├── challenge_1 ├── max_PTS_of_year.csv ├── double_double.csv ├── best_player.csv └── NBA.ipynb ├── README.md ├── LICENSE ├── challenge_3 ├── submission.csv └── Student_GPA.ipynb ├── challenge_2 ├── submission.csv └── Authors.ipynb ├── challenge_5 └── submission.csv └── challenge_4 └── ChandMidi.ipynb /challenge_1/max_PTS_of_year.csv: -------------------------------------------------------------------------------- 1 | YEAR,TEAM,PTS 2 | 2000,SAC,100.2 3 | 2001,LAL,95.9 4 | 2002,ORL,97.0 5 | 2003,DEN,96.0 6 | 2004,BOS,106.2 7 | 2005,WAS,96.8 8 | 2006,PHX,105.4 9 | 2007,DEN,110.7 10 | 2008,DEN,97.3 11 | 2009,OKC,102.5 12 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # TechOlympics AI NLP Competition 2 | 3 | I participated in the **TechOlympics AI NLP** competition hosted on [Quera](https://quera.org/events/techolympics-ai-0307), where I ranked 50th out of 400 participants. The competition consisted of five challenging problems related to Natural Language Processing (NLP). 4 | 5 | ## Problem Links: 6 | 1. [Problem 1](https://quera.org/contest/assignments/71153/problems) 7 | 2. [Problem 2](https://quera.org/contest/assignments/71153/problems/250608) 8 | 3. [Problem 3](https://quera.org/contest/assignments/71153/problems/250609) 9 | 4. [Problem 4](https://quera.org/contest/assignments/71153/problems/250605) 10 | 5. [Problem 5](https://quera.org/contest/assignments/71153/problems/250606) 11 | 12 | ## Achievements: 13 | - **Rank**: 50th out of 400 participants 14 | - **Focus Area**: Natural Language Processing (NLP) 15 | - **Competition Date**: [1403/7/5] 16 | 17 | This README serves as a brief overview of my participation and the results I achieved during the competition. 18 | 19 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2024 Alireza Parvaresh 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /challenge_1/double_double.csv: -------------------------------------------------------------------------------- 1 | PLAYER,YEAR,PTS,AST,REB,BLK,STL 2 | Antonio Davis,2000,13.7,1.4,10.1,1.9,0.3 3 | Antonio McDyess,2000,20.8,2.1,12.0,1.5,0.6 4 | Chris Webber,2000,27.1,4.2,11.1,1.7,1.3 5 | Dikembe Mutombo,2000,10.0,1.0,13.5,2.7,0.4 6 | Elton Brand,2000,20.1,3.2,10.1,1.6,1.0 7 | Kevin Garnett,2000,22.0,5.0,11.399999999999999,1.8,1.4 8 | Shaquille O'Neal,2000,28.7,3.7,12.700000000000001,2.8,0.6 9 | Shawn Marion,2000,17.3,2.0,10.7,1.4,1.7 10 | Tim Duncan,2000,22.2,3.0,12.2,2.3,0.9 11 | Andre Miller,2001,16.5,10.9,4.6,0.4,1.6 12 | Danny Fortson,2001,11.2,1.6,11.7,0.2,0.6 13 | Dikembe Mutombo,2001,11.5,1.0,10.8,2.4,0.4 14 | Dirk Nowitzki,2001,23.4,2.4,10.0,1.0,1.1 15 | Elton Brand,2001,18.2,2.4,11.6,2.0,1.0 16 | Jermaine O'Neal,2001,19.0,1.6,10.5,2.3,0.6 17 | Kevin Garnett,2001,21.2,5.2,12.1,1.6,1.2 18 | Shaquille O'Neal,2001,27.2,3.0,10.7,2.0,0.6 19 | Tim Duncan,2001,25.5,3.7,12.7,2.5,0.7 20 | Brian Grant,2002,10.3,1.3,10.2,0.6,0.8 21 | Chris Webber,2002,23.0,5.4,10.5,1.3,1.6 22 | Jermaine O'Neal,2002,20.8,2.0,10.3,2.3,0.9 23 | Kevin Garnett,2002,23.0,6.0,13.5,1.6,1.4 24 | Shaquille O'Neal,2002,27.5,3.1,11.1,2.4,0.6 25 | Tim Duncan,2002,23.3,3.9,12.899999999999999,2.9,0.7 26 | Troy Murphy,2002,11.7,1.3,10.2,0.4,0.8 27 | Brad Miller,2003,14.1,4.3,10.4,1.2,0.9 28 | Carlos Boozer,2003,15.5,2.0,11.5,0.7,1.0 29 | Erick Dampier,2003,12.3,0.8,11.899999999999999,1.9,0.4 30 | Jamaal Magloire,2003,13.6,1.0,10.399999999999999,1.2,0.5 31 | Jermaine O'Neal,2003,20.1,2.1,10.0,2.6,0.8 32 | Kenny Thomas,2003,13.6,1.5,10.1,0.4,1.1 33 | Kevin Garnett,2003,24.2,5.0,13.9,2.2,1.5 34 | Shaquille O'Neal,2003,21.5,2.9,11.5,2.5,0.5 35 | Tim Duncan,2003,22.3,3.1,12.5,2.7,0.9 36 | Zach Randolph,2003,20.1,2.0,10.5,0.5,0.8 37 | Dwight Howard,2004,12.0,0.9,10.0,1.7,0.9 38 | Emeka Okafor,2004,15.1,0.9,10.899999999999999,1.7,0.8 39 | Kevin Garnett,2004,22.2,5.7,13.5,1.4,1.5 40 | Kurt Thomas,2004,11.5,2.0,10.4,1.0,0.9 41 | Shaquille O'Neal,2004,22.9,2.7,10.4,2.3,0.5 42 | Shawn Marion,2004,19.4,1.9,11.3,1.5,2.0 43 | Steve Nash,2004,15.5,11.5,3.4000000000000004,0.1,1.0 44 | Troy Murphy,2004,15.4,1.4,10.8,0.5,0.8 45 | Dwight Howard,2005,15.8,1.5,12.5,1.4,0.8 46 | Elton Brand,2005,24.7,2.6,10.0,2.5,1.0 47 | Kevin Garnett,2005,21.8,4.1,12.7,1.4,1.4 48 | Shawn Marion,2005,21.8,1.8,11.9,1.7,2.0 49 | Steve Nash,2005,18.8,10.5,4.2,0.2,0.8 50 | Tim Duncan,2005,18.6,3.2,11.0,2.0,0.9 51 | Troy Murphy,2005,14.0,1.4,10.0,0.4,0.6 52 | Carlos Boozer,2006,20.9,3.0,11.7,0.3,0.9 53 | Chris Bosh,2006,22.6,2.5,10.7,1.3,0.6 54 | Dwight Howard,2006,17.6,1.9,12.3,1.9,0.9 55 | Kevin Garnett,2006,22.4,4.1,12.8,1.7,1.2 56 | Marcus Camby,2006,11.2,3.2,11.600000000000001,3.3,1.2 57 | Steve Nash,2006,18.6,11.6,3.5,0.1,0.8 58 | Tim Duncan,2006,20.0,3.4,10.600000000000001,2.4,0.8 59 | Zach Randolph,2006,23.6,2.2,10.1,0.2,0.8 60 | Al Jefferson,2007,21.0,1.4,11.2,1.5,0.9 61 | Antawn Jamison,2007,21.4,1.5,10.2,0.4,1.3 62 | Carlos Boozer,2007,21.1,2.9,10.4,0.5,1.2 63 | Chris Paul,2007,21.1,11.6,4.0,0.1,2.7 64 | Deron Williams,2007,18.8,10.5,2.9,0.3,1.1 65 | Dwight Howard,2007,20.7,1.3,14.200000000000001,2.1,0.9 66 | Emeka Okafor,2007,13.8,0.9,10.7,1.7,0.8 67 | Jason Kidd,2007,10.8,10.1,7.5,0.3,1.7 68 | Lamar Odom,2007,14.2,3.5,10.7,0.9,1.0 69 | Samuel Dalembert,2007,10.5,0.5,10.3,2.3,0.5 70 | Steve Nash,2007,16.9,11.1,3.4,0.1,0.7 71 | Tim Duncan,2007,19.3,2.8,11.3,1.9,0.7 72 | Tyson Chandler,2007,11.8,1.0,11.8,1.1,0.6 73 | Chris Bosh,2008,22.7,2.5,10.0,1.0,0.9 74 | Chris Paul,2008,22.8,11.0,5.6000000000000005,0.1,2.8 75 | David Lee,2008,16.0,2.1,11.8,0.3,1.0 76 | Dwight Howard,2008,20.6,1.4,13.899999999999999,2.9,1.0 77 | Emeka Okafor,2008,13.2,0.6,10.1,1.7,0.6 78 | Tim Duncan,2008,19.3,3.5,10.7,1.7,0.5 79 | Troy Murphy,2008,14.3,2.4,11.8,0.5,0.8 80 | Carlos Boozer,2009,19.5,3.2,11.2,0.5,1.1 81 | Chris Bosh,2009,24.0,2.4,10.8,1.0,0.6 82 | David Lee,2009,20.2,3.6,11.7,0.5,1.0 83 | Deron Williams,2009,18.7,10.5,4.0,0.2,1.3 84 | Dwight Howard,2009,18.3,1.8,13.2,2.8,0.9 85 | Gerald Wallace,2009,18.2,2.1,10.1,1.1,1.5 86 | Steve Nash,2009,16.5,11.0,3.3,0.1,0.5 87 | Tim Duncan,2009,17.9,3.2,10.1,1.5,0.6 88 | Troy Murphy,2009,14.6,2.1,10.200000000000001,0.5,1.0 89 | Zach Randolph,2009,20.8,1.8,11.8,0.4,1.0 90 | -------------------------------------------------------------------------------- /challenge_3/submission.csv: -------------------------------------------------------------------------------- 1 | GPA 2 | 1.482846762592041 3 | 3.0673033920392423 4 | 1.647529835991988 5 | 3.409789040038955 6 | 0.4329331879739047 7 | 2.4404222297133273 8 | 1.358346102778805 9 | 2.357602491548818 10 | 2.168848691288423 11 | 1.0607864872159813 12 | 2.509717215340521 13 | 0.9431462021935598 14 | 2.993182919160156 15 | 2.6002616973191928 16 | 2.7545996387729685 17 | 0.35053845568605624 18 | 1.0960531669667288 19 | 1.404821555265909 20 | 2.176302100733576 21 | 2.4386452827504406 22 | 2.4411969124089983 23 | 1.6525077615246588 24 | 1.7626303018616905 25 | 3.3641042992866312 26 | 1.6947406095205806 27 | 0.8918592296228672 28 | 2.0410140663373726 29 | 2.675812748528216 30 | 1.774480282026444 31 | 1.704557025393202 32 | 1.6758573019146479 33 | 0.46376934619244303 34 | 2.7603259084175225 35 | 3.365147522506529 36 | 1.481364994665274 37 | 1.9407651022729029 38 | 3.0614453131230848 39 | 2.727553399456224 40 | 2.9807706085677346 41 | 0.7852516398921385 42 | 3.0467917684368224 43 | 3.3129766115703116 44 | 1.4920689483798018 45 | 2.1218326422961487 46 | 0.9478214800270687 47 | 2.8026496383926967 48 | 2.889112860004146 49 | 1.125866384675712 50 | 2.6661753905892063 51 | 1.6164370449256913 52 | 3.1469450163719257 53 | 2.950818241274844 54 | 1.4415743236317902 55 | 1.2145142661161437 56 | 1.9548367846386778 57 | 3.511491359238465 58 | 2.11591029665365 59 | 3.065234990499733 60 | 1.2125501159597891 61 | 2.1284988670780933 62 | 1.6311918104550291 63 | 1.7643942954073708 64 | 2.3680165958014356 65 | 1.8067718016464822 66 | 1.2875309506160408 67 | 2.1732051502527296 68 | 3.3301003606038027 69 | 2.789038138993339 70 | 1.3011290268795501 71 | 3.3552886643978526 72 | 3.235525209612682 73 | 0.8033333105250835 74 | 2.8840356387700394 75 | 2.8766285232505364 76 | 0.8671030714583027 77 | 2.7614346027543295 78 | 1.7760831879581844 79 | 1.32168156656626 80 | 0.3857813916234951 81 | 1.3589453583408708 82 | 2.220068193414449 83 | 2.890740140557279 84 | 2.0169755655355375 85 | 1.4772909578995086 86 | 1.2567555905244028 87 | 0.5059977084789553 88 | 3.938599737617413 89 | 1.3486296008114353 90 | 1.6431366205015434 91 | 1.907597847196285 92 | 2.8087318056858885 93 | 1.4812787936380798 94 | 1.165225379919574 95 | 0.8496145911092697 96 | 1.641587633734128 97 | 1.415602433833648 98 | 3.242489254749493 99 | 1.1739367513077563 100 | 1.423989571984267 101 | 1.542868167865701 102 | 0.4698657410575475 103 | 2.3269988639894126 104 | 1.2146110242758024 105 | 1.4956304573388153 106 | 0.8833386764600184 107 | 2.070971448069732 108 | 2.6872043706849165 109 | 1.28913264142869 110 | 1.5710485049113534 111 | 1.1539169437149557 112 | 1.6032319570227898 113 | 1.8890078233693517 114 | 3.423430257847463 115 | 0.758667134216261 116 | 0.27981735739174174 117 | 1.1764307294622052 118 | 2.285576586018248 119 | 2.859348993322194 120 | 1.2085624241884882 121 | 1.8406646820012518 122 | 0.9369566824005604 123 | 2.8069348934725666 124 | 3.29371860257554 125 | 1.257558556302671 126 | 1.938006262312879 127 | 1.3124324859442735 128 | 2.4739474645398722 129 | 1.4282762660589154 130 | 1.947267763888178 131 | 2.9439384818286554 132 | 1.3276924103981065 133 | 3.8371844421547663 134 | 3.1818970431851192 135 | 0.5296972159118478 136 | 0.49983671221122483 137 | 0.776495748744567 138 | 1.922078515421199 139 | 0.3516718404799497 140 | 0.6617627478638476 141 | 1.5188545561641886 142 | 2.5479919121296057 143 | 1.804639417549913 144 | 3.268287674371538 145 | 1.7573705842610206 146 | 3.2615514315868257 147 | 1.5668252291325346 148 | 1.5518871108660892 149 | 2.2298200164794295 150 | 2.710098900435411 151 | 1.3727569089650955 152 | 2.878966952288245 153 | 1.0344018452446277 154 | 3.097716917763819 155 | 1.203414674358815 156 | 0.9769445381933655 157 | 0.3891269781126312 158 | 1.482316284017141 159 | 1.1326432963330282 160 | 1.390877258664387 161 | 0.4924842342950657 162 | 1.5583973713497703 163 | 1.133437286807568 164 | 1.1409823865786146 165 | 0.7895180373782349 166 | 0.2820929676912536 167 | 0.4313638046516879 168 | 0.8074131556330398 169 | 1.4729294080656496 170 | 2.586345260573183 171 | 3.130165551242185 172 | 1.6613090171240354 173 | 3.4330473589732353 174 | 3.3046165699980508 175 | 1.2630984517663617 176 | 1.1717663193412666 177 | 2.2588671821738218 178 | 2.4793599198214586 179 | 1.2691026854148175 180 | 2.516141164335464 181 | 1.985643436181463 182 | 3.296349030200934 183 | 1.4311313216396122 184 | 0.7841578571765455 185 | 2.9408753457799492 186 | 3.109889567177563 187 | 2.727301928596227 188 | 2.9207416563111908 189 | 1.8454267146012715 190 | 0.4547745568355128 191 | 2.2075329218815383 192 | 1.4864468527218628 193 | 2.1912075310981614 194 | 1.2926133114820648 195 | 0.49583392178607255 196 | 1.7482997517587178 197 | 1.034508269500748 198 | 1.9561453201743453 199 | 2.356364366295981 200 | 2.757766596147576 201 | 2.677445283313893 202 | 1.3673363811606194 203 | 3.100999668560772 204 | 0.5969607540997428 205 | 2.2928294603216686 206 | 2.6199750337799825 207 | 2.119883979568208 208 | 0.60872316079659 209 | 3.378044034066575 210 | 2.291257277655811 211 | 1.720522468292506 212 | 1.6240600866051969 213 | 0.9944990481648119 214 | 2.2367103300873072 215 | 2.984772217664554 216 | 2.820597085737835 217 | 1.1713243788709415 218 | 2.990459609668477 219 | 2.809716930377112 220 | 2.126479936265353 221 | 2.8894638653811864 222 | 1.0278790060807164 223 | 2.481578923185403 224 | 3.4120721430277854 225 | 0.5511155148846432 226 | 1.5896074681632428 227 | 1.7446852753734567 228 | 3.435273856772115 229 | 2.5788563361534997 230 | 1.3244768683374892 231 | 2.355251390073138 232 | 1.5764999454504922 233 | 2.0118026667190034 234 | 2.6301964334164465 235 | 1.1614728365188 236 | 2.9530227621040828 237 | 2.6632788527903455 238 | 0.4143484898148373 239 | 1.2898184130116155 240 | 2.9082373669210657 241 | 1.0834532849007235 242 | 3.64510386314418 243 | 1.0745741551894898 244 | 0.7349110261894447 245 | 2.515894423560552 246 | 1.6458772158246613 247 | 0.48687524805219073 248 | 2.5043632188752176 249 | 1.0132423388336862 250 | 0.6814301049506787 251 | 1.4865757760304197 252 | 1.640268580985182 253 | 2.902310930622362 254 | 2.453560086334795 255 | 1.9406951880477914 256 | 2.820571175695987 257 | 1.7951338779030783 258 | 1.3900218186818742 259 | 2.012674267197725 260 | 0.5577590952162308 261 | 1.7081550321802985 262 | 1.8415357805352717 263 | 0.7238692513187459 264 | 1.6982421870981164 265 | 0.9188088110904485 266 | 1.7709580507566396 267 | 3.4267020135065662 268 | 2.8056310843260652 269 | 0.7837601485890727 270 | 2.5476178290549205 271 | 2.4326605692696406 272 | 1.3804389254783014 273 | 3.2250656297651714 274 | 1.6229345109686222 275 | 1.8415396186653863 276 | 1.2524556454972493 277 | 2.621875351160254 278 | 1.0627070680398947 279 | 1.5257428180100545 280 | 0.5847908129280235 281 | 2.7318943914106777 282 | 3.256624306028546 283 | 2.8211765607311667 284 | 2.0994573106005423 285 | 1.3573327774333168 286 | 3.1789179214798664 287 | 2.2063010586933385 288 | 1.2892002951398585 289 | 1.6682259429115835 290 | 0.8115735133666737 291 | 0.577322466219653 292 | 3.586313389556793 