├── projects ├── smartcab │ ├── smartcab │ │ ├── __init__.py │ │ └── planner.py │ ├── logs │ │ └── .gitignore │ ├── images │ │ ├── logo.png │ │ ├── car-red.png │ │ ├── car-black.png │ │ ├── car-blue.png │ │ ├── car-cyan.png │ │ ├── car-green.png │ │ ├── car-white.png │ │ ├── east-west.png │ │ ├── car-magenta.png │ │ ├── car-orange.png │ │ ├── car-yellow.png │ │ └── north-south.png │ └── README.md ├── image-classification │ ├── .gitignore │ └── helper.py ├── finding-donors │ ├── visuals.pyc │ ├── README.md │ ├── project_description.md │ └── visuals.py ├── customer_segments │ ├── visuals.pyc │ └── README.md ├── boston-housing-prices │ ├── visuals.pyc │ ├── README.md │ ├── visuals.py │ └── project_description.md ├── titanic-survival-exploration │ ├── visuals.pyc │ ├── README.md │ └── project_description.md └── capstone │ └── proposal.md ├── Gemfile ├── .gitignore ├── _config.yml ├── classes ├── supervised-learning │ ├── bayesian-methods-quizzes │ │ ├── mini-project │ │ │ ├── calculations.md │ │ │ ├── domain-knowledge-fill.md │ │ │ ├── optimal-classifier.md │ │ │ ├── images │ │ │ │ ├── calculations.png │ │ │ │ ├── optimal-classifier.png │ │ │ │ ├── domain-knowledge-fill.png │ │ │ │ └── optimal-classifier-question.png │ │ │ ├── domain-knowledge-quiz.md │ │ │ ├── joint-distirbution-probability.md │ │ │ ├── which-words-mediation.md │ │ │ ├── maximum-likelihood.py │ │ │ └── optimal-classifier.py │ │ ├── joint-distribution-quiz.md │ │ ├── bayesian-probabilities-on-your-own.py │ │ └── calculating-nb-accuracy.py │ ├── images │ │ ├── ID3.png │ │ ├── KNN.png │ │ ├── Entropy.png │ │ ├── margins.png │ │ ├── sigmoid.png │ │ ├── summary.png │ │ ├── DT-Graph.png │ │ ├── bayes-rule.png │ │ ├── example-spam.png │ │ ├── perceptron.png │ │ ├── similarity.png │ │ ├── summary-svm.png │ │ ├── cancer-problem.png │ │ ├── svm-parameters.png │ │ ├── backpropagation.png │ │ ├── bayesian-learning.png │ │ ├── boosting-example.png │ │ ├── boosting-overview.png │ │ ├── gradient-descent.png │ │ ├── inference-rules.png │ │ ├── information-gain.png │ │ ├── kernel-trick-svm.png │ │ ├── preference-bias.png │ │ ├── restriction-bias.png │ │ ├── boosting-example-1.png │ │ ├── boosting-example-2.png │ │ ├── boosting-example-3.png │ │ ├── joint-distribution.png │ │ ├── kernel-trick-svm-2.png │ │ ├── optimizing-weights.png │ │ ├── perceptron-training.png │ │ ├── boosting-example-final.png │ │ ├── kernel-trick-overview.png │ │ ├── learning-query-times.png │ │ ├── quadratic-programming.png │ │ ├── bayesian-learning-summary.png │ │ ├── minimum-description-length.png │ │ ├── naive-bayes-generalization.png │ │ ├── comparison-of-learning-rules.png │ │ └── prior-posterior-probabilities.png │ ├── nonparametric-models.md │ ├── neural-network-quizzes │ │ ├── layered-network-example.py │ │ ├── linear-representational-power.md │ │ ├── discretion-quiz.md │ │ ├── xor-network.py │ │ ├── perceptron-learning.py │ │ └── sigmoid-programming-exercise.py │ ├── ensemble-learners.md │ ├── support-vector-machines.md │ ├── bayesian-methods.md │ ├── svm-quizzes │ │ └── coding-up-svm.py │ ├── nonparametric-quizzes │ │ ├── domain-knnowledge.py │ │ └── domain-knnowledge-sklearn.py │ ├── artificial-neural-networks.md │ ├── decision-trees.md │ └── supervised-learning.md ├── deep-learning │ ├── images │ │ ├── dmft │ │ │ ├── t-sne.png │ │ │ ├── challenges.png │ │ │ ├── embeddings.png │ │ │ ├── word2vec-detail.png │ │ │ ├── word2vec-intro.png │ │ │ ├── embeddings-intro.png │ │ │ └── comparing-embeddings.png │ │ ├── rnns │ │ │ ├── lstm.png │ │ │ ├── rnn-past.png │ │ │ ├── lstm-cell.png │ │ │ ├── rnn-final.png │ │ │ ├── rnn-intro.png │ │ │ ├── rnn-vs-cnn.png │ │ │ ├── backprop-time.png │ │ │ ├── beam-search.png │ │ │ ├── simple-memory.png │ │ │ ├── memory-diagram.png │ │ │ ├── rnn-application.png │ │ │ ├── rnn-past-model.png │ │ │ ├── rnn-pred-sample.png │ │ │ ├── rnn-stationary.png │ │ │ ├── gradient-problems.png │ │ │ ├── image-captioning.png │ │ │ ├── lstm-cell-detailed.png │ │ │ ├── speech-recognition.png │ │ │ ├── lstm-regularization.png │ │ │ ├── machine-translation.png │ │ │ ├── multiple-predictions.png │ │ │ ├── backprop-time-problem.png │ │ │ ├── rnn-output-fixed-vector.png │ │ │ ├── image-captioning-dataset.png │ │ │ ├── rnn-input-output-variable.png │ │ │ ├── exploding-gradient-solution.png │ │ │ ├── rnn-output-variable-length.png │ │ │ └── vanishing-gradient-problem-explained.png │ │ ├── cnns │ │ │ ├── pooling.png │ │ │ ├── cnn-stride.png │ │ │ ├── cnn-padding.png │ │ │ ├── max-pooling.png │ │ │ ├── average-pooling.png │ │ │ ├── convolutions-1.png │ │ │ ├── convolutions-2.png │ │ │ ├── convolutions-3.png │ │ │ ├── 1-1-convolutions.png │ │ │ ├── convnet-overview.png │ │ │ ├── inception-modules.png │ │ │ ├── cnn-patch-feature-map.png │ │ │ ├── convnets-weight-sharing.png │ │ │ ├── convolutional-pyramid.png │ │ │ ├── statistical-invariance.png │ │ │ ├── translation-invariance.png │ │ │ ├── famous-cnn-architectures.png │ │ │ ├── structure-helps-learning.png │ │ │ └── translation-invariance-2.png │ │ ├── from-ml-to-dl │ │ │ ├── adagrad.png │ │ │ ├── softmax.png │ │ │ ├── zero-mean.png │ │ │ ├── gd-vs-sgd-1.png │ │ │ ├── gd-vs-sgd-2.png │ │ │ ├── helping-sgd.png │ │ │ ├── momentum-sgd.png │ │ │ ├── recap-deeper.png │ │ │ ├── sgd-black-magic.png │ │ │ ├── well-conditioned.png │ │ │ ├── cross-entropy-intro.png │ │ │ ├── logistic-classifier.png │ │ │ ├── normalizing-images.png │ │ │ ├── optimization-steps.png │ │ │ ├── learning-rate-tuning.png │ │ │ ├── validation-test-size.png │ │ │ ├── weight-initialization.png │ │ │ ├── cross-entropy-definition.png │ │ │ ├── gradient-descent-solver.png │ │ │ ├── learning-rate-decay-sgd.png │ │ │ ├── one-hot-encoding-problem.png │ │ │ ├── probabilities-classifier.png │ │ │ ├── loss-function-cross-entropy.png │ │ │ ├── loss-function-representation.png │ │ │ ├── minimizing-cross-entropy-intro.png │ │ │ ├── logistic-classifier-initialization.png │ │ │ ├── multinomial-logistic-classification.png │ │ │ └── multinomial-logistic-classification-recap.png │ │ └── deep-neural-networks │ │ │ ├── relus.png │ │ │ ├── chain-rule.png │ │ │ ├── nn-features.png │ │ │ ├── dropout-intro.png │ │ │ ├── dropout-scale.png │ │ │ ├── regularization.png │ │ │ ├── back-propagation.png │ │ │ ├── dropout-average.png │ │ │ ├── dropout-example.png │ │ │ ├── dropout-redundant.png │ │ │ ├── early-termination.png │ │ │ ├── relus-derivative.png │ │ │ ├── simple-operations.png │ │ │ ├── linear-models-stay.png │ │ │ ├── wider-vs-deeper-nn.png │ │ │ ├── 2-layer-neural-network.png │ │ │ ├── adding-hidden-layers.png │ │ │ ├── graphical-chain-rule.png │ │ │ ├── linear-models-stay-2.png │ │ │ ├── neural-network-relus.png │ │ │ ├── linear-model-complexity.png │ │ │ ├── linear-models-are-linear.png │ │ │ ├── neural-network-question.png │ │ │ ├── not-very-deep-2-layer-nn.png │ │ │ ├── linear-models-are-efficient.png │ │ │ ├── linear-models-are-stable-1.png │ │ │ ├── linear-models-are-stable-2.png │ │ │ ├── regularization-derivative.png │ │ │ ├── regularization-skinny-jeans.png │ │ │ └── regularization-loss-function.png │ └── exercises │ │ └── softmax.py ├── unsupervised-learning │ ├── images │ │ ├── slc.png │ │ ├── summary.png │ │ ├── ica-notes.png │ │ ├── ica-vs-pca.png │ │ ├── relevance.png │ │ ├── uniform-1.png │ │ ├── uniform-2.png │ │ ├── PCA-sklearn.png │ │ ├── alternatives.png │ │ ├── ica-vs-pca-2.png │ │ ├── PCA-sklearn-2.png │ │ ├── add-centroids.png │ │ ├── associate-step.png │ │ ├── em-properties.png │ │ ├── feature-scaling.png │ │ ├── move-centroids.png │ │ ├── soft-clustering.png │ │ ├── when-to-use-pca.png │ │ ├── clustering-summary.png │ │ ├── filtering-wrapping.png │ │ ├── clustering-properties.png │ │ ├── impossibility-theorem.png │ │ ├── minimum-features-quiz.png │ │ ├── review-definition-PCA.png │ │ ├── expectation-maximization.png │ │ ├── min-max-rescaler-sklearn.png │ │ ├── relevance-vs-usefulness.png │ │ ├── filtering-wrapping-comparison.png │ │ ├── maximal-variation-minimal-loss.png │ │ ├── filtering-wrapping-comparison-2.png │ │ └── feature-transformation-definition.png │ ├── feature-rescaling-example.py │ ├── clustering.md │ ├── dimensionality-reduction.md │ └── feature-engineering.md ├── reinforcement-learning │ ├── images │ │ ├── minimax.png │ │ ├── gt-summary.png │ │ ├── mdp-summary.png │ │ ├── rl-overview.png │ │ ├── rl-summary.png │ │ ├── von-neumann.png │ │ ├── brief-history.png │ │ ├── estimating-q-2.png │ │ ├── estimating-q.png │ │ ├── game-example.png │ │ ├── mixed-strategy.png │ │ ├── more-rewards.png │ │ ├── rl-approaches.png │ │ ├── bellman-equation.png │ │ ├── choosing-actions.png │ │ ├── finding-policies.png │ │ ├── hidden-info-game.png │ │ ├── nash-equilibrium.png │ │ ├── q-value-function.png │ │ ├── fundamental-result.png │ │ ├── greedy-exploration.png │ │ ├── hidden-info-game-2.png │ │ ├── mini-poker-result.png │ │ ├── prisioners-dilemma.png │ │ ├── what-is-game-theory.png │ │ ├── bellman-quiz-example.png │ │ ├── utility-quiz-infinite.png │ │ ├── markov-decision-process.png │ │ ├── nash-equilibrium-example.png │ │ ├── non-deterministic-game.png │ │ ├── q-learning-convergence.png │ │ ├── solving-bellman-equation.png │ │ ├── comparison-types-learning.png │ │ ├── discounted-utility-rewards.png │ │ ├── maximal-discounted-rewards.png │ │ ├── solving-bellman-equation-2.png │ │ └── nash-equilibrium-implications.png │ ├── reinforcement-learning.md │ ├── game-theory.md │ └── markov-decision-process.md ├── welcome-to-the-nano-degree │ ├── references │ │ ├── HoG paper.pdf │ │ └── Overview on Face Detection.pdf │ ├── images │ │ ├── kernel-trick-curve.png │ │ ├── kernel-trick-plane.png │ │ ├── neural-network-questions.png │ │ ├── neural-network-topography.png │ │ └── support-vector-machines.png │ └── notes │ │ └── welcome-to-the-mlnd-program.md └── model-evaluation-and-validation │ ├── managing-error-and-complexity.md │ └── evaluation-and-validation.md ├── statistics ├── bessels_correction.png └── cheatsheet.md ├── _layouts └── default.html └── README.md /projects/smartcab/smartcab/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /projects/smartcab/logs/.gitignore: -------------------------------------------------------------------------------- 1 | * 2 | !.gitignore 3 | -------------------------------------------------------------------------------- /Gemfile: -------------------------------------------------------------------------------- 1 | source 'https://rubygems.org' 2 | gem 'github-pages', group: :jekyll_plugins -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | .DS_Store 2 | launch.json 3 | *.pyc 4 | .ipynb_checkpoints 5 | _site 6 | Gemfile.lock -------------------------------------------------------------------------------- /_config.yml: -------------------------------------------------------------------------------- 1 | theme: jekyll-theme-minimal 2 | show_downloads: false 3 | google_analytics: UA-93538647-1 -------------------------------------------------------------------------------- /projects/image-classification/.gitignore: -------------------------------------------------------------------------------- 1 | * 2 | 3 | !