├── .docker-build.sh ├── .github └── workflows │ └── ci-sage.yml ├── .gitignore ├── .travis-build.sh ├── .travis.yml ├── 2nash.c ├── COPYING ├── Makefile.am ├── buffer.c ├── c30-15.ext ├── chdemo.c ├── configure.ac ├── cube.ext ├── cube.ine ├── ext ├── metric │ ├── cp4.ext │ ├── cp5.ext │ ├── cp6.ext │ ├── cp7.ext │ └── mp5.ext └── test │ ├── Mit.ext │ ├── c30-15.ext │ ├── cube.ext │ ├── cut16_11.ext │ ├── cut32_16.ext │ ├── cyclic25_13.ext │ ├── mit33.ext │ ├── mp5.ext │ ├── simp15.ext │ ├── tsp5.ext │ ├── vol1.ext │ └── vol2.ext ├── float2rat.c ├── fourier.c ├── games ├── game ├── game1 ├── game2 ├── gamec ├── gamem ├── gamem.2 ├── gamem.gmp ├── gamemp └── gamemp.1 ├── hvref.c ├── ine ├── cocoa13 │ ├── bv10.ine │ ├── bv4.ine │ ├── bv5.ine │ ├── bv6.ine │ ├── bv7.ine │ ├── bv8.ine │ ├── bv9.ine │ ├── c28-14.ext │ ├── c30-15.ext │ ├── c40-20.ext │ ├── mit.ine │ ├── perm10.ine │ ├── perm4.ine │ ├── perm5.ine │ ├── perm6.ine │ ├── perm7.ine │ ├── perm8.ine │ └── perm9.ine ├── metric │ ├── cp4.ine │ ├── cp5.ine │ ├── cp6.ine │ ├── mp5.ine │ └── mp6.ine ├── mit │ ├── mit.ine │ ├── mit288-281.ine │ ├── mit31-20.ine │ ├── mit41-16.ine │ ├── mit708-9.ine │ ├── mit71-61.ine │ └── mit90-86.ine ├── redund │ ├── cube.ine │ ├── ep.ine │ ├── metric80_16.ine │ ├── mp5.ine │ ├── mp5a.ine │ ├── mp5b.ine │ ├── mp5c.ine │ ├── non_par.ine │ └── par.ine ├── test-062 │ ├── bv7.ine │ ├── c30-15.ext │ ├── c40-20.ext │ ├── ep.ine │ ├── fq48-19.ine │ ├── m6.ine │ ├── mit.ine │ ├── mit71-61.ine │ ├── normaliz │ │ ├── bv7.in │ │ ├── c30-15.ext.in │ │ ├── c40-20.ext.in │ │ ├── cp6.in │ │ ├── fq48-19.in │ │ ├── m6.in │ │ ├── mit.in │ │ ├── mit71-61.in │ │ ├── perm10.in │ │ └── zfw91.in │ ├── perm10.ine │ ├── porta │ │ ├── bv7.ine.ieq │ │ ├── c30-15.ext.poi │ │ ├── c40-20.ext.poi │ │ ├── cp6.ine.ieq │ │ ├── fq48-19.ine.ieq │ │ ├── m6.ine.ieq │ │ ├── mit.ine.ieq │ │ ├── mit71-61.ine.ieq │ │ ├── perm10.ine.ieq │ │ └── zfw91.ine.ieq │ ├── zcp6.ine │ ├── zfw91.ine │ └── zfw91nn.ine └── test │ ├── cross4.ine │ ├── cube.ine │ ├── cyclic17_8.ine │ ├── diamond.ine │ ├── in0.ine │ ├── in1.ine │ ├── in2.ine │ ├── in3.ine │ ├── in4.ine │ ├── in5.ine │ ├── in6.ine │ ├── in7.ine │ ├── inf.ine │ ├── kkd38_6.ine │ ├── kq20_11.ine │ ├── kq20_11a.ine │ ├── lcube.ine │ ├── metric40_11.ine │ ├── metric80_16.ine │ ├── mit.ine │ ├── mit31_20.ine │ ├── mp5.ine │ ├── trunc10.ine │ ├── trunc7.ine │ ├── truss2.ine │ └── tsp5.ine ├── lpdemo.c ├── lpdemo1.c ├── lpdemo2.c ├── lrs.c ├── lrsdriver.c ├── lrsdriver.h ├── lrsgmp.c ├── lrsgmp.cpp ├── lrsgmp.h ├── lrslib.c ├── lrslib.cpp ├── lrslib.h ├── lrslong.c ├── lrslong.cpp ├── lrslong.h ├── lrsmp.c ├── lrsmp.cpp ├── lrsmp.h ├── lrsnash.c ├── lrsnashlib.c ├── lrsnashlib.h ├── lrsrestart.h ├── m4 ├── ax_mpi.m4 └── ax_pthread.m4 ├── man ├── lrs.1 ├── lrslib.1 ├── lrsnash.1 └── mplrs.1 ├── mit.ine ├── mp5.ext ├── mp5.ine ├── mplrs.c ├── mplrs.cpp ├── mplrs.h ├── mplrs └── Makefile.am ├── nashdemo.c ├── plotD.gp ├── plotL.gp ├── rat2float.c ├── readme ├── setupnash.c ├── setupnash2.c ├── vedemo.c ├── vol1.ext └── xref /.docker-build.sh: -------------------------------------------------------------------------------- 1 | #! /bin/bash 2 | set -e 3 | yum install -y gmp-devel gcc gcc-c++ || ( apt-get update && apt-get -y install g++ libgmp-dev autoconf automake libtool make) 4 | mkdir -p /build 5 | cd /build 6 | /src/configure --srcdir=/src || ( echo '#### Contents of config.log: ####'; cat config.log; exit 1) 7 | make -j2 && make check 8 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | *~ 2 | .DS_Store 3 | /2nash 4 | *.o 5 | *.lo 6 | *.la 7 | *.tar.gz 8 | /lrs 9 | /lrs1 10 | /lrsnash 11 | /nashdemo 12 | /redund 13 | /redund1 14 | /setnash 15 | /setnash2 16 | .deps 17 | .libs 18 | /Makefile.in 19 | /aclocal.m4 20 | autom4te.cache 21 | /compile 22 | /config.guess 23 | /config.log 24 | /config.status 25 | /config.sub 26 | /configure 27 | /depcomp 28 | /install-sh 29 | /libtool 30 | /ltmain.sh 31 | /missing 32 | /makefile 33 | /Makefile 34 | /plrs1 35 | /plrs 36 | /plrsmp 37 | /.dirstamp 38 | /mplrs/Makefile 39 | /mplrs/Makefile.in 40 | /mplrs/mplrs 41 | /mplrs/mplrs1 42 | -------------------------------------------------------------------------------- /.travis-build.sh: -------------------------------------------------------------------------------- 1 | #! /bin/bash 2 | set -e 3 | autoreconf -fi 4 | case x$DOCKER in 5 | x) 6 | mkdir -p build 7 | cd build 8 | ../configure --srcdir=.. && make -j2 && make check 9 | ;; 10 | *i386*) 11 | docker run -i -v "${PWD}:/src" $DOCKER /bin/bash -c "linux32 --32bit i386 /src/.docker-build.sh" 12 | ;; 13 | *) 14 | docker run -i -v "${PWD}:/src" $DOCKER /bin/bash -c "/src/.docker-build.sh" 15 | ;; 16 | esac 17 | -------------------------------------------------------------------------------- /.travis.yml: -------------------------------------------------------------------------------- 1 | language: cpp 2 | 3 | services: 4 | - docker 5 | 6 | sudo: false 7 | 8 | env: 9 | - DOCKER=i386/ubuntu 10 | - 11 | 12 | addons: 13 | apt_packages: 14 | - libgmp-dev 15 | - autoconf 16 | - automake 17 | - libtool 18 | 19 | script: ./.travis-build.sh 20 | -------------------------------------------------------------------------------- /2nash.c: -------------------------------------------------------------------------------- 1 | // 2nash.c v1.0a Jan 15, 2009 2 | 3 | // Hack of nlrs.c by Conor Meagher to run lrs simultaneously on n processors for n input files 4 | // runs lrsnash on input files A B in both orders simultaneously, terminating when first proc finishes 5 | // output goes in third argument if any, else in file: out 6 | 7 | #include 8 | #include 9 | #include 10 | #include 11 | #include 12 | 13 | int main(int argc, char *argv[]) 14 | { 15 | pid_t cpid[argc - 1], w; 16 | char buffer [250]; 17 | int status,l,j; 18 | if (argc < 3 || argc > 4) { 19 | printf("Usage: 2nash A B [outfile]\n"); 20 | return(0); 21 | } 22 | for(l = 1; l < 3; l++) { 23 | cpid[l -1] = fork(); 24 | if (cpid[l -1] == -1) { 25 | perror("fork"); 26 | exit(EXIT_FAILURE); 27 | } 28 | if(cpid[l-1] == 0) { 29 | //forked threads 30 | // n= sprintf(buffer, "lrs %s > out%i", argv[l], l); 31 | if(l==1) { 32 | int n= sprintf(buffer, "lrsnash %s %s > out%i", argv[1], argv[2], l); 33 | } 34 | else { 35 | int n= sprintf(buffer, "lrsnash %s %s > out%i", argv[2], argv[1], l); 36 | } 37 | 38 | int i=system(buffer); 39 | _exit(0); 40 | } 41 | } 42 | // main thread 43 | w = wait(&status); 44 | for(j = 1; j < 3; j++) { 45 | if(w == cpid[j-1]) { 46 | // this child finished first 47 | if(j==1) 48 | printf("lrsnash %s %s finished first\n", argv[1], argv[2]); 49 | else { 50 | printf("lrsnash %s %s finished first\n", argv[2], argv[1]); 51 | printf("player numbers will be reversed in output\n"); 52 | } 53 | if(argc == 4) { 54 | printf("output file: %s\n", argv[3]); 55 | int n = sprintf(buffer, "/bin/mv -f out%i %s", j, argv[3]); 56 | } 57 | else { 58 | printf("output file: out\n"); 59 | int n = sprintf(buffer, "/bin/mv -f out%i out", j); 60 | } 61 | int i = system(buffer); 62 | } else { 63 | int n = sprintf(buffer, "/bin/rm -f out%i", j); 64 | int i = system(buffer); 65 | } 66 | } 67 | printf("the other process will be "); /*...will be killed */ 68 | fflush(stdout); 69 | kill(0,9); 70 | 71 | exit(EXIT_SUCCESS); 72 | } 73 | -------------------------------------------------------------------------------- /buffer.c: -------------------------------------------------------------------------------- 1 | 2 | /* buffer.c Reads standard input and builds a circular buffer of maxbuffer lines */ 3 | /* input line should have max length maxline and is printed only if it is not in the buffer */ 4 | /* calling arguments: maxline maxbuffer */ 5 | /* defaults: 50000 500 */ 6 | #include 7 | #include 8 | #include 9 | #define MAXBUFFER 5000 /*max number of lines in buffer */ 10 | char *line; 11 | 12 | int maxline; 13 | int Getline(void); 14 | void notimpl(char s[]); 15 | 16 | int 17 | main(int argc, char *argv[]) 18 | { 19 | extern int maxline; 20 | extern char *line; 21 | int i; 22 | int bufsize; 23 | int next; 24 | int count, counton; 25 | char *c; 26 | char *buffer [MAXBUFFER]; 27 | int maxbuffer=500; 28 | void *calloc(); 29 | 30 | maxline=50000; 31 | /* allocate space for buffer */ 32 | if (argc >= 2 ) maxline=atoi(argv[1])+2; /* allow for \n and \0 */ 33 | if (maxline <= 2 ) notimpl("line length must be greater than zero"); 34 | if (argc >= 3 ) maxbuffer=atoi(argv[2]); 35 | if (maxbuffer <= 0 ) notimpl("buffer length must be greater than zero"); 36 | for(i=0;i 0 ) 44 | { 45 | i=0; 46 | if(strncmp(line,"end",3)==0) counton=0; 47 | while ( i <= bufsize && (strcmp(line,buffer[i])) != 0 ) 48 | i++; 49 | if ( i > bufsize ) /* write out line and put in buffer */ 50 | { 51 | next++; 52 | if ( next > maxbuffer-1 ) next=0; 53 | if ( bufsize < maxbuffer-1 ) bufsize++; 54 | c=strcpy(buffer[next],line); 55 | printf("%s",line); 56 | if(counton)count++; 57 | } 58 | if(strncmp(line,"begin",5)==0) counton=1; 59 | } 60 | printf("\n*Number of output lines between begin/end = %d",count); 61 | if(count > maxbuffer ) 62 | printf("\n*Buffer size of %d lines exceeded-some duplicates may remain",maxbuffer); 63 | else 64 | printf("\n*All duplicates removed"); 65 | 66 | printf("\n"); 67 | return 0; 68 | } 69 | 70 | /* getline from KR P.32 */ 71 | int Getline(void) 72 | { 73 | int c,i; 74 | extern int maxline; 75 | extern char *line; 76 | 77 | for (i=0;i 8 | #include 9 | #include "lrsdriver.h" 10 | #include "lrslib.h" 11 | 12 | #define MAXCOL 1000 /* maximum number of colums */ 13 | 14 | void makecyclic (lrs_dic *P, lrs_dat *Q); 15 | 16 | int 17 | main (int argc, char *argv[]) 18 | 19 | { 20 | lrs_dic *P; /* structure for holding current dictionary and indices */ 21 | lrs_dat *Q; /* structure for holding static problem data */ 22 | lrs_mp_vector output; /* one line of output:ray,vertex,facet,linearity */ 23 | lrs_mp_matrix Lin; /* holds input linearities if any are found */ 24 | 25 | long i; 26 | long col; /* output column index for dictionary */ 27 | 28 | /* Global initialization - done once */ 29 | 30 | if ( !lrs_init ("\n*chdemo:")) 31 | return 1; 32 | 33 | /* compute the convex hull of a set of cyclic polytopes */ 34 | /* given by V-representations, dimension 2,...,7 */ 35 | 36 | for(i=1;i<=6;i++) 37 | { 38 | 39 | /* allocate and init structure for static problem data */ 40 | 41 | Q = lrs_alloc_dat ("LRS globals"); 42 | if (Q == NULL) 43 | return 1; 44 | 45 | /* now flags in lrs_dat can be set */ 46 | 47 | Q->m=i+3; /* number of input rows = number of vertices */ 48 | Q->n=i+2; /* number of input columns (dimension + 1 ) */ 49 | Q->hull = TRUE; /* convex hull problem: facet enumeration */ 50 | Q->polytope= TRUE; /* input is a polytope */ 51 | Q->getvolume= TRUE; /* compute the volume */ 52 | 53 | output = lrs_alloc_mp_vector (Q->n); 54 | 55 | P = lrs_alloc_dic (Q); /* allocate and initialize lrs_dic */ 56 | if (P == NULL) 57 | return 1; 58 | 59 | /* Build polyhedron: constraints and objective */ 60 | 61 | printf("\n\n*cyclic polytope: %ld vertices in R^%ld",Q->m,Q->n-1); 62 | makecyclic(P,Q); 63 | 64 | /* code from here is borrowed from lrs_main */ 65 | 66 | /* Pivot to a starting dictionary */ 67 | 68 | if (!lrs_getfirstbasis (&P, Q, &Lin, FALSE)) 69 | return 1; 70 | 71 | /* There may have been column redundancy */ 72 | /* (although not for this example of cyclic polytopes) */ 73 | /* If so the linearity space is obtained and redundant */ 74 | /* columns are removed. User can access linearity space */ 75 | /* from lrs_mp_matrix Lin dimensions nredundcol x d+1 */ 76 | 77 | 78 | for (col = 0L; col < Q->nredundcol; col++) /* print linearity space */ 79 | lrs_printoutput (Q, Lin[col]); /* Array Lin[][] holds the coeffs. */ 80 | 81 | 82 | /* We initiate reverse search from this dictionary */ 83 | /* getting new dictionaries until the search is complete */ 84 | /* User can access each output line from output which is */ 85 | /* vertex/ray/facet from the lrs_mp_vector output */ 86 | 87 | do 88 | { 89 | for (col = 0; col <= P->d; col++) 90 | if (lrs_getsolution (P, Q, output, col)) 91 | lrs_printoutput (Q, output); 92 | } 93 | while (lrs_getnextbasis (&P, Q, FALSE)); 94 | 95 | lrs_printtotals (P, Q); /* print final totals */ 96 | 97 | /* free space : do not change order of next 3 lines! */ 98 | 99 | lrs_clear_mp_vector (output, Q->n); 100 | lrs_free_dic (P,Q); /* deallocate lrs_dic */ 101 | lrs_free_dat (Q); /* deallocate lrs_dat */ 102 | 103 | } /* end of loop for i=3 ... */ 104 | 105 | lrs_close ("chdemo:"); 106 | printf("\n"); 107 | return 0; 108 | } /* end of main */ 109 | 110 | void makecyclic (lrs_dic *P, lrs_dat *Q) 111 | /* generate vertices of a cyclic polytope */ 112 | /* (t, t^2, ..., t^n-1 ), t=1..m */ 113 | { 114 | long num[MAXCOL]; 115 | long den[MAXCOL]; 116 | long row, j, t; 117 | long m=Q->m; 118 | long n=Q->n; 119 | 120 | for (row=1;row<=m;row++) 121 | { 122 | t=1; 123 | for(j=0;j@], 27 | [enable building mplrs @<:@default=check@:>@])], 28 | [:], 29 | [enable_mplrs=check]) 30 | AS_IF([test "x$enable_mplrs" != xno], 31 | [AX_MPI( 32 | [enable_mplrs=yes], 33 | [AS_IF([test "x$enable_mplrs" == xyes], 34 | [AC_MSG_ERROR([mplrs requires MPI C compiler])], 35 | [AC_MSG_NOTICE([Will not build mplrs because MPI C compiler was not found]) 36 | enable_mplrs=no])]) 37 | ]) 38 | AM_CONDITIONAL([MPLRS], [test x$enable_mplrs = xyes]) 39 | 40 | ACX_PTHREAD 41 | LIBS="$PTHREAD_LIBS $LIBS" 42 | CFLAGS="$CFLAGS $PTHREAD_CFLAGS" 43 | CC="$PTHREAD_CC" 44 | 45 | AC_OUTPUT 46 | -------------------------------------------------------------------------------- /cube.ext: -------------------------------------------------------------------------------- 1 | cube 2 | V-representation 3 | begin 4 | 8 4 rational 5 | 1 1 1 1 6 | 1 -1 1 1 7 | 1 1 1 -1 8 | 1 -1 1 -1 9 | 1 1 -1 -1 10 | 1 -1 -1 -1 11 | 1 1 -1 1 12 | 1 -1 -1 1 13 | end 14 | -------------------------------------------------------------------------------- /cube.ine: -------------------------------------------------------------------------------- 1 | cube 2 | H-representation 3 | begin 4 | 6 4 rational 5 | 1 1 0 0 6 | 1 0 1 0 7 | 1 0 0 1 8 | 1 -1 0 0 9 | 1 0 0 -1 10 | 1 0 -1 0 11 | end 12 | printcobasis 13 | -------------------------------------------------------------------------------- /ext/metric/cp4.ext: -------------------------------------------------------------------------------- 1 | cp4.ext 2 | V-representation 3 | begin 4 | 8 7 integer 5 | 1 0 0 0 0 0 0 6 | 1 0 1 1 1 1 0 7 | 1 0 0 1 0 1 1 8 | 1 1 0 0 1 1 0 9 | 1 1 1 1 0 0 0 10 | 1 0 1 0 1 0 1 11 | 1 1 1 0 0 1 1 12 | 1 1 0 1 1 0 1 13 | end 14 | startingcobasis 2 3 4 5 6 7 8 15 | -------------------------------------------------------------------------------- /ext/metric/cp5.ext: -------------------------------------------------------------------------------- 1 | cp5.ext 2 | V-representation 3 | *5 point cut polytope 4 | begin 5 | 16 11 integer 6 | 1 0 0 0 0 0 0 0 0 0 0 7 | 1 1 1 1 1 0 0 0 0 0 0 8 | 1 0 1 1 1 1 1 1 0 0 0 9 | 1 1 0 1 1 1 0 0 1 1 0 10 | 1 1 1 0 1 0 1 0 1 0 1 11 | 1 1 1 1 0 0 0 1 0 1 1 12 | 1 0 0 1 1 0 1 1 1 1 0 13 | 1 0 1 0 1 1 0 1 1 0 1 14 | 1 0 1 1 0 1 1 0 0 1 1 15 | 1 1 0 0 1 1 1 0 0 1 1 16 | 1 1 0 1 0 1 0 1 1 0 1 17 | 1 1 1 0 0 0 1 1 1 1 0 18 | 1 0 0 0 1 0 0 1 0 1 1 19 | 1 0 0 1 0 0 1 0 1 0 1 20 | 1 0 1 0 0 1 0 0 1 1 0 21 | 1 1 0 0 0 1 1 1 0 0 0 22 | end 23 | -------------------------------------------------------------------------------- /ext/metric/cp6.ext: -------------------------------------------------------------------------------- 1 | cp6.ext 2 | V-representation 3 | *6 point cut cone 4 | begin 5 | 32 16 integer 6 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 | 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 8 | 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 9 | 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 10 | 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 11 | 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 12 | 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1 13 | 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 14 | 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 15 | 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 16 | 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 17 | 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 18 | 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 19 | 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 20 | 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 21 | 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 22 | 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 23 | 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 24 | 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 25 | 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 26 | 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 27 | 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 28 | 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 29 | 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 30 | 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 31 | 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 32 | 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 33 | 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 34 | 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 35 | 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 36 | 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 37 | 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 38 | end 39 | -------------------------------------------------------------------------------- /ext/metric/cp7.ext: -------------------------------------------------------------------------------- 1 | cp7.ext 2 | *Complete Cut Polytope on 7 vertices 3 | *The number of facets is 116,764. 4 | V-representation 5 | begin 6 | 64 22 integer 7 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 | 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 | 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 10 | 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 11 | 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 12 | 1 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 13 | 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 14 | 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 15 | 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 16 | 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 17 | 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 18 | 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 19 | 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1 20 | 1 1 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 21 | 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 22 | 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 23 | 1 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 24 | 1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 25 | 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 26 | 1 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 27 | 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 28 | 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 29 | 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 30 | 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 31 | 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 32 | 1 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 33 | 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 34 | 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 35 | 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 36 | 1 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 37 | 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 38 | 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 39 | 1 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 40 | 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 41 | 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 42 | 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 43 | 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 44 | 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 45 | 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 46 | 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 47 | 1 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 48 | 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 49 | 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 50 | 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 51 | 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 52 | 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 53 | 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 54 | 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 55 | 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 56 | 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 57 | 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 58 | 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 59 | 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 60 | 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1 61 | 1 1 0 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 62 | 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 63 | 1 1 0 1 0 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 64 | 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 65 | 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 66 | 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 67 | 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 68 | 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 69 | 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 70 | 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 71 | end 72 | -------------------------------------------------------------------------------- /ext/metric/mp5.ext: -------------------------------------------------------------------------------- 1 | mp5.ext 2 | V-representation 3 | begin 4 | 32 11 rational 5 | 1 1 1 1 1 0 0 0 0 0 0 6 | 1 0 0 1 1 0 1 1 1 1 0 7 | 1 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 8 | 1 1 0 1 1 1 0 0 1 1 0 9 | 1 0 1 1 1 1 1 1 0 0 0 10 | 1 2/3 2/3 1/3 1/3 2/3 1/3 1/3 1/3 1/3 2/3 11 | 1 0 1 0 1 1 0 1 1 0 1 12 | 1 1 1 0 1 0 1 0 1 0 1 13 | 1 1/3 2/3 2/3 2/3 1/3 1/3 1/3 2/3 2/3 2/3 14 | 1 0 1 1 0 1 1 0 0 1 1 15 | 1 1 1 1 0 0 0 1 0 1 1 16 | 1 1/3 1/3 2/3 2/3 2/3 1/3 1/3 1/3 1/3 2/3 17 | 1 0 0 0 1 0 0 1 0 1 1 18 | 1 1 0 0 1 1 1 0 0 1 1 19 | 1 2/3 1/3 2/3 2/3 1/3 2/3 2/3 1/3 1/3 2/3 20 | 1 1/3 2/3 1/3 1/3 1/3 2/3 2/3 1/3 1/3 2/3 21 | 1 2/3 1/3 1/3 1/3 1/3 1/3 1/3 2/3 2/3 2/3 22 | 1 0 0 1 0 0 1 0 1 0 1 23 | 1 2/3 2/3 2/3 1/3 2/3 2/3 1/3 2/3 1/3 1/3 24 | 1 1 0 1 0 1 0 1 1 0 1 25 | 1 2/3 1/3 1/3 2/3 1/3 1/3 2/3 2/3 1/3 1/3 26 | 1 1/3 1/3 1/3 2/3 2/3 2/3 1/3 2/3 1/3 1/3 27 | 1 1/3 1/3 1/3 1/3 2/3 2/3 2/3 2/3 2/3 2/3 28 | 1 0 1 0 0 1 0 0 1 1 0 29 | 1 2/3 1/3 2/3 1/3 1/3 2/3 1/3 1/3 2/3 1/3 30 | 1 1/3 2/3 1/3 2/3 1/3 2/3 1/3 1/3 2/3 1/3 31 | 1 1/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 32 | 1 1 1 0 0 0 1 1 1 1 0 33 | 1 1/3 2/3 2/3 1/3 1/3 1/3 2/3 2/3 1/3 1/3 34 | 1 1 0 0 0 1 1 1 0 0 0 35 | 1 2/3 2/3 1/3 2/3 2/3 1/3 2/3 1/3 2/3 1/3 36 | 1 0 0 0 0 0 0 0 0 0 0 37 | end 38 | -------------------------------------------------------------------------------- /ext/test/c30-15.ext: -------------------------------------------------------------------------------- 1 | *cyclic polytope n=30, d=15 2 | V-representation 3 | begin 4 | 30 16 integer 5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 7 | 1 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 8 | 1 4 16 64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 1073741824 9 | 1 5 25 125 625 3125 15625 78125 390625 1953125 9765625 48828125 244140625 1220703125 6103515625 30517578125 10 | 1 6 36 216 1296 7776 46656 279936 1679616 10077696 60466176 362797056 2176782336 13060694016 78364164096 470184984576 11 | 1 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249 1977326743 13841287201 96889010407 678223072849 4747561509943 12 | 1 8 64 512 4096 32768 262144 2097152 16777216 134217728 1073741824 8589934592 68719476736 549755813888 4398046511104 35184372088832 13 | 1 9 81 729 6561 59049 531441 4782969 43046721 387420489 3486784401 31381059609 282429536481 2541865828329 22876792454961 205891132094649 14 | 1 10 100 1000 10000 100000 1000000 10000000 100000000 1000000000 10000000000 100000000000 1000000000000 10000000000000 100000000000000 1000000000000000 15 | 1 11 121 1331 14641 161051 1771561 19487171 214358881 2357947691 25937424601 285311670611 3138428376721 34522712143931 379749833583241 4177248169415651 16 | 1 12 144 1728 20736 248832 2985984 35831808 429981696 5159780352 61917364224 743008370688 8916100448256 106993205379072 1283918464548864 15407021574586368 17 | 1 13 169 2197 28561 371293 4826809 62748517 815730721 10604499373 137858491849 1792160394037 23298085122481 302875106592253 3937376385699289 51185893014090757 18 | 1 14 196 2744 38416 537824 7529536 105413504 1475789056 20661046784 289254654976 4049565169664 56693912375296 793714773254144 11112006825558016 155568095557812224 19 | 1 15 225 3375 50625 759375 11390625 170859375 2562890625 38443359375 576650390625 8649755859375 129746337890625 1946195068359375 29192926025390625 437893890380859375 20 | 1 16 256 4096 65536 1048576 16777216 268435456 4294967296 68719476736 1099511627776 17592186044416 281474976710656 4503599627370496 72057594037927936 1152921504606846976 21 | 1 17 289 4913 83521 1419857 24137569 410338673 6975757441 118587876497 2015993900449 34271896307633 582622237229761 9904578032905937 168377826559400929 2862423051509815793 22 | 1 18 324 5832 104976 1889568 34012224 612220032 11019960576 198359290368 3570467226624 64268410079232 1156831381426176 20822964865671168 374813367582081024 6746640616477458432 23 | 1 19 361 6859 130321 2476099 47045881 893871739 16983563041 322687697779 