├── .gitignore ├── ImageSets ├── Main │ ├── test.txt │ ├── train.txt │ ├── trainval.txt │ └── val.txt └── README.md ├── LICENSE ├── README.md ├── caffe ├── .Doxyfile ├── .gitignore ├── .travis.yml ├── CMakeLists.txt ├── CONTRIBUTING.md ├── CONTRIBUTORS.md ├── INSTALL.md ├── LICENSE ├── Makefile ├── Makefile.config.example ├── README.md ├── caffe.cloc ├── cmake │ ├── ConfigGen.cmake │ ├── Cuda.cmake │ ├── Dependencies.cmake │ ├── External │ │ ├── gflags.cmake │ │ └── glog.cmake │ ├── Misc.cmake │ ├── Modules │ │ ├── FindAtlas.cmake │ │ ├── FindGFlags.cmake │ │ ├── FindGlog.cmake │ │ ├── FindLAPACK.cmake │ │ ├── FindLMDB.cmake │ │ ├── FindLevelDB.cmake │ │ ├── FindMKL.cmake │ │ ├── FindMatlabMex.cmake │ │ ├── FindNCCL.cmake │ │ ├── FindNumPy.cmake │ │ ├── FindOpenBLAS.cmake │ │ ├── FindSnappy.cmake │ │ └── FindvecLib.cmake │ ├── ProtoBuf.cmake │ ├── Summary.cmake │ ├── Targets.cmake │ ├── Templates │ │ ├── CaffeConfig.cmake.in │ │ ├── CaffeConfigVersion.cmake.in │ │ └── caffe_config.h.in │ ├── Utils.cmake │ └── lint.cmake ├── docker │ ├── Makefile │ ├── README.md │ ├── standalone │ │ ├── cpu │ │ │ └── Dockerfile │ │ └── gpu │ │ │ └── Dockerfile │ └── templates │ │ └── Dockerfile.template ├── docs │ ├── CMakeLists.txt │ ├── CNAME │ ├── README.md │ ├── _config.yml │ ├── _layouts │ │ └── default.html │ ├── development.md │ ├── images │ │ ├── GitHub-Mark-64px.png │ │ └── caffeine-icon.png │ ├── index.md │ ├── install_apt.md │ ├── install_apt_debian.md │ ├── install_osx.md │ ├── install_yum.md │ ├── installation.md │ ├── model_zoo.md │ ├── multigpu.md │ ├── performance_hardware.md │ ├── stylesheets │ │ ├── pygment_trac.css │ │ ├── reset.css │ │ └── styles.css │ └── tutorial │ │ ├── convolution.md │ │ ├── data.md │ │ ├── fig │ │ ├── .gitignore │ │ ├── backward.jpg │ │ ├── forward.jpg │ │ ├── forward_backward.png │ │ ├── layer.jpg │ │ └── logreg.jpg │ │ ├── forward_backward.md │ │ ├── index.md │ │ ├── interfaces.md │ │ ├── layers.md │ │ ├── layers │ │ ├── absval.md │ │ ├── accuracy.md │ │ ├── argmax.md │ │ ├── batchnorm.md │ │ ├── batchreindex.md │ │ ├── bias.md │ │ ├── bnll.md │ │ ├── concat.md │ │ ├── contrastiveloss.md │ │ ├── convolution.md │ │ ├── crop.md │ │ ├── data.md │ │ ├── deconvolution.md │ │ ├── dropout.md │ │ ├── dummydata.md │ │ ├── eltwise.md │ │ ├── elu.md │ │ ├── embed.md │ │ ├── euclideanloss.md │ │ ├── exp.md │ │ ├── filter.md │ │ ├── flatten.md │ │ ├── hdf5data.md │ │ ├── hdf5output.md │ │ ├── hingeloss.md │ │ ├── im2col.md │ │ ├── imagedata.md │ │ ├── infogainloss.md │ │ ├── innerproduct.md │ │ ├── input.md │ │ ├── log.md │ │ ├── lrn.md │ │ ├── lstm.md │ │ ├── memorydata.md │ │ ├── multinomiallogisticloss.md │ │ ├── mvn.md │ │ ├── parameter.md │ │ ├── pooling.md │ │ ├── power.md │ │ ├── prelu.md │ │ ├── python.md │ │ ├── recurrent.md │ │ ├── reduction.md │ │ ├── relu.md │ │ ├── reshape.md │ │ ├── rnn.md │ │ ├── scale.md │ │ ├── sigmoid.md │ │ ├── sigmoidcrossentropyloss.md │ │ ├── silence.md │ │ ├── slice.md │ │ ├── softmax.md │ │ ├── softmaxwithloss.md │ │ ├── split.md │ │ ├── spp.md │ │ ├── tanh.md │ │ ├── threshold.md │ │ ├── tile.md │ │ └── windowdata.md │ │ ├── loss.md │ │ ├── net_layer_blob.md │ │ └── solver.md ├── examples │ ├── 00-classification.ipynb │ ├── 01-learning-lenet.ipynb │ ├── 02-fine-tuning.ipynb │ ├── CMakeLists.txt │ ├── brewing-logreg.ipynb │ ├── cifar10 │ │ ├── cifar10_full.prototxt │ │ ├── cifar10_full_sigmoid_solver.prototxt │ │ ├── cifar10_full_sigmoid_solver_bn.prototxt │ │ ├── cifar10_full_sigmoid_train_test.prototxt │ │ ├── cifar10_full_sigmoid_train_test_bn.prototxt │ │ ├── cifar10_full_solver.prototxt │ │ ├── cifar10_full_solver_lr1.prototxt │ │ ├── cifar10_full_solver_lr2.prototxt │ │ ├── cifar10_full_train_test.prototxt │ │ ├── cifar10_quick.prototxt │ │ ├── cifar10_quick_solver.prototxt │ │ ├── cifar10_quick_solver_lr1.prototxt │ │ ├── cifar10_quick_train_test.prototxt │ │ ├── convert_cifar_data.cpp │ │ ├── create_cifar10.sh │ │ ├── readme.md │ │ ├── train_full.sh │ │ ├── train_full_sigmoid.sh │ │ ├── train_full_sigmoid_bn.sh │ │ └── train_quick.sh │ ├── cpp_classification │ │ ├── classification.cpp │ │ └── readme.md │ ├── detection.ipynb │ ├── feature_extraction │ │ ├── imagenet_val.prototxt │ │ └── readme.md │ ├── finetune_flickr_style │ │ ├── assemble_data.py │ │ ├── flickr_style.csv.gz │ │ ├── readme.md │ │ └── style_names.txt │ ├── finetune_pascal_detection │ │ ├── pascal_finetune_solver.prototxt │ │ └── pascal_finetune_trainval_test.prototxt │ ├── hdf5_classification │ │ ├── nonlinear_auto_test.prototxt │ │ ├── nonlinear_auto_train.prototxt │ │ ├── nonlinear_train_val.prototxt │ │ └── train_val.prototxt │ ├── imagenet │ │ ├── create_imagenet.sh │ │ ├── make_imagenet_mean.sh │ │ ├── readme.md │ │ ├── resume_training.sh │ │ └── train_caffenet.sh │ ├── images │ │ ├── cat gray.jpg │ │ ├── cat.jpg │ │ ├── cat_gray.jpg │ │ └── fish-bike.jpg │ ├── mnist │ │ ├── convert_mnist_data.cpp │ │ ├── create_mnist.sh │ │ ├── lenet.prototxt │ │ ├── lenet_adadelta_solver.prototxt │ │ ├── lenet_auto_solver.prototxt │ │ ├── lenet_consolidated_solver.prototxt │ │ ├── lenet_multistep_solver.prototxt │ │ ├── lenet_solver.prototxt │ │ ├── lenet_solver_adam.prototxt │ │ ├── lenet_solver_rmsprop.prototxt │ │ ├── lenet_train_test.prototxt │ │ ├── mnist_autoencoder.prototxt │ │ ├── mnist_autoencoder_solver.prototxt │ │ ├── mnist_autoencoder_solver_adadelta.prototxt │ │ ├── mnist_autoencoder_solver_adagrad.prototxt │ │ ├── mnist_autoencoder_solver_nesterov.prototxt │ │ ├── readme.md │ │ ├── train_lenet.sh │ │ ├── train_lenet_adam.sh │ │ ├── train_lenet_consolidated.sh │ │ ├── train_lenet_docker.sh │ │ ├── train_lenet_rmsprop.sh │ │ ├── train_mnist_autoencoder.sh │ │ ├── train_mnist_autoencoder_adadelta.sh │ │ ├── train_mnist_autoencoder_adagrad.sh │ │ └── train_mnist_autoencoder_nesterov.sh │ ├── net_surgery.ipynb │ ├── net_surgery │ │ ├── bvlc_caffenet_full_conv.prototxt │ │ └── conv.prototxt │ ├── pascal-multilabel-with-datalayer.ipynb │ ├── pycaffe │ │ ├── caffenet.py │ │ ├── layers │ │ │ ├── pascal_multilabel_datalayers.py │ │ │ └── pyloss.py │ │ ├── linreg.prototxt │ │ └── tools.py │ ├── siamese │ │ ├── convert_mnist_siamese_data.cpp │ │ ├── create_mnist_siamese.sh │ │ ├── mnist_siamese.ipynb │ │ ├── mnist_siamese.prototxt │ │ ├── mnist_siamese_solver.prototxt │ │ ├── mnist_siamese_train_test.prototxt │ │ ├── readme.md │ │ └── train_mnist_siamese.sh │ └── web_demo │ │ ├── app.py │ │ ├── exifutil.py │ │ ├── readme.md │ │ ├── requirements.txt │ │ └── templates │ │ └── index.html ├── include │ └── caffe │ │ ├── blob.hpp │ │ ├── caffe.hpp │ │ ├── common.hpp │ │ ├── data_transformer.hpp │ │ ├── filler.hpp │ │ ├── internal_thread.hpp │ │ ├── layer.hpp │ │ ├── layer_factory.hpp │ │ ├── layers │ │ ├── absval_layer.hpp │ │ ├── accuracy_layer.hpp │ │ ├── argmax_layer.hpp │ │ ├── base_conv_layer.hpp │ │ ├── base_data_layer.hpp │ │ ├── batch_norm_layer.hpp │ │ ├── batch_reindex_layer.hpp │ │ ├── bias_layer.hpp │ │ ├── bnll_layer.hpp │ │ ├── box_annotator_ohem_layer.hpp │ │ ├── concat_layer.hpp │ │ ├── contrastive_loss_layer.hpp │ │ ├── conv_layer.hpp │ │ ├── crop_layer.hpp │ │ ├── cudnn_conv_layer.hpp │ │ ├── cudnn_lcn_layer.hpp │ │ ├── cudnn_lrn_layer.hpp │ │ ├── cudnn_pooling_layer.hpp │ │ ├── cudnn_relu_layer.hpp │ │ ├── cudnn_sigmoid_layer.hpp │ │ ├── cudnn_softmax_layer.hpp │ │ ├── cudnn_tanh_layer.hpp │ │ ├── data_layer.hpp │ │ ├── deconv_layer.hpp │ │ ├── dropout_layer.hpp │ │ ├── dummy_data_layer.hpp │ │ ├── eltwise_layer.hpp │ │ ├── elu_layer.hpp │ │ ├── embed_layer.hpp │ │ ├── euclidean_loss_layer.hpp │ │ ├── exp_layer.hpp │ │ ├── filter_layer.hpp │ │ ├── flatten_layer.hpp │ │ ├── hdf5_data_layer.hpp │ │ ├── hdf5_output_layer.hpp │ │ ├── hinge_loss_layer.hpp │ │ ├── im2col_layer.hpp │ │ ├── image_data_layer.hpp │ │ ├── infogain_loss_layer.hpp │ │ ├── inner_product_blob_layer.hpp │ │ ├── inner_product_layer.hpp │ │ ├── input_layer.hpp │ │ ├── log_layer.hpp │ │ ├── loss_layer.hpp │ │ ├── lrn_layer.hpp │ │ ├── lstm_layer.hpp │ │ ├── memory_data_layer.hpp │ │ ├── multinomial_logistic_loss_layer.hpp │ │ ├── mvn_layer.hpp │ │ ├── neuron_layer.hpp │ │ ├── parameter_layer.hpp │ │ ├── pooling_layer.hpp │ │ ├── power_layer.hpp │ │ ├── prelu_layer.hpp │ │ ├── psroi_pooling_layer.hpp │ │ ├── python_layer.hpp │ │ ├── recurrent_layer.hpp │ │ ├── reduction_layer.hpp │ │ ├── relu_layer.hpp │ │ ├── reshape_layer.hpp │ │ ├── rnn_layer.hpp │ │ ├── roi_pooling_layer.hpp │ │ ├── scale_layer.hpp │ │ ├── sigmoid_cross_entropy_loss_layer.hpp │ │ ├── sigmoid_layer.hpp │ │ ├── silence_layer.hpp │ │ ├── slice_layer.hpp │ │ ├── smooth_l1_loss_layer.hpp │ │ ├── smooth_l1_loss_ohem_layer.hpp │ │ ├── softmax_layer.hpp │ │ ├── softmax_loss_layer.hpp │ │ ├── softmax_loss_ohem_layer.hpp │ │ ├── split_layer.hpp │ │ ├── spp_layer.hpp │ │ ├── tanh_layer.hpp │ │ ├── threshold_layer.hpp │ │ ├── tile_layer.hpp │ │ └── window_data_layer.hpp │ │ ├── net.hpp │ │ ├── parallel.hpp │ │ ├── sgd_solvers.hpp │ │ ├── solver.hpp │ │ ├── solver_factory.hpp │ │ ├── syncedmem.hpp │ │ ├── test │ │ ├── test_caffe_main.hpp │ │ └── test_gradient_check_util.hpp │ │ └── util │ │ ├── benchmark.hpp │ │ ├── blocking_queue.hpp │ │ ├── cudnn.hpp │ │ ├── db.hpp │ │ ├── db_leveldb.hpp │ │ ├── db_lmdb.hpp │ │ ├── device_alternate.hpp │ │ ├── format.hpp │ │ ├── gpu_util.cuh │ │ ├── hdf5.hpp │ │ ├── im2col.hpp │ │ ├── insert_splits.hpp │ │ ├── io.hpp │ │ ├── math_functions.hpp │ │ ├── mkl_alternate.hpp │ │ ├── nccl.hpp │ │ ├── rng.hpp │ │ ├── signal_handler.h │ │ └── upgrade_proto.hpp ├── matlab │ ├── +caffe │ │ ├── +test │ │ │ ├── test_io.m │ │ │ ├── test_net.m │ │ │ └── test_solver.m │ │ ├── Blob.m │ │ ├── Layer.m │ │ ├── Net.m │ │ ├── Solver.m │ │ ├── get_net.m │ │ ├── get_solver.m │ │ ├── imagenet │ │ │ └── ilsvrc_2012_mean.mat │ │ ├── io.m │ │ ├── private │ │ │ ├── CHECK.m │ │ │ ├── CHECK_FILE_EXIST.m │ │ │ ├── caffe_.cpp │ │ │ └── is_valid_handle.m │ │ ├── reset_all.m │ │ ├── run_tests.m │ │ ├── set_device.m │ │ ├── set_mode_cpu.m │ │ ├── set_mode_gpu.m │ │ └── version.m │ ├── CMakeLists.txt │ ├── demo │ │ └── classification_demo.m │ └── hdf5creation │ │ ├── .gitignore │ │ ├── demo.m │ │ └── store2hdf5.m ├── python │ ├── CMakeLists.txt │ ├── caffe │ │ ├── __init__.py │ │ ├── _caffe.cpp │ │ ├── classifier.py │ │ ├── coord_map.py │ │ ├── detector.py │ │ ├── draw.py │ │ ├── imagenet │ │ │ └── ilsvrc_2012_mean.npy │ │ ├── io.py │ │ ├── net_spec.py │ │ ├── pycaffe.py │ │ └── test │ │ │ ├── test_coord_map.py │ │ │ ├── test_io.py │ │ │ ├── test_layer_type_list.py │ │ │ ├── test_net.py │ │ │ ├── test_net_spec.py │ │ │ ├── test_python_layer.py │ │ │ ├── test_python_layer_with_param_str.py │ │ │ └── test_solver.py │ ├── classify.py │ ├── detect.py │ ├── draw_net.py │ ├── requirements.txt │ └── train.py ├── scripts │ ├── build_docs.sh │ ├── copy_notebook.py │ ├── cpp_lint.py │ ├── deploy_docs.sh │ ├── download_model_binary.py │ ├── download_model_from_gist.sh │ ├── gather_examples.sh │ ├── split_caffe_proto.py │ ├── travis │ │ ├── build.sh │ │ ├── configure-cmake.sh │ │ ├── configure-make.sh │ │ ├── configure.sh │ │ ├── defaults.sh │ │ ├── install-deps.sh │ │ ├── install-python-deps.sh │ │ ├── setup-venv.sh │ │ └── test.sh │ └── upload_model_to_gist.sh ├── src │ ├── caffe │ │ ├── CMakeLists.txt │ │ ├── blob.cpp │ │ ├── common.cpp │ │ ├── data_transformer.cpp │ │ ├── internal_thread.cpp │ │ ├── layer.cpp │ │ ├── layer_factory.cpp │ │ ├── layers │ │ │ ├── absval_layer.cpp │ │ │ ├── absval_layer.cu │ │ │ ├── accuracy_layer.cpp │ │ │ ├── argmax_layer.cpp │ │ │ ├── argmax_layer.cu │ │ │ ├── base_conv_layer.cpp │ │ │ ├── base_data_layer.cpp │ │ │ ├── base_data_layer.cu │ │ │ ├── batch_norm_layer.cpp │ │ │ ├── batch_norm_layer.cu │ │ │ ├── batch_reindex_layer.cpp │ │ │ ├── batch_reindex_layer.cu │ │ │ ├── bias_layer.cpp │ │ │ ├── bias_layer.cu │ │ │ ├── bnll_layer.cpp │ │ │ ├── bnll_layer.cu │ │ │ ├── box_annotator_ohem_layer.cpp │ │ │ ├── box_annotator_ohem_layer.cu │ │ │ ├── concat_layer.cpp │ │ │ ├── concat_layer.cu │ │ │ ├── contrastive_loss_layer.cpp │ │ │ ├── contrastive_loss_layer.cu │ │ │ ├── conv_layer.cpp │ │ │ ├── conv_layer.cu │ │ │ ├── crop_layer.cpp │ │ │ ├── crop_layer.cu │ │ │ ├── cudnn_conv_layer.cpp │ │ │ ├── cudnn_conv_layer.cu │ │ │ ├── cudnn_lcn_layer.cpp │ │ │ ├── cudnn_lcn_layer.cu │ │ │ ├── cudnn_lrn_layer.cpp │ │ │ ├── cudnn_lrn_layer.cu │ │ │ ├── cudnn_pooling_layer.cpp │ │ │ ├── cudnn_pooling_layer.cu │ │ │ ├── cudnn_relu_layer.cpp │ │ │ ├── cudnn_relu_layer.cu │ │ │ ├── cudnn_sigmoid_layer.cpp │ │ │ ├── cudnn_sigmoid_layer.cu │ │ │ ├── cudnn_softmax_layer.cpp │ │ │ ├── cudnn_softmax_layer.cu │ │ │ ├── cudnn_tanh_layer.cpp │ │ │ ├── cudnn_tanh_layer.cu │ │ │ ├── data_layer.cpp │ │ │ ├── deconv_layer.cpp │ │ │ ├── deconv_layer.cu │ │ │ ├── dropout_layer.cpp │ │ │ ├── dropout_layer.cu │ │ │ ├── dummy_data_layer.cpp │ │ │ ├── eltwise_layer.cpp │ │ │ ├── eltwise_layer.cu │ │ │ ├── elu_layer.cpp │ │ │ ├── elu_layer.cu │ │ │ ├── embed_layer.cpp │ │ │ ├── embed_layer.cu │ │ │ ├── euclidean_loss_layer.cpp │ │ │ ├── euclidean_loss_layer.cu │ │ │ ├── exp_layer.cpp │ │ │ ├── exp_layer.cu │ │ │ ├── filter_layer.cpp │ │ │ ├── filter_layer.cu │ │ │ ├── flatten_layer.cpp │ │ │ ├── hdf5_data_layer.cpp │ │ │ ├── hdf5_data_layer.cu │ │ │ ├── hdf5_output_layer.cpp │ │ │ ├── hdf5_output_layer.cu │ │ │ ├── hinge_loss_layer.cpp │ │ │ ├── im2col_layer.cpp │ │ │ ├── im2col_layer.cu │ │ │ ├── image_data_layer.cpp │ │ │ ├── infogain_loss_layer.cpp │ │ │ ├── inner_product_blob_layer.cpp │ │ │ ├── inner_product_blob_layer.cu │ │ │ ├── inner_product_layer.cpp │ │ │ ├── inner_product_layer.cu │ │ │ ├── input_layer.cpp │ │ │ ├── log_layer.cpp │ │ │ ├── log_layer.cu │ │ │ ├── loss_layer.cpp │ │ │ ├── lrn_layer.cpp │ │ │ ├── lrn_layer.cu │ │ │ ├── lstm_layer.cpp │ │ │ ├── lstm_unit_layer.cpp │ │ │ ├── lstm_unit_layer.cu │ │ │ ├── memory_data_layer.cpp │ │ │ ├── multinomial_logistic_loss_layer.cpp │ │ │ ├── mvn_layer.cpp │ │ │ ├── mvn_layer.cu │ │ │ ├── neuron_layer.cpp │ │ │ ├── parameter_layer.cpp │ │ │ ├── pooling_layer.cpp │ │ │ ├── pooling_layer.cu │ │ │ ├── power_layer.cpp │ │ │ ├── power_layer.cu │ │ │ ├── prelu_layer.cpp │ │ │ ├── prelu_layer.cu │ │ │ ├── psroi_pooling_layer.cpp │ │ │ ├── psroi_pooling_layer.cu │ │ │ ├── recurrent_layer.cpp │ │ │ ├── recurrent_layer.cu │ │ │ ├── reduction_layer.cpp │ │ │ ├── reduction_layer.cu │ │ │ ├── relu_layer.cpp │ │ │ ├── relu_layer.cu │ │ │ ├── reshape_layer.cpp │ │ │ ├── rnn_layer.cpp │ │ │ ├── roi_pooling_layer.cpp │ │ │ ├── roi_pooling_layer.cu │ │ │ ├── scale_layer.cpp │ │ │ ├── scale_layer.cu │ │ │ ├── sigmoid_cross_entropy_loss_layer.cpp │ │ │ ├── sigmoid_cross_entropy_loss_layer.cu │ │ │ ├── sigmoid_layer.cpp │ │ │ ├── sigmoid_layer.cu │ │ │ ├── silence_layer.cpp │ │ │ ├── silence_layer.cu │ │ │ ├── slice_layer.cpp │ │ │ ├── slice_layer.cu │ │ │ ├── smooth_L1_loss_ohem_layer.cpp │ │ │ ├── smooth_L1_loss_ohem_layer.cu │ │ │ ├── smooth_l1_loss_layer.cpp │ │ │ ├── smooth_l1_loss_layer.cu │ │ │ ├── softmax_layer.cpp │ │ │ ├── softmax_layer.cu │ │ │ ├── softmax_loss_layer.cpp │ │ │ ├── softmax_loss_layer.cu │ │ │ ├── softmax_loss_ohem_layer.cpp │ │ │ ├── softmax_loss_ohem_layer.cu │ │ │ ├── split_layer.cpp │ │ │ ├── split_layer.cu │ │ │ ├── spp_layer.cpp │ │ │ ├── tanh_layer.cpp │ │ │ ├── tanh_layer.cu │ │ │ ├── threshold_layer.cpp │ │ │ ├── threshold_layer.cu │ │ │ ├── tile_layer.cpp │ │ │ ├── tile_layer.cu │ │ │ └── window_data_layer.cpp │ │ ├── net.cpp │ │ ├── parallel.cpp │ │ ├── proto │ │ │ └── caffe.proto │ │ ├── solver.cpp │ │ ├── solvers │ │ │ ├── adadelta_solver.cpp │ │ │ ├── adadelta_solver.cu │ │ │ ├── adagrad_solver.cpp │ │ │ ├── adagrad_solver.cu │ │ │ ├── adam_solver.cpp │ │ │ ├── adam_solver.cu │ │ │ ├── nesterov_solver.cpp │ │ │ ├── nesterov_solver.cu │ │ │ ├── rmsprop_solver.cpp │ │ │ ├── rmsprop_solver.cu │ │ │ ├── sgd_solver.cpp │ │ │ └── sgd_solver.cu │ │ ├── syncedmem.cpp │ │ ├── test │ │ │ ├── CMakeLists.txt │ │ │ ├── test_accuracy_layer.cpp │ │ │ ├── test_argmax_layer.cpp │ │ │ ├── test_batch_norm_layer.cpp │ │ │ ├── test_batch_reindex_layer.cpp │ │ │ ├── test_benchmark.cpp │ │ │ ├── test_bias_layer.cpp │ │ │ ├── test_blob.cpp │ │ │ ├── test_caffe_main.cpp │ │ │ ├── test_common.cpp │ │ │ ├── test_concat_layer.cpp │ │ │ ├── test_contrastive_loss_layer.cpp │ │ │ ├── test_convolution_layer.cpp │ │ │ ├── test_crop_layer.cpp │ │ │ ├── test_data │ │ │ │ ├── generate_sample_data.py │ │ │ │ ├── sample_data.h5 │ │ │ │ ├── sample_data_2_gzip.h5 │ │ │ │ ├── sample_data_list.txt │ │ │ │ ├── solver_data.h5 │ │ │ │ └── solver_data_list.txt │ │ │ ├── test_data_layer.cpp │ │ │ ├── test_data_transformer.cpp │ │ │ ├── test_db.cpp │ │ │ ├── test_deconvolution_layer.cpp │ │ │ ├── test_dummy_data_layer.cpp │ │ │ ├── test_eltwise_layer.cpp │ │ │ ├── test_embed_layer.cpp │ │ │ ├── test_euclidean_loss_layer.cpp │ │ │ ├── test_filler.cpp │ │ │ ├── test_filter_layer.cpp │ │ │ ├── test_flatten_layer.cpp │ │ │ ├── test_gradient_based_solver.cpp │ │ │ ├── test_hdf5_output_layer.cpp │ │ │ ├── test_hdf5data_layer.cpp │ │ │ ├── test_hinge_loss_layer.cpp │ │ │ ├── test_im2col_kernel.cu │ │ │ ├── test_im2col_layer.cpp │ │ │ ├── test_image_data_layer.cpp │ │ │ ├── test_infogain_loss_layer.cpp │ │ │ ├── test_inner_product_layer.cpp │ │ │ ├── test_internal_thread.cpp │ │ │ ├── test_io.cpp │ │ │ ├── test_layer_factory.cpp │ │ │ ├── test_lrn_layer.cpp │ │ │ ├── test_lstm_layer.cpp │ │ │ ├── test_math_functions.cpp │ │ │ ├── test_maxpool_dropout_layers.cpp │ │ │ ├── test_memory_data_layer.cpp │ │ │ ├── test_multinomial_logistic_loss_layer.cpp │ │ │ ├── test_mvn_layer.cpp │ │ │ ├── test_net.cpp │ │ │ ├── test_neuron_layer.cpp │ │ │ ├── test_platform.cpp │ │ │ ├── test_pooling_layer.cpp │ │ │ ├── test_power_layer.cpp │ │ │ ├── test_protobuf.cpp │ │ │ ├── test_random_number_generator.cpp │ │ │ ├── test_reduction_layer.cpp │ │ │ ├── test_reshape_layer.cpp │ │ │ ├── test_rnn_layer.cpp │ │ │ ├── test_scale_layer.cpp │ │ │ ├── test_sigmoid_cross_entropy_loss_layer.cpp │ │ │ ├── test_slice_layer.cpp │ │ │ ├── test_softmax_layer.cpp │ │ │ ├── test_softmax_with_loss_layer.cpp │ │ │ ├── test_solver.cpp │ │ │ ├── test_solver_factory.cpp │ │ │ ├── test_split_layer.cpp │ │ │ ├── test_spp_layer.cpp │ │ │ ├── test_stochastic_pooling.cpp │ │ │ ├── test_syncedmem.cpp │ │ │ ├── test_tanh_layer.cpp │ │ │ ├── test_threshold_layer.cpp │ │ │ ├── test_tile_layer.cpp │ │ │ ├── test_upgrade_proto.cpp │ │ │ └── test_util_blas.cpp │ │ └── util │ │ │ ├── benchmark.cpp │ │ │ ├── blocking_queue.cpp │ │ │ ├── cudnn.cpp │ │ │ ├── db.cpp │ │ │ ├── db_leveldb.cpp │ │ │ ├── db_lmdb.cpp │ │ │ ├── hdf5.cpp │ │ │ ├── im2col.cpp │ │ │ ├── im2col.cu │ │ │ ├── insert_splits.cpp │ │ │ ├── io.cpp │ │ │ ├── math_functions.cpp │ │ │ ├── math_functions.cu │ │ │ ├── signal_handler.cpp │ │ │ └── upgrade_proto.cpp │ └── gtest │ │ ├── CMakeLists.txt │ │ ├── gtest-all.cpp │ │ ├── gtest.h │ │ └── gtest_main.cc └── tools │ ├── CMakeLists.txt │ ├── caffe.cpp │ ├── compute_image_mean.cpp │ ├── convert_imageset.cpp │ ├── device_query.cpp │ ├── extra │ ├── extract_seconds.py │ ├── launch_resize_and_crop_images.sh │ ├── parse_log.py │ ├── parse_log.sh │ ├── plot_log.gnuplot.example │ ├── plot_training_log.py.example │ ├── resize_and_crop_images.py │ └── summarize.py │ ├── extract_features.cpp │ ├── finetune_net.cpp │ ├── net_speed_benchmark.cpp │ ├── test_net.cpp │ ├── train_net.cpp │ ├── upgrade_net_proto_binary.cpp │ ├── upgrade_net_proto_text.cpp │ └── upgrade_solver_proto_text.cpp ├── data ├── demo │ ├── 000456.jpg │ ├── 000542.jpg │ ├── 001150.jpg │ ├── 001763.jpg │ ├── 004545.jpg │ ├── rcnn_example.png │ └── rcnn_example_2.png ├── genome │ ├── 1600-400-20 │ │ ├── attributes_vocab.txt │ │ ├── objects_vocab.txt │ │ └── relations_vocab.txt │ ├── coco_splits │ │ ├── image_info_test2014.json │ │ ├── karpathy_test_images.txt │ │ ├── karpathy_train_images.txt │ │ └── karpathy_val_images.txt │ ├── create_splits.py │ ├── setup_vg.py │ ├── test.txt │ ├── train.txt │ ├── val.txt │ └── visual_genome_python_driver │ │ ├── LICENSE.txt │ │ ├── README.md │ │ ├── __init__.py │ │ ├── api.py │ │ ├── local.py │ │ ├── models.py │ │ └── utils.py └── scripts │ ├── fetch_faster_rcnn_models.sh │ ├── fetch_imagenet_models.sh │ └── fetch_selective_search_data.sh ├── experiments ├── README.md ├── cfgs │ ├── faster_rcnn_alt_opt.yml │ ├── faster_rcnn_end2end.yml │ ├── faster_rcnn_end2end_resnet.yml │ ├── rfcn_alt_opt_5step_ohem.yml │ ├── rfcn_end2end.yml │ └── rfcn_end2end_ohem.yml ├── logs │ ├── .gitignore │ ├── eval.log │ └── faster_rcnn_end2end_final_ResNet-101_.txt.2017-06-29_16-27-08 └── scripts │ ├── fast_rcnn.sh │ ├── faster_rcnn_alt_opt.sh │ ├── faster_rcnn_end2end.sh │ ├── faster_rcnn_end2end_attr_rel_softmax_primed.sh │ ├── faster_rcnn_end2end_multi_gpu.sh │ ├── faster_rcnn_end2end_multi_gpu_attr.sh │ ├── faster_rcnn_end2end_multi_gpu_attr_rel.sh │ ├── faster_rcnn_end2end_multi_gpu_attr_softmax_primed.sh │ ├── faster_rcnn_end2end_multi_gpu_resnet_final.sh │ ├── rfcn_alt_opt_5stage_ohem.sh │ ├── rfcn_end2end.sh │ ├── rfcn_end2end_ohem.sh │ ├── rfcn_end2end_ohem_multi_gpu.sh │ └── test.sh ├── lib ├── Makefile ├── datasets │ ├── VOCdevkit-matlab-wrapper │ │ ├── get_voc_opts.m │ │ ├── voc_eval.m │ │ └── xVOCap.m │ ├── __init__.py │ ├── coco.py │ ├── ds_utils.py │ ├── factory.py │ ├── imagenet.py │ ├── imdb.py │ ├── pascal_voc.py │ ├── tools │ │ └── mcg_munge.py │ ├── vg.py │ ├── vg_eval.py │ └── voc_eval.py ├── fast_rcnn │ ├── __init__.py │ ├── bbox_transform.py │ ├── config.py │ ├── nms_wrapper.py │ ├── test.py │ ├── train.py │ └── train_multi_gpu.py ├── nms │ ├── .gitignore │ ├── __init__.py │ ├── cpu_nms.pyx │ ├── gpu_nms.hpp │ ├── gpu_nms.pyx │ ├── nms_kernel.cu │ └── py_cpu_nms.py ├── pycocotools │ ├── UPSTREAM_REV │ ├── __init__.py │ ├── _mask.c │ ├── _mask.pyx │ ├── coco.py │ ├── cocoeval.py │ ├── license.txt │ ├── mask.py │ ├── maskApi.c │ └── maskApi.h ├── roi_data_layer │ ├── __init__.py │ ├── layer.py │ ├── minibatch.py │ └── roidb.py ├── rpn │ ├── README.md │ ├── __init__.py │ ├── anchor_target_layer.py │ ├── generate.py │ ├── generate_anchors.py │ ├── heatmap_layer.py │ ├── proposal_layer.py │ └── proposal_target_layer.py ├── setup.py ├── transform │ ├── __init__.py │ └── torch_image_transform_layer.py └── utils │ ├── .gitignore │ ├── __init__.py │ ├── bbox.pyx │ ├── blob.py │ └── timer.py ├── models ├── coco │ ├── ResNet-101 │ │ ├── rfcn_alt_opt_5step_ohem │ │ │ ├── rfcn_test.pt │ │ │ ├── rpn_test.pt │ │ │ ├── stage1_rfcn_ohem_solver360k480k.pt │ │ │ ├── stage1_rfcn_ohem_train.pt │ │ │ ├── stage1_rpn_solver360k480k.pt │ │ │ ├── stage1_rpn_train.pt │ │ │ ├── stage2_rfcn_ohem_solver360k480k.pt │ │ │ ├── stage2_rfcn_ohem_train.pt │ │ │ ├── stage2_rpn_solver360k480k.pt │ │ │ ├── stage2_rpn_train.pt │ │ │ ├── stage3_rpn_solver360k480k.pt │ │ │ └── stage3_rpn_train.pt │ │ └── rfcn_end2end │ │ │ ├── solver.prototxt │ │ │ ├── solver_ohem.prototxt │ │ │ ├── test_agnostic.prototxt │ │ │ ├── train_agnostic.prototxt │ │ │ └── train_agnostic_ohem.prototxt │ ├── VGG16 │ │ ├── fast_rcnn │ │ │ ├── solver.prototxt │ │ │ ├── test.prototxt │ │ │ └── train.prototxt │ │ └── faster_rcnn_end2end │ │ │ ├── solver.prototxt │ │ │ ├── test.prototxt │ │ │ └── train.prototxt │ └── VGG_CNN_M_1024 │ │ ├── fast_rcnn │ │ ├── solver.prototxt │ │ ├── test.prototxt │ │ └── train.prototxt │ │ └── faster_rcnn_end2end │ │ ├── solver.prototxt │ │ ├── test.prototxt │ │ └── train.prototxt ├── imagenet │ └── ResNet-101 │ │ ├── rfcn_alt_opt_5step_ohem │ │ ├── rfcn_test.pt │ │ ├── rpn_test.pt │ │ ├── stage1_rfcn_ohem_solver80k120k.pt │ │ ├── stage1_rfcn_ohem_train.pt │ │ ├── stage1_rpn_solver60k80k.pt │ │ ├── stage1_rpn_train.pt │ │ ├── stage2_rfcn_ohem_solver80k120k.pt │ │ ├── stage2_rfcn_ohem_train.pt │ │ ├── stage2_rpn_solver60k80k.pt │ │ ├── stage2_rpn_train.pt │ │ ├── stage3_rpn_solver60k80k.pt │ │ └── stage3_rpn_train.pt │ │ └── rfcn_end2end │ │ ├── class-aware │ │ ├── test.prototxt │ │ └── train_ohem.prototxt │ │ ├── solver.prototxt │ │ ├── solver_ohem.prototxt │ │ ├── test_agnostic.prototxt │ │ ├── train_agnostic.prototxt │ │ └── train_agnostic_ohem.prototxt ├── pascal_voc │ ├── ResNet-101 │ │ ├── rfcn_alt_opt_5step_ohem │ │ │ ├── rfcn_test.pt │ │ │ ├── rpn_test.pt │ │ │ ├── stage1_rfcn_ohem_solver80k120k.pt │ │ │ ├── stage1_rfcn_ohem_train.pt │ │ │ ├── stage1_rpn_solver60k80k.pt │ │ │ ├── stage1_rpn_train.pt │ │ │ ├── stage2_rfcn_ohem_solver80k120k.pt │ │ │ ├── stage2_rfcn_ohem_train.pt │ │ │ ├── stage2_rpn_solver60k80k.pt │ │ │ ├── stage2_rpn_train.pt │ │ │ ├── stage3_rpn_solver60k80k.pt │ │ │ └── stage3_rpn_train.pt │ │ └── rfcn_end2end │ │ │ ├── class-aware │ │ │ ├── test.prototxt │ │ │ └── train_ohem.prototxt │ │ │ ├── solver.prototxt │ │ │ ├── solver_ohem.prototxt │ │ │ ├── test_agnostic.prototxt │ │ │ ├── train_agnostic.prototxt │ │ │ └── train_agnostic_ohem.prototxt │ ├── ResNet-50 │ │ ├── rfcn_alt_opt_5step_ohem │ │ │ ├── rfcn_test.pt │ │ │ ├── rpn_test.pt │ │ │ ├── stage1_rfcn_ohem_solver80k120k.pt │ │ │ ├── stage1_rfcn_ohem_train.pt │ │ │ ├── stage1_rpn_solver60k80k.pt │ │ │ ├── stage1_rpn_train.pt │ │ │ ├── stage2_rfcn_ohem_solver80k120k.pt │ │ │ ├── stage2_rfcn_ohem_train.pt │ │ │ ├── stage2_rpn_solver60k80k.pt │ │ │ ├── stage2_rpn_train.pt │ │ │ ├── stage3_rpn_solver60k80k.pt │ │ │ └── stage3_rpn_train.pt │ │ └── rfcn_end2end │ │ │ ├── class-aware │ │ │ ├── test.prototxt │ │ │ └── train_ohem.prototxt │ │ │ ├── solver.prototxt │ │ │ ├── solver_ohem.prototxt │ │ │ ├── test_agnostic.prototxt │ │ │ ├── train_agnostic.prototxt │ │ │ └── train_agnostic_ohem.prototxt │ ├── VGG16 │ │ ├── fast_rcnn │ │ │ ├── solver.prototxt │ │ │ ├── test.prototxt │ │ │ └── train.prototxt │ │ ├── faster_rcnn_alt_opt │ │ │ ├── faster_rcnn_test.pt │ │ │ ├── rpn_test.pt │ │ │ ├── stage1_fast_rcnn_solver30k40k.pt │ │ │ ├── stage1_fast_rcnn_train.pt │ │ │ ├── stage1_rpn_solver60k80k.pt │ │ │ ├── stage1_rpn_train.pt │ │ │ ├── stage2_fast_rcnn_solver30k40k.pt │ │ │ ├── stage2_fast_rcnn_train.pt │ │ │ ├── stage2_rpn_solver60k80k.pt │ │ │ └── stage2_rpn_train.pt │ │ └── faster_rcnn_end2end │ │ │ ├── solver.prototxt │ │ │ ├── test.prototxt │ │ │ └── train.prototxt │ ├── VGG_CNN_M_1024 │ │ ├── fast_rcnn │ │ │ ├── solver.prototxt │ │ │ ├── test.prototxt │ │ │ └── train.prototxt │ │ ├── faster_rcnn_alt_opt │ │ │ ├── faster_rcnn_test.pt │ │ │ ├── rpn_test.pt │ │ │ ├── stage1_fast_rcnn_solver30k40k.pt │ │ │ ├── stage1_fast_rcnn_train.pt │ │ │ ├── stage1_rpn_solver60k80k.pt │ │ │ ├── stage1_rpn_train.pt │ │ │ ├── stage2_fast_rcnn_solver30k40k.pt │ │ │ ├── stage2_fast_rcnn_train.pt │ │ │ ├── stage2_rpn_solver60k80k.pt │ │ │ └── stage2_rpn_train.pt │ │ └── faster_rcnn_end2end │ │ │ ├── solver.prototxt │ │ │ ├── test.prototxt │ │ │ └── train.prototxt │ └── ZF │ │ ├── fast_rcnn │ │ ├── solver.prototxt │ │ ├── test.prototxt │ │ └── train.prototxt │ │ ├── faster_rcnn_alt_opt │ │ ├── faster_rcnn_test.pt │ │ ├── rpn_test.pt │ │ ├── stage1_fast_rcnn_solver30k40k.pt │ │ ├── stage1_fast_rcnn_train.pt │ │ ├── stage1_rpn_solver60k80k.pt │ │ ├── stage1_rpn_train.pt │ │ ├── stage2_fast_rcnn_solver30k40k.pt │ │ ├── stage2_fast_rcnn_train.pt │ │ ├── stage2_rpn_solver60k80k.pt │ │ └── stage2_rpn_train.pt │ │ └── faster_rcnn_end2end │ │ ├── solver.prototxt │ │ ├── test.prototxt │ │ └── train.prototxt └── vg │ ├── ResNet-101 │ └── faster_rcnn_end2end_final │ │ ├── solver.prototxt │ │ ├── test.prototxt │ │ ├── test_gt.prototxt │ │ └── train.prototxt │ └── VGG16 │ ├── faster_rcnn_end2end │ ├── solver.prototxt │ ├── test.prototxt │ └── train.prototxt │ ├── faster_rcnn_end2end_attr │ ├── solver.prototxt │ ├── test.prototxt │ ├── test_gt.prototxt │ └── train.prototxt │ └── faster_rcnn_end2end_attr_softmax_primed │ ├── solver.prototxt │ ├── test.prototxt │ ├── test_gt.prototxt │ └── train.prototxt └── tools ├── README.md ├── _init_paths.py ├── compress_net.py ├── demo.ipynb ├── demo.py ├── demo_rfcn.py ├── demo_vg.py ├── eval_recall.py ├── generate_tsv.py ├── read_tsv.py ├── reval.py ├── review_training.ipynb ├── rpn_generate.py ├── test_net.py ├── train_faster_rcnn_alt_opt.py ├── train_net.py ├── train_net_multi_gpu.py ├── train_rfcn_alt_opt_5stage.py └── train_svms.py /ImageSets/README.md: -------------------------------------------------------------------------------- 1 | Please copy this folder to `$RFCN_ROOT/data/VOCdevkit0712/VOC0712` 2 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2016 Yuwen Xiong 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /caffe/CONTRIBUTORS.md: -------------------------------------------------------------------------------- 1 | # Contributors 2 | 3 | Caffe is developed by a core set of BVLC members and the open-source community. 4 | 5 | We thank all of our [contributors](https://github.com/BVLC/caffe/graphs/contributors)! 6 | 7 | **For the detailed history of contributions** of a given file, try 8 | 9 | git blame file 10 | 11 | to see line-by-line credits and 12 | 13 | git log --follow file 14 | 15 | to see the change log even across renames and rewrites. 16 | 17 | Please refer to the [acknowledgements](http://caffe.berkeleyvision.org/#acknowledgements) on the Caffe site for further details. 18 | 19 | **Copyright** is held by the original contributor according to the versioning history; see LICENSE. 20 | -------------------------------------------------------------------------------- /caffe/INSTALL.md: -------------------------------------------------------------------------------- 1 | # Installation 2 | 3 | See http://caffe.berkeleyvision.org/installation.html for the latest 4 | installation instructions. 