*.html 4 | !.gitignore 5 | !*.py 6 | !*.ipynb 7 | -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/mini-project/calculations.md: -------------------------------------------------------------------------------- 1 |  -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/mini-project/domain-knowledge-fill.md: -------------------------------------------------------------------------------- 1 |  -------------------------------------------------------------------------------- /projects/smartcab/images/logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/logo.png -------------------------------------------------------------------------------- /statistics/bessels_correction.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/statistics/bessels_correction.png -------------------------------------------------------------------------------- /projects/finding-donors/visuals.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/finding-donors/visuals.pyc -------------------------------------------------------------------------------- /projects/smartcab/images/car-red.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/car-red.png -------------------------------------------------------------------------------- /projects/customer_segments/visuals.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/customer_segments/visuals.pyc -------------------------------------------------------------------------------- /projects/smartcab/images/car-black.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/car-black.png -------------------------------------------------------------------------------- /projects/smartcab/images/car-blue.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/car-blue.png -------------------------------------------------------------------------------- /projects/smartcab/images/car-cyan.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/car-cyan.png -------------------------------------------------------------------------------- /projects/smartcab/images/car-green.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/car-green.png -------------------------------------------------------------------------------- /projects/smartcab/images/car-white.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/car-white.png -------------------------------------------------------------------------------- /projects/smartcab/images/east-west.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/east-west.png -------------------------------------------------------------------------------- /projects/smartcab/images/car-magenta.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/car-magenta.png -------------------------------------------------------------------------------- /projects/smartcab/images/car-orange.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/car-orange.png -------------------------------------------------------------------------------- /projects/smartcab/images/car-yellow.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/car-yellow.png -------------------------------------------------------------------------------- /projects/smartcab/images/north-south.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/smartcab/images/north-south.png -------------------------------------------------------------------------------- /classes/deep-learning/images/dmft/t-sne.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/dmft/t-sne.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/lstm.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/lstm.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/ID3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/ID3.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/KNN.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/KNN.png -------------------------------------------------------------------------------- /projects/boston-housing-prices/visuals.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/boston-housing-prices/visuals.pyc -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/pooling.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/pooling.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/rnn-past.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/rnn-past.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/Entropy.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/Entropy.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/margins.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/margins.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/sigmoid.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/sigmoid.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/summary.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/summary.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/slc.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/slc.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/cnn-stride.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/cnn-stride.png -------------------------------------------------------------------------------- /classes/deep-learning/images/dmft/challenges.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/dmft/challenges.png -------------------------------------------------------------------------------- /classes/deep-learning/images/dmft/embeddings.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/dmft/embeddings.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/lstm-cell.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/lstm-cell.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/rnn-final.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/rnn-final.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/rnn-intro.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/rnn-intro.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/rnn-vs-cnn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/rnn-vs-cnn.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/DT-Graph.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/DT-Graph.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/summary.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/summary.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/cnn-padding.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/cnn-padding.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/max-pooling.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/max-pooling.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/backprop-time.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/backprop-time.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/beam-search.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/beam-search.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/simple-memory.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/simple-memory.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/minimax.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/minimax.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/bayes-rule.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/bayes-rule.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/example-spam.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/example-spam.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/perceptron.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/perceptron.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/similarity.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/similarity.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/summary-svm.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/summary-svm.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/ica-notes.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/ica-notes.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/ica-vs-pca.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/ica-vs-pca.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/relevance.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/relevance.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/uniform-1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/uniform-1.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/uniform-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/uniform-2.png -------------------------------------------------------------------------------- /projects/titanic-survival-exploration/visuals.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/projects/titanic-survival-exploration/visuals.pyc -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/average-pooling.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/average-pooling.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/convolutions-1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/convolutions-1.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/convolutions-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/convolutions-2.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/convolutions-3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/convolutions-3.png -------------------------------------------------------------------------------- /classes/deep-learning/images/dmft/word2vec-detail.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/dmft/word2vec-detail.png -------------------------------------------------------------------------------- /classes/deep-learning/images/dmft/word2vec-intro.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/dmft/word2vec-intro.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/memory-diagram.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/memory-diagram.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/rnn-application.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/rnn-application.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/rnn-past-model.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/rnn-past-model.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/rnn-pred-sample.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/rnn-pred-sample.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/rnn-stationary.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/rnn-stationary.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/gt-summary.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/gt-summary.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/mdp-summary.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/mdp-summary.