6131066257801 116490258898219 2213314919066161 42052983462257059 799006685782884121 15181127029874798299 24 | 1 20 400 8000 160000 3200000 64000000 1280000000 25600000000 512000000000 10240000000000 204800000000000 4096000000000000 81920000000000000 1638400000000000000 32768000000000000000 25 | 1 21 441 9261 194481 4084101 85766121 1801088541 37822859361 794280046581 16679880978201 350277500542221 7355827511386641 154472377739119461 3243919932521508681 68122318582951682301 26 | 1 22 484 10648 234256 5153632 113379904 2494357888 54875873536 1207269217792 26559922791424 584318301411328 12855002631049216 282810057883082752 6221821273427820544 136880068015412051968 27 | 1 23 529 12167 279841 6436343 148035889 3404825447 78310985281 1801152661463 41426511213649 952809757913927 21914624432020321 504036361936467383 11592836324538749809 266635235464391245607 28 | 1 24 576 13824 331776 7962624 191102976 4586471424 110075314176 2641807540224 63403380965376 1521681143169024 36520347436056576 876488338465357824 21035720123168587776 504857282956046106624 29 | 1 25 625 15625 390625 9765625 244140625 6103515625 152587890625 3814697265625 95367431640625 2384185791015625 59604644775390625 1490116119384765625 37252902984619140625 931322574615478515625 30 | 1 26 676 17576 456976 11881376 308915776 8031810176 208827064576 5429503678976 141167095653376 3670344486987776 95428956661682176 2481152873203736576 64509974703297150976 1677259342285725925376 31 | 1 27 729 19683 531441 14348907 387420489 10460353203 282429536481 7625597484987 205891132094649 5559060566555523 150094635296999121 4052555153018976267 109418989131512359209 2954312706550833698643 32 | 1 28 784 21952 614656 17210368 481890304 13492928512 377801998336 10578455953408 296196766695424 8293509467471872 232218265089212416 6502111422497947648 182059119829942534144 5097655355238390956032 33 | 1 29 841 24389 707281 20511149 594823321 17249876309 500246412961 14507145975869 420707233300201 12200509765705829 353814783205469041 10260628712958602189 297558232675799463481 8629188747598184440949 34 | 1 30 900 27000 810000 24300000 729000000 21870000000 656100000000 19683000000000 590490000000000 17714700000000000 531441000000000000 15943230000000000000 478296900000000000000 14348907000000000000000 35 | end 36 | volume 37 | *redund 0 0 38 | -------------------------------------------------------------------------------- /ext/test/cube.ext: -------------------------------------------------------------------------------- 1 | cube 2 | V-representation 3 | begin 4 | 8 4 rational 5 | 1 1 1 1 6 | 1 -1 1 1 7 | 1 1 1 -1 8 | 1 -1 1 -1 9 | 1 1 -1 -1 10 | 1 -1 -1 -1 11 | 1 1 -1 1 12 | 1 -1 -1 1 13 | end 14 | *extract 2 1 3 15 | *restart 4 3 1 4 5 6 7 16 | printcobasis 17 | -------------------------------------------------------------------------------- /ext/test/cut16_11.ext: -------------------------------------------------------------------------------- 1 | cut16_11.ext 2 | V-representation 3 | *5 point cut polytope 4 | begin 5 | 16 11 integer 6 | 1 1 1 -1 -1 -1 1 1 1 1 -1 7 | 1 -1 -1 -1 1 -1 -1 1 -1 1 1 8 | 1 -1 -1 1 -1 -1 1 -1 1 -1 1 9 | 1 -1 1 -1 -1 1 -1 -1 1 1 -1 10 | 1 1 -1 -1 -1 1 1 1 -1 -1 -1 11 | 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 12 | 1 1 1 1 1 -1 -1 -1 -1 -1 -1 13 | 1 -1 1 1 1 1 1 1 -1 -1 -1 14 | 1 1 -1 1 1 1 -1 -1 1 1 -1 15 | 1 1 1 -1 1 -1 1 -1 1 -1 1 16 | 1 1 1 1 -1 -1 -1 1 -1 1 1 17 | 1 -1 -1 1 1 -1 1 1 1 1 -1 18 | 1 -1 1 -1 1 1 -1 1 1 -1 1 19 | 1 -1 1 1 -1 1 1 -1 -1 1 1 20 | 1 1 -1 -1 1 1 1 -1 -1 1 1 21 | 1 1 -1 1 -1 1 -1 1 1 -1 1 22 | end 23 | -------------------------------------------------------------------------------- /ext/test/cut32_16.ext: -------------------------------------------------------------------------------- 1 | cut32_16.ext 2 | *digits 50 3 | V-representation 4 | *6 point cut polytope 5 | begin 6 | 32 16 integer 7 | 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 8 | 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 9 | 1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 10 | 1 1 -1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 11 | 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 1 -1 12 | 1 1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 13 | 1 1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 1 1 14 | 1 -1 -1 1 1 1 -1 1 1 1 1 1 1 -1 -1 -1 15 | 1 -1 1 -1 1 1 1 -1 1 1 1 -1 -1 1 1 -1 16 | 1 -1 1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 17 | 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1 -1 1 1 18 | 1 1 -1 -1 1 1 1 1 -1 -1 -1 1 1 1 1 -1 19 | 1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 20 | 1 1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 1 1 21 | 1 1 1 -1 -1 1 -1 1 1 -1 1 1 -1 -1 1 1 22 | 1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 1 -1 1 23 | 1 1 1 1 -1 -1 -1 -1 1 1 -1 1 1 1 1 -1 24 | 1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1 1 1 -1 25 | 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 1 -1 1 26 | 1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 27 | 1 -1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1 28 | 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 29 | 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 1 1 -1 30 | 1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 1 -1 1 1 31 | 1 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 32 | 1 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 1 1 -1 33 | 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 34 | 1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1 1 35 | 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 36 | 1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1 1 1 -1 37 | 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1 -1 -1 38 | 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 39 | end 40 | -------------------------------------------------------------------------------- /ext/test/cyclic25_13.ext: -------------------------------------------------------------------------------- 1 | cyclic25_13.ine 2 | H-representation 3 | *digits 300 4 | begin 5 | 25 13 integer 6 | 1 -156 1690 -22464 265018 -3234816 38683450 -465813504 7 | 5585476858 -67077144576 804783054010 -9659108818944 115904429355898 8 | 1 -143 1391 -17303 185783 -2093663 22895951 -253333223 9 | 2782380263 -30653319983 337043838911 -3709051717943 40794692425943 10 | 1 -130 1118 -13000 125450 -1300000 12865658 -130000000 11 | 1295714810 -13000000000 129857319098 -1300000000000 12995123528570 12 | 1 -117 871 -9477 80743 -767637 6774391 -62178597 555322183 13 | -5036466357 45185516311 -407953774917 3666707502823 14 | 1 -104 650 -6656 48698 -425984 3273530 -27262976 213818618 15 | -1744830464 13815962810 -111669149696 888476726138 16 | 1 -91 455 -4459 26663 -218491 1395095 -10706059 70657223 17 | -524596891 3529497335 -25705247659 175060262183 18 | 1 -78 286 -2808 12298 -101088 472186 -3639168 17549818 19 | -131010048 643379386 -4716361728 23421698938 20 | 1 -65 143 -1625 3575 -40625 68783 -1015625 792935 -25390625 21 | -15727777 -634765625 -1702643305 22 | 1 -52 26 -832 -1222 -13312 -81094 -212992 -3433222 -3407872 23 | -129049414 -54525952 -4658367622 24 | 1 -39 -65 -351 -3497 -3159 -124865 -28431 -4199897 -255879 25 | -141913265 -2302911 -4869562697 26 | 1 -26 -130 -104 -4342 -416 -133510 -1664 -4281862 -6656 27 | -142667590 -26624 -4876418182 28 | 1 -13 -169 -13 -4537 -13 -134329 -13 -4285177 -13 29 | -142680889 -13 -4876471417 30 | 1 0 -182 0 -4550 0 -134342 0 -4285190 0 -142680902 0 31 | -4876471430 32 | 1 13 -169 13 -4537 13 -134329 13 -4285177 13 -142680889 33 | 13 -4876471417 34 | 1 26 -130 104 -4342 416 -133510 1664 -4281862 6656 35 | -142667590 26624 -4876418182 36 | 1 39 -65 351 -3497 3159 -124865 28431 -4199897 255879 37 | -141913265 2302911 -4869562697 38 | 1 52 26 832 -1222 13312 -81094 212992 -3433222 3407872 39 | -129049414 54525952 -4658367622 40 | 1 65 143 1625 3575 40625 68783 1015625 792935 25390625 41 | -15727777 634765625 -1702643305 42 | 1 78 286 2808 12298 101088 472186 3639168 17549818 131010048 43 | 643379386 4716361728 23421698938 44 | 1 91 455 4459 26663 218491 1395095 10706059 70657223 45 | 524596891 3529497335 25705247659 175060262183 46 | 1 104 650 6656 48698 425984 3273530 27262976 213818618 47 | 1744830464 13815962810 111669149696 888476726138 48 | 1 117 871 9477 80743 767637 6774391 62178597 555322183 49 | 5036466357 45185516311 407953774917 3666707502823 50 | 1 130 1118 13000 125450 1300000 12865658 130000000 1295714810 51 | 13000000000 129857319098 1300000000000 12995123528570 52 | 1 143 1391 17303 185783 2093663 22895951 253333223 2782380263 53 | 30653319983 337043838911 3709051717943 40794692425943 54 | 1 156 1690 22464 265018 3234816 38683450 465813504 5585476858 55 | 67077144576 804783054010 9659108818944 115904429355898 56 | end 57 | -------------------------------------------------------------------------------- /ext/test/mit33.ext: -------------------------------------------------------------------------------- 1 | mit33 2 | V-representation 3 | begin 4 | 33 9 integer 5 | 1 0 0 0 0 0 0 0 0 6 | 1 16 0 0 0 0 0 0 0 7 | 1 24 8 0 0 0 0 0 0 8 | 1 24 24 0 0 0 0 0 0 9 | 1 64/3 112/3 8/3 0 0 0 128/3 8/3 10 | 1 12 48 6 0 0 0 72 6 11 | 1 16 48 4 0 0 0 64 4 12 | 1 96/7 240/7 48/7 0 0 0 288/7 0 13 | 1 16 112/3 16/3 0 0 0 128/3 0 14 | 1 8 48 8 0 0 0 64 0 15 | 1 8 48 8 0 0 4 64 4 16 | 1 16 400/13 80/13 8/13 16/13 0 704/13 88/13 17 | 1 14 32 7 1/2 3/2 2 52 11/2 18 | 1 96/13 144/13 144/13 0 72/13 0 384/13 0 19 | 1 128/11 144/11 104/11 8/11 40/11 0 32 32/11 20 | 1 848/47 720/47 320/47 80/47 40/47 0 32 320/47 21 | 1 96/5 16 32/5 8/5 4/5 0 176/5 32/5 22 | 1 64/9 112/9 104/9 8/9 40/9 0 32 0 23 | 1 68/9 128/9 106/9 22/9 20/9 0 32 0 24 | 1 28/3 52/3 32/3 8/3 4/3 0 32 0 25 | 1 192/17 352/17 160/17 48/17 8/17 0 32 0 26 | 1 32/3 16 32/3 8/3 4/3 0 112/3 0 27 | 1 8 16 12 2 2 0 40 2 28 | 1 40/7 96/7 88/7 16/7 20/7 0 240/7 0 29 | 1 4 12 13 1 5 0 36 0 30 | 1 96/11 160/11 124/11 28/11 20/11 0 32 8/11 31 | 1 448/43 672/43 448/43 112/43 56/43 0 32 64/43 32 | 1 23/2 15 10 5/2 5/4 0 32 5/2 33 | 1 24 40 0 0 0 0 32 0 34 | 1 16 64 0 0 0 0 64 0 35 | 1 80/3 112/3 0 0 0 0 128/3 0 36 | 1 24 48 0 0 0 0 64 0 37 | 1 24 48 0 0 0 0 72 0 38 | end 39 | *volume 40 | -------------------------------------------------------------------------------- /ext/test/mp5.ext: -------------------------------------------------------------------------------- 1 | *mp5 2 | V-representation 3 | begin 4 | 32 11 rational 5 | 1 1 1 1 1 0 0 0 0 0 0 6 | 1 0 0 1 1 0 1 1 1 1 0 7 | 1 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 8 | 1 1 0 1 1 1 0 0 1 1 0 9 | 1 0 1 1 1 1 1 1 0 0 0 10 | 1 2/3 2/3 1/3 1/3 2/3 1/3 1/3 1/3 1/3 2/3 11 | 1 0 1 0 1 1 0 1 1 0 1 12 | 1 1 1 0 1 0 1 0 1 0 1 13 | 1 1/3 2/3 2/3 2/3 1/3 1/3 1/3 2/3 2/3 2/3 14 | 1 0 1 1 0 1 1 0 0 1 1 15 | 1 1 1 1 0 0 0 1 0 1 1 16 | 1 1/3 1/3 2/3 2/3 2/3 1/3 1/3 1/3 1/3 2/3 17 | 1 0 0 0 1 0 0 1 0 1 1 18 | 1 1 0 0 1 1 1 0 0 1 1 19 | 1 2/3 1/3 2/3 2/3 1/3 2/3 2/3 1/3 1/3 2/3 20 | 1 1/3 2/3 1/3 1/3 1/3 2/3 2/3 1/3 1/3 2/3 21 | 1 2/3 1/3 1/3 1/3 1/3 1/3 1/3 2/3 2/3 2/3 22 | 1 0 0 1 0 0 1 0 1 0 1 23 | 1 2/3 2/3 2/3 1/3 2/3 2/3 1/3 2/3 1/3 1/3 24 | 1 1 0 1 0 1 0 1 1 0 1 25 | 1 2/3 1/3 1/3 2/3 1/3 1/3 2/3 2/3 1/3 1/3 26 | 1 1/3 1/3 1/3 2/3 2/3 2/3 1/3 2/3 1/3 1/3 27 | 1 1/3 1/3 1/3 1/3 2/3 2/3 2/3 2/3 2/3 2/3 28 | 1 0 1 0 0 1 0 0 1 1 0 29 | 1 2/3 1/3 2/3 1/3 1/3 2/3 1/3 1/3 2/3 1/3 30 | 1 1/3 2/3 1/3 2/3 1/3 2/3 1/3 1/3 2/3 1/3 31 | 1 1/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 32 | 1 1 1 0 0 0 1 1 1 1 0 33 | 1 1/3 2/3 2/3 1/3 1/3 1/3 2/3 2/3 1/3 1/3 34 | 1 1 0 0 0 1 1 1 0 0 0 35 | 1 2/3 2/3 1/3 2/3 2/3 1/3 2/3 1/3 2/3 1/3 36 | 1 0 0 0 0 0 0 0 0 0 0 37 | end 38 | volume 39 | -------------------------------------------------------------------------------- /ext/test/simp15.ext: -------------------------------------------------------------------------------- 1 | V-representation 2 | begin 3 | 16 16 integer 4 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 | 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 7 | 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 8 | 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 9 | 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 10 | 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 11 | 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 | 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 13 | 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 14 | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 15 | 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 16 | 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 17 | 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 18 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 19 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 20 | end 21 | volume 22 | 23 | -------------------------------------------------------------------------------- /ext/test/tsp5.ext: -------------------------------------------------------------------------------- 1 | tsp5.ext 2 | V-representation 3 | begin 4 | 12 11 rational 5 | 1 0 0 1 1 1 1 0 0 1 0 6 | 1 1 0 0 1 0 1 0 1 1 0 7 | 1 0 1 0 1 0 1 1 1 0 0 8 | 1 0 1 0 1 1 1 0 0 0 1 9 | 1 0 1 1 0 0 1 1 0 1 0 10 | 1 0 1 1 0 1 0 1 0 0 1 11 | 1 1 1 0 0 0 0 1 1 0 1 12 | 1 1 1 0 0 0 1 0 0 1 1 13 | 1 1 0 1 0 0 0 1 1 1 0 14 | 1 1 0 1 0 1 0 0 0 1 1 15 | 1 0 0 1 1 1 0 1 1 0 0 16 | 1 1 0 0 1 1 0 0 1 0 1 17 | end 18 | -------------------------------------------------------------------------------- /ext/test/vol1.ext: -------------------------------------------------------------------------------- 1 | vol1.ext 2 | V-representation 3 | begin 4 | 14 11 rational 5 | 1 474660000/60588941 0 0 230110000/60588941 0 0 0 0 74490000/60588941 0 6 | 1 0 1855000/245421 0 1240000/245421 0 0 0 0 0 0 7 | 1 134590000/158599117 1265910000/158599117 0 656120000/158599117 0 0 0 0 0 0 8 | 1 141867270000/42640647439 517733390000/127921942317 523452380000/127921942317 159548760000/42640647439 0 0 0 0 0 0 9 | 1 0 1345200/184057 0 176496/184057 0 1295312/184057 0 0 0 0 10 | 1 0 0 3710000/620283 5200000/620283 0 0 0 0 0 0 11 | 1 1209010000/564094417 0 3851240000/564094417 3690360000/564094417 0 0 0 0 0 0 12 | 1 62384303750/27114776277 0 181192219375/27114776277 174854417500/27114776277 4372264375/27114776277 0 0 0 0 0 13 | 1 1396426381130000/386182442237881 723524651350000/386182442237881 1819037257580000/386182442237881 1813966897640000/386182442237881 365674941440000/386182442237881 0 0 0 0 0 14 | 1 1144638394230000/288144185543041 0 1268976764830000/288144185543041 843946135640000/288144185543041 842578440990000/288144185543041 0 0 0 723524651350000/288144185543041 0 15 | 1 0 0 87427500/14863547 93274500/14863547 0 52451500/14863547 0 0 0 0 16 | 1 0 0 29947500/4335923 15923000/4335923 0 22298500/4335923 0 0 0 0 17 | 1 279515745000/124965304289 0 963053730000/124965304289 328513805000/124965304289 0 496231465000/124965304289 0 0 0 0 18 | 1 369273935000/145215982207 0 1004570790000/145215982207 692331085000/145215982207 0 347934475000/145215982207 0 0 0 0 19 | end 20 | volume 21 | *printcobasis 1 22 | -------------------------------------------------------------------------------- /ext/test/vol2.ext: -------------------------------------------------------------------------------- 1 | vol2.ext 2 | V-representation 3 | begin 4 | 10 6 integer 5 | 1 -231 -12 -568 -351 -308 6 | 1 -91 -441 -927 -33 -330 7 | 1 -39 -924 -541 -444 -838 8 | 1 -425 -679 -140 -764 -960 9 | 1 -686 -717 -137 -721 -833 10 | 1 -920 -164 -220 -640 -262 11 | 1 -365 -685 -932 -424 -928 12 | 1 -539 -941 -513 -290 -622 13 | 1 -572 -580 -822 -964 -725 14 | 1 -19 -976 -609 -965 -158 15 | end 16 | printcobasis 17 | volume 18 | -------------------------------------------------------------------------------- /float2rat.c: -------------------------------------------------------------------------------- 1 | /* 2 | * Reads a polyhedron file on stdin with rationals and outputs 3 | * an approximation in decimal floating point 4 | * 5 | * David Bremner. bremner@cs.mcgill.ca 6 | * 7 | */ 8 | /* Hacked by DA, April 20 2006 9 | * 10 | * first argument overides stdin 11 | * if column 0=0 then column 1 scaled to 1 (otherwise big ugly integers come out) 12 | * since lrs does not define m (# of output lines) this is skipped 13 | * lines are converted until "end" is read 14 | */ 15 | 16 | 17 | static char rcsid[]="$Id: float2rat.c,v 1.1.1.1 2006/04/03 20:42:10 bremner Exp $"; 18 | 19 | #include 20 | #include 21 | #include 22 | #include 23 | 24 | FILE *lrs_ifp; /* input file pointer */ 25 | 26 | 27 | #define DOCSTRING "\n\ 28 | $Id: float2rat.ds,v 1.2 2006/04/03 21:15:39 bremner Exp $\n\ 29 | \n\ 30 | Converts floating point coefficent $f$ to rational by the \n\ 31 | simple expedient of outputing 10^k*f/10^k for appropriate \n\ 32 | $k$. Does no reduction of numbers. In particular this may cause overflow in \n\ 33 | old versions of lrs input (and I'm not about cdd).\n\ 34 | " 35 | 36 | int usage(){ fprintf(stderr,"\n%s\n",rcsid);fprintf(stderr,DOCSTRING); exit(1); } 37 | #define CHECK_HELP if (argc > 1 && argv[1][0]=='-' && argv[1][1]=='h') usage(); 38 | 39 | 40 | int main(argc,argv) 41 | int argc; 42 | char **argv; 43 | { 44 | long int m,n; 45 | int i,j; 46 | 47 | long atol(); 48 | 49 | char buf[BUFSIZ]; 50 | 51 | CHECK_HELP; 52 | 53 | if(argc > 1 ) 54 | /* command line argument overides stdin */ 55 | { 56 | if ((lrs_ifp = fopen (argv[1], "r")) == NULL) 57 | { 58 | printf ("\nBad input file name\n"); 59 | return(1); 60 | } 61 | } 62 | else 63 | lrs_ifp=stdin; 64 | 65 | 66 | while ( fgets(buf,BUFSIZ,lrs_ifp) !=NULL ) 67 | { 68 | fputs(buf,stdout); 69 | if (strncmp(buf,"begin",5)==0) break; 70 | } 71 | 72 | 73 | if (fscanf(lrs_ifp,"%ld %ld %s",&m,&n,buf)==EOF){ 74 | fprintf(stderr,"No begin line"); 75 | exit(1); 76 | } 77 | 78 | printf("%ld %ld rational\n",m,n); 79 | 80 | 81 | for (i=0;i 2 | #include 3 | #include 4 | 5 | /****************************************************************** 6 | December 30,2019 7 | Program to make a cross reference list between H and V reps 8 | Usage (same for ext file): 9 | Add printcobasis and incidence options to cube.ine 10 | 11 | % lrs cube.ine cube.ext 12 | % xref cube.ext 13 | 14 | Edit the output file cube.ext.x so that the second line contains two integers 15 | 16 | rows maxindex 17 | 18 | where rows >= # output lines in cube.ext.x 19 | maxindex >= # input lines in cube.ine 20 | 21 | or just use 0 0 and the program will tell you which values to use 22 | 23 | % hvref cube.ext.x 24 | 25 | gives V to H and H to V cross reference tables 26 | **********************************************************************/ 27 | int main(int argc, char *argv[]) { 28 | int i=0, j=0; 29 | int first=1; 30 | int Hrep=1; 31 | int rows=0, maxindex=0; 32 | int inrows=0, outrows=0; 33 | int rowindex; 34 | char s[10000]; 35 | int x; 36 | 37 | int *nrow; 38 | int **table; 39 | 40 | FILE *lrs_ifp; 41 | 42 | if(argc > 1) 43 | { 44 | if((lrs_ifp = fopen (argv[1], "r")) == NULL) 45 | { 46 | printf ("\nBad input file name\n"); 47 | return 1; 48 | } 49 | } 50 | else 51 | lrs_ifp=stdin; 52 | 53 | x=fscanf(lrs_ifp,"%s", s); 54 | while(first && x != EOF ) 55 | { 56 | if(strcmp(s,"H-representation") == 0 || strcmp(s,"V-representation") == 0) 57 | { 58 | if(strcmp(s,"H-representation") == 0) 59 | printf("\nH-representation"); 60 | else 61 | { 62 | printf("\nV-representation"); 63 | Hrep=0; 64 | } 65 | first=0; 66 | fscanf(lrs_ifp,"%d %d",&rows,&maxindex); 67 | printf("\n%d %d",rows,maxindex); 68 | 69 | nrow=(int *)malloc((maxindex+2)*sizeof(int)); 70 | table = (int **)malloc((rows+2) * (maxindex+2) * sizeof(int)); 71 | for (i=0;i<=maxindex+1;i++) 72 | table[i] = (int*)malloc((rows+2) * sizeof(int)); 73 | for(i=0;i<=maxindex;i++) 74 | { 75 | nrow[i]=0; 76 | for(j=0;j<=rows;j++) 77 | table[i][j]=0; 78 | } 79 | } 80 | if(first) 81 | x=fscanf(lrs_ifp,"%s", s); 82 | } 83 | while(x != EOF) 84 | { 85 | first=1; 86 | x=fscanf(lrs_ifp,"%s", s); 87 | while(x != EOF && strcmp(s,"#") !=0) 88 | { 89 | i=atoi(s); 90 | if(first==1) 91 | { 92 | printf("\n%d:",i); 93 | rowindex=i; 94 | inrows++; 95 | } 96 | else 97 | { 98 | if(i>outrows) 99 | outrows=i; 100 | if(i <= maxindex && nrow[i] < rows) 101 | { 102 | nrow[i]++; 103 | table[i][ nrow[i]]=rowindex; 104 | } 105 | printf(" %d",i); 106 | } 107 | x=fscanf(lrs_ifp,"%s", s); 108 | first=0; 109 | } 110 | } 111 | 112 | if(inrows <= rows && outrows <= maxindex) 113 | { 114 | if(Hrep) 115 | printf("\n\nV-representation"); 116 | else 117 | printf("\n\nH-representation"); 118 | printf("\n%d %d",outrows,inrows); 119 | 120 | for(i=1;i<=outrows;i++) 121 | { 122 | printf("\n%d:",i); 123 | for(j=1;j<=nrow[i];j++) 124 | printf(" %d",table[i][j]); 125 | } 126 | } 127 | else 128 | printf("\n\nInput parameters too small, rerun with:"); 129 | 130 | printf("\ninput rows=%d maxindex=%d",inrows,outrows); 131 | printf("\n"); 132 | free(nrow); 133 | for (i=0;i<=maxindex+1;i++) 134 | free(table[i]); 135 | free(table); 136 | return 0; 137 | } 138 | 139 | -------------------------------------------------------------------------------- /ine/cocoa13/bv4.ine: -------------------------------------------------------------------------------- 1 | *ext form for perm 2 | H-representation 3 | linearity 11 1 2 3 4 5 6 7 8 9 10 11 4 | begin 5 | 27 21 integer 6 | 0 4 0 0 0 3 0 0 0 2 0 0 0 1 0 0 0 -1 0 0 0 7 | 0 0 4 0 0 0 3 0 0 0 2 0 0 0 1 0 0 0 -1 0 0 8 | 0 0 0 4 0 0 0 3 0 0 0 2 0 0 0 1 0 0 0 -1 0 9 | 0 0 0 0 4 0 0 0 3 0 0 0 2 0 0 0 1 0 0 0 -1 10 | 11 | -1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 | -1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 13 | -1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 14 | -1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 15 | 16 | -1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 17 | -1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 18 | -1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 19 | 20 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 27 | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 28 | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 29 | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 30 | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 31 | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 32 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 33 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 34 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 36 | end 37 | -------------------------------------------------------------------------------- /ine/cocoa13/bv5.ine: -------------------------------------------------------------------------------- 1 | *ext form for perm 2 | H-representation 3 | linearity 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 4 | begin 5 | 39 31 integer 6 | 0 5 0 0 0 0 4 0 0 0 0 3 0 0 0 0 2 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 7 | 0 0 5 0 0 0 0 4 0 0 0 0 3 0 0 0 0 2 0 0 0 0 1 0 0 0 0 -1 0 0 0 8 | 0 0 0 5 0 0 0 0 4 0 0 0 0 3 0 0 0 0 2 0 0 0 0 1 0 0 0 0 -1 0 0 9 | 0 0 0 0 5 0 0 0 0 4 0 0 0 0 3 0 0 0 0 2 0 0 0 0 1 0 0 0 0 -1 0 10 | 0 0 0 0 0 5 0 0 0 0 4 0 0 0 0 3 0 0 0 0 2 0 0 0 0 1 0 0 0 0 -1 11 | 12 | -1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 | -1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 | -1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 | -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 16 | -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 17 | 18 | -1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 19 | -1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 20 | -1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 21 | -1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 22 | 23 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 40 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 41 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 42 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 43 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 44 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 45 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 46 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 47 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 48 | end 49 | -------------------------------------------------------------------------------- /ine/cocoa13/bv6.ine: -------------------------------------------------------------------------------- 1 | *ext form for perm 2 | H-representation 3 | linearity 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 4 | begin 5 | 53 43 integer 6 | 0 6 0 0 0 0 0 5 0 0 0 0 0 4 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 7 | 0 0 6 0 0 0 0 0 5 0 0 0 0 0 4 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 8 | 0 0 0 6 0 0 0 0 0 5 0 0 0 0 0 4 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 9 | 0 0 0 0 6 0 0 0 0 0 5 0 0 0 0 0 4 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 10 | 0 0 0 0 0 6 0 0 0 0 0 5 0 0 0 0 0 4 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 -1 0 11 | 0 0 0 0 0 0 6 0 0 0 0 0 5 0 0 0 0 0 4 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 -1 12 | 13 | -1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 | -1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 | -1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 | -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 | -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 18 | -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 19 | 20 | -1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 21 | -1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 22 | -1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 23 | -1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 24 | -1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 25 | 26 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 55 