├── .ipynb_checkpoints
├── 01. Python读取Excel绘制柱状图-checkpoint.ipynb
├── 02. Python读取Excel绘制直方图-checkpoint.ipynb
├── 03. Python绘制电商网站转化漏斗图-checkpoint.ipynb
├── 04. Python通过折线图发现产品问题-checkpoint.ipynb
├── 05. Python绘制饼图分析北京天气-checkpoint.ipynb
├── 06. Python绘制散点图查看BMI与保险费的关系-checkpoint.ipynb
├── 07. Python绘制箱形图分析北京天气数据-checkpoint.ipynb
├── 08. Python绘制热力图查看两个分类变量之间的强度分布-checkpoint.ipynb
├── 09. Python绘制仪表盘图直观展示目标完成进度-checkpoint.ipynb
├── 10. Python绘制足球传递网络图-checkpoint.ipynb
├── 11. Python绘制小提琴图-checkpoint.ipynb
├── 12. Python绘制中国地图和城市图表-checkpoint.ipynb
├── 13. Python绘制预算开销雷达图-checkpoint.ipynb
├── 14. Python绘制桑基图分析广告转化数据-checkpoint.ipynb
├── 15. Python绘制词云图展示射雕英雄传高频词语-checkpoint.ipynb
├── 16. Python绘制时间线轮播多图-checkpoint.ipynb
├── 17. Python绘制树状图-checkpoint.ipynb
└── test-checkpoint.ipynb
├── 01. Python读取Excel绘制柱状图.ipynb
├── 02. Python读取Excel绘制直方图.ipynb
├── 03. Python绘制电商网站转化漏斗图.ipynb
├── 04. Python通过折线图发现产品问题.ipynb
├── 05. Python绘制饼图分析北京天气.ipynb
├── 06. Python绘制散点图查看BMI与保险费的关系.ipynb
├── 07. Python绘制箱形图分析北京天气数据.ipynb
├── 08. Python绘制热力图查看两个分类变量之间的强度分布.ipynb
├── 09. Python绘制仪表盘图直观展示目标完成进度.ipynb
├── 10. Python绘制足球传递网络图.ipynb
├── 11. Python绘制小提琴图.ipynb
├── 12. Python绘制中国地图和城市图表.ipynb
├── 13. Python绘制预算开销雷达图.ipynb
├── 14. Python绘制桑基图分析广告转化数据.ipynb
├── 15. Python绘制词云图展示射雕英雄传高频词语.ipynb
├── 16. Python绘制时间线轮播多图.ipynb
├── 17. Python绘制树状图.ipynb
├── README.md
├── boxplot_base.html
├── datas
├── KAG_conversion_data.csv
├── beijing_tianqi
│ ├── beijing_tianqi_2017-2019.csv
│ ├── beijing_tianqi_2018.csv
│ └── beijing_tianqi_2019.csv
├── boston-house-prices
│ ├── Index
│ ├── housing.csv
│ ├── housing.data
│ ├── housing.names
│ ├── housing.xlsx
│ ├── housing_clean.csv
│ └── 数据源.txt
├── ecommerce-website-funnel-analysis
│ ├── .ipynb_checkpoints
│ │ └── funnel-vizualitation-with-plotly-checkpoint.ipynb
│ ├── home_page_table.csv
│ ├── payment_confirmation_table.csv
│ ├── payment_page_table.csv
│ ├── readme.md
│ ├── search_page_table.csv
│ └── user_table.csv
├── insurance
│ └── insurance.csv
├── other_files
│ ├── ant_boxplot.png
│ ├── boxplot.png
│ └── tuzhidian_boxplot.jpeg
├── passingevents.csv
├── titanic
│ ├── titanic_test.csv
│ └── titanic_train.csv
└── 服装销售数据.xlsx
├── flare.json
├── flask-diagrams
├── .idea
│ ├── .gitignore
│ ├── flask-diagrams.iml
│ ├── inspectionProfiles
│ │ └── profiles_settings.xml
│ ├── misc.xml
│ ├── modules.xml
│ └── vcs.xml
├── __pycache__
│ └── app.cpython-37.pyc
├── app.py
├── static
│ ├── echarts.min.js
│ ├── my_matplotlib.png
│ └── my_seaborn.png
└── templates
│ └── show_diagrams.html
├── graph_base.html
├── heatmap_base.html
├── requirements.txt
├── test.ipynb
├── timeline_pie.html
└── 射雕英雄传.txt
/.ipynb_checkpoints/01. Python读取Excel绘制柱状图-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Python读取Excel绘制柱状图"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### 读取Excel数据"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 1,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": [
23 | "import pandas as pd"
24 | ]
25 | },
26 | {
27 | "cell_type": "code",
28 | "execution_count": 2,
29 | "metadata": {},
30 | "outputs": [],
31 | "source": [
32 | "df = pd.read_excel(\"./服装销售数据.xlsx\")"
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": 3,
38 | "metadata": {},
39 | "outputs": [
40 | {
41 | "data": {
42 | "text/html": [
43 | "
\n",
44 | "\n",
57 | "
\n",
58 | " \n",
59 | " \n",
60 | " | \n",
61 | " 商品 | \n",
62 | " 商家A | \n",
63 | " 商家B | \n",
64 | "
\n",
65 | " \n",
66 | " \n",
67 | " \n",
68 | " 0 | \n",
69 | " 衬衫 | \n",
70 | " 42 | \n",
71 | " 123 | \n",
72 | "
\n",
73 | " \n",
74 | " 1 | \n",
75 | " 毛衣 | \n",
76 | " 78 | \n",
77 | " 35 | \n",
78 | "
\n",
79 | " \n",
80 | " 2 | \n",
81 | " 领带 | \n",
82 | " 135 | \n",
83 | " 26 | \n",
84 | "
\n",
85 | " \n",
86 | " 3 | \n",
87 | " 裤子 | \n",
88 | " 25 | \n",
89 | " 72 | \n",
90 | "
\n",
91 | " \n",
92 | " 4 | \n",
93 | " 风衣 | \n",
94 | " 135 | \n",
95 | " 28 | \n",
96 | "
\n",
97 | " \n",
98 | " 5 | \n",
99 | " 高跟鞋 | \n",
100 | " 58 | \n",
101 | " 26 | \n",
102 | "
\n",
103 | " \n",
104 | " 6 | \n",
105 | " 袜子 | \n",
106 | " 43 | \n",
107 | " 101 | \n",
108 | "
\n",
109 | " \n",
110 | "
\n",
111 | "
"
112 | ],
113 | "text/plain": [
114 | " 商品 商家A 商家B\n",
115 | "0 衬衫 42 123\n",
116 | "1 毛衣 78 35\n",
117 | "2 领带 135 26\n",
118 | "3 裤子 25 72\n",
119 | "4 风衣 135 28\n",
120 | "5 高跟鞋 58 26\n",
121 | "6 袜子 43 101"
122 | ]
123 | },
124 | "execution_count": 3,
125 | "metadata": {},
126 | "output_type": "execute_result"
127 | }
128 | ],
129 | "source": [
130 | "df"
131 | ]
132 | },
133 | {
134 | "cell_type": "markdown",
135 | "metadata": {},
136 | "source": [
137 | "### 绘制柱状图"
138 | ]
139 | },
140 | {
141 | "cell_type": "code",
142 | "execution_count": 4,
143 | "metadata": {},
144 | "outputs": [],
145 | "source": [
146 | "from pyecharts import options as opts\n",
147 | "from pyecharts.charts import Bar"
148 | ]
149 | },
150 | {
151 | "cell_type": "code",
152 | "execution_count": 5,
153 | "metadata": {},
154 | "outputs": [],
155 | "source": [
156 | "bar = (\n",
157 | " Bar()\n",
158 | " .add_xaxis(df[\"商品\"].to_list())\n",
159 | " .add_yaxis(\"商家A\", df[\"商家A\"].to_list())\n",
160 | " .add_yaxis(\"商家B\", df[\"商家B\"].to_list())\n",
161 | " .set_global_opts(title_opts=opts.TitleOpts(title=\"商品销量对比图\"))\n",
162 | ")"
163 | ]
164 | },
165 | {
166 | "cell_type": "code",
167 | "execution_count": 6,
168 | "metadata": {},
169 | "outputs": [
170 | {
171 | "data": {
172 | "text/html": [
173 | "\n",
174 | "\n",
181 | "\n",
182 | " \n",
183 | "\n",
184 | "\n"
358 | ],
359 | "text/plain": [
360 | ""
361 | ]
362 | },
363 | "execution_count": 6,
364 | "metadata": {},
365 | "output_type": "execute_result"
366 | }
367 | ],
368 | "source": [
369 | "bar.render_notebook()"
370 | ]
371 | },
372 | {
373 | "cell_type": "code",
374 | "execution_count": null,
375 | "metadata": {},
376 | "outputs": [],
377 | "source": []
378 | }
379 | ],
380 | "metadata": {
381 | "kernelspec": {
382 | "display_name": "Python 3",
383 | "language": "python",
384 | "name": "python3"
385 | },
386 | "language_info": {
387 | "codemirror_mode": {
388 | "name": "ipython",
389 | "version": 3
390 | },
391 | "file_extension": ".py",
392 | "mimetype": "text/x-python",
393 | "name": "python",
394 | "nbconvert_exporter": "python",
395 | "pygments_lexer": "ipython3",
396 | "version": "3.7.6"
397 | }
398 | },
399 | "nbformat": 4,
400 | "nbformat_minor": 4
401 | }
402 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/05. Python绘制饼图分析北京天气-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 4
6 | }
7 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/09. Python绘制仪表盘图直观展示目标完成进度-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Python绘制仪表盘图直观展示目标完成进度"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "仪表盘(Gauge): \n",
15 | "* BI仪表盘的标配大图(business intelligence dashboard,BI dashboard)\n",
16 | "* 通过百分比指针,直观的展示目标的完成进度,比如收入/营业额目标进度"
17 | ]
18 | },
19 | {
20 | "cell_type": "code",
21 | "execution_count": 1,
22 | "metadata": {},
23 | "outputs": [],
24 | "source": [
25 | "import pyecharts"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": 2,
31 | "metadata": {},
32 | "outputs": [
33 | {
34 | "data": {
35 | "text/plain": [
36 | "'1.7.1'"
37 | ]
38 | },
39 | "execution_count": 2,
40 | "metadata": {},
41 | "output_type": "execute_result"
42 | }
43 | ],
44 | "source": [
45 | "pyecharts.__version__"
46 | ]
47 | },
48 | {
49 | "cell_type": "code",
50 | "execution_count": 3,
51 | "metadata": {},
52 | "outputs": [],
53 | "source": [
54 | "from pyecharts import options as opts\n",
55 | "from pyecharts.charts import Gauge"
56 | ]
57 | },
58 | {
59 | "cell_type": "markdown",
60 | "metadata": {},
61 | "source": [
62 | "### 1. 绘制单指针仪表盘"
63 | ]
64 | },
65 | {
66 | "cell_type": "code",
67 | "execution_count": 27,
68 | "metadata": {},
69 | "outputs": [],
70 | "source": [
71 | "gauge = (\n",
72 | " Gauge()\n",
73 | " .add(\"业务指标\", [(\"收入完成率\", 87.8)])\n",
74 | " .set_global_opts(title_opts=opts.TitleOpts(title=\"收入完成率\"))\n",
75 | ")"
76 | ]
77 | },
78 | {
79 | "cell_type": "code",
80 | "execution_count": 28,
81 | "metadata": {},
82 | "outputs": [
83 | {
84 | "data": {
85 | "text/html": [
86 | "\n",
87 | "\n",
94 | "\n",
95 | " \n",
96 | "\n",
97 | "\n"
203 | ],
204 | "text/plain": [
205 | ""
206 | ]
207 | },
208 | "execution_count": 28,
209 | "metadata": {},
210 | "output_type": "execute_result"
211 | }
212 | ],
213 | "source": [
214 | "gauge.render_notebook()"
215 | ]
216 | },
217 | {
218 | "cell_type": "markdown",
219 | "metadata": {},
220 | "source": [
221 | "### 2. 绘制多指针仪表盘"
222 | ]
223 | },
224 | {
225 | "cell_type": "code",
226 | "execution_count": 39,
227 | "metadata": {},
228 | "outputs": [],
229 | "source": [
230 | "gauge = (\n",
231 | " Gauge()\n",
232 | " .add(\"业务指标\", [(\"上衣营业额\", 90.5), (\"裤子营业额\", 39.4), (\"鞋子营业额\", 15.8)])\n",
233 | " .set_global_opts(title_opts=opts.TitleOpts(title=\"收入完成率\"))\n",
234 | ")"
235 | ]
236 | },
237 | {
238 | "cell_type": "code",
239 | "execution_count": 40,
240 | "metadata": {},
241 | "outputs": [
242 | {
243 | "data": {
244 | "text/html": [
245 | "\n",
246 | "\n",
253 | "\n",
254 | " \n",
255 | "\n",
256 | "\n"
370 | ],
371 | "text/plain": [
372 | ""
373 | ]
374 | },
375 | "execution_count": 40,
376 | "metadata": {},
377 | "output_type": "execute_result"
378 | }
379 | ],
380 | "source": [
381 | "gauge.render_notebook()"
382 | ]
383 | },
384 | {
385 | "cell_type": "code",
386 | "execution_count": null,
387 | "metadata": {},
388 | "outputs": [],
389 | "source": []
390 | }
391 | ],
392 | "metadata": {
393 | "kernelspec": {
394 | "display_name": "Python 3",
395 | "language": "python",
396 | "name": "python3"
397 | },
398 | "language_info": {
399 | "codemirror_mode": {
400 | "name": "ipython",
401 | "version": 3
402 | },
403 | "file_extension": ".py",
404 | "mimetype": "text/x-python",
405 | "name": "python",
406 | "nbconvert_exporter": "python",
407 | "pygments_lexer": "ipython3",
408 | "version": "3.7.6"
409 | }
410 | },
411 | "nbformat": 4,
412 | "nbformat_minor": 4
413 | }
414 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/11. Python绘制小提琴图-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 4
6 | }
7 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/12. Python绘制中国地图和城市图表-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Python绘制中国地图和城市图表"
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 1,
13 | "metadata": {},
14 | "outputs": [],
15 | "source": [
16 | "import pyecharts"
17 | ]
18 | },
19 | {
20 | "cell_type": "code",
21 | "execution_count": 2,
22 | "metadata": {},
23 | "outputs": [
24 | {
25 | "data": {
26 | "text/plain": [
27 | "'1.7.1'"
28 | ]
29 | },
30 | "execution_count": 2,
31 | "metadata": {},
32 | "output_type": "execute_result"
33 | }
34 | ],
35 | "source": [
36 | "pyecharts.__version__"
37 | ]
38 | },
39 | {
40 | "cell_type": "code",
41 | "execution_count": null,
42 | "metadata": {},
43 | "outputs": [],
44 | "source": [
45 | "from pyecharts import options as opts\n",
46 | "from pyecharts.charts import Map"
47 | ]
48 | },
49 | {
50 | "cell_type": "markdown",
51 | "metadata": {},
52 | "source": [
53 | "### 1. 绘制中国城市数据图表"
54 | ]
55 | },
56 | {
57 | "cell_type": "code",
58 | "execution_count": null,
59 | "metadata": {},
60 | "outputs": [],
61 | "source": [
62 | "# 2019全国各省人口数量排名,前10个\n",
63 | "province_population = [\n",
64 | " [\"广东\", 11169],\n",
65 | " [\"山东\", 10005.83],\n",
66 | " [\"河南\", 9559.13],\n",
67 | " [\"四川\", 8302],\n",
68 | " [\"江苏\", 8029.3],\n",
69 | " [\"河北\", 7519.52],\n",
70 | " [\"湖南\", 6860.2],\n",
71 | " [\"安徽\", 6254.8],\n",
72 | " [\"湖北\", 5902],\n",
73 | " [\"浙江\", 5657]\n",
74 | "]"
75 | ]
76 | },
77 | {
78 | "cell_type": "code",
79 | "execution_count": null,
80 | "metadata": {},
81 | "outputs": [],
82 | "source": [
83 | "map = (\n",
84 | " Map()\n",
85 | " .add(\"各省人口数量\", province_population, \"china\")\n",
86 | " .set_global_opts(\n",
87 | " title_opts=opts.TitleOpts(title=\"2019全国各省人口数量排名\"),\n",
88 | " visualmap_opts=opts.VisualMapOpts(max_=12000),\n",
89 | " )\n",
90 | ")\n",
91 | "map.render_notebook()"
92 | ]
93 | },
94 | {
95 | "cell_type": "markdown",
96 | "metadata": {},
97 | "source": [
98 | "### 2. 绘制具体城市数据"
99 | ]
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": null,
104 | "metadata": {},
105 | "outputs": [],
106 | "source": [
107 | "# 2019年北京各区人口数量,前5个\n",
108 | "beijing_district = [\n",
109 | " [\"朝阳区\", 395.5],\n",
110 | " [\"海淀区\", 369.4],\n",
111 | " [\"丰台区\", 232.4],\n",
112 | " [\"昌平区\", 196.3],\n",
113 | " [\"大兴区\", 156.2],\n",