293 | 1.8834420171202517 294 | 2.5434746668604373 295 | 1.1130165426323724 296 | 2.5272961479630855 297 | 1.2513673873608262 298 | 2.7383685549446524 299 | 1.5639627465801436 300 | 0.3827128754957747 301 | 2.9425732272847096 302 | 3.107502436686021 303 | 2.3331722071828023 304 | 0.8908719417035926 305 | 3.43512569098668 306 | 2.474549398486523 307 | 2.5015958198776267 308 | 0.557416681696959 309 | 2.694296184046231 310 | 0.707796606855117 311 | 1.6111459176357381 312 | 1.2833888377642257 313 | 1.8476713108197882 314 | 1.0053589810984014 315 | 1.0938347966326496 316 | 0.8961995911445454 317 | 1.5335359312956045 318 | 2.7204641968992354 319 | 2.3595082977778183 320 | 2.682279287909112 321 | 1.886013706094961 322 | 2.1902415611316135 323 | 1.158067424120666 324 | 2.028387928263859 325 | 2.2510265171225745 326 | 3.07191778411643 327 | 1.6297693966457538 328 | 0.8964061125472241 329 | 1.095802656472314 330 | 2.476985085510486 331 | 1.176119450419708 332 | 2.077058264800092 333 | 2.902091661084466 334 | 2.1716660522741793 335 | 2.8345394155782775 336 | 3.1480181498471236 337 | 2.8442209502941465 338 | 2.193745480215521 339 | 1.3931310817567932 340 | 0.5758161548875183 341 | 1.966597503099401 342 | 1.1090530920396164 343 | 1.5161799926954158 344 | 1.3374787615249284 345 | 1.9309731515273474 346 | 1.8809647469510518 347 | 2.4058558314377665 348 | 3.0436385877146734 349 | 3.3184754308485744 350 | 0.9413531843073639 351 | 3.0899272987621895 352 | 3.3596191910486035 353 | 2.073601688163249 354 | 1.809308294066587 355 | 2.4734814942995618 356 | 1.6673558932183148 357 | 1.8124059735021292 358 | 2.394096105072066 359 | 1.3496994270762455 360 | 0.588839732311931 361 | 2.3229005204821864 362 | 2.3700203815256407 363 | 3.248987121210252 364 | 2.3322105983412023 365 | 1.205928818326502 366 | 1.773878263011111 367 | 2.684516582358293 368 | 3.6663777308927985 369 | 2.4039762941804375 370 | 2.3184788791324764 371 | 1.9583419828496709 372 | 0.38445501789866143 373 | 1.9425128260609237 374 | 2.320787080582391 375 | 2.479796530278715 376 | 2.272211095424434 377 | 0.9891730623341201 378 | 1.1801448639223837 379 | 1.9836803028694105 380 | 3.7238332271997594 381 | 0.7554298107531041 382 | 1.6160728575280807 383 | 2.1845047734812315 384 | 0.6046872898216291 385 | 2.8440313464814833 386 | 2.7413492301487583 387 | 1.335738955813274 388 | 2.2750659180545223 389 | 1.7361554078021038 390 | 2.487061803862453 391 | 1.5322136232700223 392 | 2.301954362212744 393 | 1.2087709653407035 394 | 0.9254837204531943 395 | 2.3920044858607676 396 | 2.138424060178762 397 | 2.573960846041614 398 | 3.001753434438702 399 | 3.11975559699736 400 | 2.2778445343420053 401 | 2.5672159261592538 402 | 2.259186297108601 403 | 2.23302345149075 404 | 2.5578921553460097 405 | 3.0503095926617765 406 | 2.13123685059053 407 | 2.898117446031482 408 | 0.881298457440525 409 | 3.3435400874245573 410 | 2.2862065962592775 411 | 3.310703755179439 412 | 2.292779537562375 413 | 1.881541581127979 414 | 2.1048238238957824 415 | 2.6642808027591762 416 | 3.1531370155336376 417 | 2.060033916998934 418 | 0.4373691724508939 419 | 2.9060935688689598 420 | 3.0542200035897995 421 | 1.4189218563274417 422 | 1.3406802884742106 423 | 1.7589450746398034 424 | 2.1209421031167466 425 | 1.8384898462211965 426 | 1.156758921762592 427 | 1.278723098764378 428 | 0.7996028294320698 429 | 2.6276818640190656 430 | 2.1161197631675743 431 | 2.958084171567163 432 | 3.0584260067732663 433 | 1.75118047027137 434 | 1.9409521029829506 435 | 3.0853022338195046 436 | 2.2374111439501214 437 | 2.4271341096821164 438 | 1.3669210147617046 439 | 3.417253947237261 440 | 2.2451584099027158 441 | 1.5528307036123574 442 | 1.4826929672925888 443 | 2.975272621803615 444 | 2.9274649214161546 445 | 3.1088905233570205 446 | 3.121965321710304 447 | 2.932000610678795 448 | 1.322652405915461 449 | 2.463407620091446 450 | 0.9473053170569335 451 | 0.5260393575136844 452 | 2.44019618598961 453 | 0.6154586423606392 454 | 2.7034470289529975 455 | 2.3670654117685705 456 | 3.2675055453486452 457 | 1.834110395338828 458 | 1.2488368791166344 459 | 1.0016764822799757 460 | 0.4842475456028901 461 | 2.136417492570676 462 | 1.257028802568553 463 | 0.618014270458221 464 | 0.7950736299738178 465 | 1.5861139994106621 466 | 2.392346851356694 467 | 0.5476431432271613 468 | 0.4521093520379611 469 | 2.664870215936163 470 | 3.1142290361840237 471 | 2.31722194101731 472 | 1.1547800578928102 473 | 1.8910801316550623 474 | 1.4929338040749647 475 | 1.4153500031969828 476 | 1.6815802327049993 477 | 2.3671001756279355 478 | 2.7455138772331047 479 | 2.339564094405887 480 | 0.7224852272656764 481 | -------------------------------------------------------------------------------- /challenge_1/best_player.csv: -------------------------------------------------------------------------------- 1 | PLAYER,Value 2 | Kevin Garnett,29.74 3 | LeBron James,27.9 4 | Chris Paul,26.57 5 | Shaquille O'Neal,26.55 6 | Dwyane Wade,26.12 7 | Dirk Nowitzki,26.09 8 | Tim Duncan,26.09 9 | Kobe Bryant,25.3 10 | Chris Webber,24.93 11 | Tracy McGrady,23.81 12 | Dwight Howard,23.68 13 | Amar'e Stoudemire,23.52 14 | Karl Malone,23.5 15 | Elton Brand,23.25 16 | Shawn Marion,23.25 17 | Allen Iverson,22.94 18 | Chris Bosh,22.81 19 | Carlos Boozer,22.62 20 | David Lee,22.3 21 | Kevin Durant,22.1 22 | Gilbert Arenas,22.08 23 | Pau Gasol,22.06 24 | Paul Pierce,21.38 25 | Jason Kidd,21.31 26 | Marcus Camby,21.18 27 | Steve Nash,20.97 28 | Yao Ming,20.72 29 | Carmelo Anthony,20.66 30 | Brandon Roy,20.6 31 | Vince Carter,20.39 32 | Jermaine O'Neal,20.16 33 | Jamal Mashburn,19.8 34 | Lamar Odom,19.8 35 | Antawn Jamison,19.71 36 | Sam Cassell,19.62 37 | Tyreke Evans,19.6 38 | Brook Lopez,19.5 39 | Terrell Brandon,19.5 40 | Stephon Marbury,19.38 41 | Baron Davis,19.34 42 | Steve Francis,19.26 43 | Ray Allen,19.14 44 | LaMarcus Aldridge,19.1 45 | Gerald Wallace,19.05 46 | Glenn Robinson,19.0 47 | Stephen Curry,19.0 48 | Al Horford,18.85 49 | Michael Jordan,18.7 50 | Deron Williams,18.65 51 | Ben Wallace,18.64 52 | Corey Maggette,18.6 53 | Anthony Mason,18.55 54 | Zach Randolph,18.54 55 | David Robinson,18.5 56 | Monta Ellis,18.47 57 | Peja Stojakovic,18.47 58 | Andre Iguodala,18.33 59 | Jerry Stackhouse,18.23 60 | Shareef Abdur-Rahim,18.17 61 | Josh Smith,18.16 62 | Brad Miller,18.14 63 | Michael Redd,18.12 64 | Gary Payton,18.07 65 | David West,18.0 66 | Luol Deng,17.93 67 | Andre Miller,17.91 68 | Emeka Okafor,17.9 69 | Derrick Rose,17.85 70 | Andris Biedrins,17.8 71 | John Stockton,17.77 72 | Zydrunas Ilgauskas,17.75 73 | Al Jefferson,17.43 74 | Josh Howard,17.33 75 | Manu Ginobili,17.28 76 | Rashard Lewis,17.24 77 | Rasheed Wallace,17.19 78 | Danny Granger,17.1 79 | Chauncey Billups,17.02 80 | Danny Fortson,17.0 81 | Troy Murphy,16.93 82 | Carl Landry,16.9 83 | Andrew Bogut,16.85 84 | Nene,16.75 85 | Jason Richardson,16.48 86 | Antoine Walker,16.47 87 | Joe Johnson,16.41 88 | Kenyon Martin,16.4 89 | Russell Westbrook,16.35 90 | Kevin Martin,16.33 91 | Keith Van Horn,16.17 92 | Richard Jefferson,16.17 93 | Vlade Divac,16.15 94 | Luis Scola,16.13 95 | Jason Terry,16.11 96 | Elden Campbell,16.05 97 | Mike Bibby,16.04 98 | Andrei Kirilenko,16.0 99 | Tony Parker,15.93 100 | Marc Gasol,15.9 101 | Jalen Rose,15.88 102 | Charles Oakley,15.8 103 | Mehmet Okur,15.8 104 | Rajon Rondo,15.8 105 | Caron Butler,15.75 106 | Richard Hamilton,15.66 107 | Nick Van Exel,15.53 108 | Rudy Gay,15.52 109 | Clar. Weatherspoon,15.3 110 | Delonte West,15.3 111 | Kevin Love,15.3 112 | Mike Miller,15.25 113 | T.J. Ford,15.23 114 | Wesley Person,15.2 115 | Raef LaFrentz,15.18 116 | Allan Houston,15.13 117 | Kirk Hinrich,15.1 118 | Metta World Peace,15.1 119 | Brian Grant,15.02 120 | O.J. Mayo,15.0 121 | Damon Stoudamire,14.98 122 | Doug Christie,14.98 123 | Samuel Dalembert,14.95 124 | Tyson Chandler,14.93 125 | Eddie Jones,14.92 126 | P.J. Brown,14.9 127 | Grant Hill,14.83 128 | Antonio Davis,14.8 129 | Ricky Davis,14.67 130 | Danilo Gallinari,14.6 131 | Donyell Marshall,14.6 132 | Jason Thompson,14.6 133 | Jose Calderon,14.6 134 | Drew Gooden,14.58 135 | Chris Kaman,14.55 136 | Cuttino Mobley,14.54 137 | Tayshaun Prince,14.52 138 | Theo Ratliff,14.5 139 | Raymond Felton,14.48 140 | Mo Williams,14.45 141 | Dikembe Mutombo,14.42 142 | Alonzo Mourning,14.25 143 | Juwan Howard,14.21 144 | Jim Jackson,14.2 145 | Kenny Thomas,14.18 146 | Rodney Stuckey,14.1 147 | Wilson Chandler,14.1 148 | Ben Gordon,14.06 149 | Al Harrington,14.05 150 | Primoz Brezec,14.0 151 | Udonis Haslem,14.0 152 | Boris Diaw,13.95 153 | Wally Szczerbiak,13.93 154 | Jamal Crawford,13.92 155 | Tim Hardaway,13.9 156 | Paul Millsap,13.88 157 | Reggie Miller,13.85 158 | Antonio McDyess,13.83 159 | Josh Childress,13.83 160 | Brandon Jennings,13.8 161 | Eric Gordon,13.8 162 | Kurt Thomas,13.8 163 | Michael Beasley,13.75 164 | Jeff Green,13.73 165 | Ronnie Brewer,13.7 166 | Joe Smith,13.68 167 | Derek Anderson,13.67 168 | Chris Wilcox,13.5 169 | Latrell Sprewell,13.5 170 | Jamaal Tinsley,13.47 171 | Stephen Jackson,13.47 172 | Kerry Kittles,13.45 173 | Alvin Williams,13.4 174 | Charlie Villanueva,13.3 175 | Kenny Anderson,13.3 176 | Taj Gibson,13.3 177 | Mike Dunleavy,13.22 178 | Andrea Bargnani,13.2 179 | Rafer Alston,13.16 180 | Horace Grant,13.15 181 | Anderson Varejao,13.13 182 | Christian Laettner,13.1 183 | Darren Collison,13.1 184 | Tyrone Hill,13.1 185 | Hedo Turkoglu,13.09 186 | Erick Dampier,13.04 187 | Matt Harpring,13.0 188 | Lamond Murray,12.9 189 | Michael Finley,12.9 190 | Shane Battier,12.86 191 | Dale Davis,12.85 192 | Bonzi Wells,12.82 193 | Darrell Armstrong,12.8 194 | Devin Harris,12.8 195 | Rod Strickland,12.8 196 | Leandro Barbosa,12.78 197 | Mike Conley,12.75 198 | Aaron Brooks,12.6 199 | Jason Hart,12.5 200 | Luke Ridnour,12.46 201 | Ryan Gomes,12.45 202 | Dan Dickau,12.4 203 | Michael Dickerson,12.4 204 | Andray Blatche,12.37 205 | Kendrick Perkins,12.32 206 | Jamario Moon,12.3 207 | Nick Collison,12.28 208 | Aaron McKie,12.23 209 | David Wesley,12.2 210 | Ersan Ilyasova,12.2 211 | Keon Clark,12.2 212 | LaPhonso Ellis,12.2 213 | Larry Hughes,12.2 214 | Patrick Ewing,12.2 215 | Thaddeus Young,12.2 216 | Joakim Noah,12.15 217 | Lorenzen Wright,12.15 218 | Josh Boone,12.1 219 | Speedy Claxton,12.1 220 | Jamaal Magloire,12.07 221 | Marvin Williams,12.03 222 | Marcus Thornton,12.0 223 | Rodney Rogers,12.0 224 | Eddy Curry,11.94 225 | Anthony Parker,11.9 226 | Jonas Jerebko,11.9 227 | Brendan Haywood,11.87 228 | Mark Jackson,11.87 229 | Nenad Krstic,11.87 230 | Brent Barry,11.86 231 | Kelenna Azubuike,11.85 232 | Darius Miles,11.83 233 | Andrew Bynum,11.8 234 | Bobby Simmons,11.8 235 | Michael Olowokandi,11.8 236 | Jeff McInnis,11.76 237 | Popeye Jones,11.7 238 | Scot Pollard,11.7 239 | Nate Robinson,11.67 240 | Mike James,11.66 241 | Travis Outlaw,11.65 242 | Al Thornton,11.6 243 | Brian Cardinal,11.6 244 | Jarrett Jack,11.56 245 | Jason Williams,11.56 246 | John Salmons,11.55 247 | Ramon Sessions,11.5 248 | Ruben Patterson,11.46 249 | Smush Parker,11.35 250 | Joel Przybilla,11.3 251 | Maurice Taylor,11.3 252 | Rick Fox,11.3 253 | Tim Thomas,11.3 254 | James Posey,11.28 255 | Mark Blount,11.28 256 | Anfernee Hardaway,11.25 257 | Bryant Reeves,11.2 258 | DeJuan Blair,11.2 259 | Desmond Mason,11.2 260 | Kwame Brown,11.2 261 | Vin Baker,11.2 262 | Nazr Mohammed,11.18 263 | Matt Barnes,11.12 264 | Hakim Warrick,11.08 265 | Trevor Ariza,11.03 266 | Jonny Flynn,11.0 267 | Quentin Richardson,11.0 268 | Roy Hibbert,10.95 269 | Randy Foye,10.93 270 | Clifford Robinson,10.92 271 | Chris Whitney,10.9 272 | Chris Duhon,10.88 273 | Chucky Atkins,10.8 274 | Glen Rice,10.8 275 | Jerome Williams,10.8 276 | Spencer Hawes,10.77 277 | Channing Frye,10.73 278 | Zaza Pachulia,10.7 279 | Jumaine Jones,10.68 280 | Earl Boykins,10.65 281 | Kelvin Cato,10.65 282 | Chris Andersen,10.63 283 | JR Smith,10.58 284 | Rasho Nesterovic,10.57 285 | Shawn Bradley,10.53 286 | Morris Peterson,10.51 287 | Bo Outlaw,10.5 288 | Bryant Stith,10.5 289 | C.J. Watson,10.5 290 | Eric Snow,10.5 291 | Andres Nocioni,10.46 292 | Chris Gatling,10.4 293 | JJ Hickson,10.4 294 | Jameer Nelson,10.4 295 | Bob Sura,10.3 296 | Luc Mbah a Moute,10.3 297 | Michael Smith,10.3 298 | Michael Sweetney,10.3 299 | Jeff Foster,10.29 300 | Eddie Griffin,10.28 301 | Darko Milicic,10.25 302 | Dominic McGuire,10.2 303 | Kyle Lowry,10.2 304 | Mario Chalmers,10.2 305 | Tony Delk,10.2 306 | Derek Fisher,10.19 307 | Corliss Williamson,10.18 308 | Tyrus Thomas,10.13 309 | George McCloud,10.1 310 | Jon Barry,10.1 311 | Omri Casspi,10.1 312 | Rudy Fernandez,10.1 313 | Vladimir Radmanovic,10.05 314 | Courtney Lee,10.0 315 | Lou Williams,10.0 316 | DeShawn Stevenson,9.98 317 | Chris Mihm,9.97 318 | Voshon Lenard,9.97 319 | Earl Watson,9.93 320 | Travis Best,9.92 321 | Aaron Williams,9.9 322 | Amir Johnson,9.9 323 | Lee Nailon,9.9 324 | Arvydas Sabonis,9.8 325 | Brandon Bass,9.8 326 | James Harden,9.8 327 | Tyronn Lue,9.8 328 | Carlos Delfino,9.77 329 | Kyle Korver,9.77 330 | Antonio Daniels,9.75 331 | Craig Smith,9.75 332 | Etan Thomas,9.75 333 | Marcus Fizer,9.75 334 | Ronny Turiaf,9.73 335 | Dion Glover,9.7 336 | Serge Ibaka,9.7 337 | Toni Kukoc,9.7 338 | Jahidi White,9.6 339 | Jay Williams,9.6 340 | Leon Powe,9.6 341 | Robert Horry,9.58 342 | Anthony Carter,9.57 343 | Dan Gadzuric,9.57 344 | Mickael Pietrus,9.55 345 | Matt Bonner,9.53 346 | Eduardo Najera,9.5 347 | Greg Ostertag,9.48 348 | Francisco Garcia,9.45 349 | Eric Piatkowski,9.4 350 | Jrue Holiday,9.4 351 | Terrence Williams,9.4 352 | Jason Maxiell,9.33 353 | Linas Kleiza,9.33 354 | Ervin Johnson,9.3 355 | Fred Hoiberg,9.25 356 | Malik Rose,9.25 357 | Raja Bell,9.25 358 | Marko Jaric,9.23 359 | Steven Smith,9.2 360 | Vladimir Stepania,9.2 361 | George Hill,9.15 362 | Tony Battie,9.14 363 | George Lynch,9.13 364 | Damon Jones,9.12 365 | Donnell Harvey,9.1 366 | Jason Caffey,9.1 367 | Wesley Matthews,9.1 368 | Gordan Giricek,9.07 369 | Howard Eisley,9.03 370 | Luther Head,9.03 371 | Beno Udrih,9.02 372 | Stromile Swift,9.0 373 | Mikki Moore,8.92 374 | Corey Brewer,8.9 375 | Jared Dudley,8.9 376 | Rick Brunson,8.9 377 | Calbert Cheaney,8.85 378 | Fabricio Oberto,8.85 379 | Brian Skinner,8.8 380 | Dorell Wright,8.8 381 | JJ Redick,8.8 382 | Juan Carlos Navarro,8.8 383 | Tyrone Nesby,8.8 384 | Bobby Jackson,8.78 385 | Flip Murray,8.75 386 | Rashad McCants,8.75 387 | Brandon Rush,8.7 388 | Marc Jackson,8.7 389 | Marreese Speights,8.7 390 | Steve Blake,8.7 391 | Anthony Peeler,8.62 392 | Othella Harrington,8.62 393 | Troy Hudson,8.62 394 | Adonal Foyle,8.6 395 | Chase Budinger,8.6 396 | Francisco Elson,8.6 397 | Sean Williams,8.6 398 | Chuck Hayes,8.55 399 | Charlie Bell,8.53 400 | CJ Miles,8.5 401 | D.J. Augustin,8.5 402 | Felipe Lopez,8.5 403 | Johnny Newman,8.5 404 | Zeljko Rebraca,8.5 405 | Austin Croshere,8.4 406 | Goran Dragic,8.4 407 | Kevin Willis,8.4 408 | Shammond Williams,8.4 409 | Shelden Williams,8.4 410 | Vitaly Potapenko,8.4 411 | Matt Carroll,8.37 412 | Devean George,8.35 413 | Ime Udoka,8.35 414 | Martell Webster,8.33 415 | Carlos Arroyo,8.3 416 | DeMar DeRozan,8.3 417 | Fred Jones,8.3 418 | Eric Williams,8.27 419 | Rasual Butler,8.26 420 | J.J. Barea,8.25 421 | Reggie Evans,8.22 422 | Chris Childs,8.2 423 | Ira Newble,8.2 424 | Kendall Gill,8.2 425 | Lucious Harris,8.2 426 | Predrag Drobnjak,8.2 427 | Ryan Bowen,8.2 428 | Bostjan Nachbar,8.17 429 | Pat Garrity,8.15 430 | Terry Porter,8.15 431 | Darius Songaila,8.14 432 | Roger Mason Jr.,8.13 433 | Glen Davis,8.1 434 | Jiri Welsch,8.1 435 | Juan Dixon,8.1 436 | Alan Henderson,8.07 437 | Moochie Norris,8.07 438 | Trenton Hassell,8.03 439 | Damien Wilkins,8.0 440 | Darrell Arthur,8.0 441 | Jared Jeffries,8.0 442 | Shawn Kemp,8.0 443 | Walt Williams,8.0 444 | Anthony Johnson,7.97 445 | Johan Petro,7.95 446 | Marquis Daniels,7.9 447 | Sarunas Jasikevicius,7.9 448 | Willie Green,7.9 449 | Brian Cook,7.8 450 | Calvin Booth,7.8 451 | Donte Greene,7.8 452 | Gary Trent,7.8 453 | JaVale McGee,7.8 454 | John Starks,7.8 455 | Shandon Anderson,7.8 456 | DeAndre Jordan,7.7 457 | Erick Strickland,7.7 458 | Steven Hunter,7.65 459 | Corie Blount,7.6 460 | Keith Bogans,7.6 461 | Malik Allen,7.6 462 | Shannon Brown,7.6 463 | Greg Buckner,7.58 464 | Adam Morrison,7.5 465 | Charlie Ward,7.5 466 | Evan Eschmeyer,7.5 467 | Gerald Green,7.5 468 | Raul Lopez,7.5 469 | Robert Pack,7.5 470 | Sebastian Telfair,7.5 471 | Eddie House,7.47 472 | Jarvis Hayes,7.45 473 | Joey Graham,7.43 474 | Olden Polynice,7.4 475 | Robert Traylor,7.4 476 | Scott Padgett,7.4 477 | Bruce Bowen,7.39 478 | Adrian Griffin,7.3 479 | Danny Manning,7.3 480 | Tony Massenburg,7.3 481 | Andrew DeClercq,7.25 482 | Devin Brown,7.25 483 | Daequan Cook,7.2 484 | Daniel Gibson,7.2 485 | Jannero Pargo,7.2 486 | Jerryd Bayless,7.2 487 | Melvin Ely,7.2 488 | Bryon Russell,7.18 489 | Jason Collins,7.17 490 | Maurice Evans,7.1 491 | James Jones,7.03 492 | Jonathan Bender,7.0 493 | Lou Amundson,7.0 494 | Thabo Sefolosha,6.95 495 | Milt Palacio,6.93 496 | Marcin Gortat,6.9 497 | Tony Allen,6.9 498 | Keyon Dooling,6.85 499 | Luke Walton,6.85 500 | Jordan Farmar,6.83 501 | Danny Ferry,6.8 502 | DerMarr Johnson,6.8 503 | Nicolas Batum,6.8 504 | Junior Harrington,6.7 505 | Kris Humphries,6.7 506 | Rodney White,6.65 507 | Ryan Hollins,6.6 508 | Sean Rooks,6.6 509 | Walter McCarty,6.6 510 | Marcus Williams,6.5 511 | Mike Batiste,6.5 512 | Brian Shaw,6.45 513 | Brevin Knight,6.4 514 | Jerome James,6.4 515 | Ron Mercer,6.4 516 | DeSagana Diop,6.36 517 | Eric Maynor,6.3 518 | Jake Voskuhl,6.3 519 | Jelani McCoy,6.3 520 | Kevin Ollie,6.3 521 | Lindsey Hunter,6.3 522 | Sam Young,6.3 523 | Steve Novak,6.3 524 | Jason Kapono,6.27 525 | Nick Young,6.23 526 | A.C. Green,6.2 527 | Dahntay Jones,6.15 528 | Arron Afflalo,6.13 529 | Quinton Ross,6.07 530 | Jacque Vaughn,6.04 531 | Jarron Collins,6.02 532 | Sasha Vujacic,5.98 533 | Hilton Armstrong,5.9 534 | Michael Doleac,5.85 535 | Joel Anthony,5.7 536 | Marcus Banks,5.7 537 | Jason Smith,5.6 538 | John Amaechi,5.6 539 | Wayne Ellington,5.6 540 | Casey Jacobsen,5.53 541 | Monty Williams,5.5 542 | Dean Garrett,5.3 543 | Mickael Gelabale,5.3 544 | Dell Curry,5.1 545 | Michael Ruffin,5.1 546 | Rodney Carney,5.1 547 | Stacey Augmon,5.05 548 | Mateen Cleaves,5.0 549 | Jason Collier,4.9 550 | Slava Medvedenko,4.9 551 | Kareem Rush,4.83 552 | Hanno Mottola,4.8 553 | Mark Madsen,4.55 554 | Sergio Rodriguez,4.45 555 | Stephen Graham,4.3 556 | Darvin Ham,4.25 557 | Orien Greene,4.2 558 | Michael Curry,4.17 559 | Eddie Gill,4.1 560 | Jeryl Sasser,4.1 561 | Royal Ivey,4.1 562 | Roko Ukic,4.0 563 | Jeff Teague,3.9 564 | Tierre Brown,3.8 565 | Justin Reed,3.7 566 | Sasha Pavlovic,3.65 567 | DeMarre Carroll,3.6 568 | Quincy Douby,3.6 569 | Steve Kerr,3.6 570 | Brian Scalabrine,3.3 571 | Nikoloz Tskitishvili,3.3 572 | Sam Mitchell,3.15 573 | -------------------------------------------------------------------------------- /challenge_2/submission.csv: -------------------------------------------------------------------------------- 1 | author 2 | Olivia Bennett 3 | Olivia Bennett 4 | Liam Carter 5 | Liam Carter 6 | Olivia Bennett 7 | Olivia Bennett 8 | Ava Thompson 9 | Liam Carter 10 | Liam Carter 11 | Ava Thompson 12 | Liam Carter 13 | Liam Carter 14 | Mason Reed 15 | Ava Thompson 16 | Liam Carter 17 | Mason Reed 18 | Ava Thompson 19 | Mason Reed 20 | Olivia Bennett 21 | Ava Thompson 22 | Liam Carter 23 | Olivia Bennett 24 | Ava Thompson 25 | Ethan Brooks 26 | Liam Carter 27 | Liam Carter 28 | Liam Carter 29 | Olivia Bennett 30 | Liam Carter 31 | Mason Reed 32 | Olivia Bennett 33 | Mason Reed 34 | Olivia Bennett 35 | Olivia Bennett 36 | Olivia Bennett 37 | Ethan Brooks 38 | Mason Reed 39 | Liam Carter 40 | Liam Carter 41 | Olivia Bennett 42 | Liam Carter 43 | Liam Carter 44 | Olivia Bennett 45 | Liam Carter 46 | Liam Carter 47 | Ethan Brooks 48 | Mason Reed 49 | Ava Thompson 50 | Ava Thompson 51 | Liam Carter 52 | Ethan Brooks 53 | Liam Carter 54 | Liam Carter 55 | Olivia Bennett 56 | Mason Reed 57 | Liam Carter 58 | Liam Carter 59 | Ava Thompson 60 | Ava Thompson 61 | Ava Thompson 62 | Ethan Brooks 63 | Liam Carter 64 | Liam Carter 65 | Mason Reed 66 | Ava Thompson 67 | Ethan Brooks 68 | Ethan Brooks 69 | Liam Carter 70 | Ava Thompson 71 | Olivia Bennett 72 | Liam Carter 73 | Olivia Bennett 74 | Mason Reed 75 | Olivia Bennett 76 | Liam Carter 77 | Liam Carter 78 | Liam Carter 79 | Liam Carter 80 | Ethan Brooks 81 | Ava Thompson 82 | Ava Thompson 83 | Mason Reed 84 | Liam Carter 85 | Olivia Bennett 86 | Olivia Bennett 87 | Liam Carter 88 | Ethan Brooks 89 | Liam Carter 90 | Liam Carter 91 | Ethan Brooks 92 | Mason Reed 93 | Ethan Brooks 94 | Ethan Brooks 95 | Olivia Bennett 96 | Olivia Bennett 97 | Liam Carter 98 | Ava Thompson 99 | Ethan Brooks 100 | Liam Carter 101 | Liam Carter 102 | Ethan Brooks 103 | Olivia Bennett 104 | Ethan Brooks 105 | Ethan Brooks 106 | Olivia Bennett 107 | Liam Carter 108 | Ethan Brooks 109 | Ethan Brooks 110 | Liam Carter 111 | Mason Reed 112 | Olivia Bennett 113 | Ava Thompson 114 | Olivia Bennett 115 | Ava Thompson 116 | Mason Reed 117 | Liam Carter 118 | Ethan Brooks 119 | Mason Reed 120 | Liam Carter 121 | Liam Carter 122 | Olivia Bennett 123 | Ethan Brooks 124 | Olivia Bennett 125 | Mason Reed 126 | Mason Reed 127 | Olivia Bennett 128 | Liam Carter 129 | Ethan Brooks 130 | Ethan Brooks 131 | Ava Thompson 132 | Olivia Bennett 133 | Ava Thompson 134 | Mason Reed 135 | Liam Carter 136 | Olivia Bennett 137 | Mason Reed 138 | Olivia Bennett 139 | Mason Reed 140 | Olivia Bennett 141 | Ethan Brooks 142 | Ethan Brooks 143 | Ethan Brooks 144 | Ava Thompson 145 | Liam Carter 146 | Ava Thompson 147 | Ethan Brooks 148 | Mason Reed 149 | Liam Carter 150 | Ava Thompson 151 | Olivia Bennett 152 | Ava Thompson 153 | Ethan Brooks 154 | Ava Thompson 155 | Mason Reed 156 | Olivia Bennett 157 | Ethan Brooks 158 | Olivia Bennett 159 | Ava Thompson 160 | Mason Reed 161 | Mason Reed 162 | Liam Carter 163 | Ethan Brooks 164 | Olivia Bennett 165 | Ava Thompson 166 | Mason Reed 167 | Mason Reed 168 | Olivia Bennett 169 | Ava Thompson 170 | Ava Thompson 171 | Ava Thompson 172 | Ethan Brooks 173 | Mason Reed 174 | Liam Carter 175 | Liam Carter 176 | Olivia Bennett 177 | Ava Thompson 178 | Ava Thompson 179 | Liam Carter 180 | Olivia Bennett 181 | Mason Reed 182 | Liam Carter 183 | Ava Thompson 184 | Ava Thompson 185 | Mason Reed 186 | Ethan Brooks 187 | Liam Carter 188 | Olivia Bennett 189 | Liam Carter 190 | Liam Carter 191 | Olivia Bennett 192 | Mason Reed 193 | Mason Reed 194 | Mason Reed 195 | Olivia Bennett 196 | Mason Reed 197 | Liam Carter 198 | Ava Thompson 199 | Ethan Brooks 200 | Liam Carter 201 | Ethan Brooks 202 | Mason Reed 203 | Ethan Brooks 204 | Ethan Brooks 205 | Ethan Brooks 206 | Liam Carter 207 | Olivia Bennett 208 | Ava Thompson 209 | Olivia Bennett 210 | Mason Reed 211 | Liam Carter 212 | Ethan Brooks 213 | Olivia Bennett 214 | Ethan Brooks 215 | Liam Carter 216 | Liam Carter 217 | Olivia Bennett 218 | Liam Carter 219 | Ava Thompson 220 | Olivia Bennett 221 | Liam Carter 222 | Ethan Brooks 223 | Mason Reed 224 | Mason Reed 225 | Mason Reed 226 | Ethan Brooks 227 | Ethan Brooks 228 | Olivia Bennett 229 | Olivia Bennett 230 | Liam Carter 231 | Olivia Bennett 232 | Ethan Brooks 233 | Mason Reed 234 | Mason Reed 235 | Olivia Bennett 236 | Ethan Brooks 237 | Mason Reed 238 | Liam Carter 239 | Mason Reed 240 | Ava Thompson 241 | Olivia Bennett 242 | Mason Reed 243 | Ava Thompson 244 | Liam Carter 245 | Ethan Brooks 246 | Olivia Bennett 247 | Ava Thompson 248 | Liam Carter 249 | Ava Thompson 250 | Mason Reed 251 | Liam Carter 252 | Ethan Brooks 253 | Mason Reed 254 | Olivia Bennett 255 | Ethan Brooks 256 | Olivia Bennett 257 | Ethan Brooks 258 | Mason Reed 259 | Mason Reed 260 | Ava Thompson 261 | Liam Carter 262 | Ava Thompson 263 | Ava Thompson 264 | Olivia Bennett 265 | Liam Carter 266 | Ethan Brooks 267 | Liam Carter 268 | Ethan Brooks 269 | Mason Reed 270 | Ethan Brooks 271 | Ethan Brooks 272 | Olivia Bennett 273 | Olivia Bennett 274 | Mason Reed 275 | Olivia Bennett 276 | Mason Reed 277 | Ethan Brooks 278 | Ethan Brooks 279 | Mason Reed 280 | Mason Reed 281 | Mason Reed 282 | Mason Reed 283 | Olivia Bennett 284 | Mason Reed 285 | Ethan Brooks 286 | Ava Thompson 287 | Liam Carter 288 | Mason Reed 289 | Ava Thompson 290 | Olivia Bennett 291 | Olivia Bennett 292 | Ava Thompson 293 | Ava Thompson 294 | Liam Carter 295 | Olivia Bennett 296 | Liam Carter 297 | Ava Thompson 298 | Liam Carter 299 | Mason Reed 300 | Mason Reed 301 | Mason Reed 302 | Ava Thompson 303 | Liam Carter 304 | Ethan Brooks 305 | Mason Reed 306 | Liam Carter 307 | Ethan Brooks 308 | Ethan Brooks 309 | Ethan Brooks 310 | Liam Carter 311 | Ethan Brooks 312 | Mason Reed 313 | Ava Thompson 314 | Liam Carter 315 | Ethan Brooks 316 | Liam Carter 317 | Ethan Brooks 318 | Mason Reed 319 | Liam Carter 320 | Ethan Brooks 321 | Ava Thompson 322 | Liam Carter 323 | Mason Reed 324 | Ethan Brooks 325 | Ava Thompson 326 | Olivia Bennett 327 | Mason Reed 328 | Mason Reed 329 | Mason Reed 330 | Ethan Brooks 331 | Olivia Bennett 332 | Olivia Bennett 333 | Ava Thompson 334 | Ethan Brooks 335 | Olivia Bennett 336 | Ava Thompson 337 | Ava Thompson 338 | Liam Carter 339 | Ethan Brooks 340 | Olivia Bennett 341 | Liam Carter 342 | Liam Carter 343 | Liam Carter 344 | Liam Carter 345 | Ethan Brooks 346 | Ethan Brooks 347 | Mason Reed 348 | Mason Reed 349 | Liam Carter 350 | Olivia Bennett 351 | Olivia Bennett 352 | Ava Thompson 353 | Ava Thompson 354 | Ethan Brooks 355 | Ava Thompson 356 | Olivia Bennett 357 | Olivia Bennett 358 | Ethan Brooks 359 | Olivia Bennett 360 | Ava Thompson 361 | Ethan Brooks 362 | Mason Reed 363 | Ethan Brooks 364 | Olivia Bennett 365 | Olivia Bennett 366 | Liam Carter 367 | Mason Reed 368 | Olivia Bennett 369 | Liam Carter 370 | Mason Reed 371 | Mason Reed 372 | Ethan Brooks 373 | Ava Thompson 374 | Ava Thompson 375 | Liam Carter 376 | Mason Reed 377 | Liam Carter 378 | Ethan Brooks 379 | Ethan Brooks 380 | Ava Thompson 381 | Mason Reed 382 | Liam Carter 383 | Ava Thompson 384 | Liam Carter 385 | Liam Carter 386 | Olivia Bennett 387 | Ethan Brooks 388 | Liam Carter 389 | Olivia Bennett 390 | Ethan Brooks 391 | Mason Reed 392 | Ethan Brooks 393 | Ethan Brooks 394 | Ava Thompson 395 | Mason Reed 396 | Ethan Brooks 397 | Mason Reed 398 | Ava Thompson 399 | Olivia Bennett 400 | Olivia Bennett 401 | Mason Reed 402 | Liam Carter 403 | Ava Thompson 404 | Olivia Bennett 405 | Ethan Brooks 406 | Ava Thompson 407 | Olivia Bennett 408 | Mason Reed 409 | Ava Thompson 410 | Ava Thompson 411 | Ethan Brooks 412 | Liam Carter 413 | Ava Thompson 414 | Mason Reed 415 | Olivia Bennett 416 | Mason Reed 417 | Ava Thompson 418 | Ava Thompson 419 | Liam Carter 420 | Olivia Bennett 421 | Ethan Brooks 422 | Mason Reed 423 | Liam Carter 424 | Ethan Brooks 425 | Mason Reed 426 | Ethan Brooks 427 | Ethan Brooks 428 | Ethan Brooks 429 | Liam Carter 430 | Ethan Brooks 431 | Ava Thompson 432 | Liam Carter 433 | Liam Carter 434 | Olivia Bennett 435 | Ethan Brooks 436 | Mason Reed 437 | Liam Carter 438 | Ethan Brooks 439 | Olivia Bennett 440 | Ethan Brooks 441 | Ethan Brooks 442 | Olivia Bennett 443 | Mason Reed 444 | Mason Reed 445 | Ava Thompson 446 | Mason Reed 447 | Liam Carter 448 | Mason Reed 449 | Liam Carter 450 | Ava Thompson 451 | Olivia Bennett 452 | Olivia Bennett 453 | Olivia Bennett 454 | Liam Carter 455 | Ethan Brooks 456 | Liam Carter 457 | Ethan Brooks 458 | Ava Thompson 459 | Liam Carter 460 | Ava Thompson 461 | Liam Carter 462 | Olivia Bennett 463 | Olivia Bennett 464 | Olivia Bennett 465 | Ethan Brooks 466 | Olivia Bennett 467 | Ethan Brooks 468 | Ava Thompson 469 | Liam Carter 470 | Liam Carter 471 | Mason Reed 472 | Ethan Brooks 473 | Olivia Bennett 474 | Ava Thompson 475 | Ava Thompson 476 | Mason Reed 477 | Ava Thompson 478 | Mason Reed 479 | Ava Thompson 480 | Ethan Brooks 481 | Olivia Bennett 482 | Liam Carter 483 | Mason Reed 484 | Ethan Brooks 485 | Liam Carter 486 | Olivia Bennett 487 | Liam Carter 488 | Ethan Brooks 489 | Liam Carter 490 | Liam Carter 491 | Ava Thompson 492 | Mason Reed 493 | Mason Reed 494 | Ava Thompson 495 | Olivia Bennett 496 | Liam Carter 497 | Ethan Brooks 498 | Olivia Bennett 499 | Liam Carter 500 | Liam Carter 501 | Ethan Brooks 502 | Olivia Bennett 503 | Liam Carter 504 | Ethan Brooks 505 | Ava Thompson 506 | Mason Reed 507 | Ethan Brooks 508 | Olivia Bennett 509 | Mason Reed 510 | Liam Carter 511 | Ethan Brooks 512 | Mason Reed 513 | Olivia Bennett 514 | Olivia Bennett 515 | Ethan Brooks 516 | Ava Thompson 517 | Olivia Bennett 518 | Mason Reed 519 | Ethan Brooks 520 | Olivia Bennett 521 | Olivia Bennett 522 | Ava Thompson 523 | Liam Carter 524 | Ava Thompson 525 | Olivia Bennett 526 | Mason Reed 527 | Mason Reed 528 | Olivia Bennett 529 | Liam Carter 530 | Mason Reed 531 | Ethan Brooks 532 | Olivia Bennett 533 | Liam Carter 534 | Liam Carter 535 | Liam Carter 536 | Liam Carter 537 | Ethan Brooks 538 | Mason Reed 539 | Ava Thompson 540 | Mason Reed 541 | Olivia Bennett 542 | Ethan Brooks 543 | Ethan Brooks 544 | Mason Reed 545 | Mason Reed 546 | Olivia Bennett 547 | Liam Carter 548 | Ava Thompson 549 | Liam Carter 550 | Liam Carter 551 | Ethan Brooks 552 | Olivia Bennett 553 | Mason Reed 554 | Ethan Brooks 555 | Mason Reed 556 | Liam Carter 557 | Mason Reed 558 | Olivia Bennett 559 | Ava Thompson 560 | Mason Reed 561 | Ava Thompson 562 | Olivia Bennett 563 | Ava Thompson 564 | Ava Thompson 565 | Olivia Bennett 566 | Mason Reed 567 | Ava Thompson 568 | Ethan Brooks 569 | Ethan Brooks 570 | Ethan Brooks 571 | Ethan Brooks 572 | Ethan Brooks 573 | Liam Carter 574 | Liam Carter 575 | Mason Reed 576 | Liam Carter 577 | Ethan Brooks 578 | Liam Carter 579 | Olivia Bennett 580 | Mason Reed 581 | Ava Thompson 582 | Olivia Bennett 583 | Mason Reed 584 | Olivia Bennett 585 | Ethan Brooks 586 | Mason Reed 587 | Olivia Bennett 588 | Mason Reed 589 | Liam Carter 590 | Ava Thompson 591 | Olivia Bennett 592 | Ethan Brooks 593 | Olivia Bennett 594 | Ava Thompson 595 | Olivia Bennett 596 | Olivia Bennett 597 | Mason Reed 598 | Mason Reed 599 | Ethan Brooks 600 | Olivia Bennett 601 | Mason Reed 602 | Liam Carter 603 | Ava Thompson 604 | Ava Thompson 605 | Ava Thompson 606 | Mason Reed 607 | Mason Reed 608 | Mason Reed 609 | Olivia Bennett 610 | Liam Carter 611 | Ethan Brooks 612 | Ava Thompson 613 | Ava Thompson 614 | Liam Carter 615 | Liam Carter 616 | Ethan Brooks 617 | Mason Reed 618 | Ava Thompson 619 | Olivia Bennett 620 | Liam Carter 621 | Olivia Bennett 622 | Olivia Bennett 623 | Ethan Brooks 624 | Olivia Bennett 625 | Mason Reed 626 | Liam Carter 627 | Liam Carter 628 | Ava Thompson 629 | Ava Thompson 630 | Liam Carter 631 | Ava Thompson 632 | Olivia Bennett 633 | Ava Thompson 634 | Liam Carter 635 | Liam Carter 636 | Ethan Brooks 637 | Ethan Brooks 638 | Ava Thompson 639 | Liam Carter 640 | Ethan Brooks 641 | Olivia Bennett 642 | Ava Thompson 643 | Olivia Bennett 644 | Liam Carter 645 | Mason Reed 646 | Ethan Brooks 647 | Mason Reed 648 | Olivia Bennett 649 | Ethan Brooks 650 | Liam Carter 651 | Liam Carter 652 | Olivia Bennett 653 | Mason Reed 654 | Liam Carter 655 | Mason Reed 656 | Ava Thompson 657 | Liam Carter 658 | Mason Reed 659 | Ethan Brooks 660 | Olivia Bennett 661 | Ava Thompson 662 | Mason Reed 663 | Olivia Bennett 664 | Ethan Brooks 665 | Liam Carter 666 | Liam Carter 667 | Ava Thompson 668 | Mason Reed 669 | Liam Carter 670 | Mason Reed 671 | Ava Thompson 672 | Olivia Bennett 673 | Ethan Brooks 674 | Mason Reed 675 | Olivia Bennett 676 | Ethan Brooks 677 | Mason Reed 678 | Ava Thompson 679 | Mason Reed 680 | Ava Thompson 681 | Olivia Bennett 682 | Olivia Bennett 683 | Mason Reed 684 | Ava Thompson 685 | Liam Carter 686 | Mason Reed 687 | Ava Thompson 688 | Ethan Brooks 689 | Olivia Bennett 690 | Liam Carter 691 | Liam Carter 692 | Liam Carter 693 | Ethan Brooks 694 | Olivia Bennett 695 | Mason Reed 696 | Olivia Bennett 697 | Ava Thompson 698 | Olivia Bennett 699 | Ava Thompson 700 | Ethan Brooks 701 | Olivia Bennett 702 | Ava Thompson 703 | Ava Thompson 704 | Mason Reed 705 | Liam Carter 706 | Mason Reed 707 | Mason Reed 708 | Ethan Brooks 709 | Ethan Brooks 710 | Liam Carter 711 | Liam Carter 712 | Ethan Brooks 713 | Mason Reed 714 | Liam Carter 715 | Olivia Bennett 716 | Liam Carter 717 | Ethan Brooks 718 | Ethan Brooks 719 | Olivia Bennett 720 | Ava Thompson 721 | Mason Reed 722 | Ava Thompson 723 | Ethan Brooks 724 | Mason Reed 725 | Olivia Bennett 726 | Olivia Bennett 727 | Liam Carter 728 | Liam Carter 729 | Liam Carter 730 | Mason Reed 731 | Mason Reed 732 | Liam Carter 733 | Ethan Brooks 734 | Ava Thompson 735 | Olivia Bennett 736 | Ethan Brooks 737 | Liam Carter 738 | Olivia Bennett 739 | Liam Carter 740 | Ethan Brooks 741 | Olivia Bennett 742 | Mason Reed 743 | Olivia Bennett 744 | Olivia Bennett 745 | Ethan Brooks 746 | Ethan Brooks 747 | Ethan Brooks 748 | Mason Reed 749 | Liam Carter 750 | Liam Carter 751 | Ethan Brooks 752 | Olivia Bennett 753 | Liam Carter 754 | Mason Reed 755 | Ava Thompson 756 | Olivia Bennett 757 | Olivia Bennett 758 | Olivia Bennett 759 | Mason Reed 760 | Ava Thompson 761 | Ethan Brooks 762 | Ava Thompson 763 | Liam Carter 764 | Liam Carter 765 | Olivia Bennett 766 | Ava Thompson 767 | Ava Thompson 768 | Ava Thompson 769 | Ethan Brooks 770 | Liam Carter 771 | Ava Thompson 772 | Mason Reed 773 | Olivia Bennett 774 | Liam Carter 775 | Mason Reed 776 | Ava Thompson 777 | Ethan Brooks 778 | Ava Thompson 779 | Liam Carter 780 | Ava Thompson 781 | Liam Carter 782 | Ethan Brooks 783 | Ava Thompson 784 | Mason Reed 785 | Mason Reed 786 | Olivia Bennett 787 | Olivia Bennett 788 | Liam Carter 789 | Ava Thompson 790 | Liam Carter 791 | Liam Carter 792 | Ava Thompson 793 | Olivia Bennett 794 | Ethan Brooks 795 | Liam Carter 796 | Olivia Bennett 797 | Liam Carter 798 | Olivia Bennett 799 | Ava Thompson 800 | Ethan Brooks 801 | -------------------------------------------------------------------------------- /challenge_5/submission.csv: -------------------------------------------------------------------------------- 1 | Thriller,Classics,Romance,Mystery,Science,Literature,Fantasy,Historical,Fiction 2 | 0,1,0,0,0,0,1,1,1 3 | 0,0,1,0,0,0,1,0,1 4 | 0,0,0,1,0,0,0,0,1 5 | 0,0,1,0,0,0,1,1,1 6 | 0,0,1,0,0,0,1,0,0 7 | 0,0,0,0,1,0,1,0,1 8 | 0,1,0,0,1,0,1,0,1 9 | 0,0,0,0,0,0,1,0,0 10 | 0,0,0,0,0,1,0,0,1 11 | 1,0,0,1,0,0,0,1,1 12 | 0,0,0,0,1,0,1,0,1 13 | 0,0,1,0,0,0,0,1,1 14 | 0,0,0,0,0,0,0,0,0 15 | 0,0,0,0,0,1,0,0,1 16 | 1,1,0,1,0,0,0,0,1 17 | 0,0,0,0,0,0,0,1,1 18 | 0,1,0,0,1,0,1,0,1 19 | 1,0,0,0,0,0,0,0,1 20 | 0,0,1,0,0,0,1,0,1 21 | 0,1,0,0,0,0,0,0,1 22 | 0,0,0,0,0,0,0,0,0 23 | 0,1,0,0,0,0,0,0,1 24 | 0,1,0,0,0,1,0,1,1 25 | 0,0,1,0,0,0,0,1,1 26 | 0,0,1,0,0,0,1,0,1 27 | 0,0,1,0,0,0,1,0,1 28 | 1,0,0,1,0,0,0,0,1 29 | 0,0,0,0,1,0,0,0,0 30 | 0,1,0,0,0,0,0,0,1 31 | 0,1,0,0,0,1,0,1,1 32 | 0,0,0,0,0,0,1,0,1 33 | 0,0,0,0,0,1,1,1,1 34 | 0,1,0,0,0,0,0,0,1 35 | 0,1,0,0,0,1,0,1,1 36 | 0,1,0,0,0,0,0,1,1 37 | 0,0,0,0,0,0,1,0,1 38 | 0,0,0,0,0,0,0,0,1 39 | 0,0,1,0,0,0,1,0,0 40 | 0,0,1,0,0,0,1,0,0 41 | 0,0,1,0,0,0,1,0,1 42 | 0,1,0,0,0,0,0,0,1 43 | 0,0,0,0,0,0,1,0,1 44 | 0,0,1,0,0,0,1,0,1 45 | 0,1,0,0,1,0,0,0,1 46 | 0,1,0,0,0,1,0,0,1 47 | 1,0,0,1,0,0,0,0,1 48 | 1,0,1,1,0,0,1,0,1 49 | 0,0,0,0,0,1,0,1,1 50 | 0,0,1,0,0,0,1,0,1 51 | 0,0,0,0,0,0,0,0,1 52 | 0,1,0,1,0,0,0,0,1 53 | 0,0,0,0,0,0,1,0,1 54 | 0,0,0,0,0,0,1,1,1 55 | 1,0,0,1,0,0,0,0,1 56 | 0,1,1,0,0,1,0,1,1 57 | 0,1,0,0,0,0,0,1,1 58 | 0,0,1,0,0,0,1,0,1 59 | 0,0,0,0,1,0,1,0,1 60 | 0,1,0,0,0,1,0,1,1 61 | 1,0,0,0,0,0,1,0,1 62 | 0,0,0,0,0,0,1,0,1 63 | 0,0,0,0,0,0,0,0,1 64 | 0,0,0,0,0,0,0,0,1 65 | 0,1,0,0,0,0,0,1,1 66 | 0,0,1,0,0,0,0,0,1 67 | 0,0,0,0,1,0,0,0,1 68 | 1,0,0,1,1,0,0,0,1 69 | 0,1,0,0,0,0,1,1,1 70 | 0,0,0,0,0,0,1,0,1 71 | 0,0,0,0,0,0,1,0,1 72 | 1,0,0,0,0,0,0,0,1 73 | 0,0,1,0,0,0,1,0,1 74 | 1,0,0,1,0,0,0,0,1 75 | 0,0,1,0,0,0,1,0,1 76 | 0,0,1,0,0,0,1,0,0 77 | 0,0,0,0,0,0,1,0,1 78 | 0,0,1,1,0,0,0,0,1 79 | 0,0,1,0,0,0,1,0,1 80 | 0,0,0,0,1,0,1,1,1 81 | 0,0,0,0,0,0,1,0,0 82 | 0,0,0,0,0,0,0,0,0 83 | 0,1,0,0,0,0,0,1,1 84 | 0,0,1,0,0,0,1,0,0 85 | 0,0,0,0,0,0,1,0,1 86 | 0,0,0,0,0,0,0,0,1 87 | 1,0,0,0,0,0,0,0,1 88 | 0,0,0,0,0,0,0,1,1 89 | 0,0,0,0,0,1,0,0,0 90 | 0,1,0,0,0,1,0,1,1 91 | 0,0,0,0,0,0,0,0,0 92 | 0,0,0,0,1,0,1,0,1 93 | 0,0,1,1,0,0,1,0,1 94 | 0,0,1,0,0,0,1,0,1 95 | 0,0,0,0,1,0,1,0,1 96 | 1,0,0,1,0,0,0,0,1 97 | 0,0,1,0,0,0,1,0,1 98 | 0,0,0,0,0,0,0,0,1 99 | 0,0,1,0,0,0,1,0,1 100 | 0,0,0,0,0,0,0,1,1 101 | 0,1,0,0,0,1,0,0,1 102 | 0,1,0,0,0,0,0,1,1 103 | 1,0,0,1,0,0,0,0,1 104 | 0,0,0,0,1,0,1,0,1 105 | 0,0,0,0,0,0,1,1,1 106 | 0,0,1,0,0,1,0,1,1 107 | 0,0,0,1,1,0,1,0,1 108 | 0,1,0,0,0,1,0,0,0 109 | 0,1,1,0,0,0,1,1,1 110 | 0,0,1,1,0,0,0,0,1 111 | 0,0,1,0,0,0,1,0,1 112 | 0,0,0,0,0,0,0,0,0 113 | 0,0,1,0,0,0,1,0,1 114 | 0,0,0,0,0,0,0,1,1 115 | 0,0,0,0,0,0,1,0,1 116 | 0,0,0,0,0,0,0,0,1 117 | 0,0,0,1,0,0,1,0,1 118 | 1,0,0,1,0,0,0,0,1 119 | 0,0,0,0,0,0,1,0,1 120 | 1,1,0,1,0,0,0,0,1 121 | 0,0,1,0,0,0,0,0,1 122 | 0,0,1,0,0,0,1,0,1 123 | 0,0,1,0,0,0,1,0,1 124 | 0,1,0,0,0,0,1,0,1 125 | 0,0,1,0,0,0,1,1,1 126 | 0,0,1,1,0,0,1,0,1 127 | 0,0,0,0,0,0,1,0,1 128 | 0,0,0,0,0,0,0,0,0 129 | 0,0,1,0,0,0,1,0,1 130 | 0,1,0,0,0,0,1,1,1 131 | 0,0,0,0,1,0,1,0,1 132 | 0,0,0,0,1,0,1,0,1 133 | 0,0,0,0,0,1,0,1,1 134 | 0,0,0,0,0,0,0,1,1 135 | 0,0,0,0,0,0,0,1,0 136 | 0,0,0,0,0,0,0,1,1 137 | 0,1,0,0,0,1,0,1,1 138 | 0,0,0,0,1,0,0,0,0 139 | 0,0,1,0,0,0,1,0,0 140 | 0,0,0,0,0,0,1,0,1 141 | 0,0,1,0,0,0,1,0,1 142 | 0,0,1,0,0,1,0,1,1 143 | 1,0,0,0,0,0,0,0,1 144 | 0,0,1,0,0,0,1,0,1 145 | 0,0,1,0,0,0,0,0,1 146 | 1,0,0,1,0,0,0,1,1 147 | 0,0,1,0,0,0,0,0,1 148 | 0,0,1,0,0,0,0,0,1 149 | 0,0,0,0,1,0,0,0,0 150 | 0,1,0,0,0,1,0,1,1 151 | 0,0,0,0,0,0,1,0,1 152 | 0,0,0,0,0,0,0,0,1 153 | 0,0,0,0,0,0,0,1,0 154 | 0,0,0,0,0,0,0,0,0 155 | 0,0,1,0,0,0,1,0,1 156 | 0,0,0,0,0,0,1,0,1 157 | 0,0,0,0,0,1,0,1,1 158 | 0,0,0,0,0,0,0,0,1 159 | 0,0,1,0,0,0,1,0,1 160 | 1,0,0,1,0,0,0,1,1 161 | 1,0,0,1,0,0,1,1,1 162 | 0,0,0,0,0,0,1,0,1 163 | 0,0,0,0,0,0,1,0,1 164 | 0,0,0,0,0,0,1,0,1 165 | 1,0,0,0,0,0,1,0,1 166 | 0,0,1,0,0,0,1,0,1 167 | 0,0,0,0,0,0,1,0,1 168 | 0,0,1,0,0,0,1,0,1 169 | 0,0,1,1,0,0,1,0,1 170 | 0,0,0,0,0,0,0,0,1 171 | 0,0,1,0,1,0,1,0,1 172 | 0,0,1,0,0,0,0,0,0 173 | 0,0,1,0,1,0,1,0,1 174 | 0,0,0,0,0,0,0,1,1 175 | 1,0,0,1,0,0,1,1,1 176 | 0,1,0,0,0,0,1,0,1 177 | 0,0,1,1,1,0,1,0,1 178 | 0,0,0,0,0,0,1,1,1 179 | 0,1,0,0,0,1,0,1,1 180 | 0,1,0,0,0,0,0,0,1 181 | 0,0,1,0,0,0,1,1,1 182 | 0,0,0,0,0,0,1,0,1 183 | 0,1,0,0,0,0,0,0,1 184 | 1,0,0,1,0,0,0,0,1 185 | 0,0,0,0,1,0,0,0,0 186 | 0,1,0,0,0,0,0,1,1 187 | 0,1,0,0,0,0,1,0,1 188 | 0,0,1,0,0,0,1,1,1 189 | 1,0,1,1,0,0,0,0,1 190 | 0,0,0,0,1,0,1,0,1 191 | 0,0,0,0,0,1,0,1,1 192 | 0,1,0,0,0,1,0,0,1 193 | 0,0,1,0,0,0,1,0,1 194 | 1,0,0,1,0,0,1,0,1 195 | 0,0,1,0,0,0,1,0,1 196 | 0,0,0,0,0,0,0,1,0 197 | 0,0,1,0,0,0,0,0,1 198 | 0,0,1,0,0,0,1,0,0 199 | 0,0,0,0,0,0,0,0,0 200 | 0,0,1,0,1,0,1,0,1 201 | 0,0,0,0,0,1,0,0,0 202 | 0,0,1,0,0,0,1,0,1 203 | 0,0,0,0,0,0,0,1,0 204 | 0,0,1,0,0,0,0,0,1 205 | 0,1,0,0,0,1,1,1,1 206 | 0,0,1,1,0,0,1,0,1 207 | 0,0,0,0,0,0,0,0,1 208 | 0,0,1,0,0,0,0,0,1 209 | 0,0,0,0,0,0,0,0,1 210 | 0,0,1,0,0,0,1,0,1 211 | 0,1,0,0,0,0,1,0,1 212 | 1,0,0,1,0,0,0,0,1 213 | 0,1,1,0,0,0,0,1,1 214 | 0,0,0,0,0,0,0,1,0 215 | 0,0,0,1,0,1,0,1,1 216 | 0,0,0,0,0,0,1,0,1 217 | 0,0,1,0,0,0,0,0,1 218 | 1,0,0,0,0,0,0,0,1 219 | 0,0,0,0,1,0,1,0,1 220 | 0,0,1,0,0,0,1,0,1 221 | 0,0,0,0,0,0,0,1,1 222 | 1,0,0,1,0,0,0,0,1 223 | 0,0,0,0,0,0,1,0,1 224 | 1,0,0,0,0,0,1,0,1 225 | 0,1,0,0,0,1,0,1,1 226 | 0,0,0,0,0,0,0,0,0 227 | 0,0,1,0,0,1,0,1,1 228 | 0,0,0,0,0,0,1,1,1 229 | 0,0,0,0,1,0,1,0,0 230 | 0,0,1,0,0,0,1,0,1 231 | 0,0,0,0,1,0,1,0,1 232 | 0,1,0,0,0,0,1,1,1 233 | 0,1,0,0,0,1,1,0,1 234 | 0,0,0,0,1,0,1,0,1 235 | 0,0,1,0,0,0,1,0,1 236 | 1,0,0,1,0,0,0,1,1 237 | 0,0,1,0,0,0,1,0,1 238 | 0,0,1,0,0,0,1,0,1 239 | 0,0,1,0,1,0,1,0,1 240 | 0,1,0,0,1,0,1,0,1 241 | 1,0,0,1,0,0,0,0,1 242 | 0,1,0,0,0,1,0,1,1 243 | 0,1,0,0,0,1,1,0,1 244 | 0,0,1,0,0,0,1,0,1 245 | 0,0,1,1,1,0,1,0,1 246 | 0,0,0,0,1,1,0,0,1 247 | 0,1,0,0,1,0,0,0,1 248 | 0,0,1,0,0,0,0,0,0 249 | 0,0,0,0,0,0,0,1,1 250 | 0,0,0,1,1,0,1,0,1 251 | 0,0,0,0,0,0,1,0,1 252 | 0,0,0,0,1,0,1,0,1 253 | 0,0,1,0,1,0,1,0,1 254 | 0,0,0,0,1,0,1,0,1 255 | 0,0,1,0,0,0,1,0,0 