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/rl-overview.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/rl-overview.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/rl-summary.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/rl-summary.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/von-neumann.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/von-neumann.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/cancer-problem.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/cancer-problem.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/svm-parameters.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/svm-parameters.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/PCA-sklearn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/PCA-sklearn.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/alternatives.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/alternatives.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/ica-vs-pca-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/ica-vs-pca-2.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/1-1-convolutions.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/1-1-convolutions.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/convnet-overview.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/convnet-overview.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/inception-modules.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/inception-modules.png -------------------------------------------------------------------------------- /classes/deep-learning/images/dmft/embeddings-intro.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/dmft/embeddings-intro.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/adagrad.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/adagrad.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/softmax.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/softmax.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/zero-mean.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/zero-mean.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/gradient-problems.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/gradient-problems.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/image-captioning.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/image-captioning.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/lstm-cell-detailed.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/lstm-cell-detailed.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/speech-recognition.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/speech-recognition.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/brief-history.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/brief-history.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/estimating-q-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/estimating-q-2.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/estimating-q.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/estimating-q.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/game-example.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/game-example.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/mixed-strategy.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/mixed-strategy.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/more-rewards.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/more-rewards.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/rl-approaches.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/rl-approaches.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/backpropagation.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/backpropagation.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/bayesian-learning.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/bayesian-learning.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/boosting-example.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/boosting-example.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/boosting-overview.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/boosting-overview.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/gradient-descent.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/gradient-descent.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/inference-rules.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/inference-rules.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/information-gain.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/information-gain.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/kernel-trick-svm.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/kernel-trick-svm.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/preference-bias.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/preference-bias.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/restriction-bias.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/restriction-bias.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/PCA-sklearn-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/PCA-sklearn-2.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/add-centroids.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/add-centroids.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/associate-step.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/associate-step.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/em-properties.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/em-properties.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/feature-scaling.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/feature-scaling.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/move-centroids.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/move-centroids.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/soft-clustering.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/soft-clustering.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/when-to-use-pca.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/when-to-use-pca.png -------------------------------------------------------------------------------- /classes/deep-learning/images/dmft/comparing-embeddings.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/dmft/comparing-embeddings.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/gd-vs-sgd-1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/gd-vs-sgd-1.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/gd-vs-sgd-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/gd-vs-sgd-2.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/helping-sgd.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/helping-sgd.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/lstm-regularization.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/lstm-regularization.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/machine-translation.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/machine-translation.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/multiple-predictions.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/multiple-predictions.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/bellman-equation.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/bellman-equation.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/choosing-actions.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/choosing-actions.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/finding-policies.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/finding-policies.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/hidden-info-game.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/hidden-info-game.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/nash-equilibrium.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/nash-equilibrium.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/q-value-function.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/q-value-function.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/boosting-example-1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/boosting-example-1.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/boosting-example-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/boosting-example-2.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/boosting-example-3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/boosting-example-3.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/joint-distribution.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/joint-distribution.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/kernel-trick-svm-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/kernel-trick-svm-2.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/optimizing-weights.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/optimizing-weights.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/perceptron-training.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/perceptron-training.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/cnn-patch-feature-map.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/cnn-patch-feature-map.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/convnets-weight-sharing.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/convnets-weight-sharing.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/convolutional-pyramid.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/convolutional-pyramid.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/statistical-invariance.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/statistical-invariance.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/translation-invariance.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/translation-invariance.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/relus.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/relus.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/momentum-sgd.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/momentum-sgd.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/recap-deeper.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/recap-deeper.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/backprop-time-problem.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/backprop-time-problem.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/rnn-output-fixed-vector.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/rnn-output-fixed-vector.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/fundamental-result.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/fundamental-result.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/greedy-exploration.