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 56 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 57 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 58 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 59 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 60 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 61 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 62 | end 63 | -------------------------------------------------------------------------------- /ine/cocoa13/c28-14.ext: -------------------------------------------------------------------------------- 1 | *cyclic polytope n=28, d=14 2 | V-representation 3 | begin 4 | 28 15 integer 5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 7 | 1 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 8 | 1 4 16 64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 9 | 1 5 25 125 625 3125 15625 78125 390625 1953125 9765625 48828125 244140625 1220703125 6103515625 10 | 1 6 36 216 1296 7776 46656 279936 1679616 10077696 60466176 362797056 2176782336 13060694016 78364164096 11 | 1 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249 1977326743 13841287201 96889010407 678223072849 12 | 1 8 64 512 4096 32768 262144 2097152 16777216 134217728 1073741824 8589934592 68719476736 549755813888 4398046511104 13 | 1 9 81 729 6561 59049 531441 4782969 43046721 387420489 3486784401 31381059609 282429536481 2541865828329 22876792454961 14 | 1 10 100 1000 10000 100000 1000000 10000000 100000000 1000000000 10000000000 100000000000 1000000000000 10000000000000 100000000000000 15 | 1 11 121 1331 14641 161051 1771561 19487171 214358881 2357947691 25937424601 285311670611 3138428376721 34522712143931 379749833583241 16 | 1 12 144 1728 20736 248832 2985984 35831808 429981696 5159780352 61917364224 743008370688 8916100448256 106993205379072 1283918464548864 17 | 1 13 169 2197 28561 371293 4826809 62748517 815730721 10604499373 137858491849 1792160394037 23298085122481 302875106592253 3937376385699289 18 | 1 14 196 2744 38416 537824 7529536 105413504 1475789056 20661046784 289254654976 4049565169664 56693912375296 793714773254144 11112006825558016 19 | 1 15 225 3375 50625 759375 11390625 170859375 2562890625 38443359375 576650390625 8649755859375 129746337890625 1946195068359375 29192926025390625 20 | 1 16 256 4096 65536 1048576 16777216 268435456 4294967296 68719476736 1099511627776 17592186044416 281474976710656 4503599627370496 72057594037927936 21 | 1 17 289 4913 83521 1419857 24137569 410338673 6975757441 118587876497 2015993900449 34271896307633 582622237229761 9904578032905937 168377826559400929 22 | 1 18 324 5832 104976 1889568 34012224 612220032 11019960576 198359290368 3570467226624 64268410079232 1156831381426176 20822964865671168 374813367582081024 23 | 1 19 361 6859 130321 2476099 47045881 893871739 16983563041 322687697779 6131066257801 116490258898219 2213314919066161 42052983462257059 799006685782884121 24 | 1 20 400 8000 160000 3200000 64000000 1280000000 25600000000 512000000000 10240000000000 204800000000000 4096000000000000 81920000000000000 1638400000000000000 25 | 1 21 441 9261 194481 4084101 85766121 1801088541 37822859361 794280046581 16679880978201 350277500542221 7355827511386641 154472377739119461 3243919932521508681 26 | 1 22 484 10648 234256 5153632 113379904 2494357888 54875873536 1207269217792 26559922791424 584318301411328 12855002631049216 282810057883082752 6221821273427820544 27 | 1 23 529 12167 279841 6436343 148035889 3404825447 78310985281 1801152661463 41426511213649 952809757913927 21914624432020321 504036361936467383 11592836324538749809 28 | 1 24 576 13824 331776 7962624 191102976 4586471424 110075314176 2641807540224 63403380965376 1521681143169024 36520347436056576 876488338465357824 21035720123168587776 29 | 1 25 625 15625 390625 9765625 244140625 6103515625 152587890625 3814697265625 95367431640625 2384185791015625 59604644775390625 1490116119384765625 37252902984619140625 30 | 1 26 676 17576 456976 11881376 308915776 8031810176 208827064576 5429503678976 141167095653376 3670344486987776 95428956661682176 2481152873203736576 64509974703297150976 31 | 1 27 729 19683 531441 14348907 387420489 10460353203 282429536481 7625597484987 205891132094649 5559060566555523 150094635296999121 4052555153018976267 109418989131512359209 32 | 1 28 784 21952 614656 17210368 481890304 13492928512 377801998336 10578455953408 296196766695424 8293509467471872 232218265089212416 6502111422497947648 182059119829942534144 33 | end 34 | -------------------------------------------------------------------------------- /ine/cocoa13/c30-15.ext: -------------------------------------------------------------------------------- 1 | *cyclic polytope n=30, d=15 2 | V-representation 3 | begin 4 | 30 16 integer 5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 7 | 1 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 8 | 1 4 16 64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 1073741824 9 | 1 5 25 125 625 3125 15625 78125 390625 1953125 9765625 48828125 244140625 1220703125 6103515625 30517578125 10 | 1 6 36 216 1296 7776 46656 279936 1679616 10077696 60466176 362797056 2176782336 13060694016 78364164096 470184984576 11 | 1 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249 1977326743 13841287201 96889010407 678223072849 4747561509943 12 | 1 8 64 512 4096 32768 262144 2097152 16777216 134217728 1073741824 8589934592 68719476736 549755813888 4398046511104 35184372088832 13 | 1 9 81 729 6561 59049 531441 4782969 43046721 387420489 3486784401 31381059609 282429536481 2541865828329 22876792454961 205891132094649 14 | 1 10 100 1000 10000 100000 1000000 10000000 100000000 1000000000 10000000000 100000000000 1000000000000 10000000000000 100000000000000 1000000000000000 15 | 1 11 121 1331 14641 161051 1771561 19487171 214358881 2357947691 25937424601 285311670611 3138428376721 34522712143931 379749833583241 4177248169415651 16 | 1 12 144 1728 20736 248832 2985984 35831808 429981696 5159780352 61917364224 743008370688 8916100448256 106993205379072 1283918464548864 15407021574586368 17 | 1 13 169 2197 28561 371293 4826809 62748517 815730721 10604499373 137858491849 1792160394037 23298085122481 302875106592253 3937376385699289 51185893014090757 18 | 1 14 196 2744 38416 537824 7529536 105413504 1475789056 20661046784 289254654976 4049565169664 56693912375296 793714773254144 11112006825558016 155568095557812224 19 | 1 15 225 3375 50625 759375 11390625 170859375 2562890625 38443359375 576650390625 8649755859375 129746337890625 1946195068359375 29192926025390625 437893890380859375 20 | 1 16 256 4096 65536 1048576 16777216 268435456 4294967296 68719476736 1099511627776 17592186044416 281474976710656 4503599627370496 72057594037927936 1152921504606846976 21 | 1 17 289 4913 83521 1419857 24137569 410338673 6975757441 118587876497 2015993900449 34271896307633 582622237229761 9904578032905937 168377826559400929 2862423051509815793 22 | 1 18 324 5832 104976 1889568 34012224 612220032 11019960576 198359290368 3570467226624 64268410079232 1156831381426176 20822964865671168 374813367582081024 6746640616477458432 23 | 1 19 361 6859 130321 2476099 47045881 893871739 16983563041 322687697779 6131066257801 116490258898219 2213314919066161 42052983462257059 799006685782884121 15181127029874798299 24 | 1 20 400 8000 160000 3200000 64000000 1280000000 25600000000 512000000000 10240000000000 204800000000000 4096000000000000 81920000000000000 1638400000000000000 32768000000000000000 25 | 1 21 441 9261 194481 4084101 85766121 1801088541 37822859361 794280046581 16679880978201 350277500542221 7355827511386641 154472377739119461 3243919932521508681 68122318582951682301 26 | 1 22 484 10648 234256 5153632 113379904 2494357888 54875873536 1207269217792 26559922791424 584318301411328 12855002631049216 282810057883082752 6221821273427820544 136880068015412051968 27 | 1 23 529 12167 279841 6436343 148035889 3404825447 78310985281 1801152661463 41426511213649 952809757913927 21914624432020321 504036361936467383 11592836324538749809 266635235464391245607 28 | 1 24 576 13824 331776 7962624 191102976 4586471424 110075314176 2641807540224 63403380965376 1521681143169024 36520347436056576 876488338465357824 21035720123168587776 504857282956046106624 29 | 1 25 625 15625 390625 9765625 244140625 6103515625 152587890625 3814697265625 95367431640625 2384185791015625 59604644775390625 1490116119384765625 37252902984619140625 931322574615478515625 30 | 1 26 676 17576 456976 11881376 308915776 8031810176 208827064576 5429503678976 141167095653376 3670344486987776 95428956661682176 2481152873203736576 64509974703297150976 1677259342285725925376 31 | 1 27 729 19683 531441 14348907 387420489 10460353203 282429536481 7625597484987 205891132094649 5559060566555523 150094635296999121 4052555153018976267 109418989131512359209 2954312706550833698643 32 | 1 28 784 21952 614656 17210368 481890304 13492928512 377801998336 10578455953408 296196766695424 8293509467471872 232218265089212416 6502111422497947648 182059119829942534144 5097655355238390956032 33 | 1 29 841 24389 707281 20511149 594823321 17249876309 500246412961 14507145975869 420707233300201 12200509765705829 353814783205469041 10260628712958602189 297558232675799463481 8629188747598184440949 34 | 1 30 900 27000 810000 24300000 729000000 21870000000 656100000000 19683000000000 590490000000000 17714700000000000 531441000000000000 15943230000000000000 478296900000000000000 14348907000000000000000 35 | end -------------------------------------------------------------------------------- /ine/cocoa13/perm4.ine: -------------------------------------------------------------------------------- 1 | *permutahedron n=4 2 | H-representation 3 | begin 4 | 15 5 integer 5 | -10 1 1 1 1 6 | 9 -1 -1 -1 0 7 | 9 -1 -1 0 -1 8 | 9 -1 0 -1 -1 9 | 9 0 -1 -1 -1 10 | 7 -1 -1 0 0 11 | 7 -1 0 -1 0 12 | 7 -1 0 0 -1 13 | 7 0 -1 -1 0 14 | 7 0 -1 0 -1 15 | 7 0 0 -1 -1 16 | 4 -1 0 0 0 17 | 4 0 -1 0 0 18 | 4 0 0 -1 0 19 | 4 0 0 0 -1 20 | end 21 | linearity 1 1 22 | -------------------------------------------------------------------------------- /ine/cocoa13/perm5.ine: -------------------------------------------------------------------------------- 1 | *permutahedron n=5 2 | H-representation 3 | linearity 1 1 4 | begin 5 | 31 6 integer 6 | -15 1 1 1 1 1 7 | 14 -1 -1 -1 -1 0 8 | 14 -1 -1 -1 0 -1 9 | 14 -1 -1 0 -1 -1 10 | 14 -1 0 -1 -1 -1 11 | 14 0 -1 -1 -1 -1 12 | 12 -1 -1 -1 0 0 13 | 12 -1 -1 0 -1 0 14 | 12 -1 -1 0 0 -1 15 | 12 -1 0 -1 -1 0 16 | 12 -1 0 -1 0 -1 17 | 12 -1 0 0 -1 -1 18 | 12 0 -1 -1 -1 0 19 | 12 0 -1 -1 0 -1 20 | 12 0 -1 0 -1 -1 21 | 12 0 0 -1 -1 -1 22 | 9 -1 -1 0 0 0 23 | 9 -1 0 -1 0 0 24 | 9 -1 0 0 -1 0 25 | 9 -1 0 0 0 -1 26 | 9 0 -1 -1 0 0 27 | 9 0 -1 0 -1 0 28 | 9 0 -1 0 0 -1 29 | 9 0 0 -1 -1 0 30 | 9 0 0 -1 0 -1 31 | 9 0 0 0 -1 -1 32 | 5 -1 0 0 0 0 33 | 5 0 -1 0 0 0 34 | 5 0 0 -1 0 0 35 | 5 0 0 0 -1 0 36 | 5 0 0 0 0 -1 37 | end 38 | linearity 1 1 39 | 40 | -------------------------------------------------------------------------------- /ine/cocoa13/perm6.ine: -------------------------------------------------------------------------------- 1 | *permutahedron n=6 2 | H-representation 3 | linearity 1 1 4 | begin 5 | 63 7 integer 6 | -21 1 1 1 1 1 1 7 | 20 -1 -1 -1 -1 -1 0 8 | 20 -1 -1 -1 -1 0 -1 9 | 20 -1 -1 -1 0 -1 -1 10 | 20 -1 -1 0 -1 -1 -1 11 | 20 -1 0 -1 -1 -1 -1 12 | 20 0 -1 -1 -1 -1 -1 13 | 18 -1 -1 -1 -1 0 0 14 | 18 -1 -1 -1 0 -1 0 15 | 18 -1 -1 -1 0 0 -1 16 | 18 -1 -1 0 -1 -1 0 17 | 18 -1 -1 0 -1 0 -1 18 | 18 -1 -1 0 0 -1 -1 19 | 18 -1 0 -1 -1 -1 0 20 | 18 -1 0 -1 -1 0 -1 21 | 18 -1 0 -1 0 -1 -1 22 | 18 -1 0 0 -1 -1 -1 23 | 18 0 -1 -1 -1 -1 0 24 | 18 0 -1 -1 -1 0 -1 25 | 18 0 -1 -1 0 -1 -1 26 | 18 0 -1 0 -1 -1 -1 27 | 18 0 0 -1 -1 -1 -1 28 | 15 -1 -1 -1 0 0 0 29 | 15 -1 -1 0 -1 0 0 30 | 15 -1 -1 0 0 -1 0 31 | 15 -1 -1 0 0 0 -1 32 | 15 -1 0 -1 -1 0 0 33 | 15 -1 0 -1 0 -1 0 34 | 15 -1 0 -1 0 0 -1 35 | 15 -1 0 0 -1 -1 0 36 | 15 -1 0 0 -1 0 -1 37 | 15 -1 0 0 0 -1 -1 38 | 15 0 -1 -1 -1 0 0 39 | 15 0 -1 -1 0 -1 0 40 | 15 0 -1 -1 0 0 -1 41 | 15 0 -1 0 -1 -1 0 42 | 15 0 -1 0 -1 0 -1 43 | 15 0 -1 0 0 -1 -1 44 | 15 0 0 -1 -1 -1 0 45 | 15 0 0 -1 -1 0 -1 46 | 15 0 0 -1 0 -1 -1 47 | 15 0 0 0 -1 -1 -1 48 | 11 -1 -1 0 0 0 0 49 | 11 -1 0 -1 0 0 0 50 | 11 -1 0 0 -1 0 0 51 | 11 -1 0 0 0 -1 0 52 | 11 -1 0 0 0 0 -1 53 | 11 0 -1 -1 0 0 0 54 | 11 0 -1 0 -1 0 0 55 | 11 0 -1 0 0 -1 0 56 | 11 0 -1 0 0 0 -1 57 | 11 0 0 -1 -1 0 0 58 | 11 0 0 -1 0 -1 0 59 | 11 0 0 -1 0 0 -1 60 | 11 0 0 0 -1 -1 0 61 | 11 0 0 0 -1 0 -1 62 | 11 0 0 0 0 -1 -1 63 | 6 -1 0 0 0 0 0 64 | 6 0 -1 0 0 0 0 65 | 6 0 0 -1 0 0 0 66 | 6 0 0 0 -1 0 0 67 | 6 0 0 0 0 -1 0 68 | 6 0 0 0 0 0 -1 69 | end 70 | linearity 1 1 71 | -------------------------------------------------------------------------------- /ine/cocoa13/perm7.ine: -------------------------------------------------------------------------------- 1 | *permutahedron n=7 2 | H-representation 3 | linearity 1 1 4 | begin 5 | 127 8 integer 6 | -28 1 1 1 1 1 1 1 7 | 27 -1 -1 -1 -1 -1 -1 0 8 | 27 -1 -1 -1 -1 -1 0 -1 9 | 27 -1 -1 -1 -1 0 -1 -1 10 | 27 -1 -1 -1 0 -1 -1 -1 11 | 27 -1 -1 0 -1 -1 -1 -1 12 | 27 -1 0 -1 -1 -1 -1 -1 13 | 27 0 -1 -1 -1 -1 -1 -1 14 | 25 -1 -1 -1 -1 -1 0 0 15 | 25 -1 -1 -1 -1 0 -1 0 16 | 25 -1 -1 -1 -1 0 0 -1 17 | 25 -1 -1 -1 0 -1 -1 0 18 | 25 -1 -1 -1 0 -1 0 -1 19 | 25 -1 -1 -1 0 0 -1 -1 20 | 25 -1 -1 0 -1 -1 -1 0 21 | 25 -1 -1 0 -1 -1 0 -1 22 | 25 -1 -1 0 -1 0 -1 -1 23 | 25 -1 -1 0 0 -1 -1 -1 24 | 25 -1 0 -1 -1 -1 -1 0 25 | 25 -1 0 -1 -1 -1 0 -1 26 | 25 -1 0 -1 -1 0 -1 -1 27 | 25 -1 0 -1 0 -1 -1 -1 28 | 25 -1 0 0 -1 -1 -1 -1 29 | 25 0 -1 -1 -1 -1 -1 0 30 | 25 0 -1 -1 -1 -1 0 -1 31 | 25 0 -1 -1 -1 0 -1 -1 32 | 25 0 -1 -1 0 -1 -1 -1 33 | 25 0 -1 0 -1 -1 -1 -1 34 | 25 0 0 -1 -1 -1 -1 -1 35 | 22 -1 -1 -1 -1 0 0 0 36 | 22 -1 -1 -1 0 -1 0 0 37 | 22 -1 -1 -1 0 0 -1 0 38 | 22 -1 -1 -1 0 0 0 -1 39 | 22 -1 -1 0 -1 -1 0 0 40 | 22 -1 -1 0 -1 0 -1 0 41 | 22 -1 -1 0 -1 0 0 -1 42 | 22 -1 -1 0 0 -1 -1 0 43 | 22 -1 -1 0 0 -1 0 -1 44 | 22 -1 -1 0 0 0 -1 -1 45 | 22 -1 0 -1 -1 -1 0 0 46 | 22 -1 0 -1 -1 0 -1 0 47 | 22 -1 0 -1 -1 0 0 -1 48 | 22 -1 0 -1 0 -1 -1 0 49 | 22 -1 0 -1 0 -1 0 -1 50 | 22 -1 0 -1 0 0 -1 -1 51 | 22 -1 0 0 -1 -1 -1 0 52 | 22 -1 0 0 -1 -1 0 -1 53 | 22 -1 0 0 -1 0 -1 -1 54 | 22 -1 0 0 0 -1 -1 -1 55 | 22 0 -1 -1 -1 -1 0 0 56 | 22 0 -1 -1 -1 0 -1 0 57 | 22 0 -1 -1 -1 0 0 -1 58 | 22 0 -1 -1 0 -1 -1 0 59 | 22 0 -1 -1 0 -1 0 -1 60 | 22 0 -1 -1 0 0 -1 -1 61 | 22 0 -1 0 -1 -1 -1 0 62 | 22 0 -1 0 -1 -1 0 -1 63 | 22 0 -1 0 -1 0 -1 -1 64 | 22 0 -1 0 0 -1 -1 -1 65 | 22 0 0 -1 -1 -1 -1 0 66 | 22 0 0 -1 -1 -1 0 -1 67 | 22 0 0 -1 -1 0 -1 -1 68 | 22 0 0 -1 0 -1 -1 -1 69 | 22 0 0 0 -1 -1 -1 -1 70 | 18 -1 -1 -1 0 0 0 0 71 | 18 -1 -1 0 -1 0 0 0 72 | 18 -1 -1 0 0 -1 0 0 73 | 18 -1 -1 0 0 0 -1 0 74 | 18 -1 -1 0 0 0 0 -1 75 | 18 -1 0 -1 -1 0 0 0 76 | 18 -1 0 -1 0 -1 0 0 77 | 18 -1 0 -1 0 0 -1 0 78 | 18 -1 0 -1 0 0 0 -1 79 | 18 -1 0 0 -1 -1 0 0 80 | 18 -1 0 0 -1 0 -1 0 81 | 18 -1 0 0 -1 0 0 -1 82 | 18 -1 0 0 0 -1 -1 0 83 | 18 -1 0 0 0 -1 0 -1 84 | 18 -1 0 0 0 0 -1 -1 85 | 18 0 -1 -1 -1 0 0 0 86 | 18 0 -1 -1 0 -1 0 0 87 | 18 0 -1 -1 0 0 -1 0 88 | 18 0 -1 -1 0 0 0 -1 89 | 18 0 -1 0 -1 -1 0 0 90 | 18 0 -1 0 -1 0 -1 0 91 | 18 0 -1 0 -1 0 0 -1 92 | 18 0 -1 0 0 -1 -1 0 93 | 18 0 -1 0 0 -1 0 -1 94 | 18 0 -1 0 0 0 -1 -1 95 | 18 0 0 -1 -1 -1 0 0 96 | 18 0 0 -1 -1 0 -1 0 97 | 18 0 0 -1 -1 0 0 -1 98 | 18 0 0 -1 0 -1 -1 0 99 | 18 0 0 -1 0 -1 0 -1 100 | 18 0 0 -1 0 0 -1 -1 101 | 18 0 0 0 -1 -1 -1 0 102 | 18 0 0 0 -1 -1 0 -1 103 | 18 0 0 0 -1 0 -1 -1 104 | 18 0 0 0 0 -1 -1 -1 105 | 13 -1 -1 0 0 0 0 0 106 | 13 -1 0 -1 0 0 0 0 107 | 13 -1 0 0 -1 0 0 0 108 | 13 -1 0 0 0 -1 0 0 109 | 13 -1 0 0 0 0 -1 0 110 | 13 -1 0 0 0 0 0 -1 111 | 13 0 -1 -1 0 0 0 0 112 | 13 0 -1 0 -1 0 0 0 113 | 13 0 -1 0 0 -1 0 0 114 | 13 0 -1 0 0 0 -1 0 115 | 13 0 -1 0 0 0 0 -1 116 | 13 0 0 -1 -1 0 0 0 117 | 13 0 0 -1 0 -1 0 0 118 | 13 0 0 -1 0 0 -1 0 119 | 13 0 0 -1 0 0 0 -1 120 | 13 0 0 0 -1 -1 0 0 121 | 13 0 0 0 -1 0 -1 0 122 | 13 0 0 0 -1 0 0 -1 123 | 13 0 0 0 0 -1 -1 0 124 | 13 0 0 0 0 -1 0 -1 125 | 13 0 0 0 0 0 -1 -1 126 | 7 -1 0 0 0 0 0 0 127 | 7 0 -1 0 0 0 0 0 128 | 7 0 0 -1 0 0 0 0 129 | 7 0 0 0 -1 0 0 0 130 | 7 0 0 0 0 -1 0 0 131 | 7 0 0 0 0 0 -1 0 132 | 7 0 0 0 0 0 0 -1 133 | end 134 | linearity 1 1 135 | -------------------------------------------------------------------------------- /ine/metric/cp4.ine: -------------------------------------------------------------------------------- 1 | cp4.ine 2 | H-representation 3 | begin 4 | 16 7 rational 5 | 2 0 -1 -1 0 0 -1 6 | 2 -1 -1 0 -1 0 0 7 | 2 0 0 0 -1 -1 -1 8 | 2 -1 0 -1 0 -1 0 9 | 0 0 0 0 1 1 -1 10 | 0 -1 0 1 0 1 0 11 | 0 0 1 1 0 0 -1 12 | 0 -1 1 0 1 0 0 13 | 0 1 0 -1 0 1 0 14 | 0 0 0 0 -1 1 1 15 | 0 1 1 0 -1 0 0 16 | 0 0 1 -1 0 0 1 17 | 0 1 -1 0 1 0 0 18 | 0 0 -1 1 0 0 1 19 | 0 1 0 1 0 -1 0 20 | 0 0 0 0 1 -1 1 21 | end 22 | -------------------------------------------------------------------------------- /ine/metric/cp5.ine: -------------------------------------------------------------------------------- 1 | cp5.ine 2 | *6 point cut polytope 3 | H-representation 4 | begin 5 | 56 11 rational 6 | 2 0 0 0 0 0 0 0 -1 -1 -1 7 | 2 0 0 0 0 0 -1 -1 0 0 -1 8 | 2 0 0 0 0 -1 0 -1 0 -1 0 9 | 0 1 0 0 1 0 0 -1 0 0 0 10 | 0 0 1 0 1 0 0 0 0 -1 0 11 | 0 0 0 1 1 0 0 0 0 0 -1 12 | 2 1 1 1 1 -1 -1 -1 -1 -1 -1 13 | 0 0 1 1 0 0 0 0 -1 0 0 14 | 0 -1 1 0 0 1 0 0 0 0 0 15 | 0 -1 1 1 1 1 1 1 -1 -1 -1 16 | 0 0 0 0 0 1 1 0 -1 0 0 17 | 0 0 0 0 0 1 0 -1 0 1 0 18 | 0 0 1 0 -1 0 0 0 0 1 0 19 | 2 -1 1 -1 -1 1 -1 -1 1 1 -1 20 | 2 -1 0 0 -1 0 0 -1 0 0 0 21 | 0 -1 0 1 0 0 1 0 0 0 0 22 | 0 0 0 0 0 0 1 -1 0 0 1 23 | 0 -1 1 1 -1 1 1 -1 -1 1 1 24 | 0 0 0 1 -1 0 0 0 0 0 1 25 | 2 -1 -1 1 -1 -1 1 -1 1 -1 1 26 | 0 1 0 1 0 0 -1 0 0 0 0 27 | 0 0 0 0 0 1 0 1 0 -1 0 28 | 0 0 0 0 0 1 -1 0 1 0 0 29 | 0 1 -1 0 0 1 0 0 0 0 0 30 | 0 1 -1 1 1 1 -1 -1 1 1 -1 31 | 0 1 0 0 -1 0 0 1 0 0 0 32 | 0 1 1 1 -1 -1 -1 1 -1 1 1 33 | 2 1 -1 -1 -1 1 1 1 -1 -1 -1 34 | 2 0 -1 0 -1 0 0 0 0 -1 0 35 | 0 0 -1 1 0 0 0 0 1 0 0 36 | 0 0 0 0 0 0 0 0 1 -1 1 37 | 0 1 -1 1 -1 1 -1 1 1 -1 1 38 | 0 1 1 0 0 -1 0 0 0 0 0 39 | 0 0 0 0 0 0 1 1 0 0 -1 40 | 0 0 0 0 0 -1 1 0 1 0 0 41 | 0 1 0 -1 0 0 1 0 0 0 0 42 | 0 1 1 -1 1 -1 1 -1 1 -1 1 43 | 2 0 0 -1 -1 0 0 0 0 0 -1 44 | 0 0 1 -1 0 0 0 0 1 0 0 45 | 0 0 0 0 0 0 0 0 1 1 -1 46 | 0 1 1 -1 -1 -1 1 1 1 1 -1 47 | 2 0 0 0 0 -1 -1 0 -1 0 0 48 | 2 -1 0 -1 0 0 -1 0 0 0 0 49 | 0 -1 0 0 1 0 0 1 0 0 0 50 | 0 0 0 -1 1 0 0 0 0 0 1 51 | 2 -1 -1 -1 1 -1 -1 1 -1 1 1 52 | 0 0 0 0 0 0 -1 1 0 0 1 53 | 0 -1 1 -1 1 1 -1 1 1 -1 1 54 | 2 0 -1 -1 0 0 0 0 -1 0 0 55 | 0 0 -1 0 1 0 0 0 0 1 0 56 | 0 0 0 0 0 0 0 0 -1 1 1 57 | 0 1 -1 -1 1 1 1 -1 -1 1 1 58 | 0 0 0 0 0 -1 0 1 0 1 0 59 | 0 -1 -1 1 1 -1 1 1 1 1 -1 60 | 2 -1 -1 0 0 -1 0 0 0 0 0 61 | 6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 62 | end 63 | -------------------------------------------------------------------------------- /ine/metric/mp5.ine: -------------------------------------------------------------------------------- 1 | mp5.ine 2 | *metric polytope on 5 points 3 | begin 4 | 40 11 integer 5 | 2 -1 -1 0 0 -1 0 0 0 0 0 6 | 0 1 1 0 0 -1 0 0 0 0 0 7 | 0 -1 0 1 0 0 1 0 0 0 0 8 | 0 1 0 1 0 0 -1 0 0 0 0 9 | 0 -1 0 0 1 0 0 1 0 0 0 10 | 0 1 0 0 1 0 0 -1 0 0 0 11 | 0 0 -1 1 0 0 0 0 1 0 0 12 | 0 0 1 -1 0 0 0 0 1 0 0 13 | 0 0 1 1 0 0 0 0 -1 0 0 14 | 0 0 -1 0 1 0 0 0 0 1 0 15 | 0 0 1 0 -1 0 0 0 0 1 0 16 | 0 0 1 0 1 0 0 0 0 -1 0 17 | 0 0 0 1 1 0 0 0 0 0 -1 18 | 0 0 0 1 -1 0 0 0 0 0 1 19 | 0 0 0 -1 1 0 0 0 0 0 1 20 | 2 0 0 0 0 -1 -1 0 -1 0 0 21 | 0 0 0 0 0 1 1 0 -1 0 0 22 | 0 0 0 0 0 -1 1 0 1 0 0 23 | 0 0 0 0 0 1 -1 0 1 0 0 24 | 2 0 0 0 0 -1 0 -1 0 -1 0 25 | 0 0 0 0 0 1 0 1 0 -1 0 26 | 0 0 0 0 0 -1 0 1 0 1 0 27 | 0 0 0 0 0 1 0 -1 0 1 0 28 | 2 0 0 0 0 0 -1 -1 0 0 -1 29 | 0 0 0 0 0 0 -1 1 0 0 1 30 | 0 0 0 0 0 0 1 -1 0 0 1 31 | 0 0 0 0 0 0 1 1 0 0 -1 32 | 2 0 0 0 0 0 0 0 -1 -1 -1 33 | 0 0 0 0 0 0 0 0 1 -1 1 34 | 0 0 0 0 0 0 0 0 -1 1 1 35 | 0 0 0 0 0 0 0 0 1 1 -1 36 | 0 -1 1 0 0 1 0 0 0 0 0 37 | 0 1 -1 0 0 1 0 0 0 0 0 38 | 2 -1 0 -1 0 0 -1 0 0 0 0 39 | 0 1 0 -1 0 0 1 0 0 0 0 40 | 2 -1 0 0 -1 0 0 -1 0 0 0 41 | 0 1 0 0 -1 0 0 1 0 0 0 42 | 2 0 -1 -1 0 0 0 0 -1 0 0 43 | 2 0 -1 0 -1 0 0 0 0 -1 0 44 | 2 0 0 -1 -1 0 0 0 0 0 -1 45 | end 46 | -------------------------------------------------------------------------------- /ine/metric/mp6.ine: -------------------------------------------------------------------------------- 1 | mp6.ine 2 | *metric polytope on 6 points 3 | begin 4 | 80 16 integer 5 | 0 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 6 | 0 -1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 7 | 0 1 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 8 | 0 -1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 9 | 0 1 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 10 | 0 -1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 11 | 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 12 | 0 0 -1 1 0 0 0 0 0 0 1 0 0 0 0 0 13 | 0 0 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 14 | 0 0 1 1 0 0 0 0 0 0 -1 0 0 0 0 0 15 | 0 0 -1 0 1 0 0 0 0 0 0 1 0 0 0 0 16 | 0 0 1 0 -1 0 0 0 0 0 0 1 0 0 0 0 17 | 0 0 1 0 1 0 0 0 0 0 0 -1 0 0 0 0 18 | 0 0 -1 0 0 1 0 0 0 0 0 0 1 0 0 0 19 | 0 0 1 0 0 -1 0 0 0 0 0 0 1 0 0 0 20 | 0 0 1 0 0 1 0 0 0 0 0 0 -1 0 0 0 21 | 0 0 0 1 1 0 0 0 0 0 0 0 0 -1 0 0 22 | 0 0 0 1 -1 0 0 0 0 0 0 0 0 1 0 0 23 | 0 0 0 -1 1 0 0 0 0 0 0 0 0 1 0 0 24 | 0 0 0 1 0 1 0 0 0 0 0 0 0 0 -1 0 25 | 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 1 0 26 | 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 1 0 27 | 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 -1 28 | 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 1 29 | 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 1 30 | 2 0 0 0 0 0 -1 -1 0 0 -1 0 0 0 0 0 31 | 0 0 0 0 0 0 1 1 0 0 -1 0 0 0 0 0 32 | 0 0 0 0 0 0 -1 1 0 0 1 0 0 0 0 0 33 | 0 0 0 0 0 0 1 -1 0 0 1 0 0 0 0 0 34 | 2 0 0 0 0 0 -1 0 -1 0 0 -1 0 0 0 0 35 | 0 0 0 0 0 0 1 0 1 0 0 -1 0 0 0 0 36 | 0 0 0 0 0 0 -1 0 1 0 0 1 0 0 0 0 37 | 0 0 0 0 0 0 1 0 -1 0 0 1 0 0 0 0 38 | 2 0 0 0 0 0 -1 0 0 -1 0 0 -1 0 0 0 39 | 0 0 0 0 0 0 -1 0 0 1 0 0 1 0 0 0 40 | 0 0 0 0 0 0 1 0 0 1 0 0 -1 0 0 0 41 | 0 0 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 42 | 2 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 0 0 43 | 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 0 0 44 | 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 45 | 0 0 0 0 0 0 0 1 1 0 0 0 0 -1 0 0 46 | 2 0 0 0 0 0 0 -1 0 -1 0 0 0 0 -1 0 47 | 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 1 0 48 | 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 1 0 49 | 0 0 0 0 0 0 0 1 0 1 0 0 0 0 -1 0 50 | 2 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 -1 51 | 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 1 52 | 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 1 53 | 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 -1 54 | 2 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 0 55 | 0 0 0 0 0 0 0 0 0 0 1 1 0 -1 0 0 56 | 0 0 0 0 0 0 0 0 0 0 1 -1 0 1 0 0 57 | 0 0 0 0 0 0 0 0 0 0 -1 1 0 1 0 0 58 | 2 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0 59 | 0 0 0 0 0 0 0 0 0 0 1 0 1 0 -1 0 60 | 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 1 0 61 | 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 1 0 62 | 2 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 63 | 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 -1 64 | 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 1 65 | 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 1 66 | 2 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 67 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 68 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 69 | 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 70 | 2 -1 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 71 | 0 -1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 72 | 0 1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 73 | 2 -1 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 74 | 0 1 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 75 | 2 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 76 | 0 1 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 77 | 2 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 78 | 0 1 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 79 | 2 0 -1 -1 0 0 0 0 0 0 -1 0 0 0 0 0 80 | 2 0 -1 0 -1 0 0 0 0 0 0 -1 0 0 0 0 81 | 2 0 -1 0 0 -1 0 0 0 0 0 0 -1 0 0 0 82 | 2 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 0 0 83 | 2 0 0 -1 0 -1 0 0 0 0 0 0 0 0 -1 0 84 | 2 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 -1 85 | end 86 | -------------------------------------------------------------------------------- /ine/mit/mit31-20.ine: -------------------------------------------------------------------------------- 1 | mit31-20.ine 2 | begin 3 | 31 20 integer 4 | 1 -6 12 3 0 0 0 -12 -8 0 0 12 3 0 0 0 -6 0 1 0 5 | 1 2 -1 2 -2 0 -4 4 -4 -2 0 2 0 1 -2 2 0 0 0 1 6 | 1 0 -3 0 0 2 0 0 -2 0 4 0 0 -1 0 -2 0 2 0 -1 7 | 1 0 1 -2 -2 0 0 0 0 2 0 2 0 1 -2 0 0 0 0 -1 8 | 1 0 -3 2 -2 0 0 0 0 2 0 -2 0 1 2 0 0 0 0 -1 9 | 1 -2 -1 0 0 2 0 0 2 0 0 0 0 -1 0 0 0 -2 0 1 10 | 1 -2 -5 2 2 -4 4 4 0 2 -8 2 0 1 2 2 0 -4 0 1 11 | 1 -2 3 -2 -2 0 4 4 -4 -2 0 -2 0 1 2 -2 0 0 0 1 12 | 1 -2 -1 2 -2 0 4 -4 4 -2 0 2 0 1 -2 -2 0 0 0 1 13 | 1 -4 1 2 2 -4 0 0 4 -2 0 -2 0 1 -2 0 0 4 0 -1 14 | 1 -4 5 0 0 2 0 0 -2 0 -4 0 0 -1 0 2 0 2 0 -1 15 | 1 -6 11 2 2 -4 -4 -4 -8 2 8 2 0 1 2 -2 0 -4 0 1 16 | 1 6 12 3 0 0 0 12 8 0 0 12 3 0 0 0 6 0 1 0 17 | 1 4 4 1 0 0 0 0 0 0 0 -4 -1 0 0 0 -4 0 -1 0 18 | 1 2 0 -1 0 0 0 -4 0 0 0 0 -1 0 0 0 2 0 1 0 19 | 1 2 -4 3 0 0 0 4 -8 0 0 -4 3 0 0 0 2 0 1 0 20 | 1 0 -4 1 0 0 0 0 0 0 0 4 -1 0 0 0 0 0 -1 0 21 | 1 0 0 -3 0 0 0 0 0 0 0 0 3 0 0 0 0 0 -1 0 22 | 1 -2 -4 3 0 0 0 -4 8 0 0 -4 3 0 0 0 -2 0 1 0 23 | 1 -2 0 -1 0 0 0 4 0 0 0 0 -1 0 0 0 -2 0 1 0 24 | 1 -4 4 1 0 0 0 0 0 0 