├── LICENSE
├── README.md
├── assets
├── model_structure.png
├── radar.png
└── visualization_vp.png
├── example.jpg
├── inference.py
├── requirements.txt
└── visual_words
├── __init__.py
├── constants.py
├── conversation.py
├── mm_utils.py
├── model
├── __init__.py
├── builder.py
├── language_model
│ ├── vw_llama.py
│ ├── vw_mistral.py
│ └── vw_pif_llama.py
├── multimodal_encoder
│ ├── builder.py
│ └── clip_encoder.py
├── multimodal_projector
│ └── builder.py
├── vw_arch.py
└── vw_pif_arch.py
└── utils.py
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Multi-modal Auto-regressive Modeling via Visual Words
2 |
3 | [[`arXiv`](https://arxiv.org/abs/2403.07720)] [[`BibTeX`](#Citing)]
4 |
5 | This is the official repository for the multi-modal large language models: VW-LMM
6 |
7 |
8 |

9 |
10 |
11 | ## Introduction
12 | We propose VW-LMM, a large multi-modal model (LMM) that successfully performs multi-modal auto-regressive modeling with a unified objective for the first time.
13 | Specifically, we propose the concept of visual words, which maps the visual features to probability distributions over LLM's vocabulary, providing supervision information for visual modelling.
14 | We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
15 | Experimental results and ablation studies on 5 VQA tasks and 4 benchmark toolkits validate the powerful performance of our proposed approach.
16 | For more technical details, please refer to our [paper](https://arxiv.org/abs/2403.07720).
17 |
18 |
19 |

20 |
21 |
22 | In order to verify whether the visual words learnt by VW-LMM can realistically reflect the image information, we take VW-LMM-Vicuna-7B as an example to explore.
23 | For each patch in the image, we select the token with the highest probability in its corresponding visual words, and compare the region of interest in the image with its visualisation result, visualization is as follows (Best viewed zoomed-in):
24 |
25 |
26 |

27 |
28 |
29 | ## Model Zoo
30 |
31 | | Version | Size | Support pseudo image features | Checkpoint |
32 | |-------------------|----------|-----------------------------------|---------------------------------------------------------------------------------------|
33 | | VW-LMM-Vicuna | 7B | False | [VW-LMM-Vicuna-7b](https://huggingface.co/MYTH-Lab/VW-LMM-Vicuna-7b) |
34 | | VW-LMM-Mistral | 7B | False | [VW-LMM-Mistral-7b](https://huggingface.co/MYTH-Lab/VW-LMM-Mistral-7b) |
35 | | VW-LMM-Vicuna-pif | 7B | True | [VW-LMM-Vicuna-pif-7b](https://huggingface.co/MYTH-Lab/VW-LMM-Vicuna-pif-7b) |
36 |
37 |
38 | VW-LMM, by constructing visual words to introduce visual supervisory information, achieves the best performance among models of the same scale of 7B, and obtains vision-language understanding capability competitive to or even surpassing that of 13B or even larger scale models.
39 |
40 |
41 |
42 | Methods |
43 | LLM |
44 | Res. |
45 | VQA^v2 |
46 | GQA |
47 | VisWiz |
48 | SQA^I |
49 | VQA^T |
50 | POPE |
51 | MMB |
52 | MMB^CN |
53 | MM-Vet |
54 |
55 |
56 | *Language Modeling Method* |
57 |
58 |
59 | IDEFICS-80B |
60 | LLaMA-65B |
61 | 224 |
62 | 60.0 |
63 | 45.2 |
64 | 36.0 |
65 | -- |
66 | 30.9 |
67 | -- |
68 | 54.5 |
69 | 38.1 |
70 | -- |
71 |
72 |
73 | InstructBLIP |
74 | Vicuna-13B |
75 | 224 |
76 | -- |
77 | 49.5 |
78 | 33.4 |
79 | 63.1 |
80 | 50.7 |
81 | 78.9 |
82 | -- |
83 | -- |
84 | 25.6 |
85 |
86 |
87 | BLIP-2 |
88 | Vicuna-13B |
89 | 224 |
90 | 41.0 |
91 | 41.0 |
92 | 19.6 |
93 | 61.0 |
94 | 42.5 |
95 | 85.3 |
96 | -- |
97 | -- |
98 | 22.4 |
99 |
100 |
101 | LLaVA-v1.5 |
102 | Vicuna-13B |
103 | 336 |
104 | 80.0 |
105 | 63.3 |
106 | 53.6 |
107 | 71.6 |
108 | 61.3 |
109 | 85.9 |
110 | 67.7 |
111 | 63.6 |
112 | 35.4 |
113 |
114 |
115 | InstructBLIP |
116 | Vicuna-7B |
117 | 224 |
118 | -- |
119 | 49.2 |
120 | 34.5 |
121 | 60.5 |
122 | 50.1 |
123 | -- |
124 | 36 |
125 | 23.7 |
126 | 26.2 |
127 |
128 |
129 | IDEFICS-9B |
130 | LLaMA-7B |
131 | 224 |
132 | 50.9 |
133 | 38.4 |
134 | 35.5 |
135 | -- |
136 | 25.9 |
137 | -- |
138 | 48.2 |
139 | 25.2 |
140 | -- |
141 |
142 |
143 | Qwen-VL |
144 | Qwen-7B |
145 | 448 |
146 | 78.8 |
147 | 59.3 |
148 | 35.2 |
149 | 67.1 |
150 | 63.8 |
151 | -- |
152 | 38.2 |
153 | 7.4 |
154 | -- |
155 |
156 |
157 | Qwen-VL-Chat |
158 | Qwen-7B |
159 | 448 |
160 | 78.2 |
161 | 57.5 |
162 | 38.9 |
163 | 68.2 |
164 | 61.5 |
165 | -- |
166 | 60.6 |
167 | 56.7 |
168 | -- |
169 |
170 |
171 | LLaVA-v1.5 |
172 | Vicuna-7B |
173 | 336 |
174 | 78.5 |
175 | 62.0 |
176 | 50.0 |
177 | 66.8 |
178 | 58.2 |
179 | 85.9 |
180 | 64.3 |
181 | 58.3 |
182 | 30.5 |
183 |
184 |
185 | MoE-LLaVA-2.7B×4-Top2 |
186 | Phi-2-2.7B |
187 | 336 |
188 | 77.6 |
189 | 61.4 |
190 | 43.9 |
191 | 68.5 |
192 | 51.4 |
193 | 86.3 |
194 | 65.2 |
195 | -- |
196 | 34.3 |
197 |
198 |
199 | *Multi-modal Modeling Method* |
200 |
201 |
202 | Emu2-Chat |
203 | LLaMA-33B |
204 | 448 |
205 | 84.9 |
206 | 65.1 |
207 | 54.9 |
208 | 65.5 |
209 | 66.6 |
210 | -- |
211 | -- |
212 | -- |
213 | 48.5 |
214 |
215 |
216 | Emu-I |
217 | LLaMA-13B |
218 | 224 |
219 | 62.0 |
220 | 46.0 |
221 | 38.3 |
222 | -- |
223 | -- |
224 | -- |
225 | -- |
226 | -- |
227 | 36.3 |
228 |
229 |
230 | MM-Interleaved-SFT |
231 | Vicuna-13B |
232 | 224 |
233 | 80.2 |
234 | 60.5 |
235 | 54.9 |
236 | -- |
237 | 61.0 |
238 | -- |
239 | -- |
240 | -- |
241 | -- |
242 |
243 |
244 | Unified-IO 2 |
245 | UIO-2-6.8B |
246 | 384 |
247 | 79.4 |
248 | -- |
249 | -- |
250 | 86.2 |
251 | -- |
252 | 87.7 |
253 | 71.5 |
254 | -- |
255 | -- |
256 |
257 |
258 | DreamLLM |
259 | Vicuna-7B |
260 | 224 |
261 | 56.6 |
262 | -- |
263 | 38.1 |
264 | -- |
265 | 34.9 |
266 | -- |
267 | -- |
268 | -- |
269 | -- |
270 |
271 |
272 | VL-GPT-I |
273 | LLaMA-7B |
274 | 224 |
275 | 67.2 |
276 | 51.5 |
277 | 38.9 |
278 | -- |
279 | -- |
280 | -- |
281 | -- |
282 | -- |
283 | -- |
284 |
285 |
286 | LaVIT-v2 |
287 | LLaMA2-7B |
288 | 224 |
289 | 68.3 |
290 | 47.9 |
291 | 41.0 |
292 | -- |
293 | -- |
294 | -- |
295 | -- |
296 | -- |
297 | -- |
298 |
299 |
300 | VW-LMM |
301 | Vicuna-7B |
302 | 336 |
303 | 78.9 |
304 | 62.7 |
305 | 48.3 |
306 | 68.1 |
307 | 57.6 |
308 | 85.9 |
309 | 65.9 |
310 | 59.8 |
311 | 31.3 |
312 |
313 |
314 | VW-LMM |
315 | Mistral-7B |
316 | 336 |
317 | 80.8 |
318 | 65.4 |
319 | 58.5 |
320 | 75.9 |
321 | 63.1 |
322 | 87.0 |
323 | 80.6 |
324 | 79.0 |
325 | 44.0 |
326 |
327 |
328 |
329 | ## Setup
330 |
331 | ### Requirements
332 |
333 | ```shell
334 | git clone https://github.com/pengts/VW-LMM.git
335 | cd VW-LMM
336 | pip install -r requirements.txt
337 | ```
338 |
339 | ## Multi-modal Inference
340 |
341 | ### Model Configurations
342 |
343 | - VW-LMM-Vicuna
344 | ```python
345 | model_path="VW-LMM-Vicuna"
346 | conv_mode="vicuna_v1"
347 | model_base="llama"
348 | device = "cuda"
349 | ```
350 | - VW-LMM-Mistral
351 | ```python
352 | model_path="VW-LMM-Mistral"
353 | conv_mode="mistral"
354 | model_base="mistral"
355 | device = "cuda"
356 | ```
357 |
358 | VW-LMM-Vicuna-pif
359 | ```python
360 | model_path="VW-LMM-Vicuna-pif"
361 | conv_mode="vicuna_v1"
362 | model_base="llama"
363 | device = "cuda"
364 | ```
365 |
366 | ### Model Initialization
367 | ```python
368 | disable_torch_init()
369 | model_path = os.path.expanduser(model_path)
370 | model_name = get_model_name_from_path(model_path)
371 | tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_name, model_base,device=device)
372 | ```
373 |
374 | ### Input Processing
375 | ```python
376 | question="Write an exhaustive depiction of the given image."
