = "numpy-1.26.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4a873a8180479bc829313e8d9798d5234dfacfc2e8a7ac188418189bb8eafbd2"}, 304 | {file = "numpy-1.26.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:914b28d3215e0c721dc75db3ad6d62f51f630cb0c277e6b3bcb39519bed10bd8"}, 305 | {file = "numpy-1.26.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c78a22e95182fb2e7874712433eaa610478a3caf86f28c621708d35fa4fd6e7f"}, 306 | {file = "numpy-1.26.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86f737708b366c36b76e953c46ba5827d8c27b7a8c9d0f471810728e5a2fe57c"}, 307 | {file = "numpy-1.26.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b44e6a09afc12952a7d2a58ca0a2429ee0d49a4f89d83a0a11052da696440e49"}, 308 | {file = "numpy-1.26.0-cp39-cp39-win32.whl", hash = "sha256:5671338034b820c8d58c81ad1dafc0ed5a00771a82fccc71d6438df00302094b"}, 309 | {file = "numpy-1.26.0-cp39-cp39-win_amd64.whl", hash = "sha256:020cdbee66ed46b671429c7265cf00d8ac91c046901c55684954c3958525dab2"}, 310 | {file = "numpy-1.26.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0792824ce2f7ea0c82ed2e4fecc29bb86bee0567a080dacaf2e0a01fe7654369"}, 311 | {file = "numpy-1.26.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d484292eaeb3e84a51432a94f53578689ffdea3f90e10c8b203a99be5af57d8"}, 312 | {file = "numpy-1.26.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:186ba67fad3c60dbe8a3abff3b67a91351100f2661c8e2a80364ae6279720299"}, 313 | {file = "numpy-1.26.0.tar.gz", hash = "sha256:f93fc78fe8bf15afe2b8d6b6499f1c73953169fad1e9a8dd086cdff3190e7fdf"}, 314 | ] 315 | 316 | [[package]] 317 | name = "requests" 318 | version = "2.31.0" 319 | description = "Python HTTP for Humans." 320 | optional = false 321 | python-versions = ">=3.7" 322 | files = [ 323 | {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, 324 | {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, 325 | ] 326 | 327 | [package.dependencies] 328 | certifi = ">=2017.4.17" 329 | charset-normalizer = ">=2,<4" 330 | idna = ">=2.5,<4" 331 | urllib3 = ">=1.21.1,<3" 332 | 333 | [package.extras] 334 | socks = ["PySocks (>=1.5.6,!=1.5.7)"] 335 | use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] 336 | 337 | [[package]] 338 | name = "scikit-learn" 339 | version = "1.3.1" 340 | description = "A set of python modules for machine learning and data mining" 341 | optional = false 342 | python-versions = ">=3.8" 343 | files = [ 344 | {file = "scikit-learn-1.3.1.tar.gz", hash = "sha256:1a231cced3ee3fa04756b4a7ab532dc9417acd581a330adff5f2c01ac2831fcf"}, 345 | {file = "scikit_learn-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3153612ff8d36fa4e35ef8b897167119213698ea78f3fd130b4068e6f8d2da5a"}, 346 | {file = "scikit_learn-1.3.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:6bb9490fdb8e7e00f1354621689187bef3cab289c9b869688f805bf724434755"}, 347 | {file = "scikit_learn-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7135a03af71138669f19bc96e7d0cc8081aed4b3565cc3b131135d65fc642ba"}, 348 | {file = "scikit_learn-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d8dee8c1f40eeba49a85fe378bdf70a07bb64aba1a08fda1e0f48d27edfc3e6"}, 349 | {file = "scikit_learn-1.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:4d379f2b34096105a96bd857b88601dffe7389bd55750f6f29aaa37bc6272eb5"}, 350 | {file = "scikit_learn-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:14e8775eba072ab10866a7e0596bc9906873e22c4c370a651223372eb62de180"}, 351 | {file = "scikit_learn-1.3.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:58b0c2490eff8355dc26e884487bf8edaccf2ba48d09b194fb2f3a026dd64f9d"}, 352 | {file = "scikit_learn-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f66eddfda9d45dd6cadcd706b65669ce1df84b8549875691b1f403730bdef217"}, 353 | {file = "scikit_learn-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c6448c37741145b241eeac617028ba6ec2119e1339b1385c9720dae31367f2be"}, 354 | {file = "scikit_learn-1.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:c413c2c850241998168bbb3bd1bb59ff03b1195a53864f0b80ab092071af6028"}, 355 | {file = "scikit_learn-1.3.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ef540e09873e31569bc8b02c8a9f745ee04d8e1263255a15c9969f6f5caa627f"}, 356 | {file = "scikit_learn-1.3.