0 -4 -1 0 0 0 4 0 -1 0 25 | 1 6 11 2 2 4 4 4 8 2 8 2 0 1 2 2 0 4 0 1 26 | 1 4 5 0 0 -2 0 0 2 0 -4 0 0 -1 0 -2 0 -2 0 -1 27 | 1 4 1 2 2 4 0 0 -4 -2 0 -2 0 1 -2 0 0 -4 0 -1 28 | 1 2 3 -2 -2 0 -4 -4 4 -2 0 -2 0 1 2 2 0 0 0 1 29 | 1 2 -1 0 0 -2 0 0 -2 0 0 0 0 -1 0 0 0 2 0 1 30 | 1 2 -1 -2 2 0 4 -4 -4 2 0 -2 0 1 -2 2 0 0 0 1 31 | 1 2 -5 2 2 4 -4 -4 0 2 -8 2 0 1 2 -2 0 4 0 1 32 | 1 0 -3 -2 2 0 0 0 0 -2 0 2 0 1 2 0 0 0 0 -1 33 | 1 0 -3 0 0 -2 0 0 2 0 4 0 0 -1 0 2 0 -2 0 -1 34 | 1 -2 -1 -2 2 0 -4 4 4 2 0 -2 0 1 -2 -2 0 0 0 1 35 | end 36 | maxdepth 2 37 | estimates 10 38 | -------------------------------------------------------------------------------- /ine/mit/mit41-16.ine: -------------------------------------------------------------------------------- 1 | mit41-16.ine 2 | begin 3 | 41 16 rational 4 | 1 -1 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 5 | 1 -3 2 0 1 0 -1 0 0 0 0 0 0 0 0 0 6 | 1 1 0 -1 0 0 0 0 -1 0 0 0 0 0 0 0 7 | 1 -1 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 8 | 1 -1 -2 1 0 0 0 0 1 0 0 0 0 0 0 0 9 | 1 -3 2 1 0 0 0 0 -1 0 0 0 0 0 0 0 10 | 1 1 -1 1 -1 0 0 0 0 -1 0 0 0 0 0 0 11 | 1 1 -1 -1 1 0 0 0 0 -1 0 0 0 0 0 0 12 | 1 1 1 -1 -1 0 0 0 0 -1 0 0 0 0 0 0 13 | 1 -1 1 -1 -1 0 0 0 0 1 0 0 0 0 0 0 14 | 1 -1 -1 -1 1 0 0 0 0 1 0 0 0 0 0 0 15 | 1 -1 -1 1 -1 0 0 0 0 1 0 0 0 0 0 0 16 | 1 -3 1 1 1 0 0 0 0 -1 0 0 0 0 0 0 17 | 1 1 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 18 | 1 1 1 0 -2 0 0 0 0 0 -1 0 0 0 0 0 19 | 1 -1 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 20 | 1 -1 1 0 -2 0 0 0 0 0 1 0 0 0 0 0 21 | 1 -3 1 0 2 0 0 0 0 0 -1 0 0 0 0 0 22 | 1 0 0 0 -2 0 0 0 0 0 0 0 1 0 0 0 23 | 1 -2 0 0 0 2 0 0 0 0 0 0 -1 0 0 0 24 | 1 -4 0 0 6 -4 0 0 0 0 0 0 1 0 0 0 25 | 1 0 0 -3 0 0 0 0 0 0 0 0 0 3 0 -1 26 | 1 -2 0 3 -4 8 0 -4 0 0 0 -4 0 3 -2 1 27 | 1 -2 0 -1 0 0 0 4 0 0 0 0 0 -1 -2 1 28 | 1 -4 0 1 4 0 0 0 0 0 0 -4 0 -1 4 -1 29 | 1 -6 0 3 12 -8 0 -12 0 0 0 12 0 3 -6 1 30 | 1 3 2 0 1 0 1 0 0 0 0 0 0 0 0 0 31 | 1 1 0 0 -1 0 -1 0 0 0 0 0 0 0 0 0 32 | 1 1 -2 0 1 0 -1 0 0 0 0 0 0 0 0 0 33 | 1 -1 -2 0 1 0 1 0 0 0 0 0 0 0 0 0 34 | 1 3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 35 | 1 1 -2 1 0 0 0 0 -1 0 0 0 0 0 0 0 36 | 1 3 1 1 1 0 0 0 0 1 0 0 0 0 0 0 37 | 1 3 1 0 2 0 0 0 0 0 1 0 0 0 0 0 38 | 1 4 0 0 6 4 0 0 0 0 0 0 1 0 0 0 39 | 1 2 0 0 0 -2 0 0 0 0 0 0 -1 0 0 0 40 | 1 6 0 3 12 8 0 12 0 0 0 12 0 3 6 1 41 | 1 4 0 1 4 0 0 0 0 0 0 -4 0 -1 -4 -1 42 | 1 2 0 -1 0 0 0 -4 0 0 0 0 0 -1 2 1 43 | 1 2 0 3 -4 -8 0 4 0 0 0 -4 0 3 2 1 44 | 1 0 0 1 -4 0 0 0 0 0 0 4 0 -1 0 -1 45 | end 46 | -------------------------------------------------------------------------------- /ine/redund/cube.ine: -------------------------------------------------------------------------------- 1 | cube 2 | H-representation 3 | begin 4 | 6 4 rational 5 | 1 1 0 0 6 | 1 0 1 0 7 | 1 0 0 1 8 | 1 -1 0 0 9 | 1 0 0 -1 10 | 1 0 -1 0 11 | end 12 | redund 0 0 13 | -------------------------------------------------------------------------------- /ine/redund/ep.ine: -------------------------------------------------------------------------------- 1 | ep 2 | H-representation 3 | begin 4 | 17 4 rational 5 | 0 1 -1 0 6 | 0 0 1 -1 7 | 0 1 1 2 8 | 1 -2 0 2 9 | 691 -1562 -1562 -1562 10 | 0 1 0 -1 11 | 2/11 0 0 -1 12 | 17/142 1/2 1/2 -1 13 | 37/142 0 0 0 14 | 691/1562 -1 0 0 15 | 27/71 -1/2 1/2 0 16 | 2/11 1 1 1 17 | 4/11 0 1 1 18 | 471/1562 1/2 3/2 1 19 | 2/11 1 -1 -1 20 | 4/11 0 -1 -1 21 | 471/1562 1/2 -1/2 -1 22 | end 23 | redund 0 0 24 | -------------------------------------------------------------------------------- /ine/redund/metric80_16.ine: -------------------------------------------------------------------------------- 1 | metric80_16.ine 2 | H-representation 3 | *metric polytope on 6 points 4 | linearity 6 17 18 10 1 2 3 5 | begin 6 | 80 16 integer 7 | 0 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 8 | 0 -1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 9 | 0 1 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 10 | 0 -1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 11 | 0 1 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 12 | 0 -1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 13 | 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 14 | 0 0 -1 1 0 0 0 0 0 0 1 0 0 0 0 0 15 | 0 0 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 16 | 0 0 1 1 0 0 0 0 0 0 -1 0 0 0 0 0 17 | 0 0 -1 0 1 0 0 0 0 0 0 1 0 0 0 0 18 | 0 0 1 0 -1 0 0 0 0 0 0 1 0 0 0 0 19 | 0 0 1 0 1 0 0 0 0 0 0 -1 0 0 0 0 20 | 0 0 -1 0 0 1 0 0 0 0 0 0 1 0 0 0 21 | 0 0 1 0 0 -1 0 0 0 0 0 0 1 0 0 0 22 | 0 0 1 0 0 1 0 0 0 0 0 0 -1 0 0 0 23 | 0 0 0 1 1 0 0 0 0 0 0 0 0 -1 0 0 24 | 0 0 0 1 -1 0 0 0 0 0 0 0 0 1 0 0 25 | 0 0 0 -1 1 0 0 0 0 0 0 0 0 1 0 0 26 | 0 0 0 1 0 1 0 0 0 0 0 0 0 0 -1 0 27 | 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 1 0 28 | 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 1 0 29 | 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 -1 30 | 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 1 31 | 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 1 32 | 6 0 0 0 0 0 -1 -1 0 0 -1 0 0 0 0 0 33 | 0 0 0 0 0 0 1 1 0 0 -1 0 0 0 0 0 34 | 0 0 0 0 0 0 -1 1 0 0 1 0 0 0 0 0 35 | 0 0 0 0 0 0 1 -1 0 0 1 0 0 0 0 0 36 | 6 0 0 0 0 0 -1 0 -1 0 0 -1 0 0 0 0 37 | 0 0 0 0 0 0 1 0 1 0 0 -1 0 0 0 0 38 | 0 0 0 0 0 0 -1 0 1 0 0 1 0 0 0 0 39 | 0 0 0 0 0 0 1 0 -1 0 0 1 0 0 0 0 40 | 6 0 0 0 0 0 -1 0 0 -1 0 0 -1 0 0 0 41 | 0 0 0 0 0 0 -1 0 0 1 0 0 1 0 0 0 42 | 0 0 0 0 0 0 1 0 0 1 0 0 -1 0 0 0 43 | 0 0 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 44 | 6 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 0 0 45 | 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 0 0 46 | 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 47 | 0 0 0 0 0 0 0 1 1 0 0 0 0 -1 0 0 48 | 6 0 0 0 0 0 0 -1 0 -1 0 0 0 0 -1 0 49 | 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 1 0 50 | 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 1 0 51 | 0 0 0 0 0 0 0 1 0 1 0 0 0 0 -1 0 52 | 6 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 -1 53 | 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 1 54 | 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 1 55 | 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 -1 56 | 6 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 0 57 | 0 0 0 0 0 0 0 0 0 0 1 1 0 -1 0 0 58 | 0 0 0 0 0 0 0 0 0 0 1 -1 0 1 0 0 59 | 0 0 0 0 0 0 0 0 0 0 -1 1 0 1 0 0 60 | 6 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0 61 | 0 0 0 0 0 0 0 0 0 0 1 0 1 0 -1 0 62 | 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 1 0 63 | 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 1 0 64 | 6 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 65 | 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 -1 66 | 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 1 67 | 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 1 68 | 6 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 69 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 70 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 71 | 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 72 | 6 -1 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 73 | 0 -1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 74 | 0 1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 75 | 6 -1 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 76 | 0 1 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 77 | 6 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 78 | 0 1 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 79 | 6 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 80 | 0 1 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 81 | 6 0 -1 -1 0 0 0 0 0 0 -1 0 0 0 0 0 82 | 6 0 -1 0 -1 0 0 0 0 0 0 -1 0 0 0 0 83 | 6 0 -1 0 0 -1 0 0 0 0 0 0 -1 0 0 0 84 | 6 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 0 0 85 | 6 0 0 -1 0 -1 0 0 0 0 0 0 0 0 -1 0 86 | 6 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 -1 87 | end 88 | redund 1 80 89 | *noredundcheck 90 | -------------------------------------------------------------------------------- /ine/redund/mp5.ine: -------------------------------------------------------------------------------- 1 | *mp5.ine 2 | *metric polytope on 5 points 3 | H-representation 4 | linearity 3 1 2 3 5 | begin 6 | 40 11 integer 7 | 2 -1 -1 0 0 -1 0 0 0 0 0 8 | 0 1 1 0 0 -1 0 0 0 0 0 9 | 0 -1 0 1 0 0 1 0 0 0 0 10 | 0 1 0 1 0 0 -1 0 0 0 0 11 | 0 -1 0 0 1 0 0 1 0 0 0 12 | 0 1 0 0 1 0 0 -1 0 0 0 13 | 0 0 -1 1 0 0 0 0 1 0 0 14 | 0 0 1 -1 0 0 0 0 1 0 0 15 | 0 0 1 1 0 0 0 0 -1 0 0 16 | 0 0 -1 0 1 0 0 0 0 1 0 17 | 0 0 1 0 -1 0 0 0 0 1 0 18 | 0 0 1 0 1 0 0 0 0 -1 0 19 | 0 0 0 1 1 0 0 0 0 0 -1 20 | 0 0 0 1 -1 0 0 0 0 0 1 21 | 0 0 0 -1 1 0 0 0 0 0 1 22 | 2 0 0 0 0 -1 -1 0 -1 0 0 23 | 0 0 0 0 0 1 1 0 -1 0 0 24 | 0 0 0 0 0 -1 1 0 1 0 0 25 | 0 0 0 0 0 1 -1 0 1 0 0 26 | 2 0 0 0 0 -1 0 -1 0 -1 0 27 | 0 0 0 0 0 1 0 1 0 -1 0 28 | 0 0 0 0 0 -1 0 1 0 1 0 29 | 0 0 0 0 0 1 0 -1 0 1 0 30 | 2 0 0 0 0 0 -1 -1 0 0 -1 31 | 0 0 0 0 0 0 -1 1 0 0 1 32 | 0 0 0 0 0 0 1 -1 0 0 1 33 | 0 0 0 0 0 0 1 1 0 0 -1 34 | 2 0 0 0 0 0 0 0 -1 -1 -1 35 | 0 0 0 0 0 0 0 0 1 -1 1 36 | 0 0 0 0 0 0 0 0 -1 1 1 37 | 0 0 0 0 0 0 0 0 1 1 -1 38 | 0 -1 1 0 0 1 0 0 0 0 0 39 | 0 1 -1 0 0 1 0 0 0 0 0 40 | 2 -1 0 -1 0 0 -1 0 0 0 0 41 | 0 1 0 -1 0 0 1 0 0 0 0 42 | 2 -1 0 0 -1 0 0 -1 0 0 0 43 | 0 1 0 0 -1 0 0 1 0 0 0 44 | 2 0 -1 -1 0 0 0 0 -1 0 0 45 | 2 0 -1 0 -1 0 0 0 0 -1 0 46 | 2 0 0 -1 -1 0 0 0 0 0 -1 47 | end 48 | redund 0 0 49 | -------------------------------------------------------------------------------- /ine/redund/mp5a.ine: -------------------------------------------------------------------------------- 1 | *mp5.ine 2 | *metric polytope on 5 points 3 | *last row changed to be redundant 4 | H-representation 5 | begin 6 | 40 11 integer 7 | 2 -1 -1 0 0 -1 0 0 0 0 0 8 | 0 1 1 0 0 -1 0 0 0 0 0 9 | 0 -1 0 1 0 0 1 0 0 0 0 10 | 0 1 0 1 0 0 -1 0 0 0 0 11 | 0 -1 0 0 1 0 0 1 0 0 0 12 | 0 1 0 0 1 0 0 -1 0 0 0 13 | 0 0 -1 1 0 0 0 0 1 0 0 14 | 0 0 1 -1 0 0 0 0 1 0 0 15 | 0 0 1 1 0 0 0 0 -1 0 0 16 | 0 0 -1 0 1 0 0 0 0 1 0 17 | 0 0 1 0 -1 0 0 0 0 1 0 18 | 0 0 1 0 1 0 0 0 0 -1 0 19 | 0 0 0 1 1 0 0 0 0 0 -1 20 | 0 0 0 1 -1 0 0 0 0 0 1 21 | 0 0 0 -1 1 0 0 0 0 0 1 22 | 2 0 0 0 0 -1 -1 0 -1 0 0 23 | 0 0 0 0 0 1 1 0 -1 0 0 24 | 0 0 0 0 0 -1 1 0 1 0 0 25 | 0 0 0 0 0 1 -1 0 1 0 0 26 | 2 0 0 0 0 -1 0 -1 0 -1 0 27 | 0 0 0 0 0 1 0 1 0 -1 0 28 | 0 0 0 0 0 -1 0 1 0 1 0 29 | 0 0 0 0 0 1 0 -1 0 1 0 30 | 2 0 0 0 0 0 -1 -1 0 0 -1 31 | 0 0 0 0 0 0 -1 1 0 0 1 32 | 0 0 0 0 0 0 1 -1 0 0 1 33 | 0 0 0 0 0 0 1 1 0 0 -1 34 | 2 0 0 0 0 0 0 0 -1 -1 -1 35 | 0 0 0 0 0 0 0 0 1 -1 1 36 | 0 0 0 0 0 0 0 0 -1 1 1 37 | 0 0 0 0 0 0 0 0 1 1 -1 38 | 0 -1 1 0 0 1 0 0 0 0 0 39 | 0 1 -1 0 0 1 0 0 0 0 0 40 | 2 -1 0 -1 0 0 -1 0 0 0 0 41 | 0 1 0 -1 0 0 1 0 0 0 0 42 | 2 -1 0 0 -1 0 0 -1 0 0 0 43 | 0 1 0 0 -1 0 0 1 0 0 0 44 | 2 0 -1 -1 0 0 0 0 -1 0 0 45 | 2 0 -1 0 -1 0 0 0 0 -1 0 46 | 4 0 -2 -1 -1 0 0 0 -1 -1 0 47 | end 48 | redund 1 40 49 | verbose 50 | -------------------------------------------------------------------------------- /ine/redund/mp5b.ine: -------------------------------------------------------------------------------- 1 | *mp5.ine 2 | *metric polytope on 5 points 3 | *last row is same as first 4 | H-representation 5 | begin 6 | 41 11 integer 7 | 2 -1 -1 0 0 -1 0 0 0 0 0 8 | 0 1 1 0 0 -1 0 0 0 0 0 9 | 0 -1 0 1 0 0 1 0 0 0 0 10 | 0 1 0 1 0 0 -1 0 0 0 0 11 | 0 -1 0 0 1 0 0 1 0 0 0 12 | 0 1 0 0 1 0 0 -1 0 0 0 13 | 0 0 -1 1 0 0 0 0 1 0 0 14 | 0 0 1 -1 0 0 0 0 1 0 0 15 | 0 0 1 1 0 0 0 0 -1 0 0 16 | 0 0 -1 0 1 0 0 0 0 1 0 17 | 0 0 1 0 -1 0 0 0 0 1 0 18 | 0 0 1 0 1 0 0 0 0 -1 0 19 | 0 0 0 1 1 0 0 0 0 0 -1 20 | 0 0 0 1 -1 0 0 0 0 0 1 21 | 0 0 0 -1 1 0 0 0 0 0 1 22 | 2 0 0 0 0 -1 -1 0 -1 0 0 23 | 0 0 0 0 0 1 1 0 -1 0 0 24 | 0 0 0 0 0 -1 1 0 1 0 0 25 | 0 0 0 0 0 1 -1 0 1 0 0 26 | 2 0 0 0 0 -1 0 -1 0 -1 0 27 | 0 0 0 0 0 1 0 1 0 -1 0 28 | 0 0 0 0 0 -1 0 1 0 1 0 29 | 0 0 0 0 0 1 0 -1 0 1 0 30 | 2 0 0 0 0 0 -1 -1 0 0 -1 31 | 0 0 0 0 0 0 -1 1 0 0 1 32 | 0 0 0 0 0 0 1 -1 0 0 1 33 | 0 0 0 0 0 0 1 1 0 0 -1 34 | 2 0 0 0 0 0 0 0 -1 -1 -1 35 | 0 0 0 0 0 0 0 0 1 -1 1 36 | 0 0 0 0 0 0 0 0 -1 1 1 37 | 0 0 0 0 0 0 0 0 1 1 -1 38 | 0 -1 1 0 0 1 0 0 0 0 0 39 | 0 1 -1 0 0 1 0 0 0 0 0 40 | 2 -1 0 -1 0 0 -1 0 0 0 0 41 | 0 1 0 -1 0 0 1 0 0 0 0 42 | 2 -1 0 0 -1 0 0 -1 0 0 0 43 | 0 1 0 0 -1 0 0 1 0 0 0 44 | 2 0 -1 -1 0 0 0 0 -1 0 0 45 | 2 0 -1 0 -1 0 0 0 0 -1 0 46 | 2 0 0 -1 -1 0 0 0 0 0 -1 47 | 2 -1 -1 0 0 -1 0 0 0 0 0 48 | end 49 | redund 1 41 50 | *noredundcheck 51 | -------------------------------------------------------------------------------- /ine/redund/mp5c.ine: -------------------------------------------------------------------------------- 1 | *mp5.ine 2 | *metric polytope on 5 points 3 | H-representation 4 | linearity 3 1 2 3 5 | begin 6 | 40 11 integer 7 | 2 -1 -1 0 0 -1 0 0 0 0 0 8 | 0 1 1 0 0 -1 0 0 0 0 0 9 | 0 -1 0 1 0 0 1 0 0 0 0 10 | 0 1 0 1 0 0 -1 0 0 0 0 11 | 0 -1 0 0 1 0 0 1 0 0 0 12 | 0 1 0 0 1 0 0 -1 0 0 0 13 | 0 0 -1 1 0 0 0 0 1 0 0 14 | 0 0 1 -1 0 0 0 0 1 0 0 15 | 0 0 1 1 0 0 0 0 -1 0 0 16 | 0 0 -1 0 1 0 0 0 0 1 0 17 | 0 0 1 0 -1 0 0 0 0 1 0 18 | 0 0 1 0 1 0 0 0 0 -1 0 19 | 0 0 0 1 1 0 0 0 0 0 -1 20 | 0 0 0 1 -1 0 0 0 0 0 1 21 | 0 0 0 -1 1 0 0 0 0 0 1 22 | 2 0 0 0 0 -1 -1 0 -1 0 0 23 | 0 0 0 0 0 1 1 0 -1 0 0 24 | 0 0 0 0 0 -1 1 0 1 0 0 25 | 0 0 0 0 0 1 -1 0 1 0 0 26 | 2 0 0 0 0 -1 0 -1 0 -1 0 27 | 0 0 0 0 0 1 0 1 0 -1 0 28 | 0 0 0 0 0 -1 0 1 0 1 0 29 | 0 0 0 0 0 1 0 -1 0 1 0 30 | 2 0 0 0 0 0 -1 -1 0 0 -1 31 | 0 0 0 0 0 0 -1 1 0 0 1 32 | 0 0 0 0 0 0 1 -1 0 0 1 33 | 0 0 0 0 0 0 1 1 0 0 -1 34 | 2 0 0 0 0 0 0 0 -1 -1 -1 35 | 0 0 0 0 0 0 0 0 1 -1 1 36 | 0 0 0 0 0 0 0 0 -1 1 1 37 | 0 0 0 0 0 0 0 0 1 1 -1 38 | 0 -1 1 0 0 1 0 0 0 0 0 39 | 0 1 -1 0 0 1 0 0 0 0 0 40 | 2 -1 0 -1 0 0 -1 0 0 0 0 41 | 0 1 0 -1 0 0 1 0 0 0 0 42 | 2 -1 0 0 -1 0 0 -1 0 0 0 43 | 0 1 0 0 -1 0 0 1 0 0 0 44 | 2 0 -1 -1 0 0 0 0 -1 0 0 45 | 2 0 -1 0 -1 0 0 0 0 -1 0 46 | 2 0 0 -1 -1 0 0 0 0 0 -1 47 | end 48 | redund 21 40 49 | -------------------------------------------------------------------------------- /ine/redund/non_par.ine: -------------------------------------------------------------------------------- 1 | H-representation 2 | linearity 1 1 3 | begin 4 | 3 3 integer 5 | 0 1 -1 6 | 0 1 0 7 | 0 0 1 8 | end 9 | redund 2 3 10 | -------------------------------------------------------------------------------- /ine/redund/par.ine: -------------------------------------------------------------------------------- 1 | *non_par with linearity given as two inequalities 2 | *either redund option deletes the given inequality 3 | *both cannot be simultaneously deleted 4 | H-representation 5 | begin 6 | 4 3 integer 7 | 0 -1 1 8 | 0 1 -1 9 | 10 | 0 1 0 11 | 0 0 1 12 | end 13 | redund 1 4 14 | -------------------------------------------------------------------------------- /ine/test-062/c30-15.ext: -------------------------------------------------------------------------------- 1 | *cyclic polytope n=30, d=15 2 | V-representation 3 | begin 4 | 30 16 integer 5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 7 | 1 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 8 | 1 4 16 64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 1073741824 9 | 1 5 25 125 625 3125 15625 78125 390625 1953125 9765625 48828125 244140625 1220703125 6103515625 30517578125 10 | 1 6 36 216 1296 7776 46656 279936 1679616 10077696 60466176 362797056 2176782336 13060694016 78364164096 470184984576 11 | 1 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249 1977326743 13841287201 96889010407 678223072849 4747561509943 12 | 1 8 64 512 4096 32768 262144 2097152 16777216 134217728 1073741824 8589934592 68719476736 549755813888 4398046511104 35184372088832 13 | 1 9 81 729 6561 59049 531441 4782969 43046721 387420489 3486784401 31381059609 282429536481 2541865828329 22876792454961 205891132094649 14 | 1 10 100 1000 10000 100000 1000000 10000000 100000000 1000000000 10000000000 100000000000 1000000000000 10000000000000 100000000000000 1000000000000000 15 | 1 11 121 1331 14641 161051 1771561 19487171 214358881 2357947691 25937424601 285311670611 3138428376721 34522712143931 379749833583241 4177248169415651 16 | 1 12 144 1728 20736 248832 2985984 35831808 429981696 5159780352 61917364224 743008370688 8916100448256 106993205379072 1283918464548864 15407021574586368 17 | 1 13 169 2197 28561 371293 4826809 62748517 815730721 10604499373 137858491849 1792160394037 23298085122481 302875106592253 3937376385699289 51185893014090757 18 | 1 14 196 2744 38416 537824 7529536 105413504 1475789056 20661046784 289254654976 4049565169664 56693912375296 793714773254144 11112006825558016 155568095557812224 19 | 1 15 225 3375 50625 759375 11390625 170859375 2562890625 38443359375 576650390625 8649755859375 129746337890625 1946195068359375 29192926025390625 437893890380859375 20 | 1 16 256 4096 65536 1048576 16777216 268435456 4294967296 68719476736 1099511627776 17592186044416 281474976710656 4503599627370496 72057594037927936 1152921504606846976 21 | 1 17 289 4913 83521 1419857 24137569 410338673 6975757441 118587876497 2015993900449 34271896307633 582622237229761 9904578032905937 168377826559400929 2862423051509815793 22 | 1 18 324 5832 104976 1889568 34012224 612220032 11019960576 198359290368 3570467226624 64268410079232 1156831381426176 20822964865671168 374813367582081024 6746640616477458432 23 | 1 19 361 6859 130321 2476099 47045881 893871739 16983563041 322687697779 6131066257801 116490258898219 2213314919066161 42052983462257059 799006685782884121 15181127029874798299 24 | 1 20 400 8000 160000 3200000 64000000 1280000000 25600000000 512000000000 10240000000000 204800000000000 4096000000000000 81920000000000000 1638400000000000000 32768000000000000000 25 | 1 21 441 9261 194481 4084101 85766121 1801088541 37822859361 794280046581 16679880978201 350277500542221 7355827511386641 154472377739119461 3243919932521508681 68122318582951682301 26 | 1 22 484 10648 234256 5153632 113379904 2494357888 54875873536 1207269217792 26559922791424 584318301411328 12855002631049216 282810057883082752 6221821273427820544 136880068015412051968 27 | 1 23 529 12167 279841 6436343 148035889 3404825447 78310985281 1801152661463 41426511213649 952809757913927 21914624432020321 504036361936467383 11592836324538749809 266635235464391245607 28 | 1 24 576 13824 331776 7962624 191102976 4586471424 110075314176 2641807540224 63403380965376 1521681143169024 36520347436056576 876488338465357824 21035720123168587776 504857282956046106624 29 | 1 25 625 15625 390625 9765625 244140625 6103515625 152587890625 3814697265625 95367431640625 2384185791015625 59604644775390625 1490116119384765625 37252902984619140625 931322574615478515625 30 | 1 26 676 17576 456976 11881376 308915776 8031810176 208827064576 5429503678976 141167095653376 3670344486987776 95428956661682176 2481152873203736576 64509974703297150976 1677259342285725925376 31 | 1 27 729 19683 531441 14348907 387420489 10460353203 282429536481 7625597484987 205891132094649 5559060566555523 150094635296999121 4052555153018976267 109418989131512359209 2954312706550833698643 32 | 1 28 784 21952 614656 17210368 481890304 13492928512 377801998336 10578455953408 296196766695424 8293509467471872 232218265089212416 6502111422497947648 182059119829942534144 5097655355238390956032 33 | 1 29 841 24389 707281 20511149 594823321 17249876309 500246412961 14507145975869 420707233300201 12200509765705829 353814783205469041 10260628712958602189 297558232675799463481 8629188747598184440949 34 | 1 30 900 27000 810000 24300000 729000000 21870000000 656100000000 19683000000000 590490000000000 17714700000000000 531441000000000000 15943230000000000000 478296900000000000000 14348907000000000000000 35 | end -------------------------------------------------------------------------------- /ine/test-062/ep.ine: -------------------------------------------------------------------------------- 1 | ep 2 | H-representation 3 | begin 4 | 17 4 rational 5 | 0 1 -1 0 6 | 0 0 1 -1 7 | 0 1 1 2 8 | 1 -2 0 2 9 | 691 -1562 -1562 -1562 10 | 0 1 0 -1 11 | 2/11 0 0 -1 12 | 17/142 1/2 1/2 -1 13 | 37/142 0 0 0 14 | 691/1562 -1 0 0 15 | 27/71 -1/2 1/2 0 16 | 2/11 1 1 1 17 | 4/11 0 1 1 18 | 471/1562 1/2 3/2 1 19 | 2/11 1 -1 -1 20 | 4/11 0 -1 -1 21 | 471/1562 1/2 -1/2 -1 22 | end 23 | redund 0 0 24 | -------------------------------------------------------------------------------- /ine/test-062/fq48-19.ine: -------------------------------------------------------------------------------- 1 | *Felippo Quondam's problem root@dbu.uniroma1.it 2 | fq 3 | H-representation 4 | begin 5 | 48 19 integer 6 | 1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 | 1 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 8 | 1 0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 9 | 1 0 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 10 | 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 0 11 | 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0 12 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 13 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 14 | 1 0 0 0 -1 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 15 | 1 -1 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 16 | 1 0 -1 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 17 | 1 0 0 -1 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 18 | 1 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 19 | 1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 20 | 1 0 0 0 0 1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 21 | 1 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 -1 0 22 | 1 0 0 0 0 0 1 0 0 0 -1 0 0 -1 0 0 0 0 0 23 | 1 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 -1 0 0 0 24 | 1 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 25 | 1 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 26 | 1 0 0 0 -1 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 27 | 1 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 -1 28 | 1 0 0 0 0 0 0 0 0 1 -1 0 0 0 -1 0 0 0 0 29 | 1 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 -1 0 0 0 30 | 1 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 31 | 1 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 32 | 1 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 33 | 1 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 -1 34 | 1 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 -1 0 0 35 | 1 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 -1 0 36 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 41 | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 42 | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 43 | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 44 | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 45 | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 46 | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 47 | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 48 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 49 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 50 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 51 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 52 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 53 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 54 | end 55 | -------------------------------------------------------------------------------- /ine/test-062/m6.ine: -------------------------------------------------------------------------------- 1 | m6.ine 2 | begin 3 | 80 16 integer 4 | 0 -1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 5 | 0 1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 6 | 0 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 7 | 2 -1 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 8 | 0 -1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 9 | 0 1 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 10 | 0 1 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 11 | 2 -1 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 12 | 0 -1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 13 | 0 1 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 14 | 0 1 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 15 | 2 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 16 | 0 -1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 17 | 0 1 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 18 | 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 19 | 2 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 20 | 0 0 -1 1 0 0 0 0 0 0 1 0 0 0 0 0 21 | 0 0 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 22 | 0 0 1 1 0 0 0 0 0 0 -1 0 0 0 0 0 23 | 2 0 -1 -1 0 0 0 0 0 0 -1 0 0 0 0 0 24 | 0 0 -1 0 1 0 0 0 0 0 0 1 0 0 0 0 25 | 0 0 1 0 -1 0 0 0 0 0 0 1 0 0 0 0 26 | 0 0 1 0 1 0 0 0 0 0 0 -1 0 0 0 0 27 | 2 0 -1 0 -1 0 0 0 0 0 0 -1 0 0 0 0 28 | 0 0 -1 0 0 1 0 0 0 0 0 0 1 0 0 0 29 | 0 0 1 0 0 -1 0 0 0 0 0 0 1 0 0 0 30 | 0 0 1 0 0 1 0 0 0 0 0 0 -1 0 0 0 31 | 2 0 -1 0 0 -1 0 0 0 0 0 0 -1 0 0 0 32 | 0 0 0 -1 1 0 0 0 0 0 0 0 0 1 0 0 33 | 0 0 0 1 -1 0 0 0 0 0 0 0 0 1 0 0 34 | 0 0 0 1 1 0 0 0 0 0 0 0 0 -1 0 0 35 | 2 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 0 0 36 | 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 1 0 37 | 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 1 0 38 | 0 0 0 1 0 1 0 0 0 0 0 0 0 0 -1 0 39 | 2 0 0 -1 0 -1 0 0 0 0 0 0 0 0 -1 0 40 | 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 1 41 | 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 1 42 | 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 -1 43 | 2 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 -1 44 | 0 0 0 0 0 0 -1 1 0 0 1 0 0 0 0 0 45 | 0 0 0 0 0 0 1 -1 0 0 1 0 0 0 0 0 46 | 0 0 0 0 0 0 1 1 0 0 -1 0 0 0 0 0 47 | 2 0 0 0 0 0 -1 -1 0 0 -1 0 0 0 0 0 48 | 0 0 0 0 0 0 -1 0 1 0 0 1 0 0 0 0 49 | 0 0 0 0 0 0 1 0 -1 0 0 1 0 0 0 0 50 | 0 0 0 