256 | 0,0,1,1,0,0,0,1,1 257 | 0,0,0,0,1,0,1,0,1 258 | 0,0,0,0,0,0,1,0,1 259 | 0,0,0,0,0,0,1,0,1 260 | 1,0,0,1,0,0,0,0,1 261 | 0,0,0,0,0,0,1,0,1 262 | 0,0,0,0,0,0,0,0,0 263 | 0,0,0,0,1,0,1,0,1 264 | 0,0,1,0,0,0,1,0,1 265 | 1,0,0,1,0,0,0,0,1 266 | 0,1,0,0,0,0,1,0,1 267 | 0,0,0,0,0,1,0,0,1 268 | 1,0,0,0,1,0,0,0,1 269 | 0,0,0,0,1,0,0,0,0 270 | 0,0,0,0,1,0,1,0,1 271 | 0,0,1,0,1,0,1,0,1 272 | 0,0,0,1,0,0,0,0,1 273 | 0,0,1,0,0,0,1,0,1 274 | 0,0,0,0,1,1,0,0,0 275 | 0,0,0,0,0,0,1,0,1 276 | 0,0,1,0,0,0,1,0,1 277 | 0,0,0,0,1,0,1,1,1 278 | 0,1,0,0,0,0,0,1,1 279 | 0,0,1,0,0,0,1,1,1 280 | 0,0,1,0,0,0,0,1,1 281 | 0,1,0,0,0,0,0,0,1 282 | 0,1,0,0,0,0,0,0,1 283 | 1,0,0,1,0,0,0,0,1 284 | 0,1,0,0,0,0,1,0,1 285 | 0,0,1,0,0,0,0,0,1 286 | 0,0,1,0,0,0,1,0,0 287 | 0,1,0,0,0,1,0,1,1 288 | 0,0,0,0,0,0,1,0,1 289 | 0,1,0,0,0,0,0,0,1 290 | 0,0,0,0,0,0,1,1,1 291 | 1,0,0,1,0,1,0,0,1 292 | 0,0,0,0,0,0,0,0,0 293 | 0,0,1,0,1,0,1,0,1 294 | 0,1,0,0,0,0,0,0,1 295 | 0,1,0,0,0,0,0,0,1 296 | 0,0,0,0,0,0,1,0,0 297 | 0,0,1,0,0,0,0,0,0 298 | 0,0,0,0,0,0,0,0,0 299 | 0,0,0,0,1,0,1,0,1 300 | 0,0,0,0,0,0,1,1,1 301 | 0,0,1,0,0,0,1,0,1 302 | 0,0,1,0,0,0,0,0,1 303 | 0,1,0,0,0,0,0,0,1 304 | 1,0,0,1,0,0,0,1,1 305 | 0,1,0,0,0,0,1,0,1 306 | 0,0,1,0,0,0,1,0,1 307 | 0,0,1,1,1,0,1,0,1 308 | 0,0,0,0,0,0,0,1,0 309 | 0,0,0,0,0,0,1,0,0 310 | 0,1,0,0,0,0,0,1,1 311 | 0,0,0,0,0,0,0,0,0 312 | 0,1,0,0,0,0,0,0,1 313 | 0,0,0,0,0,0,1,0,1 314 | 0,0,0,1,0,0,1,0,1 315 | 0,0,0,0,0,0,0,0,1 316 | 0,0,0,0,0,0,1,0,1 317 | 0,0,1,0,0,0,1,0,1 318 | 0,1,0,0,0,0,0,1,1 319 | 0,0,1,0,0,0,0,0,0 320 | 0,0,0,0,0,0,0,1,0 321 | 0,0,1,0,0,0,1,0,1 322 | 0,0,0,0,0,0,1,0,1 323 | 0,0,0,0,0,0,1,1,1 324 | 0,0,0,1,1,0,1,1,1 325 | 0,0,1,0,0,0,0,0,1 326 | 0,0,0,0,0,1,0,0,0 327 | 0,0,1,0,0,0,1,0,1 328 | 0,1,0,0,0,1,0,0,1 329 | 0,0,0,0,0,0,1,0,1 330 | 0,0,0,0,0,0,0,0,1 331 | 1,0,1,1,0,0,0,0,1 332 | 0,0,0,0,0,0,0,0,1 333 | 0,0,0,0,0,0,1,0,1 334 | 0,0,0,0,1,0,1,0,1 335 | 0,0,1,0,0,0,0,0,1 336 | 0,0,0,0,1,0,1,0,1 337 | 0,0,1,0,0,0,1,0,0 338 | 1,0,0,1,0,0,0,0,1 339 | 0,0,0,0,0,0,1,0,1 340 | 0,0,1,0,1,0,1,0,1 341 | 0,0,0,0,0,0,0,0,0 342 | 1,0,0,0,1,0,0,0,1 343 | 0,0,0,0,0,0,0,0,1 344 | 0,1,0,0,0,0,0,1,1 345 | 0,0,1,0,0,0,1,0,1 346 | 0,0,0,0,0,0,0,0,0 347 | 0,1,0,0,0,0,0,1,1 348 | 0,0,0,0,0,1,0,0,1 349 | 0,0,1,0,0,0,1,0,1 350 | 0,0,1,0,0,0,0,0,1 351 | 0,1,0,0,0,0,0,1,1 352 | 0,0,0,0,1,0,1,0,1 353 | 1,0,0,1,0,0,0,0,1 354 | 0,0,0,1,0,0,1,0,1 355 | 0,0,0,0,0,0,0,0,1 356 | 0,0,0,0,0,0,0,0,1 357 | 0,0,0,1,0,0,1,0,1 358 | 0,1,0,0,0,0,0,0,1 359 | 0,0,0,0,0,0,0,0,0 360 | 0,0,1,0,0,0,0,1,1 361 | 1,1,0,0,0,0,0,0,1 362 | 0,1,0,0,0,1,0,1,1 363 | 0,1,0,0,0,0,0,1,1 364 | 0,0,0,0,0,0,0,0,1 365 | 0,0,0,1,0,0,0,0,1 366 | 0,0,0,0,1,0,1,0,1 367 | 0,0,0,0,0,1,0,0,0 368 | 0,0,1,0,0,0,0,0,1 369 | 0,0,0,0,0,0,1,1,1 370 | 0,0,1,0,1,0,1,0,1 371 | 0,0,0,0,0,0,0,1,0 372 | 0,0,1,0,0,0,1,0,1 373 | 0,1,0,0,0,1,0,1,1 374 | 0,0,0,0,0,0,0,0,1 375 | 0,0,0,0,0,0,0,0,1 376 | 0,1,0,0,0,1,0,0,1 377 | 0,0,1,1,0,0,1,0,1 378 | 1,0,0,1,0,0,0,1,1 379 | 0,0,0,0,0,0,1,1,1 380 | 0,1,0,0,0,1,0,1,1 381 | 0,0,0,0,0,1,0,0,0 382 | 0,0,0,0,1,0,1,0,0 383 | 0,0,1,1,0,0,0,0,1 384 | 0,0,0,0,1,0,1,0,1 385 | 0,1,0,0,1,0,1,0,1 386 | 0,0,0,0,1,0,1,0,1 387 | 1,0,0,1,0,0,0,0,1 388 | 0,1,0,0,0,0,1,0,1 389 | 0,0,1,0,0,0,1,0,1 390 | 0,0,0,0,0,0,0,0,0 391 | 0,0,0,0,0,0,1,0,0 392 | 0,0,1,0,0,0,0,0,1 393 | 0,0,1,1,0,0,0,0,1 394 | 1,0,0,1,0,0,0,0,1 395 | 0,0,0,1,1,0,1,0,1 396 | 0,0,0,0,0,0,1,0,1 397 | 0,1,0,0,0,0,0,0,1 398 | 0,0,1,0,0,0,1,0,0 399 | 0,0,0,0,0,0,0,1,1 400 | 1,0,1,1,0,0,0,0,1 401 | 0,0,1,0,0,0,1,0,1 402 | 0,1,0,0,0,1,0,1,1 403 | 0,1,0,1,0,0,0,1,1 404 | 0,1,0,0,0,1,0,1,1 405 | 1,0,0,1,0,0,0,0,1 406 | 0,0,0,0,0,0,0,1,0 407 | 0,1,0,0,0,0,1,1,1 408 | 0,0,1,0,0,0,0,0,0 409 | 0,1,0,0,0,0,0,1,1 410 | 0,0,0,0,0,0,0,0,1 411 | 1,1,0,1,0,0,1,0,1 412 | 1,0,0,1,0,0,0,0,1 413 | 0,0,1,0,0,0,0,1,1 414 | 0,0,1,0,0,0,1,0,1 415 | 0,0,1,1,0,0,0,0,1 416 | 0,0,0,0,0,0,1,0,0 417 | 0,0,0,0,0,0,1,1,1 418 | 0,0,0,0,0,1,0,1,1 419 | 0,1,0,0,1,0,1,0,1 420 | 0,0,1,0,0,0,0,0,1 421 | 0,0,0,0,0,0,0,1,1 422 | 0,1,0,0,0,1,0,1,1 423 | 0,0,0,0,0,0,1,0,1 424 | 0,0,0,0,0,0,1,1,1 425 | 0,1,0,0,0,1,0,1,1 426 | 0,0,0,0,0,0,1,1,1 427 | 0,0,1,0,0,0,1,0,1 428 | 0,0,1,0,0,0,1,0,1 429 | 0,0,0,0,0,0,0,0,1 430 | 0,0,1,0,0,0,1,1,1 431 | 0,1,0,0,0,1,0,1,1 432 | 0,0,0,0,0,0,0,1,1 433 | 0,0,1,0,0,0,0,0,1 434 | 0,0,1,0,1,0,1,0,1 435 | 0,1,0,0,0,0,0,1,1 436 | 0,0,0,0,0,0,0,1,1 437 | 0,1,0,0,0,0,0,0,1 438 | 0,1,0,0,0,1,0,1,1 439 | 0,1,0,0,0,1,0,1,1 440 | 0,0,0,0,0,1,0,1,1 441 | 0,1,0,0,0,1,0,1,1 442 | 0,1,0,0,0,0,0,0,1 443 | 0,1,0,0,0,1,0,0,1 444 | 0,0,1,0,0,0,1,0,1 445 | 0,0,1,0,0,0,0,0,1 446 | 0,0,1,0,0,0,0,0,1 447 | 1,0,0,0,1,0,1,0,1 448 | 0,0,0,0,0,0,1,0,1 449 | 0,0,0,1,0,0,1,1,1 450 | 0,1,0,1,0,0,0,1,1 451 | 1,0,0,1,0,0,0,0,1 452 | 0,0,0,0,0,0,1,0,1 453 | 0,1,0,0,0,1,0,1,1 454 | 1,1,0,1,0,0,0,0,1 455 | 0,0,0,0,0,0,0,0,1 456 | 0,0,0,0,0,0,1,0,1 457 | 0,0,0,0,1,0,1,0,1 458 | 0,0,1,0,0,0,0,0,0 459 | 0,0,1,0,0,0,0,0,1 460 | 1,0,0,0,0,0,1,1,1 461 | 0,1,0,0,0,1,0,1,1 462 | 0,0,0,0,0,0,1,0,1 463 | 0,0,1,0,0,0,1,0,1 464 | 0,1,0,0,0,0,0,1,1 465 | 0,0,1,0,0,0,1,0,1 466 | 0,0,0,0,1,0,1,0,1 467 | 0,1,0,0,0,1,0,1,1 468 | 0,0,1,1,0,0,1,0,1 469 | 0,1,0,0,0,0,0,0,1 470 | 0,0,0,0,0,0,0,0,1 471 | 0,1,0,0,1,0,1,0,1 472 | 0,0,0,0,0,0,0,1,1 473 | 0,0,0,0,0,0,1,0,1 474 | 0,0,0,0,1,0,1,0,1 475 | 0,0,0,0,0,0,1,0,1 476 | 0,0,1,0,0,0,1,0,1 477 | 0,0,0,0,1,0,1,0,1 478 | 0,0,0,0,1,0,1,0,1 479 | 0,0,1,1,0,0,1,0,1 480 | 0,0,0,0,0,0,1,0,1 481 | 0,0,1,0,0,0,1,0,1 482 | 0,0,1,0,1,0,1,0,1 483 | 0,0,1,0,0,0,1,0,1 484 | 1,0,0,0,0,0,0,1,1 485 | 0,0,0,0,1,0,1,0,1 486 | 0,0,1,0,0,0,1,0,1 487 | 0,1,1,0,0,1,1,0,1 488 | 1,0,0,1,0,0,0,0,1 489 | 0,0,0,0,1,0,1,0,1 490 | 0,0,0,0,0,0,0,0,0 491 | 0,0,0,0,1,0,1,0,1 492 | 0,0,1,0,0,0,1,1,1 493 | 0,0,0,0,0,0,0,1,1 494 | 0,1,0,0,0,1,0,0,1 495 | 0,0,0,1,0,0,0,1,1 496 | 0,0,0,1,0,0,1,0,1 497 | 0,1,0,0,0,1,0,0,1 498 | 0,0,1,0,0,0,1,0,1 499 | 0,0,1,0,0,0,1,0,1 500 | 0,0,1,0,0,0,1,0,1 501 | 0,1,0,0,0,1,0,0,0 502 | 0,1,0,0,0,1,0,1,1 503 | 0,1,0,0,0,1,1,1,1 504 | 1,0,0,1,1,0,0,0,1 505 | 1,0,0,0,0,0,1,1,1 506 | 1,0,0,0,0,0,0,0,1 507 | 1,0,0,1,0,0,0,0,1 508 | 0,0,0,0,0,1,0,1,0 509 | 0,0,1,0,0,0,0,0,1 510 | 1,0,0,0,0,0,0,0,1 511 | 0,0,1,0,0,0,1,0,1 512 | 0,0,0,0,0,0,0,0,0 513 | 0,0,0,0,0,1,0,1,1 514 | 0,0,1,0,0,0,1,0,1 515 | 0,0,1,0,0,0,0,0,0 516 | 0,0,1,0,0,0,0,0,1 517 | 0,0,1,0,0,0,1,0,1 518 | 1,0,0,1,0,0,0,1,1 519 | 0,1,0,0,0,1,1,0,1 520 | 0,0,1,0,0,0,1,0,1 521 | 0,0,0,0,1,0,1,1,1 522 | 0,0,1,0,0,0,1,0,1 523 | 0,0,1,0,0,0,0,0,1 524 | 0,1,0,0,0,0,0,0,1 525 | 0,1,0,0,0,1,0,1,1 526 | 0,1,0,0,0,0,0,1,1 527 | 1,0,0,0,0,0,0,1,1 528 | 0,0,1,0,0,0,1,0,1 529 | 0,1,0,0,0,0,1,1,1 530 | 0,1,0,0,0,0,0,0,1 531 | 0,0,0,0,0,0,1,1,1 532 | 0,0,0,0,1,0,1,0,1 533 | 0,0,0,0,1,0,1,0,1 534 | 0,0,1,0,0,0,1,0,1 535 | 0,0,0,0,1,0,1,0,1 536 | 0,0,0,0,0,0,1,0,1 537 | 0,0,1,0,0,0,1,0,1 538 | 0,0,0,1,0,0,0,1,1 539 | 0,0,1,1,0,0,0,0,1 540 | 0,0,1,0,0,0,0,0,1 541 | 0,0,0,0,0,0,0,0,1 542 | 0,0,0,0,0,0,1,0,1 543 | 0,0,0,0,0,0,0,1,0 544 | 0,0,1,0,0,0,1,0,1 545 | 1,0,0,1,0,0,0,0,1 546 | 0,0,0,0,0,1,0,1,1 547 | 0,1,0,0,0,1,0,1,1 548 | 0,0,0,0,0,0,1,0,1 549 | 1,0,0,1,0,0,1,0,1 550 | 0,0,0,0,0,0,0,1,0 551 | 0,0,0,0,0,0,1,0,0 552 | 0,1,0,0,0,1,0,1,1 553 | 0,0,0,0,0,0,0,0,0 554 | 0,0,0,0,0,0,0,0,1 555 | 0,1,0,0,0,0,1,0,1 556 | 0,1,0,0,1,0,1,0,1 557 | 0,0,1,0,0,0,1,0,1 558 | 0,1,0,0,0,1,0,1,1 559 | 0,0,0,0,0,0,0,1,1 560 | 0,0,1,0,0,0,1,0,1 561 | 1,0,0,0,0,0,0,0,1 562 | 0,0,0,0,0,0,1,0,1 563 | 0,0,1,0,0,0,1,0,0 564 | 0,0,0,0,0,0,0,1,1 565 | 0,0,1,0,0,0,0,0,1 566 | 0,0,1,0,0,0,1,0,1 567 | 0,0,0,0,0,0,1,0,1 568 | 0,0,0,0,1,0,1,0,1 569 | 0,0,0,0,0,0,1,0,1 570 | 1,0,0,1,0,0,1,1,1 571 | 0,1,0,0,0,0,1,0,1 572 | 0,1,0,0,0,0,0,1,1 573 | 0,0,0,0,0,0,0,1,1 574 | 0,0,1,0,0,0,1,0,1 575 | 0,0,0,0,0,0,0,0,0 576 | 0,0,0,0,0,0,0,1,1 577 | 0,0,1,0,0,0,1,0,1 578 | 0,0,1,0,0,0,0,0,1 579 | 0,0,0,0,0,0,0,0,1 580 | 0,1,0,0,0,0,1,0,1 581 | 0,1,0,0,0,0,1,0,1 582 | 0,0,0,0,0,0,1,0,1 583 | 0,1,0,0,0,0,1,0,1 584 | 0,0,0,0,0,0,0,0,1 585 | 0,0,0,1,0,0,0,1,1 586 | 0,1,0,0,0,0,1,0,1 587 | 0,0,1,0,0,0,1,0,1 588 | 0,0,0,0,0,0,0,0,1 589 | 0,0,0,0,0,0,0,0,1 590 | 1,0,0,0,0,0,1,1,1 591 | 0,0,1,0,0,0,0,0,0 592 | 0,1,0,0,0,0,0,0,1 593 | 0,0,1,1,0,0,1,0,1 594 | 0,0,1,0,0,0,1,0,0 595 | 0,0,1,0,0,0,1,0,1 596 | 0,0,0,0,0,0,0,0,0 597 | 0,0,1,0,0,0,1,0,1 598 | 0,0,0,0,1,0,1,0,1 599 | 0,0,1,0,0,0,1,0,1 600 | 0,0,0,0,0,0,1,0,1 601 | 0,0,0,1,0,0,0,1,1 602 | 0,0,1,0,1,0,1,0,1 603 | 0,1,0,0,0,1,1,0,1 604 | 0,1,0,0,0,0,1,0,1 605 | 0,1,0,0,0,0,1,0,0 606 | 0,0,1,0,0,0,1,0,1 607 | 0,0,0,0,0,0,1,0,1 608 | 0,0,0,0,0,0,1,1,1 609 | 0,0,0,0,0,0,1,1,1 610 | 1,0,0,1,0,0,0,0,1 611 | 0,1,0,0,0,1,0,0,1 612 | 0,0,0,0,0,0,0,1,1 613 | 0,0,0,0,0,1,0,1,1 614 | 0,0,0,0,1,0,1,0,1 615 | 0,0,0,0,0,1,0,0,0 616 | 0,0,1,0,0,0,1,0,1 617 | 0,0,1,0,0,0,1,0,1 618 | 0,0,0,0,0,0,1,0,1 619 | 0,0,0,0,0,0,0,1,1 620 | 0,0,1,0,0,0,1,0,1 621 | 0,0,1,0,0,0,0,0,1 622 | 0,1,0,0,0,0,1,0,1 623 | 0,0,1,0,0,0,1,0,1 624 | 1,0,0,1,0,0,0,0,1 625 | 0,1,0,0,0,0,0,1,1 626 | 0,1,0,0,0,0,0,0,1 627 | 0,0,0,0,0,0,0,0,0 628 | 0,0,0,1,0,0,1,0,1 629 | 0,0,0,0,0,0,0,0,0 630 | 0,0,0,1,0,0,0,0,1 631 | 0,0,1,0,0,0,1,0,1 632 | 0,0,0,0,0,0,0,1,0 633 | 0,0,1,0,0,0,0,0,1 634 | 0,0,0,0,0,0,1,1,1 635 | 0,0,1,0,0,0,0,1,1 636 | 0,0,0,0,0,0,0,0,0 637 | 0,0,0,0,0,0,0,0,1 638 | 0,0,0,0,0,0,0,0,1 639 | 0,1,0,0,0,0,0,0,1 640 | 0,1,0,0,0,1,0,0,1 641 | 0,1,0,0,0,0,1,0,1 642 | 0,0,1,0,0,0,0,0,1 643 | 0,0,0,0,0,1,0,0,1 644 | 0,0,1,1,0,0,1,0,1 645 | 0,0,1,0,0,0,1,0,1 646 | 0,1,0,0,1,0,0,0,0 647 | 0,0,1,1,0,0,1,0,1 648 | 0,0,0,0,0,0,1,1,1 649 | 0,1,0,0,0,0,0,0,1 650 | 0,0,0,0,1,0,1,0,1 651 | 0,0,0,0,0,0,0,0,1 652 | 0,0,0,0,0,0,1,0,1 653 | 1,0,0,1,0,0,1,0,1 654 | 0,0,0,0,0,0,0,1,1 655 | 0,0,1,0,0,0,0,1,1 656 | 0,0,0,0,0,0,1,1,1 657 | 0,1,0,0,0,1,0,1,1 658 | 0,0,0,0,0,0,1,1,1 659 | 0,0,0,0,0,0,1,1,1 660 | 1,0,0,0,0,1,0,0,1 661 | 0,0,0,0,1,0,1,0,1 662 | 0,0,1,0,0,0,1,1,1 663 | 0,0,1,0,0,0,1,0,1 664 | 0,0,1,0,0,0,1,0,1 665 | 0,0,1,0,0,0,1,0,1 666 | 0,0,0,0,0,0,0,1,1 667 | 0,0,1,0,0,0,1,0,1 668 | 1,0,0,1,0,0,1,0,1 669 | 0,0,1,0,0,0,1,0,1 670 | 0,0,0,0,0,0,1,1,1 671 | 0,0,1,1,0,0,1,0,1 672 | 0,0,0,0,0,0,1,0,1 673 | 0,0,1,0,0,0,0,0,1 674 | 1,0,0,1,1,0,0,0,1 675 | 0,0,0,0,0,0,0,0,0 676 | 0,1,0,0,0,0,0,1,1 677 | 0,0,1,0,0,0,1,0,1 678 | 0,0,1,1,0,0,1,0,1 679 | 0,0,1,0,0,0,1,0,1 680 | 0,0,1,0,1,0,1,0,1 681 | 0,0,0,0,1,0,1,0,1 682 | 1,0,0,1,0,0,0,0,1 683 | 0,0,1,0,0,0,1,0,0 684 | 0,0,0,0,0,0,1,0,1 685 | 0,0,0,0,0,1,0,0,1 686 | 0,0,1,0,0,0,1,0,1 687 | 0,0,1,0,0,0,1,0,1 688 | 0,0,1,0,0,0,0,1,0 689 | 0,0,0,0,0,0,1,0,1 690 | 0,0,1,1,0,0,0,0,1 691 | 0,1,0,0,0,0,0,0,1 692 | 0,0,1,0,0,0,1,0,1 693 | 0,1,0,0,0,0,0,1,1 694 | 0,0,1,0,0,0,1,0,1 695 | 0,0,0,0,0,0,0,0,1 696 | 0,0,0,0,0,0,0,0,1 697 | 0,0,0,0,0,0,0,0,1 698 | 0,0,1,1,0,0,0,0,1 699 | 0,0,1,1,0,0,0,0,1 700 | 0,0,0,0,0,0,0,0,0 701 | 0,1,0,0,0,1,0,0,1 702 | 0,0,1,0,0,0,1,0,1 703 | 0,0,1,0,0,0,0,1,0 704 | 0,0,0,0,0,0,0,1,1 705 | 0,1,0,0,0,1,0,0,1 706 | 0,0,0,0,0,0,1,0,1 707 | 0,0,0,0,1,0,1,0,1 708 | 0,1,0,0,0,0,1,0,1 709 | 0,1,0,0,0,1,0,1,1 710 | 0,0,0,0,0,0,1,0,1 711 | 0,0,0,0,0,0,0,0,1 712 | 0,1,0,0,0,0,0,0,1 713 | 0,1,0,0,1,0,1,0,1 714 | 0,1,0,0,0,0,0,1,1 715 | 0,0,0,0,0,0,1,0,1 716 | 0,0,0,1,0,0,1,1,1 717 | 1,0,0,0,0,0,0,0,1 718 | 0,0,0,0,0,0,1,1,1 719 | 0,1,0,0,0,1,0,0,1 720 | 0,0,0,0,0,0,0,0,0 721 | 0,0,0,0,0,0,0,0,0 722 | 1,0,0,0,0,0,0,1,1 723 | 1,1,0,1,0,0,0,1,1 724 | 0,0,0,0,0,0,0,0,0 725 | 0,0,0,0,0,0,0,1,1 726 | 0,1,0,0,0,1,0,0,1 727 | 0,0,1,0,0,0,1,0,1 728 | 0,0,0,0,1,0,1,1,1 729 | 0,1,1,0,0,0,0,0,0 730 | 0,0,1,0,0,0,1,0,1 731 | 1,0,0,1,0,1,0,0,1 732 | 0,1,0,0,0,0,0,1,1 733 | 1,0,0,1,1,0,0,0,1 734 | 0,0,0,0,1,0,1,0,1 735 | 0,0,1,0,0,0,1,0,1 736 | 0,0,1,0,0,0,0,0,0 737 | 0,0,0,0,0,0,1,0,1 738 | 0,0,0,0,0,0,0,0,1 739 | 0,0,1,0,0,0,1,0,1 740 | 1,0,0,1,0,0,0,0,1 741 | -------------------------------------------------------------------------------- /challenge_3/Student_GPA.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "
\n", 13 | "\n", 14 | "در این سوال قصد داریم با استفاده از یک مجموعهداده که شامل اطلاعات دانشآموزان است، معدل آنها را تخمین بزنیم. برای اینکار شما باید پس از پیشپردازش دادهها، به مهندسی ویژگی و ساخت مدل مناسب بپردازید. توجه داشته باشید، در انتها، تنها مدل شما مورد بررسی قرار خواهد گرفت، اما مسلماً هرچه پیشپردازش و مهندسی ویژگی بهتری داشته باشید در نهایت به مدل بهتری خواهید رسید.\n", 15 | "\n", 16 | "\n", 17 | "
" 18 | ] 19 | }, 20 | { 21 | "cell_type": "markdown", 22 | "metadata": {}, 23 | "source": [ 24 | "\n",
31 | "\n",
32 | " در فایل اولیهی این سوال یک پوشه با نام data قرار دارد.\n",
33 | " این پوشه شامل دو فایل با نامهای train.csv و test.csv است که بهترتیب مجموعهدادهی آموزش و آزمون هستند.\n",
34 | " مجموعهدادهی آموزش این سوال شامل ۱۹۱۳ سطر و ۱۴ ستون است و\n",
35 | " مجموعهدادهی آزمون دارای ۴۷۹ سطر است و تنها ستون GPA را ندارد.\n",
36 | " توضیحات مربوط به ستونها به شرح زیر است:\n",
37 | "\n",
38 | "
StudentID | شمارهی دانشآموزی|\n",
47 | "| Age | سن فرد|\n",
48 | "| Gender | جنسیت، ۰ برای آقایان و ۱ برای خانمها|\n",
49 | "| Ethnicity |قومیت دانشآموزان|\n",
50 | "| ParentalEducation |سطح تصحیلات خانوادهی دانشآموز|\n",
51 | "| StudyTimeWeekly | ساعت مطالعهی هفتگی از ۰ تا ۲۰ ساعت|\n",
52 | "| Absences | تعداد غیبت دانشآموز در یک سال تحصیلی از ۰ تا ۳۰|\n",
53 | "| Tutoring | وضعیت تدریس خصوصی، ۰ نشاندهندهی خیر و ۱ نشاندهنده بله|\n",
54 | "| ParentalSupport | میزان حمایت والدین از دانشآموز|\n",
55 | "| Extracurricular | شرکت در برنامههای فوقبرنامه، ۰ نشاندهندهی خیر و ۱ نشاندهندهی بله|\n",
56 | "| Sports | شرکت در برنامههای ورزشی، ۰ نشاندهندهی خیر و ۱ نشاندهندهی بله||\n",