377 | image_path="./example.jpg"
378 | qs = question
379 | qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
380 | conv = conv_templates[conv_mode].copy()
381 | conv.append_message(conv.roles[0], qs)
382 | conv.append_message(conv.roles[1], None)
383 | prompt = conv.get_prompt()
384 |
385 | image = Image.open(image_path).convert('RGB')
386 | image_tensor = process_images([image], image_processor, model.config)[0].unsqueeze(0).to(device)
387 | input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device)
388 | ```
389 |
390 | ### Inference
391 | ```python
392 | with torch.inference_mode():
393 | output_ids = model.generate(
394 | input_ids,
395 | images=image_tensor.to(dtype=torch.float16, device=device, non_blocking=True),
396 | do_sample= False,
397 | temperature=0,
398 | top_p=None,
399 | num_beams=1,
400 | max_new_tokens=128,
401 | use_cache=True)
402 |
403 | input_token_len = input_ids.shape[1]
404 | n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
405 | if n_diff_input_output > 0:
406 | print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
407 | outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
408 | outputs = outputs.strip()
409 | print(outputs)
410 | ```
411 |
412 | ## Acknowledgement
413 | We are grateful for the following awesome projects when implementing VW-LMM:
414 | * [LLaVA](https://github.com/haotian-liu/LLaVA/): Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.
415 | * [LLaMA](https://github.com/facebookresearch/llama): Open and Efficient Foundation Language Models
416 | * [Vicuna](https://github.com/lm-sys/FastChat): Open-source LLM with amazing language capabilities!
417 | * [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2): A 7B transformer model, fast-deployed and easily customisable. Small, yet very powerful for a variety of use cases.
418 |
419 |
420 | ## Citation
421 | Consider giving this repository a star and cite VW-LMM in your publications if it helps your research.
422 |
423 | ```
424 | @misc{peng2024multimodal,
425 | title={Multi-modal Auto-regressive Modeling via Visual Words},
426 | author={Tianshuo Peng and Zuchao Li and Lefei Zhang and Hai Zhao and Ping Wang and Bo Du},
427 | year={2024},
428 | eprint={2403.07720},
429 | archivePrefix={arXiv},
430 | primaryClass={cs.CV}
431 | }
432 | ```
433 |
--------------------------------------------------------------------------------
/assets/model_structure.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pengts/VW-LMM/787cf71cf9429cfb5845277ddc1a427170034325/assets/model_structure.png
--------------------------------------------------------------------------------
/assets/radar.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pengts/VW-LMM/787cf71cf9429cfb5845277ddc1a427170034325/assets/radar.png
--------------------------------------------------------------------------------
/assets/visualization_vp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pengts/VW-LMM/787cf71cf9429cfb5845277ddc1a427170034325/assets/visualization_vp.png
--------------------------------------------------------------------------------
/example.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pengts/VW-LMM/787cf71cf9429cfb5845277ddc1a427170034325/example.jpg
--------------------------------------------------------------------------------
/inference.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import os
3 | import json
4 | from tqdm import tqdm
5 | from visual_words.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
6 | from visual_words.conversation import conv_templates, SeparatorStyle
7 | from visual_words.model.builder import load_pretrained_model
8 | from visual_words.utils import disable_torch_init
9 | from visual_words.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
10 | from PIL import Image
11 |
12 |
13 |
14 | # Configurations
15 |
16 | # model_path="path_to_model_weights"
17 | # question="Write an exhaustive depiction of the given image."
18 | # image_path="./example.jpg"
19 | # conv_mode="vicuna_v1"
20 | # model_base="llama"
21 | # device = "cuda"
22 |
23 | # model_path="path_to_model_weights"
24 | # question="Write an exhaustive depiction of the given image."
25 | # image_path="./example.jpg"
26 | # conv_mode="mistral"
27 | # model_base="mistral"
28 | # device = "cuda"
29 |
30 | model_path="path_to_model_weights"
31 | question="Write an exhaustive depiction of the given image."
32 | image_path="./example.jpg"
33 | conv_mode="vicuna_v1"
34 | model_base="llama"
35 | device = "cuda"
36 |
37 | # Model
38 | disable_torch_init()
39 | model_path = os.path.expanduser(model_path)
40 | model_name = get_model_name_from_path(model_path)
41 | tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_name, model_base,device=device)
42 |
43 | # input
44 | qs = question
45 | qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
46 | conv = conv_templates[conv_mode].copy()
47 | conv.append_message(conv.roles[0], qs)
48 | conv.append_message(conv.roles[1], None)
49 | prompt = conv.get_prompt()
50 |
51 |
52 | image = Image.open(image_path).convert('RGB')
53 | image_tensor = process_images([image], image_processor, model.config)[0].unsqueeze(0).to(device)
54 | input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device)
55 |
56 | with torch.inference_mode():
57 | output_ids = model.generate(
58 | input_ids,
59 | images=image_tensor.to(dtype=torch.float16, device=device, non_blocking=True),
60 | do_sample= False,
61 | temperature=0,
62 | top_p=None,
63 | num_beams=1,
64 | max_new_tokens=128,
65 | use_cache=True)
66 |
67 | input_token_len = input_ids.shape[1]
68 | n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
69 | if n_diff_input_output > 0:
70 | print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
71 | outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
72 | outputs = outputs.strip()
73 | print(outputs)
74 |
75 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | einops
2 | fastapi
3 | gradio==3.35.2
4 | markdown2[all]
5 | numpy
6 | requests
7 | sentencepiece
8 | tokenizers>=0.12.1
9 | torch==2.0.1
10 | torchvision==0.15.2
11 | uvicorn
12 | wandb
13 | shortuuid
14 | httpx==0.24.0
15 | deepspeed==0.9.5
16 | peft==0.4.0
17 | transformers==4.35.0
18 | accelerate==0.21.0
19 | bitsandbytes==0.41.0
20 | scikit-learn==1.2.2
21 | sentencepiece==0.1.99
22 | einops==0.6.1
23 | einops-exts==0.0.4
24 | timm==0.6.13
25 | gradio_client==0.2.9
--------------------------------------------------------------------------------
/visual_words/__init__.py:
--------------------------------------------------------------------------------
1 | from .model import vwMistralForCausalLM,vwLlamaForCausalLM,vwPifLlamaForCausalLM
2 |
--------------------------------------------------------------------------------
/visual_words/constants.py:
--------------------------------------------------------------------------------
1 | CONTROLLER_HEART_BEAT_EXPIRATION = 30
2 | WORKER_HEART_BEAT_INTERVAL = 15
3 |
4 | LOGDIR = "."
5 |
6 | # Model Constants
7 | IGNORE_INDEX = -100
8 | IMAGE_TOKEN_INDEX = -200
9 | DEFAULT_IMAGE_TOKEN = ""
10 | DEFAULT_IMAGE_PATCH_TOKEN = ""
11 | DEFAULT_IM_START_TOKEN = ""
12 | DEFAULT_IM_END_TOKEN = ""
13 |
--------------------------------------------------------------------------------
/visual_words/conversation.py:
--------------------------------------------------------------------------------
1 | import dataclasses
2 | from enum import auto, Enum
3 | from typing import List, Tuple
4 |
5 |
6 | class SeparatorStyle(Enum):
7 | """Different separator style."""
8 | SINGLE = auto()
9 | TWO = auto()
10 | MPT = auto()
11 | PLAIN = auto()
12 | LLAMA_2 = auto()
13 | MISTRAL = auto()
14 |
15 |
16 | @dataclasses.dataclass
17 | class Conversation:
18 | """A class that keeps all conversation history."""
19 | system: str
20 | roles: List[str]
21 | messages: List[List[str]]
22 | offset: int
23 | sep_style: SeparatorStyle = SeparatorStyle.SINGLE
24 | sep: str = "###"
25 | sep2: str = None
26 | version: str = "Unknown"
27 |
28 | skip_next: bool = False
29 |
30 | def get_prompt(self):
31 | messages = self.messages
32 | if len(messages) > 0 and type(messages[0][1]) is tuple:
33 | messages = self.messages.copy()
34 | init_role, init_msg = messages[0].copy()
35 | init_msg = init_msg[0].replace("", "").strip()
36 | if 'mmtag' in self.version:
37 | messages[0] = (init_role, init_msg)
38 | messages.insert(0, (self.roles[0], ""))
39 | messages.insert(1, (self.roles[1], "Received."))