0 0 0 1 0 1 0 0 -1 0 0 0 0 51 | 2 0 0 0 0 0 -1 0 -1 0 0 -1 0 0 0 0 52 | 0 0 0 0 0 0 -1 0 0 1 0 0 1 0 0 0 53 | 0 0 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 54 | 0 0 0 0 0 0 1 0 0 1 0 0 -1 0 0 0 55 | 2 0 0 0 0 0 -1 0 0 -1 0 0 -1 0 0 0 56 | 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 0 0 57 | 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 58 | 0 0 0 0 0 0 0 1 1 0 0 0 0 -1 0 0 59 | 2 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 0 0 60 | 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 1 0 61 | 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 1 0 62 | 0 0 0 0 0 0 0 1 0 1 0 0 0 0 -1 0 63 | 2 0 0 0 0 0 0 -1 0 -1 0 0 0 0 -1 0 64 | 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 1 65 | 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 1 66 | 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 -1 67 | 2 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 -1 68 | 0 0 0 0 0 0 0 0 0 0 -1 1 0 1 0 0 69 | 0 0 0 0 0 0 0 0 0 0 1 -1 0 1 0 0 70 | 0 0 0 0 0 0 0 0 0 0 1 1 0 -1 0 0 71 | 2 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 0 72 | 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 1 0 73 | 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 1 0 74 | 0 0 0 0 0 0 0 0 0 0 1 0 1 0 -1 0 75 | 2 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0 76 | 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 1 77 | 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 1 78 | 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 -1 79 | 2 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 80 | 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 81 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 82 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 83 | 2 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 84 | end 85 | -------------------------------------------------------------------------------- /ine/test-062/normaliz/c30-15.ext.in: -------------------------------------------------------------------------------- 1 | /*c30-15.ext in normaliz format */ 2 | amb_space 15 3 | vertices 30 4 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 | 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 1 6 | 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 1 7 | 4 16 64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 1073741824 1 8 | 5 25 125 625 3125 15625 78125 390625 1953125 9765625 48828125 244140625 1220703125 6103515625 30517578125 1 9 | 6 36 216 1296 7776 46656 279936 1679616 10077696 60466176 362797056 2176782336 13060694016 78364164096 470184984576 1 10 | 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249 1977326743 13841287201 96889010407 678223072849 4747561509943 1 11 | 8 64 512 4096 32768 262144 2097152 16777216 134217728 1073741824 8589934592 68719476736 549755813888 4398046511104 35184372088832 1 12 | 9 81 729 6561 59049 531441 4782969 43046721 387420489 3486784401 31381059609 282429536481 2541865828329 22876792454961 205891132094649 1 13 | 10 100 1000 10000 100000 1000000 10000000 100000000 1000000000 10000000000 100000000000 1000000000000 10000000000000 100000000000000 1000000000000000 1 14 | 11 121 1331 14641 161051 1771561 19487171 214358881 2357947691 25937424601 285311670611 3138428376721 34522712143931 379749833583241 4177248169415651 1 15 | 12 144 1728 20736 248832 2985984 35831808 429981696 5159780352 61917364224 743008370688 8916100448256 106993205379072 1283918464548864 15407021574586368 1 16 | 13 169 2197 28561 371293 4826809 62748517 815730721 10604499373 137858491849 1792160394037 23298085122481 302875106592253 3937376385699289 51185893014090757 1 17 | 14 196 2744 38416 537824 7529536 105413504 1475789056 20661046784 289254654976 4049565169664 56693912375296 793714773254144 11112006825558016 155568095557812224 1 18 | 15 225 3375 50625 759375 11390625 170859375 2562890625 38443359375 576650390625 8649755859375 129746337890625 1946195068359375 29192926025390625 437893890380859375 1 19 | 16 256 4096 65536 1048576 16777216 268435456 4294967296 68719476736 1099511627776 17592186044416 281474976710656 4503599627370496 72057594037927936 1152921504606846976 1 20 | 17 289 4913 83521 1419857 24137569 410338673 6975757441 118587876497 2015993900449 34271896307633 582622237229761 9904578032905937 168377826559400929 2862423051509815793 1 21 | 18 324 5832 104976 1889568 34012224 612220032 11019960576 198359290368 3570467226624 64268410079232 1156831381426176 20822964865671168 374813367582081024 6746640616477458432 1 22 | 19 361 6859 130321 2476099 47045881 893871739 16983563041 322687697779 6131066257801 116490258898219 2213314919066161 42052983462257059 799006685782884121 15181127029874798299 1 23 | 20 400 8000 160000 3200000 64000000 1280000000 25600000000 512000000000 10240000000000 204800000000000 4096000000000000 81920000000000000 1638400000000000000 32768000000000000000 1 24 | 21 441 9261 194481 4084101 85766121 1801088541 37822859361 794280046581 16679880978201 350277500542221 7355827511386641 154472377739119461 3243919932521508681 68122318582951682301 1 25 | 22 484 10648 234256 5153632 113379904 2494357888 54875873536 1207269217792 26559922791424 584318301411328 12855002631049216 282810057883082752 6221821273427820544 136880068015412051968 1 26 | 23 529 12167 279841 6436343 148035889 3404825447 78310985281 1801152661463 41426511213649 952809757913927 21914624432020321 504036361936467383 11592836324538749809 266635235464391245607 1 27 | 24 576 13824 331776 7962624 191102976 4586471424 110075314176 2641807540224 63403380965376 1521681143169024 36520347436056576 876488338465357824 21035720123168587776 504857282956046106624 1 28 | 25 625 15625 390625 9765625 244140625 6103515625 152587890625 3814697265625 95367431640625 2384185791015625 59604644775390625 1490116119384765625 37252902984619140625 931322574615478515625 1 29 | 26 676 17576 456976 11881376 308915776 8031810176 208827064576 5429503678976 141167095653376 3670344486987776 95428956661682176 2481152873203736576 64509974703297150976 1677259342285725925376 1 30 | 27 729 19683 531441 14348907 387420489 10460353203 282429536481 7625597484987 205891132094649 5559060566555523 150094635296999121 4052555153018976267 109418989131512359209 2954312706550833698643 1 31 | 28 784 21952 614656 17210368 481890304 13492928512 377801998336 10578455953408 296196766695424 8293509467471872 232218265089212416 6502111422497947648 182059119829942534144 5097655355238390956032 1 32 | 29 841 24389 707281 20511149 594823321 17249876309 500246412961 14507145975869 420707233300201 12200509765705829 353814783205469041 10260628712958602189 297558232675799463481 8629188747598184440949 1 33 | 30 900 27000 810000 24300000 729000000 21870000000 656100000000 19683000000000 590490000000000 17714700000000000 531441000000000000 15943230000000000000 478296900000000000000 14348907000000000000000 1 34 | SupportHyperplanes 35 | -------------------------------------------------------------------------------- /ine/test-062/normaliz/fq48-19.in: -------------------------------------------------------------------------------- 1 | /* fq48-19.ine in normaliz format */ 2 | amb_space 18 3 | inhom_inequalities 48 4 | -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 | 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 6 | 0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 7 | 0 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 1 8 | 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 0 1 9 | 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0 1 10 | 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 1 11 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 1 12 | 0 0 0 -1 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 1 13 | -1 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 1 14 | 0 -1 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 15 | 0 0 -1 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 1 16 | 17 | 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 18 | 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 19 | 0 0 0 0 1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 1 20 | 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 -1 0 1 21 | 0 0 0 0 0 1 0 0 0 -1 0 0 -1 0 0 0 0 0 1 22 | 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 -1 0 0 0 1 23 | -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 1 24 | 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 1 25 | 0 0 0 -1 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 1 26 | 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 -1 1 27 | 0 0 0 0 0 0 0 0 1 -1 0 0 0 -1 0 0 0 0 1 28 | 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 -1 0 0 0 1 29 | -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 1 30 | 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 1 31 | 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 1 32 | 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 -1 1 33 | 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 -1 0 0 1 34 | 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 -1 0 1 35 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 41 | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 42 | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 43 | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 44 | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 45 | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 46 | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 47 | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 48 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 49 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 50 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 51 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 52 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 53 | 54 | VerticesOfPolyhedron 55 | -------------------------------------------------------------------------------- /ine/test-062/normaliz/m6.in: -------------------------------------------------------------------------------- 1 | /*m6.ine in normaliz format */ 2 | amb_space 15 3 | inhom_inequalities 80 4 | -1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 5 | 1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 6 | 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 7 | -1 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 2 8 | -1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 9 | 1 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 10 | 1 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 11 | -1 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 2 12 | -1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 13 | 1 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 14 | 1 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 15 | -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 2 16 | -1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 17 | 1 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 18 | 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 19 | -1 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 2 20 | 0 -1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 21 | 0 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 22 | 0 1 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 23 | 0 -1 -1 0 0 0 0 0 0 -1 0 0 0 0 0 2 24 | 0 -1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 25 | 0 1 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 26 | 0 1 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 27 | 0 -1 0 -1 0 0 0 0 0 0 -1 0 0 0 0 2 28 | 0 -1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 29 | 0 1 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 30 | 0 1 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 31 | 0 -1 0 0 -1 0 0 0 0 0 0 -1 0 0 0 2 32 | 0 0 -1 1 0 0 0 0 0 0 0 0 1 0 0 0 33 | 0 0 1 -1 0 0 0 0 0 0 0 0 1 0 0 0 34 | 0 0 1 1 0 0 0 0 0 0 0 0 -1 0 0 0 35 | 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 0 0 2 36 | 0 0 -1 0 1 0 0 0 0 0 0 0 0 1 0 0 37 | 0 0 1 0 -1 0 0 0 0 0 0 0 0 1 0 0 38 | 0 0 1 0 1 0 0 0 0 0 0 0 0 -1 0 0 39 | 0 0 -1 0 -1 0 0 0 0 0 0 0 0 -1 0 2 40 | 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 1 0 41 | 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 1 0 42 | 0 0 0 1 1 0 0 0 0 0 0 0 0 0 -1 0 43 | 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 -1 2 44 | 0 0 0 0 0 -1 1 0 0 1 0 0 0 0 0 0 45 | 0 0 0 0 0 1 -1 0 0 1 0 0 0 0 0 0 46 | 0 0 0 0 0 1 1 0 0 -1 0 0 0 0 0 0 47 | 0 0 0 0 0 -1 -1 0 0 -1 0 0 0 0 0 2 48 | 0 0 0 0 0 -1 0 1 0 0 1 0 0 0 0 0 49 | 0 0 0 0 0 1 0 -1 0 0 1 0 0 0 0 0 50 | 0 0 0 0 0 1 0 1 0 0 -1 0 0 0 0 0 51 | 0 0 0 0 0 -1 0 -1 0 0 -1 0 0 0 0 2 52 | 0 0 0 0 0 -1 0 0 1 0 0 1 0 0 0 0 53 | 0 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 0 54 | 0 0 0 0 0 1 0 0 1 0 0 -1 0 0 0 0 55 | 0 0 0 0 0 -1 0 0 -1 0 0 -1 0 0 0 2 56 | 0 0 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 57 | 0 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 58 | 0 0 0 0 0 0 1 1 0 0 0 0 -1 0 0 0 59 | 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 0 0 2 60 | 0 0 0 0 0 0 -1 0 1 0 0 0 0 1 0 0 61 | 0 0 0 0 0 0 1 0 -1 0 0 0 0 1 0 0 62 | 0 0 0 0 0 0 1 0 1 0 0 0 0 -1 0 0 63 | 0 0 0 0 0 0 -1 0 -1 0 0 0 0 -1 0 2 64 | 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 1 0 65 | 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 1 0 66 | 0 0 0 0 0 0 0 1 1 0 0 0 0 0 -1 0 67 | 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 -1 2 68 | 0 0 0 0 0 0 0 0 0 -1 1 0 1 0 0 0 69 | 0 0 0 0 0 0 0 0 0 1 -1 0 1 0 0 0 70 | 0 0 0 0 0 0 0 0 0 1 1 0 -1 0 0 0 71 | 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 0 2 72 | 0 0 0 0 0 0 0 0 0 -1 0 1 0 1 0 0 73 | 0 0 0 0 0 0 0 0 0 1 0 -1 0 1 0 0 74 | 0 0 0 0 0 0 0 0 0 1 0 1 0 -1 0 0 75 | 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0 2 76 | 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 1 0 77 | 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 1 0 78 | 0 0 0 0 0 0 0 0 0 0 1 1 0 0 -1 0 79 | 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 2 80 | 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0 81 | 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 0 82 | 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 0 83 | 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 2 84 | VerticesOfPolyhedron 85 | -------------------------------------------------------------------------------- /ine/test-062/porta/bv7.ine.ieq: -------------------------------------------------------------------------------- 1 | DIM = 56 2 | INEQUALITIES_SECTION 3 | -7x1-6x8-5x15-4x22-3x29-2x36-1x43+1x50==0 4 | -7x2-6x9-5x16-4x23-3x30-2x37-1x44+1x51==0 5 | -7x3-6x10-5x17-4x24-3x31-2x38-1x45+1x52==0 6 | -7x4-6x11-5x18-4x25-3x32-2x39-1x46+1x53==0 7 | -7x5-6x12-5x19-4x26-3x33-2x40-1x47+1x54==0 8 | -7x6-6x13-5x20-4x27-3x34-2x41-1x48+1x55==0 9 | -7x7-6x14-5x21-4x28-3x35-2x42-1x49+1x56==0 10 | -1x1-1x2-1x3-1x4-1x5-1x6-1x7==-1 11 | -1x8-1x9-1x10-1x11-1x12-1x13-1x14==-1 12 | -1x15-1x16-1x17-1x18-1x19-1x20-1x21==-1 13 | -1x22-1x23-1x24-1x25-1x26-1x27-1x28==-1 14 | -1x29-1x30-1x31-1x32-1x33-1x34-1x35==-1 15 | -1x36-1x37-1x38-1x39-1x40-1x41-1x42==-1 16 | -1x43-1x44-1x45-1x46-1x47-1x48-1x49==-1 17 | -1x1-1x8-1x15-1x22-1x29-1x36-1x43==-1 18 | -1x2-1x9-1x16-1x23-1x30-1x37-1x44==-1 19 | -1x3-1x10-1x17-1x24-1x31-1x38-1x45==-1 20 | -1x4-1x11-1x18-1x25-1x32-1x39-1x46==-1 21 | -1x5-1x12-1x19-1x26-1x33-1x40-1x47==-1 22 | -1x6-1x13-1x20-1x27-1x34-1x41-1x48==-1 23 | -1x1<=0 24 | -1x2<=0 25 | -1x3<=0 26 | -1x4<=0 27 | -1x5<=0 28 | -1x6<=0 29 | -1x7<=0 30 | -1x8<=0 31 | -1x9<=0 32 | -1x10<=0 33 | -1x11<=0 34 | -1x12<=0 35 | -1x13<=0 36 | -1x14<=0 37 | -1x15<=0 38 | -1x16<=0 39 | -1x17<=0 40 | -1x18<=0 41 | -1x19<=0 42 | -1x20<=0 43 | -1x21<=0 44 | -1x22<=0 45 | -1x23<=0 46 | -1x24<=0 47 | -1x25<=0 48 | -1x26<=0 49 | -1x27<=0 50 | -1x28<=0 51 | -1x29<=0 52 | -1x30<=0 53 | -1x31<=0 54 | -1x32<=0 55 | -1x33<=0 56 | -1x34<=0 57 | -1x35<=0 58 | -1x36<=0 59 | -1x37<=0 60 | -1x38<=0 61 | -1x39<=0 62 | -1x40<=0 63 | -1x41<=0 64 | -1x42<=0 65 | -1x43<=0 66 | -1x44<=0 67 | -1x45<=0 68 | -1x46<=0 69 | -1x47<=0 70 | -1x48<=0 71 | -1x49<=0 72 | END 73 | -------------------------------------------------------------------------------- /ine/test-062/porta/c30-15.ext.poi: -------------------------------------------------------------------------------- 1 | DIM = 15 2 | CONV_SECTION 3 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 | 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 5 | 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 6 | 4 16 64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 1073741824 7 | 5 25 125 625 3125 15625 78125 390625 1953125 9765625 48828125 244140625 1220703125 6103515625 30517578125 8 | 6 36 216 1296 7776 46656 279936 1679616 10077696 60466176 362797056 2176782336 13060694016 78364164096 470184984576 9 | 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249 1977326743 13841287201 96889010407 678223072849 4747561509943 10 | 8 64 512 4096 32768 262144 2097152 16777216 134217728 1073741824 8589934592 68719476736 549755813888 4398046511104 35184372088832 11 | 9 81 729 6561 59049 531441 4782969 43046721 387420489 3486784401 31381059609 282429536481 2541865828329 22876792454961 205891132094649 12 | 10 100 1000 10000 100000 1000000 10000000 100000000 1000000000 10000000000 100000000000 1000000000000 10000000000000 100000000000000 1000000000000000 13 | 11 121 1331 14641 161051 1771561 19487171 214358881 2357947691 25937424601 285311670611 3138428376721 34522712143931 379749833583241 4177248169415651 14 | 12 144 1728 20736 248832 2985984 35831808 429981696 5159780352 61917364224 743008370688 8916100448256 106993205379072 1283918464548864 15407021574586368 15 | 13 169 2197 28561 371293 4826809 62748517 815730721 10604499373 137858491849 1792160394037 23298085122481 302875106592253 3937376385699289 51185893014090757 16 | 14 196 2744 38416 537824 7529536 105413504 1475789056 20661046784 289254654976 4049565169664 56693912375296 793714773254144 11112006825558016 155568095557812224 17 | 15 225 3375 50625 759375 11390625 170859375 2562890625 38443359375 576650390625 8649755859375 129746337890625 1946195068359375 29192926025390625 437893890380859375 18 | 16 256 4096 65536 1048576 16777216 268435456 4294967296 68719476736 1099511627776 17592186044416 281474976710656 4503599627370496 72057594037927936 1152921504606846976 19 | 17 289 4913 83521 1419857 24137569 410338673 6975757441 118587876497 2015993900449 34271896307633 582622237229761 9904578032905937 168377826559400929 2862423051509815793 20 | 18 324 5832 104976 1889568 34012224 612220032 11019960576 198359290368 3570467226624 64268410079232 1156831381426176 20822964865671168 374813367582081024 6746640616477458432 21 | 19 361 6859 130321 2476099 47045881 893871739 16983563041 322687697779 6131066257801 116490258898219 2213314919066161 42052983462257059 799006685782884121 15181127029874798299 22 | 20 400 8000 160000 3200000 64000000 1280000000 25600000000 512000000000 10240000000000 204800000000000 4096000000000000 81920000000000000 1638400000000000000 32768000000000000000 23 | 21 441 9261 194481 4084101 85766121 1801088541 37822859361 794280046581 16679880978201 350277500542221 7355827511386641 154472377739119461 3243919932521508681 68122318582951682301 24 | 22 484 10648 234256 5153632 113379904 2494357888 54875873536 1207269217792 26559922791424 584318301411328 12855002631049216 282810057883082752 6221821273427820544 136880068015412051968 25 | 23 529 12167 279841 6436343 148035889 3404825447 78310985281 1801152661463 41426511213649 952809757913927 21914624432020321 504036361936467383 11592836324538749809 266635235464391245607 26 | 24 576 13824 331776 7962624 191102976 4586471424 110075314176 2641807540224 63403380965376 1521681143169024 36520347436056576 876488338465357824 21035720123168587776 504857282956046106624 27 | 25 625 15625 390625 9765625 244140625 6103515625 152587890625 3814697265625 95367431640625 2384185791015625 59604644775390625 1490116119384765625 37252902984619140625 931322574615478515625 28 | 26 676 17576 456976 11881376 308915776 8031810176 208827064576 5429503678976 141167095653376 3670344486987776 95428956661682176 2481152873203736576 64509974703297150976 1677259342285725925376 29 | 27 729 19683 531441 14348907 387420489 10460353203 282429536481 7625597484987 205891132094649 5559060566555523 150094635296999121 4052555153018976267 109418989131512359209 2954312706550833698643 30 | 28 784 21952 614656 17210368 481890304 13492928512 377801998336 10578455953408 296196766695424 8293509467471872 232218265089212416 6502111422497947648 182059119829942534144 5097655355238390956032 31 | 29 841 24389 707281 20511149 594823321 17249876309 500246412961 14507145975869 420707233300201 12200509765705829 353814783205469041 10260628712958602189 297558232675799463481 8629188747598184440949 32 | 30 900 27000 810000 24300000 729000000 21870000000 656100000000 19683000000000 590490000000000 17714700000000000 531441000000000000 15943230000000000000 478296900000000000000 14348907000000000000000 33 | END 34 | -------------------------------------------------------------------------------- /ine/test-062/porta/fq48-19.ine.ieq: -------------------------------------------------------------------------------- 1 | DIM = 18 2 | INEQUALITIES_SECTION 3 | +1x1+1x2+1x3<=1 4 | +1x4+1x5+1x6<=1 5 | +1x7+1x8+1x9<=1 6 | +1x10+1x11+1x12<=1 7 | +1x13+1x14+1x16<=1 8 | +1x13+1x15+1x17<=1 9 | +1x14+1x15+1x18<=1 10 | +1x16+1x17+1x18<=1 11 | +1x4+1x7+1x10<=1 12 | +1x1+1x8+1x11<=1 13 | +1x2+1x5+1x12<=1 14 | +1x3+1x6+1x9<=1 15 | +1x2-1x4+1x15<=1 16 | +1x3-1x4+1x17<=1 17 | -1x5+1x7+1x13<=1 18 | -1x5+1x9+1x17<=1 19 | -1x6+1x10+1x13<=1 20 | -1x6+1x12+1x15<=1 21 | +1x1-1x7+1x15<=1 22 | +1x3-1x7+1x18<=1 23 | +1x4-1x8+1x14<=1 24 | +1x6-1x8+1x18<=1 25 | -1x9+1x10+1x14<=1 26 | -1x9+1x11+1x15<=1 27 | +1x1-1x10+1x17<=1 28 | +1x2-1x10+1x18<=1 29 | +1x4-1x11+1x16<=1 30 | +1x5-1x11+1x18<=1 31 | +1x7-1x12+1x16<=1 32 | +1x8-1x12+1x17<=1 33 | -1x1<=0 34 | -1x2<=0 35 | -1x3<=0 36 | -1x4<=0 37 | -1x5<=0 38 | -1x6<=0 39 | -1x7<=0 40 | -1x8<=0 41 | -1x9<=0 42 | -1x10<=0 43 | -1x11<=0 44 | -1x12<=0 45 | -1x13<=0 46 | -1x14<=0 47 | -1x15<=0 48 | -1x16<=0 49 | -1x17<=0 50 | -1x18<=0 51 | END 52 | -------------------------------------------------------------------------------- /ine/test-062/porta/m6.ine.ieq: -------------------------------------------------------------------------------- 1 | DIM = 15 2 | INEQUALITIES_SECTION 3 | +1x1-1x2-1x6<=0 4 | -1x1+1x2-1x6<=0 5 | -1x1-1x2+1x6<=0 6 | +1x1+1x2+1x6<=2 7 | +1x1-1x3-1x7<=0 8 | -1x1+1x3-1x7<=0 9 | -1x1-1x3+1x7<=0 10 | +1x1+1x3+1x7<=2 11 | +1x1-1x4-1x8<=0 12 | -1x1+1x4-1x8<=0 13 | -1x1-1x4+1x8<=0 14 | +1x1+1x4+1x8<=2 15 | +1x1-1x5-1x9<=0 16 | -1x1+1x5-1x9<=0 17 | -1x1-1x5+1x9<=0 18 | +1x1+1x5+1x9<=2 19 | +1x2-1x3-1x10<=0 20 | -1x2+1x3-1x10<=0 21 | -1x2-1x3+1x10<=0 22 | +1x2+1x3+1x10<=2 23 | +1x2-1x4-1x11<=0 24 | -1x2+1x4-1x11<=0 25 | -1x2-1x4+1x11<=0 26 | +1x2+1x4+1x11<=2 27 | +1x2-1x5-1x12<=0 28 | -1x2+1x5-1x12<=0 29 | -1x2-1x5+1x12<=0 30 | +1x2+1x5+1x12<=2 31 | +1x3-1x4-1x13<=0 32 | -1x3+1x4-1x13<=0 33 | -1x3-1x4+1x13<=0 34 | +1x3+1x4+1x13<=2 35 | +1x3-1x5-1x14<=0 36 | -1x3+1x5-1x14<=0 37 | -1x3-1x5+1x14<=0 38 | +1x3+1x5+1x14<=2 39 | +1x4-1x5-1x15<=0 40 | -1x4+1x5-1x15<=0 41 | -1x4-1x5+1x15<=0 42 | +1x4+1x5+1x15<=2 43 | +1x6-1x7-1x10<=0 44 | -1x6+1x7-1x10<=0 45 | -1x6-1x7+1x10<=0 46 | +1x6+1x7+1x10<=2 47 | +1x6-1x8-1x11<=0 48 | -1x6+1x8-1x11<=0 49 | -1x6-1x8+1x11<=0 50 | +1x6+1x8+1x11<=2 51 | +1x6-1x9-1x12<=0 52 | -1x6+1x9-1x12<=0 53 | -1x6-1x9+1x12<=0 54 | +1x6+1x9+1x12<=2 55 | +1x7-1x8-1x13<=0 56 | -1x7+1x8-1x13<=0 57 | -1x7-1x8+1x13<=0 58 | +1x7+1x8+1x13<=2 59 | +1x7-1x9-1x14<=0 60 | -1x7+1x9-1x14<=0 61 | -1x7-1x9+1x14<=0 62 | +1x7+1x9+1x14<=2 63 | +1x8-1x9-1x15<=0 64 | -1x8+1x9-1x15<=0 65 | -1x8-1x9+1x15<=0 66 | +1x8+1x9+1x15<=2 67 | +1x10-1x11-1x13<=0 68 | -1x10+1x11-1x13<=0 69 | -1x10-1x11+1x13<=0 70 | +1x10+1x11+1x13<=2 71 | +1x10-1x12-1x14<=0 72 | -1x10+1x12-1x14<=0 73 | -1x10-1x12+1x14<=0 74 | +1x10+1x12+1x14<=2 75 | +1x11-1x12-1x15<=0 76 | -1x11+1x12-1x15<=0 77 | -1x11-1x12+1x15<=0 78 | +1x11+1x12+1x15<=2 79 | +1x13-1x14-1x15<=0 80 | -1x13+1x14-1x15<=0 81 | -1x13-1x14+1x15<=0 82 | +1x13+1x14+1x15<=2 83 | END 84 | -------------------------------------------------------------------------------- /ine/test-062/porta/zfw91.ine.ieq: -------------------------------------------------------------------------------- 1 | DIM = 37 2 | INEQUALITIES_SECTION 3 | +1x1+1x2+1x3<=1 4 | +1x1+1x3+1x4<=1 5 | +1x1+1x4+1x5<=1 6 | +1x1+1x5+1x6<=1 7 | +1x1+1x6+1x7<=1 8 | +1x1+1x2+1x7<=1 9 | +1x2+1x8+1x9<=1 10 | +1x2+1x3+1x9<=1 11 | +1x3+1x9+1x10<=1 12 | +1x3+1x10+1x11<=1 13 | +1x3+1x4+1x11<=1 14 | +1x4+1x11+1x12<=1 15 | +1x4+1x12+1x13<=1 16 | +1x4+1x5+1x13<=1 17 | +1x5+1x13+1x14<=1 18 | +1x5+1x14+1x15<=1 19 | +1x5+1x6+1x15<=1 20 | +1x6+1x15+1x16<=1 21 | +1x6+1x16+1x17<=1 22 | +1x6+1x7+1x17<=1 23 | +1x7+1x17+1x18<=1 24 | +1x7+1x18+1x19<=1 25 | +1x2+1x7+1x19<=1 26 | +1x2+1x8+1x19<=1 27 | +1x8+1x20+1x21<=1 28 | +1x8+1x9+1x21<=1 29 | +1x9+1x21+1x22<=1 30 | +1x9+1x10+1x22<=1 31 | +1x10+1x22+1x23<=1 32 | +1x10+1x23+1x24<=1 33 | +1x10+1x11+1x24<=1 34 | +1x11+1x24+1x25<=1 35 | +1x11+1x12+1x25<=1 36 | +1x12+1x25+1x26<=1 37 | +1x12+1x26+1x27<=1 38 | +1x12+1x13+1x27<=1 39 | +1x13+1x27+1x28<=1 40 | +1x13+1x14+1x28<=1 41 | +1x14+1x28+1x29<=1 42 | +1x14+1x29+1x30<=1 43 | +1x14+1x15+1x30<=1 44 | +1x15+1x30+1x31<=1 45 | +1x15+1x16+1x31<=1 46 | +1x16+1x31+1x32<=1 47 | +1x16+1x32+1x33<=1 48 | +1x16+1x17+1x33<=1 49 | +1x17+1x18+1x34<=1 50 | +1x17+1x33+1x34<=1 51 | +1x18+1x34+1x35<=1 52 | +1x18+1x35+1x36<=1 53 | +1x18+1x19+1x36<=1 54 | +1x19+1x36+1x37<=1 55 | +1x8+1x19+1x37<=1 56 | +1x8+1x20+1x37<=1 57 | -1x1<=0 58 | -1x2<=0 59 | -1x3<=0 60 | -1x4<=0 61 | -1x5<=0 62 | -1x6<=0 63 | -1x7<=0 64 | -1x8<=0 65 | -1x9<=0 66 | -1x10<=0 67 | -1x11<=0 68 | -1x12<=0 69 | -1x13<=0 70 | -1x14<=0 71 | -1x15<=0 72 | -1x16<=0 73 | -1x17<=0 74 | -1x18<=0 75 | -1x19<=0 76 | -1x20<=0 77 | -1x21<=0 78 | -1x22<=0 79 | -1x23<=0 80 | -1x24<=0 81 | -1x25<=0 82 | -1x26<=0 83 | -1x27<=0 84 | -1x28<=0 85 | -1x29<=0 86 | -1x30<=0 87 | -1x31<=0 88 | -1x32<=0 89 | -1x33<=0 90 | -1x34<=0 91 | -1x35<=0 92 | -1x36<=0 93 | -1x37<=0 94 | END 95 | -------------------------------------------------------------------------------- /ine/test-062/zfw91nn.ine: -------------------------------------------------------------------------------- 1 | *Wang Zengfu's problem: wangzengfu@gmail.com 2 | *with nonnegative option: for use by lrs only 3 | nonnegative 4 | H-representation 5 | begin 6 | 54 38 integer 7 | 1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 | 1 -1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 | 1 -1 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 | 1 -1 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 | 1 -1 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 | 1 -1 -1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 | 1 0 -1 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 | 1 0 -1 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 | 1 0 0 -1 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 | 1 0 0 -1 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 | 1 0 0 -1 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 | 1 0 0 0 -1 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 | 1 0 0 0 -1 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 | 1 0 0 0 -1 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 | 1 0 0 0 0 -1 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 | 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 | 1 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 | 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 | 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 | 1 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 | 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 | 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 | 1 0 -1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 | 1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 | 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 | 1 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 | 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 | 1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 | 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 | 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 37 | 1 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 38 | 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 39 | 1 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 40 | 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 41 | 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 42 | 1 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 43 | 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 44 | 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 45 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 46 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 47 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 48 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 49 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 50 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 51 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 52 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 53 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 54 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 55 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 56 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 57 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 58 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 59 | 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 60 | 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 61 | end 62 | -------------------------------------------------------------------------------- /ine/test/cross4.ine: -------------------------------------------------------------------------------- 1 | cross4.ine 2 | H-representation 3 | begin 4 | 16 5 integer 5 | 1 1 1 1 -1 6 | 1 -1 -1 1 -1 7 | 1 -1 1 -1 -1 8 | 1 -1 1 1 -1 9 | 1 1 -1 -1 1 10 | 1 1 -1 1 1 11 | 1 1 1 -1 1 12 | 1 1 1 1 1 13 | 1 -1 -1 -1 1 14 | 1 -1 -1 1 1 15 | 1 -1 1 -1 1 16 | 1 -1 1 1 1 17 | 1 1 -1 -1 -1 18 | 1 1 -1 1 -1 19 | 1 1 1 -1 -1 20 | 1 -1 -1 -1 -1 21 | end 22 | -------------------------------------------------------------------------------- /ine/test/cube.ine: -------------------------------------------------------------------------------- 1 | cube 2 | *linearity 3 1 2 3 3 | H-representation 4 | begin 5 | 6 4 rational 6 | 1 1 0 0 7 | 1 0 1 0 8 | 1 0 0 1 9 | 1 -1 0 0 10 | 1 0 0 -1 11 | 1 0 -1 0 12 | end 13 | *extract 2 1 2 14 | *minimize 0 1 2 3 15 | printcobasis 1 16 | -------------------------------------------------------------------------------- /ine/test/cyclic17_8.ine: -------------------------------------------------------------------------------- 1 | cylic17-8.ine 2 | begin 3 | 17 9 integer 4 | 1 -72 516 -4608 36156 -294912 2349516 -18874368 150850236 5 | 1 -63 381 -3087 20901 -151263 1049061 -7411887 51738501 6 | 1 -54 264 -1944 10956 -69984 410124 -2519424 14971836 7 | 1 -45 165 -1125 4917 -28125 130845 -703125 3370917 8 | 1 -36 84 -576 1596 -9216 27084 -147456 445116 9 | 1 -27 21 -243 21 -2187 -3219 -19683 -85659 10 | 1 -18 -24 -72 -564 -288 -9204 -1152 -142404 11 | 1 -9 -51 -9 -699 -9 -9771 -9 -144699 12 | 1 0 -60 0 -708 0 -9780 0 -144708 13 | 1 9 -51 9 -699 9 -9771 9 -144699 14 | 1 18 -24 72 -564 288 -9204 1152 -142404 15 | 1 27 21 243 21 2187 -3219 19683 -85659 16 | 1 36 84 576 1596 9216 27084 147456 445116 17 | 1 45 165 1125 4917 28125 130845 703125 3370917 18 | 1 54 264 1944 10956 69984 410124 2519424 14971836 19 | 1 63 381 3087 20901 151263 1049061 7411887 51738501 20 | 1 72 516 4608 36156 294912 2349516 18874368 150850236 21 | end 22 | -------------------------------------------------------------------------------- /ine/test/diamond.ine: -------------------------------------------------------------------------------- 1 | diamond.ine 2 | 93.7.6 3 | Unit diamond centred at origin 4 | Last two inequalities define vertex (-1/2,0) 5 | begin 6 | 4 3 rational 7 | 1/2 -1 -1 8 | 1/2 -1 1 9 | 1/2 1 -1 10 | 1/2 1 1 11 | end 12 | 13 | -------------------------------------------------------------------------------- /ine/test/in0.ine: -------------------------------------------------------------------------------- 1 | in0.ine 2 | begin 3 | 8 6 integer 4 | 9 -2 -3 -3 -2 -2 5 | 9 -2 0 0 2 0 6 | 9 -2 -1 -1 -1 -3 7 | 0 1 0 0 0 0 8 | 0 0 1 0 0 0 9 | 0 0 0 1 0 0 10 | 0 0 0 0 1 0 11 | 0 0 0 0 0 1 12 | end 13 | -------------------------------------------------------------------------------- /ine/test/in1.ine: -------------------------------------------------------------------------------- 1 | in1.ine 2 | begin 3 | 34 5 integer 4 | 1 -299 -534 815 807 5 | 1 -887 -399 -867 -543 6 | 1 683 632 958 -181 7 | 1 -756 681 -658 470 8 | 1 -99 135 -921 -825 9 | 1 -795 -874 -286 732 10 | 1 43 -567 588 -143 11 | 1 -955 414 -159 -378 12 | 1 -235 -695 947 166 13 | 1 957 853 -194 -258 14 | 1 487 -914 -100 -991 15 | 1 -515 -786 -169 200 16 | 1 954 -758 -178 985 17 | 1 505 -970 400 -211 18 | 1 714 997 401 661 19 | 1 -475 618 459 775 20 | 1 -219 704 -111 -876 21 | 1 152 -390 -629 984 22 | 1 -240 -621 -62 583 23 | 1 -76 531 -606 -676 24 | 1 490 -519 -240 -109 25 | 1 -635 860 -798 825 26 | 1 5 49 781 895 27 | 1 495 490 -774 866 28 | 1 -78 69 853 861 29 | 1 -340 228 -374 498 30 | 1 390 -12 -524 -408 31 | 1 -382 -42 -376 264 32 | 1 -299 -731 -283 -518 33 | 1 892 -581 654 -439 34 | 0 1 0 0 0 35 | 0 0 1 0 0 36 | 0 0 0 1 0 37 | 0 0 0 0 1 38 | end 39 | nonnegative 40 | printcobasis 10 41 | -------------------------------------------------------------------------------- /ine/test/in2.ine: -------------------------------------------------------------------------------- 1 | in2.ine 2 | begin 3 | 16 6 integer 4 | 1 -1 0 -1 0 0 5 | 1 -1 0 0 0 -1 6 | 1 0 -1 -1 0 0 7 | 1 0 -1 0 -1 0 8 | 1 0 0 0 -1 -1 9 | 0 -1 1 0 0 1 10 | 0 1 -1 0 1 0 11 | 0 0 0 -1 1 1 12 | 0 0 1 1 -1 0 13 | 0 1 0 1 0 -1 14 | 2 -1 -1 -1 -1 -1 15 | 0 1 0 0 0 0 16 | 0 0 1 0 0 0 17 | 0 0 0 1 0 0 18 | 0 0 0 0 1 0 19 | 0 0 0 0 0 1 20 | end 21 | -------------------------------------------------------------------------------- /ine/test/in3.ine: -------------------------------------------------------------------------------- 1 | in3.ine 2 | begin 3 | 13 7 integer 4 | 0 1 -1 0 1 0 0 5 | 0 0 -1 1 0 0 1 6 | 0 -1 1 0 1 0 0 7 | 0 -1 0 1 0 1 0 8 | 0 0 1 -1 0 0 1 9 | 0 1 1 0 -1 0 0 10 | 0 0 0 0 -1 1 1 11 | 0 1 0 1 0 -1 0 12 | 0 0 0 0 1 -1 1 13 | 0 0 1 1 0 0 -1 14 | 0 0 0 0 1 1 -1 15 | 0 1 0 -1 0 1 0 16 | 12 -1 -1 -1 -1 -1 -1 17 | end 18 | -------------------------------------------------------------------------------- /ine/test/in4.ine: -------------------------------------------------------------------------------- 1 | in4.ine 2 | begin 3 | 12 8 integer 4 | 10 -8 -1 -2 -3 -3 -2 -2 5 | 10 8 -2 -2 0 0 2 0 6 | 10 -11 3 -2 -1 -1 -1 -3 7 | 5 23 -4 -2 -3 0 0 1 8 | 27 5 -4 -1 3 9 11 -12 9 | 0 1 0 0 0 0 0 0 10 | 0 0 1 0 0 0 0 0 11 | 0 0 0 1 0 0 0 0 12 | 0 0 0 0 1 0 0 0 13 | 0 0 0 0 0 1 0 0 14 | 0 0 0 0 0 0 1 0 15 | 0 0 0 0 0 0 0 1 16 | end 17 | -------------------------------------------------------------------------------- /ine/test/in5.ine: -------------------------------------------------------------------------------- 1 | in5.ine 2 | begin 3 | 14 10 integer 4 | 10 2 3 -8 -1 -2 -3 -3 -2 -2 5 | 10 -6 33 8 -2 -2 0 0 2 0 6 | 10 93 3 -11 3 -2 -1 -1 -1 -3 7 | 5 -9 21 23 -4 -2 -3 0 0 1 8 | 27 31 23 5 -4 -1 3 9 11 -12 9 | 0 1 0 0 0 0 0 0 0 0 10 | 0 0 1 0 0 0 0 0 0 0 11 | 0 0 0 1 0 0 0 0 0 0 12 | 0 0 0 0 1 0 0 0 0 0 13 | 0 0 0 0 0 1 0 0 0 0 14 | 0 0 0 0 0 0 1 0 0 0 15 | 0 0 0 0 0 0 0 1 0 0 16 | 0 0 0 0 0 0 0 0 1 0 17 | 0 0 0 0 0 0 0 0 0 1 18 | end 19 | verbose 20 | -------------------------------------------------------------------------------- /ine/test/in6.ine: -------------------------------------------------------------------------------- 1 | in6.ine 2 | begin 3 | 23 11 integer 4 | 1 1 1 1 1 1 1 1 1 1 0 5 | 2 -2 -3 8 1 2 3 3 2 2 -9 6 | 3 6 -3 -8 2 2 0 0 -2 0 -9 7 | 4 -9 -3 1 -3 2 1 1 1 3 -9 8 | 5 9 -2 -2 4 2 3 0 0 -1 -5 9 | 6 -3 -2 -5 4 1 -3 -9 -1 2 -7 10 | 7 -9 -3 -5 -2 2 4 -2 4 -1 -7 11 | 8 -8 -4 5 -2 2 4 -2 4 -1 -7 12 | 9 -7 -5 -5 -2 2 4 -2 4 -1 -7 13 | 10 -6 -6 5 -2 2 4 -2 4 -1 -7 14 | 11 -5 -7 -5 -2 2 4 -2 4 -1 -7 15 | 12 -4 -8 5 -2 2 4 -2 4 -1 -7 16 | 13 -3 -9 -5 -2 2 4 -2 4 -1 -7 17 | 0 1 0 0 0 0 0 0 0 0 0 18 | 0 0 1 0 0 0 0 0 0 0 0 19 | 0 0 0 1 0 0 0 0 0 0 0 20 | 0 0 0 0 1 0 0 0 0 0 0 21 | 0 0 0 0 0 1 0 0 0 0 0 22 | 0 0 0 0 0 0 1 0 0 0 0 23 | 0 0 0 0 0 0 0 1 0 0 0 24 | 0 0 0 0 0 0 0 0 1 0 0 25 | 0 0 0 0 0 0 0 0 0 1 0 26 | 0 0 0 0 0 0 0 0 0 0 1 27 | end 28 | -------------------------------------------------------------------------------- /ine/test/in7.ine: -------------------------------------------------------------------------------- 1 | in7.ine 2 | begin 3 | 20 11 integer 4 | 10000 -915 -828 -303 -632 -786 -231 -12 -568 -351 -308 5 | 10000 -930 -217 -480 -704 -700 -91 -441 -927 -33 -330 6 | 10000 -765 -616 -962 -274 -276 -39 -924 -541 -444 -838 7 | 10000 -747 -470 -506 -329 -481 -425 -679 -140 -764 -960 8 | 10000 -243 -664 -760 -333 -456 -686 -717 -137 -721 -833 9 | 10000 -682 -107 -380 -720 -382 -920 -164 -220 -640 -262 10 | 10000 -145 -942 -873 -570 -973 -365 -685 -932 -424 -928 11 | 10000 -183 -612 -402 -869 -681 -539 -941 -513 -290 -622 12 | 10000 -669 -694 -353 -941 -209 -572 -580 -822 -964 -725 13 | 10000 -188 -646 -87 -552 -330 -19 -976 -609 -965 -158 14 | 0 1 0 0 0 0 0 0 0 0 0 15 | 0 0 1 0 0 0 0 0 0 0 0 16 | 0 0 0 1 0 0 0 0 0 0 0 17 | 0 0 0 0 1 0 0 0 0 0 0 18 | 0 0 0 0 0 1 0 0 0 0 0 19 | 0 0 0 0 0 0 1 0 0 0 0 20 | 0 0 0 0 0 0 0 1 0 0 0 21 | 0 0 0 0 0 0 0 0 1 0 0 22 | 0 0 0 0 0 0 0 0 0 1 0 23 | 0 0 0 0 0 0 0 0 0 0 1 24 | end 25 | -------------------------------------------------------------------------------- /ine/test/inf.ine: -------------------------------------------------------------------------------- 1 | *infeasible system 2 | begin 3 | 4 4 integer 4 | -1 -1 -1 -1 5 | 0 1 0 0 6 | 0 0 1 0 7 | 0 0 0 1 8 | end 9 | -------------------------------------------------------------------------------- /ine/test/kkd38_6.ine: -------------------------------------------------------------------------------- 1 | kkd38_6.ine 2 | *digits 120 3 | begin 4 | 38 7 integer 5 | 2919394390774395218459334 -4379091595292464054287507 6 | -36492430237104184038520181 -253987324572060483286422939 7 | -1691789494531258045567157717 -11149182918946980113429731347 8 | -73511950112254277868261780941 9 | 7 -21 -133 -777 -4669 -29001 -184813 10 | 7 -14 -112 -728 -4564 -28784 -184372 11 | 7 -7 -77 -595 -4109 -27307 -179717 12 | 7 0 -28 -336 -2884 -21840 -156148 13 | 7 7 35 91 -301 -7133 -75445 14 | 7 14 112 728 4396 25424 141772 15 | 7 21 203 1617 12131 88641 638723 16 | 7 28 308 2800 23996 200368 1650188 17 | 7 35 427 4319 41251 384335 3535267 18 | 7 42 560 6216 65324 670992 6815180 19 | 7 49 707 8533 97811 1098349 12216107 20 | 7 56 868 11312 140476 1712816 20717068 21 | 7 63 1043 14595 195251 2570043 33602843 22 | 7 70 1232 18424 264236 3735760 52521932 23 | 7 77 1435 22841 349699 5286617 79549555 24 | 7 84 1652 27888 454076 7311024 117255692 25 | 7 91 1883 33607 579971 9909991 168778163 26 | 7 98 2128 40040 730156 13197968 237900748 27 | 7 105 2387 47229 907571 17303685 329136347 28 | 7 112 2660 55216 1115324 22370992 447815180 29 | 7 119 2947 64043 1356691 28559699 600178027 30 | 7 126 3248 73752 1635116 36046416 793474508 31 | 7 133 3563 84385 1954211 45025393 1036066403 32 | 7 140 3892 95984 2317756 55709360 1337536012 33 | 7 147 4235 108591 2729699 68330367 1708799555 34 | 7 154 4592 122248 3194156 83140624 2162225612 35 | 7 161 4963 136997 3715411 100413341 2711758603 36 | 7 168 5348 152880 4297916 120443568 3373047308 37 | 7 175 5747 169939 4946291 143549035 4163578427 38 | 7 182 6160 188216 5665324 170070992 5102815180 39 | 7 189 6587 207753 6459971 200375049 6212340947 40 | 7 196 7028 228592 7335356 234852016 7516007948 41 | 7 203 7483 250775 8296771 273918743 9040090963 42 | 7 210 7952 274344 9349676 318018960 10813446092 43 | 7 217 8435 299341 10499699 367624117 12867674555 44 | 7 224 8932 325808 11752636 423234224 15237291532 45 | -2919394390774395218459333 4379091595292464054287507 46 | 36492430237104184038520181 253987324572060483286422939 47 | 1691789494531258045567157717 11149182918946980113429731347 48 | 73511950112254277868261780941 49 | end 50 | -------------------------------------------------------------------------------- /ine/test/kq20_11.ine: -------------------------------------------------------------------------------- 1 | kq20_11.ine 2 | H-representation 3 | nonnegative 4 | begin 5 | 10 11 integer 6 | 10000 -915 -828 -303 -632 -786 -231 -12 -568 -351 -308 7 | 10000 -930 -217 -480 -704 -700 -91 -441 -927 -33 -330 8 | 10000 -765 -616 -962 -274 -276 -39 -924 -541 -444 -838 9 | 10000 -747 -470 -506 -329 -481 -425 -679 -140 -764 -960 10 | 10000 -243 -664 -760 -333 -456 -686 -717 -137 -721 -833 11 | 10000 -682 -107 -380 -720 -382 -920 -164 -220 -640 -262 12 | 10000 -145 -942 -873 -570 -973 -365 -685 -932 -424 -928 13 | 10000 -183 -612 -402 -869 -681 -539 -941 -513 -290 -622 14 | 10000 -669 -694 -353 -941 -209 -572 -580 -822 -964 -725 15 | 10000 -188 -646 -87 -552 -330 -19 -976 -609 -965 -158 16 | 0 1 0 0 0 0 0 0 0 0 0 17 | 0 0 1 0 0 0 0 0 0 0 0 18 | 0 0 0 1 0 0 0 0 0 0 0 19 | 0 0 0 0 1 0 0 0 0 0 0 20 | 0 0 0 0 0 1 0 0 0 0 0 21 | 0 0 0 0 0 0 1 0 0 0 0 22 | 0 0 0 0 0 0 0 1 0 0 0 23 | 0 0 0 0 0 0 0 0 1 0 0 24 | 0 0 0 0 0 0 0 0 0 1 0 25 | 0 0 0 0 0 0 0 0 0 0 1 26 | end 27 | -------------------------------------------------------------------------------- /ine/test/kq20_11a.ine: -------------------------------------------------------------------------------- 1 | kq20_11.ine 2 | H-representation 3 | nonnegative 4 | begin 5 | 10 11 integer 6 | 10000 -915 -828 -303 -632 -786 -231 -12 -568 -351 -308 7 | 10000 -930 -217 -480 -704 -700 -91 -441 -927 -33 -330 8 | 10000 -765 -616 -962 -274 -276 -39 -924 -541 -444 -838 9 | 10000 -747 -470 -506 -329 -481 -425 -679 -140 -764 -960 10 | 10000 -243 -664 -760 -333 -456 -686 -717 -137 -721 -833 11 | 10000 -682 -107 -380 -720 -382 -920 -164 -220 -640 -262 12 | 10000 -145 -942 -873 -570 -973 -365 -685 -932 -424 -928 13 | 10000 -183 -612 -402 -869 -681 -539 -941 -513 -290 -622 14 | 10000 -669 -694 -353 -941 -209 -572 -580 -822 -964 -725 15 | 10000 -188 -646 -87 -552 -330 -19 -976 -609 -965 -158 16 | 0 1 0 0 0 0 0 0 0 0 0 17 | 0 0 1 0 0 0 0 0 0 0 0 18 | 0 0 0 1 0 0 0 0 0 0 0 19 | 0 0 0 0 1 0 0 0 0 0 0 20 | 0 0 0 0 0 1 0 0 0 0 0 21 | 0 0 0 0 0 0 1 0 0 0 0 22 | 0 0 0 0 0 0 0 1 0 0 0 23 | 0 0 0 0 0 0 0 0 1 0 0 24 | 0 0 0 0 0 0 0 0 0 1 0 25 | 0 0 0 0 0 0 0 0 0 0 1 26 | end 27 | -------------------------------------------------------------------------------- /ine/test/lcube.ine: -------------------------------------------------------------------------------- 1 | cube.ine 2 | H-representation 3 | begin 4 | 5 6 rational 5 | 1 1 1 0 0 1 6 | 1 0 0 1 0 0 7 | 1 0 0 0 1 0 8 | 1 -1 -1 0 0 -1 9 | 1 0 0 0 -1 0 10 | end 11 | -------------------------------------------------------------------------------- /ine/test/metric40_11.ine: -------------------------------------------------------------------------------- 1 | metric40-11.ine 2 | *metric polytope on 5 points 3 | H-representation 4 | begin 5 | 40 11 integer 6 | 0 0 0 1 1 0 0 0 0 0 -1 7 | 0 0 1 0 1 0 0 0 0 -1 0 8 | 0 0 1 1 0 0 0 0 -1 0 0 9 | 0 1 0 0 1 0 0 -1 0 0 0 10 | 0 1 0 1 0 0 -1 0 0 0 0 11 | 0 1 1 0 0 -1 0 0 0 0 0 12 | 0 -1 0 0 1 0 0 1 0 0 0 13 | 0 0 0 -1 1 0 0 0 0 0 1 14 | 0 0 0 0 0 0 -1 1 0 0 1 15 | 0 0 -1 0 1 0 0 0 0 1 0 16 | 0 0 0 0 0 0 0 0 -1 1 1 17 | 0 0 0 0 0 -1 0 1 0 1 0 18 | 2 0 0 0 0 -1 -1 0 -1 0 0 19 | 0 -1 0 1 0 0 1 0 0 0 0 20 | 0 0 0 0 0 0 1 -1 0 0 1 21 | 0 0 0 1 -1 0 0 0 0 0 1 22 | 0 0 -1 1 0 0 0 0 1 0 0 23 | 0 0 0 0 0 0 0 0 1 -1 1 24 | 0 0 0 0 0 -1 1 0 1 0 0 25 | 2 -1 -1 0 0 -1 0 0 0 0 0 26 | 2 0 0 0 0 -1 0 -1 0 -1 0 27 | 0 -1 1 0 0 1 0 0 0 0 0 28 | 0 0 0 0 0 1 0 -1 0 1 0 29 | 0 0 1 0 -1 0 0 0 0 1 0 30 | 2 -1 0 0 -1 0 0 -1 0 0 0 31 | 0 0 0 0 0 1 -1 0 1 0 0 32 | 0 0 0 0 0 0 0 0 1 1 -1 33 | 0 0 1 -1 0 0 0 0 1 0 0 34 | 2 -1 0 -1 0 0 -1 0 0 0 0 35 | 2 0 0 0 0 0 -1 -1 0 0 -1 36 | 0 0 0 0 0 1 1 0 -1 0 0 37 | 0 0 0 0 0 1 0 1 0 -1 0 38 | 0 1 -1 0 0 1 0 0 0 0 0 39 | 0 1 0 0 -1 0 0 1 0 0 0 40 | 2 0 -1 0 -1 0 0 0 0 -1 0 41 | 0 0 0 0 0 0 1 1 0 0 -1 42 | 0 1 0 -1 0 0 1 0 0 0 0 43 | 2 0 0 -1 -1 0 0 0 0 0 -1 44 | 2 0 -1 -1 0 0 0 0 -1 0 0 45 | 2 0 0 0 0 0 0 0 -1 -1 -1 46 | end 47 | -------------------------------------------------------------------------------- /ine/test/metric80_16.ine: -------------------------------------------------------------------------------- 1 | metric80_16.ine 2 | H-representation 3 | *metric polytope on 6 points 4 | linearity 6 17 18 10 1 2 3 5 | begin 6 | 80 16 integer 7 | 0 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 8 | 0 -1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 9 | 0 1 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 10 | 0 -1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 11 | 0 1 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 12 | 0 -1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 13 | 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 14 | 0 0 -1 1 0 0 0 0 0 0 1 0 0 0 0 0 15 | 0 0 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 16 | 0 0 1 1 0 0 0 0 0 0 -1 0 0 0 0 0 17 | 0 0 -1 0 1 0 0 0 0 0 0 1 0 0 0 0 18 | 0 0 1 0 -1 0 0 0 0 0 0 1 0 0 0 0 19 | 0 0 1 0 1 0 0 0 0 0 0 -1 0 0 0 0 20 | 0 0 -1 0 0 1 0 0 0 0 0 0 1 0 0 0 21 | 0 0 1 0 0 -1 0 0 0 0 0 0 1 0 0 0 22 | 0 0 1 0 0 1 0 0 0 0 0 0 -1 0 0 0 23 | 0 0 0 1 1 0 0 0 0 0 0 0 0 -1 0 0 24 | 0 0 0 1 -1 0 0 0 0 0 0 0 0 1 0 0 25 | 0 0 0 -1 1 0 0 0 0 0 0 0 0 1 0 0 26 | 0 0 0 1 0 1 0 0 0 0 0 0 0 0 -1 0 27 | 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 1 0 28 | 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 1 0 29 | 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 -1 30 | 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 1 31 | 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 1 32 | 6 0 0 0 0 0 -1 -1 0 0 -1 0 0 0 0 0 33 | 0 0 0 0 0 0 1 1 0 0 -1 0 0 0 0 0 34 | 0 0 0 0 0 0 -1 1 0 0 1 0 0 0 0 0 35 | 0 0 0 0 0 0 1 -1 0 0 1 0 0 0 0 0 36 | 6 0 0 0 0 0 -1 0 -1 0 0 -1 0 0 0 0 37 | 0 0 0 0 0 0 1 0 1 0 0 -1 0 0 0 0 38 | 0 0 0 0 0 0 -1 0 1 0 0 1 0 0 0 0 39 | 0 0 0 0 0 0 1 0 -1 0 0 1 0 0 0 0 40 | 6 0 0 0 0 0 -1 0 0 -1 0 0 -1 0 0 0 41 | 0 0 0 0 0 0 -1 0 0 1 0 0 1 0 0 0 42 | 0 0 0 0 0 0 1 0 0 1 0 0 -1 0 0 0 43 | 0 0 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 44 | 6 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 0 0 45 | 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 0 0 46 | 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 47 | 0 0 0 0 0 0 0 1 1 0 0 0 0 -1 0 0 48 | 6 0 0 0 0 0 0 -1 0 -1 0 0 0 0 -1 0 49 | 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 1 0 50 | 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 1 0 51 | 0 0 0 0 0 0 0 1 0 1 0 0 0 0 -1 0 52 | 6 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 -1 53 | 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 1 54 | 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 1 55 | 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 -1 56 | 6 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 0 57 | 0 0 0 0 0 0 0 0 0 0 1 1 0 -1 0 0 58 | 0 0 0 0 0 0 0 0 0 0 1 -1 0 1 0 0 59 | 0 0 0 0 0 0 0 0 0 0 -1 1 0 1 0 0 60 | 6 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0 61 | 0 0 0 0 0 0 0 0 0 0 1 0 1 0 -1 0 62 | 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 1 0 63 | 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 1 0 64 | 6 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 65 | 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 -1 66 | 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 1 67 | 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 1 68 | 6 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 69 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 70 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 71 | 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 72 | 6 -1 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 73 | 0 -1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 74 | 0 1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 75 | 6 -1 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 76 | 0 1 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 77 | 6 -1 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 78 | 0 1 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 79 | 6 -1 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 80 | 0 1 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 81 | 6 0 -1 -1 0 0 0 0 0 0 -1 0 0 0 0 0 82 | 6 0 -1 0 -1 0 0 0 0 0 0 -1 0 0 0 0 83 | 6 0 -1 0 0 -1 0 0 0 0 0 0 -1 0 0 0 84 | 6 0 0 -1 -1 0 0 0 0 0 0 0 0 -1 0 0 85 | 6 0 0 -1 0 -1 0 0 0 0 0 0 0 0 -1 0 86 | 6 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 -1 87 | end 88 | -------------------------------------------------------------------------------- /ine/test/mit31_20.ine: -------------------------------------------------------------------------------- 1 | mit31-20.ine 2 | H-representation 3 | *digits 80 4 | begin 5 | 31 20 integer 6 | 1 6 -12 -3 0 0 0 12 8 0 0 -12 -3 0 0 0 6 0 -1 0 7 | 1 -2 1 -2 2 0 4 -4 4 2 0 -2 0 -1 2 -2 0 0 0 -1 8 | 1 0 3 0 0 -2 0 0 2 0 -4 0 0 1 0 2 0 -2 0 1 9 | 1 0 -1 2 2 0 0 0 0 -2 0 -2 0 -1 2 0 0 0 0 1 10 | 1 0 3 -2 2 0 0 0 0 -2 0 2 0 -1 -2 0 0 0 0 1 11 | 1 2 1 0 0 -2 0 0 -2 0 0 0 0 1 0 0 0 2 0 -1 12 | 1 2 5 -2 -2 4 -4 -4 0 -2 8 -2 0 -1 -2 -2 0 4 0 -1 13 | 1 2 -3 2 2 0 -4 -4 4 2 0 2 0 -1 -2 2 0 0 0 -1 14 | 1 2 1 -2 2 0 -4 4 -4 2 0 -2 0 -1 2 2 0 0 0 -1 15 | 1 4 -1 -2 -2 4 0 0 -4 2 0 2 0 -1 2 0 0 -4 0 1 16 | 1 4 -5 0 0 -2 0 0 2 0 4 0 0 1 0 -2 0 -2 0 1 17 | 1 6 -11 -2 -2 4 4 4 8 -2 -8 -2 0 -1 -2 2 0 4 0 -1 18 | 1 -6 -12 -3 0 0 0 -12 -8 0 0 -12 -3 0 0 0 -6 0 -1 0 19 | 1 -4 -4 -1 0 0 0 0 0 0 0 4 1 0 0 0 4 0 1 0 20 | 1 -2 0 1 0 0 0 4 0 0 0 0 1 0 0 0 -2 0 -1 0 21 | 1 -2 4 -3 0 0 0 -4 8 0 0 4 -3 0 0 0 -2 0 -1 0 22 | 1 0 4 -1 0 0 0 0 0 0 0 -4 1 0 0 0 0 0 1 0 23 | 1 0 0 3 0 0 0 0 0 0 0 0 -3 0 0 0 0 0 1 0 24 | 1 2 4 -3 0 0 0 4 -8 0 0 4 -3 0 0 0 2 0 -1 0 25 | 1 2 0 1 0 0 0 -4 0 0 0 0 1 0 0 0 2 0 -1 0 26 | 1 4 -4 -1 0 0 0 0 0 0 0 4 1 0 0 0 -4 0 1 0 27 | 1 -6 -11 -2 -2 -4 -4 -4 -8 -2 -8 -2 0 -1 -2 -2 0 -4 0 -1 28 | 1 -4 -5 0 0 2 0 0 -2 0 4 0 0 1 0 2 0 2 0 1 29 | 1 -4 -1 -2 -2 -4 0 0 4 2 0 2 0 -1 2 0 0 4 0 1 30 | 1 -2 -3 2 2 0 4 4 -4 2 0 2 0 -1 -2 -2 0 0 0 -1 31 | 1 -2 1 0 0 2 0 0 2 0 0 0 0 1 0 0 0 -2 0 -1 32 | 1 -2 1 2 -2 0 -4 4 4 -2 0 2 0 -1 2 -2 0 0 0 -1 33 | 1 -2 5 -2 -2 -4 4 4 0 -2 8 -2 0 -1 -2 2 0 -4 0 -1 34 | 1 0 3 2 -2 0 0 0 0 2 0 -2 0 -1 -2 0 0 0 0 1 35 | 1 0 3 0 0 2 0 0 -2 0 -4 0 0 1 0 -2 0 2 0 1 36 | 1 2 1 2 -2 0 4 -4 -4 -2 0 2 0 -1 2 2 0 0 0 -1 37 | end 38 | -------------------------------------------------------------------------------- /ine/test/mp5.ine: -------------------------------------------------------------------------------- 1 | *mp5.ine 2 | *metric polytope on 5 points 3 | H-representation 4 | linearity 3 1 2 3 5 | begin 6 | 40 11 integer 7 | 2 -1 -1 0 0 -1 0 0 0 0 0 8 | 0 1 1 0 0 -1 0 0 0 0 0 9 | 0 -1 0 1 0 0 1 0 0 0 0 10 | 0 1 0 1 0 0 -1 0 0 0 0 11 | 0 -1 0 0 1 0 0 1 0 0 0 12 | 0 1 0 0 1 0 0 -1 0 0 0 13 | 0 0 -1 1 0 0 0 0 1 0 0 14 | 0 0 1 -1 0 0 0 0 1 0 0 15 | 0 0 1 1 0 0 0 0 -1 0 0 16 | 0 0 -1 0 1 0 0 0 0 1 0 17 | 0 0 1 0 -1 0 0 0 0 1 0 18 | 0 0 1 0 1 0 0 0 0 -1 0 19 | 0 0 0 1 1 0 0 0 0 0 -1 20 | 0 0 0 1 -1 0 0 0 0 0 1 21 | 0 0 0 -1 1 0 0 0 0 0 1 22 | 2 0 0 0 0 -1 -1 0 -1 0 0 23 | 0 0 0 0 0 1 1 0 -1 0 0 24 | 0 0 0 0 0 -1 1 0 1 0 0 25 | 0 0 0 0 0 1 -1 0 1 0 0 