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:9147a3a4df4d401e618713880be023e36109c85d8569b3bf5377e6cd3fecdeac"}, 357 | {file = "scikit_learn-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2cd3634695ad192bf71645702b3df498bd1e246fc2d529effdb45a06ab028b4"}, 358 | {file = "scikit_learn-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c275a06c5190c5ce00af0acbb61c06374087949f643ef32d355ece12c4db043"}, 359 | {file = "scikit_learn-1.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:0e1aa8f206d0de814b81b41d60c1ce31f7f2c7354597af38fae46d9c47c45122"}, 360 | {file = "scikit_learn-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:52b77cc08bd555969ec5150788ed50276f5ef83abb72e6f469c5b91a0009bbca"}, 361 | {file = "scikit_learn-1.3.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:a683394bc3f80b7c312c27f9b14ebea7766b1f0a34faf1a2e9158d80e860ec26"}, 362 | {file = "scikit_learn-1.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a15d964d9eb181c79c190d3dbc2fff7338786bf017e9039571418a1d53dab236"}, 363 | {file = "scikit_learn-1.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ce9233cdf0cdcf0858a5849d306490bf6de71fa7603a3835124e386e62f2311"}, 364 | {file = "scikit_learn-1.3.1-cp38-cp38-win_amd64.whl", hash = "sha256:1ec668ce003a5b3d12d020d2cde0abd64b262ac5f098b5c84cf9657deb9996a8"}, 365 | {file = "scikit_learn-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ccbbedae99325628c1d1cbe3916b7ef58a1ce949672d8d39c8b190e10219fd32"}, 366 | {file = "scikit_learn-1.3.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:845f81c7ceb4ea6bac64ab1c9f2ce8bef0a84d0f21f3bece2126adcc213dfecd"}, 367 | {file = "scikit_learn-1.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8454d57a22d856f1fbf3091bd86f9ebd4bff89088819886dc0c72f47a6c30652"}, 368 | {file = "scikit_learn-1.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d993fb70a1d78c9798b8f2f28705bfbfcd546b661f9e2e67aa85f81052b9c53"}, 369 | {file = "scikit_learn-1.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:66f7bb1fec37d65f4ef85953e1df5d3c98a0f0141d394dcdaead5a6de9170347"}, 370 | ] 371 | 372 | [package.dependencies] 373 | joblib = ">=1.1.1" 374 | numpy = ">=1.17.3,<2.0" 375 | scipy = ">=1.5.0" 376 | threadpoolctl = ">=2.0.0" 377 | 378 | [package.extras] 379 | benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] 380 | docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] 381 | examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] 382 | tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] 383 | 384 | [[package]] 385 | name = "scipy" 386 | version = "1.11.3" 387 | description = "Fundamental algorithms for scientific computing in Python" 388 | optional = false 389 | python-versions = "<3.13,>=3.9" 390 | files = [ 391 | {file = "scipy-1.11.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:370f569c57e1d888304052c18e58f4a927338eafdaef78613c685ca2ea0d1fa0"}, 392 | {file = "scipy-1.11.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:9885e3e4f13b2bd44aaf2a1a6390a11add9f48d5295f7a592393ceb8991577a3"}, 393 | {file = "scipy-1.11.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e04aa19acc324a1a076abb4035dabe9b64badb19f76ad9c798bde39d41025cdc"}, 394 | {file = "scipy-1.11.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e1a8a4657673bfae1e05e1e1d6e94b0cabe5ed0c7c144c8aa7b7dbb774ce5c1"}, 395 | {file = "scipy-1.11.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7abda0e62ef00cde826d441485e2e32fe737bdddee3324e35c0e01dee65e2a88"}, 396 | {file = "scipy-1.11.3-cp310-cp310-win_amd64.whl", hash = "sha256:033c3fd95d55012dd1148b201b72ae854d5086d25e7c316ec9850de4fe776929"}, 397 | {file = "scipy-1.11.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:925c6f09d0053b1c0f90b2d92d03b261e889b20d1c9b08a3a51f61afc5f58165"}, 398 | {file = "scipy-1.11.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5664e364f90be8219283eeb844323ff8cd79d7acbd64e15eb9c46b9bc7f6a42a"}, 399 | {file = "scipy-1.11.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00f325434b6424952fbb636506f0567898dca7b0f7654d48f1c382ea338ce9a3"}, 400 | {file = "scipy-1.11.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f290cf561a4b4edfe8d1001ee4be6da60c1c4ea712985b58bf6bc62badee221"}, 401 | {file = "scipy-1.11.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:91770cb3b1e81ae19463b3c235bf1e0e330767dca9eb4cd73ba3ded6c4151e4d"}, 402 | {file = "scipy-1.11.3-cp311-cp311-win_amd64.whl", hash = "sha256:e1f97cd89c0fe1a0685f8f89d85fa305deb3067d0668151571ba50913e445820"}, 403 | {file = "scipy-1.11.