57 | "| Music | شرکت در برنامههای موسیقی، ۰ نشاندهندهی خیر و ۱ نشاندهندهی بله||\n",
58 | "| Volunteering | شرکت در برنامههای داوطلبانه، ۰ نشاندهندهی خیر و ۱ نشاندهندهی بله||\n",
59 | "| GPA | میانگین نمره در بازهی صفر تا چهار|\n",
60 | "\n",
61 | "\n",
62 | "\n",
63 | "\n",
64 | "\n", 65 | "توجه:\n", 66 | "\n", 67 | "دادههای ارزیابی ممکن است دادهی گمشده (Nan) داشته باشند.\n", 68 | "\n", 69 | "
" 70 | ] 71 | }, 72 | { 73 | "cell_type": "markdown", 74 | "metadata": {}, 75 | "source": [ 76 | "\n",
83 | "\n",
84 | " در ابتدا نیاز است فایلهای مجموعهداده را بخوانید. نمونههای آموزشی در فایل train.csv و نمونههای آزمون که باید مقدار متغیر هدف آنها را پیشبینی کنید در فایل test.csv ذخیره شدهاند. اگر لازم دانستید میتوانید به دلخواه خود بخشی از مجموعهی آموزش را به عنوان مجموعهی اعتبارسنجی نیز جدا کنید.\n",
85 | "\n",
86 | "
\n",
142 | "\n",
143 | " در این سوال شما میتوانید از هر تکنیک پیشپردازش/مهندسی ویژگی دلخواهتان، استفاده کنید.\n",
144 | "
\n",
145 | " تکنیکهایی که استفاده میکنید به شکل مستقیم مورد ارزیابی توسط سامانه داوری قرار نمیگیرند. بلکه همه آنها در دقت مدل شما تاثیر خواهند گذاشت؛ بنابراین هر چه پیشپردازش/مهندسی ویژگی بهتری انجام دهید تا دقت مدل بهبود پیدا کند، امتیاز بیشتری از این سوال کسب خواهید کرد.\n",
146 | "\n",
147 | "\n",
148 | "
\n", 208 | "\n", 209 | " حال که داده را پاکسازی کرده و احتمالا ویژگیهایی را به آن افزوده یا از آن حذف کردهاید، وقت آن است که مدلی آموزش دهید که بتواند متغیر هدف این مسئله را پیشبینی کند.\n", 210 | "\n", 211 | "
" 212 | ] 213 | }, 214 | { 215 | "cell_type": "code", 216 | "execution_count": 61, 217 | "metadata": { 218 | "vscode": { 219 | "languageId": "plaintext" 220 | } 221 | }, 222 | "outputs": [], 223 | "source": [ 224 | "from sklearn.linear_model import LinearRegression\n", 225 | "from sklearn.ensemble import RandomForestRegressor\n", 226 | "from sklearn.metrics import mean_squared_error, r2_score\n", 227 | "from sklearn.model_selection import GridSearchCV\n", 228 | "\n", 229 | "\n", 230 | "linear_model = LinearRegression()\n", 231 | "linear_model.fit(X_train, y_train)\n", 232 | "\n", 233 | "\n", 234 | "\n", 235 | "\n", 236 | "rf_model = RandomForestRegressor(random_state=42)\n", 237 | "\n", 238 | "param_grid = {\n", 239 | " 'n_estimators': [100, 200],\n", 240 | " 'max_depth': [None, 10, 20],\n", 241 | " 'min_samples_split': [2, 5]\n", 242 | "}\n", 243 | "\n", 244 | "grid_search = GridSearchCV(rf_model, param_grid, cv=5, scoring='neg_mean_squared_error')\n", 245 | "grid_search.fit(X_train, y_train)\n", 246 | "\n", 247 | "best_rf_model = grid_search.best_estimator_\n" 248 | ] 249 | }, 250 | { 251 | "cell_type": "markdown", 252 | "metadata": {}, 253 | "source": [ 254 | "\n",
261 | "\n",
262 | " معیاری که برای ارزیابی عملکرد مدل انتخاب کردهایم، r2_score نام دارد.\n",
263 | "
\n",
264 | " این معیار، سنجه ارزیابی کیفیت مدل شماست. به عبارت بهتر در سامانه داوری هم از همین معیار برای نمرهدهی استفاده شده است.\n",
265 | "
\n",
266 | " پیشنهاد میشود با توجه به این معیار، عملکرد مدل خود را بر روی مجموعهی آموزش یا اعتبارسنجی ارزیابی کنید.\n",
267 | "\n",
268 | "
\n", 271 | "توجه:\n", 272 | "\n", 273 | " برای دریافت نمره از این سوال لازم است تا دقت مدل شما از آستانهی ۰.۴ بیشتر باشد.\n", 274 | " در صورتی که دقت مدل شما از ۰.۴ کمتر باشد نمره شما \n", 275 | " صفر\n", 276 | " خواهد شد و در غیر این صورت با فرمول زیر محاسبه میشود:\n", 277 | "\n", 278 | "
\n" 279 | ] 280 | }, 281 | { 282 | "cell_type": "code", 283 | "execution_count": 62, 284 | "metadata": { 285 | "vscode": { 286 | "languageId": "plaintext" 287 | } 288 | }, 289 | "outputs": [ 290 | { 291 | "name": "stdout", 292 | "output_type": "stream", 293 | "text": [ 294 | "Linear Regression - MSE: 0.07, R²: 0.92\n", 295 | "Random Forest Regression - MSE: 0.07, R²: 0.92\n" 296 | ] 297 | } 298 | ], 299 | "source": [ 300 | "# evaluate your model\n", 301 | "from sklearn.metrics import r2_score\n", 302 | "\n", 303 | "y_val_pred_linear = linear_model.predict(X_val)\n", 304 | "mse_linear = mean_squared_error(y_val, y_val_pred_linear)\n", 305 | "r2_linear = r2_score(y_val, y_val_pred_linear)\n", 306 | "print(f\"Linear Regression - MSE: {mse_linear:.2f}, R²: {r2_linear:.2f}\")\n", 307 | "\n", 308 | "\n", 309 | "y_val_pred_rf = best_rf_model.predict(X_val)\n", 310 | "mse_rf = mean_squared_error(y_val, y_val_pred_rf)\n", 311 | "r2_rf = r2_score(y_val, y_val_pred_rf)\n", 312 | "print(f\"Random Forest Regression - MSE: {mse_rf:.2f}, R²: {r2_rf:.2f}\")" 313 | ] 314 | }, 315 | { 316 | "cell_type": "markdown", 317 | "metadata": {}, 318 | "source": [ 319 | "\n",
326 | "\n",
327 | " پیشبینی مدل خود بر روی دادههای آزمون را در یک دیتافریم (dataframe) به فرمت زیر ذخیره کنید.\n",
328 | "\n",
329 | "
\n",
333 | "\n",
334 | " توجه داشته باشید که نام دیتافریم باید submission باشد؛ در غیر اینصورت، سامانهی داوری قادر به ارزیابی خروجی شما نخواهد بود.\n",
335 | " این دیتافریم تنها شامل ۱ ستون با اسم GPA است و ۴۷۹ سطر دارد.\n",
336 | "
\n",
337 | " به ازای هر سطر موجود در مجموعهدادهی آزمون، باید یک مقدار پیشبینیشده داشته باشید.\n",
338 | " بهعنوان مثال جدول زیر، ۵ سطر ابتدایی دیتافریم submission را نشان میدهد. البته این اعداد بهصورت فرضی هستند و در جواب شما، اعداد ستون GPA ممکن است متفاوت باشند.\n",
339 | "\n",
340 | "
GPA|\n",
347 | "|:----:|:-----:|\n",
348 | "|0|2.6765|\n",
349 | "|1|3.9865434|\n",
350 | "|2|1.0323434|\n",
351 | "|3|0.0434253|\n",
352 | "|4|2.060680|\n",
353 | "\n",
354 | "\n",
355 | "\n",
386 | "\n",
387 | " برای ساختهشدن فایل result.zip سلول زیر را اجرا کنید. توجه داشته باشید که پیش از اجرای سلول زیر تغییرات اعمال شده در نتبوک را ذخیره کرده باشید (ctrl+s) در غیر این صورت، در پایان مسابقه نمره شما به صفر تغییر خواهد کرد.\n",
388 | "
\n",
389 | " همچنین اگر از کولب برای اجرای این فایل نوتبوک استفاده میکنید، قبل از ارسال فایل result.zip، آخرین نسخهی نوتبوک خود را دانلود کرده و داخل فایل ارسالی قرار دهید.\n",
390 | ""
391 | ]
392 | },
393 | {
394 | "cell_type": "code",
395 | "execution_count": 41,
396 | "metadata": {
397 | "vscode": {
398 | "languageId": "plaintext"
399 | }
400 | },
401 | "outputs": [
402 | {
403 | "name": "stdout",
404 | "output_type": "stream",
405 | "text": [
406 | "File Paths:\n",
407 | "['Student_GPA.ipynb', 'submission.csv']\n"
408 | ]
409 | }
410 | ],
411 | "source": [
412 | "import zipfile\n",
413 | "import os\n",
414 | "\n",
415 | "if not os.path.exists(os.path.join(os.getcwd(), 'Student_GPA.ipynb')):\n",
416 | " %notebook -e Student_GPA.ipynb\n",
417 | "\n",
418 | "def compress(file_names):\n",
419 | " print(\"File Paths:\")\n",
420 | " print(file_names)\n",
421 | " compression = zipfile.ZIP_DEFLATED\n",
422 | " with zipfile.ZipFile(\"result.zip\", mode=\"w\") as zf:\n",
423 | " for file_name in file_names:\n",
424 | " zf.write('./' + file_name, file_name, compress_type=compression)\n",
425 | "\n",
426 | "submission.to_csv('submission.csv', index=False)\n",
427 | "\n",
428 | "file_names = ['Student_GPA.ipynb', 'submission.csv']\n",
429 | "compress(file_names)"
430 | ]
431 | },
432 | {
433 | "cell_type": "code",
434 | "execution_count": null,
435 | "metadata": {},
436 | "outputs": [],
437 | "source": []
438 | }
439 | ],
440 | "metadata": {
441 | "kernelspec": {
442 | "display_name": "Python 3 (ipykernel)",
443 | "language": "python",
444 | "name": "python3"
445 | },
446 | "language_info": {
447 | "codemirror_mode": {
448 | "name": "ipython",
449 | "version": 3
450 | },
451 | "file_extension": ".py",
452 | "mimetype": "text/x-python",
453 | "name": "python",
454 | "nbconvert_exporter": "python",
455 | "pygments_lexer": "ipython3",
456 | "version": "3.11.4"
457 | }
458 | },
459 | "nbformat": 4,
460 | "nbformat_minor": 2
461 | }
462 |
--------------------------------------------------------------------------------
/challenge_1/NBA.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "a708200d",
6 | "metadata": {},
7 | "source": [
8 | "
\n", 21 | " \n", 22 | " در این سوال قصد داریم تا دادههای مربوط به عملکرد بازیکنان لیگ بسکتبال NBA را تحلیل کنیم.\n", 23 | " پس کافی است تا کارهایی که از شما خواسته شده را مرحله به مرحله انجام دهید.\n", 24 | " \n", 25 | "
" 26 | ] 27 | }, 28 | { 29 | "cell_type": "markdown", 30 | "id": "8c60fd2f", 31 | "metadata": {}, 32 | "source": [ 33 | "\n", 40 | " \n", 41 | " مجموعهدادهای که در احتیار شما قرار گرفته است شامل اطلاعات عملکرد بازیکنان NBA در فصلهای ۲۰۰۰ الی ۲۰۰۹ است.\n", 42 | " این مجموعه شامل ۱۸۳۰ سطر و ۱۸ ستون میباشد که هر سطر آن شامل اطلاعات یک بازیکن در یک فصل است. توضیحات مربوط به ستونها نیز در جدول زیر آمده است.\n", 43 | " \n", 44 | "
\n", 45 | "\n", 46 | "PlAYER|نام بازیکن|\n",
53 | "|TEAM|مخفف اسم تیم بازیکن در آن فصل|\n",
54 | "|YEAR|سال (فصل مسابقات)|\n",
55 | "|GP|تعداد بازیهای انجام شده|\n",
56 | "|MIN|میانگین دقایق بازی کرده|\n",
57 | "|PTS|میانگین امتیاز|\n",
58 | "|FGM|میانگین تعداد پرتابهای ۲ امتیازی موفق|\n",
59 | "|FGA|میانگین تعداد کل پرتابهای ۲ امتیازی|\n",
60 | "|3PM|میانگین تعداد پرتابهای ۳ امتیازی موفق|\n",
61 | "|3PA|میانگین تعداد کل پرتابهای ۳ امتیازی|\n",
62 | "|FTM|میانگین تعداد پرتابهای آزاد (پنالتی) موفق|\n",
63 | "|FTA|میانگین تعداد کل پرتابهای آزاد (پنالتی)|\n",
64 | "|OREB|میانگین تعداد ریباندها در حمله|\n",
65 | "|DREB|میانگین تعداد ریباندها در دفاع|\n",
66 | "|AST|میانگین تعداد پاسهای منجر به امتیاز|\n",
67 | "|STL|میانگین تعداد دفعات توپربایی|\n",
68 | "|BLK|میانگین تعداد بلاکها|\n",
69 | "|TOV|میانگین تعداد دفعات لو دادن توپ|\n",
70 | " \n",
71 | "\n",
72 | "\n",
82 | "\n",
83 | " با استفاده از سلول زیر کتابخانههای مورد نیاز خود را import کنید و سپس مجموعهداده را که در فایلی به نام NBA2000-2009.csv قرار دارد، بخوانید. \n",
84 | "\n",
85 | "
| \n", 115 | " | PLAYER | \n", 116 | "TEAM | \n", 117 | "YEAR | \n", 118 | "GP | \n", 119 | "MIN | \n", 120 | "PTS | \n", 121 | "FGM | \n", 122 | "FGA | \n", 123 | "3PM | \n", 124 | "3PA | \n", 125 | "FTM | \n", 126 | "FTA | \n", 127 | "OREB | \n", 128 | "DREB | \n", 129 | "AST | \n", 130 | "STL | \n", 131 | "BLK | \n", 132 | "TOV | \n", 133 | "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", 138 | "Allen Iverson | \n", 139 | "PHI | \n", 140 | "2000 | \n", 141 | "71 | \n", 142 | "42.0 | \n", 143 | "31.1 | \n", 144 | "10.7 | \n", 145 | "25.5 | \n", 146 | "1.4 | \n", 147 | "4.3 | \n", 148 | "8.2 | \n", 149 | "10.1 | \n", 150 | "0.7 | \n", 151 | "3.1 | \n", 152 | "4.6 | \n", 153 | "2.5 | \n", 154 | "0.3 | \n", 155 | "3.3 | \n", 156 | "
| 1 | \n", 159 | "Jerry Stackhouse | \n", 160 | "DET | \n", 161 | "2000 | \n", 162 | "80 | \n", 163 | "40.2 | \n", 164 | "29.8 | \n", 165 | "9.7 | \n", 166 | "24.1 | \n", 167 | "2.1 | \n", 168 | "5.9 | \n", 169 | "8.3 | \n", 170 | "10.1 | \n", 171 | "1.2 | \n", 172 | "2.7 | \n", 173 | "5.1 | \n", 174 | "1.2 | \n", 175 | "0.7 | \n", 176 | "4.1 | \n", 177 | "
| 2 | \n", 180 | "Shaquille O'Neal | \n", 181 | "LAL | \n", 182 | "2000 | \n", 183 | "74 | \n", 184 | "39.5 | \n", 185 | "28.7 | \n", 186 | "11.0 | \n", 187 | "19.2 | \n", 188 | "0.0 | \n", 189 | "0.0 | \n", 190 | "6.7 | \n", 191 | "13.1 | \n", 192 | "3.9 | \n", 193 | "8.8 | \n", 194 | "3.7 | \n", 195 | "0.6 | \n", 196 | "2.8 | \n", 197 | "2.9 | \n", 198 | "
| 3 | \n", 201 | "Kobe Bryant | \n", 202 | "LAL | \n", 203 | "2000 | \n", 204 | "68 | \n", 205 | "40.9 | \n", 206 | "28.5 | \n", 207 | "10.3 | \n", 208 | "22.2 | \n", 209 | "0.9 | \n", 210 | "2.9 | \n", 211 | "7.0 | \n", 212 | "8.2 | \n", 213 | "1.5 | \n", 214 | "4.3 | \n", 215 | "5.0 | \n", 216 | "1.7 | \n", 217 | "0.6 | \n", 218 | "3.2 | \n", 219 | "
| 4 | \n", 222 | "Vince Carter | \n", 223 | "TOR | \n", 224 | "2000 | \n", 225 | "75 | \n", 226 | "39.7 | \n", 227 | "27.6 | \n", 228 | "10.2 | \n", 229 | "22.1 | \n", 230 | "2.2 | \n", 231 | "5.3 | \n", 232 | "5.1 | \n", 233 | "6.7 | \n", 234 | "2.3 | \n", 235 | "3.2 | \n", 236 | "3.9 | \n", 237 | "1.5 | \n", 238 | "1.1 | \n", 239 | "2.2 | \n", 240 | "
\n",
285 | " \n",
286 | " لیستی از بازیکنها و فصلها را بدست آورید که در آن فصل، آن بازیکن در حداقل ۲ تا از ۵ ملاک اصلی آمار دو رقمی (بزرگتر مساوی ۱۰) ثبت کرده باشد. \n",
287 | "
\n",
288 | " منظور از ۵ ملاک اصلی میانگین امتیاز، میانگین تعداد ریباند (مجموع ریباند در دفاع و حمله)، میانگین تعداد پاسهای منجر به گل، میانگین تعداد بلاکها و میانگین تعداد توپرباییها است.\n",
289 | " \n",
290 | "
\n",
291 | " \n",
292 | " خروجی:\n",
293 | " \n",
294 | " نتیجهی درخواست را در دیتافریمی با نام double_double قرار دهید.\n",
295 | " این دیتافریم باید شامل ۷ ستون باشد که ستونها از چپ به راست به ترتیب نام بازیکن، سال، میانگین امتیاز، میانگین تعداد پاسهای منجر به گل، میانگین تعداد ریباندها، میانگین تعداد بلاکها و میانگین تعداد توپرباییها باشند. همچنین کل دیتافریم باید به ترتیب برحسب سال و نام بازیکن به صورت صعودی مرتب باشد. دو سطر اول این دیتافریم به شکل زیر است:\n",
296 | "
| \n", 339 | " | PLAYER | \n", 340 | "YEAR | \n", 341 | "PTS | \n", 342 | "AST | \n", 343 | "REB | \n", 344 | "BLK | \n", 345 | "STL | \n", 346 | "
|---|---|---|---|---|---|---|---|
| 55 | \n", 351 | "Antonio Davis | \n", 352 | "2000 | \n", 353 | "13.7 | \n", 354 | "1.4 | \n", 355 | "10.1 | \n", 356 | "1.9 | \n", 357 | "0.3 | \n", 358 | "
| 19 | \n", 361 | "Antonio McDyess | \n", 362 | "2000 | \n", 363 | "20.8 | \n", 364 | "2.1 | \n", 365 | "12.0 | \n", 366 | "1.5 | \n", 367 | "0.6 | \n", 368 | "
| 5 | \n", 371 | "Chris Webber | \n", 372 | "2000 | \n", 373 | "27.1 | \n", 374 | "4.2 | \n", 375 | "11.1 | \n", 376 | "1.7 | \n", 377 | "1.3 | \n", 378 | "
| 92 | \n", 381 | "Dikembe Mutombo | \n", 382 | "2000 | \n", 383 | "10.0 | \n", 384 | "1.0 | \n", 385 | "13.5 | \n", 386 | "2.7 | \n", 387 | "0.4 | \n", 388 | "
| 23 | \n", 391 | "Elton Brand | \n", 392 | "2000 | \n", 393 | "20.1 | \n", 394 | "3.2 | \n", 395 | "10.1 | \n", 396 | "1.6 | \n", 397 | "1.0 | \n", 398 | "