114 | " [\"通州区\", 137.8],\n",
115 | " [\"西城区\", 129.8],\n",
116 | "]"
117 | ]
118 | },
119 | {
120 | "cell_type": "code",
121 | "execution_count": null,
122 | "metadata": {},
123 | "outputs": [],
124 | "source": [
125 | "map = (\n",
126 | " Map()\n",
127 | " .add(\"各区人口\", beijing_district, \"北京\")\n",
128 | " .set_global_opts(\n",
129 | " title_opts=opts.TitleOpts(title=\"2019年北京各区人口数量\"), \n",
130 | " visualmap_opts=opts.VisualMapOpts(max_=400)\n",
131 | " )\n",
132 | ")\n",
133 | "map.render_notebook()"
134 | ]
135 | },
136 | {
137 | "cell_type": "code",
138 | "execution_count": null,
139 | "metadata": {},
140 | "outputs": [],
141 | "source": []
142 | }
143 | ],
144 | "metadata": {
145 | "kernelspec": {
146 | "display_name": "Python 3",
147 | "language": "python",
148 | "name": "python3"
149 | },
150 | "language_info": {
151 | "codemirror_mode": {
152 | "name": "ipython",
153 | "version": 3
154 | },
155 | "file_extension": ".py",
156 | "mimetype": "text/x-python",
157 | "name": "python",
158 | "nbconvert_exporter": "python",
159 | "pygments_lexer": "ipython3",
160 | "version": "3.7.6"
161 | }
162 | },
163 | "nbformat": 4,
164 | "nbformat_minor": 4
165 | }
166 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/13. Python绘制预算开销雷达图-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 4
6 | }
7 |
--------------------------------------------------------------------------------
/.ipynb_checkpoints/test-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 4
6 | }
7 |
--------------------------------------------------------------------------------
/01. Python读取Excel绘制柱状图.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Python读取Excel绘制柱状图"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### 读取Excel数据"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 1,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": [
23 | "import pandas as pd"
24 | ]
25 | },
26 | {
27 | "cell_type": "code",
28 | "execution_count": 2,
29 | "metadata": {},
30 | "outputs": [],
31 | "source": [
32 | "df = pd.read_excel(\"./服装销售数据.xlsx\")"
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": 3,
38 | "metadata": {},
39 | "outputs": [
40 | {
41 | "data": {
42 | "text/html": [
43 | "\n",
44 | "\n",
57 | "
\n",
58 | " \n",
59 | " \n",
60 | " | \n",
61 | " 商品 | \n",
62 | " 商家A | \n",
63 | " 商家B | \n",
64 | "
\n",
65 | " \n",
66 | " \n",
67 | " \n",
68 | " 0 | \n",
69 | " 衬衫 | \n",
70 | " 42 | \n",
71 | " 123 | \n",
72 | "
\n",
73 | " \n",
74 | " 1 | \n",
75 | " 毛衣 | \n",
76 | " 78 | \n",
77 | " 35 | \n",
78 | "
\n",
79 | " \n",
80 | " 2 | \n",
81 | " 领带 | \n",
82 | " 135 | \n",
83 | " 26 | \n",
84 | "
\n",
85 | " \n",
86 | " 3 | \n",
87 | " 裤子 | \n",
88 | " 25 | \n",
89 | " 72 | \n",
90 | "
\n",
91 | " \n",
92 | " 4 | \n",
93 | " 风衣 | \n",
94 | " 135 | \n",
95 | " 28 | \n",
96 | "
\n",
97 | " \n",
98 | " 5 | \n",
99 | " 高跟鞋 | \n",
100 | " 58 | \n",
101 | " 26 | \n",
102 | "
\n",
103 | " \n",
104 | " 6 | \n",
105 | " 袜子 | \n",
106 | " 43 | \n",
107 | " 101 | \n",
108 | "
\n",
109 | " \n",
110 | "
\n",
111 | "
"
112 | ],
113 | "text/plain": [
114 | " 商品 商家A 商家B\n",
115 | "0 衬衫 42 123\n",
116 | "1 毛衣 78 35\n",
117 | "2 领带 135 26\n",
118 | "3 裤子 25 72\n",
119 | "4 风衣 135 28\n",
120 | "5 高跟鞋 58 26\n",
121 | "6 袜子 43 101"
122 | ]
123 | },
124 | "execution_count": 3,
125 | "metadata": {},
126 | "output_type": "execute_result"
127 | }
128 | ],
129 | "source": [
130 | "df"
131 | ]
132 | },
133 | {
134 | "cell_type": "markdown",
135 | "metadata": {},
136 | "source": [
137 | "### 绘制柱状图"
138 | ]
139 | },
140 | {
141 | "cell_type": "code",
142 | "execution_count": 4,
143 | "metadata": {},
144 | "outputs": [],
145 | "source": [
146 | "from pyecharts import options as opts\n",
147 | "from pyecharts.charts import Bar"
148 | ]
149 | },
150 | {
151 | "cell_type": "code",
152 | "execution_count": 5,
153 | "metadata": {},
154 | "outputs": [],
155 | "source": [
156 | "bar = (\n",
157 | " Bar()\n",
158 | " .add_xaxis(df[\"商品\"].to_list())\n",
159 | " .add_yaxis(\"商家A\", df[\"商家A\"].to_list())\n",
160 | " .add_yaxis(\"商家B\", df[\"商家B\"].to_list())\n",
161 | " .set_global_opts(title_opts=opts.TitleOpts(title=\"商品销量对比图\"))\n",
162 | ")"
163 | ]
164 | },
165 | {
166 | "cell_type": "code",
167 | "execution_count": 6,
168 | "metadata": {},
169 | "outputs": [
170 | {
171 | "data": {
172 | "text/html": [
173 | "\n",
174 | "\n",
181 | "\n",
182 | " \n",
183 | "\n",
184 | "\n"
358 | ],
359 | "text/plain": [
360 | ""
361 | ]
362 | },
363 | "execution_count": 6,
364 | "metadata": {},
365 | "output_type": "execute_result"
366 | }
367 | ],
368 | "source": [
369 | "bar.render_notebook()"
370 | ]
371 | },
372 | {
373 | "cell_type": "code",
374 | "execution_count": null,
375 | "metadata": {},
376 | "outputs": [],
377 | "source": []
378 | }
379 | ],
380 | "metadata": {
381 | "kernelspec": {
382 | "display_name": "Python 3",
383 | "language": "python",
384 | "name": "python3"
385 | },
386 | "language_info": {
387 | "codemirror_mode": {
388 | "name": "ipython",
389 | "version": 3
390 | },
391 | "file_extension": ".py",
392 | "mimetype": "text/x-python",
393 | "name": "python",
394 | "nbconvert_exporter": "python",
395 | "pygments_lexer": "ipython3",
396 | "version": "3.7.6"
397 | }
398 | },
399 | "nbformat": 4,
400 | "nbformat_minor": 4
401 | }
402 |
--------------------------------------------------------------------------------
/09. Python绘制仪表盘图直观展示目标完成进度.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Python绘制仪表盘图直观展示目标完成进度"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "仪表盘(Gauge): \n",
15 | "* BI仪表盘的标配大图(business intelligence dashboard,BI dashboard)\n",
16 | "* 通过百分比指针,直观的展示目标的完成进度,比如收入/营业额目标进度"
17 | ]
18 | },
19 | {
20 | "cell_type": "code",
21 | "execution_count": 1,
22 | "metadata": {},
23 | "outputs": [],
24 | "source": [
25 | "import pyecharts"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": 2,
31 | "metadata": {},
32 | "outputs": [
33 | {
34 | "data": {
35 | "text/plain": [
36 | "'1.7.1'"
37 | ]
38 | },
39 | "execution_count": 2,
40 | "metadata": {},
41 | "output_type": "execute_result"
42 | }
43 | ],
44 | "source": [
45 | "pyecharts.__version__"
46 | ]
47 | },
48 | {
49 | "cell_type": "code",
50 | "execution_count": 3,
51 | "metadata": {},
52 | "outputs": [],
53 | "source": [
54 | "from pyecharts import options as opts\n",
55 | "from pyecharts.charts import Gauge"
56 | ]
57 | },
58 | {
59 | "cell_type": "markdown",
60 | "metadata": {},
61 | "source": [
62 | "### 1. 绘制单指针仪表盘"
63 | ]
64 | },
65 | {
66 | "cell_type": "code",
67 | "execution_count": 4,
68 | "metadata": {},
69 | "outputs": [],
70 | "source": [
71 | "gauge = (\n",
72 | " Gauge()\n",
73 | " .add(\"业务指标\", [(\"收入完成率\", 87.8)])\n",
74 | " .set_global_opts(title_opts=opts.TitleOpts(title=\"收入完成率\"))\n",
75 | ")"
76 | ]
77 | },
78 | {
79 | "cell_type": "code",
80 | "execution_count": 5,
81 | "metadata": {},
82 | "outputs": [
83 | {
84 | "data": {
85 | "text/html": [
86 | "\n",
87 | "\n",
94 | "\n",
95 | " \n",
96 | "\n",
97 | "\n"
203 | ],
204 | "text/plain": [
205 | ""
206 | ]
207 | },
208 | "execution_count": 5,
209 | "metadata": {},
210 | "output_type": "execute_result"
211 | }
212 | ],
213 | "source": [
214 | "gauge.render_notebook()"
215 | ]
216 | },
217 | {
218 | "cell_type": "markdown",
219 | "metadata": {},
220 | "source": [
221 | "### 2. 绘制多指针仪表盘"
222 | ]
223 | },
224 | {
225 | "cell_type": "code",
226 | "execution_count": 6,
227 | "metadata": {},
228 | "outputs": [],
229 | "source": [
230 | "gauge = (\n",
231 | " Gauge()\n",
232 | " .add(\"业务指标\", [(\"上衣营业额\", 90.5), (\"裤子营业额\", 39.4), (\"鞋子营业额\", 15.8)])\n",
233 | " .set_global_opts(title_opts=opts.TitleOpts(title=\"收入完成率\"))\n",
234 | ")"
235 | ]
236 | },
237 | {
238 | "cell_type": "code",
239 | "execution_count": 8,
240 | "metadata": {},
241 | "outputs": [
242 | {
243 | "data": {
244 | "text/html": [
245 | "\n",
246 | "\n",
253 | "\n",
254 | " \n",
255 | "\n",
256 | "\n"
370 | ],
371 | "text/plain": [
372 | ""
373 | ]
374 | },
375 | "execution_count": 8,
376 | "metadata": {},
377 | "output_type": "execute_result"
378 | }
379 | ],
380 | "source": [
381 | "gauge.render_notebook()"
382 | ]
383 | },
384 | {
385 | "cell_type": "code",
386 | "execution_count": null,
387 | "metadata": {},
388 | "outputs": [],
389 | "source": []
390 | }
391 | ],
392 | "metadata": {
393 | "kernelspec": {
394 | "display_name": "Python 3",
395 | "language": "python",
396 | "name": "python3"
397 | },
398 | "language_info": {
399 | "codemirror_mode": {
400 | "name": "ipython",
401 | "version": 3
402 | },
403 | "file_extension": ".py",
404 | "mimetype": "text/x-python",
405 | "name": "python",
406 | "nbconvert_exporter": "python",
407 | "pygments_lexer": "ipython3",
408 | "version": "3.7.6"
409 | }
410 | },
411 | "nbformat": 4,
412 | "nbformat_minor": 4
413 | }
414 |
--------------------------------------------------------------------------------
/12. Python绘制中国地图和城市图表.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Python绘制中国地图和城市图表"
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 1,
13 | "metadata": {},
14 | "outputs": [],
15 | "source": [
16 | "from pyecharts import options as opts\n",
17 | "from pyecharts.charts import Map"
18 | ]
19 | },
20 | {
21 | "cell_type": "markdown",
22 | "metadata": {},
23 | "source": [
24 | "### 1. 绘制中国城市数据图表"
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": 2,
30 | "metadata": {},
31 | "outputs": [],
32 | "source": [
33 | "# 2019全国各省人口数量排名,单位万,前10个\n",
34 | "province_population = [\n",
35 | " [\"广东\", 11169],\n",
36 | " [\"山东\", 10005.83],\n",
37 | " [\"河南\", 9559.13],\n",
38 | " [\"四川\", 8302],\n",
39 | " [\"江苏\", 8029.3],\n",
40 | " [\"河北\", 7519.52],\n",
41 | " [\"湖南\", 6860.2],\n",
42 | " [\"安徽\", 6254.8],\n",
43 | " [\"湖北\", 5902],\n",
44 | " [\"浙江\", 5657]\n",
45 | "]"
46 | ]
47 | },
48 | {
49 | "cell_type": "code",
50 | "execution_count": 3,
51 | "metadata": {},
52 | "outputs": [
53 | {
54 | "data": {
55 | "text/html": [
56 | "\n",
57 | "\n",
64 | "\n",
65 | " \n",
66 | "\n",
67 | "\n"
223 | ],
224 | "text/plain": [
225 | ""
226 | ]
227 | },
228 | "execution_count": 3,
229 | "metadata": {},
230 | "output_type": "execute_result"
231 | }
232 | ],
233 | "source": [
234 | "map = (\n",
235 | " Map()\n",
236 | " .add(\"各省人口数量\", province_population, \"china\")\n",
237 | " .set_global_opts(\n",
238 | " title_opts=opts.TitleOpts(title=\"2019全国各省人口数量排名\"),\n",
239 | " visualmap_opts=opts.VisualMapOpts(max_=12000),\n",
240 | " )\n",
241 | ")\n",
242 | "map.render_notebook()"
243 | ]
244 | },
245 | {
246 | "cell_type": "markdown",
247 | "metadata": {},
248 | "source": [
249 | "### 2. 绘制具体城市数据"
250 | ]
251 | },
252 | {
253 | "cell_type": "code",
254 | "execution_count": 4,
255 | "metadata": {},
256 | "outputs": [],
257 | "source": [
258 | "# 2019年北京各区人口数量,前7个\n",
259 | "beijing_district = [\n",
260 | " [\"朝阳区\", 395.5],\n",
261 | " [\"海淀区\", 369.4],\n",
262 | " [\"丰台区\", 232.4],\n",
263 | " [\"昌平区\", 196.3],\n",
264 | " [\"大兴区\", 156.2],\n",
265 | " [\"通州区\", 137.8],\n",
266 | " [\"西城区\", 129.8],\n",
267 | "]"
268 | ]
269 | },
270 | {
271 | "cell_type": "code",
272 | "execution_count": 5,
273 | "metadata": {},
274 | "outputs": [
275 | {
276 | "data": {
277 | "text/html": [
278 | "\n",
279 | "\n",
286 | "\n",
287 | " \n",
288 | "\n",
289 | "\n"
433 | ],
434 | "text/plain": [
435 | ""
436 | ]
437 | },
438 | "execution_count": 5,
439 | "metadata": {},
440 | "output_type": "execute_result"
441 | }
442 | ],
443 | "source": [
444 | "map = (\n",
445 | " Map()\n",
446 | " .add(\"各区人口\", beijing_district, \"北京\")\n",
447 | " .set_global_opts(\n",
448 | " title_opts=opts.TitleOpts(title=\"2019年北京各区人口数量\"), \n",
449 | " visualmap_opts=opts.VisualMapOpts(max_=400)\n",
450 | " )\n",
451 | ")\n",
452 | "map.render_notebook()"
453 | ]
454 | },
455 | {
456 | "cell_type": "code",
457 | "execution_count": null,
458 | "metadata": {},
459 | "outputs": [],
460 | "source": []
461 | }
462 | ],
463 | "metadata": {
464 | "kernelspec": {
465 | "display_name": "Python 3",
466 | "language": "python",
467 | "name": "python3"
468 | },
469 | "language_info": {
470 | "codemirror_mode": {
471 | "name": "ipython",
472 | "version": 3
473 | },
474 | "file_extension": ".py",
475 | "mimetype": "text/x-python",
476 | "name": "python",
477 | "nbconvert_exporter": "python",
478 | "pygments_lexer": "ipython3",
479 | "version": "3.7.6"
480 | }
481 | },
482 | "nbformat": 4,
483 | "nbformat_minor": 4
484 | }
485 |
--------------------------------------------------------------------------------