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/greedy-exploration.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/hidden-info-game-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/hidden-info-game-2.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/mini-poker-result.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/mini-poker-result.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/prisioners-dilemma.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/prisioners-dilemma.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/what-is-game-theory.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/what-is-game-theory.png -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/mini-project/optimal-classifier.md: -------------------------------------------------------------------------------- 1 |  2 | 3 |  -------------------------------------------------------------------------------- /classes/supervised-learning/images/boosting-example-final.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/boosting-example-final.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/kernel-trick-overview.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/kernel-trick-overview.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/learning-query-times.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/learning-query-times.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/quadratic-programming.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/quadratic-programming.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/clustering-summary.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/clustering-summary.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/filtering-wrapping.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/filtering-wrapping.png -------------------------------------------------------------------------------- /classes/welcome-to-the-nano-degree/references/HoG paper.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/welcome-to-the-nano-degree/references/HoG paper.pdf -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/famous-cnn-architectures.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/famous-cnn-architectures.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/structure-helps-learning.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/structure-helps-learning.png -------------------------------------------------------------------------------- /classes/deep-learning/images/cnns/translation-invariance-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/cnns/translation-invariance-2.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/sgd-black-magic.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/sgd-black-magic.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/well-conditioned.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/well-conditioned.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/image-captioning-dataset.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/image-captioning-dataset.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/rnn-input-output-variable.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/rnn-input-output-variable.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/bellman-quiz-example.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/bellman-quiz-example.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/utility-quiz-infinite.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/utility-quiz-infinite.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/clustering-properties.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/clustering-properties.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/impossibility-theorem.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/impossibility-theorem.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/minimum-features-quiz.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/minimum-features-quiz.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/review-definition-PCA.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/review-definition-PCA.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/chain-rule.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/chain-rule.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/nn-features.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/nn-features.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/cross-entropy-intro.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/cross-entropy-intro.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/logistic-classifier.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/logistic-classifier.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/normalizing-images.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/normalizing-images.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/optimization-steps.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/optimization-steps.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/exploding-gradient-solution.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/exploding-gradient-solution.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/rnn-output-variable-length.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/rnn-output-variable-length.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/markov-decision-process.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/markov-decision-process.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/nash-equilibrium-example.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/nash-equilibrium-example.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/non-deterministic-game.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/non-deterministic-game.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/q-learning-convergence.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/q-learning-convergence.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/solving-bellman-equation.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/solving-bellman-equation.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/bayesian-learning-summary.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/bayesian-learning-summary.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/minimum-description-length.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/minimum-description-length.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/naive-bayes-generalization.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/naive-bayes-generalization.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/expectation-maximization.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/expectation-maximization.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/min-max-rescaler-sklearn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/min-max-rescaler-sklearn.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/relevance-vs-usefulness.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/relevance-vs-usefulness.png -------------------------------------------------------------------------------- /classes/welcome-to-the-nano-degree/images/kernel-trick-curve.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/welcome-to-the-nano-degree/images/kernel-trick-curve.png -------------------------------------------------------------------------------- /classes/welcome-to-the-nano-degree/images/kernel-trick-plane.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/welcome-to-the-nano-degree/images/kernel-trick-plane.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/dropout-intro.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/dropout-intro.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/dropout-scale.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/dropout-scale.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/regularization.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/regularization.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/learning-rate-tuning.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/learning-rate-tuning.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/validation-test-size.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/validation-test-size.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/weight-initialization.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/weight-initialization.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/comparison-types-learning.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/comparison-types-learning.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/discounted-utility-rewards.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/discounted-utility-rewards.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/maximal-discounted-rewards.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/maximal-discounted-rewards.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/solving-bellman-equation-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/solving-bellman-equation-2.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/comparison-of-learning-rules.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/comparison-of-learning-rules.png -------------------------------------------------------------------------------- /classes/supervised-learning/images/prior-posterior-probabilities.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/images/prior-posterior-probabilities.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/back-propagation.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/back-propagation.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/dropout-average.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/dropout-average.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/dropout-example.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/dropout-example.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/dropout-redundant.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/dropout-redundant.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/early-termination.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/early-termination.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/relus-derivative.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/relus-derivative.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/simple-operations.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/simple-operations.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/cross-entropy-definition.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/cross-entropy-definition.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/gradient-descent-solver.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/gradient-descent-solver.