| ... | \n", 401 | "... | \n", 402 | "... | \n", 403 | "... | \n", 404 | "... | \n", 405 | "... | \n", 406 | "... | \n", 407 | "... | \n", 408 | "
| 1670 | \n", 411 | "Gerald Wallace | \n", 412 | "2009 | \n", 413 | "18.2 | \n", 414 | "2.1 | \n", 415 | "10.1 | \n", 416 | "1.1 | \n", 417 | "1.5 | \n", 418 | "
| 1686 | \n", 421 | "Steve Nash | \n", 422 | "2009 | \n", 423 | "16.5 | \n", 424 | "11.0 | \n", 425 | "3.3 | \n", 426 | "0.1 | \n", 427 | "0.5 | \n", 428 | "
| 1672 | \n", 431 | "Tim Duncan | \n", 432 | "2009 | \n", 433 | "17.9 | \n", 434 | "3.2 | \n", 435 | "10.1 | \n", 436 | "1.5 | \n", 437 | "0.6 | \n", 438 | "
| 1701 | \n", 441 | "Troy Murphy | \n", 442 | "2009 | \n", 443 | "14.6 | \n", 444 | "2.1 | \n", 445 | "10.2 | \n", 446 | "0.5 | \n", 447 | "1.0 | \n", 448 | "
| 1655 | \n", 451 | "Zach Randolph | \n", 452 | "2009 | \n", 453 | "20.8 | \n", 454 | "1.8 | \n", 455 | "11.8 | \n", 456 | "0.4 | \n", 457 | "1.0 | \n", 458 | "
88 rows × 7 columns
\n", 462 | "\n",
523 | " \n",
524 | " باارزشترین بازیکنان این ۱۰ فصل را مشخص کنید.\n",
525 | " ارزش یک بازیکن در یک فصل با استفاده از فرمول زیر بدست میآید:\n",
526 | " \n",
527 | " $$ (PTS + OREB + DREB + AST + STL + BLK) - (TOV + Missed FG + Missed FT) $$\n",
528 | " منظور از Missed FG و Missed FT به ترتیب میانگین تعداد پرتابهای ۲ امتیازی و آزاد از دست رفته است. \n",
529 | "
\n",
530 | " ارزش یک بازیکن در کل ۱۰ فصل برابر است با میانگین ارزش او در هر فصل.\n",
531 | "
\n",
532 | " \n",
533 | " خروجی:\n",
534 | " \n",
535 | " نتیجهی درخواست را در دیتافریمی با نام best_player قرار دهید.\n",
536 | " این دیتافریم شامل دو ستون است که یکی نام بازیکن و دومی ارزش آن بازیکن است که تا دو رقم اعشار باید گرد شود. همچنین این دیتافریم باید بر اساس ارزش به صورت نزولی و سپس بر اساس نام بازیکن بهصورت صعودی مرتب باشد.\n",
537 | " دو سطر اول این دیتافریم به شکل زیر است:\n",
538 | "
| \n", 581 | " | PLAYER | \n", 582 | "Value | \n", 583 | "
|---|---|---|
| 316 | \n", 588 | "Kevin Garnett | \n", 589 | "29.74 | \n", 590 | "
| 335 | \n", 593 | "LeBron James | \n", 594 | "27.90 | \n", 595 | "
| 98 | \n", 598 | "Chris Paul | \n", 599 | "26.57 | \n", 600 | "
| 495 | \n", 603 | "Shaquille O'Neal | \n", 604 | "26.55 | \n", 605 | "
| 169 | \n", 608 | "Dwyane Wade | \n", 609 | "26.12 | \n", 610 | "
| ... | \n", 613 | "... | \n", 614 | "... | \n", 615 | "
| 432 | \n", 618 | "Quincy Douby | \n", 619 | "3.60 | \n", 620 | "
| 512 | \n", 623 | "Steve Kerr | \n", 624 | "3.60 | \n", 625 | "
| 65 | \n", 628 | "Brian Scalabrine | \n", 629 | "3.30 | \n", 630 | "
| 415 | \n", 633 | "Nikoloz Tskitishvili | \n", 634 | "3.30 | \n", 635 | "
| 478 | \n", 638 | "Sam Mitchell | \n", 639 | "3.15 | \n", 640 | "
571 rows × 2 columns
\n", 644 | "\n",
696 | " \n",
697 | " در هر سال چه تیمی بیشترین میانگین امتیاز را ثبت کرده است؟\n",
698 | "
\n",
699 | " توجه داشته باشید که میانگین امتیاز یک تیم برابر است با مجموع میانگین امتیاز بازیکنهایش.\n",
700 | " \n",
701 | "
\n",
702 | " \n",
703 | " خروجی:\n",
704 | " \n",
705 | " نتیجهی درخواست را در دیتافریمی با نام max_PTS_of_year قرار دهید.\n",
706 | " این دیتافریم باید شامل سه ستون باشد که ستونها از چپ به راست به ترتیب سال، نام تیم و میانگین امتیاز است که امتیازها باید تا دو رقم اعشار گرد شوند. همچنین کل دیتافریم باید برحسب سال به صورت صعودی مرتب باشد. دو سطر اول این دیتافریم به شکل زیر است:\n",
707 | "
| \n", 750 | " | YEAR | \n", 751 | "TEAM | \n", 752 | "PTS | \n", 753 | "
|---|---|---|---|
| 22 | \n", 758 | "2000 | \n", 759 | "SAC | \n", 760 | "100.2 | \n", 761 | "
| 41 | \n", 764 | "2001 | \n", 765 | "LAL | \n", 766 | "95.9 | \n", 767 | "
| 77 | \n", 770 | "2002 | \n", 771 | "ORL | \n", 772 | "97.0 | \n", 773 | "
| 92 | \n", 776 | "2003 | \n", 777 | "DEN | \n", 778 | "96.0 | \n", 779 | "
| 117 | \n", 782 | "2004 | \n", 783 | "BOS | \n", 784 | "106.2 | \n", 785 | "
| 175 | \n", 788 | "2005 | \n", 789 | "WAS | \n", 790 | "96.8 | \n", 791 | "
| 198 | \n", 794 | "2006 | \n", 795 | "PHX | \n", 796 | "105.4 | \n", 797 | "
| 212 | \n", 800 | "2007 | \n", 801 | "DEN | \n", 802 | "110.7 | \n", 803 | "
| 242 | \n", 806 | "2008 | \n", 807 | "DEN | \n", 808 | "97.3 | \n", 809 | "
| 286 | \n", 812 | "2009 | \n", 813 | "OKC | \n", 814 | "102.5 | \n", 815 | "
\n",
863 | "\n",
864 | " برای ساختهشدن فایل result.zip سلول زیر را اجرا کنید. توجه داشته باشید که پیش از اجرای سلول زیر تغییرات اعمال شده در نتبوک را ذخیره کرده باشید (ctrl+s) در غیر این صورت، در پایان مسابقه نمره شما به صفر تغییر خواهد کرد.\n",
865 | "
\n",
866 | " همچنین اگر از کولب برای اجرای این فایل نوتبوک استفاده میکنید، قبل از ارسال فایل result.zip، آخرین نسخهی نوتبوک خود را دانلود کرده و داخل فایل ارسالی قرار دهید.\n",
867 | ""
868 | ]
869 | },
870 | {
871 | "cell_type": "code",
872 | "execution_count": 20,
873 | "id": "b887c08c",
874 | "metadata": {},
875 | "outputs": [
876 | {
877 | "ename": "NameError",
878 | "evalue": "name 'os' is not defined",
879 | "output_type": "error",
880 | "traceback": [
881 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
882 | "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
883 | "Cell \u001b[0;32mIn [20], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mzipfile\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[43mos\u001b[49m\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mexists(os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(os\u001b[38;5;241m.\u001b[39mgetcwd(), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mNBA.ipynb\u001b[39m\u001b[38;5;124m'\u001b[39m)):\n\u001b[1;32m 4\u001b[0m get_ipython()\u001b[38;5;241m.\u001b[39mrun_line_magic(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnotebook\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m-e NBA.ipynb\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 6\u001b[0m double_double\u001b[38;5;241m.\u001b[39mto_csv(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdouble_double.csv\u001b[39m\u001b[38;5;124m'\u001b[39m, index\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n",
884 | "\u001b[0;31mNameError\u001b[0m: name 'os' is not defined"
885 | ]
886 | }
887 | ],
888 | "source": [
889 | "import zipfile\n",
890 | "import os\n",
891 | "\n",
892 | "if not os.path.exists(os.path.join(os.getcwd(), 'NBA.ipynb')):\n",
893 | " %notebook -e NBA.ipynb\n",
894 | "\n",
895 | "double_double.to_csv('double_double.csv', index=False)\n",
896 | "best_player.to_csv('best_player.csv', index=False)\n",
897 | "max_PTS_of_year.to_csv('max_PTS_of_year.csv', index=False)\n",
898 | "\n",
899 | "def compress(file_names):\n",
900 | " print(\"File Paths:\")\n",
901 | " print(file_names)\n",
902 | " compression = zipfile.ZIP_DEFLATED\n",
903 | " with zipfile.ZipFile(\"result.zip\", mode=\"w\") as zf:\n",
904 | " for file_name in file_names:\n",
905 | " zf.write('./' + file_name, file_name, compress_type=compression)\n",
906 | "\n",
907 | "file_names = ['double_double.csv', 'best_player.csv', 'max_PTS_of_year.csv', 'NBA.ipynb']\n",
908 | "compress(file_names)"
909 | ]
910 | },
911 | {
912 | "cell_type": "code",
913 | "execution_count": null,
914 | "id": "31197d50",
915 | "metadata": {},
916 | "outputs": [],
917 | "source": []
918 | }
919 | ],
920 | "metadata": {
921 | "kernelspec": {
922 | "display_name": "Python 3 (ipykernel)",
923 | "language": "python",
924 | "name": "python3"
925 | },
926 | "language_info": {
927 | "codemirror_mode": {
928 | "name": "ipython",
929 | "version": 3
930 | },
931 | "file_extension": ".py",
932 | "mimetype": "text/x-python",
933 | "name": "python",
934 | "nbconvert_exporter": "python",
935 | "pygments_lexer": "ipython3",
936 | "version": "3.11.4"
937 | }
938 | },
939 | "nbformat": 4,
940 | "nbformat_minor": 5
941 | }
942 |
--------------------------------------------------------------------------------
/challenge_2/Authors.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "id": "Ez_7eII7F389"
7 | },
8 | "source": [
9 | "
\n", 29 | "\n", 30 | "هدف از این سوال توسعهی یک مدل یادگیری ماشین است که قادر به پیشبینی دقیق نویسندهی یک متن تنها بر اساس وجود یا عدم وجود کلمات خاص است.\n", 31 | "\n", 32 | "
" 33 | ] 34 | }, 35 | { 36 | "cell_type": "markdown", 37 | "metadata": { 38 | "id": "aSHQ19QVHSNh" 39 | }, 40 | "source": [ 41 | "\n", 48 | "\n", 49 | "یک مجموعه دادهی ساختاریافته به شما ارائه شده است که در آن هر ردیف نشان دهندهی یک متن است و ستون ها یا وجود کلمات خاص در متن یا نویسندهی متن را نشان میدهند.\n", 50 | "
\n", 51 | "\n", 52 | "\n",
53 | "\n",
54 | "ستونهای کلمات: این ستون ها بیانگر کلمات جداگانه هستند. هر ورودی در این ستونها باینری است که 1 نشان دهندهی وجود کلمه در متن و 0 نشان دهندهی عدم وجود آن است.\n",
55 | "
\n",
56 | "ستون author: این ستون حاوی نام نویسندهای است که متن را نوشته است. این ستون، متغیر هدفی است که مدل شما باید آن را پیشبینی کند.\n",
57 | "
\n",
75 | "\n",
76 | " مجموعه داده آزمایش نیز مانند مجموعه آموزش است با این تفاوت که ستون author که متغیر هدف مسئله است را در خود ندارد. مجموعه داده آزمایش ۲۷۶۵ سطر دارد.\n",
77 | "\n",
78 | "
\n",
92 | "\n",
93 | " در ابتدا نیاز است فایلهای مجموعهداده را بخوانید. نمونههای آموزشی در فایل train.csv و نمونههای آزمون که باید مقدار متغیر هدف آنها را پیشبینی کنید در فایل test.csv ذخیره شدهاند. اگر لازم دانستید میتوانید به دلخواه خود بخشی از مجموعهی آموزش را به عنوان مجموعهی اعتبارسنجی نیز جدا کنید.\n",
94 | "\n",
95 | "
| \n", 134 | " | lung | \n", 135 | "council | \n", 136 | "solution | \n", 137 | "quite | \n", 138 | "rain | \n", 139 | "hair | \n", 140 | "skill | \n", 141 | "difficulty | \n", 142 | "add | \n", 143 | "pull | \n", 144 | "... | \n", 145 | "stocking | \n", 146 | "near | \n", 147 | "oil | \n", 148 | "dive | \n", 149 | "many | \n", 150 | "run | \n", 151 | "tender | \n", 152 | "asleep | \n", 153 | "eat | \n", 154 | "sweep | \n", 155 | "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", 160 | "0 | \n", 161 | "0 | \n", 162 | "0 | \n", 163 | "0 | \n", 164 | "0 | \n", 165 | "0 | \n", 166 | "0 | \n", 167 | "0 | \n", 168 | "0 | \n", 169 | "0 | \n", 170 | "... | \n", 171 | "0 | \n", 172 | "0 | \n", 173 | "0 | \n", 174 | "0 | \n", 175 | "0 | \n", 176 | "0 | \n", 177 | "0 | \n", 178 | "0 | \n", 179 | "0 | \n", 180 | "0 | \n", 181 | "
| 1 | \n", 184 | "0 | \n", 185 | "0 | \n", 186 | "0 | \n", 187 | "0 | \n", 188 | "0 | \n", 189 | "0 | \n", 190 | "0 | \n", 191 | "0 | \n", 192 | "0 | \n", 193 | "0 | \n", 194 | "... | \n", 195 | "0 | \n", 196 | "0 | \n", 197 | "0 | \n", 198 | "0 | \n", 199 | "0 | \n", 200 | "0 | \n", 201 | "0 | \n", 202 | "0 | \n", 203 | "0 | \n", 204 | "0 | \n", 205 | "
| 2 | \n", 208 | "0 | \n", 209 | "0 | \n", 210 | "0 | \n", 211 | "0 | \n", 212 | "0 | \n", 213 | "0 | \n", 214 | "0 | \n", 215 | "0 | \n", 216 | "0 | \n", 217 | "0 | \n", 218 | "... | \n", 219 | "0 | \n", 220 | "0 | \n", 221 | "0 | \n", 222 | "0 | \n", 223 | "0 | \n", 224 | "0 | \n", 225 | "0 | \n", 226 | "0 | \n", 227 | "0 | \n", 228 | "0 | \n", 229 | "
| 3 | \n", 232 | "0 | \n", 233 | "0 | \n", 234 | "0 | \n", 235 | "0 | \n", 236 | "0 | \n", 237 | "0 | \n", 238 | "0 | \n", 239 | "0 | \n", 240 | "0 | \n", 241 | "0 | \n", 242 | "... | \n", 243 | "0 | \n", 244 | "0 | \n", 245 | "0 | \n", 246 | "0 | \n", 247 | "0 | \n", 248 | "0 | \n", 249 | "0 | \n", 250 | "0 | \n", 251 | "0 | \n", 252 | "0 | \n", 253 | "
| 4 | \n", 256 | "0 | \n", 257 | "0 | \n", 258 | "0 | \n", 259 | "0 | \n", 260 | "0 | \n", 261 | "0 | \n", 262 | "0 | \n", 263 | "0 | \n", 264 | "0 | \n", 265 | "0 | \n", 266 | "... | \n", 267 | "0 | \n", 268 | "0 | \n", 269 | "0 | \n", 270 | "0 | \n", 271 | "0 | \n", 272 | "0 | \n", 273 | "0 | \n", 274 | "0 | \n", 275 | "0 | \n", 276 | "0 | \n", 277 | "
5 rows × 380 columns
\n", 281 | "\n",
325 | "\n",
326 | " در این سوال شما میتوانید از هر تکنیک پیشپردازش/مهندسی ویژگی دلخواهتان، استفاده کنید.\n",
327 | "
\n",
328 | " تکنیکهایی که استفاده میکنید به شکل مستقیم مورد ارزیابی توسط سامانه داوری قرار نمیگیرند. بلکه همه آنها در دقت مدل شما تاثیر خواهند گذاشت؛ بنابراین هر چه پیشپردازش/مهندسی ویژگی بهتری انجام دهید تا دقت مدل بهبود پیدا کند، امتیاز بیشتری از این سوال کسب خواهید کرد.\n",
329 | "\n",
330 | "\n",
331 | "
\n", 368 | "\n", 369 | " حال که داده را پاکسازی کرده و احتمالا ویژگیهایی را به آن افزوده یا از آن حذف کردهاید، وقت آن است که مدلی آموزش دهید که بتواند متغیر هدف این مسئله را پیشبینی کند.\n", 370 | "\n", 371 | "
" 372 | ] 373 | }, 374 | { 375 | "cell_type": "code", 376 | "execution_count": 33, 377 | "metadata": {}, 378 | "outputs": [], 379 | "source": [ 380 | "from sklearn.model_selection import train_test_split\n", 381 | "from sklearn.preprocessing import LabelEncoder\n", 382 | "from sklearn.ensemble import RandomForestClassifier\n", 383 | "from sklearn.metrics import accuracy_score\n", 384 | "from sklearn.model_selection import GridSearchCV\n", 385 | "\n", 386 | "\n", 387 | "\n", 388 | "X = train.drop(columns=['author']) \n", 389 | "y = train['author'] \n", 390 | "X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)\n", 391 | "\n", 392 | "rf = RandomForestClassifier(random_state=42)\n", 393 | "\n", 394 | "param_grid = {\n", 395 | " 'n_estimators': [100, 200],\n", 396 | " 'max_depth': [10, 20, None],\n", 397 | " 'min_samples_split': [2, 5],\n", 398 | "}\n", 399 | "\n", 400 | "grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='accuracy')\n", 401 | "grid_search.fit(X_train, y_train)\n", 402 | "\n", 403 | "best_model = grid_search.best_estimator_" 404 | ] 405 | }, 406 | { 407 | "cell_type": "markdown", 408 | "metadata": { 409 | "id": "yTtH1TeSJaAx" 410 | }, 411 | "source": [ 412 | "\n",
419 | "\n",
