├── .idea
├── vcs.xml
├── modules.xml
├── nnq_mc_study.iml
└── workspace.xml
├── LICENSE
├── .gitignore
├── AwesomePapers.md
└── README.md
/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/.idea/nnq_mc_study.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2019 ai-robotics-kr
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 | MANIFEST
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *.cover
47 | .hypothesis/
48 | .pytest_cache/
49 |
50 | # Translations
51 | *.mo
52 | *.pot
53 |
54 | # Django stuff:
55 | *.log
56 | local_settings.py
57 | db.sqlite3
58 |
59 | # Flask stuff:
60 | instance/
61 | .webassets-cache
62 |
63 | # Scrapy stuff:
64 | .scrapy
65 |
66 | # Sphinx documentation
67 | docs/_build/
68 |
69 | # PyBuilder
70 | target/
71 |
72 | # Jupyter Notebook
73 | .ipynb_checkpoints
74 |
75 | # pyenv
76 | .python-version
77 |
78 | # celery beat schedule file
79 | celerybeat-schedule
80 |
81 | # SageMath parsed files
82 | *.sage.py
83 |
84 | # Environments
85 | .env
86 | .venv
87 | env/
88 | venv/
89 | ENV/
90 | env.bak/
91 | venv.bak/
92 |
93 | # Spyder project settings
94 | .spyderproject
95 | .spyproject
96 |
97 | # Rope project settings
98 | .ropeproject
99 |
100 | # mkdocs documentation
101 | /site
102 |
103 | # mypy
104 | .mypy_cache/
105 |
--------------------------------------------------------------------------------
/.idea/workspace.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 | 1565625657544
86 |
87 |
88 | 1565625657544
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
--------------------------------------------------------------------------------
/AwesomePapers.md:
--------------------------------------------------------------------------------
1 | ## Neural Network Quantization & Compact Networks Design Awesome Papers!
2 |
3 | **1. Overall Presentation**
4 | - Naver techtalk : "https://www.slideshare.net/mobile/NaverEngineering/designing-more-efficient-convolution-neural-network-122869307"
5 | - Song Han. "Accelerating inference at the edge" : https://www.hotchips.org/hc30/0tutorials/T2_Part_2_Song_Hanv3.pdf
6 |
7 |
8 | **0. Binarized Neural Network & Its Training**
9 | - *Courbariaux, Matthieu, et al. “Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1.” arXiv preprint arXiv:1602.02830 (2016).*
10 | - Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks." European Conference on Computer Vision. Springer, Cham, 2016.
11 | - *Darabi, Sajad, et al. “BNN+: Improved binary network training.” arXiv preprint arXiv:1812.11800 (2018).*
12 | - Galloway, Angus, Graham W. Taylor, and Medhat Moussa. “Attacking binarized neural networks.” arXiv preprint arXiv:1711.00449 (2017).
13 | - *Zhou, Shuchang, et al. “Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients.” arXiv preprint arXiv:1606.06160 (2016).*
14 | - Wang, Ziwei, et al. “Learning Channel-Wise Interactions for Binary Convolutional Neural Networks.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
15 | - Hou, Lu, Quanming Yao, and James T. Kwok. "Loss-aware binarization of deep networks." Proceedings of the Fifth International Conference on Learning Representations (ICLR), Toulon, France, Apr 2017.
16 |
17 | **1. Hardware for BNN (Edge device)**
18 | - *Yonekawa, Haruyoshi, and Hiroki Nakahara. “On-chip memory based binarized convolutional deep neural network applying batch normalization free technique on an fpga.” 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2017.*
19 | - *Umuroglu, Yaman, et al. “Finn: A framework for fast, scalable binarized neural network inference.” Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 2017.*
20 |
21 | **2. Multi-bit Quantization**
22 | - Jung, Sangil, et al. “Learning to quantize deep networks by optimizing quantization intervals with task loss.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
23 | - Chen Xu, Jianqiang Yao, et al. “Alternating Multi-bit Quantization for Recurrent Neural Networks” International Conference on Learning Representations (ICLR), 2018
24 | - Zhang, Dongqing, et al. “Lq-nets: Learned quantization for highly accurate and compact deep neural networks.” Proceedings of the European Conference on Computer Vision (ECCV). 2018.
25 | - Lee, Dongsoo, Parichay Kapoor, and Byeongwook Kim. “Deeptwist: Learning model compression via occasional weight distortion.” arXiv preprint arXiv:1810.12823 (2018).