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/learning-rate-decay-sgd.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/learning-rate-decay-sgd.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/one-hot-encoding-problem.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/one-hot-encoding-problem.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/probabilities-classifier.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/probabilities-classifier.png -------------------------------------------------------------------------------- /classes/reinforcement-learning/images/nash-equilibrium-implications.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/reinforcement-learning/images/nash-equilibrium-implications.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/filtering-wrapping-comparison.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/filtering-wrapping-comparison.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/maximal-variation-minimal-loss.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/maximal-variation-minimal-loss.png -------------------------------------------------------------------------------- /classes/welcome-to-the-nano-degree/images/neural-network-questions.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/welcome-to-the-nano-degree/images/neural-network-questions.png -------------------------------------------------------------------------------- /classes/welcome-to-the-nano-degree/images/neural-network-topography.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/welcome-to-the-nano-degree/images/neural-network-topography.png -------------------------------------------------------------------------------- /classes/welcome-to-the-nano-degree/images/support-vector-machines.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/welcome-to-the-nano-degree/images/support-vector-machines.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/linear-models-stay.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/linear-models-stay.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/wider-vs-deeper-nn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/wider-vs-deeper-nn.png -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/filtering-wrapping-comparison-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/filtering-wrapping-comparison-2.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/2-layer-neural-network.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/2-layer-neural-network.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/adding-hidden-layers.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/adding-hidden-layers.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/graphical-chain-rule.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/graphical-chain-rule.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/linear-models-stay-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/linear-models-stay-2.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/neural-network-relus.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/neural-network-relus.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/loss-function-cross-entropy.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/loss-function-cross-entropy.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/loss-function-representation.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/loss-function-representation.png -------------------------------------------------------------------------------- /classes/deep-learning/images/rnns/vanishing-gradient-problem-explained.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/rnns/vanishing-gradient-problem-explained.png -------------------------------------------------------------------------------- /classes/supervised-learning/nonparametric-models.md: -------------------------------------------------------------------------------- 1 | # Nonparametric Models 2 | 3 | ## KNN 4 | 5 |  6 | 7 | ## Learning and Query Times Comparison 8 | 9 |  -------------------------------------------------------------------------------- /classes/unsupervised-learning/images/feature-transformation-definition.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/unsupervised-learning/images/feature-transformation-definition.png -------------------------------------------------------------------------------- /classes/welcome-to-the-nano-degree/references/Overview on Face Detection.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/welcome-to-the-nano-degree/references/Overview on Face Detection.pdf -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/linear-model-complexity.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/linear-model-complexity.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/linear-models-are-linear.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/linear-models-are-linear.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/neural-network-question.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/neural-network-question.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/not-very-deep-2-layer-nn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/not-very-deep-2-layer-nn.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/minimizing-cross-entropy-intro.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/minimizing-cross-entropy-intro.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/linear-models-are-efficient.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/linear-models-are-efficient.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/linear-models-are-stable-1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/linear-models-are-stable-1.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/linear-models-are-stable-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/linear-models-are-stable-2.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/regularization-derivative.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/regularization-derivative.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/regularization-skinny-jeans.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/regularization-skinny-jeans.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/logistic-classifier-initialization.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/logistic-classifier-initialization.png -------------------------------------------------------------------------------- /classes/deep-learning/images/deep-neural-networks/regularization-loss-function.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/deep-neural-networks/regularization-loss-function.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/multinomial-logistic-classification.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/multinomial-logistic-classification.png -------------------------------------------------------------------------------- /classes/deep-learning/images/from-ml-to-dl/multinomial-logistic-classification-recap.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/deep-learning/images/from-ml-to-dl/multinomial-logistic-classification-recap.png -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/mini-project/images/calculations.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/bayesian-methods-quizzes/mini-project/images/calculations.png -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/mini-project/images/optimal-classifier.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/bayesian-methods-quizzes/mini-project/images/optimal-classifier.png -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/mini-project/images/domain-knowledge-fill.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/bayesian-methods-quizzes/mini-project/images/domain-knowledge-fill.png -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/mini-project/images/optimal-classifier-question.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pedropb/machine-learning-nanodegree/HEAD/classes/supervised-learning/bayesian-methods-quizzes/mini-project/images/optimal-classifier-question.png -------------------------------------------------------------------------------- /classes/supervised-learning/neural-network-quizzes/layered-network-example.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | 3 | input = np.array([1,2,3]) 4 | h1 = np.array([1,1,-5]) 5 | h2 = np.array([3,-4,2]) 6 | ol = np.array([2,-1]) 7 | print np.array([input.dot(h1), input.dot(h2)]).dot(ol) 8 | # -25 9 | -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/joint-distribution-quiz.md: -------------------------------------------------------------------------------- 1 | | Storm | Lightning | Prob | 2 | |-------|-----------|------| 3 | | T | T | .25 | 4 | | T | F | .40 | 5 | | F | T | .05 | 6 | | F | F | .30 | 7 | 8 | **Question**: 9 | 1. P(¬storm)? .30 + .05 = .35 10 | 2. P(lightning | storm)? .25 / (.40 + .25) = .3846 -------------------------------------------------------------------------------- /classes/supervised-learning/neural-network-quizzes/linear-representational-power.md: -------------------------------------------------------------------------------- 1 | Given: 2 | - inputs: [x, y] 3 | - hidden layer: [[3,2], [-1,4], [3,-5]] 4 | - output layer: [1,2,-1] 5 | 6 | Write down a single node 2x1, that computes the same result as above. 7 | 8 | **Answer** 9 | 10 | 3x+2y + 2*(-x + 4y) - (3x -5y) 11 | 3x + 2y - 2x + 8y - 3x + 5y 12 | -2x + 15y -> [-2, 15] -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/mini-project/domain-knowledge-quiz.md: -------------------------------------------------------------------------------- 1 | ## Given the corpus of text we have from our boss, we might like to identify some things he often says, and use that knowledge to make better predictions. 2 | 3 | ## What are some statements you see arising multiple times? 