420 | " ارسالها بر اساس امتیاز F1 ارزیابی میشوند و مدل میانگینگیری macro است. امتیاز F1 معیاری برای ارزیابی مدل است که هم بازیابی (Recall) و هم صحت (Accuracy) را در نظر میگیرد.\n",
421 | " نتیجهی نهایی بر اساس فرمول زیر محاسبه میگردد:\n",
422 | "\n",
423 | "$$score= round(f1score, 3) \\times 100$$\n",
424 | "\n",
425 | "
\n",
427 | "\n",
428 | "مقدار F1 Score مدل شما تا ۳ رقم اعشار گرد شده و پس از ضرب در ۱۰۰ بهعنوان امتیاز شما از این سوال لحاظ میشود. بیشترین امتیاز ممکن از این سوال ۱۰۰ و کمترین امتیاز قابل قبول، ۴۰ میباشد. امتیاز F1 کمتر از ۴۰ معادل صفر در نظر گرفته خواهد شد.\n",
429 | "
\n",
430 | " پیشنهاد میشود با توجه به این معیار، عملکرد مدل خود را بر روی مجموعهی آموزش یا اعتبارسنجی ارزیابی کنید.\n",
431 | "\n",
432 | "
\n",
473 | "\n",
474 | " پیشبینی مدل خود بر روی دادههای آزمایش را در قالب یک dataframe ذخیره کنید. این dataframe باید دارای یک ستون با نام author باشد که ردیف iام آن، پیشبینی شما برای سطر iام مجموعهدادهی آزمون باشد.\n",
475 | "\n",
476 | "
\n",
726 | "\n",
727 | " برای ساختهشدن فایل result.zip سلول زیر را اجرا کنید. توجه داشته باشید که پیش از اجرای سلول زیر تغییرات اعمال شده در نتبوک را ذخیره کرده باشید (ctrl+s) در غیر این صورت، در پایان مسابقه نمره شما به صفر تغییر خواهد کرد.\n",
728 | "
\n",
729 | " همچنین اگر از کولب برای اجرای این فایل نوتبوک استفاده میکنید، قبل از ارسال فایل result.zip، آخرین نسخهی نوتبوک خود را دانلود کرده و داخل فایل ارسالی قرار دهید.\n",
730 | ""
731 | ]
732 | },
733 | {
734 | "cell_type": "code",
735 | "execution_count": null,
736 | "metadata": {
737 | "id": "fx5fwq5DLd2v"
738 | },
739 | "outputs": [],
740 | "source": [
741 | "import zipfile\n",
742 | "import joblib\n",
743 | "\n",
744 | "if not os.path.exists(os.path.join(os.getcwd(), 'Authors.ipynb')):\n",
745 | " %notebook -e Authors.ipynb\n",
746 | "\n",
747 | "def compress(file_names):\n",
748 | " print(\"File Paths:\")\n",
749 | " print(file_names)\n",
750 | " compression = zipfile.ZIP_DEFLATED\n",
751 | " with zipfile.ZipFile(\"result.zip\", mode=\"w\") as zf:\n",
752 | " for file_name in file_names:\n",
753 | " zf.write('./' + file_name, file_name, compress_type=compression)\n",
754 | "\n",
755 | "submission.to_csv('submission.csv', index=False)\n",
756 | "file_names = ['Authors.ipynb', 'submission.csv']\n",
757 | "compress(file_names)"
758 | ]
759 | }
760 | ],
761 | "metadata": {
762 | "colab": {
763 | "provenance": []
764 | },
765 | "kernelspec": {
766 | "display_name": "Python 3 (ipykernel)",
767 | "language": "python",
768 | "name": "python3"
769 | },
770 | "language_info": {
771 | "codemirror_mode": {
772 | "name": "ipython",
773 | "version": 3
774 | },
775 | "file_extension": ".py",
776 | "mimetype": "text/x-python",
777 | "name": "python",
778 | "nbconvert_exporter": "python",
779 | "pygments_lexer": "ipython3",
780 | "version": "3.11.4"
781 | }
782 | },
783 | "nbformat": 4,
784 | "nbformat_minor": 1
785 | }
786 |
--------------------------------------------------------------------------------
/challenge_4/ChandMidi.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "d333515a",
6 | "metadata": {
7 | "id": "d333515a"
8 | },
9 | "source": [
10 | "
\n", 31 | "\n", 32 | "کاربران میتوانند در وبسایت IMDb با توجه به تجربهشان از دیدن یک فیلم یا سریال، به آن هر امتیازی از ۱ تا ۱۰ بدهند و برای آن نقدی بنویسند. در این مسئله قصد داریم با استفاده از مجموعهای از امتیازات و نقدهای کاربران برای بسیاری از فیلمها و سریالها، مدلی را آموزش دهیم که بتواند بر اساس نقد متنی نوشته شده، امتیاز داده شده را پیشبینی کند.\n", 33 | "\n", 34 | "
" 35 | ] 36 | }, 37 | { 38 | "cell_type": "markdown", 39 | "id": "c5af1784", 40 | "metadata": { 41 | "id": "c5af1784" 42 | }, 43 | "source": [ 44 | "\n", 51 | "\n", 52 | " ابتدا کتابخانههای مورد نیازتان را وارد کنید.\n", 53 | "\n", 54 | "
" 55 | ] 56 | }, 57 | { 58 | "cell_type": "code", 59 | "execution_count": 1, 60 | "id": "99450f9e", 61 | "metadata": { 62 | "id": "99450f9e" 63 | }, 64 | "outputs": [], 65 | "source": [ 66 | "import pandas as pd\n", 67 | "import numpy as np" 68 | ] 69 | }, 70 | { 71 | "cell_type": "code", 72 | "source": [ 73 | "from google.colab import drive\n", 74 | "drive.mount('/content/drive')" 75 | ], 76 | "metadata": { 77 | "colab": { 78 | "base_uri": "https://localhost:8080/" 79 | }, 80 | "id": "0mVxKXAsHpTy", 81 | "outputId": "a908fd5a-2e97-4356-f609-1797df0c38d4" 82 | }, 83 | "id": "0mVxKXAsHpTy", 84 | "execution_count": 2, 85 | "outputs": [ 86 | { 87 | "output_type": "stream", 88 | "name": "stdout", 89 | "text": [ 90 | "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" 91 | ] 92 | } 93 | ] 94 | }, 95 | { 96 | "cell_type": "markdown", 97 | "id": "72faaed8", 98 | "metadata": { 99 | "id": "72faaed8" 100 | }, 101 | "source": [ 102 | "\n", 109 | "\n", 110 | "مجموعه داده آموزشی شامل ۱۱۰۶۱ سطر است که در جدول زیر، توضیحات هر ستون آمده است.\n", 111 | "\n", 112 | "
\n", 113 | "\n", 114 | "\n",
131 | "\n",
132 | " مجموعه داده آزمایش نیز مانند مجموعه آموزش است با این تفاوت که ستون Rating که متغیر هدف مسئله است را در خود ندارد. مجموعه داده آزمایش ۲۷۶۵ سطر دارد.\n",
133 | "\n",
134 | "
\n",
151 | "\n",
152 | " در ابتدا نیاز است فایلهای مجموعهداده را بخوانید. نمونههای آموزشی در فایل train.csv و نمونههای آزمون که باید دستهی آنها را پیشبینی کنید در فایل test.csv ذخیره شدهاند. اگر لازم دانستید میتوانید به دلخواه خود بخشی از دادگان آموزشی را به عنوان دادگان اعتبارسنجی نیز جدا کنید.\n",
153 | "\n",
154 | "
| \n", 198 | " | 0 | \n", 199 | "
|---|---|
| Movie_ID | \n", 204 | "0 | \n", 205 | "
| Review | \n", 208 | "0 | \n", 209 | "
| Rating | \n", 212 | "6 | \n", 213 | "
| \n", 268 | " | 0 | \n", 269 | "
|---|---|
| Movie_ID | \n", 274 | "0 | \n", 275 | "
| Review | \n", 278 | "0 | \n", 279 | "
\n",
308 | "\n",
309 | " در این سوال شما میتوانید از هر تکنیک پیشپردازش/مهندسی ویژگی که در گذشته آموختید، استفاده کنید.\n",
310 | "
\n",
311 | " تکنیکهایی که استفاده میکنید به شکل مستقیم مورد ارزیابی توسط سامانه داوری قرار نمیگیرند. بلکه همه آنها در دقت مدل شما تاثیر خواهند گذاشت؛ بنابراین هر چه پیشپردازش/مهندسی ویژگی بهتری انجام دهید تا دقت مدل بهبود پیدا کند، امتیاز بیشتری از این سوال کسب خواهید کرد.\n",
312 | "\n",
313 | "
\n",
368 | "\n",
369 | " حال که داده را پاکسازی کردهاید، وقت آن است که مدلی آموزش دهید که بتواند متغیر هدف این مسئله را پیشبینی کند.\n",
370 | "
\n",
371 | " شما مجاز هستید از هر مدلی که آموختهاید استفاده کنید. به عبارت بهتر، هدف این سوال پیشبینی هرچه بهتر متغیر هدف مسئله است!\n",
372 | "\n",
373 | "
Model: \"sequential_1\"\n",
405 | "\n"
406 | ]
407 | },
408 | "metadata": {}
409 | },
410 | {
411 | "output_type": "display_data",
412 | "data": {
413 | "text/plain": [
414 | "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
415 | "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
416 | "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
417 | "│ embedding_1 (\u001b[38;5;33mEmbedding\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
418 | "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
419 | "│ lstm_2 (\u001b[38;5;33mLSTM\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
420 | "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
421 | "│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
422 | "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
423 | "│ lstm_3 (\u001b[38;5;33mLSTM\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
424 | "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
425 | "│ dropout_3 (\u001b[38;5;33mDropout\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
426 | "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
427 | "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
428 | "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n"
429 | ],
430 | "text/html": [
431 | "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n", 432 | "┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n", 433 | "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n", 434 | "│ embedding_1 (Embedding) │ ? │ 0 (unbuilt) │\n", 435 | "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", 436 | "│ lstm_2 (LSTM) │ ? │ 0 (unbuilt) │\n", 437 | "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", 438 | "│ dropout_2 (Dropout) │ ? │ 0 (unbuilt) │\n", 439 | "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", 440 | "│ lstm_3 (LSTM) │ ? │ 0 (unbuilt) │\n", 441 | "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", 442 | "│ dropout_3 (Dropout) │ ? │ 0 (unbuilt) │\n", 443 | "├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n", 444 | "│ dense_1 (Dense) │ ? │ 0 (unbuilt) │\n", 445 | "└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n", 446 | "\n" 447 | ] 448 | }, 449 | "metadata": {} 450 | }, 451 | { 452 | "output_type": "display_data", 453 | "data": { 454 | "text/plain": [ 455 | "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" 456 | ], 457 | "text/html": [ 458 | "
Total params: 0 (0.00 B)\n", 459 | "\n" 460 | ] 461 | }, 462 | "metadata": {} 463 | }, 464 | { 465 | "output_type": "display_data", 466 | "data": { 467 | "text/plain": [ 468 | "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" 469 | ], 470 | "text/html": [ 471 | "
Trainable params: 0 (0.00 B)\n", 472 | "\n" 473 | ] 474 | }, 475 | "metadata": {} 476 | }, 477 | { 478 | "output_type": "display_data", 479 | "data": { 480 | "text/plain": [ 481 | "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" 482 | ], 483 | "text/html": [ 484 | "
Non-trainable params: 0 (0.00 B)\n", 485 | "\n" 486 | ] 487 | }, 488 | "metadata": {} 489 | }, 490 | { 491 | "output_type": "stream", 492 | "name": "stdout", 493 | "text": [ 494 | "Epoch 1/10\n", 495 | "\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m39s\u001b[0m 128ms/step - loss: 11.8900 - mae: 2.8667 - val_loss: 8.2140 - val_mae: 2.4928\n", 496 | "Epoch 2/10\n", 497 | "\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m33s\u001b[0m 119ms/step - loss: 7.7119 - mae: 2.3066 - val_loss: 5.1092 - val_mae: 1.8277\n", 498 | "Epoch 3/10\n", 499 | "\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m33s\u001b[0m 119ms/step - loss: 4.4994 - mae: 1.6797 - val_loss: 3.9560 - val_mae: 1.5624\n", 500 | "Epoch 4/10\n", 501 | "\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m33s\u001b[0m 119ms/step - loss: 3.1753 - mae: 1.3934 - val_loss: 3.6208 - val_mae: 1.4491\n", 502 | "Epoch 5/10\n", 503 | "\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 120ms/step - loss: 2.4336 - mae: 1.1970 - val_loss: 3.4732 - val_mae: 1.3458\n", 504 | "Epoch 6/10\n", 505 | "\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 119ms/step - loss: 2.0727 - mae: 1.0929 - val_loss: 3.3033 - val_mae: 1.2898\n", 506 | "Epoch 7/10\n", 507 | "\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 120ms/step - loss: 1.7920 - mae: 1.0119 - val_loss: 3.2225 - val_mae: 1.2443\n", 508 | "Epoch 8/10\n", 509 | "\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m33s\u001b[0m 119ms/step - loss: 1.5495 - mae: 0.9435 - val_loss: 3.1968 - val_mae: 1.2253\n", 510 | "Epoch 9/10\n", 511 | "\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 119ms/step - loss: 1.4433 - mae: 0.8985 - val_loss: 3.1478 - val_mae: 1.2217\n", 512 | "Epoch 10/10\n", 513 | "\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 119ms/step - loss: 1.3444 - mae: 0.8613 - val_loss: 3.1164 - val_mae: 1.1758\n" 514 | ] 515 | } 516 | ], 517 | "source": [ 518 | "model = Sequential()\n", 519 | "model.add(Embedding(input_dim=10000, output_dim=128, input_length=max_length))\n", 520 | "model.add(LSTM(64, return_sequences=True))\n", 521 | "model.add(Dropout(0.5))\n", 522 | "model.add(LSTM(32))\n", 523 | "model.add(Dropout(0.5))\n", 524 | "model.add(Dense(1, activation='linear'))\n", 525 | "\n", 526 | "model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae'])\n", 527 | "\n", 528 | "model.summary()\n", 529 | "\n", 530 | "history = model.fit(X_train_pad, y_train,\n", 531 | " epochs=10,\n", 532 | " batch_size=32,\n", 533 | " validation_data=(X_val_pad, y_val))" 534 | ] 535 | }, 536 | { 537 | "cell_type": "markdown", 538 | "id": "33da5d2a", 539 | "metadata": { 540 | "id": "33da5d2a" 541 | }, 542 | "source": [ 543 | "
\n",
550 | "\n",
551 | " معیاری که برای ارزیابی عملکرد مدل انتخاب کردهایم، r2_score نام دارد.\n",
552 | "
\n",
553 | " این معیار، سنجه ارزیابی کیفیت مدل شماست. به عبارت بهتر در سامانه داوری هم از همین معیار برای نمرهدهی استفاده شده است.\n",
554 | "
\n",
555 | " پیشنهاد میشود با توجه به این معیار، عملکرد مدل خود را بر روی مجموعه داده آموزش یا اعتبارسنجی ارزیابی کنید.\n",
556 | "\n",
557 | "
\n",
604 | "\n",
605 | " پس از مهندسی ویژگی و مدلسازی، الگوریتمی دارید که میتواند شما را از متغیرهای مستقل به متغیر هدف برساند.\n",
606 | "
\n",
607 | " از این مدل برای پیشبینی نمونههای موجود در داده تست استفاده کنید و نتایج را در قالب جدول (dataframe) زیر آماده کنید.\n",
608 | "\n",
609 | "
\n",
631 | "\n",
632 | " اسم دیتافریم باید submission باشد؛ در غیر این صورت، سامانه داوری نمیتواند تلاش شما را ارزیابی کند.\n",
633 | "
\n",
634 | " این دیتافریم تنها شامل ۱ ستون با اسم Rating است و ۲۷۶۵ سطر دارد.\n",
635 | "
\n",
636 | " به ازای هر سطر موجود در دیتافریم test شما باید یک مقدار پیشبینی شده داشته باشید.\n",
637 | "
\n",
638 | " جدول زیر، ۵ سطر ابتدایی دیتافریم submission را نشان میدهد. البته در جواب شما، مقادیر ستون Rating ممکن است متفاوت باشد.\n",
639 | "\n",
640 | "
\n",
703 | "\n",
704 | " برای ساختهشدن فایل result.zip سلول زیر را اجرا کنید. توجه داشته باشید که پیش از اجرای سلول زیر تغییرات اعمال شده در نتبوک را ذخیره کرده باشید (ctrl+s) تا در صورت نیاز به پشتیبانی امکان بررسی کد شما وجود داشته باشد.\n",
705 | "\n",
706 | "