26 | - Hou, Lu, and James T. Kwok. "Loss-aware weight quantization of deep networks." Proceedings of the Sixth International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, Apr 2018.
27 | - Lu Hou, Ruiliang Zhang, James T. Kwok. "Analysis of Quantized Models" Proceedings of the Seventh International Conference on Learning Representations (ICLR), New Orleans, USA, May 2019.
28 |
29 | **3. Neural Network Model Compression**
30 |
31 | Quantization
32 | - Kuan Wang, Song Han, et al. "HAQ: Hardware-Aware Automated Quantization with Mixed Precision" IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2019)
33 | - Jacob, Benoit, et al. "Quantization and training of neural networks for efficient integer-arithmetic-only inference." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
34 | - Zhu, Chenzhuo, et al. “Trained ternary quantization.” arXiv preprint arXiv:1612.01064 (2016).
35 |
36 | Distillation
37 | - Elliot J. Crowley, et al. "Moonshine: Distilling with Cheap Convolutions" arXiv preprint arXiv:1711.02613 (2019)
38 | - Polino, Antonio, Razvan Pascanu, and Dan Alistarh. “Model compression via distillation and quantization.” arXiv preprint arXiv:1802.05668 (2018).
39 |
40 | Prunning
41 | - Song Han, Huizi Mao, William J. Dally. "Deep Compression :Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding"
42 | - Zhuang, Zhuangwei, et al. “Discrimination-aware channel pruning for deep neural networks.” Advances in Neural Information Processing Systems. 2018.
43 |
44 | Hashing
45 | - Han Zhu, Mingsheng Long, et al. "Deep Hashing Network for Efficient Similarity Retrieval"
46 | - Dayan Wu, Qi Dai, et al. "Deep Incremental Hashing Network for Efficient Image Retrieval"
47 |
48 | Automl
49 | - He, Yihui, et al. “Amc: Automl for model compression and acceleration on mobile devices.” Proceedings of the European Conference on Computer Vision (ECCV). 2018.
50 |
51 |
52 | **4. Efficient Neural Network Design**
53 |
54 | Residual Connection
55 | - Mark Sandler, Andrew Howard, et al. "MobileNetV2: Inverted Residuals and Linear Bottlenecks"
56 | - Andreas Veit, Michael Wilber, et al. "Residual Networks Behave LIke Ensembles of Relatively Shallow Networks"
57 |
58 | Dilated Convolution
59 | - Junho Yim1 Donggyu Joo1 Jihoon Bae2 Junmo Kim1 "A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning"
60 |
61 | Point-wise Convolution
62 | - Iandola, Forrest N., et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size.” arXiv preprint arXiv:1602.07360 (2016).
63 | - Gholami, Amir, et al. “Squeezenext: Hardware-aware neural network design.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018.
64 | - Howard, Andrew G., et al. “Mobilenets: Efficient convolutional neural networks for mobile vision applications.” arXiv preprint arXiv:1704.04861 (2017).
65 |
66 | Grouped Convolution
67 | - Xiangyu Zhang, Xinyu Zhou, et al. "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices"
68 |
69 | Dense Convolution
70 | - Gao Huang, Zhuang Liu, et al. "Densely Connected Convolutional Networks", CVPR (2017)
71 |
72 | Depth-wise (Seperable) Convolution
73 | - François Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions" arXiv preprint arXiv:1610.02357
74 | - (Mobilenets)
75 |
76 | (Shift)
77 | - Weijie Chen, Di Xie, et al. "All You Need is a Few Shifts: Designing Efficient Convolutional Neural Networks for Image Classification" CVPR (2019)
78 | - Bichen Wu, Alvin Wan, et al. "Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions" arXiv preprint arXiv:1711.08141 (2017)
79 |
80 | Compound Scaling
81 | - Tan, Mingxing, and Quoc V. Le. “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.” arXiv preprint arXiv:1905.11946 (2019). + EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML (https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html)
82 |
83 |
84 |
85 | **4. Hardware for Quantized Neural Network**
86 | - Lee, Jinmook, et al. “Unpu: An energy-efficient deep neural network accelerator with fully variable weight bit precision.” IEEE Journal of Solid-State Circuits 54.1 (2018): 173-185.
87 | - Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding." arXiv preprint arXiv:1510.00149 (2015).
88 | - Yu, Jiecao, et al. "Scalpel: Customizing dnn pruning to the underlying hardware parallelism." ACM SIGARCH Computer Architecture News 45.2 (2017): 548-560.