4 | ``` 5 | gonna need 6 | need you to go 7 | need you 8 | to go 9 | to go ahead 10 | go ahead and 11 | and come in 12 | ahh 13 | oh oh 14 | oh, oh 15 | ``` -------------------------------------------------------------------------------- /classes/supervised-learning/ensemble-learners.md: -------------------------------------------------------------------------------- 1 | # Ensemble Learners (Bagging & Boosting) 2 | 3 | ## Example: SPAM detection 4 | 5 |  6 | 7 | ## Boosting 8 | 9 |  10 | 11 | ## Boosting: an example 12 | 13 |  14 | 15 |  16 | 17 |  18 | 19 |  20 | 21 |  -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/mini-project/joint-distirbution-probability.md: -------------------------------------------------------------------------------- 1 | ## If you wanted to measure the joint probability distribution of a missing word given its position relative to every other word in the document, how many probabilities would you need to measure? Say the document is N words long. 2 | 3 | - Number of words: `N` 4 | - Number of possible missing word's positions (i.e: first word missing, second word missing, etc.): `N` 5 | - Number of possible distances between missing word and the other words. For each possible position, we have `N` other words, so the final answer is: `N^2` -------------------------------------------------------------------------------- /classes/supervised-learning/support-vector-machines.md: -------------------------------------------------------------------------------- 1 | # Support Vector Machines 2 | 3 | ## Margins 4 | 5 |  6 | 7 | ## Min Max in SVM with Quadratic Programming 8 | 9 |  10 | 11 | ## Similarity concept 12 | 13 |  14 | 15 | ## Kernel Trick in SVM 16 | 17 |  18 | 19 |  20 | 21 |  22 | 23 | ## SKLearn Parameters for SVM 24 | 25 |  26 | 27 | ## Summary 28 | 29 |  -------------------------------------------------------------------------------- /classes/unsupervised-learning/feature-rescaling-example.py: -------------------------------------------------------------------------------- 1 | from matplotlib import pyplot as plt 2 | from sklearn.preprocessing import MinMaxScaler 3 | 4 | data = [[175., 5.9], [115., 5.2]] 5 | chris_data = [[140., 6.1]] 6 | 7 | def plot_data(): 8 | for d in data: 9 | plt.scatter(d[0], d[1], color="red") 10 | 11 | plt.scatter(chris_data[0][0], chris_data[0][1], color="blue") 12 | 13 | 14 | 15 | plt.title('Before rescaling') 16 | plot_data() 17 | plt.show() 18 | plt.close() 19 | 20 | # rescale 21 | scaler = MinMaxScaler() 22 | scaler.fit(data) 23 | data = scaler.transform(data) 24 | chris_data = scaler.transform(chris_data) 25 | 26 | plt.title("After rescaling") 27 | plot_data() 28 | plt.show() 29 | plt.close() 30 | -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/bayesian-probabilities-on-your-own.py: -------------------------------------------------------------------------------- 1 | p_chris = 0.5 2 | p_sarah = 0.5 3 | 4 | p_words = {"chris": {"love": .1, "deal": .8, "life": .1}, 5 | "sarah": {"love": .5, "deal": .2, "life": .3}} 6 | 7 | p_joint_chris_love_deal = p_chris * p_words["chris"]["love"] * p_words["chris"]["deal"] 8 | p_joint_sarah_love_deal = p_sarah * p_words["sarah"]["love"] * p_words["sarah"]["deal"] 9 | 10 | p_love_deal = p_joint_chris_love_deal + p_joint_sarah_love_deal 11 | 12 | 13 | p_chris_love_deal = p_joint_chris_love_deal / p_love_deal 14 | p_sarah_love_deal = p_joint_sarah_love_deal / p_love_deal 15 | 16 | print "P(CHRIS|\"Love deal\")", p_chris_love_deal 17 | print "P(SARAH|\"Love deal\")", p_sarah_love_deal -------------------------------------------------------------------------------- /classes/supervised-learning/neural-network-quizzes/discretion-quiz.md: -------------------------------------------------------------------------------- 1 | How many combinations of outputs the perceptron network can produce with the following setup: 2 | 3 | 2 input perceptrons 4 | 2 hidden perceptrons 5 | 1 output perceptron 6 | 7 |  19 | 20 | As we can see from the graph above, there are only 4 combinations of inputs to the output layer. This means that there are only 4 combinations of possible results to this network. -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods.md: -------------------------------------------------------------------------------- 1 | # Naive Bayes 2 | 3 | ## Quiz Cancer Test (Prior and Posterior Probabilities) 4 | 5 |  6 | 7 |  8 | 9 | ## Bayes Rule 10 | 11 |  12 | 13 | # Bayesian Learning 14 | 15 |  16 | 17 | ## Minimum Description Length 18 | 19 |  20 | 21 | ## Recovering Joint Distribution 22 | 23 |  24 | 25 | ## Bayesian Learning Summary 26 | 27 |  28 | 29 | ## Inference Rules 30 | 31 |  32 | 33 | ## Naive Bayes: Generalization 34 | 35 |  -------------------------------------------------------------------------------- /classes/reinforcement-learning/reinforcement-learning.md: -------------------------------------------------------------------------------- 1 | # Reinforcement Learning 2 | 3 | ## Overview 4 | 5 |  6 | 7 | ## Brief History 8 | 9 |  10 | 11 | Side Note: Reinforcement is a misused term, because all we care is to maximize rewards. 12 | 13 | ## Reinforcement Learning Approaches 14 | 15 |  16 | 17 | ## Q Value Function 18 | 19 |  20 | 21 | ## Estimating Q 22 | 23 |  24 | 25 |  26 | 27 | ## Q-Learning Convergence 28 | 29 |  30 | 31 | ## Choosing Actions 32 | 33 |  34 | 35 | ## Greedy Exploration 36 | 37 |  38 | 39 | ## Summary 40 | 41 |  -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/calculating-nb-accuracy.py: -------------------------------------------------------------------------------- 1 | def NBAccuracy(features_train, labels_train, features_test, labels_test): 2 | """ compute the accuracy of your Naive Bayes classifier """ 3 | ### import the sklearn module for GaussianNB 4 | from sklearn.naive_bayes import GaussianNB 5 | 6 | ### create classifier 7 | clf = GaussianNB() 8 | 9 | ### fit the classifier on the training features and labels 10 | #TODO 11 | clf.fit(features_train, labels_train) 12 | 13 | ### use the trained classifier to predict labels for the test features 14 | pred = clf.predict(features_test) 15 | 16 | 17 | ### calculate and return the accuracy on the test data 18 | ### this is slightly different than the example, 19 | ### where we just print the accuracy 20 | ### you might need to import an sklearn module 21 | from sklearn.metrics import accuracy_score 22 | accuracy = accuracy_score(labels_test, pred) 23 | return accuracy -------------------------------------------------------------------------------- /classes/supervised-learning/svm-quizzes/coding-up-svm.py: -------------------------------------------------------------------------------- 1 | import sys 2 | from class_vis import prettyPicture 3 | from prep_terrain_data import makeTerrainData 4 | 5 | import matplotlib.pyplot as plt 6 | import copy 7 | import numpy as np 8 | import pylab as pl 9 | 10 | 11 | features_train, labels_train, features_test, labels_test = makeTerrainData() 12 | 13 | 14 | ########################## SVM ################################# 15 | ### we handle the import statement and SVC creation for you here 16 | from sklearn.svm import SVC 17 | clf = SVC(kernel="linear") 18 | 19 | 20 | #### now your job is to fit the classifier 21 | #### using the training features/labels, and to 22 | #### make a set of predictions on the test data 23 | clf.fit(features_train, labels_train) 24 | 25 | 26 | #### store your predictions in a list named pred 27 | pred = clf.predict(features_test) 28 | 29 | 30 | 31 | 32 | 33 | from sklearn.metrics import accuracy_score 34 | acc = accuracy_score(pred, labels_test) 35 | 36 | def submitAccuracy(): 37 | return acc -------------------------------------------------------------------------------- /projects/smartcab/README.md: -------------------------------------------------------------------------------- 1 | # Machine Learning Engineer Nanodegree 2 | # Reinforcement Learning 3 | ## Project: Train a Smartcab How to Drive 4 | 5 | ### Install 6 | 7 | This project requires **Python 2.7** with the [pygame](https://www.pygame.org/wiki/GettingStarted 8 | ) library installed 9 | 10 | ### Code 11 | 12 | Template code is provided in the `smartcab/agent.py` python file. Additional supporting python code can be found in `smartcab/enviroment.py`, `smartcab/planner.py`, and `smartcab/simulator.py`. Supporting images for the graphical user interface can be found in the `images` folder. While some code has already been implemented to get you started, you will need to implement additional functionality for the `LearningAgent` class in `agent.py` when requested to successfully complete the project. 13 | 14 | ### Run 15 | 16 | In a terminal or command window, navigate to the top-level project directory `smartcab/` (that contains this README) and run one of the following commands: 17 | 18 | ```python smartcab/agent.py``` 19 | ```python -m smartcab.agent``` 20 | 21 | This will run the `agent.py` file and execute your agent code. 22 | -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/mini-project/which-words-mediation.md: -------------------------------------------------------------------------------- 1 | ## What set of words in a memo do you think could help predict what a missing word might be? 2 | 3 | Based on my intuition on how humans interpret text, I would say that the set of words that can help predict what a missing word might be are **nouns, verbs, adverbs and adjectives**, because they are central to understanding the context of the sentence. For academic purposes, I would do research investigating statistically the words that have the better split on the following words. This would be empirically the best words to predict a missing word. Also note, that these conclusions may change regarding the language used during the study. 4 | 5 | ## What are some advantages and disadvantages of using more or fewer possible influences in prediction? 6 | 7 | The advantages of using **more influences** on prediction is the ability to **generalize better**. For instance, if the model can be built upon a vast vocabulary with lots of data to sample on, it might infer some relationships between words that a simpler model might not be able to infer. The disadvantage is that if the **model doesn't have enough data, it might overfit and be too sensitive to noise**, thus casting wrong predictions. -------------------------------------------------------------------------------- /classes/supervised-learning/nonparametric-quizzes/domain-knnowledge.py: -------------------------------------------------------------------------------- 1 | import math 2 | 3 | def manhattan_distance(p1, p2): 4 | return abs((p2[0] - p1[0])) + abs((p2[1] - p1[1])) 5 | 6 | def euclidean_distance(p1, p2): 7 | return math.sqrt(pow((p2[0] - p1[0]),2) + pow((p2[1] - p1[1]),2)) 8 | 9 | def compute_average(n_neighbors, distances, distance_idx): 10 | sum = 0 11 | i = 0 12 | while i < n_neighbors: 13 | cur = distances[i][2] 14 | sum += cur 15 | while distances[i+1][distance_idx] == distances[i][distance_idx] and i+1 < len(distances): 16 | sum += distances[i+1][2] 17 | i += 1 18 | i += 1 19 | return float(sum) / i 20 | 21 | data = [(1,6,7), (2,4,8), (3,7,16), (6,8,44), (7,1,50), (8,4,68)] 22 | query = (4,2) 23 | 24 | distances = [] 25 | for p in data: 26 | distances.append((euclidean_distance(p, query), manhattan_distance(p, query), p[2])) 27 | 28 | # sort by euclidean_distance 29 | euclidean = sorted(distances, key=lambda d: d[0]) 30 | print "euclidean 1: ", compute_average(1, euclidean, 0) 31 | print "euclidean 3: ", compute_average(3, euclidean, 0) 32 | 33 | manhattan = sorted(distances, key=lambda d: d[1]) 34 | print "manhattan 1: ", compute_average(1, manhattan, 1) 35 | print "manhattan 3: ", compute_average(3, manhattan, 1) 36 | -------------------------------------------------------------------------------- /classes/welcome-to-the-nano-degree/notes/welcome-to-the-mlnd-program.md: -------------------------------------------------------------------------------- 1 | # What is Machine Learning 2 | 3 | Machine Learning is a broad concept that involves AI, Statistics and Algorithms. 