/13. Python绘制预算开销雷达图.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Python绘制预算开销雷达图"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "***雷达图(Radar):*** \n",
15 | "* 又称为蜘蛛图、极地图、星图\n",
16 | "* 从同一点开始的轴上表示的两个或更多个变量的二维图表的形式显示**多变量数据**的图形方法。\n",
17 | "\n",
18 | "雷达图主要应用于企业经营状况——收益性、生产性、流动性、安全性和成长性的评价。\n",
19 | "\n",
20 | "***缺点:*** \n",
21 | "如果多边形过多,就会显得非常混乱,所以一般展示一到两个变量多边形"
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": 1,
27 | "metadata": {},
28 | "outputs": [],
29 | "source": [
30 | "from pyecharts import options as opts\n",
31 | "from pyecharts.charts import Radar"
32 | ]
33 | },
34 | {
35 | "cell_type": "markdown",
36 | "metadata": {},
37 | "source": [
38 | "### 1. 数据统计结果"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": 2,
44 | "metadata": {},
45 | "outputs": [],
46 | "source": [
47 | "# 部门列表\n",
48 | "departments = ['销售', '管理', '信息技术', '客服', '研发', '市场']"
49 | ]
50 | },
51 | {
52 | "cell_type": "code",
53 | "execution_count": 3,
54 | "metadata": {},
55 | "outputs": [],
56 | "source": [
57 | "# 容忍的最大支出\n",
58 | "max_cost_threshold = [6500, 16000, 30000, 38000, 52000, 25000]"
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "execution_count": 4,
64 | "metadata": {},
65 | "outputs": [],
66 | "source": [
67 | "# 预算分配\n",
68 | "budget_allocation = [4300, 10000, 28000, 35000, 50000, 19000]"
69 | ]
70 | },
71 | {
72 | "cell_type": "code",
73 | "execution_count": 5,
74 | "metadata": {},
75 | "outputs": [],
76 | "source": [
77 | "# 实际开销\n",
78 | "actual_cost = [5000, 14000, 28000, 31000, 42000, 21000]"
79 | ]
80 | },
81 | {
82 | "cell_type": "markdown",
83 | "metadata": {},
84 | "source": [
85 | "### 2. 绘制雷达图"
86 | ]
87 | },
88 | {
89 | "cell_type": "code",
90 | "execution_count": 6,
91 | "metadata": {},
92 | "outputs": [],
93 | "source": [
94 | "# 设置雷达图的边缘的最大值\n",
95 | "schema = []\n",
96 | "for dept, max_cost in zip(departments, max_cost_threshold):\n",
97 | " schema.append(opts.RadarIndicatorItem(name=dept, max_=max_cost))"
98 | ]
99 | },
100 | {
101 | "cell_type": "code",
102 | "execution_count": 7,
103 | "metadata": {},
104 | "outputs": [
105 | {
106 | "data": {
107 | "text/plain": [
108 | "[,\n",
109 | " ,\n",
110 | " ,\n",
111 | " ,\n",
112 | " ,\n",
113 | " ]"
114 | ]
115 | },
116 | "execution_count": 7,
117 | "metadata": {},
118 | "output_type": "execute_result"
119 | }
120 | ],
121 | "source": [
122 | "schema"
123 | ]
124 | },
125 | {
126 | "cell_type": "code",
127 | "execution_count": 8,
128 | "metadata": {},
129 | "outputs": [
130 | {
131 | "data": {
132 | "text/html": [
133 | "\n",
134 | "\n",
141 | "\n",
142 | " \n",
143 | "\n",
144 | "\n"
355 | ],
356 | "text/plain": [
357 | ""
358 | ]
359 | },
360 | "execution_count": 8,
361 | "metadata": {},
362 | "output_type": "execute_result"
363 | }
364 | ],
365 | "source": [
366 | "radar = (\n",
367 | " Radar()\n",
368 | " .add_schema(schema)\n",
369 | " .add(\"预算分配\", [budget_allocation], linestyle_opts=opts.LineStyleOpts(color=\"#FF0000\"))\n",
370 | " .add(\"实际开销\", [actual_cost], linestyle_opts=opts.LineStyleOpts(color=\"#0000FF\"))\n",
371 | " .set_series_opts(label_opts=opts.LabelOpts(is_show=False))\n",
372 | " .set_global_opts(\n",
373 | " #legend_opts=opts.LegendOpts(selected_mode=\"single\"),\n",
374 | " title_opts=opts.TitleOpts(title=\"各部门预算与开销\"),\n",
375 | " )\n",
376 | ")\n",
377 | "\n",
378 | "radar.render_notebook()"
379 | ]
380 | },
381 | {
382 | "cell_type": "code",
383 | "execution_count": null,
384 | "metadata": {},
385 | "outputs": [],
386 | "source": []
387 | }
388 | ],
389 | "metadata": {
390 | "kernelspec": {
391 | "display_name": "Python 3",
392 | "language": "python",
393 | "name": "python3"
394 | },
395 | "language_info": {
396 | "codemirror_mode": {
397 | "name": "ipython",
398 | "version": 3
399 | },
400 | "file_extension": ".py",
401 | "mimetype": "text/x-python",
402 | "name": "python",
403 | "nbconvert_exporter": "python",
404 | "pygments_lexer": "ipython3",
405 | "version": "3.7.6"
406 | }
407 | },
408 | "nbformat": 4,
409 | "nbformat_minor": 4
410 | }
411 |
--------------------------------------------------------------------------------
/16. Python绘制时间线轮播多图.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Python绘制时间线轮播多图"
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 1,
13 | "metadata": {},
14 | "outputs": [],
15 | "source": [
16 | "import pandas as pd\n",
17 | "from pyecharts import options as opts\n",
18 | "from pyecharts.charts import Pie, Bar, Timeline"
19 | ]
20 | },
21 | {
22 | "cell_type": "markdown",
23 | "metadata": {},
24 | "source": [
25 | "### 1. 读取北京2019年天气数据"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": 2,
31 | "metadata": {},
32 | "outputs": [
33 | {
34 | "data": {
35 | "text/html": [
36 | "\n",
37 | "\n",
50 | "
\n",
51 | " \n",
52 | " \n",
53 | " | \n",
54 | " ymd | \n",
55 | " bWendu | \n",
56 | " yWendu | \n",
57 | " tianqi | \n",
58 | " fengxiang | \n",
59 | " fengli | \n",
60 | " aqi | \n",
61 | " aqiInfo | \n",
62 | " aqiLevel | \n",
63 | "
\n",
64 | " \n",
65 | " \n",
66 | " \n",
67 | " 0 | \n",
68 | " 2019-01-01 | \n",
69 | " 1℃ | \n",
70 | " -10℃ | \n",
71 | " 晴~多云 | \n",
72 | " 西北风 | \n",
73 | " 1级 | \n",
74 | " 56 | \n",
75 | " 良 | \n",
76 | " 2 | \n",
77 | "
\n",
78 | " \n",
79 | " 1 | \n",
80 | " 2019-01-02 | \n",
81 | " 1℃ | \n",
82 | " -9℃ | \n",
83 | " 多云 | \n",
84 | " 东北风 | \n",
85 | " 1级 | \n",
86 | " 60 | \n",
87 | " 良 | \n",
88 | " 2 | \n",
89 | "
\n",
90 | " \n",
91 | " 2 | \n",
92 | " 2019-01-03 | \n",
93 | " 2℃ | \n",
94 | " -7℃ | \n",
95 | " 霾 | \n",
96 | " 东北风 | \n",
97 | " 1级 | \n",
98 | " 165 | \n",
99 | " 中度污染 | \n",
100 | " 4 | \n",
101 | "
\n",
102 | " \n",
103 | "
\n",
104 | "
"
105 | ],
106 | "text/plain": [
107 | " ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo aqiLevel\n",
108 | "0 2019-01-01 1℃ -10℃ 晴~多云 西北风 1级 56 良 2\n",
109 | "1 2019-01-02 1℃ -9℃ 多云 东北风 1级 60 良 2\n",
110 | "2 2019-01-03 2℃ -7℃ 霾 东北风 1级 165 中度污染 4"
111 | ]
112 | },
113 | "execution_count": 2,
114 | "metadata": {},
115 | "output_type": "execute_result"
116 | }
117 | ],
118 | "source": [
119 | "df = pd.read_csv(\"./datas/beijing_tianqi/beijing_tianqi_2019.csv\")\n",
120 | "df.head(3)"
121 | ]
122 | },
123 | {
124 | "cell_type": "code",
125 | "execution_count": 3,
126 | "metadata": {},
127 | "outputs": [
128 | {
129 | "data": {
130 | "text/html": [
131 | "\n",
132 | "\n",
145 | "
\n",
146 | " \n",
147 | " \n",
148 | " | \n",
149 | " ymd | \n",
150 | " bWendu | \n",
151 | " yWendu | \n",
152 | " tianqi | \n",
153 | " fengxiang | \n",
154 | " fengli | \n",
155 | " aqi | \n",
156 | " aqiInfo | \n",
157 | " aqiLevel | \n",
158 | " month | \n",
159 | "
\n",
160 | " \n",
161 | " \n",
162 | " \n",
163 | " 0 | \n",
164 | " 2019-01-01 | \n",
165 | " 1℃ | \n",
166 | " -10℃ | \n",
167 | " 晴~多云 | \n",
168 | " 西北风 | \n",
169 | " 1级 | \n",
170 | " 56 | \n",
171 | " 良 | \n",
172 | " 2 | \n",
173 | " 1 | \n",
174 | "
\n",
175 | " \n",
176 | " 1 | \n",
177 | " 2019-01-02 | \n",
178 | " 1℃ | \n",
179 | " -9℃ | \n",
180 | " 多云 | \n",
181 | " 东北风 | \n",
182 | " 1级 | \n",
183 | " 60 | \n",
184 | " 良 | \n",
185 | " 2 | \n",
186 | " 1 | \n",
187 | "
\n",
188 | " \n",
189 | " 2 | \n",
190 | " 2019-01-03 | \n",
191 | " 2℃ | \n",
192 | " -7℃ | \n",
193 | " 霾 | \n",
194 | " 东北风 | \n",
195 | " 1级 | \n",
196 | " 165 | \n",
197 | " 中度污染 | \n",
198 | " 4 | \n",
199 | " 1 | \n",
200 | "
\n",
201 | " \n",
202 | "
\n",
203 | "
"
204 | ],
205 | "text/plain": [
206 | " ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo aqiLevel \\\n",
207 | "0 2019-01-01 1℃ -10℃ 晴~多云 西北风 1级 56 良 2 \n",
208 | "1 2019-01-02 1℃ -9℃ 多云 东北风 1级 60 良 2 \n",
209 | "2 2019-01-03 2℃ -7℃ 霾 东北风 1级 165 中度污染 4 \n",
210 | "\n",
211 | " month \n",
212 | "0 1 \n",
213 | "1 1 \n",
214 | "2 1 "
215 | ]
216 | },
217 | "execution_count": 3,
218 | "metadata": {},
219 | "output_type": "execute_result"
220 | }
221 | ],
222 | "source": [
223 | "df[\"month\"] = pd.to_datetime(df[\"ymd\"]).dt.month\n",
224 | "df.head(3)"
225 | ]
226 | },
227 | {
228 | "cell_type": "code",
229 | "execution_count": 4,
230 | "metadata": {},
231 | "outputs": [
232 | {
233 | "data": {
234 | "text/html": [
235 | "\n",
236 | "\n",
249 | "
\n",
250 | " \n",
251 | " \n",
252 | " | \n",
253 | " month | \n",
254 | " tianqi | \n",
255 | " count | \n",
256 | "
\n",
257 | " \n",
258 | " \n",
259 | " \n",
260 | " 0 | \n",
261 | " 1 | \n",
262 | " 多云 | \n",
263 | " 9 | \n",
264 | "
\n",
265 | " \n",
266 | " 1 | \n",
267 | " 1 | \n",
268 | " 多云~晴 | \n",
269 | " 1 | \n",
270 | "
\n",
271 | " \n",
272 | " 2 | \n",
273 | " 1 | \n",
274 | " 晴 | \n",
275 | " 12 | \n",
276 | "
\n",
277 | " \n",
278 | " 3 | \n",
279 | " 1 | \n",
280 | " 晴~多云 | \n",
281 | " 4 | \n",
282 | "
\n",
283 | " \n",
284 | " 4 | \n",
285 | " 1 | \n",
286 | " 霾 | \n",
287 | " 3 | \n",
288 | "
\n",
289 | " \n",
290 | " 5 | \n",
291 | " 1 | \n",
292 | " 霾~多云 | \n",
293 | " 1 | \n",
294 | "
\n",
295 | " \n",
296 | " 6 | \n",
297 | " 1 | \n",
298 | " 霾~晴 | \n",
299 | " 1 | \n",
300 | "
\n",
301 | " \n",
302 | " 7 | \n",
303 | " 2 | \n",
304 | " 多云 | \n",
305 | " 9 | \n",
306 | "
\n",
307 | " \n",
308 | " 8 | \n",
309 | " 2 | \n",
310 | " 多云~晴 | \n",
311 | " 3 | \n",
312 | "
\n",
313 | " \n",
314 | " 9 | \n",
315 | " 2 | \n",
316 | " 小雪~多云 | \n",
317 | " 2 | \n",
318 | "
\n",
319 | " \n",
320 | "
\n",
321 | "
"
322 | ],
323 | "text/plain": [
324 | " month tianqi count\n",
325 | "0 1 多云 9\n",
326 | "1 1 多云~晴 1\n",
327 | "2 1 晴 12\n",
328 | "3 1 晴~多云 4\n",
329 | "4 1 霾 3\n",
330 | "5 1 霾~多云 1\n",
331 | "6 1 霾~晴 1\n",
332 | "7 2 多云 9\n",
333 | "8 2 多云~晴 3\n",
334 | "9 2 小雪~多云 2"
335 | ]
336 | },
337 | "execution_count": 4,
338 | "metadata": {},
339 | "output_type": "execute_result"
340 | }
341 | ],
342 | "source": [
343 | "# 统计每个月份的每种天气出现次数\n",
344 | "df_agg = df.groupby([\"month\", \"tianqi\"]).size().reset_index()\n",
345 | "df_agg.columns = [\"month\", \"tianqi\", \"count\"]\n",
346 | "df_agg.head(10)"
347 | ]
348 | },
349 | {
350 | "cell_type": "code",
351 | "execution_count": 5,
352 | "metadata": {},
353 | "outputs": [
354 | {
355 | "data": {
356 | "text/plain": [
357 | "[['晴', 12],\n",
358 | " ['多云', 9],\n",
359 | " ['晴~多云', 4],\n",
360 | " ['霾', 3],\n",
361 | " ['多云~晴', 1],\n",
362 | " ['霾~多云', 1],\n",
363 | " ['霾~晴', 1]]"
364 | ]
365 | },
366 | "execution_count": 5,
367 | "metadata": {},
368 | "output_type": "execute_result"
369 | }
370 | ],
371 | "source": [
372 | "# 怎样算出1月份的天气次数排名\n",
373 | "df_agg[df_agg[\"month\"]==1][[\"tianqi\", \"count\"]].sort_values(by=\"count\", ascending=False).values.tolist()"
374 | ]
375 | },
376 | {
377 | "cell_type": "markdown",
378 | "metadata": {},
379 | "source": [
380 | "### 2. 按月变化-天气频率柱状图"
381 | ]
382 | },
383 | {
384 | "cell_type": "code",
385 | "execution_count": null,
386 | "metadata": {
387 | "scrolled": false
388 | },
389 | "outputs": [],
390 | "source": [
391 | "timeline = Timeline()\n",
392 | "timeline.add_schema(play_interval=1000)\n",
393 | "for month in df_agg[\"month\"].unique():\n",
394 | " data = (\n",
395 | " df_agg[df_agg[\"month\"]==month][[\"tianqi\", \"count\"]]\n",
396 | " .sort_values(by=\"count\", ascending=True)\n",
397 | " .values.tolist()\n",
398 | " )\n",
399 | " \n",
400 | " # 绘制柱状图\n",
401 | " bar = Bar()\n",
402 | " \n",
403 | " # x轴是天气名称\n",
404 | " bar.add_xaxis([x[0] for x in data])\n",
405 | " # y轴是出现次数\n",
406 | " bar.add_yaxis(\"\", [x[1] for x in data])\n",
407 | " # 让柱状图横放\n",
408 | " bar.reversal_axis()\n",
409 | " bar.set_series_opts(label_opts=opts.LabelOpts(position=\"right\"))\n",
410 | " bar.set_global_opts(title_opts=opts.TitleOpts(title=\"北京每月天气变化\"))\n",
411 | " \n",
412 | " timeline.add(bar, f\"{month}月\")\n",
413 | " \n",
414 | "timeline.render_notebook()"
415 | ]
416 | },
417 | {
418 | "cell_type": "code",
419 | "execution_count": null,
420 | "metadata": {},
421 | "outputs": [],
422 | "source": []
423 | },
424 | {
425 | "cell_type": "code",
426 | "execution_count": null,
427 | "metadata": {},
428 | "outputs": [],
429 | "source": []
430 | },
431 | {
432 | "cell_type": "code",
433 | "execution_count": null,
434 | "metadata": {},
435 | "outputs": [],
436 | "source": []
437 | },
438 | {
439 | "cell_type": "code",
440 | "execution_count": null,
441 | "metadata": {},
442 | "outputs": [],
443 | "source": []
444 | },
445 | {
446 | "cell_type": "code",
447 | "execution_count": null,
448 | "metadata": {},
449 | "outputs": [],
450 | "source": []
451 | },
452 | {
453 | "cell_type": "code",
454 | "execution_count": null,
455 | "metadata": {},
456 | "outputs": [],