40 | else:
41 | messages[0] = (init_role, "\n" + init_msg)
42 |
43 | if self.sep_style == SeparatorStyle.SINGLE:
44 | ret = self.system + self.sep
45 | for role, message in messages:
46 | if message:
47 | if type(message) is tuple:
48 | message, _, _ = message
49 | ret += role + ": " + message + self.sep
50 | else:
51 | ret += role + ":"
52 | elif self.sep_style == SeparatorStyle.TWO:
53 | seps = [self.sep, self.sep2]
54 | ret = self.system + seps[0]
55 | for i, (role, message) in enumerate(messages):
56 | if message:
57 | if type(message) is tuple:
58 | message, _, _ = message
59 | ret += role + ": " + message + seps[i % 2]
60 | else:
61 | ret += role + ":"
62 | elif self.sep_style == SeparatorStyle.MPT:
63 | ret = self.system + self.sep
64 | for role, message in messages:
65 | if message:
66 | if type(message) is tuple:
67 | message, _, _ = message
68 | ret += role + message + self.sep
69 | else:
70 | ret += role
71 | elif self.sep_style == SeparatorStyle.LLAMA_2:
72 | wrap_sys = lambda msg: f"<>\n{msg}\n<>\n\n"
73 | wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
74 | ret = ""
75 |
76 | for i, (role, message) in enumerate(messages):
77 | if i == 0:
78 | assert message, "first message should not be none"
79 | assert role == self.roles[0], "first message should come from user"
80 | if message:
81 | if type(message) is tuple:
82 | message, _, _ = message
83 | if i == 0: message = wrap_sys(self.system) + message
84 | if i % 2 == 0:
85 | message = wrap_inst(message)
86 | ret += self.sep + message
87 | else:
88 | ret += " " + message + " " + self.sep2
89 | else:
90 | ret += ""
91 | ret = ret.lstrip(self.sep)
92 |
93 | elif self.sep_style == SeparatorStyle.MISTRAL:
94 | wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
95 | ret = ""
96 | for i, (role, message) in enumerate(messages):
97 | if i == 0:
98 | assert message, "first message should not be none"
99 | assert role == self.roles[0], "first message should come from user"
100 | if message:
101 | if type(message) is tuple:
102 | message, _, _ = message
103 | # if i == 0: message = wrap_sys(self.system) + message
104 | if i % 2 == 0:
105 | message = wrap_inst(message)
106 | ret += self.sep + message
107 | else:
108 | ret += message + self.sep2
109 | else:
110 | ret += ""
111 | ret = ret.lstrip(self.sep)
112 |
113 | elif self.sep_style == SeparatorStyle.PLAIN:
114 | seps = [self.sep, self.sep2]
115 | ret = self.system
116 | for i, (role, message) in enumerate(messages):
117 | if message:
118 | if type(message) is tuple:
119 | message, _, _ = message
120 | ret += message + seps[i % 2]
121 | else:
122 | ret += ""
123 | else:
124 | raise ValueError(f"Invalid style: {self.sep_style}")
125 |
126 | return ret
127 |
128 | def append_message(self, role, message):
129 | self.messages.append([role, message])
130 |
131 | def get_images(self, return_pil=False):
132 | images = []
133 | for i, (role, msg) in enumerate(self.messages[self.offset:]):
134 | if i % 2 == 0:
135 | if type(msg) is tuple:
136 | import base64
137 | from io import BytesIO
138 | from PIL import Image
139 | msg, image, image_process_mode = msg
140 | if image_process_mode == "Pad":
141 | def expand2square(pil_img, background_color=(122, 116, 104)):
142 | width, height = pil_img.size
143 | if width == height:
144 | return pil_img
145 | elif width > height:
146 | result = Image.new(pil_img.mode, (width, width), background_color)
147 | result.paste(pil_img, (0, (width - height) // 2))
148 | return result
149 | else:
150 | result = Image.new(pil_img.mode, (height, height), background_color)
151 | result.paste(pil_img, ((height - width) // 2, 0))
152 | return result
153 | image = expand2square(image)
154 | elif image_process_mode in ["Default", "Crop"]:
155 | pass
156 | elif image_process_mode == "Resize":
157 | image = image.resize((336, 336))
158 | else:
159 | raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
160 | max_hw, min_hw = max(image.size), min(image.size)
161 | aspect_ratio = max_hw / min_hw
162 | max_len, min_len = 800, 400
163 | shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
164 | longest_edge = int(shortest_edge * aspect_ratio)
165 | W, H = image.size
166 | if longest_edge != max(image.size):
167 | if H > W:
168 | H, W = longest_edge, shortest_edge
169 | else:
170 | H, W = shortest_edge, longest_edge
171 | image = image.resize((W, H))
172 | if return_pil:
173 | images.append(image)
174 | else:
175 | buffered = BytesIO()
176 | image.save(buffered, format="PNG")
177 | img_b64_str = base64.b64encode(buffered.getvalue()).decode()
178 | images.append(img_b64_str)
179 | return images
180 |
181 | def to_gradio_chatbot(self):
182 | ret = []
183 | for i, (role, msg) in enumerate(self.messages[self.offset:]):
184 | if i % 2 == 0:
185 | if type(msg) is tuple:
186 | import base64
187 | from io import BytesIO
188 | msg, image, image_process_mode = msg
189 | max_hw, min_hw = max(image.size), min(image.size)
190 | aspect_ratio = max_hw / min_hw
191 | max_len, min_len = 800, 400
192 | shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
193 | longest_edge = int(shortest_edge * aspect_ratio)
194 | W, H = image.size
195 | if H > W:
196 | H, W = longest_edge, shortest_edge
197 | else:
198 | H, W = shortest_edge, longest_edge
199 | image = image.resize((W, H))
200 | buffered = BytesIO()
201 | image.save(buffered, format="JPEG")
202 | img_b64_str = base64.b64encode(buffered.getvalue()).decode()
203 | img_str = f'
'
204 | msg = img_str + msg.replace('', '').strip()
205 | ret.append([msg, None])
206 | else:
207 | ret.append([msg, None])
208 | else:
209 | ret[-1][-1] = msg
210 | return ret
211 |
212 | def copy(self):
213 | return Conversation(
214 | system=self.system,
215 | roles=self.roles,
216 | messages=[[x, y] for x, y in self.messages],
217 | offset=self.offset,
218 | sep_style=self.sep_style,
219 | sep=self.sep,
220 | sep2=self.sep2,
221 | version=self.version)
222 |
223 | def dict(self):
224 | if len(self.get_images()) > 0:
225 | return {
226 | "system": self.system,
227 | "roles": self.roles,
228 | "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
229 | "offset": self.offset,
230 | "sep": self.sep,
231 | "sep2": self.sep2,
232 | }
233 | return {
234 | "system": self.system,
235 | "roles": self.roles,
236 | "messages": self.messages,
237 | "offset": self.offset,
238 | "sep": self.sep,
239 | "sep2": self.sep2,
240 | }
241 |
242 |
243 | conv_vicuna_v0 = Conversation(
244 | system="A chat between a curious human and an artificial intelligence assistant. "
245 | "The assistant gives helpful, detailed, and polite answers to the human's questions.",
246 | roles=("Human", "Assistant"),
247 | messages=(
248 | ("Human", "What are the key differences between renewable and non-renewable energy sources?"),
249 | ("Assistant",
250 | "Renewable energy sources are those that can be replenished naturally in a relatively "
251 | "short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
252 | "Non-renewable energy sources, on the other hand, are finite and will eventually be "
253 | "depleted, such as coal, oil, and natural gas. Here are some key differences between "
254 | "renewable and non-renewable energy sources:\n"
255 | "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
256 | "energy sources are finite and will eventually run out.\n"
257 | "2. Environmental impact: Renewable energy sources have a much lower environmental impact "
258 | "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
259 | "and other negative effects.\n"
260 | "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
261 | "have lower operational costs than non-renewable sources.\n"
262 | "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
263 | "locations than non-renewable sources.\n"
264 | "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
265 | "situations and needs, while non-renewable sources are more rigid and inflexible.\n"
266 | "6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
267 | "non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
268 | ),
269 | offset=2,
270 | sep_style=SeparatorStyle.SINGLE,
271 | sep="###",
272 | )
273 |
274 | conv_vicuna_v1 = Conversation(
275 | system="A chat between a curious user and an artificial intelligence assistant. "
276 | "The assistant gives helpful, detailed, and polite answers to the user's questions.",
277 | roles=("USER", "ASSISTANT"),
278 | version="v1",
279 | messages=(),
280 | offset=0,
281 | sep_style=SeparatorStyle.TWO,
282 | sep=" ",
283 | sep2="",
284 | )
285 |
286 | conv_llama_2 = Conversation(
287 | system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
288 |
289 | If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
290 | roles=("USER", "ASSISTANT"),
291 | version="llama_v2",
292 | messages=(),
293 | offset=0,
294 | sep_style=SeparatorStyle.LLAMA_2,
295 | sep="",
296 | sep2="",
297 | )
298 |
299 | conv_llava_llama_2 = Conversation(
300 | system="You are a helpful language and vision assistant. "
301 | "You are able to understand the visual content that the user provides, "
302 | "and assist the user with a variety of tasks using natural language.",
303 | roles=("USER", "ASSISTANT"),
304 | version="llama_v2",
305 | messages=(),
306 | offset=0,
307 | sep_style=SeparatorStyle.LLAMA_2,
308 | sep="",
309 | sep2="",
310 | )
311 |
312 | conv_mpt = Conversation(
313 | system="""<|im_start|>system
314 | A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
315 | roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
316 | version="mpt",
317 | messages=(),
318 | offset=0,
319 | sep_style=SeparatorStyle.MPT,
320 | sep="<|im_end|>",
321 | )
322 |
323 | conv_llava_plain = Conversation(
324 | system="",
325 | roles=("", ""),
326 | messages=(
327 | ),
328 | offset=0,
329 | sep_style=SeparatorStyle.PLAIN,
330 | sep="\n",
331 | )
332 |
333 | conv_llava_v0 = Conversation(
334 | system="A chat between a curious human and an artificial intelligence assistant. "
335 | "The assistant gives helpful, detailed, and polite answers to the human's questions.",
336 | roles=("Human", "Assistant"),
337 | messages=(
338 | ),
339 | offset=0,
340 | sep_style=SeparatorStyle.SINGLE,
341 | sep="###",
342 | )
343 |
344 | conv_llava_v0_mmtag = Conversation(
345 | system="A chat between a curious user and an artificial intelligence assistant. "
346 | "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
347 | "The visual content will be provided with the following format: visual content.",
348 | roles=("Human", "Assistant"),
349 | messages=(
350 | ),
351 | offset=0,
352 | sep_style=SeparatorStyle.SINGLE,
353 | sep="###",
354 | version="v0_mmtag",
355 | )
356 |
357 | conv_llava_v1 = Conversation(
358 | system="A chat between a curious human and an artificial intelligence assistant. "
359 | "The assistant gives helpful, detailed, and polite answers to the human's questions.",
360 | roles=("USER", "ASSISTANT"),
361 | version="v1",
362 | messages=(),
363 | offset=0,
364 | sep_style=SeparatorStyle.TWO,
365 | sep=" ",
366 | sep2="",
367 | )
368 |
369 | conv_llava_v1_mmtag = Conversation(
370 | system="A chat between a curious user and an artificial intelligence assistant. "
371 | "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
372 | "The visual content will be provided with the following format: visual content.",
373 | roles=("USER", "ASSISTANT"),
374 | messages=(),
375 | offset=0,
376 | sep_style=SeparatorStyle.TWO,
377 | sep=" ",
378 | sep2="",
379 | version="v1_mmtag",
380 | )
381 |
382 | mistral = Conversation(
383 | system="",
384 | roles=("USER", "ASSISTANT"),
385 | version="mistral",
386 | messages=(),
387 | offset=0,
388 | sep_style=SeparatorStyle.MISTRAL,
389 | sep="",
390 | sep2="",
391 | )
392 |
393 |
394 | default_conversation = conv_vicuna_v0
395 | conv_templates = {
396 | "default": conv_vicuna_v0,
397 | "v0": conv_vicuna_v0,
398 | "v1": conv_vicuna_v1,