26 | 2 0 0 0 0 -1 0 -1 0 -1 0 27 | 0 0 0 0 0 1 0 1 0 -1 0 28 | 0 0 0 0 0 -1 0 1 0 1 0 29 | 0 0 0 0 0 1 0 -1 0 1 0 30 | 2 0 0 0 0 0 -1 -1 0 0 -1 31 | 0 0 0 0 0 0 -1 1 0 0 1 32 | 0 0 0 0 0 0 1 -1 0 0 1 33 | 0 0 0 0 0 0 1 1 0 0 -1 34 | 2 0 0 0 0 0 0 0 -1 -1 -1 35 | 0 0 0 0 0 0 0 0 1 -1 1 36 | 0 0 0 0 0 0 0 0 -1 1 1 37 | 0 0 0 0 0 0 0 0 1 1 -1 38 | 0 -1 1 0 0 1 0 0 0 0 0 39 | 0 1 -1 0 0 1 0 0 0 0 0 40 | 2 -1 0 -1 0 0 -1 0 0 0 0 41 | 0 1 0 -1 0 0 1 0 0 0 0 42 | 2 -1 0 0 -1 0 0 -1 0 0 0 43 | 0 1 0 0 -1 0 0 1 0 0 0 44 | 2 0 -1 -1 0 0 0 0 -1 0 0 45 | 2 0 -1 0 -1 0 0 0 0 -1 0 46 | 2 0 0 -1 -1 0 0 0 0 0 -1 47 | end 48 | *minimize 0 1 2 3 4 5 6 7 8 9 10 49 | *extract 5 1 2 3 4 5 50 | *lponly 51 | *estimates 10 52 | *countonly 53 | -------------------------------------------------------------------------------- /ine/test/trunc10.ine: -------------------------------------------------------------------------------- 1 | trunc10.ine 2 | * 3 | delta= 4 | 1/10 5 | eps0=1/20 6 | scut=1/40 7 | pcut=1/40 8 | * 9 | begin 10 | 112 11 integer 11 | 3 5 -5 -5 -5 -5 -5 -5 -5 -5 20 12 | 3 -5 -5 -5 -5 -5 -5 -5 -5 -5 20 13 | 3 0 10 0 0 0 0 0 0 0 20 14 | 3 0 20 0 0 0 0 0 0 0 10 15 | 3 5 20 -5 -5 -5 -5 -5 -5 -5 -5 16 | 3 -5 20 -5 -5 -5 -5 -5 -5 -5 -5 17 | 3 0 20 10 0 0 0 0 0 0 0 18 | 3 0 20 0 10 0 0 0 0 0 0 19 | 3 0 20 0 0 10 0 0 0 0 0 20 | 3 0 20 0 0 0 10 0 0 0 0 21 | 3 0 20 0 0 0 0 10 0 0 0 22 | 3 0 20 0 0 0 0 0 10 0 0 23 | 3 0 20 0 0 0 0 0 0 10 0 24 | 3 0 0 10 0 0 0 0 0 0 20 25 | 3 0 0 20 0 0 0 0 0 0 10 26 | 3 5 -5 20 -5 -5 -5 -5 -5 -5 -5 27 | 3 -5 -5 20 -5 -5 -5 -5 -5 -5 -5 28 | 3 0 10 20 0 0 0 0 0 0 0 29 | 3 0 0 20 10 0 0 0 0 0 0 30 | 3 0 0 20 0 10 0 0 0 0 0 31 | 3 0 0 20 0 0 10 0 0 0 0 32 | 3 0 0 20 0 0 0 10 0 0 0 33 | 3 0 0 20 0 0 0 0 10 0 0 34 | 3 0 0 20 0 0 0 0 0 10 0 35 | 3 0 0 0 10 0 0 0 0 0 20 36 | 3 0 0 0 20 0 0 0 0 0 10 37 | 3 5 -5 -5 20 -5 -5 -5 -5 -5 -5 38 | 3 -5 -5 -5 20 -5 -5 -5 -5 -5 -5 39 | 3 0 10 0 20 0 0 0 0 0 0 40 | 3 0 0 10 20 0 0 0 0 0 0 41 | 3 0 0 0 20 10 0 0 0 0 0 42 | 3 0 0 0 20 0 10 0 0 0 0 43 | 3 0 0 0 20 0 0 10 0 0 0 44 | 3 0 0 0 20 0 0 0 10 0 0 45 | 3 0 0 0 20 0 0 0 0 10 0 46 | 3 0 0 0 0 10 0 0 0 0 20 47 | 3 0 0 0 0 20 0 0 0 0 10 48 | 3 5 -5 -5 -5 20 -5 -5 -5 -5 -5 49 | 3 -5 -5 -5 -5 20 -5 -5 -5 -5 -5 50 | 3 0 10 0 0 20 0 0 0 0 0 51 | 3 0 0 10 0 20 0 0 0 0 0 52 | 3 0 0 0 10 20 0 0 0 0 0 53 | 3 0 0 0 0 20 10 0 0 0 0 54 | 3 0 0 0 0 20 0 10 0 0 0 55 | 3 0 0 0 0 20 0 0 10 0 0 56 | 3 0 0 0 0 20 0 0 0 10 0 57 | 3 0 0 0 0 0 10 0 0 0 20 58 | 3 0 0 0 0 0 20 0 0 0 10 59 | 3 5 -5 -5 -5 -5 20 -5 -5 -5 -5 60 | 3 -5 -5 -5 -5 -5 20 -5 -5 -5 -5 61 | 3 0 10 0 0 0 20 0 0 0 0 62 | 3 0 0 10 0 0 20 0 0 0 0 63 | 3 0 0 0 10 0 20 0 0 0 0 64 | 3 0 0 0 0 10 20 0 0 0 0 65 | 3 0 0 0 0 0 20 10 0 0 0 66 | 3 0 0 0 0 0 20 0 10 0 0 67 | 3 0 0 0 0 0 20 0 0 10 0 68 | 3 0 0 0 0 0 0 10 0 0 20 69 | 3 0 0 0 0 0 0 20 0 0 10 70 | 3 5 -5 -5 -5 -5 -5 20 -5 -5 -5 71 | 3 -5 -5 -5 -5 -5 -5 20 -5 -5 -5 72 | 3 0 10 0 0 0 0 20 0 0 0 73 | 3 0 0 10 0 0 0 20 0 0 0 74 | 3 0 0 0 10 0 0 20 0 0 0 75 | 3 0 0 0 0 10 0 20 0 0 0 76 | 3 0 0 0 0 0 10 20 0 0 0 77 | 3 0 0 0 0 0 0 20 10 0 0 78 | 3 0 0 0 0 0 0 20 0 10 0 79 | 3 0 0 0 0 0 0 0 10 0 20 80 | 3 0 0 0 0 0 0 0 20 0 10 81 | 3 5 -5 -5 -5 -5 -5 -5 20 -5 -5 82 | 3 -5 -5 -5 -5 -5 -5 -5 20 -5 -5 83 | 3 0 10 0 0 0 0 0 20 0 0 84 | 3 0 0 10 0 0 0 0 20 0 0 85 | 3 0 0 0 10 0 0 0 20 0 0 86 | 3 0 0 0 0 10 0 0 20 0 0 87 | 3 0 0 0 0 0 10 0 20 0 0 88 | 3 0 0 0 0 0 0 10 20 0 0 89 | 3 0 0 0 0 0 0 0 20 10 0 90 | 3 0 0 0 0 0 0 0 0 10 20 91 | 3 0 0 0 0 0 0 0 0 20 10 92 | 3 5 -5 -5 -5 -5 -5 -5 -5 20 -5 93 | 3 -5 -5 -5 -5 -5 -5 -5 -5 20 -5 94 | 3 0 10 0 0 0 0 0 0 20 0 95 | 3 0 0 10 0 0 0 0 0 20 0 96 | 3 0 0 0 10 0 0 0 0 20 0 97 | 3 0 0 0 0 10 0 0 0 20 0 98 | 3 0 0 0 0 0 10 0 0 20 0 99 | 3 0 0 0 0 0 0 10 0 20 0 100 | 3 0 0 0 0 0 0 0 10 20 0 101 | 1 10 -10 -10 -10 -10 -10 -10 -10 -10 -10 102 | 1 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 103 | 39 40 0 0 0 0 0 0 0 0 0 104 | 39 -40 0 0 0 0 0 0 0 0 0 105 | 1 0 8 0 0 0 0 0 0 0 0 106 | 1 0 0 8 0 0 0 0 0 0 0 107 | 1 0 0 0 8 0 0 0 0 0 0 108 | 1 0 0 0 0 8 0 0 0 0 0 109 | 1 0 0 0 0 0 8 0 0 0 0 110 | 1 0 0 0 0 0 0 8 0 0 0 111 | 1 0 0 0 0 0 0 0 8 0 0 112 | 1 0 0 0 0 0 0 0 0 8 0 113 | 1 0 0 0 0 0 0 0 0 0 8 114 | 7 0 -8 0 0 0 0 0 0 0 0 115 | 7 0 0 -8 0 0 0 0 0 0 0 116 | 7 0 0 0 -8 0 0 0 0 0 0 117 | 7 0 0 0 0 -8 0 0 0 0 0 118 | 7 0 0 0 0 0 -8 0 0 0 0 119 | 7 0 0 0 0 0 0 -8 0 0 0 120 | 7 0 0 0 0 0 0 0 -8 0 0 121 | 7 0 0 0 0 0 0 0 0 -8 0 122 | 7 0 0 0 0 0 0 0 0 0 -8 123 | end 124 | *printcobasis 125 | startingcobasis 82 83 84 85 86 87 88 89 90 112 126 | -------------------------------------------------------------------------------- /ine/test/trunc7.ine: -------------------------------------------------------------------------------- 1 | trunc7.ine 2 | * 3 | delta= 4 | 1/7 5 | eps0=1/14 6 | scut=1/28 7 | pcut=1/28 8 | * 9 | begin 10 | 58 8 integer 11 | 6 7 -7 -7 -7 -7 -7 28 12 | 6 -7 -7 -7 -7 -7 -7 28 13 | 3 0 7 0 0 0 0 14 14 | 3 0 14 0 0 0 0 7 15 | 6 7 28 -7 -7 -7 -7 -7 16 | 6 -7 28 -7 -7 -7 -7 -7 17 | 3 0 14 7 0 0 0 0 18 | 3 0 14 0 7 0 0 0 19 | 3 0 14 0 0 7 0 0 20 | 3 0 14 0 0 0 7 0 21 | 3 0 0 7 0 0 0 14 22 | 3 0 0 14 0 0 0 7 23 | 6 7 -7 28 -7 -7 -7 -7 24 | 6 -7 -7 28 -7 -7 -7 -7 25 | 3 0 7 14 0 0 0 0 26 | 3 0 0 14 7 0 0 0 27 | 3 0 0 14 0 7 0 0 28 | 3 0 0 14 0 0 7 0 29 | 3 0 0 0 7 0 0 14 30 | 3 0 0 0 14 0 0 7 31 | 6 7 -7 -7 28 -7 -7 -7 32 | 6 -7 -7 -7 28 -7 -7 -7 33 | 3 0 7 0 14 0 0 0 34 | 3 0 0 7 14 0 0 0 35 | 3 0 0 0 14 7 0 0 36 | 3 0 0 0 14 0 7 0 37 | 3 0 0 0 0 7 0 14 38 | 3 0 0 0 0 14 0 7 39 | 6 7 -7 -7 -7 28 -7 -7 40 | 6 -7 -7 -7 -7 28 -7 -7 41 | 3 0 7 0 0 14 0 0 42 | 3 0 0 7 0 14 0 0 43 | 3 0 0 0 7 14 0 0 44 | 3 0 0 0 0 14 7 0 45 | 3 0 0 0 0 0 7 14 46 | 3 0 0 0 0 0 14 7 47 | 6 7 -7 -7 -7 -7 28 -7 48 | 6 -7 -7 -7 -7 -7 28 -7 49 | 3 0 7 0 0 0 14 0 50 | 3 0 0 7 0 0 14 0 51 | 3 0 0 0 7 0 14 0 52 | 3 0 0 0 0 7 14 0 53 | 1 7 -7 -7 -7 -7 -7 -7 54 | 1 -7 -7 -7 -7 -7 -7 -7 55 | 27 28 0 0 0 0 0 0 56 | 27 -28 0 0 0 0 0 0 57 | 5 0 28 0 0 0 0 0 58 | 5 0 0 28 0 0 0 0 59 | 5 0 0 0 28 0 0 0 60 | 5 0 0 0 0 28 0 0 61 | 5 0 0 0 0 0 28 0 62 | 5 0 0 0 0 0 0 28 63 | 23 0 -28 0 0 0 0 0 64 | 23 0 0 -28 0 0 0 0 65 | 23 0 0 0 -28 0 0 0 66 | 23 0 0 0 0 -28 0 0 67 | 23 0 0 0 0 0 -28 0 68 | 23 0 0 0 0 0 0 -28 69 | end 70 | 71 | -------------------------------------------------------------------------------- /ine/test/truss2.ine: -------------------------------------------------------------------------------- 1 | truss 2 | *example 3 | H-representation 4 | begin 5 | 12 7 rational 6 | 0 -1107121100 -7094932300 7 | -509288900 1581271400 -2991877000 8 | 121979199 9 | 0 -1107129000 7032470300 10 | 34962123 1920391300 -2980227600 11 | 193723910 12 | 0 1475107100 151545650 13 | -3894269700 384905410 5325424500 14 | -2983380400 15 | 0 990727340 29341662 16 | -1558120400 283839350 961245970 17 | 4544466400 18 | 0 -1839194200 389088800 19 | -7787625500 -3393884800 -3104674100 20 | -993856820 21 | 0 990727340 29341662 22 | -1558120400 283839350 961245970 23 | 4544466400 24 | 0 105491630 -60552183 25 | -2291864200 6864742100 1279634800 26 | -3346341200 27 | 0 -1223784100 35749168 28 | -1440369600 930993540 -3004955300 29 | -25679281 30 | 0 -935892200 -129544890 31 | 1528908700 2954193399 -2958306400 32 | 427239050 33 | 0 29586836 -16982840 34 | -642790400 1925328000 358894280 35 | -938535540 36 | 0 0 0 37 | 0 0 0 38 | 0 39 | 0 990727340 29341662 40 | -1558120400 283839350 961245970 41 | 4544466400 42 | end 43 | -------------------------------------------------------------------------------- /ine/test/tsp5.ine: -------------------------------------------------------------------------------- 1 | tsp5.ine 2 | H-representation 3 | linearity 5 1 2 3 4 5 4 | begin 5 | 25 11 rational 6 | -2 1 1 1 1 0 0 0 0 0 0 7 | -2 1 0 0 0 1 1 1 0 0 0 8 | -3 1 1 1 0 1 1 0 1 0 0 9 | 1 -1 0 -1 0 0 -1 0 0 1 0 10 | 1 -1 -1 0 0 -1 0 0 0 0 1 11 | 1 -1 0 0 0 0 0 0 0 0 0 12 | 0 0 0 0 0 0 1 0 0 0 0 13 | 0 0 1 0 0 0 0 0 0 0 0 14 | 2 -1 -1 0 0 -1 0 0 0 0 0 15 | 1 0 0 0 0 -1 0 0 0 0 0 16 | 2 -1 0 0 0 -1 -1 0 0 0 0 17 | -1 1 0 1 0 0 1 0 0 0 0 18 | 0 0 0 1 0 0 0 0 0 0 0 19 | -1 1 1 1 0 0 0 0 0 0 0 20 | -2 1 1 1 0 1 1 0 0 0 0 21 | 2 -1 -1 -1 0 0 0 0 0 0 0 22 | 1 0 0 -1 0 0 0 0 0 0 0 23 | 2 -1 0 -1 0 0 -1 0 0 0 0 24 | 3 -1 -1 -1 0 -1 -1 0 0 0 0 25 | -1 1 0 0 0 1 1 0 0 0 0 26 | 0 0 0 0 0 1 0 0 0 0 0 27 | -1 1 1 0 0 1 0 0 0 0 0 28 | 1 0 -1 0 0 0 0 0 0 0 0 29 | 1 0 0 0 0 0 -1 0 0 0 0 30 | 0 1 0 0 0 0 0 0 0 0 0 31 | end 32 | -------------------------------------------------------------------------------- /lpdemo.c: -------------------------------------------------------------------------------- 1 | /* lpdemo.c lrslib lp demo code */ 2 | /* last modified: June 20, 2001 */ 3 | /* Copyright: David Avis 2001, avis@cs.mcgill.ca */ 4 | 5 | /* Demo driver for lp code using lrs */ 6 | /* This program does lps on a set of generated cubes */ 7 | 8 | #include 9 | #include 10 | #include "lrsdriver.h" 11 | #include "lrslib.h" 12 | 13 | #define MAXCOL 1000 /* maximum number of colums */ 14 | 15 | long num[MAXCOL]; 16 | long den[MAXCOL]; 17 | void makecube (lrs_dic *P, lrs_dat *Q); 18 | 19 | int 20 | main (int argc, char *argv[]) 21 | 22 | { 23 | lrs_dic *P; /* structure for holding current dictionary and indices */ 24 | lrs_dat *Q; /* structure for holding static problem data */ 25 | lrs_mp_vector output; /* one line of output:ray,vertex,facet,linearity */ 26 | 27 | long i; 28 | long m; /* number of constraints in the problem */ 29 | long n; /* number of variables in the problem + 1 */ 30 | long col; /* output column index for dictionary */ 31 | 32 | /* Global initialization - done once */ 33 | 34 | if ( !lrs_init ("\n*lpdemo:")) 35 | return 1; 36 | 37 | /* generate cubes with dimension d */ 38 | 39 | for(i=1;i<=2;i++) 40 | { 41 | n=10; 42 | m=18; /* number of rows for cube dimension d */ 43 | 44 | /* allocate and init structure for static problem data */ 45 | 46 | Q = lrs_alloc_dat ("LRS globals"); 47 | if (Q == NULL) 48 | return 1; 49 | 50 | strcpy(Q->fname,"lpdemo"); 51 | Q->m=m; Q->n=n; 52 | 53 | Q->lponly=TRUE; /* we do not want all vertices generated! */ 54 | 55 | output = lrs_alloc_mp_vector (Q->n); 56 | 57 | P = lrs_alloc_dic (Q); /* allocate and initialize lrs_dic */ 58 | if (P == NULL) 59 | return 1; 60 | 61 | /* Build polyhedron: constraints and objective */ 62 | 63 | makecube(P,Q); 64 | /* Solve the LP */ 65 | 66 | if (!lrs_solve_lp(P,Q)) 67 | return 1; 68 | 69 | /* Print output */ 70 | 71 | prat ("\nObjective value = ", P->objnum, P->objden); 72 | 73 | for (col = 0; col < Q->n; col++) 74 | if (lrs_getsolution (P, Q, output, col)) 75 | lrs_printoutput (Q, output); 76 | 77 | /* free space : do not change order of next lines! */ 78 | lrs_clear_mp_vector (output, Q->n); 79 | lrs_free_dic (P,Q); /* deallocate lrs_dic */ 80 | lrs_free_dat (Q); /* deallocate lrs_dat */ 81 | 82 | } /* end of loop for i=1 ... */ 83 | 84 | lrs_close ("lpdemo:"); 85 | 86 | printf("\n"); 87 | return 0; 88 | } /* end of main */ 89 | 90 | /* code to generate unit cube and objective function */ 91 | 92 | void 93 | makecube (lrs_dic *P, lrs_dat *Q) 94 | /* generate H-representation of a unit hypercube */ 95 | /* with dimension n-1 */ 96 | { 97 | long num[MAXCOL]; 98 | long den[MAXCOL]; 99 | long row, j; 100 | long m=Q->m; 101 | long n=Q->n; 102 | 103 | for (row=1;row<=m;row++) 104 | { /* set up a cube */ 105 | 106 | for(j=0;j 12 | #include 13 | #include "lrsdriver.h" 14 | #include "lrslib.h" 15 | 16 | #define MAXCOL 1000 /* maximum number of colums */ 17 | 18 | long num[MAXCOL]; 19 | long den[MAXCOL]; 20 | void makecube (lrs_dic *P, lrs_dat *Q); 21 | 22 | int 23 | main (int argc, char *argv[]) 24 | 25 | { 26 | lrs_dic *P; /* structure for holding current dictionary and indices */ 27 | lrs_dat *Q; /* structure for holding static problem data */ 28 | lrs_mp_vector output; /* one line of output:ray,vertex,facet,linearity */ 29 | 30 | long i; 31 | long m; /* number of constraints in the problem */ 32 | long n; /* number of variables in the problem + 1 */ 33 | long col; /* output column index for dictionary */ 34 | 35 | /* Global initialization - done once */ 36 | 37 | if ( !lrs_init ("\n*lpdemo1:")) 38 | return 1; 39 | 40 | /* allocate and init structure for static problem data and read input */ 41 | 42 | Q = lrs_alloc_dat ("LRS globals"); 43 | if (Q == NULL) 44 | return 1; 45 | if (!lrs_read_dat (Q, argc, argv)) /* read first part of problem data to get dimensions */ 46 | return 1; /* and problem type: H- or V- input representation */ 47 | 48 | strcpy(Q->fname,"lpdemo1"); 49 | 50 | P = lrs_alloc_dic (Q); /* allocate and initialize lrs_dic */ 51 | if (P == NULL) 52 | return 1; 53 | 54 | if (!lrs_read_dic (P, Q)) /* read remainder of input to setup P and Q */ 55 | return 1; 56 | 57 | 58 | Q->lponly=TRUE; /* we do not want all vertices generated! */ 59 | 60 | output = lrs_alloc_mp_vector (Q->n); 61 | 62 | /* Solve the LP */ 63 | 64 | if (!lrs_solve_lp(P,Q)) 65 | return 1; 66 | 67 | /* Print output */ 68 | 69 | prat ("\nObjective value = ", P->objnum, P->objden); 70 | 71 | for (col = 0; col < Q->n; col++) 72 | if (lrs_getsolution (P, Q, output, col)) 73 | lrs_printoutput (Q, output); 74 | 75 | /* free space : do not change order of next lines! */ 76 | lrs_clear_mp_vector (output, Q->n); 77 | lrs_free_dic (P,Q); /* deallocate lrs_dic */ 78 | lrs_free_dat (Q); /* deallocate lrs_dat */ 79 | 80 | 81 | lrs_close ("lpdemo1:"); 82 | 83 | printf("\n"); 84 | return 0; 85 | } /* end of main */ 86 | 87 | /* code to generate unit cube and objective function */ 88 | 89 | void 90 | makecube (lrs_dic *P, lrs_dat *Q) 91 | /* generate H-representation of a unit hypercube */ 92 | /* with dimension n-1 */ 93 | { 94 | long num[MAXCOL]; 95 | long den[MAXCOL]; 96 | long row, j; 97 | long m=Q->m; 98 | long n=Q->n; 99 | 100 | for (row=1;row<=m;row++) 101 | { /* set up a cube */ 102 | 103 | for(j=0;j 2 | #include 3 | #include 4 | #include 5 | #include 6 | #include "lrsdriver.h" 7 | 8 | 9 | int 10 | main (int argc, char *argv[]) 11 | 12 | { 13 | #ifndef MA 14 | lrs_main(argc,argv); /* legacy lrs */ 15 | return 0; 16 | #endif 17 | 18 | /* hybrid arithmetic version of lrs */ 19 | 20 | lrs_restart_dat *R; 21 | lrs_dic *P; 22 | lrs_dat *Q; 23 | char* tmp; /* when overflow occurs a new input file name is returned */ 24 | 25 | char** newargv; 26 | long overfl=0; /* =0 no overflow =1 restart overwrite =2 restart append */ 27 | long overfl2=0; /* for B128 */ 28 | long b128=0; /* =1 if _int128 available */ 29 | int lrs_stdin=0; 30 | int i; 31 | 32 | #ifdef B128 33 | b128=1; 34 | #endif 35 | 36 | P=NULL; 37 | Q=NULL; 38 | tmp=NULL; 39 | 40 | R = lrs_alloc_restart(); 41 | if (R == NULL) 42 | exit(1); 43 | 44 | 45 | if(argc == 1) 46 | lrs_stdin=1; 47 | 48 | tmp = malloc(PATH_MAX * sizeof (char)); 49 | 50 | if ( (overfl=lrs1_main(argc,argv,&P,&Q,0,0,tmp,R)) == 0) /* set up, read input, no run */ 51 | if ( (overfl=lrs1_main(argc,argv,&P,&Q,0,1,tmp,R)) == 0) /* run reverse search */ 52 | if ( (overfl=lrs1_main(argc,argv,&P,&Q,0,2,tmp,R)) == 0) /* free memory and close */ 53 | goto byebye; 54 | 55 | if (overfl==-1) /* unrecoverable input error */ 56 | { 57 | printf("\n"); 58 | exit(1); 59 | } 60 | 61 | /* overflow condition triggered: a temporary file was created for restart */ 62 | /* create new argv for the remaining calls */ 63 | 64 | newargv = makenewargv(&argc,argv,tmp); 65 | 66 | if(b128) 67 | { 68 | fprintf(stderr,"\n*lrs:overflow possible: restarting with 128 bit arithmetic\n"); 69 | 70 | if ( (overfl2=lrs2_main(argc,newargv,&P,&Q,overfl,0,tmp,R)) == 0) 71 | if ( (overfl2=lrs2_main(argc,newargv,&P,&Q,overfl,1,tmp,R)) == 0) 72 | if ( (overfl2=lrs2_main(argc,newargv,&P,&Q,overfl,2,tmp,R)) == 0) 73 | goto done; 74 | overfl=overfl2; 75 | } 76 | 77 | 78 | /* if you change tmp file name update newargv[1] */ 79 | 80 | fprintf(stderr,"\n*lrs:overflow possible: restarting with GMP arithmetic\n"); 81 | 82 | lrsgmp_main(argc,newargv,&P,&Q,overfl,0,tmp,R); 83 | lrsgmp_main(argc,newargv,&P,&Q,overfl,1,tmp,R); 84 | lrsgmp_main(argc,newargv,&P,&Q,overfl,2,tmp,R); 85 | 86 | done: 87 | for(i = 0; i < argc; ++i) 88 | free(newargv[i]); 89 | free(newargv); 90 | 91 | byebye: 92 | free(R->redineq); 93 | free(R->facet); 94 | free(R); 95 | fprintf(stderr,"\n"); 96 | if(lrs_stdin==1) /* get rid of temporary file for stdin */ 97 | remove(tmp); 98 | free(tmp); 99 | return 0; 100 | 101 | } /* lrs.c */ 102 | 103 | -------------------------------------------------------------------------------- /lrsdriver.c: -------------------------------------------------------------------------------- 1 | /* This file contains functions and variables that should not be duplicated per arithmetic */ 2 | 3 | #include 4 | #include 5 | #include 6 | #include 7 | #include 8 | #include "lrsdriver.h" 9 | 10 | /* Globals; these need to be here, rather than lrsdriver.h, so they are 11 | not multiply defined. */ 12 | 13 | FILE *lrs_cfp; /* output file for checkpoint information */ 14 | FILE *lrs_ifp; /* input file pointer */ 15 | FILE *lrs_ofp; /* output file pointer */ 16 | 17 | char** makenewargv(int *argc,char** argv,char *tmp) 18 | { 19 | int i; 20 | char** newargv; 21 | 22 | newargv = (char**) malloc((*argc+3) * sizeof *newargv); 23 | for(i = 0; i < *argc; ++i) 24 | { 25 | if (i != 1) 26 | { 27 | size_t length = strlen(argv[i])+1; 28 | newargv[i] = (char *) malloc(length); 29 | strncpy(newargv[i], argv[i], length); 30 | } 31 | } 32 | /* make tmp the new input file */ 33 | size_t length = strlen(tmp)+1; 34 | newargv[1] = (char *)malloc(length); 35 | strncpy(newargv[1], tmp, length); 36 | if(*argc == 1) /* input was stdin*/ 37 | *argc = 2; 38 | newargv[*argc] = NULL; 39 | return newargv; 40 | } 41 | 42 | 43 | lrs_restart_dat* 44 | lrs_alloc_restart() 45 | { 46 | int i; 47 | 48 | lrs_restart_dat *R; 49 | 50 | R = (lrs_restart_dat *) malloc (sizeof (lrs_restart_dat)); 51 | if (R == NULL) 52 | return R; 53 | 54 | R->overide=0; /* do not overide Q */ 55 | R->restart=0; /* do not do a restart */ 56 | R->facet=NULL; /* this will be allocated later when we know its size */ 57 | R->d=0; 58 | R->maxcobases=0; 59 | R->maxdepth=-1; /* will be set to MAXD in lrs*_main */ 60 | R->mindepth=0; 61 | R->maxcobases=0; 62 | for(i=0;i<10;i++) 63 | R->count[i]=0; 64 | R->depth=0; 65 | R->lrs=1; 66 | R->redund=0; 67 | R->verifyredund=0; 68 | R->redineq = NULL; 69 | 70 | return R; 71 | } 72 | 73 | -------------------------------------------------------------------------------- /lrsdriver.h: -------------------------------------------------------------------------------- 1 | /* This file contains functions and variables that should not be duplicated per arithmetic */ 2 | 3 | #ifndef LRS_DRIVER_H 4 | #define LRS_DRIVER_H 5 | #include 6 | #include 7 | #include 8 | 9 | #include "lrsrestart.h" 10 | 11 | 12 | struct lrs_dic_struct; 13 | typedef struct lrs_dic_struct lrs_dic; 14 | 15 | struct lrs_dat; 16 | typedef struct lrs_dat lrs_dat; 17 | 18 | 19 | 20 | long lrs_main (int argc, char *argv[]); /* legacy lrs driver, argv[1]=input file, [argc-1]=output file */ 21 | 22 | long lrs1_main(int argc, char *argv[],lrs_dic **P,lrs_dat **Q, long overf,long stage,char *tmp,lrs_restart_dat *R)/*__attribute__ ((visibility ("default") ))*/; 23 | long lrs2_main(int argc, char *argv[],lrs_dic **P,lrs_dat **Q, long overf,long stage,char *tmp,lrs_restart_dat *R)/*__attribute__ ((visibility ("default") ))*/; 24 | long lrsgmp_main(int argc, char *argv[],lrs_dic **P,lrs_dat **Q, long overf,long stage,char *tmp,lrs_restart_dat *R)/*__attribute__ ((visibility ("default") ))*/; 25 | 26 | char** makenewargv(int *argc,char** argv,char* tmp); 27 | lrs_restart_dat* lrs_alloc_restart(); 28 | 29 | 30 | extern FILE *lrs_cfp; /* output file for checkpoint information */ 31 | extern FILE *lrs_ifp; /* input file pointer */ 32 | extern FILE *lrs_ofp; /* output file pointer */ 33 | 34 | #endif 35 | -------------------------------------------------------------------------------- /lrsgmp.cpp: -------------------------------------------------------------------------------- 1 | // Wrapper to compile this source as C++ 2 | #include "lrsgmp.c" 3 | -------------------------------------------------------------------------------- /lrslib.cpp: -------------------------------------------------------------------------------- 1 | // Wrapper to compile this source as C++ 2 | #include "lrslib.c" 3 | -------------------------------------------------------------------------------- /lrslong.cpp: -------------------------------------------------------------------------------- 1 | // Wrapper to compile this source as C++ 2 | #include "lrslong.c" 3 | -------------------------------------------------------------------------------- /lrsmp.cpp: -------------------------------------------------------------------------------- 1 | // Wrapper to compile this source as C++ 2 | #include "lrsmp.c" 3 | -------------------------------------------------------------------------------- /lrsnashlib.h: -------------------------------------------------------------------------------- 1 | /*******************************************************/ 2 | /* lrsnashlib is a library of routines for computing */ 3 | /* computing all nash equilibria for two person games */ 4 | /* given by mxn payoff matrices A,B */ 5 | /* */ 6 | /* */ 7 | /* Main user callable function is */ 8 | /* lrs_solve_nash(game *g) */ 9 | /* */ 10 | /* Sample driver: lrsnash.c */ 11 | /* Derived from nash.c in lrslib-060 */ 12 | /* by Terje Lensberg, October 26, 2015: */ 13 | /*******************************************************/ 14 | 15 | /* minor mod 2018.2.12 to set Q->fname="nash" */ 16 | 17 | /*************/ 18 | /* Games */ 19 | /*************/ 20 | 21 | #define MAXSTRAT 200 22 | #define ROW 0 23 | #define COL 1 24 | 25 | typedef struct { 26 | long num; 27 | long den; 28 | } ratnum; 29 | 30 | typedef struct { 31 | long nstrats[2]; 32 | ratnum payoff[MAXSTRAT][MAXSTRAT][2]; 33 | // For auxiliary information 34 | void *aux; 35 | } game; 36 | 37 | typedef struct { 38 | char name[100]; 39 | int fwidth[MAXSTRAT][2]; // Column field widths (for output) 40 | } gInfo; 41 | 42 | 43 | int lrs_solve_nash(game * g); 44 | 45 | long nash2_main(lrs_dic * P1, lrs_dat * Q1, lrs_dic * P2orig, 46 | lrs_dat * Q2, long *numequilib, lrs_mp_vector output, long linindex[]); 47 | /* lrs driver, argv[2]= 2nd input file for nash equilibria */ 48 | 49 | long lrs_getfirstbasis2(lrs_dic ** D_p, lrs_dat * Q, lrs_dic * P2orig, lrs_mp_matrix * Lin, long no_output, 50 | long linindex[]); 51 | 52 | long getabasis2(lrs_dic * P, lrs_dat * Q, lrs_dic * P2orig, long order[], long linindex[]); 53 | 54 | long lrs_nashoutput(lrs_dat * Q, lrs_mp_vector output, long player); 55 | /* returns TRUE and prints output if not the origin */ 56 | 57 | int lrs_solve_nash_legacy (int argc, char *argv[]); 58 | 59 | void BuildRep(lrs_dic * P, lrs_dat * Q, const game * g, int p1, int p2); 60 | void FillFirstRow(lrs_dic * P, lrs_dat * Q, int n); 61 | void FillLinearityRow(lrs_dic * P, lrs_dat * Q, int m, int n); 62 | void FillConstraintRows(lrs_dic * P, lrs_dat * Q, const game * g, int p1, int p2, int firstRow); 63 | void FillNonnegativityRows(lrs_dic * P, lrs_dat * Q, int firstRow, int lastRow, int n); 64 | void printGame(game * g); 65 | void setFwidth(game *g, int len); 66 | void resetNashSolver(); /* Call this function for every new game to be solved */ 67 | void initFwidth(game *g); 68 | void updateFwidth(game *g, int col, int pos, char *str); 69 | 70 | 71 | static long Debug_flag; 72 | static long Verbose_flag; 73 | 74 | -------------------------------------------------------------------------------- /lrsrestart.h: -------------------------------------------------------------------------------- 1 | typedef struct lrs_restart_dat /* for restarting from a given cobasis */ 2 | { 3 | long *facet; /* cobasic indices for restart */ 4 | 5 | long overide; /* TRUE if Q parameters should be updated */ 6 | long restart; /* TRUE if we supply restart cobasis */ 7 | long lrs; /* TRUE if we are doing a lrs run */ 8 | long m; /* number of input rows */ 9 | long d; /* number of cobasic indices */ 10 | long count[10]; /* count[0]=rays(facets) [1]=verts. [2]=base [3]=pivots */ 11 | /* count[4]=integer vertices [5]=1 for hull */ 12 | /* [6]=nlinearities [7]=deepest */ 13 | long depth; /* depth of restart node */ 14 | long maxcobases; /* if positive, after maxcobasis unexplored subtrees reported */ 15 | long long maxdepth; /* max depth to search to in treee */ 16 | long long mindepth; /* do not backtrack above mindepth */ 17 | 18 | long redund; /* TRUE if we are doing a redund run */ 19 | long verifyredund; /* a worker checks redundancy and gives output */ 20 | long messages; /* TRUE if lrs should post_output messages */ 21 | long *redineq; /* a list of row numbers to check redundancy */ 22 | } lrs_restart_dat; 23 | 24 | lrs_restart_dat* lrs_alloc_restart(); 25 | 26 | 27 | -------------------------------------------------------------------------------- /man/lrslib.1: -------------------------------------------------------------------------------- 1 | '\" t 2 | .\" Title: LRSLIB 3 | .\" Author: [FIXME: author] [see http://www.docbook.org/tdg5/en/html/author] 4 | .\" Generator: DocBook XSL Stylesheets vsnapshot 5 | .\" Date: 06/10/2020 6 | .\" Manual: lrslib 0.42b 7 | .\" Source: July 2009(rev. June 2020) 8 | .\" Language: English 9 | .\" 10 | .TH "LRSLIB" "1" "2020.06.10" "July 2009" "lrslib 7\&.1" 11 | .\" ----------------------------------------------------------------- 12 | .\" * Define some portability stuff 13 | .\" ----------------------------------------------------------------- 14 | .\" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 15 | .\" http://bugs.debian.org/507673 16 | .\" http://lists.gnu.org/archive/html/groff/2009-02/msg00013.html 17 | .\" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 18 | .ie \n(.g .ds Aq \(aq 19 | .el .ds Aq ' 20 | .