457 | "source": []
458 | },
459 | {
460 | "cell_type": "code",
461 | "execution_count": null,
462 | "metadata": {},
463 | "outputs": [],
464 | "source": []
465 | },
466 | {
467 | "cell_type": "code",
468 | "execution_count": null,
469 | "metadata": {},
470 | "outputs": [],
471 | "source": []
472 | },
473 | {
474 | "cell_type": "code",
475 | "execution_count": null,
476 | "metadata": {},
477 | "outputs": [],
478 | "source": []
479 | },
480 | {
481 | "cell_type": "code",
482 | "execution_count": null,
483 | "metadata": {},
484 | "outputs": [],
485 | "source": []
486 | },
487 | {
488 | "cell_type": "code",
489 | "execution_count": null,
490 | "metadata": {},
491 | "outputs": [],
492 | "source": []
493 | },
494 | {
495 | "cell_type": "code",
496 | "execution_count": null,
497 | "metadata": {},
498 | "outputs": [],
499 | "source": []
500 | },
501 | {
502 | "cell_type": "code",
503 | "execution_count": null,
504 | "metadata": {},
505 | "outputs": [],
506 | "source": []
507 | },
508 | {
509 | "cell_type": "code",
510 | "execution_count": null,
511 | "metadata": {},
512 | "outputs": [],
513 | "source": []
514 | },
515 | {
516 | "cell_type": "code",
517 | "execution_count": null,
518 | "metadata": {},
519 | "outputs": [],
520 | "source": []
521 | },
522 | {
523 | "cell_type": "code",
524 | "execution_count": null,
525 | "metadata": {},
526 | "outputs": [],
527 | "source": []
528 | },
529 | {
530 | "cell_type": "code",
531 | "execution_count": null,
532 | "metadata": {},
533 | "outputs": [],
534 | "source": []
535 | },
536 | {
537 | "cell_type": "code",
538 | "execution_count": null,
539 | "metadata": {},
540 | "outputs": [],
541 | "source": []
542 | }
543 | ],
544 | "metadata": {
545 | "kernelspec": {
546 | "display_name": "Python 3",
547 | "language": "python",
548 | "name": "python3"
549 | },
550 | "language_info": {
551 | "codemirror_mode": {
552 | "name": "ipython",
553 | "version": 3
554 | },
555 | "file_extension": ".py",
556 | "mimetype": "text/x-python",
557 | "name": "python",
558 | "nbconvert_exporter": "python",
559 | "pygments_lexer": "ipython3",
560 | "version": "3.7.6"
561 | }
562 | },
563 | "nbformat": 4,
564 | "nbformat_minor": 4
565 | }
566 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ant-learn-visualization
2 | python Visualization,using pyecharts、matplotlib、seaborn
3 |
4 | 安装依赖的方法:pyhton -m pip install -r requirements.txt
5 |
--------------------------------------------------------------------------------
/boxplot_base.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Awesome-pyecharts
6 |
7 |
8 |
9 |
10 |
11 |
224 |
225 |
226 |
--------------------------------------------------------------------------------
/datas/beijing_tianqi/beijing_tianqi_2018.csv:
--------------------------------------------------------------------------------
1 | ymd,bWendu,yWendu,tianqi,fengxiang,fengli,aqi,aqiInfo,aqiLevel
2 | 2018-01-01,3℃,-6℃,晴~多云,东北风,1-2级,59,良,2
3 | 2018-01-02,2℃,-5℃,阴~多云,东北风,1-2级,49,优,1
4 | 2018-01-03,2℃,-5℃,多云,北风,1-2级,28,优,1
5 | 2018-01-04,0℃,-8℃,阴,东北风,1-2级,28,优,1
6 | 2018-01-05,3℃,-6℃,多云~晴,西北风,1-2级,50,优,1
7 | 2018-01-06,2℃,-5℃,多云~阴,西南风,1-2级,32,优,1
8 | 2018-01-07,2℃,-4℃,阴~多云,西南风,1-2级,59,良,2
9 | 2018-01-08,2℃,-6℃,晴,西北风,4-5级,50,优,1
10 | 2018-01-09,1℃,-8℃,晴,西北风,3-4级,34,优,1
11 | 2018-01-10,-2℃,-10℃,晴,西北风,1-2级,26,优,1
12 | 2018-01-11,-1℃,-10℃,晴,北风,1-2级,24,优,1
13 | 2018-01-12,2℃,-8℃,晴,西南风,1-2级,75,良,2
14 | 2018-01-13,3℃,-7℃,多云,南风,1-2级,126,轻度污染,3
15 | 2018-01-14,6℃,-5℃,晴~多云,西北风,1-2级,187,中度污染,4
16 | 2018-01-15,2℃,-5℃,阴,东南风,1-2级,47,优,1
17 | 2018-01-16,4℃,-5℃,多云,南风,1-2级,112,轻度污染,3
18 | 2018-01-17,6℃,-7℃,多云~晴,西北风,1-2级,82,良,2
19 | 2018-01-18,5℃,-6℃,晴,西南风,1-2级,80,良,2
20 | 2018-01-19,7℃,-4℃,晴,南风,1-2级,115,轻度污染,3
21 | 2018-01-20,3℃,-6℃,晴~多云,东风,1-2级,64,良,2
22 | 2018-01-21,0℃,-5℃,阴~小雪,东北风,1-2级,63,良,2
23 | 2018-01-22,-3℃,-10℃,小雪~多云,东风,1-2级,47,优,1
24 | 2018-01-23,-4℃,-12℃,晴,西北风,3-4级,31,优,1
25 | 2018-01-24,-4℃,-11℃,晴,西南风,1-2级,34,优,1
26 | 2018-01-25,-3℃,-11℃,多云,东北风,1-2级,27,优,1
27 | 2018-01-26,-3℃,-10℃,晴~多云,南风,1-2级,39,优,1
28 | 2018-01-27,-1℃,-9℃,多云,南风,1-2级,105,轻度污染,3
29 | 2018-01-28,-1℃,-9℃,晴,西北风,3-4级,55,良,2
30 | 2018-01-29,1℃,-8℃,晴,西北风,1-2级,57,良,2
31 | 2018-01-30,4℃,-7℃,晴,西北风,1-2级,36,优,1
32 | 2018-01-31,3℃,-8℃,晴,西南风,1-2级,60,良,2
33 | 2018-02-01,4℃,-7℃,多云,北风,1-2级,68,良,2
34 | 2018-02-02,-1℃,-9℃,晴,北风,3-4级,32,优,1
35 | 2018-02-03,0℃,-9℃,多云,北风,1-2级,24,优,1
36 | 2018-02-04,1℃,-8℃,晴,西南风,1-2级,36,优,1
37 | 2018-02-05,0℃,-10℃,晴,北风,3-4级,24,优,1
38 | 2018-02-06,3℃,-7℃,多云~阴,西南风,1-2级,56,良,2
39 | 2018-02-07,2℃,-10℃,多云~晴,北风,4-5级,63,良,2
40 | 2018-02-08,3℃,-7℃,多云,南风,3-4级,67,良,2
41 | 2018-02-09,4℃,-9℃,多云,西北风,4-5级,93,良,2
42 | 2018-02-10,1℃,-9℃,晴,西北风,3-4级,39,优,1
43 | 2018-02-11,0℃,-9℃,晴,西北风,4-5级,62,良,2
44 | 2018-02-12,5℃,-7℃,晴,西北风,1-2级,53,良,2
45 | 2018-02-13,8℃,-4℃,晴~多云,西风,1-2级,78,良,2
46 | 2018-02-14,6℃,-6℃,多云,北风,1-2级,42,优,1
47 | 2018-02-15,5℃,-5℃,多云,西南风,1-2级,48,优,1
48 | 2018-02-16,8℃,-5℃,晴~多云,西南风,1-2级,118,轻度污染,3
49 | 2018-02-17,5℃,-4℃,多云~阴,南风,1-2级,103,轻度污染,3
50 | 2018-02-18,8℃,-3℃,多云,南风,1-2级,148,轻度污染,3
51 | 2018-02-19,6℃,-3℃,多云,南风,1-2级,183,中度污染,4
52 | 2018-02-20,5℃,-5℃,晴,北风,1-2级,76,良,2
53 | 2018-02-21,8℃,-4℃,晴,南风,1-2级,53,良,2
54 | 2018-02-22,9℃,-4℃,多云,西南风,1-2级,42,优,1
55 | 2018-02-23,10℃,-4℃,多云,东北风,1-2级,45,优,1
56 | 2018-02-24,3℃,-6℃,多云~晴,南风,1-2级,66,良,2
57 | 2018-02-25,6℃,-4℃,多云,西南风,1-2级,73,良,2
58 | 2018-02-26,12℃,-1℃,晴~多云,西南风,1-2级,157,中度污染,4
59 | 2018-02-27,7℃,0℃,阴,东风,1-2级,220,重度污染,5
60 | 2018-02-28,9℃,-2℃,多云~晴,西南风,3-4级,139,轻度污染,3
61 | 2018-03-01,8℃,-3℃,多云,西南风,1-2级,46,优,1
62 | 2018-03-02,9℃,-1℃,晴~多云,北风,1-2级,95,良,2
63 | 2018-03-03,13℃,3℃,多云~阴,北风,1-2级,214,重度污染,5
64 | 2018-03-04,7℃,-2℃,阴~多云,东南风,1-2级,144,轻度污染,3
65 | 2018-03-05,8℃,-3℃,晴,南风,1-2级,94,良,2
66 | 2018-03-06,6℃,-3℃,多云~阴,东南风,3-4级,67,良,2
67 | 2018-03-07,6℃,-2℃,阴~多云,北风,1-2级,65,良,2
68 | 2018-03-08,8℃,-4℃,晴,东北风,1-2级,62,良,2
69 | 2018-03-09,10℃,-2℃,多云,西南风,1-2级,132,轻度污染,3
70 | 2018-03-10,14℃,-2℃,晴,东南风,1-2级,171,中度污染,4
71 | 2018-03-11,11℃,0℃,多云,南风,1-2级,81,良,2
72 | 2018-03-12,15℃,3℃,多云~晴,南风,1-2级,174,中度污染,4
73 | 2018-03-13,17℃,5℃,晴~多云,南风,1-2级,287,重度污染,5
74 | 2018-03-14,15℃,6℃,多云~阴,东北风,1-2级,293,重度污染,5
75 | 2018-03-15,12℃,-1℃,多云~晴,东北风,3-4级,70,良,2
76 | 2018-03-16,10℃,-1℃,多云,南风,1-2级,58,良,2
77 | 2018-03-17,4℃,0℃,小雨~阴,南风,1-2级,81,良,2
78 | 2018-03-18,13℃,1℃,多云~晴,西南风,1-2级,134,轻度污染,3
79 | 2018-03-19,13℃,2℃,多云,东风,1-2级,107,轻度污染,3
80 | 2018-03-20,10℃,-2℃,多云,南风,1-2级,41,优,1
81 | 2018-03-21,11℃,1℃,多云,西南风,1-2级,76,良,2
82 | 2018-03-22,17℃,4℃,晴~多云,西南风,1-2级,112,轻度污染,3
83 | 2018-03-23,18℃,5℃,多云,北风,1-2级,146,轻度污染,3
84 | 2018-03-24,22℃,5℃,晴,西南风,1-2级,119,轻度污染,3
85 | 2018-03-25,24℃,7℃,晴,南风,1-2级,78,良,2
86 | 2018-03-26,25℃,7℃,多云,西南风,1-2级,151,中度污染,4
87 | 2018-03-27,27℃,11℃,晴,南风,1-2级,243,重度污染,5
88 | 2018-03-28,25℃,9℃,多云~晴,东风,1-2级,387,严重污染,6
89 | 2018-03-29,19℃,7℃,晴,南风,1-2级,119,轻度污染,3
90 | 2018-03-30,18℃,8℃,多云,南风,1-2级,68,良,2
91 | 2018-03-31,23℃,9℃,多云~晴,南风,1-2级,125,轻度污染,3
92 | 2018-04-01,25℃,11℃,晴~多云,南风,1-2级,218,重度污染,5
93 | 2018-04-02,26℃,11℃,多云,北风,1-2级,287,重度污染,5
94 | 2018-04-03,14℃,6℃,多云~阴,东北风,3-4级,80,良,2
95 | 2018-04-04,10℃,1℃,小雨~雨夹雪,东北风,1-2级,35,优,1
96 | 2018-04-05,10℃,3℃,多云,西南风,1-2级,73,良,2
97 | 2018-04-06,11℃,4℃,多云~晴,北风,4-5级,86,良,2
98 | 2018-04-07,12℃,2℃,多云~晴,西北风,3-4级,42,优,1
99 | 2018-04-08,18℃,5℃,晴,西南风,1-2级,68,良,2
100 | 2018-04-09,20℃,7℃,晴~多云,南风,1-2级,111,轻度污染,3
101 | 2018-04-10,24℃,8℃,多云~晴,西北风,4-5级,101,轻度污染,3
102 | 2018-04-11,23℃,9℃,晴,西南风,3-4级,48,优,1
103 | 2018-04-12,22℃,7℃,多云~小雨,东南风,1-2级,79,良,2
104 | 2018-04-13,11℃,6℃,小雨~多云,东南风,1-2级,64,良,2
105 | 2018-04-14,19℃,5℃,多云~晴,北风,4-5级,122,轻度污染,3
106 | 2018-04-15,21℃,8℃,晴,西南风,1-2级,72,良,2
107 | 2018-04-16,23℃,12℃,晴~多云,南风,1-2级,103,轻度污染,3
108 | 2018-04-17,25℃,12℃,多云~晴,南风,1-2级,145,轻度污染,3
109 | 2018-04-18,27℃,14℃,多云~晴,西南风,3-4级,147,轻度污染,3
110 | 2018-04-19,26℃,13℃,多云,东南风,4-5级,170,中度污染,4
111 | 2018-04-20,28℃,14℃,多云~小雨,南风,4-5级,164,中度污染,4
112 | 2018-04-21,16℃,12℃,大雨~小雨,东北风,3-4级,105,轻度污染,3
113 | 2018-04-22,16℃,12℃,阴~多云,东北风,3-4级,27,优,1
114 | 2018-04-23,19℃,9℃,多云,东北风,3-4级,34,优,1
115 | 2018-04-24,23℃,10℃,晴,北风,3-4级,41,优,1
116 | 2018-04-25,25℃,11℃,晴,西南风,3-4级,55,良,2
117 | 2018-04-26,26℃,12℃,多云~晴,西北风,1-2级,117,轻度污染,3
118 | 2018-04-27,25℃,13℃,晴,西南风,3-4级,112,轻度污染,3
119 | 2018-04-28,27℃,17℃,晴,西南风,3-4级,125,轻度污染,3
120 | 2018-04-29,30℃,16℃,多云,南风,3-4级,193,中度污染,4
121 | 2018-04-30,24℃,14℃,多云,南风,3-4级,62,良,2
122 | 2018-05-01,25℃,13℃,阴,东北风,3-4级,121,轻度污染,3
123 | 2018-05-02,25℃,13℃,多云~晴,北风,3-4级,44,优,1
124 | 2018-05-03,24℃,12℃,晴,北风,1-2级,48,优,1
125 | 2018-05-04,27℃,16℃,晴~多云,西南风,1-2级,86,良,2
126 | 2018-05-05,25℃,13℃,多云,北风,3-4级,177,中度污染,4
127 | 2018-05-06,28℃,14℃,晴,西南风,1-2级,126,轻度污染,3
128 | 2018-05-07,28℃,13℃,晴,南风,3-4级,100,良,2
129 | 2018-05-08,27℃,13℃,晴,东南风,3-4级,64,良,2
130 | 2018-05-09,29℃,17℃,晴~多云,西南风,3-4级,79,良,2
131 | 2018-05-10,26℃,18℃,多云,南风,3-4级,118,轻度污染,3
132 | 2018-05-11,24℃,15℃,阴~多云,东风,1-2级,106,轻度污染,3
133 | 2018-05-12,28℃,16℃,小雨,东南风,3-4级,186,中度污染,4
134 | 2018-05-13,30℃,17℃,晴,南风,1-2级,68,良,2
135 | 2018-05-14,34℃,22℃,晴~多云,南风,3-4级,158,中度污染,4
136 | 2018-05-15,31℃,22℃,小雨,南风,1-2级,93,良,2
137 | 2018-05-16,29℃,21℃,多云~小雨,东风,1-2级,142,轻度污染,3
138 | 2018-05-17,25℃,19℃,小雨~多云,北风,1-2级,70,良,2
139 | 2018-05-18,28℃,16℃,多云~晴,南风,1-2级,49,优,1
140 | 2018-05-19,27℃,16℃,多云~小雨,南风,1-2级,69,良,2
141 | 2018-05-20,21℃,16℃,阴~小雨,东风,1-2级,54,良,2
142 | 2018-05-21,18℃,14℃,小雨,东南风,1-2级,84,良,2
143 | 2018-05-22,25℃,10℃,多云~晴,西风,4-5级,103,轻度污染,3
144 | 2018-05-23,29℃,15℃,晴,西南风,3-4级,153,中度污染,4
145 | 2018-05-24,31℃,17℃,晴,南风,3-4级,99,良,2
146 | 2018-05-25,31℃,19℃,多云,西南风,1-2级,98,良,2
147 | 2018-05-26,30℃,17℃,小雨~多云,西南风,3-4级,143,轻度污染,3
148 | 2018-05-27,32℃,17℃,多云,西南风,3-4级,89,良,2
149 | 2018-05-28,30℃,16℃,晴,西北风,4-5级,178,中度污染,4
150 | 2018-05-29,31℃,16℃,多云,西北风,1-2级,41,优,1
151 | 2018-05-30,33℃,18℃,晴,西风,1-2级,46,优,1
152 | 2018-05-31,35℃,19℃,晴,南风,1-2级,79,良,2
153 | 2018-06-01,36℃,21℃,晴,西南风,3-4级,72,良,2
154 | 2018-06-02,35℃,21℃,多云,南风,3-4级,98,良,2
155 | 2018-06-03,32℃,19℃,多云,北风,1-2级,92,良,2
156 | 2018-06-04,35℃,20℃,晴,西南风,3-4级,69,良,2
157 | 2018-06-05,38℃,25℃,多云,西南风,4-5级,94,良,2
158 | 2018-06-06,36℃,25℃,多云,东风,1-2级,102,轻度污染,3
159 | 2018-06-07,33℃,22℃,多云,西南风,1-2级,60,良,2
160 | 2018-06-08,32℃,19℃,多云~雷阵雨,西南风,1-2级,43,优,1
161 | 2018-06-09,23℃,17℃,小雨,北风,1-2级,45,优,1
162 | 2018-06-10,27℃,17℃,多云,东南风,1-2级,51,良,2
163 | 2018-06-11,29℃,19℃,多云,西南风,3-4级,85,良,2
164 | 2018-06-12,32℃,19℃,多云~雷阵雨,东南风,1-2级,116,轻度污染,3
165 | 2018-06-13,28℃,19℃,雷阵雨~多云,东北风,1-2级,73,良,2
166 | 2018-06-14,31℃,20℃,多云,南风,1-2级,54,良,2
167 | 2018-06-15,32℃,20℃,多云,东南风,3-4级,117,轻度污染,3
168 | 2018-06-16,31℃,21℃,多云~雷阵雨,南风,1-2级,103,轻度污染,3
169 | 2018-06-17,31℃,22℃,阴~雷阵雨,南风,1-2级,71,良,2
170 | 2018-06-18,30℃,21℃,雷阵雨,西南风,1-2级,112,轻度污染,3
171 | 2018-06-19,32℃,20℃,多云~晴,东北风,1-2级,81,良,2
172 | 2018-06-20,35℃,21℃,晴,南风,1-2级,71,良,2
173 | 2018-06-21,35℃,24℃,多云,南风,1-2级,73,良,2
174 | 2018-06-22,30℃,21℃,雷阵雨~多云,东南风,1-2级,83,良,2
175 | 2018-06-23,35℃,24℃,多云~晴,南风,1-2级,104,轻度污染,3
176 | 2018-06-24,36℃,25℃,多云,南风,3-4级,98,良,2
177 | 2018-06-25,34℃,24℃,雷阵雨,南风,1-2级,101,轻度污染,3
178 | 2018-06-26,36℃,25℃,晴,西南风,3-4级,174,中度污染,4
179 | 2018-06-27,37℃,25℃,多云,东北风,3-4级,54,良,2
180 | 2018-06-28,35℃,24℃,多云~晴,北风,1-2级,33,优,1
181 | 2018-06-29,37℃,25℃,晴,南风,1-2级,59,良,2
182 | 2018-06-30,37℃,23℃,雷阵雨~多云,东南风,3-4级,81,良,2
183 | 2018-07-01,35℃,23℃,晴,东南风,1-2级,68,良,2
184 | 2018-07-02,32℃,23℃,多云~雷阵雨,东南风,3-4级,66,良,2
185 | 2018-07-03,32℃,24℃,雷阵雨~多云,东南风,1-2级,76,良,2
186 | 2018-07-04,35℃,26℃,多云,西南风,1-2级,96,良,2
187 | 2018-07-05,37℃,24℃,多云~雷阵雨,东南风,1-2级,104,轻度污染,3
188 | 2018-07-06,33℃,23℃,多云~雷阵雨,东南风,3-4级,71,良,2
189 | 2018-07-07,31℃,23℃,雷阵雨,东南风,1-2级,72,良,2
190 | 2018-07-08,30℃,23℃,雷阵雨,南风,1-2级,73,良,2
191 | 2018-07-09,30℃,22℃,雷阵雨~多云,东南风,1-2级,106,轻度污染,3
192 | 2018-07-10,30℃,22℃,多云~雷阵雨,南风,1-2级,48,优,1
193 | 2018-07-11,25℃,22℃,雷阵雨~大雨,东北风,1-2级,44,优,1
194 | 2018-07-12,27℃,22℃,多云,南风,1-2级,46,优,1
195 | 2018-07-13,28℃,23℃,雷阵雨,东风,1-2级,60,良,2
196 | 2018-07-14,31℃,24℃,雷阵雨~多云,东南风,1-2级,73,良,2
197 | 2018-07-15,32℃,25℃,雷阵雨,南风,1-2级,87,良,2
198 | 2018-07-16,31℃,24℃,中雨~雷阵雨,南风,1-2级,43,优,1
199 | 2018-07-17,27℃,23℃,中雨~雷阵雨,西风,1-2级,28,优,1
200 | 2018-07-18,33℃,25℃,多云,南风,1-2级,99,良,2
201 | 2018-07-19,33℃,27℃,多云~雷阵雨,南风,1-2级,91,良,2
202 | 2018-07-20,33℃,27℃,多云,西南风,3-4级,116,轻度污染,3
203 | 2018-07-21,34℃,26℃,多云~雷阵雨,南风,3-4级,96,良,2
204 | 2018-07-22,34℃,25℃,多云,东南风,1-2级,66,良,2
205 | 2018-07-23,32℃,25℃,小雨~大雨,东风,1-2级,75,良,2
206 | 2018-07-24,28℃,26℃,暴雨~雷阵雨,东北风,3-4级,29,优,1
207 | 2018-07-25,32℃,25℃,多云,北风,1-2级,28,优,1
208 | 2018-07-26,33℃,25℃,多云~雷阵雨,东北风,1-2级,40,优,1
209 | 2018-07-27,32℃,23℃,多云,东北风,1-2级,65,良,2
210 | 2018-07-28,33℃,24℃,多云~晴,东南风,1-2级,83,良,2
211 | 2018-07-29,33℃,25℃,多云,东南风,1-2级,101,轻度污染,3
212 | 2018-07-30,34℃,25℃,晴,东南风,1-2级,104,轻度污染,3
213 | 2018-07-31,35℃,26℃,晴,南风,1-2级,99,良,2
214 | 2018-08-01,35℃,27℃,多云~雷阵雨,东南风,1-2级,91,良,2
215 | 2018-08-02,36℃,26℃,多云~晴,南风,1-2级,118,轻度污染,3