399 | "vicuna_v1": conv_vicuna_v1,
400 | "llama_2": conv_llama_2,
401 |
402 | "plain": conv_llava_plain,
403 | "v0_plain": conv_llava_plain,
404 | "llava_v0": conv_llava_v0,
405 | "v0_mmtag": conv_llava_v0_mmtag,
406 | "llava_v1": conv_llava_v1,
407 | "v1_mmtag": conv_llava_v1_mmtag,
408 | "llava_llama_2": conv_llava_llama_2,
409 |
410 | "mpt": conv_mpt,
411 | "mistral": mistral
412 | }
413 |
414 |
415 | if __name__ == "__main__":
416 | print(default_conversation.get_prompt())
417 |
--------------------------------------------------------------------------------
/visual_words/mm_utils.py:
--------------------------------------------------------------------------------
1 | from PIL import Image
2 | from io import BytesIO
3 | import base64
4 |
5 | import torch
6 | from transformers import StoppingCriteria
7 | from visual_words.constants import IMAGE_TOKEN_INDEX
8 |
9 |
10 | def load_image_from_base64(image):
11 | return Image.open(BytesIO(base64.b64decode(image)))
12 |
13 |
14 | def expand2square(pil_img, background_color):
15 | width, height = pil_img.size
16 | if width == height:
17 | return pil_img
18 | elif width > height:
19 | result = Image.new(pil_img.mode, (width, width), background_color)
20 | result.paste(pil_img, (0, (width - height) // 2))
21 | return result
22 | else:
23 | result = Image.new(pil_img.mode, (height, height), background_color)
24 | result.paste(pil_img, ((height - width) // 2, 0))
25 | return result
26 |
27 |
28 | def process_images(images, image_processor, model_cfg):
29 | image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
30 | new_images = []
31 | if image_aspect_ratio == 'pad':
32 | for image in images:
33 | image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
34 | image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
35 | new_images.append(image)
36 | else:
37 | return image_processor(images, return_tensors='pt')['pixel_values']
38 | if all(x.shape == new_images[0].shape for x in new_images):
39 | new_images = torch.stack(new_images, dim=0)
40 | return new_images
41 |
42 |
43 | def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
44 | prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('')]
45 |
46 | def insert_separator(X, sep):
47 | return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
48 |
49 | input_ids = []
50 | offset = 0
51 | if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
52 | offset = 1
53 | input_ids.append(prompt_chunks[0][0])
54 |
55 | for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
56 | input_ids.extend(x[offset:])
57 |
58 | if return_tensors is not None:
59 | if return_tensors == 'pt':
60 | return torch.tensor(input_ids, dtype=torch.long)
61 | raise ValueError(f'Unsupported tensor type: {return_tensors}')
62 | return input_ids
63 |
64 |
65 | def get_model_name_from_path(model_path):
66 | model_path = model_path.strip("/")
67 | model_paths = model_path.split("/")
68 | if model_paths[-1].startswith('checkpoint-'):
69 | return model_paths[-2] + "_" + model_paths[-1]
70 | else:
71 | return model_paths[-1]
72 |
73 |
74 |
75 |
76 | class KeywordsStoppingCriteria(StoppingCriteria):
77 | def __init__(self, keywords, tokenizer, input_ids):
78 | self.keywords = keywords
79 | self.keyword_ids = []
80 | self.max_keyword_len = 0
81 | for keyword in keywords:
82 | cur_keyword_ids = tokenizer(keyword).input_ids
83 | if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
84 | cur_keyword_ids = cur_keyword_ids[1:]
85 | if len(cur_keyword_ids) > self.max_keyword_len:
86 | self.max_keyword_len = len(cur_keyword_ids)
87 | self.keyword_ids.append(torch.tensor(cur_keyword_ids))
88 | self.tokenizer = tokenizer
89 | self.start_len = input_ids.shape[1]
90 |
91 | def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
92 | assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
93 | offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
94 | self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
95 | for keyword_id in self.keyword_ids:
96 | if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all():
97 | return True
98 | outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
99 | for keyword in self.keywords:
100 | if keyword in outputs:
101 | return True
102 | return False
--------------------------------------------------------------------------------
/visual_words/model/__init__.py:
--------------------------------------------------------------------------------
1 | from .language_model.vw_mistral import vwMistralForCausalLM
2 | from .language_model.vw_llama import vwLlamaForCausalLM
3 | from .language_model.vw_pif_llama import vwPifLlamaForCausalLM
--------------------------------------------------------------------------------
/visual_words/model/builder.py:
--------------------------------------------------------------------------------
1 | import os
2 | import warnings
3 | import shutil
4 | from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
5 | import torch
6 | from visual_words.model import *
7 | from visual_words.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
8 |
9 |
10 | def load_pretrained_model(model_path, model_name, model_base="llama", load_8bit=False, load_4bit=False, device_map="auto", device="cuda"):
11 | kwargs = {"device_map": device_map}
12 |
13 | if load_8bit:
14 | kwargs['load_in_8bit'] = True
15 | elif load_4bit:
16 | kwargs['load_in_4bit'] = True
17 | kwargs['quantization_config'] = BitsAndBytesConfig(
18 | load_in_4bit=True,
19 | bnb_4bit_compute_dtype=torch.float16,
20 | bnb_4bit_use_double_quant=True,
21 | bnb_4bit_quant_type='nf4'
22 | )
23 | else:
24 | kwargs['torch_dtype'] = torch.float16
25 |
26 | tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
27 |
28 | if 'llama' in model_base.lower() or 'vicuna' in model_base.lower():
29 | if "pif" in model_name:
30 | model = vwPifLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
31 | else:
32 | model = vwLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
33 |
34 | elif "mistral" in model_base.lower():
35 | model = vwMistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
36 |
37 | else:
38 | raise Exception("undefined model")
39 |
40 | tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
41 |
42 | image_processor = None
43 | mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
44 | mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
45 | if mm_use_im_patch_token:
46 | tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
47 | if mm_use_im_start_end:
48 | tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
49 | model.resize_token_embeddings(len(tokenizer))
50 |
51 | vision_tower = model.get_vision_tower()
52 | if not vision_tower.is_loaded:
53 | vision_tower.load_model()
54 | vision_tower.to(device=device, dtype=torch.float16)
55 | image_processor = vision_tower.image_processor
56 |
57 | if hasattr(model.config, "max_sequence_length"):
58 | context_len = model.config.max_sequence_length
59 | else:
60 | context_len = 2048
61 |
62 | return tokenizer, model, image_processor, context_len
63 |
--------------------------------------------------------------------------------
/visual_words/model/language_model/vw_llama.py:
--------------------------------------------------------------------------------
1 | from typing import List, Optional, Tuple, Union
2 | import torch
3 | import torch.nn as nn
4 | from torch.nn import CrossEntropyLoss, KLDivLoss
5 | from transformers import AutoConfig, AutoModelForCausalLM, \
6 | LlamaConfig, LlamaModel, LlamaForCausalLM
7 | from transformers.modeling_outputs import CausalLMOutputWithPast
8 | from ..vw_arch import vwMetaModel, vwMetaForCausalLM
9 |
10 | class LlavaConfig(LlamaConfig):
11 | model_type = "llava"
12 |
13 | class vwLlamaModel(vwMetaModel, LlamaModel):
14 | config_class = LlavaConfig
15 |
16 | def __init__(self, config: LlamaConfig):
17 | super(vwLlamaModel, self).__init__(config)
18 |
19 |
20 | class vwLlamaForCausalLM(LlamaForCausalLM, vwMetaForCausalLM):
21 | config_class = LlavaConfig
22 |
23 | def __init__(self, config):
24 | super(LlamaForCausalLM, self).__init__(config)
25 | self.model = vwLlamaModel(config)
26 |
27 | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
28 |
29 | self.vm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
30 | # Initialize weights and apply final processing
31 | self.post_init()
32 |
33 | def get_model(self):
34 | return self.model
35 |
36 | def forward(
37 | self,
38 | input_ids: torch.LongTensor = None,
39 | attention_mask: Optional[torch.Tensor] = None,
40 | past_key_values: Optional[List[torch.FloatTensor]] = None,
41 | inputs_embeds: Optional[torch.FloatTensor] = None,
42 | labels: Optional[torch.LongTensor] = None,
43 | use_cache: Optional[bool] = None,
44 | output_attentions: Optional[bool] = None,
45 | output_hidden_states: Optional[bool] = None,
46 | images: Optional[torch.FloatTensor] = None,
47 | return_dict: Optional[bool] = None,
48 | ) -> Union[Tuple, CausalLMOutputWithPast]:
49 | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
50 | output_hidden_states = (
51 | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
52 | )
53 | return_dict = return_dict if return_dict is not None else self.config.use_return_dict
54 | input_ids, attention_mask, past_key_values, inputs_embeds, labels, image_position_labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
55 | ###
56 | if image_position_labels is not None:
57 | image_position_labels=image_position_labels.bool()
58 | visual_labels=self.vm_head(inputs_embeds)
59 | else:
60 | visual_labels=None
61 | ###
62 |
63 | outputs = self.model(
64 | input_ids=input_ids,
65 | attention_mask=attention_mask,
66 | past_key_values=past_key_values,
67 | inputs_embeds=inputs_embeds,
68 | use_cache=use_cache,
69 | output_attentions=output_attentions,
70 | output_hidden_states=output_hidden_states,
71 | return_dict=return_dict
72 | )
73 |
74 | hidden_states = outputs[0]
75 | logits = self.lm_head(hidden_states)
76 |
77 | loss = None
78 | loss_lm = None
79 | loss_vm = None
80 | if labels is not None:
81 | # Shift so that tokens < n predict n
82 | shift_logits = logits[..., :-1, :].contiguous()
83 | shift_labels = labels[..., 1:].contiguous()
84 | # Flatten the tokens
85 | loss_fct_lm = CrossEntropyLoss()
86 | shift_logits = shift_logits.view(-1, self.config.vocab_size)
87 | shift_labels = shift_labels.view(-1)
88 | # Enable model/pipeline parallelism
89 | shift_labels = shift_labels.to(shift_logits.device)
90 | loss_lm = loss_fct_lm(shift_logits, shift_labels)
91 |
92 | ###
93 | if visual_labels is not None:
94 | shift_logits = logits[..., :-1, :].contiguous()
95 | shift_visual_labels = visual_labels[..., 1:, :].contiguous()
96 | shift_image_position_labels = image_position_labels[..., 1:].contiguous()
97 |
98 | loss_fct_vm = KLDivLoss(reduction="batchmean")
99 | # loss_fct_vm = CrossEntropyLoss()
100 | shift_visual_logits = shift_logits[shift_image_position_labels]
101 | shift_visual_labels = shift_visual_labels[shift_image_position_labels]
102 | # shift_visual_logits = shift_logits
103 | assert shift_visual_logits.shape == shift_visual_labels.shape
104 | shift_visual_labels = shift_visual_labels.to(shift_visual_logits.device)
105 |
106 | # stage3
107 | # shift_visual_logits = nn.functional.softmax(shift_visual_logits,dim=-1)
108 | # shift_visual_labels = nn.functional.log_softmax(shift_visual_labels, dim=-1)
109 | # loss_vm = loss_fct_vm(shift_visual_labels, shift_visual_logits)
110 |
111 | # stage4
112 | shift_visual_logits = nn.functional.log_softmax(shift_visual_logits,dim=-1)
113 | shift_visual_labels = nn.functional.softmax(shift_visual_labels, dim=-1)
114 | loss_vm = loss_fct_vm(shift_visual_logits, shift_visual_labels)
115 |
116 |
117 | if loss_lm is not None and loss_vm is not None:
118 | loss = loss_lm + loss_vm
119 | elif loss_lm is None:
120 | loss = loss_vm
121 | elif loss_vm is None:
122 | loss = loss_lm
123 | else:
124 | loss = None
125 | ###
126 |
127 | if not return_dict:
128 | output = (logits,) + outputs[1:]
129 | return (loss,) + output if loss is not None else output
130 |
131 | return CausalLMOutputWithPast(
132 | loss=loss,
133 | logits=logits,
134 | past_key_values=outputs.past_key_values,
135 | hidden_states=outputs.hidden_states,
136 | attentions=outputs.attentions,
137 | )
138 |
139 | def prepare_inputs_for_generation(
140 | self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
141 | ):
142 | if past_key_values:
143 | input_ids = input_ids[:, -1:]
144 |
145 | # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
146 | if inputs_embeds is not None and past_key_values is None:
147 | model_inputs = {"inputs_embeds": inputs_embeds}
148 | else:
149 | model_inputs = {"input_ids": input_ids}
150 |
151 | model_inputs.update(
152 | {
153 | "past_key_values": past_key_values,
154 | "use_cache": kwargs.get("use_cache"),
155 | "attention_mask": attention_mask,
156 | "images": kwargs.get("images", None),
157 | }
158 | )
159 | return model_inputs
160 |
161 |
--------------------------------------------------------------------------------
/visual_words/model/language_model/vw_mistral.py:
--------------------------------------------------------------------------------
1 | from typing import List, Optional, Tuple, Union
2 | import torch
3 | import torch.nn as nn
4 | from torch.nn import CrossEntropyLoss, KLDivLoss
5 | from transformers import AutoConfig, AutoModelForCausalLM, \
6 | MistralConfig, MistralModel, MistralForCausalLM
7 | from transformers.modeling_outputs import CausalLMOutputWithPast
8 | from ..vw_arch import vwMetaModel, vwMetaForCausalLM
9 |
10 | class LlavaConfig(MistralConfig):
11 | model_type = "llava"
12 |
13 | class vwMistralModel(vwMetaModel, MistralModel):
14 | config_class = LlavaConfig
15 |
16 | def __init__(self, config: MistralConfig):
17 | super(vwMistralModel, self).__init__(config)
18 |
19 |
20 | class vwMistralForCausalLM(MistralForCausalLM, vwMetaForCausalLM):
21 | config_class = LlavaConfig
22 |
23 | def __init__(self, config):
24 | super(MistralForCausalLM, self).__init__(config)
25 | self.model = vwMistralModel(config)
26 |
27 | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
28 |
29 | self.vm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
30 | # Initialize weights and apply final processing
31 | self.post_init()
32 |
33 | def get_model(self):
34 | return self.model
35 |
36 | def forward(
37 | self,
38 | input_ids: torch.LongTensor = None,
39 | attention_mask: Optional[torch.Tensor] = None,
40 | past_key_values: Optional[List[torch.FloatTensor]] = None,
41 | inputs_embeds: Optional[torch.FloatTensor] = None,
42 | labels: Optional[torch.LongTensor] = None,
43 | use_cache: Optional[bool] = None,
44 | output_attentions: Optional[bool] = None,
45 | output_hidden_states: Optional[bool] = None,
46 | images: Optional[torch.FloatTensor] = None,
47 | return_dict: Optional[bool] = None,
48 | ) -> Union[Tuple, CausalLMOutputWithPast]:
49 | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
50 | output_hidden_states = (
51 | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
52 | )
53 | return_dict = return_dict if return_dict is not None else self.config.use_return_dict
54 | input_ids, attention_mask, past_key_values, inputs_embeds, labels, image_position_labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
55 | ###
56 | if image_position_labels is not None:
57 | image_position_labels=image_position_labels.bool()
58 | visual_labels=self.vm_head(inputs_embeds)
59 | else:
60 | visual_labels=None
61 | ###
62 |
63 | outputs = self.model(
64 | input_ids=input_ids,
65 | attention_mask=attention_mask,
66 | past_key_values=past_key_values,
67 | inputs_embeds=inputs_embeds,
68 | use_cache=use_cache,
69 | output_attentions=output_attentions,
70 | output_hidden_states=output_hidden_states,
71 | return_dict=return_dict
72 | )
73 |
74 | hidden_states = outputs[0]
75 | logits = self.lm_head(hidden_states)
76 |
77 | loss = None
78 | loss_lm = None
79 | loss_vm = None
80 | if labels is not None:
81 | # Shift so that tokens < n predict n
82 | shift_logits = logits[..., :-1, :].contiguous()
83 | shift_labels = labels[..., 1:].contiguous()
84 | # Flatten the tokens
85 | loss_fct_lm = CrossEntropyLoss()
86 | shift_logits = shift_logits.view(-1, self.config.vocab_size)
87 | shift_labels = shift_labels.view(-1)
88 | # Enable model/pipeline parallelism
89 | shift_labels = shift_labels.to(shift_logits.device)
90 | loss_lm = loss_fct_lm(shift_logits, shift_labels)
91 |
92 | ###
93 | if visual_labels is not None:
94 | shift_logits = logits[..., :-1, :].contiguous()
95 | shift_visual_labels = visual_labels[..., 1:, :].contiguous()
96 | shift_image_position_labels = image_position_labels[..., 1:].contiguous()
97 |
98 | loss_fct_vm = KLDivLoss(reduction="batchmean")
99 | # loss_fct_vm = CrossEntropyLoss()
100 | shift_visual_logits = shift_logits[shift_image_position_labels]
101 | shift_visual_labels = shift_visual_labels[shift_image_position_labels]
102 | # shift_visual_logits = shift_logits
103 | assert shift_visual_logits.shape == shift_visual_labels.shape
104 | shift_visual_labels = shift_visual_labels.to(shift_visual_logits.device)
105 |
106 | # stage3
107 | # shift_visual_logits = nn.functional.softmax(shift_visual_logits,dim=-1)
108 | # shift_visual_labels = nn.functional.log_softmax(shift_visual_labels, dim=-1)
109 | # loss_vm = loss_fct_vm(shift_visual_labels, shift_visual_logits)
110 |
111 | # stage4
112 | shift_visual_logits = nn.functional.log_softmax(shift_visual_logits,dim=-1)
113 | shift_visual_labels = nn.functional.softmax(shift_visual_labels, dim=-1)
114 | loss_vm = loss_fct_vm(shift_visual_logits, shift_visual_labels)
115 |
116 |
117 | if loss_lm is not None and loss_vm is not None:
118 | loss = loss_lm + loss_vm
119 | elif loss_lm is None:
120 | loss = loss_vm
121 | elif loss_vm is None:
122 | loss = loss_lm
123 | else:
124 | loss = None
125 | ###
126 |
127 | if not return_dict:
128 | output = (logits,) + outputs[1:]
129 | return (loss,) + output if loss is not None else output
130 |
131 | return CausalLMOutputWithPast(
132 | loss=loss,
133 | logits=logits,
134 | past_key_values=outputs.past_key_values,
135 | hidden_states=outputs.hidden_states,
136 | attentions=outputs.attentions,
137 | )
138 |
139 | def prepare_inputs_for_generation(
140 | self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
141 | ):
142 | if past_key_values:
143 | input_ids = input_ids[:, -1:]
144 |
145 | # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
146 | if inputs_embeds is not None and past_key_values is None:
147 | model_inputs = {"inputs_embeds": inputs_embeds}
148 | else:
149 | model_inputs = {"input_ids": input_ids}
150 |
151 | model_inputs.update(
152 | {
153 | "past_key_values": past_key_values,
154 | "use_cache": kwargs.get("use_cache"),
155 | "attention_mask": attention_mask,
156 | "images": kwargs.get("images", None),
157 | }
158 | )
159 | return model_inputs
160 |
161 |
--------------------------------------------------------------------------------
/visual_words/model/language_model/vw_pif_llama.py:
--------------------------------------------------------------------------------
1 | from typing import List, Optional, Tuple, Union
2 | import torch
3 | import torch.nn as nn
4 | from torch.nn import CrossEntropyLoss, KLDivLoss
5 | from transformers import AutoConfig, AutoModelForCausalLM, \
6 | LlamaConfig, LlamaModel, LlamaForCausalLM
7 | from transformers.modeling_outputs import CausalLMOutputWithPast
8 | from ..vw_pif_arch import vwMetaModel, vwPifMetaForCausalLM
9 |
10 | class LlavaConfig(LlamaConfig):
11 | model_type = "llava"
12 |
13 | class vwLlamaModel(vwMetaModel, LlamaModel):
14 | config_class = LlavaConfig
15 |
16 | def __init__(self, config: LlamaConfig):
17 | super(vwLlamaModel, self).__init__(config)
18 |
19 |
20 | class vwPifLlamaForCausalLM(LlamaForCausalLM, vwPifMetaForCausalLM):
21 | config_class = LlavaConfig
22 |
23 | def __init__(self, config):
24 | super(LlamaForCausalLM, self).__init__(config)
25 | self.model = vwLlamaModel(config)
26 |
27 | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
28 |
29 | self.vm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
30 | # Initialize weights and apply final processing
31 | self.post_init()
32 |
33 | def get_model(self):
34 | return self.model
35 |
36 | def forward(
37 | self,
38 | input_ids: torch.LongTensor = None,
39 | attention_mask: Optional[torch.Tensor] = None,
40 | past_key_values: Optional[List[torch.FloatTensor]] = None,
41 | inputs_embeds: Optional[torch.FloatTensor] = None,
42 | labels: Optional[torch.LongTensor] = None,
43 | use_cache: Optional[bool] = None,
44 | output_attentions: Optional[bool] = None,
45 | output_hidden_states: Optional[bool] = None,
46 | images: Optional[torch.FloatTensor] = None,
47 | return_dict: Optional[bool] = None,
48 | ) -> Union[Tuple, CausalLMOutputWithPast]:
49 | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
50 | output_hidden_states = (
51 | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
52 | )
53 | return_dict = return_dict if return_dict is not None else self.config.use_return_dict
54 | input_ids, attention_mask, past_key_values, inputs_embeds, labels, image_position_labels, textual_image_labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
55 | ###
56 | if image_position_labels is not None:
57 | image_position_labels=image_position_labels.bool()
58 | visual_labels=textual_image_labels
59 | else:
60 | visual_labels=None
61 | ###
62 |
63 | # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
64 | outputs = self.model(
65 | input_ids=input_ids,
66 | attention_mask=attention_mask,
67 | past_key_values=past_key_values,
68 | inputs_embeds=inputs_embeds,
69 | use_cache=use_cache,
70 | output_attentions=output_attentions,
71 | output_hidden_states=output_hidden_states,
72 | return_dict=return_dict
73 | )
74 |
75 | hidden_states = outputs[0]
76 | logits = self.lm_head(hidden_states)
77 |
78 | loss = None
79 | loss_lm = None
80 | loss_vm = None
81 | if labels is not None:
82 | # Shift so that tokens < n predict n
83 | shift_logits = logits[..., :-1, :].contiguous()
84 | shift_labels = labels[..., 1:].contiguous()
85 | # Flatten the tokens
86 | loss_fct_lm = CrossEntropyLoss()
87 | shift_logits = shift_logits.view(-1, self.config.vocab_size)
88 | shift_labels = shift_labels.view(-1)
89 | # Enable model/pipeline parallelism
90 | shift_labels = shift_labels.to(shift_logits.device)
91 | loss_lm = loss_fct_lm(shift_logits, shift_labels)
92 |
93 | ###
94 | if visual_labels is not None:
95 | shift_logits = logits[..., :-1, :].contiguous()
96 | shift_visual_labels = visual_labels[..., 1:, :].contiguous()
97 | shift_image_position_labels = image_position_labels[..., 1:].contiguous()
98 | loss_fct_vm = KLDivLoss(reduction="batchmean")
99 | # loss_fct_vm = CrossEntropyLoss()
100 | shift_visual_logits = shift_logits[shift_image_position_labels]
101 | shift_visual_labels = shift_visual_labels[shift_image_position_labels]
102 | # shift_visual_logits = shift_logits
103 | assert shift_visual_logits.shape == shift_visual_labels.shape
104 | assert (shift_visual_labels>= 0).all()
105 | shift_visual_labels = shift_visual_labels.to(shift_visual_logits.device)
106 |
107 | # stage3
108 | # shift_visual_logits = nn.functional.softmax(shift_visual_logits,dim=-1)
109 | # shift_visual_labels = nn.functional.log_softmax(shift_visual_labels, dim=-1)
110 | # loss_vm = loss_fct_vm(shift_visual_labels, shift_visual_logits)
111 |
112 | # stage4
113 | shift_visual_logits = nn.functional.log_softmax(shift_visual_logits,dim=-1)
114 | # Since the labels used here are already softmaxed in prepare_inputs_labels_for_multimodal(), they are commented out here.