4 | 5 | - Like AI, Machine Learning is about processing and understanding data to react inteligently upon it. 6 | - Like Statistics, it is about applying complex formulas to make sense, compare, evaluate and summarize data. 7 | - Like Algorithms, it operates on data input and provides some output. 8 | 9 | In conclusion, Machine Learning is an evolution of all these areas. 10 | 11 | # Machine Learning vs Traditional Programming 12 | 13 | In traditional programming, we write decisions into the code. 14 | In machine learning, we create an agent that is trained and can figure patterns by itself. 15 | 16 | For example, in traditional programming, we would write code that would use a static set of algorithms to identify certain features in a image and figure out if it was a determinate person or not. In machine learning, we code an agent that is trained with a bunch of pictures and figure by itself how to identify a certain person. 17 | 18 | # Program Outline 19 | 20 | - Machine Learning and AI entire landscape 21 | - Building model and validation 22 | - Nuts and bolts of machine learning: different tools for different kinds of problems and when to use them 23 | - Personnal Project using all the knowledge gathered during the program. -------------------------------------------------------------------------------- /classes/deep-learning/exercises/softmax.py: -------------------------------------------------------------------------------- 1 | """Softmax.""" 2 | 3 | scores = [3.0, 1.0, 0.2] 4 | 5 | import numpy as np 6 | 7 | def softmax(x): 8 | """Compute softmax values for each sets of scores in x.""" 9 | return np.exp(x) / np.sum(np.exp(x), axis=0) 10 | 11 | 12 | def test_1(): 13 | scores = [1.0, 2.0, 3.0] 14 | print scores, softmax(scores) 15 | print "Test 1: " + ("passed" if [float("{:.8f}".format(i)) for i in softmax(scores)] == [ 0.09003057, 0.24472847, 0.66524096] else "failed") 16 | 17 | def test_2(): 18 | scores = np.array([[1, 2, 3, 6], 19 | [2, 4, 5, 6], 20 | [3, 8, 7, 6]]) 21 | 22 | result = softmax(scores) 23 | 24 | r = [] 25 | r1 = result.tolist() 26 | for i in r1: 27 | t = [] 28 | for j in i: 29 | t.append(float("{:.8f}".format(j))) 30 | r.append(t) 31 | 32 | print "Test 2: " + ("passed" if r == [[ 0.09003057, 0.00242826, 0.01587624, 0.33333333], 33 | [ 0.24472847, 0.01794253, 0.11731043, 0.33333333], 34 | [ 0.66524096, 0.97962921, 0.86681333, 0.33333333]] else "failed") 35 | 36 | test_1() 37 | 38 | test_2() 39 | 40 | def plot_graph(): 41 | # Plot softmax curves 42 | import matplotlib.pyplot as plt 43 | x = np.arange(-2.0, 6.0, 0.1) 44 | scores = np.vstack([x, np.ones_like(x), 0.2 * np.ones_like(x)]) 45 | 46 | plt.plot(x, softmax(scores).T, linewidth=2) 47 | plt.show() 48 | 49 | def scaling_scores(): 50 | scores = np.array([1.0, 2.0, 3.0]) 51 | print scores, softmax(scores) 52 | 53 | print softmax(scores * 10) 54 | 55 | print softmax(scores / 10) 56 | 57 | scaling_scores() -------------------------------------------------------------------------------- /classes/supervised-learning/nonparametric-quizzes/domain-knnowledge-sklearn.py: -------------------------------------------------------------------------------- 1 | from sklearn.neighbors import KNeighborsClassifier as KNN 2 | import numpy as np 3 | 4 | 5 | X_train = [[1,6], [2,4], [3,7], [6,8], [7,1], [8,4]] 6 | y_train = [7,8,16,44,50,68] 7 | 8 | euc1 = KNN(n_neighbors=1, p=2, algorithm='brute', weights='uniform') 9 | euc1.fit(X_train, y_train) 10 | print "euc1: ", euc1.predict([[4,2]]) 11 | print "euc1_neighbors: ", euc1.kneighbors([[4,2]], return_distance=False) 12 | 13 | euc3 = KNN(n_neighbors=3, p=2, algorithm='brute', weights='uniform') 14 | euc3.fit(X_train, y_train) 15 | print "euc3: ", euc3.predict([[4,2]]) 16 | print "euc3_neighbors: ", euc3.kneighbors([[4,2]], return_distance=False) 17 | 18 | man1 = KNN(n_neighbors=2, p=1, algorithm='brute', weights='uniform') 19 | man1.fit(X_train, y_train) 20 | print "man1: ", man1.predict([[4,2]]) 21 | print "man1_neighbors: ", man1.kneighbors([[4,2]], return_distance=False) 22 | 23 | man3 = KNN(n_neighbors=4, p=1, algorithm='brute', weights='uniform') 24 | man3.fit(X_train, y_train) 25 | print "man3: ", man3.predict([[4,2]]) 26 | print "man3_neighbors: ", man3.kneighbors([[4,2]], return_distance=False) 27 | 28 | # These outputs are not the expected answer to the quiz. 29 | 30 | import matplotlib.pyplot as plt 31 | 32 | x, y = zip(*X_train) 33 | 34 | plt.scatter(x, y) 35 | plt.scatter(4, 2, color="red") 36 | for label, xi, yi in zip(y_train, x, y): 37 | plt.annotate( 38 | label, 39 | xy = (xi, yi), 40 | xytext = (-20, 20), 41 | textcoords = 'offset points', ha = 'right', va = 'bottom', 42 | bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5), 43 | arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0')) 44 | plt.show() -------------------------------------------------------------------------------- /classes/supervised-learning/bayesian-methods-quizzes/mini-project/maximum-likelihood.py: -------------------------------------------------------------------------------- 1 | sample_memo = ''' 2 | Milt, we're gonna need to go ahead and move you downstairs into storage B. We have some new people coming in, and we need all the space we can get. So if you could just go ahead and pack up your stuff and move it down there, that would be terrific, OK? 3 | Oh, and remember: next Friday... is Hawaiian shirt day. So, you know, if you want to, go ahead and wear a Hawaiian shirt and jeans. 4 | Oh, oh, and I almost forgot. Ahh, I'm also gonna need you to go ahead and come in on Sunday, too... 5 | Hello Peter, whats happening? Ummm, I'm gonna need you to go ahead and come in tomorrow. So if you could be here around 9 that would be great, mmmk... oh oh! and I almost forgot ahh, I'm also gonna need you to go ahead and come in on Sunday too, kay. We ahh lost some people this week and ah, we sorta need to play catch up. 6 | ''' 7 | 8 | # 9 | # Maximum Likelihood Hypothesis 10 | # 11 | # 12 | # In this quiz we will find the maximum likelihood word based on the preceding word 13 | # 14 | # Fill in the NextWordProbability procedure so that it takes in sample text and a word, 15 | # and returns a dictionary with keys the set of words that come after, whose values are 16 | # the number of times the key comes after that word. 17 | # 18 | # Just use .split() to split the sample_memo text into words separated by spaces. 19 | from collections import defaultdict 20 | import re 21 | 22 | def NextWordProbability(sampletext,word): 23 | text = str.lower(sampletext) 24 | text = re.sub(r"[^a-z '-]", "", text) 25 | 26 | words = text.split(' ') 27 | 28 | result = defaultdict(int) 29 | for idx, val in enumerate(words): 30 | if word == val: 31 | if idx+1 < len(words): 32 | result[words[idx+1]] += 1 33 | 34 | return result -------------------------------------------------------------------------------- /classes/reinforcement-learning/game-theory.md: -------------------------------------------------------------------------------- 1 | # Game Theory 2 | 3 | ## What is Game Theory? 4 | 5 |  6 | 7 | ## Simple game 8 | 9 | Given the simple game below: 10 | 11 |  12 | 13 | ### Minimax 14 | 15 | The game-matrix can be calculated as: 16 | 17 |  18 | 19 | And the result of minimax for this game is `3`, because of the Fundamental Result Theorem. 20 | 21 | ### Fundamental Result Theorem 22 | 23 |  24 | 25 | ## Non-deterministic Game 26 | 27 |  28 | 29 | ### Von Neumann Theorem 30 | 31 |  32 | 33 | The "Other Theorem" is the Fundamental Result Theorem. 34 | 35 | 36 | ## Hidden information Game 37 | 38 |  39 | 40 |  41 | 42 | ### Mixed Strategy 43 | 44 |  45 | 46 | ### Mini poker result 47 | 48 |  49 | 50 | ## Prisioner's Dilemma (Non Zero Sum Game) 51 | 52 |  53 | 54 | ## Nash Equilibrium 55 | 56 |  57 | 58 | ### Nash Equilibrium Example 59 | 60 |  61 | 62 | ### Nash Equilibrium Implications 63 | 64 |  65 | 66 | ## Summary 67 | 68 |  69 | 70 | Additional References: 71 | - [Andrew Moore's slides on Zero-Sum Games](http://www.autonlab.org/tutorials/gametheory.html) 72 | - [Andrew Moore's slides on Non-Zero-Sum Games](http://www.autonlab.org/tutorials/nonzerosum.html) 73 | 74 | 75 | -------------------------------------------------------------------------------- /classes/model-evaluation-and-validation/managing-error-and-complexity.md: -------------------------------------------------------------------------------- 1 | # Managing error and complexity 2 | 3 | ## Causes of error 4 | 5 | Errors are mainly due to 2 common causes: 6 | 7 | - Bias: which means a model is unable to represent the whole complexity of the underlying data. 8 | - Variance: whcih means a model is too sensitive due to the limited data it was trained on. 9 | 10 | ## Error due to Bias - Accuracy and Underfitting 11 | 12 | Bias occurs when a model has enough data but is not complex enough to capture the underlying relationships. As a result, the model consistently and systematically misrepresents the data, leading to low accuracy in prediction. This is known as *underfitting*. 13 | 14 | To overcome error from bias, we need a more complex model. 15 | 16 | ## Error due to Variance - Precision and Overfitting 17 | 18 | Some variance is normal, but too much variance indicates that the model is unable to generalize its predictions to the larger population. High sensitivity to the training set is also known as *overfitting*, and generally occurs when either the model is too complex or when we do not have enough data to support it. 19 | 20 | We can typically reduce the variability of a model's predictions and increase precision by training on more data. If more data is unavailable, we can also control variance by limiting our model's complexity. 21 | 22 | ## Overfitting vs Underfitting 23 | 24 |  25 | 26 | ## Curse of Dimensionality 27 | 28 | As the number of features or dimensions grows, the amount of data we need to generalize accurately grows exponentially. 29 | 30 | ## Learning Curves - Identifying Bias and Variance 31 | 32 | ### Bias 33 | When the training and testing errors converge and are quite high this usually means the model is biased. No matter how much data we feed it, the model cannot represent the underlying relationship and therefore has systematic high errors. 