216 | 2018-08-03,36℃,26℃,晴,南风,1-2级,86,良,2
217 | 2018-08-04,36℃,27℃,晴~多云,南风,1-2级,96,良,2
218 | 2018-08-05,35℃,25℃,雷阵雨~中雨,东风,1-2级,61,良,2
219 | 2018-08-06,30℃,25℃,小雨~雷阵雨,东风,1-2级,52,良,2
220 | 2018-08-07,29℃,24℃,雷阵雨~中雨,东南风,1-2级,85,良,2
221 | 2018-08-08,29℃,24℃,雷阵雨~阴,东北风,1-2级,45,优,1
222 | 2018-08-09,30℃,24℃,多云,南风,1-2级,49,优,1
223 | 2018-08-10,33℃,25℃,多云~雷阵雨,南风,1-2级,71,良,2
224 | 2018-08-11,30℃,23℃,雷阵雨~中雨,东风,1-2级,60,良,2
225 | 2018-08-12,30℃,24℃,雷阵雨,东南风,1-2级,74,良,2
226 | 2018-08-13,31℃,24℃,雷阵雨~中雨,东北风,1-2级,62,良,2
227 | 2018-08-14,29℃,24℃,中雨~小雨,东北风,1-2级,42,优,1
228 | 2018-08-15,32℃,24℃,多云,东北风,3-4级,33,优,1
229 | 2018-08-16,30℃,21℃,晴~多云,东北风,1-2级,40,优,1
230 | 2018-08-17,30℃,22℃,多云~雷阵雨,东南风,1-2级,69,良,2
231 | 2018-08-18,28℃,23℃,小雨~中雨,北风,3-4级,40,优,1
232 | 2018-08-19,26℃,23℃,中雨~小雨,东北风,1-2级,37,优,1
233 | 2018-08-20,32℃,23℃,多云~晴,北风,1-2级,41,优,1
234 | 2018-08-21,32℃,22℃,多云,北风,1-2级,38,优,1
235 | 2018-08-22,28℃,21℃,雷阵雨~多云,西南风,1-2级,48,优,1
236 | 2018-08-23,31℃,21℃,多云,北风,1-2级,43,优,1
237 | 2018-08-24,30℃,20℃,晴,北风,1-2级,40,优,1
238 | 2018-08-25,31℃,22℃,多云~小雨,南风,1-2级,62,良,2
239 | 2018-08-26,31℃,22℃,雷阵雨,东南风,1-2级,76,良,2
240 | 2018-08-27,30℃,22℃,多云~雷阵雨,东南风,1-2级,89,良,2
241 | 2018-08-28,29℃,22℃,小雨~多云,南风,1-2级,58,良,2
242 | 2018-08-29,31℃,20℃,晴~多云,北风,3-4级,44,优,1
243 | 2018-08-30,29℃,20℃,多云,南风,1-2级,47,优,1
244 | 2018-08-31,29℃,20℃,多云~阴,东南风,1-2级,48,优,1
245 | 2018-09-01,27℃,19℃,阴~小雨,南风,1-2级,50,优,1
246 | 2018-09-02,27℃,19℃,小雨~多云,南风,1-2级,55,良,2
247 | 2018-09-03,30℃,19℃,晴,北风,3-4级,70,良,2
248 | 2018-09-04,31℃,18℃,晴,西南风,3-4级,24,优,1
249 | 2018-09-05,31℃,19℃,晴~多云,西南风,3-4级,34,优,1
250 | 2018-09-06,27℃,18℃,多云~晴,西北风,4-5级,37,优,1
251 | 2018-09-07,27℃,16℃,晴,西北风,3-4级,22,优,1
252 | 2018-09-08,27℃,15℃,多云~晴,北风,1-2级,28,优,1
253 | 2018-09-09,28℃,16℃,晴,西南风,1-2级,51,良,2
254 | 2018-09-10,28℃,19℃,多云,南风,1-2级,65,良,2
255 | 2018-09-11,26℃,19℃,多云,南风,1-2级,68,良,2
256 | 2018-09-12,29℃,19℃,多云,南风,1-2级,59,良,2
257 | 2018-09-13,29℃,20℃,多云~阴,南风,1-2级,107,轻度污染,3
258 | 2018-09-14,28℃,19℃,小雨~多云,南风,1-2级,128,轻度污染,3
259 | 2018-09-15,26℃,15℃,多云,北风,3-4级,42,优,1
260 | 2018-09-16,25℃,14℃,多云~晴,北风,1-2级,29,优,1
261 | 2018-09-17,27℃,17℃,多云~阴,北风,1-2级,37,优,1
262 | 2018-09-18,25℃,17℃,阴~多云,西南风,1-2级,50,优,1
263 | 2018-09-19,26℃,17℃,多云,南风,1-2级,52,良,2
264 | 2018-09-20,27℃,16℃,多云,西南风,1-2级,63,良,2
265 | 2018-09-21,25℃,14℃,晴,西北风,3-4级,50,优,1
266 | 2018-09-22,24℃,13℃,晴,西北风,3-4级,28,优,1
267 | 2018-09-23,23℃,12℃,晴,西北风,4-5级,28,优,1
268 | 2018-09-24,23℃,11℃,晴,北风,1-2级,28,优,1
269 | 2018-09-25,24℃,12℃,晴~多云,南风,1-2级,44,优,1
270 | 2018-09-26,24℃,14℃,多云,南风,1-2级,53,良,2
271 | 2018-09-27,22℃,12℃,小雨,南风,1-2级,84,良,2
272 | 2018-09-28,24℃,11℃,多云,西南风,3-4级,84,良,2
273 | 2018-09-29,22℃,11℃,晴,北风,3-4级,21,优,1
274 | 2018-09-30,19℃,13℃,多云,西北风,4-5级,22,优,1
275 | 2018-10-01,24℃,12℃,晴,北风,4-5级,25,优,1
276 | 2018-10-02,24℃,11℃,晴,西北风,1-2级,31,优,1
277 | 2018-10-03,25℃,10℃,晴,北风,1-2级,36,优,1
278 | 2018-10-04,25℃,12℃,晴,南风,1-2级,65,良,2
279 | 2018-10-05,24℃,14℃,多云,南风,1-2级,105,轻度污染,3
280 | 2018-10-06,20℃,8℃,晴,北风,4-5级,32,优,1
281 | 2018-10-07,21℃,7℃,晴,西风,1-2级,35,优,1
282 | 2018-10-08,21℃,8℃,多云,北风,1-2级,37,优,1
283 | 2018-10-09,15℃,4℃,多云~晴,西北风,4-5级,21,优,1
284 | 2018-10-10,17℃,4℃,多云~晴,西北风,1-2级,25,优,1
285 | 2018-10-11,18℃,5℃,晴~多云,北风,1-2级,30,优,1
286 | 2018-10-12,20℃,8℃,多云~晴,南风,1-2级,62,良,2
287 | 2018-10-13,20℃,8℃,多云,西北风,1-2级,106,轻度污染,3
288 | 2018-10-14,21℃,10℃,多云,南风,1-2级,177,中度污染,4
289 | 2018-10-15,17℃,11℃,小雨,北风,1-2级,198,中度污染,4
290 | 2018-10-16,17℃,7℃,多云~晴,东北风,1-2级,88,良,2
291 | 2018-10-17,17℃,5℃,晴,北风,1-2级,54,良,2
292 | 2018-10-18,18℃,5℃,晴,南风,1-2级,49,优,1
293 | 2018-10-19,19℃,7℃,多云,南风,1-2级,60,良,2
294 | 2018-10-20,18℃,7℃,多云,南风,1-2级,86,良,2
295 | 2018-10-21,18℃,7℃,多云,南风,1-2级,143,轻度污染,3
296 | 2018-10-22,19℃,5℃,多云~晴,西北风,1-2级,176,中度污染,4
297 | 2018-10-23,19℃,4℃,晴,西南风,3-4级,37,优,1
298 | 2018-10-24,20℃,6℃,晴~多云,南风,1-2级,70,良,2
299 | 2018-10-25,15℃,8℃,多云,西风,1-2级,119,轻度污染,3
300 | 2018-10-26,14℃,3℃,晴,西北风,4-5级,46,优,1
301 | 2018-10-27,17℃,5℃,多云,西南风,1-2级,33,优,1
302 | 2018-10-28,17℃,4℃,多云~晴,西北风,4-5级,32,优,1
303 | 2018-10-29,15℃,3℃,晴,北风,3-4级,22,优,1
304 | 2018-10-30,16℃,1℃,晴,北风,1-2级,33,优,1
305 | 2018-10-31,17℃,3℃,晴,西南风,1-2级,47,优,1
306 | 2018-11-01,17℃,3℃,晴,南风,1-2级,69,良,2
307 | 2018-11-02,18℃,4℃,晴,南风,1-2级,149,轻度污染,3
308 | 2018-11-03,16℃,6℃,多云,南风,1-2级,206,重度污染,5
309 | 2018-11-04,10℃,2℃,小雨~多云,北风,3-4级,115,轻度污染,3
310 | 2018-11-05,10℃,2℃,多云,西南风,1-2级,30,优,1
311 | 2018-11-06,12℃,0℃,多云,北风,1-2级,33,优,1
312 | 2018-11-07,13℃,3℃,多云,西南风,1-2级,49,优,1
313 | 2018-11-08,14℃,2℃,多云,西南风,1-2级,90,良,2
314 | 2018-11-09,15℃,1℃,晴~多云,北风,3-4级,69,良,2
315 | 2018-11-10,11℃,0℃,多云,北风,1-2级,35,优,1
316 | 2018-11-11,13℃,1℃,多云~晴,西南风,1-2级,70,良,2
317 | 2018-11-12,14℃,2℃,晴,南风,1-2级,124,轻度污染,3
318 | 2018-11-13,13℃,5℃,多云,东南风,1-2级,219,重度污染,5
319 | 2018-11-14,13℃,5℃,多云,南风,1-2级,266,重度污染,5
320 | 2018-11-15,8℃,1℃,小雨~多云,北风,3-4级,100,良,2
321 | 2018-11-16,8℃,-1℃,晴~多云,北风,1-2级,28,优,1
322 | 2018-11-17,9℃,-2℃,多云~晴,西南风,1-2级,66,良,2
323 | 2018-11-18,11℃,-3℃,晴,西北风,3-4级,70,良,2
324 | 2018-11-19,10℃,-2℃,晴~多云,南风,1-2级,78,良,2
325 | 2018-11-20,9℃,-1℃,多云,北风,1-2级,74,良,2
326 | 2018-11-21,9℃,-3℃,晴,西北风,2级,43,优,1
327 | 2018-11-22,8℃,-3℃,晴~多云,东南风,1级,55,良,2
328 | 2018-11-23,7℃,0℃,多云,东北风,2级,93,良,2
329 | 2018-11-24,9℃,-3℃,晴,西南风,1级,114,轻度污染,3
330 | 2018-11-25,10℃,-3℃,晴,东南风,1级,120,轻度污染,3
331 | 2018-11-26,10℃,0℃,多云,东南风,1级,245,重度污染,5
332 | 2018-11-27,9℃,-3℃,晴~多云,西北风,2级,198,中度污染,4
333 | 2018-11-28,8℃,-3℃,晴,东北风,1级,115,轻度污染,3
334 | 2018-11-29,7℃,-4℃,晴,东南风,1级,107,轻度污染,3
335 | 2018-11-30,8℃,-3℃,晴,东南风,1级,123,轻度污染,3
336 | 2018-12-01,7℃,0℃,多云,东南风,1级,163,中度污染,4
337 | 2018-12-02,9℃,2℃,雾~多云,东北风,1级,234,重度污染,5
338 | 2018-12-03,8℃,-3℃,多云~晴,东北风,3级,198,中度污染,4
339 | 2018-12-04,4℃,-6℃,晴~多云,西北风,2级,61,良,2
340 | 2018-12-05,1℃,-4℃,阴~多云,东南风,1级,73,良,2
341 | 2018-12-06,-2℃,-9℃,晴,西北风,3级,40,优,1
342 | 2018-12-07,-4℃,-10℃,晴,西北风,3级,33,优,1
343 | 2018-12-08,-2℃,-10℃,晴~多云,西北风,2级,37,优,1
344 | 2018-12-09,-1℃,-10℃,多云~晴,东南风,1级,62,良,2
345 | 2018-12-10,1℃,-6℃,多云,东北风,1级,79,良,2
346 | 2018-12-11,-1℃,-10℃,晴,西北风,3级,56,良,2
347 | 2018-12-12,1℃,-8℃,晴,西南风,1级,50,优,1
348 | 2018-12-13,3℃,-7℃,晴,西北风,2级,42,优,1
349 | 2018-12-14,4℃,-6℃,晴,东南风,1级,68,良,2
350 | 2018-12-15,2℃,-6℃,霾,东南风,1级,117,轻度污染,3
351 | 2018-12-16,7℃,-4℃,晴,西北风,2级,108,轻度污染,3
352 | 2018-12-17,7℃,-5℃,晴,西北风,2级,47,优,1
353 | 2018-12-18,9℃,-4℃,晴,西北风,2级,53,良,2
354 | 2018-12-19,9℃,-5℃,晴~多云,西北风,1级,59,良,2
355 | 2018-12-20,6℃,-4℃,霾,东南风,1级,78,良,2
356 | 2018-12-21,10℃,-2℃,晴~多云,西北风,1级,98,良,2
357 | 2018-12-22,8℃,-6℃,多云,西北风,2级,106,轻度污染,3
358 | 2018-12-23,1℃,-9℃,晴,西北风,3级,106,轻度污染,3
359 | 2018-12-24,2℃,-8℃,晴,西南风,1级,106,轻度污染,3
360 | 2018-12-25,2℃,-9℃,晴,东北风,2级,94,良,2
361 | 2018-12-26,-2℃,-11℃,晴~多云,东北风,2级,26,优,1
362 | 2018-12-27,-5℃,-12℃,多云~晴,西北风,3级,48,优,1
363 | 2018-12-28,-3℃,-11℃,晴,西北风,3级,40,优,1
364 | 2018-12-29,-3℃,-12℃,晴,西北风,2级,29,优,1
365 | 2018-12-30,-2℃,-11℃,晴~多云,东北风,1级,31,优,1
366 | 2018-12-31,-2℃,-10℃,多云,东北风,1级,56,良,2
367 |
--------------------------------------------------------------------------------
/datas/beijing_tianqi/beijing_tianqi_2019.csv:
--------------------------------------------------------------------------------
1 | ymd,bWendu,yWendu,tianqi,fengxiang,fengli,aqi,aqiInfo,aqiLevel
2 | 2019-01-01,1℃,-10℃,晴~多云,西北风,1级,56,良,2
3 | 2019-01-02,1℃,-9℃,多云,东北风,1级,60,良,2
4 | 2019-01-03,2℃,-7℃,霾,东北风,1级,165,中度污染,4
5 | 2019-01-04,2℃,-7℃,晴,西北风,2级,50,优,1
6 | 2019-01-05,0℃,-8℃,多云,东北风,2级,29,优,1
7 | 2019-01-06,3℃,-7℃,多云,东南风,1级,84,良,2
8 | 2019-01-07,2℃,-7℃,多云,西北风,2级,61,良,2
9 | 2019-01-08,1℃,-10℃,晴,西北风,2级,28,优,1
10 | 2019-01-09,3℃,-9℃,晴,西南风,1级,60,良,2
11 | 2019-01-10,4℃,-7℃,晴~多云,西南风,1级,105,轻度污染,3
12 | 2019-01-11,5℃,-7℃,霾,东北风,1级,133,轻度污染,3
13 | 2019-01-12,6℃,-5℃,霾,西南风,1级,229,重度污染,5
14 | 2019-01-13,6℃,-7℃,晴,东北风,1级,165,中度污染,4
15 | 2019-01-14,6℃,-8℃,霾~晴,西北风,2级,157,中度污染,4
16 | 2019-01-15,-2℃,-10℃,晴,西北风,3级,53,良,2
17 | 2019-01-16,2℃,-8℃,晴,西南风,1级,60,良,2
18 | 2019-01-17,5℃,-9℃,晴,西北风,1级,66,良,2
19 | 2019-01-18,6℃,-6℃,霾~多云,东北风,1级,92,良,2
20 | 2019-01-19,3℃,-6℃,多云,东北风,2级,35,优,1
21 | 2019-01-20,5℃,-7℃,晴,西北风,2级,30,优,1
22 | 2019-01-21,8℃,-4℃,晴,西北风,2级,52,良,2
23 | 2019-01-22,10℃,-3℃,晴,西北风,2级,60,良,2
24 | 2019-01-23,8℃,-6℃,晴,东北风,2级,48,优,1
25 | 2019-01-24,5℃,-5℃,多云,东北风,1级,78,良,2
26 | 2019-01-25,5℃,-6℃,晴,东北风,2级,35,优,1
27 | 2019-01-26,5℃,-5℃,晴~多云,东南风,1级,35,优,1
28 | 2019-01-27,7℃,-4℃,多云~晴,西北风,2级,95,良,2
29 | 2019-01-28,6℃,-4℃,晴~多云,西北风,1级,48,优,1
30 | 2019-01-29,7℃,-4℃,多云,东南风,1级,138,轻度污染,3
31 | 2019-01-30,5℃,-7℃,多云,东北风,3级,76,良,2
32 | 2019-01-31,2℃,-8℃,多云,西北风,2级,25,优,1
33 | 2019-02-01,6℃,-5℃,晴~多云,西南风,1级,69,良,2
34 | 2019-02-02,3℃,-4℃,多云,东北风,1级,137,轻度污染,3
35 | 2019-02-03,8℃,-7℃,多云~晴,西北风,2级,118,轻度污染,3
36 | 2019-02-04,4℃,-6℃,多云~晴,东北风,1级,76,良,2
37 | 2019-02-05,5℃,-5℃,晴~霾,东南风,2级,155,中度污染,4
38 | 2019-02-06,2℃,-7℃,霾,东南风,2级,88,良,2
39 | 2019-02-07,-2℃,-7℃,多云,东北风,3级,31,优,1
40 | 2019-02-08,-1℃,-7℃,多云,西南风,2级,42,优,1
41 | 2019-02-09,0℃,-8℃,多云,东北风,2级,24,优,1
42 | 2019-02-10,0℃,-8℃,多云,东南风,1级,38,优,1
43 | 2019-02-11,3℃,-6℃,多云,东北风,2级,56,良,2
44 | 2019-02-12,-3℃,-8℃,小雪~多云,东北风,2级,47,优,1
45 | 2019-02-13,1℃,-6℃,多云,东北风,2级,38,优,1
46 | 2019-02-14,-3℃,-6℃,小雪~多云,东南风,2级,71,良,2
47 | 2019-02-15,2℃,-7℃,晴,西北风,3级,30,优,1
48 | 2019-02-16,3℃,-6℃,晴,西北风,2级,23,优,1
49 | 2019-02-17,6℃,-5℃,晴~多云,西北风,2级,25,优,1
50 | 2019-02-18,4℃,-3℃,阴,东南风,1级,42,优,1
51 | 2019-02-19,7℃,-4℃,多云~晴,西北风,2级,117,轻度污染,3
52 | 2019-02-20,9℃,-4℃,晴,西北风,1级,50,优,1
53 | 2019-02-21,11℃,-2℃,晴~多云,东南风,1级,119,轻度污染,3
54 | 2019-02-22,11℃,-2℃,霾,东北风,1级,131,轻度污染,3
55 | 2019-02-23,12℃,-2℃,霾,西南风,1级,163,中度污染,4
56 | 2019-02-24,13℃,-1℃,晴~多云,东北风,2级,112,轻度污染,3
57 | 2019-02-25,10℃,-2℃,多云,东南风,1级,73,良,2
58 | 2019-02-26,10℃,-2℃,多云,东南风,2级,71,良,2
59 | 2019-02-27,12℃,-2℃,晴,东南风,1级,117,轻度污染,3
60 | 2019-02-28,14℃,-1℃,晴,西北风,1级,101,轻度污染,3
61 | 2019-03-01,15℃,1℃,晴~多云,东北风,1级,152,中度污染,4
62 | 2019-03-02,15℃,3℃,霾,西南风,2级,232,重度污染,5
63 | 2019-03-03,15℃,2℃,霾,西南风,1级,207,重度污染,5
64 | 2019-03-04,16℃,2℃,多云,东北风,1级,138,轻度污染,3
65 | 2019-03-05,17℃,4℃,多云~晴,西北风,3级,129,轻度污染,3
66 | 2019-03-06,11℃,-2℃,晴,西北风,3级,27,优,1
67 | 2019-03-07,13℃,-1℃,晴,西南风,2级,36,优,1
68 | 2019-03-08,13℃,3℃,多云,西南风,2级,82,良,2
69 | 2019-03-09,12℃,2℃,阴~多云,东北风,2级,109,轻度污染,3
70 | 2019-03-10,13℃,2℃,小雨~多云,东北风,2级,141,轻度污染,3
71 | 2019-03-11,16℃,1℃,晴,西北风,3级,54,良,2
72 | 2019-03-12,12℃,1℃,晴,西北风,3级,29,优,1
73 | 2019-03-13,16℃,2℃,多云,西北风,2级,31,优,1
74 | 2019-03-14,15℃,4℃,多云,西北风,3级,34,优,1
75 | 2019-03-15,13℃,0℃,多云,西北风,3级,45,优,1
76 | 2019-03-16,19℃,2℃,晴,西北风,2级,55,良,2
77 | 2019-03-17,20℃,4℃,晴,西南风,2级,74,良,2
78 | 2019-03-18,21℃,6℃,多云~晴,东南风,1级,126,轻度污染,3
79 | 2019-03-19,25℃,11℃,多云,西南风,2级,172,中度污染,4
80 | 2019-03-20,17℃,6℃,小雨,西南风,2级,96,良,2
81 | 2019-03-21,13℃,0℃,晴,西北风,4级,31,优,1
82 | 2019-03-22,15℃,3℃,晴,西北风,3级,32,优,1
83 | 2019-03-23,12℃,2℃,晴,西北风,3级,34,优,1
84 | 2019-03-24,19℃,4℃,晴,西南风,2级,69,良,2
85 | 2019-03-25,22℃,5℃,晴,西北风,2级,55,良,2
86 | 2019-03-26,19℃,4℃,晴,东北风,2级,81,良,2
87 | 2019-03-27,21℃,4℃,多云,东北风,2级,104,轻度污染,3
88 | 2019-03-28,11℃,2℃,多云,东南风,3级,61,良,2
89 | 2019-03-29,13℃,4℃,多云~晴,西北风,3级,76,良,2
90 | 2019-03-30,13℃,1℃,晴,西北风,4级,27,优,1
91 | 2019-03-31,16℃,2℃,多云~晴,西北风,2级,32,优,1
92 | 2019-04-01,16℃,4℃,晴,东南风,2级,37,优,1
93 | 2019-04-02,19℃,3℃,晴,东南风,2级,56,良,2
94 | 2019-04-03,21℃,6℃,晴,西南风,2级,78,良,2
95 | 2019-04-04,28℃,9℃,多云,西北风,3级,105,轻度污染,3
96 | 2019-04-05,21℃,8℃,晴~多云,东南风,3级,203,重度污染,5
97 | 2019-04-06,20℃,6℃,多云,东北风,2级,135,轻度污染,3
98 | 2019-04-07,19℃,7℃,多云,东南风,2级,78,良,2
99 | 2019-04-08,17℃,4℃,多云~小雨,东南风,2级,64,良,2
100 | 2019-04-09,9℃,2℃,小雨~多云,东北风,2级,39,优,1
101 | 2019-04-10,18℃,9℃,多云,西北风,2级,41,优,1
102 | 2019-04-11,19℃,6℃,多云,西南风,2级,66,良,2
103 | 2019-04-12,22℃,9℃,多云,西南风,3级,82,良,2
104 | 2019-04-13,23℃,7℃,多云,东北风,2级,120,轻度污染,3
105 | 2019-04-14,23℃,8℃,晴,西南风,3级,54,良,2
106 | 2019-04-15,26℃,11℃,多云,西南风,2级,76,良,2
107 | 2019-04-16,26℃,12℃,晴,东南风,2级,98,良,2
108 | 2019-04-17,28℃,16℃,霾~多云,西南风,3级,138,轻度污染,3
109 | 2019-04-18,24℃,10℃,多云,东北风,3级,121,轻度污染,3
110 | 2019-04-19,17℃,10℃,多云~小雨,东南风,2级,62,良,2
111 | 2019-04-20,15℃,8℃,小雨~多云,东南风,1级,55,良,2
112 | 2019-04-21,22℃,8℃,晴,东南风,2级,112,轻度污染,3
113 | 2019-04-22,26℃,15℃,晴~多云,西南风,2级,129,轻度污染,3
114 | 2019-04-23,28℃,15℃,多云,东南风,2级,128,轻度污染,3
115 | 2019-04-24,19℃,9℃,小雨,东北风,3级,63,良,2
116 | 2019-04-25,18℃,8℃,多云,东北风,2级,29,优,1
117 | 2019-04-26,21℃,10℃,晴~多云,西南风,2级,35,优,1
118 | 2019-04-27,16℃,6℃,小雨~多云,西南风,3级,57,良,2
119 | 2019-04-28,19℃,9℃,多云,西南风,2级,58,良,2
120 | 2019-04-29,23℃,13℃,多云,西南风,2级,113,轻度污染,3
121 | 2019-04-30,24℃,13℃,多云,西北风,3级,94,良,2
122 | 2019-05-01,27℃,10℃,晴,西北风,2级,39,优,1
123 | 2019-05-02,29℃,14℃,晴~多云,西南风,2级,54,良,2
124 | 2019-05-03,28℃,16℃,多云,西南风,2级,79,良,2
125 | 2019-05-04,26℃,15℃,阴~小雨,西南风,2级,80,良,2
126 | 2019-05-05,23℃,10℃,多云~晴,东北风,4级,50,优,1
127 | 2019-05-06,25℃,10℃,晴,西北风,2级,39,优,1
128 | 2019-05-07,28℃,14℃,晴~多云,西南风,2级,50,优,1
129 | 2019-05-08,25℃,13℃,多云~晴,西南风,2级,70,良,2
130 | 2019-05-09,30℃,14℃,晴,西北风,2级,64,良,2
131 | 2019-05-10,30℃,14℃,多云,东南风,2级,87,良,2
132 | 2019-05-11,29℃,14℃,多云,东南风,2级,104,轻度污染,3
133 | 2019-05-12,26℃,12℃,雷阵雨~晴,西北风,2级,161,中度污染,4
134 | 2019-05-13,26℃,12℃,晴,西南风,3级,58,良,2