89 |
90 |
91 | **5. Hardware awareness for Accelerating**
92 |
93 | - EIE [Han, 2016] "EIE: Efficient Inference Engine on Compressed Deep Neural Network"
94 | - ESE [Han, 2017] "ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA"
95 | - SCNN [Parashar, 2017] "SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks"
96 | - DLA [NVIDIA, 2017] "DLA" : https://www.hotchips.org/hc30/2conf/2.08_NVidia_DLA_Nvidia_DLA_HotChips_10Aug18.pdf
97 |
98 | Computation Specialization
99 | - Clement Farabet, Berin Martini et al. "NeuFlow: A Runtime Reconfigurable Dataflow Processor for Vision"
100 | - Norman P. Jouppi, Cliff Young, Google et al. "In-Datacenter Performance Analysis of a Tensor Processing Unit"
101 | - A Neural Network Accelerator Exploiting Both Inter-and Intra-Neuron Parallelism
102 |
103 | Memory centric Specialization
104 | - Diannao Family [Chen, 2014-2016]
105 | - Eyeriss [Chen, 2016]
106 |
107 | Special CNN
108 | - Kiseok Kwon. "Co-Design of Deep Neural Nets and Neural Net Accelerators for Embedded Vision Applications" (2018)
109 | - DeePhi’s DPU-v2
110 | - Baohua Sun, Lin Yang, "Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for Mobile and Embedded Applications"
111 | - ShiftNet Accelerator [Wu, 2018]
112 |
113 | **6. Compiler Optimization**
114 |
115 | - DLVM- A modern compiler framework for neural network DSLs
116 | - DLVM- A MODERN COMPILER INFRASTRUCTURE FOR DEEP LEARNING SYSTEMS
117 | - A modern compiler infrastructure for deep learning systems with adjoint code generation in a domain-specific IR
118 | - Compiling machine learning programs via high-level tracing
119 | - TVM- An Automated End-to-End Optimizing Compiler for Deep Learning
120 | - Halide- A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines
121 | - Glow: Graph Lowering Compiler Techniques for Neural Networks
122 | - TensorFlow XLA compiler and the NNVM compiler (논문 아님)
123 | - Cambricon: An Instruction Set Architecture for Neural Networks
124 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Neural Network Quantization & Compact Networks Design
2 |
3 | This is a repository of Facebook Group *AI Robotics KR*.
4 |
5 | *nnq_cnd_study* stands for Neural Network Quantization & Compact Networks Design Study.
6 |
7 | It will be focusing on paper reviews for deep neural networks, model compression, compact network design, and Quantization.
8 |
9 | Online Study supported by AI Robotics KR group have been ongoing since September 1st.
10 |
11 | ## Prerequisite
12 |
13 | - Basic Understanding for deep learning algorithms like DNN, RNN, CNN is preferred
14 | - Passion for learning
15 | - Persistence
16 | - Motivation
17 |
18 |
19 | ## Learning Objectives
20 |
21 | - Deep understanding for Deep Neural Network Quantization & Compact Networks Design Algorithms
22 |
23 |
24 | ## How to Study
25 |
26 | - Online Presentation
27 | - Q & A
28 |
29 | ## Participants:
30 |
31 | **Slack** : @Hwigeon Oh, @Seojin Kim, @DongJunMin, @이경준, @Hyunwoo Kim, @Constant, @임병학, @KimYoungBin, @Sanggun Kim, @martin, @Joh, @김석중, @Yongwoo Kim, @MinSeop Lee, @Woz.D, @inwoong.lee (이인웅), @Hoyeolchoi, @Bochan Kim, @Young Seok Kim, @taehkim, @Seongmock Yoo, @Mike.Oh, @최승호, @Davidlee, @Stella Yang, @sejungkwon, @Jaeyoung Lee, @Hyungjun Kim, @tae-ha, @Jeonghoon.
32 |
33 | ------------------------------------
34 |
35 | ## Contributors:
36 |
37 | **Main Study Learder**: Jeonghoon Kim(GitHub:IntelligenceDatum).
38 |
39 | **Compact Networks Design Leader**: Seo Yeon Stella Yang(GitHub:howtowhy).
40 |
41 | **Presenter**:Jeonghoon Kim, Stella Yang, Sanggun Kim, Hyunwoo Kim, Seojin Kim, Hwigeon Oh, Seojin Kim, Seokjoong Kim, Martin Hwang, Youngbin Kim, Sang-soo Park, Jaeyoung Lee, Yongwoo Kim, Hyungjun Kim, Sejung Kwon, 이경준, Bochan Kim, 이인웅.