34 | 35 | ### Variance 36 | When there is a large gap between the training and testing error this generally means the model suffers from high variance. Unlike a biased model, models that suffer from variance generally require more data to improve. We can also limit variance by simplifying the model to represent only the most important features of the data. -------------------------------------------------------------------------------- /classes/supervised-learning/artificial-neural-networks.md: -------------------------------------------------------------------------------- 1 | # Artificial Neural Networks 2 | 3 | ## Perceptrons 4 | 5 |  6 | 7 | ### Boolean Operation Perceptrons 8 | 9 | These perceptrons can be defined by the W and Θ values. Also note that there are multiple values of W and Θ that implement these operators. 10 | 11 | #### AND 12 | 13 | | X1 | X2 | W1 | W2 | Θ | Σ X*W | Y | AND | 14 | |----|----|----|----|---|-------|---|-----| 15 | | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 16 | | 1 | 0 | 1 | 1 | 2 | 1 | 0 | 0 | 17 | | 0 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 18 | | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 19 | 20 | #### OR 21 | 22 | | X1 | X2 | W1 | W2 | Θ | Σ X*W | Y | OR | 23 | |----|----|----|----|---|-------|---|-----| 24 | | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 25 | | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 26 | | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 27 | | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 28 | 29 | #### NOT 30 | 31 | | X1 | W1 | Θ | Σ X*W | Y | NOT | 32 | |----|----|---|-------|---|-----| 33 | | 0 | -1 | 0 | 0 | 1 | 1 | 34 | | 1 | -1 | 0 | -1 | 0 | 0 | 35 | 36 | #### XOR 37 | 38 | | X1 | X2 | X3 (X1 AND X2) | W1 | W2 | W3 | Θ | Σ X*W | Y | XOR | 39 | |----|----|----------------|----|----|----|---|-------|---|-----| 40 | | 0 | 0 | 0 | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 41 | | 1 | 0 | 0 | 1 | 1 | -2 | 1 | 1 | 1 | 1 | 42 | | 0 | 1 | 0 | 1 | 1 | -2 | 1 | 1 | 1 | 1 | 43 | | 1 | 1 | 1 | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 44 | 45 | ## Perceptron Training Rule 46 | 47 |  48 | 49 | ## Gradient Descent Rule 50 | 51 |  52 | 53 | ## Comparison of Learning Rules 54 | 55 |  56 | 57 | ## Sigmoid 58 | 59 |  60 | 61 | ## Neural Network Sketch / Backpropagation 62 | 63 |  64 | 65 | ## Optimizing Weights 66 | 67 |  68 | 69 | ## Restriction Bias 70 | 71 |  72 | 73 | ## Preference Bias 74 |  75 | 76 | ## Summary 77 |  -------------------------------------------------------------------------------- /projects/boston-housing-prices/README.md: -------------------------------------------------------------------------------- 1 | # Machine Learning Engineer Nanodegree 2 | # Model Evaluation and Validation 3 | ## Project: Predicting Boston Housing Prices 4 | 5 | ### Install 6 | 7 | This project requires **Python 2.7** and the following Python libraries installed: 8 | 9 | - [NumPy](http://www.numpy.org/) 10 | - [Pandas](http://pandas.pydata.org/) 11 | - [matplotlib](http://matplotlib.org/) 12 | - [scikit-learn](http://scikit-learn.org/stable/) 13 | 14 | You will also need to have software installed to run and execute a [Jupyter Notebook](http://ipython.org/notebook.html) 15 | 16 | If you do not have Python installed yet, it is highly recommended that you install the [Anaconda](http://continuum.io/downloads) distribution of Python, which already has the above packages and more included. Make sure that you select the Python 2.7 installer and not the Python 3.x installer. 17 | 18 | ### Code 19 | 20 | Template code is provided in the `boston_housing.ipynb` notebook file. You will also be required to use the included `visuals.py` Python file and the `housing.csv` dataset file to complete your work. While some code has already been implemented to get you started, you will need to implement additional functionality when requested to successfully complete the project. Note that the code included in `visuals.py` is meant to be used out-of-the-box and not intended for students to manipulate. If you are interested in how the visualizations are created in the notebook, please feel free to explore this Python file. 21 | 22 | ### Run 23 | 24 | In a terminal or command window, navigate to the top-level project directory `boston_housing/` (that contains this README) and run one of the following commands: 25 | 26 | ```bash 27 | ipython notebook boston_housing.ipynb 28 | ``` 29 | or 30 | ```bash 31 | jupyter notebook boston_housing.ipynb 32 | ``` 33 | 34 | This will open the Jupyter Notebook software and project file in your browser. 35 | 36 | ### Data 37 | 38 | The modified Boston housing dataset consists of 490 data points, with each datapoint having 3 features. This dataset is a modified version of the Boston Housing dataset found on the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Housing). 39 | 40 | **Features** 41 | 1. `RM`: average number of rooms per dwelling 42 | 2. `LSTAT`: percentage of population considered lower status 43 | 3. `PTRATIO`: pupil-student ratio by town 44 | 45 | **Target Variable** 46 | 4. `MEDV`: median value of owner-occupied homes -------------------------------------------------------------------------------- /projects/titanic-survival-exploration/README.md: -------------------------------------------------------------------------------- 1 | # Machine Learning Engineer Nanodegree 2 | ## Introduction and Foundations 3 | ## Project: Titanic Survival Exploration 4 | 5 | ### Install 6 | 7 | This project requires **Python 2.7** and the following Python libraries installed: 8 | 9 | - [NumPy](http://www.numpy.org/) 10 | - [Pandas](http://pandas.pydata.org) 11 | - [matplotlib](http://matplotlib.org/) 12 | - [scikit-learn](http://scikit-learn.org/stable/) 13 | 14 | You will also need to have software installed to run and execute a [Jupyter Notebook](http://ipython.org/notebook.html) 15 | 16 | If you do not have Python installed yet, it is highly recommended that you install the [Anaconda](http://continuum.io/downloads) distribution of Python, which already has the above packages and more included. Make sure that you select the Python 2.7 installer and not the Python 3.x installer. 17 | 18 | ### Code 19 | 20 | Template code is provided in the notebook `titanic_survival_exploration.ipynb` notebook file. Additional supporting code can be found in `visuals.py`. While some code has already been implemented to get you started, you will need to implement additional functionality when requested to successfully complete the project. Note that the code included in `visuals.py` is meant to be used out-of-the-box and not intended for students to manipulate. If you are interested in how the visualizations are created in the notebook, please feel free to explore this Python file. 21 | 22 | ### Run 23 | 24 | In a terminal or command window, navigate to the top-level project directory `titanic_survival_exploration/` (that contains this README) and run one of the following commands: 25 | 26 | ```bash 27 | jupyter notebook titanic_survival_exploration.ipynb 28 | ``` 29 | or 30 | ```bash 31 | ipython notebook titanic_survival_exploration.ipynb 32 | ``` 33 | 34 | This will open the Jupyter Notebook software and project file in your web browser. 35 | 36 | ### Data 37 | 38 | The dataset used in this project is included as `titanic_data.csv`. This dataset is provided by Udacity and contains the following attributes: 39 | 40 | **Features** 41 | - `pclass` : Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd) 42 | - `name` : Name 43 | - `sex` : Sex 44 | - `age` : Age 45 | - `sibsp` : Number of Siblings/Spouses Aboard 46 | - `parch` : Number of Parents/Children Aboard 47 | - `ticket` : Ticket Number 48 | - `fare` : Passenger Fare 49 | - `cabin` : Cabin 50 | - `embarked` : Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton) 51 | 52 | **Target Variable** 53 | - `survival` : Survival (0 = No; 1 = Yes) -------------------------------------------------------------------------------- /classes/unsupervised-learning/clustering.md: -------------------------------------------------------------------------------- 1 | # Clustering 2 | 3 | ## K-Means 4 | 5 | ### K-Means Algorithm 6 | 7 | 1. Add `K` centroids to the data at random positions. 8 | 9 |  10 | 11 | 2. Associate each data point to the closest centroid (aka association step) 12 | 13 |  14 | 15 | 3. Move the centroids to the mean distance between all associated points 16 | 17 |  18 | 19 | 4. Repeat step 2 and 3 `n` times, or until some other stop-condition has been met. 20 | 21 | ### K-Means is not deterministic 22 | 23 | The initial position of the centroids will influence the final outcome of the algorithm. See the example below: 24 | 25 |  26 | 27 |  28 | 29 | To solve this problem, we run the algorithm multiple times and average the results. 30 | 31 | ### K-Means and sklearn 32 | 33 | ```python 34 | class sklearn.cluster.KMeans(n_clusters=8, init='k-means++', n_init=10, max_iter=300, 35 | tol=0.0001, precompute_distances='auto', verbose=0, 36 | random_state=None, copy_x=True, n_jobs=1, algorithm='auto') 37 | ``` 38 | 39 | - `n_clusters`: number of centroids to initialize. Also defines the number of clusters to be found. This should be set using domain knowledge of the problem. 40 | - `max_iter`: number of iterations (associate points, move centroids, repeat) to be run. 41 | - `n_init`: number of times the algorithm will run before outputing the results. 42 | 43 | ### K-means references 44 | - [Sci-kit learn documentation](http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) 45 | - [Visualizing K-means](https://www.naftaliharris.com/blog/visualizing-k-means-clustering/) 46 | 47 | 48 | ## Single Linkage Clustering 49 | 50 | ### Single Linkage Clustering Algorithm 51 | 52 |  53 | 54 | ## Soft Clustering 55 | 56 |  57 | 58 | - Can assign the same point to multiple clusters 59 | - Probabilistic approach 60 | 61 | ### Expectation Maximization 62 | 63 |  64 | 65 | ### Expectation Maximization Properties 66 | 67 |  68 | 69 | ## Clustering Properties 70 | 71 |  72 | 73 | ## Impossibility Theorem 74 | 75 |  76 | 77 | ## Summary 78 | 79 |  -------------------------------------------------------------------------------- /_layouts/default.html: -------------------------------------------------------------------------------- 1 | 2 | 3 |
4 | 5 | 6 |{{ site.description | default: site.github.project_tagline }}
19 | 20 | {% if site.github.is_project_page %} 21 | 22 | {% endif %} 23 | 24 | Go to Index 25 | 26 | {% if site.github.is_user_page %} 27 | 28 | {% endif %} 29 | 30 | {% if site.show_downloads %} 31 |