135 | 2019-05-14,30℃,16℃,多云,东南风,2级,85,良,2
136 | 2019-05-15,28℃,16℃,雷阵雨~多云,西南风,2级,133,轻度污染,3
137 | 2019-05-16,32℃,17℃,晴,东南风,2级,105,轻度污染,3
138 | 2019-05-17,33℃,20℃,多云~阴,东南风,2级,118,轻度污染,3
139 | 2019-05-18,29℃,18℃,阴~小雨,东南风,2级,56,良,2
140 | 2019-05-19,28℃,13℃,多云~晴,西北风,4级,62,良,2
141 | 2019-05-20,26℃,13℃,晴,西北风,4级,45,优,1
142 | 2019-05-21,31℃,14℃,晴,西北风,2级,40,优,1
143 | 2019-05-22,35℃,18℃,晴,西北风,2级,54,良,2
144 | 2019-05-23,37℃,21℃,晴,东南风,2级,85,良,2
145 | 2019-05-24,35℃,21℃,多云,西南风,3级,88,良,2
146 | 2019-05-25,35℃,20℃,多云~雷阵雨,东南风,2级,99,良,2
147 | 2019-05-26,24℃,17℃,中雨~多云,东北风,3级,59,良,2
148 | 2019-05-27,29℃,15℃,晴,西北风,3级,30,优,1
149 | 2019-05-28,32℃,17℃,晴,西北风,2级,39,优,1
150 | 2019-05-29,33℃,22℃,晴~多云,东南风,2级,63,良,2
151 | 2019-05-30,30℃,15℃,多云~晴,西北风,3级,52,良,2
152 | 2019-05-31,30℃,19℃,晴~多云,西北风,2级,34,优,1
153 | 2019-06-01,30℃,18℃,雷阵雨~多云,东南风,2级,66,良,2
154 | 2019-06-02,32℃,19℃,多云,东南风,2级,75,良,2
155 | 2019-06-03,34℃,20℃,多云,北风,2级,62,良,2
156 | 2019-06-04,28℃,19℃,雷阵雨~小雨,东南风,2级,82,良,2
157 | 2019-06-05,31℃,19℃,多云~小雨,东南风,2级,69,良,2
158 | 2019-06-06,26℃,18℃,小雨~多云,东南风,2级,70,良,2
159 | 2019-06-07,31℃,21℃,多云~雷阵雨,西南风,2级,82,良,2
160 | 2019-06-08,34℃,20℃,多云~晴,西北风,2级,65,良,2
161 | 2019-06-09,31℃,18℃,多云~晴,东北风,3级,28,优,1
162 | 2019-06-10,33℃,18℃,晴,东北风,2级,61,良,2
163 | 2019-06-11,32℃,20℃,晴~多云,东南风,2级,75,良,2
164 | 2019-06-12,33℃,22℃,多云~雷阵雨,东南风,2级,69,良,2
165 | 2019-06-13,29℃,20℃,雷阵雨~晴,东北风,2级,58,良,2
166 | 2019-06-14,35℃,20℃,晴,东北风,2级,59,良,2
167 | 2019-06-15,32℃,19℃,多云~雷阵雨,东南风,2级,56,良,2
168 | 2019-06-16,25℃,18℃,雷阵雨~多云,东南风,2级,38,优,1
169 | 2019-06-17,29℃,20℃,多云,西南风,2级,72,良,2
170 | 2019-06-18,33℃,22℃,雷阵雨,西南风,2级,104,轻度污染,3
171 | 2019-06-19,33℃,22℃,多云,东南风,2级,105,轻度污染,3
172 | 2019-06-20,36℃,23℃,多云~晴,东南风,2级,103,轻度污染,3
173 | 2019-06-21,32℃,21℃,多云,东南风,2级,85,良,2
174 | 2019-06-22,34℃,22℃,晴,西南风,2级,59,良,2
175 | 2019-06-23,35℃,23℃,晴~多云,东南风,2级,93,良,2
176 | 2019-06-24,36℃,24℃,多云,东南风,2级,86,良,2
177 | 2019-06-25,36℃,24℃,多云,东南风,2级,98,良,2
178 | 2019-06-26,35℃,22℃,多云,东南风,2级,90,良,2
179 | 2019-06-27,33℃,23℃,多云~雷阵雨,西北风,2级,87,良,2
180 | 2019-06-28,32℃,22℃,多云,西南风,3级,56,良,2
181 | 2019-06-29,35℃,23℃,多云,西北风,3级,40,优,1
182 | 2019-06-30,32℃,21℃,晴,西北风,3级,27,优,1
183 | 2019-07-01,35℃,23℃,晴~多云,东北风,1级,36,优,1
184 | 2019-07-02,35℃,23℃,多云~晴,东南风,2级,64,良,2
185 | 2019-07-03,36℃,24℃,晴,东南风,1级,56,良,2
186 | 2019-07-04,38℃,25℃,晴~多云,西南风,2级,89,良,2
187 | 2019-07-05,33℃,22℃,雷阵雨,东北风,2级,53,良,2
188 | 2019-07-06,26℃,21℃,雷阵雨~中雨,东北风,3级,23,优,1
189 | 2019-07-07,28℃,20℃,小雨~多云,东北风,3级,28,优,1
190 | 2019-07-08,30℃,22℃,多云,东南风,2级,33,优,1
191 | 2019-07-09,29℃,21℃,雷阵雨~中雨,东南风,2级,47,优,1
192 | 2019-07-10,28℃,19℃,雷阵雨~多云,东北风,2级,66,良,2
193 | 2019-07-11,29℃,21℃,多云,东南风,2级,51,良,2
194 | 2019-07-12,33℃,22℃,多云~晴,西南风,1级,62,良,2
195 | 2019-07-13,33℃,23℃,雷阵雨~多云,东北风,1级,86,良,2
196 | 2019-07-14,33℃,23℃,雷阵雨~多云,东南风,2级,49,优,1
197 | 2019-07-15,35℃,24℃,晴~多云,东南风,2级,94,良,2
198 | 2019-07-16,33℃,24℃,多云~雷阵雨,东南风,2级,64,良,2
199 | 2019-07-17,30℃,23℃,雷阵雨,东南风,2级,67,良,2
200 | 2019-07-18,32℃,24℃,阴~多云,东南风,2级,89,良,2
201 | 2019-07-19,33℃,25℃,多云~雷阵雨,东南风,2级,81,良,2
202 | 2019-07-20,30℃,24℃,雷阵雨~多云,东南风,2级,80,良,2
203 | 2019-07-21,36℃,27℃,晴~多云,西南风,2级,102,轻度污染,3
204 | 2019-07-22,35℃,25℃,多云~中雨,西南风,2级,106,轻度污染,3
205 | 2019-07-23,34℃,25℃,晴,西南风,2级,58,良,2
206 | 2019-07-24,36℃,27℃,多云~雷阵雨,西南风,2级,64,良,2
207 | 2019-07-25,35℃,26℃,多云~晴,西南风,2级,66,良,2
208 | 2019-07-26,37℃,27℃,晴,西南风,2级,73,良,2
209 | 2019-07-27,36℃,27℃,多云,东南风,2级,133,轻度污染,3
210 | 2019-07-28,35℃,26℃,多云~雷阵雨,东南风,2级,77,良,2
211 | 2019-07-29,29℃,23℃,中雨~多云,东北风,2级,30,优,1
212 | 2019-07-30,34℃,24℃,多云~晴,西南风,2级,54,良,2
213 | 2019-07-31,35℃,24℃,晴~多云,东北风,2级,62,良,2
214 | 2019-08-01,32℃,24℃,中雨~雷阵雨,东南风,2级,74,良,2
215 | 2019-08-02,30℃,24℃,雷阵雨~小雨,东南风,2级,53,良,2
216 | 2019-08-03,31℃,24℃,阴,东南风,2级,62,良,2
217 | 2019-08-04,29℃,23℃,雷阵雨,东南风,1级,54,良,2
218 | 2019-08-05,28℃,24℃,中雨~雷阵雨,东南风,2级,48,优,1
219 | 2019-08-06,30℃,24℃,雷阵雨,东南风,2级,61,良,2
220 | 2019-08-07,29℃,23℃,雷阵雨,东南风,2级,39,优,1
221 | 2019-08-08,32℃,25℃,多云~雷阵雨,东南风,2级,53,良,2
222 | 2019-08-09,30℃,23℃,雷阵雨~中雨,西南风,2级,65,良,2
223 | 2019-08-10,29℃,23℃,雷阵雨,东南风,2级,32,优,1
224 | 2019-08-11,28℃,24℃,中雨~小雨,东北风,2级,30,优,1
225 | 2019-08-12,30℃,23℃,中雨~小雨,东北风,3级,22,优,1
226 | 2019-08-13,31℃,22℃,阴~多云,西北风,2级,20,优,1
227 | 2019-08-14,32℃,21℃,多云~晴,东南风,2级,32,优,1
228 | 2019-08-15,32℃,22℃,雷阵雨~中雨,西南风,2级,49,优,1
229 | 2019-08-16,31℃,22℃,晴,西北风,3级,27,优,1
230 | 2019-08-17,31℃,19℃,晴,西北风,3级,26,优,1
231 | 2019-08-18,31℃,21℃,晴,西南风,2级,42,优,1
232 | 2019-08-19,31℃,22℃,多云,西南风,2级,75,良,2
233 | 2019-08-20,27℃,19℃,小雨~多云,东南风,2级,71,良,2
234 | 2019-08-21,31℃,21℃,晴,西北风,2级,46,优,1
235 | 2019-08-22,32℃,20℃,晴~多云,西北风,2级,34,优,1
236 | 2019-08-23,30℃,19℃,多云,西北风,2级,33,优,1
237 | 2019-08-24,30℃,18℃,晴,西南风,2级,50,优,1
238 | 2019-08-25,30℃,20℃,晴~多云,西南风,2级,53,良,2
239 | 2019-08-26,29℃,19℃,多云,西南风,2级,94,良,2
240 | 2019-08-27,33℃,20℃,晴,西北风,2级,58,良,2
241 | 2019-08-28,31℃,20℃,多云~晴,西北风,3级,26,优,1
242 | 2019-08-29,30℃,20℃,多云~晴,西北风,3级,21,优,1
243 | 2019-08-30,30℃,18℃,晴,西北风,2级,25,优,1
244 | 2019-08-31,32℃,18℃,晴,东南风,2级,42,优,1
245 | 2019-09-01,33℃,19℃,多云~晴,西南风,2级,56,良,2
246 | 2019-09-02,34℃,20℃,晴,南风,2级,67,良,2
247 | 2019-09-03,33℃,20℃,晴,东南风,2级,88,良,2
248 | 2019-09-04,32℃,19℃,晴,东南风,2级,91,良,2
249 | 2019-09-05,33℃,20℃,晴,东南风,2级,82,良,2
250 | 2019-09-06,33℃,20℃,晴,东南风,1级,86,良,2
251 | 2019-09-07,34℃,21℃,晴,西南风,2级,90,良,2
252 | 2019-09-08,35℃,22℃,晴~多云,东北风,2级,71,良,2
253 | 2019-09-09,32℃,21℃,小雨,东北风,2级,97,良,2
254 | 2019-09-10,25℃,18℃,小雨~阴,东北风,2级,22,优,1
255 | 2019-09-11,24℃,18℃,多云,西南风,2级,26,优,1
256 | 2019-09-12,25℃,18℃,阴~中雨,西南风,2级,31,优,1
257 | 2019-09-13,26℃,18℃,小雨~多云,西北风,2级,42,优,1
258 | 2019-09-14,29℃,17℃,晴~多云,西南风,2级,29,优,1
259 | 2019-09-15,28℃,17℃,多云,西南风,2级,51,良,2
260 | 2019-09-16,26℃,17℃,多云,东南风,2级,43,优,1
261 | 2019-09-17,28℃,16℃,多云~晴,西南风,2级,55,良,2
262 | 2019-09-18,24℃,14℃,晴~多云,东南风,2级,26,优,1
263 | 2019-09-19,25℃,16℃,多云~阴,西南风,1级,56,良,2
264 | 2019-09-20,27℃,16℃,多云,西北风,1级,61,良,2
265 | 2019-09-21,27℃,16℃,多云~晴,东北风,2级,88,良,2
266 | 2019-09-22,27℃,16℃,晴,东南风,1级,116,轻度污染,3
267 | 2019-09-23,30℃,17℃,晴,西北风,2级,58,良,2
268 | 2019-09-24,31℃,15℃,晴,东北风,2级,38,优,1
269 | 2019-09-25,31℃,16℃,晴,西南风,2级,54,良,2
270 | 2019-09-26,30℃,15℃,晴,东南风,1级,64,良,2
271 | 2019-09-27,29℃,15℃,晴,东南风,2级,79,良,2
272 | 2019-09-28,30℃,17℃,晴,西南风,1级,84,良,2
273 | 2019-09-29,29℃,18℃,多云,东南风,1级,95,良,2
274 | 2019-09-30,30℃,19℃,多云~晴,西南风,2级,104,轻度污染,3
275 | 2019-10-01,30℃,20℃,多云,西南风,2级,84,良,2
276 | 2019-10-02,29℃,17℃,晴~多云,东南风,2级,74,良,2
277 | 2019-10-03,29℃,13℃,多云~小雨,东南风,2级,86,良,2
278 | 2019-10-04,15℃,9℃,小雨~晴,东南风,2级,34,优,1
279 | 2019-10-05,19℃,9℃,晴~多云,东北风,2级,17,优,1
280 | 2019-10-06,19℃,9℃,多云,西南风,2级,34,优,1
281 | 2019-10-07,24℃,10℃,晴,西北风,2级,64,良,2
282 | 2019-10-08,20℃,9℃,晴,西北风,3级,26,优,1
283 | 2019-10-09,22℃,11℃,多云,西南风,2级,55,良,2
284 | 2019-10-10,22℃,12℃,多云,东南风,2级,63,良,2
285 | 2019-10-11,18℃,13℃,阴~多云,东南风,2级,62,良,2
286 | 2019-10-12,18℃,9℃,多云~小雨,东南风,2级,59,良,2
287 | 2019-10-13,12℃,5℃,小雨~多云,东南风,2级,52,良,2
288 | 2019-10-14,16℃,4℃,晴,西北风,2级,22,优,1
289 | 2019-10-15,17℃,6℃,晴~多云,西南风,1级,35,优,1
290 | 2019-10-16,15℃,9℃,阴~小雨,西南风,2级,48,优,1
291 | 2019-10-17,14℃,7℃,小雨~多云,东南风,1级,80,良,2
292 | 2019-10-18,18℃,7℃,多云,西南风,1级,83,良,2
293 | 2019-10-19,20℃,10℃,多云,西南风,1级,165,中度污染,4
294 | 2019-10-20,22℃,7℃,晴,西北风,3级,148,轻度污染,3
295 | 2019-10-21,19℃,6℃,晴,东南风,2级,45,优,1
296 | 2019-10-22,20℃,7℃,晴,东北风,1级,77,良,2
297 | 2019-10-23,21℃,11℃,多云,东北风,1级,104,轻度污染,3
298 | 2019-10-24,16℃,7℃,小雨~多云,西北风,2级,108,轻度污染,3
299 | 2019-10-25,14℃,2℃,晴,西北风,3级,17,优,1
300 | 2019-10-26,16℃,3℃,晴,西南风,2级,45,优,1
301 | 2019-10-27,18℃,5℃,晴~多云,西南风,1级,69,良,2
302 | 2019-10-28,15℃,2℃,晴,西北风,4级,128,轻度污染,3
303 | 2019-10-29,16℃,3℃,晴,西南风,1级,64,良,2
304 | 2019-10-30,20℃,5℃,晴,西南风,1级,83,良,2
305 | 2019-10-31,22℃,4℃,晴,东北风,2级,70,良,2
306 | 2019-11-01,18℃,8℃,多云~小雨,东南风,2级,65,良,2
307 | 2019-11-02,13℃,8℃,小雨,东北风,1级,53,良,2
308 | 2019-11-03,14℃,4℃,多云~晴,东南风,2级,53,良,2
309 | 2019-11-04,16℃,5℃,晴,西南风,1级,70,良,2
310 | 2019-11-05,16℃,6℃,晴~多云,东南风,2级,76,良,2
311 | 2019-11-06,16℃,5℃,多云~晴,东南风,1级,66,良,2
312 | 2019-11-07,12℃,1℃,晴,东南风,2级,53,良,2
313 | 2019-11-08,15℃,2℃,晴~多云,西北风,1级,65,良,2
314 | 2019-11-09,14℃,6℃,多云~中雨,东北风,1级,109,轻度污染,3
315 | 2019-11-10,17℃,6℃,多云~晴,西北风,4级,90,良,2
316 | 2019-11-11,16℃,4℃,晴,西北风,2级,48,优,1
317 | 2019-11-12,18℃,5℃,多云,西北风,1级,80,良,2
318 | 2019-11-13,8℃,-4℃,晴,西北风,4级,51,良,2
319 | 2019-11-14,10℃,-2℃,晴,东南风,1级,51,良,2
320 | 2019-11-15,9℃,1℃,晴,东南风,2级,64,良,2
321 | 2019-11-16,9℃,4℃,多云~小雨,东南风,2级,65,良,2
322 | 2019-11-17,12℃,-4℃,多云~晴,西北风,3级,158,中度污染,4
323 | 2019-11-18,4℃,-5℃,晴,西北风,3级,77,良,2
324 | 2019-11-19,7℃,-3℃,多云,西南风,2级,56,良,2
325 | 2019-11-20,7℃,-2℃,晴,东北风,1级,89,良,2
326 | 2019-11-21,9℃,-1℃,晴~多云,东北风,1级,115,轻度污染,3
327 | 2019-11-22,10℃,2℃,多云~阴,东北风,1级,178,中度污染,4
328 | 2019-11-23,12℃,4℃,阴~多云,西北风,2级,190,中度污染,4
329 | 2019-11-24,6℃,-5℃,晴,西北风,4级,30,优,1
330 | 2019-11-25,3℃,-5℃,晴,西南风,2级,27,优,1
331 | 2019-11-26,5℃,-4℃,晴,西北风,1级,64,良,2
332 | 2019-11-27,4℃,-6℃,晴,东北风,2级,26,优,1
333 | 2019-11-28,3℃,-5℃,晴~多云,东北风,1级,59,良,2
334 | 2019-11-29,3℃,-4℃,小雪,东南风,1级,76,良,2
335 | 2019-11-30,5℃,-5℃,多云~晴,西北风,2级,74,良,2
336 | 2019-12-01,4℃,-5℃,晴,西北风,2级,32,优,1
337 | 2019-12-02,4℃,-5℃,晴,西南风,2级,25,优,1
338 | 2019-12-03,7℃,-4℃,晴,西北风,2级,45,优,1
339 | 2019-12-04,8℃,-5℃,晴,西北风,2级,30,优,1
340 | 2019-12-05,2℃,-6℃,晴,东北风,2级,37,优,1
341 | 2019-12-06,4℃,-5℃,晴,西北风,1级,73,良,2
342 | 2019-12-07,6℃,-6℃,晴~多云,东北风,1级,66,良,2
343 | 2019-12-08,5℃,-5℃,多云,东北风,1级,181,中度污染,4
344 | 2019-12-09,3℃,-5℃,霾~雾,西北风,1级,224,重度污染,5
345 | 2019-12-10,9℃,-3℃,雾~晴,西北风,3级,148,轻度污染,3
346 | 2019-12-11,4℃,-6℃,晴,西北风,3级,27,优,1
347 | 2019-12-12,5℃,-5℃,晴,西北风,1级,35,优,1
348 | 2019-12-13,10℃,-5℃,晴,西北风,2级,48,优,1
349 | 2019-12-14,5℃,-3℃,晴~多云,东北风,1级,24,优,1
350 | 2019-12-15,3℃,-2℃,多云~中雪,东北风,1级,67,良,2
351 | 2019-12-16,2℃,-4℃,小雪~多云,东北风,1级,91,良,2
352 | 2019-12-17,6℃,-7℃,晴,西北风,3级,25,优,1
353 | 2019-12-18,2℃,-6℃,晴,东北风,1级,26,优,1
354 | 2019-12-19,2℃,-9℃,晴,西北风,3级,27,优,1
355 | 2019-12-20,3℃,-7℃,晴,东北风,1级,33,优,1
356 | 2019-12-21,4℃,-6℃,多云,东北风,1级,63,良,2
357 | 2019-12-22,5℃,-5℃,多云~晴,东北风,1级,90,良,2
358 | 2019-12-23,3℃,-4℃,多云~阴,东北风,2级,59,良,2
359 | 2019-12-24,1℃,-6℃,小雪~多云,东南风,1级,110,轻度污染,3
360 | 2019-12-25,5℃,-6℃,多云,东北风,2级,85,良,2
361 | 2019-12-26,4℃,-7℃,多云~晴,西北风,2级,41,优,1
362 | 2019-12-27,4℃,-6℃,晴,东北风,1级,69,良,2
363 | 2019-12-28,3℃,-7℃,晴~多云,东北风,1级,100,良,2
364 | 2019-12-29,5℃,-7℃,多云~晴,西北风,3级,133,轻度污染,3
365 | 2019-12-30,-5℃,-12℃,晴,西北风,4级,37,优,1
366 | 2019-12-31,-3℃,-10℃,晴,西北风,1级,36,优,1
367 |
--------------------------------------------------------------------------------
/datas/boston-house-prices/Index:
--------------------------------------------------------------------------------
1 | Index of housing
2 |
3 | 02 Dec 1996 114 Index
4 | 07 Jul 1993 49082 housing.data
5 | 07 Jul 1993 2080 housing.names
6 |
--------------------------------------------------------------------------------
/datas/boston-house-prices/housing.names:
--------------------------------------------------------------------------------
1 | 1. Title: Boston Housing Data
2 |
3 | 2. Sources:
4 | (a) Origin: This dataset was taken from the StatLib library which is
5 | maintained at Carnegie Mellon University.
6 | (b) Creator: Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the
7 | demand for clean air', J. Environ. Economics & Management,
8 | vol.5, 81-102, 1978.
9 | (c) Date: July 7, 1993
10 |
11 | 3. Past Usage:
12 | - Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley,
13 | 1980. N.B. Various transformations are used in the table on
14 | pages 244-261.
15 | - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning.
16 | In Proceedings on the Tenth International Conference of Machine
17 | Learning, 236-243, University of Massachusetts, Amherst. Morgan
18 | Kaufmann.
19 |
20 | 4. Relevant Information:
21 |
22 | Concerns housing values in suburbs of Boston.
23 |
24 | 5. Number of Instances: 506
25 |
26 | 6. Number of Attributes: 13 continuous attributes (including "class"
27 | attribute "MEDV"), 1 binary-valued attribute.
28 |
29 | 7. Attribute Information:
30 |
31 | 1. CRIM per capita crime rate by town
32 | 2. ZN proportion of residential land zoned for lots over
33 | 25,000 sq.ft.
34 | 3. INDUS proportion of non-retail business acres per town
35 | 4. CHAS Charles River dummy variable (= 1 if tract bounds
36 | river; 0 otherwise)
37 | 5. NOX nitric oxides concentration (parts per 10 million)
38 | 6. RM average number of rooms per dwelling
39 | 7. AGE proportion of owner-occupied units built prior to 1940
40 | 8. DIS weighted distances to five Boston employment centres
41 | 9. RAD index of accessibility to radial highways
42 | 10. TAX full-value property-tax rate per $10,000
43 | 11. PTRATIO pupil-teacher ratio by town
44 | 12. B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks
45 | by town
46 | 13. LSTAT % lower status of the population
47 | 14. MEDV Median value of owner-occupied homes in $1000's
48 |
49 | 8. Missing Attribute Values: None.