42 |
43 | ------------------------------------
44 |
45 | ## Presentation with Video :
46 |
47 | Neural Network Quantization & Compact Network Design Study
48 |
49 | ### Week1: Introduction of NNQ&CND
50 | **Title: A Piece of Weight**
51 | Presentor: 김정훈 (Jeonghoon Kim)
52 | PPT: https://drive.google.com/open?id=1RQAiIFX7wOUMiZXPCIZbXb_6DtLlV38e
53 | Video: https://youtu.be/pohMFz-uQJ0
54 |
55 | **Title: Compact Network Design Overview**
56 | Presentor: Stella Yang
57 | Video: https://youtu.be/R3pE-pGBbBg
58 | PPT: https://drive.google.com/open?id=1bTy68uO1Ta4tJLYDLA7d6GJfRx1YbcM4
59 |
60 |
61 | ### Week2: BNN & MobileNet
62 | **Paper: Binarized Neural Networks:Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1**
63 | Presentor: 김정훈 (Jeonghoon Kim)
64 | Video: https://youtu.be/n89CsZpZcNk
65 | PPT: https://drive.google.com/open?id=1DoeGj-goeI5WMIu5LPTQ6aFZ2czl7eNP
66 |
67 | **Paper: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications**
68 | Presentor: 김상근 (Sanggun Kim)
69 | Video: https://youtu.be/GyQUBLDQEJI
70 | PPT: https://drive.google.com/open?id=1oQI8Pv7N66pZHflx0CyMIyahhbA-Dce7
71 |
72 | ### Week3: FINN (BNNs Hardware) & MobileNetV2
73 | **Paper: FINN: A Framework for Fast, Scalable Binarized Neural Network Inference**
74 | Presentor: 김현우 (Hyun-Woo Kim)
75 | Video: https://youtu.be/DjS8wvXaE8c
76 | PPT: https://drive.google.com/file/d/11uj-UaLiOEBIxExpo43OV5l6b4MSFTuD/view?usp=sharing
77 |
78 | **Paper: MobileNetV2: Inverted Residuals and Linear Bottlenecks**
79 | Presentor: 김서진
80 | Video: not available
81 | PPT: https://drive.google.com/file/d/1NTfct371Lpasly8XW7zt7OzOTh87sVLA/view?usp=sharing
82 |
83 | ### Week4: XNOR-Net & SqueezeNet
84 | **Paper: XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks**
85 | Presentor: 오휘건
86 | Video: https://youtu.be/N6oP-8E5cWA
87 | PPT: https://drive.google.com/open?id=1bz3C-fFVSCrOdnbi-8lf_2NS1yhpGdVO
88 |
89 | **Paper: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size**
90 | Presentor: Martin Hwang
91 | Video: https://youtu.be/eH5O5nDiFoY
92 | PPT: https://drive.google.com/open?id=1HNRhl1lxb7oe0gFsbv9f2fduCr_f_G4O
93 |
94 | ### Week5: BNN+ & SqueezeNext
95 | **Paper: BNN+: Improved Binary Network Training**
96 | Presentor: 김영빈
97 | Video: https://youtu.be/M7-lBoiFHRI
98 |
99 | **Paper: SqueezeNext: Hardware-Aware Neural Network Design**
100 | Presentor: 박상수
101 | Video: https://youtu.be/sbKl92j9Xrs
102 |
103 | ### Week6: Loss-aware Binarization
104 | **Paper: Loss-aware Binarization of Deep Networks**
105 | Presentor: 이재영 (Jaeyoung Lee)
106 | Video: https://youtu.be/Bs3SVcvr5cA
107 |
108 | ### Week7: Scalpel, Hardware-aware pruning
109 | **Paper: Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism**
110 | Presentor: Constant (Sang-Soo) Park
111 | Video: https://youtu.be/DmCCREJ1zAA
112 |
113 | ### WEEK8: DOREFANET && SHUFFLENET
114 | **Paper: Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients**
115 | Presentor: Yongwoo Kim
116 | Video: https://youtu.be/DEnQKMXzx7o
117 |
118 | **Paper: ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices**
119 | Presentor: Jaeyoung Lee
120 | Video: https://youtu.be/l-Q06pAfBHw
121 |
122 | ### WEEK9: LQ-NETS && BI-REAL NETS
123 | **Paper: LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks**
124 | Presentor: Hyungjun Kim
125 | Video: https://youtu.be/ca_d03MYeJE
126 |
127 | **Paper: Bi-Real Net: Enhancing the Performance of 1-bit CNNs With Improved Representational Capability and Advanced Training Algorithm**
128 | Presentor: YoungBin Kim
129 | Video: https://youtu.be/pQmvmcPZHmM
130 |
131 | ### WEEK10: QUANTIZATION & DISTILLATION
132 | **Paper: Model Compression via Quantization and Distillation**
133 | Presentor: Seokjoong Kim (김민성)
134 | Video: https://youtu.be/xOMuav0UVXg
135 |
136 | ### WEEK11: ALTERNATING MULTI-BIT QUANTIZATION & DENSENET !!