115 | # shift_visual_labels = nn.functional.softmax(shift_visual_labels, dim=-1)
116 | shift_visual_labels=shift_visual_labels.to(shift_visual_logits.dtype)
117 | loss_vm = loss_fct_vm(shift_visual_logits, shift_visual_labels)
118 |
119 |
120 | if loss_lm is not None and loss_vm is not None:
121 | loss = loss_lm + loss_vm
122 | elif loss_lm is None:
123 | loss = loss_vm
124 | elif loss_vm is None:
125 | loss = loss_lm
126 | else:
127 | loss = None
128 | ###
129 |
130 | if not return_dict:
131 | output = (logits,) + outputs[1:]
132 | return (loss,) + output if loss is not None else output
133 |
134 | return CausalLMOutputWithPast(
135 | loss=loss,
136 | logits=logits,
137 | past_key_values=outputs.past_key_values,
138 | hidden_states=outputs.hidden_states,
139 | attentions=outputs.attentions,
140 | )
141 |
142 | def prepare_inputs_for_generation(
143 | self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
144 | ):
145 | if past_key_values:
146 | input_ids = input_ids[:, -1:]
147 |
148 | # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
149 | if inputs_embeds is not None and past_key_values is None:
150 | model_inputs = {"inputs_embeds": inputs_embeds}
151 | else:
152 | model_inputs = {"input_ids": input_ids}
153 |
154 | model_inputs.update(
155 | {
156 | "past_key_values": past_key_values,
157 | "use_cache": kwargs.get("use_cache"),
158 | "attention_mask": attention_mask,
159 | "images": kwargs.get("images", None),
160 | }
161 | )
162 | return model_inputs
163 |
164 |
--------------------------------------------------------------------------------
/visual_words/model/multimodal_encoder/builder.py:
--------------------------------------------------------------------------------
1 | import os
2 | from .clip_encoder import CLIPVisionTower
3 |
4 |
5 | def build_vision_tower(vision_tower_cfg, **kwargs):
6 | vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
7 | is_absolute_path_exists = os.path.exists(vision_tower)
8 | if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"):
9 | return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
10 |
11 | raise ValueError(f'Unknown vision tower: {vision_tower}')
12 |
--------------------------------------------------------------------------------
/visual_words/model/multimodal_encoder/clip_encoder.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 |
4 | from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
5 |
6 |
7 | class CLIPVisionTower(nn.Module):
8 | def __init__(self, vision_tower, args, delay_load=False):
9 | super().__init__()
10 |
11 | self.is_loaded = False
12 |
13 | self.vision_tower_name = vision_tower
14 | self.select_layer = args.mm_vision_select_layer
15 | self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
16 |
17 | if not delay_load:
18 | self.load_model()
19 | else:
20 | self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
21 |
22 | def load_model(self):
23 | self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
24 | self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
25 | self.vision_tower.requires_grad_(False)
26 |
27 | self.is_loaded = True
28 |
29 | def feature_select(self, image_forward_outs):
30 | image_features = image_forward_outs.hidden_states[self.select_layer]
31 | if self.select_feature == 'patch':
32 | image_features = image_features[:, 1:]
33 | elif self.select_feature == 'cls_patch':
34 | image_features = image_features
35 | else:
36 | raise ValueError(f'Unexpected select feature: {self.select_feature}')
37 | return image_features
38 |
39 | @torch.no_grad()
40 | def forward(self, images):
41 | if type(images) is list:
42 | image_features = []
43 | for image in images:
44 | image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
45 | image_feature = self.feature_select(image_forward_out).to(image.dtype)
46 | image_features.append(image_feature)
47 | else:
48 | image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
49 | image_features = self.feature_select(image_forward_outs).to(images.dtype)
50 |
51 | return image_features
52 |
53 | @property
54 | def dummy_feature(self):
55 | return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
56 |
57 | @property
58 | def dtype(self):
59 | return self.vision_tower.dtype
60 |
61 | @property
62 | def device(self):
63 | return self.vision_tower.device
64 |
65 | @property
66 | def config(self):
67 | if self.is_loaded:
68 | return self.vision_tower.config
69 | else:
70 | return self.cfg_only
71 |
72 | @property
73 | def hidden_size(self):
74 | return self.config.hidden_size
75 |
76 | @property
77 | def num_patches(self):
78 | return (self.config.image_size // self.config.patch_size) ** 2
79 |
--------------------------------------------------------------------------------
/visual_words/model/multimodal_projector/builder.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import re
4 |
5 |
6 | class IdentityMap(nn.Module):
7 | def __init__(self):
8 | super().__init__()
9 |
10 | def forward(self, x, *args, **kwargs):
11 | return x
12 |
13 | @property
14 | def config(self):
15 | return {"mm_projector_type": 'identity'}
16 |
17 |
18 | class SimpleResBlock(nn.Module):
19 | def __init__(self, channels):
20 | super().__init__()
21 | self.pre_norm = nn.LayerNorm(channels)
22 |
23 | self.proj = nn.Sequential(
24 | nn.Linear(channels, channels),
25 | nn.GELU(),
26 | nn.Linear(channels, channels)
27 | )
28 | def forward(self, x):
29 | x = self.pre_norm(x)
30 | return x + self.proj(x)
31 |
32 |
33 | def build_vision_projector(config, delay_load=False, **kwargs):
34 | projector_type = getattr(config, 'mm_projector_type', 'linear')
35 |
36 | if projector_type == 'linear':
37 | return nn.Linear(config.mm_hidden_size, config.hidden_size)
38 |
39 | mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
40 | if mlp_gelu_match:
41 | mlp_depth = int(mlp_gelu_match.group(1))
42 | modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
43 | for _ in range(1, mlp_depth):
44 | modules.append(nn.GELU())
45 | modules.append(nn.Linear(config.hidden_size, config.hidden_size))
46 | return nn.Sequential(*modules)
47 |
48 | if projector_type == 'identity':
49 | return IdentityMap()
50 |
51 | raise ValueError(f'Unknown projector type: {projector_type}')
52 |
--------------------------------------------------------------------------------
/visual_words/model/vw_arch.py:
--------------------------------------------------------------------------------
1 | from abc import ABC, abstractmethod
2 | import torch
3 | import torch.nn as nn
4 | from .multimodal_encoder.builder import build_vision_tower
5 | from .multimodal_projector.builder import build_vision_projector
6 | from visual_words.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
7 |
8 | class vwMetaModel:
9 |
10 | def __init__(self, config):
11 | super(vwMetaModel, self).__init__(config)
12 |
13 | if hasattr(config, "mm_vision_tower"):
14 | self.vision_tower = build_vision_tower(config, delay_load=True)
15 | self.mm_projector = build_vision_projector(config)
16 |
17 | def get_vision_tower(self):
18 | vision_tower = getattr(self, 'vision_tower', None)
19 | if type(vision_tower) is list:
20 | vision_tower = vision_tower[0]
21 | return vision_tower
22 |
23 | def initialize_vision_modules(self, model_args, fsdp=None):
24 | vision_tower = model_args.vision_tower
25 | mm_vision_select_layer = model_args.mm_vision_select_layer
26 | mm_vision_select_feature = model_args.mm_vision_select_feature
27 | pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
28 |
29 | self.config.mm_vision_tower = vision_tower
30 |
31 | if self.get_vision_tower() is None:
32 | vision_tower = build_vision_tower(model_args)
33 |
34 | if fsdp is not None and len(fsdp) > 0:
35 | self.vision_tower = [vision_tower]
36 | else:
37 | self.vision_tower = vision_tower
38 | else:
39 | if fsdp is not None and len(fsdp) > 0:
40 | vision_tower = self.vision_tower[0]
41 | else:
42 | vision_tower = self.vision_tower
43 | vision_tower.load_model()
44 |
45 | self.config.use_mm_proj = True
46 | self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
47 | self.config.mm_hidden_size = vision_tower.hidden_size
48 | self.config.mm_vision_select_layer = mm_vision_select_layer
49 | self.config.mm_vision_select_feature = mm_vision_select_feature
50 |
51 | if getattr(self, 'mm_projector', None) is None:
52 | self.mm_projector = build_vision_projector(self.config)
53 |
54 | if pretrain_mm_mlp_adapter is not None:
55 | mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
56 | def get_w(weights, keyword):
57 | return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
58 |
59 | self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
60 |
61 |
62 | class vwMetaForCausalLM(ABC):
63 |
64 | @abstractmethod
65 | def get_model(self):
66 | pass
67 |
68 | def get_vision_tower(self):
69 | return self.get_model().get_vision_tower()
70 |
71 | def encode_images(self, images):
72 | image_features = self.get_model().get_vision_tower()(images)
73 | image_features = self.get_model().mm_projector(image_features)
74 | return image_features
75 |
76 | def prepare_inputs_labels_for_multimodal(
77 | self, input_ids, attention_mask, past_key_values, labels, images
78 | ):
79 | vision_tower = self.get_vision_tower()
80 | if vision_tower is None or images is None or input_ids.shape[1] == 1:
81 | if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
82 | attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
83 | return input_ids, attention_mask, past_key_values, None, labels, None
84 |
85 | if type(images) is list or images.ndim == 5:
86 | concat_images = torch.cat([image for image in images], dim=0)
87 | image_features = self.encode_images(concat_images)
88 | split_sizes = [image.shape[0] for image in images]
89 | image_features = torch.split(image_features, split_sizes, dim=0)
90 | image_features = [x.flatten(0, 1) for x in image_features]
91 | else:
92 | image_features = self.encode_images(images)
93 |
94 | new_input_embeds = []
95 | new_labels = [] if labels is not None else None
96 | new_image_position_labels = [] if labels is not None else None
97 | cur_image_idx = 0
98 | for batch_idx, cur_input_ids in enumerate(input_ids):
99 | if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
100 | # multimodal LLM, but the current sample is not multimodal
101 | half_len = cur_input_ids.shape[0] // 2
102 | cur_image_features = image_features[cur_image_idx]
103 | cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
104 | cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
105 | cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
106 | new_input_embeds.append(cur_input_embeds)
107 | if labels is not None:
108 | new_labels.append(labels[batch_idx])
109 | new_image_position_labels.append(torch.zeros_like(labels[batch_idx],dtype=labels.dtype, device=labels.device))
110 | cur_image_idx += 1
111 | continue
112 | image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
113 | cur_new_input_embeds = []
114 | if labels is not None:
115 | cur_labels = labels[batch_idx]
116 | cur_new_labels = []
117 | cur_image_position_labels=torch.zeros_like(labels[batch_idx],dtype=labels.dtype, device=labels.device)
118 | cur_new_image_position_labels=[]
119 | assert cur_labels.shape == cur_input_ids.shape
120 | while image_token_indices.numel() > 0:
121 | cur_image_features = image_features[cur_image_idx]
122 | image_token_start = image_token_indices[0]
123 |
124 | cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
125 | cur_new_input_embeds.append(cur_image_features)
126 | if labels is not None:
127 | cur_new_labels.append(cur_labels[:image_token_start])
128 | cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
129 | cur_labels = cur_labels[image_token_start+1:]
130 | cur_new_image_position_labels.append(cur_image_position_labels[:image_token_start])
131 | cur_new_image_position_labels.append(torch.full((cur_image_features.shape[0],), 1.0, device=labels.device, dtype=labels.dtype))
132 | cur_image_position_labels=cur_image_position_labels[image_token_start+1:]
133 |
134 | cur_image_idx += 1
135 | if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
136 | cur_input_ids = cur_input_ids[image_token_start+2:]
137 | else:
138 | cur_input_ids = cur_input_ids[image_token_start+1:]
139 | image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
140 | if cur_input_ids.numel() > 0:
141 | if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
142 | cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
143 | else:
144 | cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
145 | if labels is not None:
146 | cur_new_labels.append(cur_labels)
147 | cur_new_image_position_labels.append(cur_image_position_labels)
148 | cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
149 | cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
150 | new_input_embeds.append(cur_new_input_embeds)
151 | if labels is not None:
152 | cur_new_labels = torch.cat(cur_new_labels, dim=0)
153 | new_labels.append(cur_new_labels)
154 | cur_new_image_position_labels = torch.cat(cur_new_image_position_labels, dim=0)
155 | new_image_position_labels.append(cur_new_image_position_labels)
156 |
157 | if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
158 | max_len = max(x.shape[0] for x in new_input_embeds)
159 |
160 | new_input_embeds_align = []
161 | for cur_new_embed in new_input_embeds:
162 | cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
163 | new_input_embeds_align.append(cur_new_embed)
164 | new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
165 |
166 | if labels is not None:
167 | new_labels_align = []
168 | _new_labels = new_labels
169 | for cur_new_label in new_labels:
170 | cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
171 | new_labels_align.append(cur_new_label)
172 | new_labels = torch.stack(new_labels_align, dim=0)
173 | new_image_position_labels_align = []
174 | for cur_new_image_position_label in new_image_position_labels:
175 | cur_new_image_position_label = torch.cat((cur_new_image_position_label, torch.full((max_len - cur_new_image_position_label.shape[0],), 0.0, dtype=cur_new_image_position_label.dtype, device=cur_new_image_position_label.device)), dim=0)
176 | new_image_position_labels_align.append(cur_new_image_position_label)
177 | new_image_position_labels = torch.stack(new_image_position_labels_align, dim=0)
178 |
179 | if attention_mask is not None:
180 | new_attention_mask = []
181 | for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
182 | new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
183 | new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
184 | cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
185 | new_attention_mask.append(cur_new_attention_mask)
186 | attention_mask = torch.stack(new_attention_mask, dim=0)
187 | assert attention_mask.shape == new_labels.shape
188 | else:
189 | new_input_embeds = torch.stack(new_input_embeds, dim=0)
190 | if labels is not None:
191 | new_labels = torch.stack(new_labels, dim=0)
192 | new_image_position_labels=torch.stack(new_image_position_labels)
193 |
194 | if attention_mask is not None:
195 | new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
196 | attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
197 | assert attention_mask.shape == new_input_embeds.shape[:2]
198 | if new_image_position_labels is not None and new_labels is not None:
199 | assert new_image_position_labels.shape==new_labels.shape
200 | return None, attention_mask, past_key_values, new_input_embeds, new_labels, new_image_position_labels
201 |
--------------------------------------------------------------------------------
/visual_words/model/vw_pif_arch.py:
--------------------------------------------------------------------------------
1 | from abc import ABC, abstractmethod
2 | import torch
3 | import torch.nn as nn
4 | from .multimodal_encoder.builder import build_vision_tower
5 | from .multimodal_projector.builder import build_vision_projector
6 | from visual_words.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
7 |
8 | class vwMetaModel:
9 |
10 | def __init__(self, config):
11 | super(vwMetaModel, self).__init__(config)
12 |
13 | if hasattr(config, "mm_vision_tower"):
14 | self.vision_tower = build_vision_tower(config, delay_load=True)
15 | self.mm_projector = build_vision_projector(config)
16 |
17 | def get_vision_tower(self):
18 | vision_tower = getattr(self, 'vision_tower', None)
19 | if type(vision_tower) is list:
20 | vision_tower = vision_tower[0]
21 | return vision_tower
22 |
23 | def initialize_vision_modules(self, model_args, fsdp=None):
24 | vision_tower = model_args.vision_tower
25 | mm_vision_select_layer = model_args.mm_vision_select_layer
26 | mm_vision_select_feature = model_args.mm_vision_select_feature
27 | pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
28 |
29 | self.config.mm_vision_tower = vision_tower
30 |
31 | if self.get_vision_tower() is None:
32 | vision_tower = build_vision_tower(model_args)
33 |
34 | if fsdp is not None and len(fsdp) > 0:
35 | self.vision_tower = [vision_tower]
36 | else:
37 | self.vision_tower = vision_tower
38 | else:
39 | if fsdp is not None and len(fsdp) > 0:
40 | vision_tower = self.vision_tower[0]
41 | else:
42 | vision_tower = self.vision_tower
43 | vision_tower.load_model()
44 |
45 | self.config.use_mm_proj = True
46 | self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
47 | self.config.mm_hidden_size = vision_tower.hidden_size
48 | self.config.mm_vision_select_layer = mm_vision_select_layer
49 | self.config.mm_vision_select_feature = mm_vision_select_feature
50 |
51 | if getattr(self, 'mm_projector', None) is None:
52 | self.mm_projector = build_vision_projector(self.config)
53 |
54 | if pretrain_mm_mlp_adapter is not None:
55 | mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
56 | def get_w(weights, keyword):
57 | return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
58 |
59 | self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
60 |
61 |
62 | class vwPifMetaForCausalLM(ABC):
63 |
64 | @abstractmethod
65 | def get_model(self):
66 | pass
67 |
68 | def get_vision_tower(self):
69 | return self.get_model().get_vision_tower()
70 |
71 | def encode_images(self, images):
72 | image_features = self.get_model().get_vision_tower()(images)
73 | image_features = self.get_model().mm_projector(image_features)
74 | return image_features
75 |
76 | def prepare_inputs_labels_for_multimodal(
77 | self, input_ids, attention_mask, past_key_values, labels, images
78 | ):
79 | vision_tower = self.get_vision_tower()
80 | if vision_tower is None or images is None or input_ids.shape[1] == 1:
81 | if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
82 | attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
83 | ###
84 | return input_ids, attention_mask, past_key_values, None, labels, None, None
85 | ###
86 |
87 | if type(images) is list or images.ndim == 5:
88 | concat_images = torch.cat([image for image in images], dim=0)
89 | image_features = self.encode_images(concat_images)
90 | ###
91 | image_features_shape=image_features.shape
92 | textual_image_score = self.vm_head(image_features)
93 | textual_image_score = nn.functional.softmax(textual_image_score)
94 | embed_tokens = self.get_model().embed_tokens.weight
95 | image_features=torch.einsum("id,li->ld",[embed_tokens,textual_image_score.to(embed_tokens.device)])
96 | assert image_features_shape==image_features.shape
97 | ###
98 | split_sizes = [image.shape[0] for image in images]
99 | image_features = torch.split(image_features, split_sizes, dim=0)
100 | image_features = [x.flatten(0, 1) for x in image_features]
101 | else:
102 | image_features = self.encode_images(images)
103 | ###
104 | image_features_shape=image_features.shape
105 | textual_image_score = self.vm_head(image_features)
106 | textual_image_score = nn.functional.softmax(textual_image_score,dim=-1)
107 | embed_tokens = self.get_model().embed_tokens.weight
108 | image_features=torch.einsum("id,bli->bld",[embed_tokens,textual_image_score.to(embed_tokens.device)])
109 | assert image_features_shape==image_features.shape
110 | ###
111 | new_input_embeds = []
112 | new_labels = [] if labels is not None else None
113 | ###
114 | new_image_position_labels = [] if labels is not None else None
115 | new_textual_image_labels = [] if labels is not None else None
116 | ###
117 | cur_image_idx = 0
118 | for batch_idx, cur_input_ids in enumerate(input_ids):
119 | if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
120 | # multimodal LLM, but the current sample is not multimodal
121 | half_len = cur_input_ids.shape[0] // 2
122 | cur_image_features = image_features[cur_image_idx]
123 | cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
124 | cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
125 | cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
126 | new_input_embeds.append(cur_input_embeds)
127 | if labels is not None:
128 | new_labels.append(labels[batch_idx])
129 | ###
130 | image_label_l=labels[batch_idx].size()[0]
131 | image_label_d=self.get_model().vocab_size
132 | new_textual_image_labels.append(
133 | torch.full((image_label_l,image_label_d),-100,dtype=labels.dtype, device=labels.device)
134 | )