50 |
51 |
52 |
53 |
--------------------------------------------------------------------------------
/datas/boston-house-prices/housing.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/peiss/ant-learn-visualization/a7809f8a49bb31054ab59efb0aaf98022b412ab0/datas/boston-house-prices/housing.xlsx
--------------------------------------------------------------------------------
/datas/boston-house-prices/数据源.txt:
--------------------------------------------------------------------------------
1 | 下载链接:
2 |
3 | https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
4 |
--------------------------------------------------------------------------------
/datas/ecommerce-website-funnel-analysis/payment_confirmation_table.csv:
--------------------------------------------------------------------------------
1 | "user_id","page"
2 | 123100,"payment_confirmation_page"
3 | 704999,"payment_confirmation_page"
4 | 407188,"payment_confirmation_page"
5 | 538348,"payment_confirmation_page"
6 | 841681,"payment_confirmation_page"
7 | 820062,"payment_confirmation_page"
8 | 365738,"payment_confirmation_page"
9 | 994662,"payment_confirmation_page"
10 | 898109,"payment_confirmation_page"
11 | 615140,"payment_confirmation_page"
12 | 95551,"payment_confirmation_page"
13 | 13830,"payment_confirmation_page"
14 | 594960,"payment_confirmation_page"
15 | 940714,"payment_confirmation_page"
16 | 379877,"payment_confirmation_page"
17 | 205268,"payment_confirmation_page"
18 | 93580,"payment_confirmation_page"
19 | 100016,"payment_confirmation_page"
20 | 28812,"payment_confirmation_page"
21 | 294363,"payment_confirmation_page"
22 | 694836,"payment_confirmation_page"
23 | 97026,"payment_confirmation_page"
24 | 801852,"payment_confirmation_page"
25 | 392514,"payment_confirmation_page"
26 | 495450,"payment_confirmation_page"
27 | 462226,"payment_confirmation_page"
28 | 822237,"payment_confirmation_page"
29 | 427569,"payment_confirmation_page"
30 | 724605,"payment_confirmation_page"
31 | 703237,"payment_confirmation_page"
32 | 166056,"payment_confirmation_page"
33 | 950777,"payment_confirmation_page"
34 | 88119,"payment_confirmation_page"
35 | 435639,"payment_confirmation_page"
36 | 999315,"payment_confirmation_page"
37 | 731698,"payment_confirmation_page"
38 | 320723,"payment_confirmation_page"
39 | 121010,"payment_confirmation_page"
40 | 757092,"payment_confirmation_page"
41 | 370509,"payment_confirmation_page"
42 | 568670,"payment_confirmation_page"
43 | 164029,"payment_confirmation_page"
44 | 58959,"payment_confirmation_page"
45 | 761027,"payment_confirmation_page"
46 | 663718,"payment_confirmation_page"
47 | 706843,"payment_confirmation_page"
48 | 559850,"payment_confirmation_page"
49 | 367520,"payment_confirmation_page"
50 | 597672,"payment_confirmation_page"
51 | 790254,"payment_confirmation_page"
52 | 60704,"payment_confirmation_page"
53 | 201722,"payment_confirmation_page"
54 | 308049,"payment_confirmation_page"
55 | 333347,"payment_confirmation_page"
56 | 190121,"payment_confirmation_page"
57 | 518777,"payment_confirmation_page"
58 | 707216,"payment_confirmation_page"
59 | 621187,"payment_confirmation_page"
60 | 280705,"payment_confirmation_page"
61 | 783716,"payment_confirmation_page"
62 | 341158,"payment_confirmation_page"
63 | 581956,"payment_confirmation_page"
64 | 173995,"payment_confirmation_page"
65 | 30217,"payment_confirmation_page"
66 | 331300,"payment_confirmation_page"
67 | 486505,"payment_confirmation_page"
68 | 402418,"payment_confirmation_page"
69 | 34018,"payment_confirmation_page"
70 | 459045,"payment_confirmation_page"
71 | 400941,"payment_confirmation_page"
72 | 717640,"payment_confirmation_page"
73 | 930435,"payment_confirmation_page"
74 | 526427,"payment_confirmation_page"
75 | 194396,"payment_confirmation_page"
76 | 172550,"payment_confirmation_page"
77 | 585325,"payment_confirmation_page"
78 | 401537,"payment_confirmation_page"
79 | 31866,"payment_confirmation_page"
80 | 831081,"payment_confirmation_page"
81 | 504018,"payment_confirmation_page"
82 | 605466,"payment_confirmation_page"
83 | 268582,"payment_confirmation_page"
84 | 146837,"payment_confirmation_page"
85 | 299683,"payment_confirmation_page"
86 | 190699,"payment_confirmation_page"
87 | 29666,"payment_confirmation_page"
88 | 92180,"payment_confirmation_page"
89 | 910539,"payment_confirmation_page"
90 | 608962,"payment_confirmation_page"
91 | 107058,"payment_confirmation_page"
92 | 146341,"payment_confirmation_page"
93 | 303801,"payment_confirmation_page"
94 | 443377,"payment_confirmation_page"
95 | 549121,"payment_confirmation_page"
96 | 258146,"payment_confirmation_page"
97 | 79913,"payment_confirmation_page"
98 | 318400,"payment_confirmation_page"
99 | 316881,"payment_confirmation_page"
100 | 380093,"payment_confirmation_page"
101 | 723542,"payment_confirmation_page"
102 | 561949,"payment_confirmation_page"
103 | 554826,"payment_confirmation_page"
104 | 262446,"payment_confirmation_page"
105 | 487247,"payment_confirmation_page"
106 | 385027,"payment_confirmation_page"
107 | 255699,"payment_confirmation_page"
108 | 878813,"payment_confirmation_page"
109 | 51269,"payment_confirmation_page"
110 | 806139,"payment_confirmation_page"
111 | 435925,"payment_confirmation_page"
112 | 338722,"payment_confirmation_page"
113 | 250112,"payment_confirmation_page"
114 | 706508,"payment_confirmation_page"
115 | 120040,"payment_confirmation_page"
116 | 281391,"payment_confirmation_page"
117 | 132536,"payment_confirmation_page"
118 | 373207,"payment_confirmation_page"
119 | 473150,"payment_confirmation_page"
120 | 271016,"payment_confirmation_page"
121 | 112136,"payment_confirmation_page"
122 | 298664,"payment_confirmation_page"
123 | 415219,"payment_confirmation_page"
124 | 674513,"payment_confirmation_page"
125 | 441411,"payment_confirmation_page"
126 | 944491,"payment_confirmation_page"
127 | 59583,"payment_confirmation_page"
128 | 804470,"payment_confirmation_page"
129 | 537845,"payment_confirmation_page"
130 | 734759,"payment_confirmation_page"
131 | 128910,"payment_confirmation_page"
132 | 582445,"payment_confirmation_page"
133 | 972956,"payment_confirmation_page"
134 | 758567,"payment_confirmation_page"
135 | 515725,"payment_confirmation_page"
136 | 330089,"payment_confirmation_page"
137 | 493077,"payment_confirmation_page"
138 | 397462,"payment_confirmation_page"
139 | 664260,"payment_confirmation_page"
140 | 263888,"payment_confirmation_page"
141 | 910504,"payment_confirmation_page"
142 | 849323,"payment_confirmation_page"
143 | 586259,"payment_confirmation_page"
144 | 775450,"payment_confirmation_page"
145 | 404903,"payment_confirmation_page"
146 | 813956,"payment_confirmation_page"
147 | 736250,"payment_confirmation_page"
148 | 812258,"payment_confirmation_page"
149 | 744742,"payment_confirmation_page"
150 | 541336,"payment_confirmation_page"
151 | 44679,"payment_confirmation_page"
152 | 827348,"payment_confirmation_page"
153 | 331768,"payment_confirmation_page"
154 | 611476,"payment_confirmation_page"
155 | 309350,"payment_confirmation_page"
156 | 949305,"payment_confirmation_page"
157 | 656950,"payment_confirmation_page"
158 | 77337,"payment_confirmation_page"
159 | 196016,"payment_confirmation_page"
160 | 530697,"payment_confirmation_page"
161 | 345248,"payment_confirmation_page"
162 | 733831,"payment_confirmation_page"
163 | 622779,"payment_confirmation_page"
164 | 129954,"payment_confirmation_page"
165 | 516381,"payment_confirmation_page"
166 | 482864,"payment_confirmation_page"
167 | 317940,"payment_confirmation_page"
168 | 201374,"payment_confirmation_page"
169 | 795005,"payment_confirmation_page"
170 | 791555,"payment_confirmation_page"
171 | 950703,"payment_confirmation_page"
172 | 403943,"payment_confirmation_page"
173 | 397157,"payment_confirmation_page"
174 | 540272,"payment_confirmation_page"
175 | 404655,"payment_confirmation_page"
176 | 461169,"payment_confirmation_page"
177 | 21080,"payment_confirmation_page"
178 | 119201,"payment_confirmation_page"
179 | 572478,"payment_confirmation_page"
180 | 445105,"payment_confirmation_page"
181 | 742194,"payment_confirmation_page"
182 | 500567,"payment_confirmation_page"
183 | 257083,"payment_confirmation_page"
184 | 287132,"payment_confirmation_page"
185 | 191576,"payment_confirmation_page"
186 | 699561,"payment_confirmation_page"
187 | 340286,"payment_confirmation_page"
188 | 407249,"payment_confirmation_page"
189 | 448390,"payment_confirmation_page"
190 | 590792,"payment_confirmation_page"
191 | 753854,"payment_confirmation_page"
192 | 396337,"payment_confirmation_page"
193 | 638830,"payment_confirmation_page"
194 | 667095,"payment_confirmation_page"
195 | 752530,"payment_confirmation_page"
196 | 589518,"payment_confirmation_page"
197 | 373557,"payment_confirmation_page"
198 | 535475,"payment_confirmation_page"
199 | 743798,"payment_confirmation_page"
200 | 941726,"payment_confirmation_page"
201 | 119742,"payment_confirmation_page"
202 | 654654,"payment_confirmation_page"
203 | 526109,"payment_confirmation_page"
204 | 169773,"payment_confirmation_page"
205 | 593170,"payment_confirmation_page"
206 | 800545,"payment_confirmation_page"
207 | 247128,"payment_confirmation_page"
208 | 308881,"payment_confirmation_page"
209 | 316337,"payment_confirmation_page"
210 | 677116,"payment_confirmation_page"
211 | 377893,"payment_confirmation_page"
212 | 666429,"payment_confirmation_page"
213 | 990959,"payment_confirmation_page"
214 | 720954,"payment_confirmation_page"
215 | 353905,"payment_confirmation_page"
216 | 830622,"payment_confirmation_page"
217 | 866605,"payment_confirmation_page"
218 | 738398,"payment_confirmation_page"
219 | 421083,"payment_confirmation_page"
220 | 558913,"payment_confirmation_page"
221 | 18898,"payment_confirmation_page"
222 | 111601,"payment_confirmation_page"
223 | 109824,"payment_confirmation_page"
224 | 504055,"payment_confirmation_page"
225 | 650659,"payment_confirmation_page"
226 | 464337,"payment_confirmation_page"
227 | 446198,"payment_confirmation_page"
228 | 89418,"payment_confirmation_page"
229 | 753438,"payment_confirmation_page"
230 | 893870,"payment_confirmation_page"
231 | 729089,"payment_confirmation_page"
232 | 985095,"payment_confirmation_page"
233 | 869943,"payment_confirmation_page"
234 | 348643,"payment_confirmation_page"
235 | 558802,"payment_confirmation_page"
236 | 452833,"payment_confirmation_page"
237 | 601551,"payment_confirmation_page"
238 | 97920,"payment_confirmation_page"
239 | 528989,"payment_confirmation_page"
240 | 491776,"payment_confirmation_page"
241 | 690233,"payment_confirmation_page"
242 | 380175,"payment_confirmation_page"
243 | 728281,"payment_confirmation_page"
244 | 226004,"payment_confirmation_page"
245 | 216558,"payment_confirmation_page"
246 | 362798,"payment_confirmation_page"
247 | 639065,"payment_confirmation_page"
248 | 896321,"payment_confirmation_page"
249 | 170212,"payment_confirmation_page"
250 | 116964,"payment_confirmation_page"
251 | 204498,"payment_confirmation_page"
252 | 254669,"payment_confirmation_page"
253 | 630919,"payment_confirmation_page"
254 | 607194,"payment_confirmation_page"
255 | 95691,"payment_confirmation_page"
256 | 190170,"payment_confirmation_page"
257 | 260404,"payment_confirmation_page"
258 | 248554,"payment_confirmation_page"
259 | 207777,"payment_confirmation_page"
260 | 847783,"payment_confirmation_page"
261 | 513639,"payment_confirmation_page"
262 | 989337,"payment_confirmation_page"
263 | 274773,"payment_confirmation_page"
264 | 339746,"payment_confirmation_page"
265 | 898153,"payment_confirmation_page"
266 | 395342,"payment_confirmation_page"
267 | 52580,"payment_confirmation_page"
268 | 248448,"payment_confirmation_page"
269 | 516634,"payment_confirmation_page"
270 | 582870,"payment_confirmation_page"
271 | 542275,"payment_confirmation_page"
272 | 551623,"payment_confirmation_page"
273 | 255702,"payment_confirmation_page"
274 | 314021,"payment_confirmation_page"
275 | 302844,"payment_confirmation_page"
276 | 122248,"payment_confirmation_page"
277 | 509584,"payment_confirmation_page"
278 | 204007,"payment_confirmation_page"
279 | 512969,"payment_confirmation_page"
280 | 606636,"payment_confirmation_page"
281 | 696859,"payment_confirmation_page"
282 | 712756,"payment_confirmation_page"
283 | 963370,"payment_confirmation_page"
284 | 969105,"payment_confirmation_page"
285 | 638894,"payment_confirmation_page"
286 | 939959,"payment_confirmation_page"
287 | 543231,"payment_confirmation_page"
288 | 740761,"payment_confirmation_page"
289 | 255228,"payment_confirmation_page"
290 | 435207,"payment_confirmation_page"
291 | 535329,"payment_confirmation_page"
292 | 208377,"payment_confirmation_page"
293 | 462584,"payment_confirmation_page"
294 | 187969,"payment_confirmation_page"
295 | 499856,"payment_confirmation_page"
296 | 637430,"payment_confirmation_page"
297 | 548887,"payment_confirmation_page"
298 | 229753,"payment_confirmation_page"
299 | 712132,"payment_confirmation_page"
300 | 575137,"payment_confirmation_page"
301 | 941876,"payment_confirmation_page"
302 | 102990,"payment_confirmation_page"
303 | 118869,"payment_confirmation_page"
304 | 659295,"payment_confirmation_page"
305 | 998450,"payment_confirmation_page"
306 | 816599,"payment_confirmation_page"
307 | 987427,"payment_confirmation_page"
308 | 283098,"payment_confirmation_page"
309 | 182641,"payment_confirmation_page"
310 | 419600,"payment_confirmation_page"
311 | 71809,"payment_confirmation_page"
312 | 166752,"payment_confirmation_page"
313 | 83158,"payment_confirmation_page"
314 | 274124,"payment_confirmation_page"
315 | 331618,"payment_confirmation_page"
316 | 140689,"payment_confirmation_page"
317 | 755867,"payment_confirmation_page"
318 | 811076,"payment_confirmation_page"
319 | 894357,"payment_confirmation_page"
320 | 546407,"payment_confirmation_page"
321 | 753770,"payment_confirmation_page"
322 | 392552,"payment_confirmation_page"
323 | 334507,"payment_confirmation_page"
324 | 876721,"payment_confirmation_page"
325 | 924781,"payment_confirmation_page"
326 | 189356,"payment_confirmation_page"
327 | 831902,"payment_confirmation_page"
328 | 182205,"payment_confirmation_page"
329 | 761846,"payment_confirmation_page"
330 | 122067,"payment_confirmation_page"
331 | 295654,"payment_confirmation_page"
332 | 337704,"payment_confirmation_page"
333 | 28088,"payment_confirmation_page"
334 | 808733,"payment_confirmation_page"
335 | 157202,"payment_confirmation_page"
336 | 768271,"payment_confirmation_page"
337 | 276166,"payment_confirmation_page"
338 | 398264,"payment_confirmation_page"
339 | 200120,"payment_confirmation_page"
340 | 561699,"payment_confirmation_page"
341 | 971840,"payment_confirmation_page"
342 | 778462,"payment_confirmation_page"
343 | 779623,"payment_confirmation_page"
344 | 780826,"payment_confirmation_page"
345 | 20486,"payment_confirmation_page"
346 | 517992,"payment_confirmation_page"
347 | 832554,"payment_confirmation_page"
348 | 452610,"payment_confirmation_page"
349 | 498864,"payment_confirmation_page"
350 | 887265,"payment_confirmation_page"
351 | 852145,"payment_confirmation_page"
352 | 177122,"payment_confirmation_page"
353 | 114597,"payment_confirmation_page"
354 | 255474,"payment_confirmation_page"
355 | 827328,"payment_confirmation_page"
356 | 366008,"payment_confirmation_page"
357 | 9477,"payment_confirmation_page"
358 | 370354,"payment_confirmation_page"
359 | 371719,"payment_confirmation_page"
360 | 319180,"payment_confirmation_page"
361 | 923746,"payment_confirmation_page"
362 | 930760,"payment_confirmation_page"
363 | 342803,"payment_confirmation_page"
364 | 433684,"payment_confirmation_page"
365 | 537852,"payment_confirmation_page"
366 | 933655,"payment_confirmation_page"
367 | 646417,"payment_confirmation_page"
368 | 802357,"payment_confirmation_page"
369 | 222999,"payment_confirmation_page"
370 | 110910,"payment_confirmation_page"
371 | 869691,"payment_confirmation_page"
372 | 689159,"payment_confirmation_page"
373 | 317174,"payment_confirmation_page"
374 | 271874,"payment_confirmation_page"
375 | 777123,"payment_confirmation_page"
376 | 433920,"payment_confirmation_page"
377 | 360196,"payment_confirmation_page"
378 | 259289,"payment_confirmation_page"
379 | 195110,"payment_confirmation_page"
380 | 47353,"payment_confirmation_page"
381 | 153716,"payment_confirmation_page"
382 | 792862,"payment_confirmation_page"
383 | 452331,"payment_confirmation_page"
384 | 882373,"payment_confirmation_page"
385 | 214674,"payment_confirmation_page"
386 | 941606,"payment_confirmation_page"
387 | 795953,"payment_confirmation_page"
388 | 967485,"payment_confirmation_page"
389 | 423926,"payment_confirmation_page"
390 | 391189,"payment_confirmation_page"
391 | 730515,"payment_confirmation_page"
392 | 66727,"payment_confirmation_page"
393 | 312862,"payment_confirmation_page"
394 | 930763,"payment_confirmation_page"
395 | 143291,"payment_confirmation_page"
396 | 344537,"payment_confirmation_page"
397 | 434620,"payment_confirmation_page"
398 | 41697,"payment_confirmation_page"
399 | 705035,"payment_confirmation_page"
400 | 547501,"payment_confirmation_page"
401 | 723260,"payment_confirmation_page"
402 | 4561,"payment_confirmation_page"
403 | 285405,"payment_confirmation_page"
404 | 644958,"payment_confirmation_page"
405 | 43283,"payment_confirmation_page"
406 | 747560,"payment_confirmation_page"
407 | 365874,"payment_confirmation_page"
408 | 682241,"payment_confirmation_page"
409 | 816118,"payment_confirmation_page"
410 | 854327,"payment_confirmation_page"
411 | 464724,"payment_confirmation_page"
412 | 57696,"payment_confirmation_page"
413 | 894052,"payment_confirmation_page"
414 | 911540,"payment_confirmation_page"
415 | 110742,"payment_confirmation_page"
416 | 638114,"payment_confirmation_page"
417 | 24398,"payment_confirmation_page"
418 | 446347,"payment_confirmation_page"
419 | 409001,"payment_confirmation_page"
420 | 400188,"payment_confirmation_page"
421 | 807606,"payment_confirmation_page"
422 | 71591,"payment_confirmation_page"
423 | 82165,"payment_confirmation_page"
424 | 71944,"payment_confirmation_page"
425 | 501216,"payment_confirmation_page"
426 | 288423,"payment_confirmation_page"
427 | 697493,"payment_confirmation_page"
428 | 567797,"payment_confirmation_page"
429 | 14647,"payment_confirmation_page"
430 | 467375,"payment_confirmation_page"
431 | 694807,"payment_confirmation_page"
432 | 460508,"payment_confirmation_page"
433 | 898285,"payment_confirmation_page"
434 | 995148,"payment_confirmation_page"
435 | 169165,"payment_confirmation_page"
436 | 38522,"payment_confirmation_page"
437 | 572199,"payment_confirmation_page"
438 | 604207,"payment_confirmation_page"
439 | 211983,"payment_confirmation_page"
440 | 779484,"payment_confirmation_page"
441 | 436153,"payment_confirmation_page"
442 | 340946,"payment_confirmation_page"
443 | 516732,"payment_confirmation_page"
444 | 86629,"payment_confirmation_page"
445 | 638892,"payment_confirmation_page"
446 | 131772,"payment_confirmation_page"
447 | 649539,"payment_confirmation_page"
448 | 234188,"payment_confirmation_page"
449 | 397473,"payment_confirmation_page"
450 | 860829,"payment_confirmation_page"
451 | 371291,"payment_confirmation_page"
452 | 263707,"payment_confirmation_page"
453 | 892101,"payment_confirmation_page"
454 |
--------------------------------------------------------------------------------
/datas/ecommerce-website-funnel-analysis/readme.md:
--------------------------------------------------------------------------------
1 | 数据来自:
2 | https://www.kaggle.com/aerodinamicc/ecommerce-website-funnel-analysis
3 |
4 | ### Our problem
5 |
6 | We are looking at data from an e-commerce website.
7 |
8 | The site is very simple and has just 4 pages:
9 | * The first page is the home page. When you come to the site for the first time, you can only land on the home page as a first page.
10 | * From the home page, the user can perform a search and land on the search page.
11 | * From the search page, if the user clicks on a product, she will get to the payment page, where she is asked to provide payment information in order to buy that product.
12 | * If she does decide to buy, she ends up on the confirmation page
13 |
14 |
15 | The company CEO isn’t very happy with the volume of sales and, especially, of sales coming from new users. Therefore, she asked you to investigate whether there is something wrong in the conversion funnel or, in general, if you could suggest how conversion rate can be improved.