137 | **Paper: Alternating multi-bit quantization for recurrent neural networks**
138 | Presentor: Eunhui Kim
139 | Video: https://youtu.be/iibC1NZv0S4
140 |
141 | **Paper: DenseNet: Densely Connected Convolutional Networks**
142 | Presentor: Kyeong-Jun Lee
143 | Video: https://youtu.be/bhvxLB6Qa60
144 |
145 | ### Week12
146 |
147 | ### Week13: DEFENSIVE QUANTIZATION & EFFICIENTNET
148 | **Paper: Defensive Quantization: When Efficiency Meets Robustness**
149 | Presentor: Bochan Kim
150 | Video: https://youtu.be/7UfmDlLHOFA
151 |
152 | **Paper: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks**
153 | Presentor: Martin Hwang
154 | Video: https://youtu.be/58ZxZSLr_bU
155 |
156 | ### Week14: QIL & MobileNetV3
157 | **Paper: Learning to Quantize Deep Networks by Optimizing Quantization Intervals with Task Loss**
158 | Presentor: 이인웅
159 | Video: https://youtu.be/VLyhhcPwxWc
160 |
161 | **Paper: Searching for MobileNetV3**
162 | Presentor: Seo Yeon Stella Yang
163 | Video: https://youtu.be/JPs2Uy9DLO8
164 |
165 | ------------------------------------
166 | ## Schedule (Presentation List):
167 |
168 | | Week | Subject | Presenter |
169 | |--------------|----------------------------------------------------------------------------------------------------|-----------------|
170 | | Week 1 |1. Introduction
2. Introduction. | 1.Jeonghoon Kim
2.Stella Yang|
171 | | Week 2 |1. Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1.
2. Mobilenets: Efficient convolutional neural networks for mobile vision applications. |1.Jeonghoon Kim
2.Sanggun Kim|
172 | | Week 3 |1.Finn: A framework for fast, scalable binarized neural network inference.
2. MobileNetV2: Inverted Residuals and Linear Bottlenecks| 1.Hyunwoo Kim
2.Seojin Kim |
173 | | Week 4 |1.XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks.
2. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. |1.Hwigeon Oh
2.Martin Hwang |
174 | | Week 5 |1.BNN+: Improved binary network training.
2. Squeezenext: Hardware-aware neural network design. |1.Youngbin Kim
2.Sang-soo Park|
175 | | Week 6 |1.Loss-aware binarization of deep networks.
2. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding.|1.Jaeyoung Lee
2. Sanggun Kim|
176 | | Week 7 |1. Loss-aware weight quantization of deep networks.
2. Scalpel: Customizing dnn pruning to the underlying hardware parallelism.|1.Youngbin Kim
2.Sang-soo Park|
177 | | Week 8 |1.Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
2.ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices.|1.Yongwoo Kim
2.Jaeyoung Lee|
178 | | Week 9 |1.Lq-nets: Learned quantization for highly accurate and compact deep neural networks.
2. Model compression via distillation and quantization.|1.Hyungjun Kim
2. Seokjoong Kim|
179 | | Week 10 |1. Alternating Multi-bit Quantization for Recurrent Neural Networks.
2. Densely Connected Convolutional Networks.|1.Eunhui Kim
2.이경준|
180 | | Week 11 |1.TBD
2. All You Need is a Few Shifts: Designing Efficient Convolutional Neural Networks for Image Classification.|1.Sejung Kwon
2.Stella Yang|
181 | | Week 12 |1.Analysis of Quantized Models.
2.EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. |1.Bochan Kim
2. Martin Hwang|
182 | | Week 13 |1.Learning to quantize deep networks by optimizing quantization intervals with task loss.
2. Amc: Automl for model compression and acceleration on mobile devices.|1.이인웅
2.Seokjoong Kim|
183 |
184 |
185 | ## References
186 | https://github.com/ai-robotics-kr/nnq_cnd_study/blob/master/AwesomePapers.md
187 |
--------------------------------------------------------------------------------