\" ----------------------------------------------------------------- 21 | .\" * set default formatting 22 | .\" ----------------------------------------------------------------- 23 | .\" disable hyphenation 24 | .nh 25 | .\" disable justification (adjust text to left margin only) 26 | .ad l 27 | .\" ----------------------------------------------------------------- 28 | .\" * MAIN CONTENT STARTS HERE * 29 | .\" ----------------------------------------------------------------- 30 | .SH "NAME" 31 | lrslib: Convert between representations of convex polyhedra, remove redundant inequalities, 32 | convex hull computation, solve linear programs in exact precision, 33 | compute Nash-equibria in 2-person games\&. 34 | .SH "SYNOPSIS" 35 | .HP \w'\fBlrs\fR\ [input-file] [output-file]\ 'u 36 | \fBlrs\fR\ \fI[input-file] [output-file]\fR 37 | .HP \w'\fBredund\fR\ [input-file] [output-file]\ 'u 38 | \fBredund\fR\ \fI[input-file] [output-file]\fR 39 | .HP \w'\fBmpirun\fR -np \fInum_proc\fR \fBmplrs\fR\ \fIinput-file [output-file] [options...]\fR\ 'u 40 | \fBmpirun\fR -np \fInum-proc\fR \fBmplrs\fR\ \fIinput-file [output-file] [options]\fR 41 | .HP \w'\fBlrsnash\fR\ [input-file] \ 'u 42 | \fBlrsnash\fR\ \fI[options] [input-file] \fR 43 | .HP \w'\fBhvref/xref\fR\ [input-file] \ 'u 44 | \fBhvref/xvref\fR\ \fI[input-file]\fR 45 | .SH "DESCRIPTION" 46 | .PP 47 | A polyhedron can be described by a list of inequalities (\fIH\-representation)\fR 48 | or as by a list of its vertices and extreme rays (\fIV\-representation)\fR\&. 49 | \fIlrslib\fR is a C library containing programs to manipulate these representations. 50 | All computations are done in exact arithmetic. 51 | .PP 52 | \fIlrs\fR 53 | converts an H\-representation of a polyhedron to its V\-representation and vice versa, 54 | known respectively as the 55 | \fIvertex enumeration\fR 56 | and 57 | \fIfacet enumeration\fR problems\& (see Example (1) below). 58 | lrs can also be used to solve a linear program, remove linearities from a system, 59 | and extract a subset of columns. 60 | .PP 61 | \fIredund\fR 62 | removes redundant inequalities in an input H-representation and outputs the remaining inequalities\&. 63 | For a V-representation input it 64 | outputs all extreme points and extreme rays. Both outputs can be piped directly into \fIlrs\fR. 65 | \fIredund\fR is a link to \fIlrs\fR which performs these functions via 66 | the \fBredund\fR and \fBredund_list\fR options. 67 | .PP 68 | \fImplrs\fR 69 | is Skip Jordan's parallel wrapper for \fIlrs/redund\fR. 70 | .PP 71 | \fIlrsnash\fR 72 | is Terje Lensberg's application of \fIlrs\fR for finding Nash-equilibria 73 | in 2-person games\&. 74 | .PP 75 | \fIhvref/xvref\fR\ produce a cross reference list between H- and V-representations. 76 | .SH "ARITHMETIC" 77 | From version 7.1 \fIlrs/redund/mplrs\fR use hybrid arithmetic with overflow checking, 78 | starting in 64bit integers, moving to 128bit (if available) and then GMP. 79 | Overflow checking is conservative to improve performance: 80 | eg. with 64 bit arithmetic, a*b triggers overflow if either a or b is at least 2^31, 81 | and a+b triggers an overflow if either a or b is at least 2^62. 82 | Typically problems that can be solved in 64bits run 3-4 times faster than with GMP 83 | and inputs solvable in 128bits run twice as fast as GMP. 84 | .PP 85 | Various arithmetic versions are available 86 | and can be built from the makefile: 87 | 88 | .SH "NOTES" 89 | .PP 90 | User's guide for lrslib 91 | .RS 4 92 | \%http://cgm.cs.mcgill.ca/~avis/C/lrslib/USERGUIDE.html 93 | .RE 94 | .SH AUTHOR 95 | David Avis 96 | .SH "SEE ALSO" 97 | .BR lrs (1), 98 | .BR mplrs (1), 99 | .BR lrsnash (1), 100 | 101 | -------------------------------------------------------------------------------- /man/lrsnash.1: -------------------------------------------------------------------------------- 1 | .TH "LRSNASH" "1" "2020.7.28" "July 2020" "lrslib 7\&.2" 2 | .\" ----------------------------------------------------------------- 3 | .\" * Define some portability stuff 4 | .\" ----------------------------------------------------------------- 5 | .\" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6 | .\" http://bugs.debian.org/507673 7 | .\" http://lists.gnu.org/archive/html/groff/2009-02/msg00013.html 8 | .\" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 | .ie (.g .ds Aq \(aq 10 | .el .ds Aq ' 11 | .\" ----------------------------------------------------------------- 12 | .\" * set default formatting 13 | .\" ----------------------------------------------------------------- 14 | .\" disable hyphenation 15 | .nh 16 | .\" disable justification (adjust text to left margin only) 17 | .ad l 18 | .\" ----------------------------------------------------------------- 19 | .\" * MAIN CONTENT STARTS HERE * 20 | .\" ----------------------------------------------------------------- 21 | .SH "NAME" 22 | lrsnash: \ 23 | Compute Nash-equibria in 2-person games\&. 24 | .SH "SYNOPSIS" 25 | .HP \w'\fBlrsnash\fR \ [options...] [input-file] \ 'u 26 | \fBlrsnash\fR \ [options...] [input-file] 27 | .HP \w'\fBlrsnash1\fR\ [options...] [input-file] \ 'u 28 | \fBlrsnash1\fR\ [options...] [input-file] 29 | .HP \w'\fBlrsnash2\fR\ [options...] [input-file] \ 'u 30 | \fBlrsnash2\fR\ [options...] [input-file] 31 | .HP \w'\fBnashdemo\fR\ \ 'u 32 | \fBnashdemo\fR\ 33 | .PP 34 | options: 35 | -v, --verbose Prints a trace of the solution process 36 | -d, --debug Dumps lots of information for debugging 37 | -p, --printgame Prints the payoff matrix for the game 38 | -s, --standard Promise that input files have standard structure 39 | -o, --outfile Send output to 40 | -h, --help Prints this text 41 | Short options can be grouped, as in '-ps' and '-do out.txt' 42 | 43 | 44 | .SH DESCRIPTION 45 | .PP 46 | These C programs are distributed as part of the \m[blue]\fBlsrslib\fR\m[]\u[2] package 47 | and must be compiled with it. 48 | 49 | Alice has a payoff matrix A and Bob has a playoff matrix B, both of dimension m by n. 50 | Alice assigns probabilities x to the rows and Bob y to the columns. 51 | Alice receives payoff x^T A y and Bob receives x^T B y. 52 | A Nash equilibriam 53 | occurs for pairs x,y for which neither player can improve their expected payoff 54 | by unilateraly changing strategies. 55 | 56 | .PP 57 | \fIlrsnash\fR 58 | is an application of \fIlrs\fR for finding Nash-equilibria 59 | in 2-person matrix games 60 | using a method described in \u[1]. It uses GMP exact extended precision arithmetic. 61 | 62 | \fIlrsnash1\fR 63 | is the same as \fIlrsnash\fR 64 | except that it uses 64 bit exact arithmetic and terminates if overflow is detected. 65 | It is about 3-4 times faster. 66 | 67 | \fIlrsnash2\fR 68 | is the same as \fIlrsnash\fR 69 | except that it uses 128 bit exact arithmetic and terminates if overflow is detected. 70 | It is about twice as fast. It requires a C 71 | compiler with __int128 support (eg. gcc v. 4.6.0 or later). 72 | 73 | \fInashdemo\fR 74 | is a simple template for \fIlrsnash\fR. 75 | It builds two 3x4 matrices A and B and computes their equilibria. 76 | 77 | The running time may be significantly different depending on the order of the 78 | two matrices in the input. For large problems it may be advantageous to 79 | run \fIlrsnash\fR twice in parallel with the matrices 80 | in different orders. 81 | There is also a more complex legacy input format recognized by 82 | \fIlrsnash\fR that is described in \u[1]. 83 | 84 | .SH FILE FORMATS 85 | .PP 86 | The input file consists of two integers m and n on line 1 87 | followed by two mxn payoff matrices A and B: 88 | 89 | m n 90 | A (row by row) 91 | B (row by row) 92 | 93 | .SH EXAMPLE 94 | The input file game has two 3x2 payoff matrices: 95 | 96 | %cat game 97 | 98 | 3 2 99 | 100 | 0 6 101 | 2 5 102 | 3 3 103 | 104 | 1 0 105 | 0 2 106 | 4 3 107 | 108 | % lrsnash game 109 | 110 | 2 1/3 2/3 4 111 | 1 2/3 1/3 0 2/3 112 | 113 | 2 2/3 1/3 3 114 | 1 0 1/3 2/3 8/3 115 | 116 | 2 1 0 3 117 | 1 0 0 1 4 118 | 119 | *Number of equilibria found: 3 120 | *Player 1: vertices=5 bases=5 pivots=8 121 | *Player 2: vertices=3 bases=1 pivots=8 122 | 123 | \fBInterpretation\fR 124 | There are 3 Nash equilibria. For the first one: 125 | 126 | 2 1/3 2/3 4 127 | .br 128 | Bob(player 2) plays column 1 and 2 with probablilities y=(1/3, 2/3) 129 | and the payoff to Alice(player 1) is 4. 130 | 131 | 1 2/3 1/3 0 2/3 132 | .br 133 | Alice plays rows 1,2,3 with probabilities x=(2/3, 1/3, 0) and the payoff to Bob is 2/3. 134 | 135 | .SH NOTES 136 | .IP 1. 4 137 | D. Avis, G. Rosenberg, R. Savani, B. von Stengel, \fIEnumeration of Nash Equilibria for Two-Player Games\fR, 138 | Economic Theory 42(2009) 9-37 139 | .IP 2. 4 140 | User's guide for lrslib 141 | .RS 4 142 | \%http://cgm.cs.mcgill.ca/%7Eavis/C/lrslib/USERGUIDE.html 143 | .RE 144 | .SH AUTHORS 145 | David Avis and Terje Lensberg 146 | .SH "SEE ALSO" 147 | .BR lrslib (1) 148 | -------------------------------------------------------------------------------- /mp5.ext: -------------------------------------------------------------------------------- 1 | mp5 2 | V-representation 3 | begin 4 | 32 11 rational 5 | 1 1 1 1 1 0 0 0 0 0 0 6 | 1 0 0 1 1 0 1 1 1 1 0 7 | 1 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 8 | 1 1 0 1 1 1 0 0 1 1 0 9 | 1 0 1 1 1 1 1 1 0 0 0 10 | 1 2/3 2/3 1/3 1/3 2/3 1/3 1/3 1/3 1/3 2/3 11 | 1 0 1 0 1 1 0 1 1 0 1 12 | 1 1 1 0 1 0 1 0 1 0 1 13 | 1 1/3 2/3 2/3 2/3 1/3 1/3 1/3 2/3 2/3 2/3 14 | 1 0 1 1 0 1 1 0 0 1 1 15 | 1 1 1 1 0 0 0 1 0 1 1 16 | 1 1/3 1/3 2/3 2/3 2/3 1/3 1/3 1/3 1/3 2/3 17 | 1 0 0 0 1 0 0 1 0 1 1 18 | 1 1 0 0 1 1 1 0 0 1 1 19 | 1 2/3 1/3 2/3 2/3 1/3 2/3 2/3 1/3 1/3 2/3 20 | 1 1/3 2/3 1/3 1/3 1/3 2/3 2/3 1/3 1/3 2/3 21 | 1 2/3 1/3 1/3 1/3 1/3 1/3 1/3 2/3 2/3 2/3 22 | 1 0 0 1 0 0 1 0 1 0 1 23 | 1 2/3 2/3 2/3 1/3 2/3 2/3 1/3 2/3 1/3 1/3 24 | 1 1 0 1 0 1 0 1 1 0 1 25 | 1 2/3 1/3 1/3 2/3 1/3 1/3 2/3 2/3 1/3 1/3 26 | 1 1/3 1/3 1/3 2/3 2/3 2/3 1/3 2/3 1/3 1/3 27 | 1 1/3 1/3 1/3 1/3 2/3 2/3 2/3 2/3 2/3 2/3 28 | 1 0 1 0 0 1 0 0 1 1 0 29 | 1 2/3 1/3 2/3 1/3 1/3 2/3 1/3 1/3 2/3 1/3 30 | 1 1/3 2/3 1/3 2/3 1/3 2/3 1/3 1/3 2/3 1/3 31 | 1 1/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 32 | 1 1 1 0 0 0 1 1 1 1 0 33 | 1 1/3 2/3 2/3 1/3 1/3 1/3 2/3 2/3 1/3 1/3 34 | 1 1 0 0 0 1 1 1 0 0 0 35 | 1 2/3 2/3 1/3 2/3 2/3 1/3 2/3 1/3 2/3 1/3 36 | 1 0 0 0 0 0 0 0 0 0 0 37 | end 38 | volume 39 | -------------------------------------------------------------------------------- /mp5.ine: -------------------------------------------------------------------------------- 1 | mp5 2 | *metric polytope on 5 points 3 | H-representation 4 | begin 5 | 40 11 integer 6 | 2 -1 -1 0 0 -1 0 0 0 0 0 7 | 0 1 1 0 0 -1 0 0 0 0 0 8 | 0 -1 0 1 0 0 1 0 0 0 0 9 | 0 1 0 1 0 0 -1 0 0 0 0 10 | 0 -1 0 0 1 0 0 1 0 0 0 11 | 0 1 0 0 1 0 0 -1 0 0 0 12 | 0 0 -1 1 0 0 0 0 1 0 0 13 | 0 0 1 -1 0 0 0 0 1 0 0 14 | 0 0 1 1 0 0 0 0 -1 0 0 15 | 0 0 -1 0 1 0 0 0 0 1 0 16 | 0 0 1 0 -1 0 0 0 0 1 0 17 | 0 0 1 0 1 0 0 0 0 -1 0 18 | 0 0 0 1 1 0 0 0 0 0 -1 19 | 0 0 0 1 -1 0 0 0 0 0 1 20 | 0 0 0 -1 1 0 0 0 0 0 1 21 | 2 0 0 0 0 -1 -1 0 -1 0 0 22 | 0 0 0 0 0 1 1 0 -1 0 0 23 | 0 0 0 0 0 -1 1 0 1 0 0 24 | 0 0 0 0 0 1 -1 0 1 0 0 25 | 2 0 0 0 0 -1 0 -1 0 -1 0 26 | 0 0 0 0 0 1 0 1 0 -1 0 27 | 0 0 0 0 0 -1 0 1 0 1 0 28 | 0 0 0 0 0 1 0 -1 0 1 0 29 | 2 0 0 0 0 0 -1 -1 0 0 -1 30 | 0 0 0 0 0 0 -1 1 0 0 1 31 | 0 0 0 0 0 0 1 -1 0 0 1 32 | 0 0 0 0 0 0 1 1 0 0 -1 33 | 2 0 0 0 0 0 0 0 -1 -1 -1 34 | 0 0 0 0 0 0 0 0 1 -1 1 35 | 0 0 0 0 0 0 0 0 -1 1 1 36 | 0 0 0 0 0 0 0 0 1 1 -1 37 | 0 -1 1 0 0 1 0 0 0 0 0 38 | 0 1 -1 0 0 1 0 0 0 0 0 39 | 2 -1 0 -1 0 0 -1 0 0 0 0 40 | 0 1 0 -1 0 0 1 0 0 0 0 41 | 2 -1 0 0 -1 0 0 -1 0 0 0 42 | 0 1 0 0 -1 0 0 1 0 0 0 43 | 2 0 -1 -1 0 0 0 0 -1 0 0 44 | 2 0 -1 0 -1 0 0 0 0 -1 0 45 | 2 0 0 -1 -1 0 0 0 0 0 -1 46 | end 47 | -------------------------------------------------------------------------------- /mplrs.cpp: -------------------------------------------------------------------------------- 1 | // Wrapper to compile this source as C++ 2 | #include "mplrs.c" 3 | -------------------------------------------------------------------------------- /mplrs/Makefile.am: -------------------------------------------------------------------------------- 1 | # mplrs -- requires MPI. 2 | AUTOMAKE_OPTIONS = subdir-objects 3 | 4 | # Use of subdir is needed so we can switch out the C compiler. 5 | # See also http://stackoverflow.com/questions/3968656/how-to-compile-mpi-and-non-mpi-version-of-the-same-program-with-automake 6 | CC = $(MPICC) 7 | 8 | bin_PROGRAMS = 9 | noinst_HEADERS = 10 | 11 | if MPLRS 12 | bin_PROGRAMS += mplrs 13 | 14 | AM_CPPFLAGS = -DTIMES -DSIGNALS -DPLRS 15 | 16 | # Libtool convenience libraries 17 | noinst_LTLIBRARIES = libmplrs1.la libmplrs2.la libmplrsgmp.la 18 | 19 | libmplrs1_la_SOURCES = ../lrslib.c ../lrslong.c 20 | libmplrs1_la_CPPFLAGS = $(AM_CPPFLAGS) -DMA -DSAFE -DLRSLONG 21 | 22 | libmplrs2_la_SOURCES = ../lrslib.c ../lrslong.c 23 | libmplrs2_la_CPPFLAGS = $(AM_CPPFLAGS) -DMA -DSAFE -DB128 -DLRSLONG 24 | 25 | libmplrsgmp_la_SOURCES = ../lrslib.c ../lrsgmp.c 26 | libmplrsgmp_la_CPPFLAGS = $(AM_CPPFLAGS) -DMA -DGMP $(GMP_CFLAGS) 27 | libmplrsgmp_la_LIBADD = $(GMP_LDFLAGS) -lgmp 28 | 29 | mplrs_SOURCES = ../mplrs.c ../lrsdriver.c 30 | mplrs_CPPFLAGS = $(AM_CPPFLAGS) -D_WITH_GETLINE -DMA -DB128 31 | mplrs_LDADD = $(noinst_LTLIBRARIES) 32 | endif 33 | -------------------------------------------------------------------------------- /nashdemo.c: -------------------------------------------------------------------------------- 1 | /*********************************************************/ 2 | /* nashdemo is a simple template for lrsnashlib.c */ 3 | /* */ 4 | /* It builds two 3x4 matrices A B and computes */ 5 | /* their equilibria */ 6 | /*********************************************************/ 7 | /* 8 | Compile: 9 | gcc -O3 -o nashdemo nashdemo.c lrsnashlib.c lrslib.c lrsgmp.c -lgmp -DGMP 10 | 11 | Usage: 12 | nashdemo 13 | */ 14 | 15 | #include 16 | #include 17 | #include 18 | #include "lrsdriver.h" 19 | #include "lrslib.h" 20 | #include "lrsnashlib.h" 21 | 22 | 23 | int main() 24 | { 25 | long s,t; 26 | game Game; // Storage for one game 27 | game *g = &Game; 28 | gInfo GI= {.name="Game"}; // Input file name could go here if there is one 29 | g->aux = &GI; 30 | 31 | 32 | if ( !lrs_init ("\n*nashdemo:")) // Done once but essential for lrslib usage ! 33 | return 1; 34 | 35 | 36 | g->nstrats[ROW]=3; // row player 37 | g->nstrats[COL]=4; // col player 38 | 39 | setFwidth(g,4); // field length for printing games 40 | 41 | for(s=0;s<3;s++) // Game 1: load payoff matrices with some integers 42 | for(t=0;t<4;t++) 43 | { 44 | g->payoff[s][t][ROW].num=s+t; 45 | g->payoff[s][t][COL].num=s*t; 46 | g->payoff[s][t][ROW].den=1; 47 | g->payoff[s][t][COL].den=1; 48 | } 49 | printGame(g); 50 | lrs_solve_nash(g); 51 | 52 | for(s=0;s<3;s++) // Game 2: load payoff matrices with some rationals 53 | for(t=0;t<4;t++) 54 | { 55 | g->payoff[s][t][ROW].num=s+t; 56 | g->payoff[s][t][COL].num=1; 57 | g->payoff[s][t][ROW].den=2; 58 | g->payoff[s][t][COL].den=3; 59 | } 60 | 61 | printGame(g); 62 | lrs_solve_nash(g); 63 | 64 | 65 | return 0; 66 | } 67 | 68 | 69 | -------------------------------------------------------------------------------- /plotD.gp: -------------------------------------------------------------------------------- 1 | set terminal postscript landscape enhanced color 2 | set output 'plotD.ps' 3 | set yzeroaxis 4 | set boxwidth 50 5 | set title "Frequency distribution of subtree sizes" 6 | set xlabel "Size of subtree" 7 | set ylabel "Frequency" 8 | set style fill solid 1.0 noborder 9 | bin_width = 1; 10 | bin_number(x) = floor(x/bin_width) 11 | rounded(x) = bin_width * ( bin_number(x) ) 12 | plot [0:*] 'freq' using (rounded($1)):(1) smooth frequency with boxes 13 | set title "Frequency distribution of subtree sizes up to 100 nodes" 14 | set boxwidth 1 15 | plot [0:100] 'freq' using (rounded($1)):(1) smooth frequency with boxes 16 | -------------------------------------------------------------------------------- /plotL.gp: -------------------------------------------------------------------------------- 1 | set terminal postscript landscape enhanced color 2 | set output 'plotL.ps' 3 | set autoscale 4 | set title "Number of cores vs time" 5 | set xlabel "time (secs)" 6 | set ylabel "cores" 7 | plot 'hist' using 1:2 8 | set title "Size of job list L vs time" 9 | set ylabel "L" 10 | plot 'hist' using 1:3 11 | set title "Requests vs time" 12 | set ylabel "cores" 13 | plot 'hist' using 1:4 14 | 15 | -------------------------------------------------------------------------------- /rat2float.c: -------------------------------------------------------------------------------- 1 | /* 2 | * Reads a polyhedron file on stdin , with rationals and outputs 3 | * an approximation in decimal floating point 4 | * 5 | * David Bremner. bremner@cs.mcgill.ca 6 | * 7 | */ 8 | /* Hacked by DA, April 20 2006 9 | * 10 | * first argument overides stdin 11 | * if column 0=0 then first non zero column scaled to +/-1 (otherwise big ugly integers come out) 12 | */ 13 | 14 | static char rcsid[]="$Id: rat2float.c,v 1.2 2006/04/04 12:33:38 bremner Exp $"; 15 | 16 | #include 17 | #include 18 | #include 19 | #include 20 | 21 | FILE *lrs_ifp; /* input file pointer */ 22 | 23 | #define DOCSTRING "\n\ 24 | $Id: rat2float.ds,v 1.3 2006/04/04 12:34:35 bremner Exp $ \n\ 25 | \n\ 26 | float takes a polytope file with rational or integer coefficents, \n\ 27 | and outputs an approximately equivelent one with floating point \n\ 28 | coefficents.\n\ 29 | \n\ 30 | WARNING: Assumes that numerator and denominator will fit in long integer,\n\ 31 | unless compiled with multiprecision support.\n\ 32 | \n\ 33 | \n\ 34 | \n\ 35 | " 36 | 37 | int usage(){ fprintf(stderr,"\n%s\n",rcsid);fprintf(stderr,DOCSTRING); exit(1); } 38 | #define CHECK_HELP if (argc > 1 && argv[1][0]=='-' && argv[1][1]=='h') usage(); 39 | 40 | #ifdef LRSMP 41 | #include "lrsmp.h" 42 | #endif 43 | 44 | #ifndef LRSMP 45 | typedef long integer_t; 46 | #define zero(n) (n==0) 47 | #define one(n) (n==1) 48 | #define pmp(s,n) printf("%s %d ",s,n) 49 | #define readrat(n,d) my_readrat(&n,&d); 50 | 51 | void my_readrat(long *num_p, long * denom_p) { 52 | 53 | char buf[BUFSIZ]; 54 | char *p; 55 | 56 | fscanf(lrs_ifp,"%s",buf); 57 | 58 | if (p=index(buf,'/')){ 59 | *p=0; 60 | *denom_p=atol(&p[1]); 61 | } else { 62 | *denom_p=1; 63 | } 64 | 65 | *num_p=atol(buf); 66 | 67 | } 68 | void rattodouble(integer_t num, integer_t denom, double *out_p){ 69 | *out_p=(double)num/(double)denom; 70 | } 71 | #else 72 | typedef lrs_mp integer_t; 73 | #define MP_DIGITS 1000L 74 | #endif 75 | 76 | 77 | 78 | 79 | 80 | int main(argc,argv) 81 | int argc; 82 | char **argv; 83 | { 84 | long int n; 85 | int j; 86 | integer_t num,denom,sdenom; 87 | double out; 88 | int scale; /* if column 0 is zero, scale column 1 to 1 */ 89 | 90 | 91 | char format[BUFSIZ]; 92 | char buf[BUFSIZ]; 93 | char inputm[BUFSIZ]; 94 | 95 | 96 | CHECK_HELP; 97 | if(argc > 1 ) 98 | /* command line argument overides stdin */ 99 | { 100 | if ((lrs_ifp = fopen (argv[1], "r")) == NULL) 101 | { 102 | printf ("\nBad input file name\n"); 103 | return(1); 104 | } 105 | } 106 | else 107 | lrs_ifp=stdin; 108 | 109 | 110 | #ifdef LRSMP 111 | lrs_mp_init (MP_DIGITS,lrs_ifp,stdout); 112 | #endif 113 | sprintf(format,"%%.%dlf ",DBL_DIG); 114 | while ( fgets(buf,BUFSIZ,lrs_ifp) !=NULL ) 115 | { 116 | fputs(buf,stdout); 117 | if (strncmp(buf,"begin",5)==0) break; 118 | } 119 | 120 | /* in lrs output m is undefined */ 121 | 122 | if (fscanf(lrs_ifp,"%s %ld %s",inputm,&n,buf)==EOF){ 123 | fprintf(stderr,"No begin line"); 124 | exit(1); 125 | } 126 | 127 | printf("%s %ld real\n",inputm,n); 128 | 129 | 130 | /* for (i=0;i 2 | #include 3 | #include "lrsdriver.h" 4 | #include "lrslib.h" 5 | #define MAXLINE 1000 6 | 7 | /* Usage: setupnash game game1.ine game2.ine */ 8 | /* Reads input file game containing */ 9 | /* m n */ 10 | /* A matrix (m by n rationals ) */ 11 | /* B matrix (m by n rationals ) */ 12 | /* Outputs: two files game1.ine game2.ine */ 13 | /* that are used by nash */ 14 | 15 | int 16 | main (int argc, char *argv[]) 17 | 18 | { 19 | long m,n,i,j; 20 | long Anum[100][100], Bnum[100][100]; 21 | long Aden[100][100], Bden[100][100]; 22 | 23 | if ( argc < 3 ) 24 | { 25 | printf ("\nUsage: setupnash infile outfile1 outfile2\n"); 26 | return(FALSE); 27 | } 28 | 29 | 30 | if ((lrs_ifp = fopen (argv[1], "r")) == NULL) 31 | { 32 | printf ("\nBad input file name\n"); 33 | return (FALSE); 34 | } 35 | else 36 | printf ("\n*Input taken from file %s", argv[1]); 37 | 38 | if(fscanf(lrs_ifp,"%ld %ld",&m,&n)==EOF) 39 | { printf("\nInvalid m,n"); 40 | return(FALSE); 41 | } 42 | 43 | if( m > 1000 || n > 1000) 44 | { 45 | printf ("\nm=%ld n=%ld",m,n); 46 | printf ("\nBoth m and n must at most 1000\n"); 47 | return(FALSE); 48 | } 49 | 50 | 51 | /* process input file */ 52 | /* read A matrix */ 53 | 54 | for (i=0;i 2 | #include 3 | #include "lrsdriver.h" 4 | #include "lrslib.h" 5 | #define MAXLINE 1000 6 | 7 | /* Usage: setupnash2 game game1.ine game2.ine */ 8 | /* Reads input file game containing */ 9 | /* m n */ 10 | /* A matrix (m by n rationals ) */ 11 | /* B matrix (m by n rationals ) */ 12 | /* Outputs: two files game1.ine game2.ine */ 13 | /* that are used by nash */ 14 | 15 | /* This program builds polytope form: */ 16 | /* Bx<=1, x>=0; Ay <=1, y>=0 */ 17 | /* MATRICES SHOULD HAVE POSITIVE ENTRIES */ 18 | 19 | int 20 | main (int argc, char *argv[]) 21 | 22 | { 23 | long m,n,i,j; 24 | long Anum[100][100], Bnum[100][100]; 25 | long Aden[100][100], Bden[100][100]; 26 | 27 | if ( argc < 3 ) 28 | { 29 | printf ("\nUsage: setupnash2 infile outfile1 outfile2\n"); 30 | return(FALSE); 31 | } 32 | 33 | 34 | if ((lrs_ifp = fopen (argv[1], "r")) == NULL) 35 | { 36 | printf ("\nBad input file name\n"); 37 | return (FALSE); 38 | } 39 | else 40 | printf ("\n*Input taken from file %s", argv[1]); 41 | 42 | if(fscanf(lrs_ifp,"%ld %ld",&m,&n)==EOF) 43 | { printf("\nInvalid m,n"); 44 | return(FALSE); 45 | } 46 | 47 | 48 | if( m > 1000 || n > 1000) 49 | { 50 | printf ("\nm=%ld n=%ld",m,n); 51 | printf ("\nBoth m and n must be at most 1000\n"); 52 | return(FALSE); 53 | } 54 | 55 | 56 | /* process input file */ 57 | /* read A matrix */ 58 | 59 | for (i=0;i 9 | #include 10 | #include "lrsdriver.h" 11 | #include "lrslib.h" 12 | 13 | #define MAXCOL 1000 /* maximum number of colums */ 14 | 15 | void makecube (lrs_dic *P, lrs_dat *Q); 16 | 17 | int 18 | main (int argc, char *argv[]) 19 | 20 | { 21 | lrs_dic *P; /* structure for holding current dictionary and indices */ 22 | lrs_dat *Q; /* structure for holding static problem data */ 23 | lrs_mp_vector output; /* one line of output:ray,vertex,facet,linearity */ 24 | lrs_mp_matrix Lin; /* holds input linearities if any are found */ 25 | 26 | 27 | long i; 28 | long col; /* output column index for dictionary */ 29 | 30 | 31 | /* Global initialization - done once */ 32 | 33 | if ( !lrs_init ("\n*vedemo:")) 34 | return 1; 35 | 36 | /* compute the vertices of a set of hypercubes given by */ 37 | /* their H-representations. */ 38 | 39 | for(i=1;i<=3;i++) 40 | { 41 | 42 | /* allocate and init structure for static problem data */ 43 | 44 | Q = lrs_alloc_dat ("LRS globals"); 45 | if (Q == NULL) 46 | return 1; 47 | 48 | /* now flags in lrs_dat can be set */ 49 | 50 | Q->n=i+2; /* number of input columns (dimension + 1 ) */ 51 | Q->m=2*i+2; /* number of input rows = number of inequalities */ 52 | 53 | output = lrs_alloc_mp_vector (Q->n); 54 | 55 | P = lrs_alloc_dic (Q); /* allocate and initialize lrs_dic */ 56 | if (P == NULL) 57 | return 1; 58 | 59 | /* Build polyhedron: constraints and objective */ 60 | 61 | makecube(P,Q); 62 | 63 | /* code from here is borrowed from lrs_main */ 64 | 65 | /* Pivot to a starting dictionary */ 66 | 67 | if (!lrs_getfirstbasis (&P, Q, &Lin, FALSE)) 68 | return 1; 69 | 70 | /* There may have been column redundancy */ 71 | /* (although not for this example of hypercubes) */ 72 | 73 | /* If so the linearity space is obtained and redundant */ 74 | /* columns are removed. User can access linearity space */ 75 | /* from lrs_mp_matrix Lin dimensions nredundcol x d+1 */ 76 | 77 | 78 | for (col = 0L; col < Q->nredundcol; col++) /* print linearity space */ 79 | lrs_printoutput (Q, Lin[col]); /* Array Lin[][] holds the coeffs. */ 80 | 81 | /* We initiate reverse search from this dictionary */ 82 | /* getting new dictionaries until the search is complete */ 83 | /* User can access each output line from output which is */ 84 | /* a vertex/ray/facet from the lrs_mp_vector output */ 85 | 86 | do 87 | { 88 | for (col = 0; col <= P->d; col++) 89 | if (lrs_getsolution (P, Q, output, col)) 90 | lrs_printoutput (Q, output); 91 | } 92 | while (lrs_getnextbasis (&P, Q, FALSE)); 93 | 94 | lrs_printtotals (P, Q); /* print final totals */ 95 | 96 | /* free space : do not change order of next 3 lines! */ 97 | 98 | lrs_clear_mp_vector (output, Q->n); 99 | lrs_free_dic (P,Q); /* deallocate lrs_dic */ 100 | lrs_free_dat (Q); /* deallocate lrs_dat */ 101 | 102 | } /* end of loop for i= ... */ 103 | 104 | lrs_close ("vedemo:"); 105 | printf("\n"); 106 | return 0; 107 | } /* end of main */ 108 | 109 | void 110 | makecube (lrs_dic *P, lrs_dat *Q) 111 | /* generate H-representation of a unit hypercube */ 112 | { 113 | long num[MAXCOL]; 114 | long den[MAXCOL]; 115 | long row, j; 116 | long m=Q->m; /* number of inequalities */ 117 | long n=Q->n; /* hypercube has dimension n-1 */ 118 | 119 | for (row=1;row<=m;row++) 120 | { 121 | for(j=0;j! $1.x 8 | perl -nle 'print $1 if /s (.+?)I/' $1 |sed 's/ ://'|sed 's/[^ ]*\* //' | sed 's/$/ #/'| nl >> $1.x 9 | --------------------------------------------------------------------------------