16 |
17 | 参考资料:
18 |
--------------------------------------------------------------------------------
/datas/other_files/ant_boxplot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/peiss/ant-learn-visualization/a7809f8a49bb31054ab59efb0aaf98022b412ab0/datas/other_files/ant_boxplot.png
--------------------------------------------------------------------------------
/datas/other_files/boxplot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/peiss/ant-learn-visualization/a7809f8a49bb31054ab59efb0aaf98022b412ab0/datas/other_files/boxplot.png
--------------------------------------------------------------------------------
/datas/other_files/tuzhidian_boxplot.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/peiss/ant-learn-visualization/a7809f8a49bb31054ab59efb0aaf98022b412ab0/datas/other_files/tuzhidian_boxplot.jpeg
--------------------------------------------------------------------------------
/datas/服装销售数据.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/peiss/ant-learn-visualization/a7809f8a49bb31054ab59efb0aaf98022b412ab0/datas/服装销售数据.xlsx
--------------------------------------------------------------------------------
/flare.json:
--------------------------------------------------------------------------------
1 | {
2 | "name": "flare",
3 | "children": [
4 | {
5 | "name": "analytics",
6 | "children": [
7 | {
8 | "name": "cluster",
9 | "children": [
10 | {"name": "AgglomerativeCluster", "value": 3938},
11 | {"name": "CommunityStructure", "value": 3812},
12 | {"name": "HierarchicalCluster", "value": 6714},
13 | {"name": "MergeEdge", "value": 743}
14 | ]
15 | },
16 | {
17 | "name": "graph",
18 | "children": [
19 | {"name": "BetweennessCentrality", "value": 3534},
20 | {"name": "LinkDistance", "value": 5731},
21 | {"name": "MaxFlowMinCut", "value": 7840},
22 | {"name": "ShortestPaths", "value": 5914},
23 | {"name": "SpanningTree", "value": 3416}
24 | ]
25 | },
26 | {
27 | "name": "optimization",
28 | "children": [
29 | {"name": "AspectRatioBanker", "value": 7074}
30 | ]
31 | }
32 | ]
33 | },
34 | {
35 | "name": "animate",
36 | "children": [
37 | {"name": "Easing", "value": 17010},
38 | {"name": "FunctionSequence", "value": 5842},
39 | {
40 | "name": "interpolate",
41 | "children": [
42 | {"name": "ArrayInterpolator", "value": 1983},
43 | {"name": "ColorInterpolator", "value": 2047},
44 | {"name": "DateInterpolator", "value": 1375},
45 | {"name": "Interpolator", "value": 8746},
46 | {"name": "MatrixInterpolator", "value": 2202},
47 | {"name": "NumberInterpolator", "value": 1382},
48 | {"name": "ObjectInterpolator", "value": 1629},
49 | {"name": "PointInterpolator", "value": 1675},
50 | {"name": "RectangleInterpolator", "value": 2042}
51 | ]
52 | },
53 | {"name": "ISchedulable", "value": 1041},
54 | {"name": "Parallel", "value": 5176},
55 | {"name": "Pause", "value": 449},
56 | {"name": "Scheduler", "value": 5593},
57 | {"name": "Sequence", "value": 5534},
58 | {"name": "Transition", "value": 9201},
59 | {"name": "Transitioner", "value": 19975},
60 | {"name": "TransitionEvent", "value": 1116},
61 | {"name": "Tween", "value": 6006}
62 | ]
63 | },
64 | {
65 | "name": "data",
66 | "children": [
67 | {
68 | "name": "converters",
69 | "children": [
70 | {"name": "Converters", "value": 721},
71 | {"name": "DelimitedTextConverter", "value": 4294},
72 | {"name": "GraphMLConverter", "value": 9800},
73 | {"name": "IDataConverter", "value": 1314},
74 | {"name": "JSONConverter", "value": 2220}
75 | ]
76 | },
77 | {"name": "DataField", "value": 1759},
78 | {"name": "DataSchema", "value": 2165},
79 | {"name": "DataSet", "value": 586},
80 | {"name": "DataSource", "value": 3331},
81 | {"name": "DataTable", "value": 772},
82 | {"name": "DataUtil", "value": 3322}
83 | ]
84 | },
85 | {
86 | "name": "display",
87 | "children": [
88 | {"name": "DirtySprite", "value": 8833},
89 | {"name": "LineSprite", "value": 1732},
90 | {"name": "RectSprite", "value": 3623},
91 | {"name": "TextSprite", "value": 10066}
92 | ]
93 | },
94 | {
95 | "name": "flex",
96 | "children": [
97 | {"name": "FlareVis", "value": 4116}
98 | ]
99 | },
100 | {
101 | "name": "physics",
102 | "children": [
103 | {"name": "DragForce", "value": 1082},
104 | {"name": "GravityForce", "value": 1336},
105 | {"name": "IForce", "value": 319},
106 | {"name": "NBodyForce", "value": 10498},
107 | {"name": "Particle", "value": 2822},
108 | {"name": "Simulation", "value": 9983},
109 | {"name": "Spring", "value": 2213},
110 | {"name": "SpringForce", "value": 1681}
111 | ]
112 | },
113 | {
114 | "name": "query",
115 | "children": [
116 | {"name": "AggregateExpression", "value": 1616},
117 | {"name": "And", "value": 1027},
118 | {"name": "Arithmetic", "value": 3891},
119 | {"name": "Average", "value": 891},
120 | {"name": "BinaryExpression", "value": 2893},
121 | {"name": "Comparison", "value": 5103},
122 | {"name": "CompositeExpression", "value": 3677},
123 | {"name": "Count", "value": 781},
124 | {"name": "DateUtil", "value": 4141},
125 | {"name": "Distinct", "value": 933},
126 | {"name": "Expression", "value": 5130},
127 | {"name": "ExpressionIterator", "value": 3617},
128 | {"name": "Fn", "value": 3240},
129 | {"name": "If", "value": 2732},
130 | {"name": "IsA", "value": 2039},
131 | {"name": "Literal", "value": 1214},
132 | {"name": "Match", "value": 3748},
133 | {"name": "Maximum", "value": 843},
134 | {
135 | "name": "methods",
136 | "children": [
137 | {"name": "add", "value": 593},
138 | {"name": "and", "value": 330},
139 | {"name": "average", "value": 287},
140 | {"name": "count", "value": 277},
141 | {"name": "distinct", "value": 292},
142 | {"name": "div", "value": 595},
143 | {"name": "eq", "value": 594},
144 | {"name": "fn", "value": 460},
145 | {"name": "gt", "value": 603},
146 | {"name": "gte", "value": 625},
147 | {"name": "iff", "value": 748},
148 | {"name": "isa", "value": 461},
149 | {"name": "lt", "value": 597},
150 | {"name": "lte", "value": 619},
151 | {"name": "max", "value": 283},
152 | {"name": "min", "value": 283},
153 | {"name": "mod", "value": 591},
154 | {"name": "mul", "value": 603},
155 | {"name": "neq", "value": 599},
156 | {"name": "not", "value": 386},
157 | {"name": "or", "value": 323},
158 | {"name": "orderby", "value": 307},
159 | {"name": "range", "value": 772},
160 | {"name": "select", "value": 296},
161 | {"name": "stddev", "value": 363},
162 | {"name": "sub", "value": 600},
163 | {"name": "sum", "value": 280},
164 | {"name": "update", "value": 307},
165 | {"name": "variance", "value": 335},
166 | {"name": "where", "value": 299},
167 | {"name": "xor", "value": 354},
168 | {"name": "-", "value": 264}
169 | ]
170 | },
171 | {"name": "Minimum", "value": 843},
172 | {"name": "Not", "value": 1554},
173 | {"name": "Or", "value": 970},
174 | {"name": "Query", "value": 13896},
175 | {"name": "Range", "value": 1594},
176 | {"name": "StringUtil", "value": 4130},
177 | {"name": "Sum", "value": 791},
178 | {"name": "Variable", "value": 1124},
179 | {"name": "Variance", "value": 1876},
180 | {"name": "Xor", "value": 1101}
181 | ]
182 | },
183 | {
184 | "name": "scale",
185 | "children": [
186 | {"name": "IScaleMap", "value": 2105},
187 | {"name": "LinearScale", "value": 1316},
188 | {"name": "LogScale", "value": 3151},
189 | {"name": "OrdinalScale", "value": 3770},
190 | {"name": "QuantileScale", "value": 2435},
191 | {"name": "QuantitativeScale", "value": 4839},
192 | {"name": "RootScale", "value": 1756},
193 | {"name": "Scale", "value": 4268},
194 | {"name": "ScaleType", "value": 1821},
195 | {"name": "TimeScale", "value": 5833}
196 | ]
197 | },
198 | {
199 | "name": "util",
200 | "children": [
201 | {"name": "Arrays", "value": 8258},
202 | {"name": "Colors", "value": 10001},
203 | {"name": "Dates", "value": 8217},
204 | {"name": "Displays", "value": 12555},
205 | {"name": "Filter", "value": 2324},
206 | {"name": "Geometry", "value": 10993},
207 | {
208 | "name": "heap",
209 | "children": [
210 | {"name": "FibonacciHeap", "value": 9354},
211 | {"name": "HeapNode", "value": 1233}
212 | ]
213 | },
214 | {"name": "IEvaluable", "value": 335},
215 | {"name": "IPredicate", "value": 383},
216 | {"name": "IValueProxy", "value": 874},
217 | {
218 | "name": "math",
219 | "children": [
220 | {"name": "DenseMatrix", "value": 3165},
221 | {"name": "IMatrix", "value": 2815},
222 | {"name": "SparseMatrix", "value": 3366}
223 | ]
224 | },
225 | {"name": "Maths", "value": 17705},
226 | {"name": "Orientation", "value": 1486},
227 | {
228 | "name": "palette",
229 | "children": [
230 | {"name": "ColorPalette", "value": 6367},
231 | {"name": "Palette", "value": 1229},
232 | {"name": "ShapePalette", "value": 2059},
233 | {"name": "SizePalette", "value": 2291}
234 | ]
235 | },
236 | {"name": "Property", "value": 5559},
237 | {"name": "Shapes", "value": 19118},
238 | {"name": "Sort", "value": 6887},
239 | {"name": "Stats", "value": 6557},
240 | {"name": "Strings", "value": 22026}
241 | ]
242 | },
243 | {
244 | "name": "vis",
245 | "children": [
246 | {
247 | "name": "axis",
248 | "children": [
249 | {"name": "Axes", "value": 1302},
250 | {"name": "Axis", "value": 24593},
251 | {"name": "AxisGridLine", "value": 652},
252 | {"name": "AxisLabel", "value": 636},
253 | {"name": "CartesianAxes", "value": 6703}
254 | ]
255 | },
256 | {
257 | "name": "controls",
258 | "children": [
259 | {"name": "AnchorControl", "value": 2138},
260 | {"name": "ClickControl", "value": 3824},
261 | {"name": "Control", "value": 1353},
262 | {"name": "ControlList", "value": 4665},
263 | {"name": "DragControl", "value": 2649},
264 | {"name": "ExpandControl", "value": 2832},
265 | {"name": "HoverControl", "value": 4896},
266 | {"name": "IControl", "value": 763},
267 | {"name": "PanZoomControl", "value": 5222},
268 | {"name": "SelectionControl", "value": 7862},
269 | {"name": "TooltipControl", "value": 8435}
270 | ]
271 | },
272 | {
273 | "name": "data",
274 | "children": [
275 | {"name": "Data", "value": 20544},
276 | {"name": "DataList", "value": 19788},
277 | {"name": "DataSprite", "value": 10349},
278 | {"name": "EdgeSprite", "value": 3301},
279 | {"name": "NodeSprite", "value": 19382},
280 | {
281 | "name": "render",
282 | "children": [
283 | {"name": "ArrowType", "value": 698},
284 | {"name": "EdgeRenderer", "value": 5569},
285 | {"name": "IRenderer", "value": 353},
286 | {"name": "ShapeRenderer", "value": 2247}
287 | ]
288 | },
289 | {"name": "ScaleBinding", "value": 11275},
290 | {"name": "Tree", "value": 7147},
291 | {"name": "TreeBuilder", "value": 9930}
292 | ]
293 | },
294 | {
295 | "name": "events",
296 | "children": [
297 | {"name": "DataEvent", "value": 2313},
298 | {"name": "SelectionEvent", "value": 1880},
299 | {"name": "TooltipEvent", "value": 1701},
300 | {"name": "VisualizationEvent", "value": 1117}
301 | ]
302 | },
303 | {
304 | "name": "legend",
305 | "children": [
306 | {"name": "Legend", "value": 20859},
307 | {"name": "LegendItem", "value": 4614},
308 | {"name": "LegendRange", "value": 10530}
309 | ]
310 | },
311 | {
312 | "name": "operator",
313 | "children": [
314 | {
315 | "name": "distortion",
316 | "children": [
317 | {"name": "BifocalDistortion", "value": 4461},
318 | {"name": "Distortion", "value": 6314},
319 | {"name": "FisheyeDistortion", "value": 3444}
320 | ]
321 | },
322 | {
323 | "name": "encoder",
324 | "children": [
325 | {"name": "ColorEncoder", "value": 3179},
326 | {"name": "Encoder", "value": 4060},
327 | {"name": "PropertyEncoder", "value": 4138},
328 | {"name": "ShapeEncoder", "value": 1690},
329 | {"name": "SizeEncoder", "value": 1830}
330 | ]
331 | },
332 | {
333 | "name": "filter",
334 | "children": [
335 | {"name": "FisheyeTreeFilter", "value": 5219},
336 | {"name": "GraphDistanceFilter", "value": 3165},
337 | {"name": "VisibilityFilter", "value": 3509}
338 | ]
339 | },
340 | {"name": "IOperator", "value": 1286},
341 | {
342 | "name": "label",
343 | "children": [
344 | {"name": "Labeler", "value": 9956},
345 | {"name": "RadialLabeler", "value": 3899},
346 | {"name": "StackedAreaLabeler", "value": 3202}
347 | ]
348 | },
349 | {
350 | "name": "layout",
351 | "children": [
352 | {"name": "AxisLayout", "value": 6725},
353 | {"name": "BundledEdgeRouter", "value": 3727},
354 | {"name": "CircleLayout", "value": 9317},
355 | {"name": "CirclePackingLayout", "value": 12003},
356 | {"name": "DendrogramLayout", "value": 4853},
357 | {"name": "ForceDirectedLayout", "value": 8411},
358 | {"name": "IcicleTreeLayout", "value": 4864},
359 | {"name": "IndentedTreeLayout", "value": 3174},
360 | {"name": "Layout", "value": 7881},
361 | {"name": "NodeLinkTreeLayout", "value": 12870},
362 | {"name": "PieLayout", "value": 2728},
363 | {"name": "RadialTreeLayout", "value": 12348},
364 | {"name": "RandomLayout", "value": 870},
365 | {"name": "StackedAreaLayout", "value": 9121},
366 | {"name": "TreeMapLayout", "value": 9191}
367 | ]
368 | },
369 | {"name": "Operator", "value": 2490},
370 | {"name": "OperatorList", "value": 5248},
371 | {"name": "OperatorSequence", "value": 4190},
372 | {"name": "OperatorSwitch", "value": 2581},
373 | {"name": "SortOperator", "value": 2023}
374 | ]
375 | },
376 | {"name": "Visualization", "value": 16540}
377 | ]
378 | }
379 | ]
380 | }
381 |
--------------------------------------------------------------------------------
/flask-diagrams/.idea/.gitignore:
--------------------------------------------------------------------------------
1 | # Default ignored files
2 | /workspace.xml
--------------------------------------------------------------------------------
/flask-diagrams/.idea/flask-diagrams.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
18 |
19 |
--------------------------------------------------------------------------------
/flask-diagrams/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/flask-diagrams/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/flask-diagrams/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/flask-diagrams/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/flask-diagrams/__pycache__/app.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/peiss/ant-learn-visualization/a7809f8a49bb31054ab59efb0aaf98022b412ab0/flask-diagrams/__pycache__/app.cpython-37.pyc
--------------------------------------------------------------------------------
/flask-diagrams/app.py:
--------------------------------------------------------------------------------
1 | from flask import Flask, render_template
2 | import matplotlib.pyplot as plt
3 | import seaborn as sns
4 | import numpy as np
5 | from pyecharts import options as opts
6 | from pyecharts.charts import Pie
7 |
8 | app = Flask(__name__)
9 |
10 |
11 | def generate_matplotlib_png():
12 | """使用matplotlib绘图,生成图片"""
13 | x = np.linspace(-5, 5, 100)
14 | y = np.sin(x)
15 | plt.plot(x, y)
16 |
17 | png_name = "my_matplotlib.png"
18 | plt.savefig(f"./static/{png_name}")
19 | plt.clf()
20 | return png_name
21 |
22 |
23 | def generate_seaborn_png():
24 | """使用seaborn绘图,生成图片"""
25 | sns.set(style="whitegrid")
26 | tips = sns.load_dataset("tips")
27 | sns_plot = sns.barplot(x="day", y="total_bill", data=tips)
28 |
29 | png_name = "my_seaborn.png"
30 | fig = sns_plot.get_figure()
31 | fig.savefig(f"./static/{png_name}")
32 | fig.clf()
33 | return png_name
34 |
35 |
36 | def get_pyecharts_pie():
37 | """生成pyecharts图的对象"""
38 | data = [['小米', 127],
39 | ['三星', 60],
40 | ['华为', 113],
41 | ['苹果', 55],
42 | ['魅族', 57],
43 | ['VIVO', 122],
44 | ['OPPO', 73]]
45 |
46 | pie = (
47 | Pie()
48 | .add("", data)
49 | .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
50 | )
51 |
52 | return pie
53 |
54 |
55 | @app.route('/show_diagrams')
56 | def show_diagrams():
57 | # 生成matplotlib的图片
58 | matplotlib_png = generate_matplotlib_png()
59 | # 生成seaborn的图片
60 | seaborn_png = generate_seaborn_png()
61 | # 生成pyecharts的对象
62 | pyecharts_pie = get_pyecharts_pie()
63 |
64 | # 渲染模板
65 | return render_template("show_diagrams.html",
66 | matplotlib_png=matplotlib_png,
67 | seaborn_png=seaborn_png,
68 | pie_options=pyecharts_pie.dump_options())
69 |
70 |
71 | if __name__ == '__main__':
72 | app.run()
73 |
--------------------------------------------------------------------------------
/flask-diagrams/static/my_matplotlib.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/peiss/ant-learn-visualization/a7809f8a49bb31054ab59efb0aaf98022b412ab0/flask-diagrams/static/my_matplotlib.png
--------------------------------------------------------------------------------
/flask-diagrams/static/my_seaborn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/peiss/ant-learn-visualization/a7809f8a49bb31054ab59efb0aaf98022b412ab0/flask-diagrams/static/my_seaborn.png
--------------------------------------------------------------------------------
/flask-diagrams/templates/show_diagrams.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Flask在网页上展示图片
6 |
7 |
8 |
9 |
10 |
11 | 1、展示Matplotlib图片
12 |
13 |
14 | 2、展示Seaborn图片
15 |
16 |
17 | 3、展示Pyecharts图片
18 |
19 |
27 |
28 |
29 |
30 |
--------------------------------------------------------------------------------
/graph_base.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Awesome-pyecharts
6 |
7 |
8 |
9 |
10 |
11 |
414 |
415 |
416 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | pyecharts==1.7.1
2 | matplotlib==3.1.3
3 | seaborn==0.10.0
4 |
--------------------------------------------------------------------------------
/test.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pyecharts\n",
10 | "import matplotlib\n",
11 | "import seaborn"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 2,
17 | "metadata": {},
18 | "outputs": [
19 | {
20 | "data": {
21 | "text/plain": [
22 | "'1.7.1'"
23 | ]
24 | },
25 | "execution_count": 2,
26 | "metadata": {},
27 | "output_type": "execute_result"
28 | }
29 | ],
30 | "source": [
31 | "pyecharts.__version__"
32 | ]
33 | },
34 | {
35 | "cell_type": "code",
36 | "execution_count": 3,
37 | "metadata": {},
38 | "outputs": [
39 | {
40 | "data": {
41 | "text/plain": [
42 | "'3.1.3'"
43 | ]
44 | },
45 | "execution_count": 3,
46 | "metadata": {},
47 | "output_type": "execute_result"
48 | }
49 | ],
50 | "source": [
51 | "matplotlib.__version__"
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": 4,
57 | "metadata": {},
58 | "outputs": [
59 | {
60 | "data": {
61 | "text/plain": [
62 | "'0.10.0'"
63 | ]
64 | },
65 | "execution_count": 4,
66 | "metadata": {},
67 | "output_type": "execute_result"
68 | }
69 | ],
70 | "source": [
71 | "seaborn.__version__"
72 | ]
73 | },
74 | {
75 | "cell_type": "code",
76 | "execution_count": null,
77 | "metadata": {},
78 | "outputs": [],
79 | "source": []
80 | }
81 | ],
82 | "metadata": {
83 | "kernelspec": {
84 | "display_name": "Python 3",
85 | "language": "python",
86 | "name": "python3"
87 | },
88 | "language_info": {
89 | "codemirror_mode": {
90 | "name": "ipython",
91 | "version": 3
92 | },
93 | "file_extension": ".py",
94 | "mimetype": "text/x-python",
95 | "name": "python",
96 | "nbconvert_exporter": "python",
97 | "pygments_lexer": "ipython3",
98 | "version": "3.7.6"
99 | }
100 | },
101 | "nbformat": 4,
102 | "nbformat_minor": 4
103 | }
104 |
--------------------------------------------------------------------------------
/timeline_pie.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Awesome-pyecharts
6 |
7 |
8 |
9 |
10 |
11 |
676 |
677 |
678 |
--------------------------------------------------------------------------------