135 | new_image_position_labels.append(torch.zeros_like(labels[batch_idx],dtype=labels.dtype, device=labels.device))
136 | ###
137 | cur_image_idx += 1
138 | continue
139 | image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
140 | cur_new_input_embeds = []
141 | if labels is not None:
142 | cur_labels = labels[batch_idx]
143 | cur_new_labels = []
144 | ###
145 | image_label_l=labels[batch_idx].size()[0]
146 | image_label_d=self.get_model().vocab_size
147 | cur_textual_image_labels=torch.full((image_label_l,image_label_d),-100,dtype=labels.dtype, device=labels.device)
148 | cur_new_textual_image_labels=[]
149 | cur_image_position_labels=torch.zeros_like(labels[batch_idx],dtype=labels.dtype, device=labels.device)
150 | cur_new_image_position_labels=[]
151 | ###
152 | assert cur_labels.shape == cur_input_ids.shape
153 | while image_token_indices.numel() > 0:
154 | cur_image_features = image_features[cur_image_idx]
155 | image_token_start = image_token_indices[0]
156 | cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
157 | cur_new_input_embeds.append(cur_image_features)
158 | if labels is not None:
159 | cur_new_labels.append(cur_labels[:image_token_start])
160 | cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
161 | cur_labels = cur_labels[image_token_start+1:]
162 | ###
163 | cur_new_textual_image_labels.append(cur_textual_image_labels[:image_token_start])
164 | cur_new_textual_image_labels.append(textual_image_score[cur_image_idx])
165 | cur_textual_image_labels=cur_textual_image_labels[image_token_start+1:]
166 | cur_new_image_position_labels.append(cur_image_position_labels[:image_token_start])
167 | cur_new_image_position_labels.append(torch.full((cur_image_features.shape[0],), 1.0, device=labels.device, dtype=labels.dtype))
168 | cur_image_position_labels=cur_image_position_labels[image_token_start+1:]
169 | ###
170 | cur_image_idx += 1
171 | if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
172 | cur_input_ids = cur_input_ids[image_token_start+2:]
173 | else:
174 | cur_input_ids = cur_input_ids[image_token_start+1:]
175 | image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
176 | if cur_input_ids.numel() > 0:
177 | if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
178 | cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
179 | else:
180 | cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
181 | if labels is not None:
182 | cur_new_labels.append(cur_labels)
183 | ###
184 | cur_new_textual_image_labels.append(cur_textual_image_labels)
185 | cur_new_image_position_labels.append(cur_image_position_labels)
186 | ###
187 | cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
188 | cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
189 | new_input_embeds.append(cur_new_input_embeds)
190 | if labels is not None:
191 | cur_new_labels = torch.cat(cur_new_labels, dim=0)
192 | new_labels.append(cur_new_labels)
193 | ###
194 | cur_new_textual_image_labels = torch.cat(cur_new_textual_image_labels, dim=0)
195 | new_textual_image_labels.append(cur_new_textual_image_labels)
196 | cur_new_image_position_labels = torch.cat(cur_new_image_position_labels, dim=0)
197 | new_image_position_labels.append(cur_new_image_position_labels)
198 | ###
199 |
200 | if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
201 | max_len = max(x.shape[0] for x in new_input_embeds)
202 |
203 | new_input_embeds_align = []
204 | for cur_new_embed in new_input_embeds:
205 | cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
206 | new_input_embeds_align.append(cur_new_embed)
207 | new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
208 |
209 | if labels is not None:
210 | new_labels_align = []
211 | _new_labels = new_labels
212 | for cur_new_label in new_labels:
213 | cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
214 | new_labels_align.append(cur_new_label)
215 | new_labels = torch.stack(new_labels_align, dim=0)
216 | ###
217 | new_textual_image_labels_align = []
218 | for cur_new_textual_image_label in new_textual_image_labels:
219 | cur_new_textual_image_label = torch.cat((cur_new_textual_image_label, torch.full((max_len - cur_new_textual_image_label.shape[0],cur_new_textual_image_label.shape[1]), -100, dtype=cur_new_textual_image_label.dtype, device=cur_new_textual_image_label.device)), dim=0)
220 | new_textual_image_labels_align.append(cur_new_textual_image_label)
221 | new_textual_image_labels = torch.stack(new_textual_image_labels_align, dim=0)
222 |
223 | new_image_position_labels_align = []
224 | for cur_new_image_position_label in new_image_position_labels:
225 | cur_new_image_position_label = torch.cat((cur_new_image_position_label, torch.full((max_len - cur_new_image_position_label.shape[0],), 0.0, dtype=cur_new_image_position_label.dtype, device=cur_new_image_position_label.device)), dim=0)
226 | new_image_position_labels_align.append(cur_new_image_position_label)
227 | new_image_position_labels = torch.stack(new_image_position_labels_align, dim=0)
228 | ###
229 |
230 | if attention_mask is not None:
231 | new_attention_mask = []
232 | for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
233 | new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
234 | new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
235 | cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
236 | new_attention_mask.append(cur_new_attention_mask)
237 | attention_mask = torch.stack(new_attention_mask, dim=0)
238 | assert attention_mask.shape == new_labels.shape
239 | else:
240 | new_input_embeds = torch.stack(new_input_embeds, dim=0)
241 | if labels is not None:
242 | new_labels = torch.stack(new_labels, dim=0)
243 | ###
244 | new_textual_image_labels=torch.stack(new_textual_image_labels)
245 | new_image_position_labels=torch.stack(new_image_position_labels)
246 | ###
247 |
248 | if attention_mask is not None:
249 | new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
250 | attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
251 | assert attention_mask.shape == new_input_embeds.shape[:2]
252 | ###
253 | if new_textual_image_labels is not None and new_labels is not None:
254 | assert new_textual_image_labels.shape[:-1]==new_labels.shape
255 | if new_image_position_labels is not None and new_labels is not None:
256 | assert new_image_position_labels.shape==new_labels.shape
257 | return None, attention_mask, past_key_values, new_input_embeds, new_labels, new_image_position_labels, new_textual_image_labels
258 |
--------------------------------------------------------------------------------
/visual_words/utils.py:
--------------------------------------------------------------------------------
1 | import datetime
2 | import logging
3 | import logging.handlers
4 | import os
5 | import sys
6 |
7 | import requests
8 |
9 | from visual_words.constants import LOGDIR
10 |
11 | server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
12 | moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
13 |
14 | handler = None
15 |
16 |
17 | def build_logger(logger_name, logger_filename):
18 | global handler
19 |
20 | formatter = logging.Formatter(
21 | fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
22 | datefmt="%Y-%m-%d %H:%M:%S",
23 | )
24 |
25 | # Set the format of root handlers
26 | if not logging.getLogger().handlers:
27 | logging.basicConfig(level=logging.INFO)
28 | logging.getLogger().handlers[0].setFormatter(formatter)
29 |
30 | # Redirect stdout and stderr to loggers
31 | stdout_logger = logging.getLogger("stdout")
32 | stdout_logger.setLevel(logging.INFO)
33 | sl = StreamToLogger(stdout_logger, logging.INFO)
34 | sys.stdout = sl
35 |
36 | stderr_logger = logging.getLogger("stderr")
37 | stderr_logger.setLevel(logging.ERROR)
38 | sl = StreamToLogger(stderr_logger, logging.ERROR)
39 | sys.stderr = sl
40 |
41 | # Get logger
42 | logger = logging.getLogger(logger_name)
43 | logger.setLevel(logging.INFO)
44 |
45 | # Add a file handler for all loggers
46 | if handler is None:
47 | os.makedirs(LOGDIR, exist_ok=True)
48 | filename = os.path.join(LOGDIR, logger_filename)
49 | handler = logging.handlers.TimedRotatingFileHandler(
50 | filename, when='D', utc=True)
51 | handler.setFormatter(formatter)
52 |
53 | for name, item in logging.root.manager.loggerDict.items():
54 | if isinstance(item, logging.Logger):
55 | item.addHandler(handler)
56 |
57 | return logger
58 |
59 |
60 | class StreamToLogger(object):
61 | """
62 | Fake file-like stream object that redirects writes to a logger instance.
63 | """
64 | def __init__(self, logger, log_level=logging.INFO):
65 | self.terminal = sys.stdout
66 | self.logger = logger
67 | self.log_level = log_level
68 | self.linebuf = ''
69 |
70 | def __getattr__(self, attr):
71 | return getattr(self.terminal, attr)
72 |
73 | def write(self, buf):
74 | temp_linebuf = self.linebuf + buf
75 | self.linebuf = ''
76 | for line in temp_linebuf.splitlines(True):
77 | # From the io.TextIOWrapper docs:
78 | # On output, if newline is None, any '\n' characters written
79 | # are translated to the system default line separator.
80 | # By default sys.stdout.write() expects '\n' newlines and then
81 | # translates them so this is still cross platform.
82 | if line[-1] == '\n':
83 | self.logger.log(self.log_level, line.rstrip())
84 | else:
85 | self.linebuf += line
86 |
87 | def flush(self):
88 | if self.linebuf != '':
89 | self.logger.log(self.log_level, self.linebuf.rstrip())
90 | self.linebuf = ''
91 |
92 |
93 | def disable_torch_init():
94 | """
95 | Disable the redundant torch default initialization to accelerate model creation.
96 | """
97 | import torch
98 | setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
99 | setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
100 |
101 |
102 | def violates_moderation(text):
103 | """
104 | Check whether the text violates OpenAI moderation API.
105 | """
106 | url = "https://api.openai.com/v1/moderations"
107 | headers = {"Content-Type": "application/json",
108 | "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
109 | text = text.replace("\n", "")
110 | data = "{" + '"input": ' + f'"{text}"' + "}"
111 | data = data.encode("utf-8")
112 | try:
113 | ret = requests.post(url, headers=headers, data=data, timeout=5)
114 | flagged = ret.json()["results"][0]["flagged"]
115 | except requests.exceptions.RequestException as e:
116 | flagged = False
117 | except KeyError as e:
118 | flagged = False
119 |
120 | return flagged
121 |
122 |
123 | def pretty_print_semaphore(semaphore):
124 | if semaphore is None:
125 | return "None"
126 | return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
127 |
--------------------------------------------------------------------------------