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:dfcc1552add7cb7c13fb70efcb2389d0624d571aaf2c80b04117e2755a0c5d15"}, 404 | {file = "scipy-1.11.3-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:0d3a136ae1ff0883fffbb1b05b0b2fea251cb1046a5077d0b435a1839b3e52b7"}, 405 | {file = "scipy-1.11.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bae66a2d7d5768eaa33008fa5a974389f167183c87bf39160d3fefe6664f8ddc"}, 406 | {file = "scipy-1.11.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2f6dee6cbb0e263b8142ed587bc93e3ed5e777f1f75448d24fb923d9fd4dce6"}, 407 | {file = "scipy-1.11.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:74e89dc5e00201e71dd94f5f382ab1c6a9f3ff806c7d24e4e90928bb1aafb280"}, 408 | {file = "scipy-1.11.3-cp312-cp312-win_amd64.whl", hash = "sha256:90271dbde4be191522b3903fc97334e3956d7cfb9cce3f0718d0ab4fd7d8bfd6"}, 409 | {file = "scipy-1.11.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a63d1ec9cadecce838467ce0631c17c15c7197ae61e49429434ba01d618caa83"}, 410 | {file = "scipy-1.11.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:5305792c7110e32ff155aed0df46aa60a60fc6e52cd4ee02cdeb67eaccd5356e"}, 411 | {file = "scipy-1.11.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ea7f579182d83d00fed0e5c11a4aa5ffe01460444219dedc448a36adf0c3917"}, 412 | {file = "scipy-1.11.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c77da50c9a91e23beb63c2a711ef9e9ca9a2060442757dffee34ea41847d8156"}, 413 | {file = "scipy-1.11.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:15f237e890c24aef6891c7d008f9ff7e758c6ef39a2b5df264650eb7900403c0"}, 414 | {file = "scipy-1.11.3-cp39-cp39-win_amd64.whl", hash = "sha256:4b4bb134c7aa457e26cc6ea482b016fef45db71417d55cc6d8f43d799cdf9ef2"}, 415 | {file = "scipy-1.11.3.tar.gz", hash = "sha256:bba4d955f54edd61899776bad459bf7326e14b9fa1c552181f0479cc60a568cd"}, 416 | ] 417 | 418 | [package.dependencies] 419 | numpy = ">=1.21.6,<1.28.0" 420 | 421 | [package.extras] 422 | dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] 423 | doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] 424 | test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] 425 | 426 | [[package]] 427 | name = "threadpoolctl" 428 | version = "3.2.0" 429 | description = "threadpoolctl" 430 | optional = false 431 | python-versions = ">=3.8" 432 | files = [ 433 | {file = "threadpoolctl-3.2.0-py3-none-any.whl", hash = "sha256:2b7818516e423bdaebb97c723f86a7c6b0a83d3f3b0970328d66f4d9104dc032"}, 434 | {file = "threadpoolctl-3.2.0.tar.gz", hash = "sha256:c96a0ba3bdddeaca37dc4cc7344aafad41cdb8c313f74fdfe387a867bba93355"}, 435 | ] 436 | 437 | [[package]] 438 | name = "urllib3" 439 | version = "1.26.15" 440 | description = "HTTP library with thread-safe connection pooling, file post, and more." 441 | optional = false 442 | python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" 443 | files = [ 444 | {file = "urllib3-1.26.15-py2.py3-none-any.whl", hash = "sha256:aa751d169e23c7479ce47a0cb0da579e3ede798f994f5816a74e4f4500dcea42"}, 445 | {file = "urllib3-1.26.15.tar.gz", hash = "sha256:8a388717b9476f934a21484e8c8e61875ab60644d29b9b39e11e4b9dc1c6b305"}, 446 | ] 447 | 448 | [package.extras] 449 | brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"] 450 | secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"] 451 | socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] 452 | 453 | [[package]] 454 | name = "werkzeug" 455 | version = "3.0.0" 456 | description = "The comprehensive WSGI web application library." 457 | optional = false 458 | python-versions = ">=3.8" 459 | files = [ 460 | {file = "werkzeug-3.0.0-py3-none-any.whl", hash = "sha256:cbb2600f7eabe51dbc0502f58be0b3e1b96b893b05695ea2b35b43d4de2d9962"}, 461 | {file = "werkzeug-3.0.0.tar.gz", hash = "sha256:3ffff4dcc32db52ef3cc94dff3000a3c2846890f3a5a51800a27b909c5e770f0"}, 462 | ] 463 | 464 | [package.dependencies] 465 | MarkupSafe = ">=2.1.1" 466 | 467 | [package.extras] 468 | watchdog = ["watchdog (>=2.3)"] 469 | 470 | [metadata] 471 | lock-version = "2.0" 472 | python-versions = ">=3.10.0,<3.11" 473 | content-hash = "6e504d5e43b519d3fb75c78c7c538aa7cb4408f2a3b2f4862b6dc265957b26be" 474 | --------------------------------------------------------------------------------