5 | 6 | Check the users group in case you need help: 7 | https://groups.google.com/forum/#!forum/caffe-users 8 | -------------------------------------------------------------------------------- /caffe/cmake/Modules/FindLMDB.cmake: -------------------------------------------------------------------------------- 1 | # Try to find the LMBD libraries and headers 2 | # LMDB_FOUND - system has LMDB lib 3 | # LMDB_INCLUDE_DIR - the LMDB include directory 4 | # LMDB_LIBRARIES - Libraries needed to use LMDB 5 | 6 | # FindCWD based on FindGMP by: 7 | # Copyright (c) 2006, Laurent Montel, 8 | # 9 | # Redistribution and use is allowed according to the terms of the BSD license. 10 | 11 | # Adapted from FindCWD by: 12 | # Copyright 2013 Conrad Steenberg 13 | # Aug 31, 2013 14 | 15 | find_path(LMDB_INCLUDE_DIR NAMES lmdb.h PATHS "$ENV{LMDB_DIR}/include") 16 | find_library(LMDB_LIBRARIES NAMES lmdb PATHS "$ENV{LMDB_DIR}/lib" ) 17 | 18 | include(FindPackageHandleStandardArgs) 19 | find_package_handle_standard_args(LMDB DEFAULT_MSG LMDB_INCLUDE_DIR LMDB_LIBRARIES) 20 | 21 | if(LMDB_FOUND) 22 | message(STATUS "Found lmdb (include: ${LMDB_INCLUDE_DIR}, library: ${LMDB_LIBRARIES})") 23 | mark_as_advanced(LMDB_INCLUDE_DIR LMDB_LIBRARIES) 24 | 25 | caffe_parse_header(${LMDB_INCLUDE_DIR}/lmdb.h 26 | LMDB_VERSION_LINES MDB_VERSION_MAJOR MDB_VERSION_MINOR MDB_VERSION_PATCH) 27 | set(LMDB_VERSION "${MDB_VERSION_MAJOR}.${MDB_VERSION_MINOR}.${MDB_VERSION_PATCH}") 28 | endif() 29 | -------------------------------------------------------------------------------- /caffe/cmake/Modules/FindNCCL.cmake: -------------------------------------------------------------------------------- 1 | set(NCCL_INC_PATHS 2 | /usr/include 3 | /usr/local/include 4 | $ENV{NCCL_DIR}/include 5 | ) 6 | 7 | set(NCCL_LIB_PATHS 8 | /lib 9 | /lib64 10 | /usr/lib 11 | /usr/lib64 12 | /usr/local/lib 13 | /usr/local/lib64 14 | $ENV{NCCL_DIR}/lib 15 | ) 16 | 17 | find_path(NCCL_INCLUDE_DIR NAMES nccl.h PATHS ${NCCL_INC_PATHS}) 18 | find_library(NCCL_LIBRARIES NAMES nccl PATHS ${NCCL_LIB_PATHS}) 19 | 20 | include(FindPackageHandleStandardArgs) 21 | find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIR NCCL_LIBRARIES) 22 | 23 | if (NCCL_FOUND) 24 | message(STATUS "Found NCCL (include: ${NCCL_INCLUDE_DIR}, library: ${NCCL_LIBRARIES})") 25 | mark_as_advanced(NCCL_INCLUDE_DIR NCCL_LIBRARIES) 26 | endif () 27 | -------------------------------------------------------------------------------- /caffe/cmake/Modules/FindSnappy.cmake: -------------------------------------------------------------------------------- 1 | # Find the Snappy libraries 2 | # 3 | # The following variables are optionally searched for defaults 4 | # Snappy_ROOT_DIR: Base directory where all Snappy components are found 5 | # 6 | # The following are set after configuration is done: 7 | # SNAPPY_FOUND 8 | # Snappy_INCLUDE_DIR 9 | # Snappy_LIBRARIES 10 | 11 | find_path(Snappy_INCLUDE_DIR NAMES snappy.h 12 | PATHS ${SNAPPY_ROOT_DIR} ${SNAPPY_ROOT_DIR}/include) 13 | 14 | find_library(Snappy_LIBRARIES NAMES snappy 15 | PATHS ${SNAPPY_ROOT_DIR} ${SNAPPY_ROOT_DIR}/lib) 16 | 17 | include(FindPackageHandleStandardArgs) 18 | find_package_handle_standard_args(Snappy DEFAULT_MSG Snappy_INCLUDE_DIR Snappy_LIBRARIES) 19 | 20 | if(SNAPPY_FOUND) 21 | message(STATUS "Found Snappy (include: ${Snappy_INCLUDE_DIR}, library: ${Snappy_LIBRARIES})") 22 | mark_as_advanced(Snappy_INCLUDE_DIR Snappy_LIBRARIES) 23 | 24 | caffe_parse_header(${Snappy_INCLUDE_DIR}/snappy-stubs-public.h 25 | SNAPPY_VERION_LINES SNAPPY_MAJOR SNAPPY_MINOR SNAPPY_PATCHLEVEL) 26 | set(Snappy_VERSION "${SNAPPY_MAJOR}.${SNAPPY_MINOR}.${SNAPPY_PATCHLEVEL}") 27 | endif() 28 | 29 | -------------------------------------------------------------------------------- /caffe/cmake/Templates/CaffeConfigVersion.cmake.in: -------------------------------------------------------------------------------- 1 | set(PACKAGE_VERSION "@Caffe_VERSION@") 2 | 3 | # Check whether the requested PACKAGE_FIND_VERSION is compatible 4 | if("${PACKAGE_VERSION}" VERSION_LESS "${PACKAGE_FIND_VERSION}") 5 | set(PACKAGE_VERSION_COMPATIBLE FALSE) 6 | else() 7 | set(PACKAGE_VERSION_COMPATIBLE TRUE) 8 | if ("${PACKAGE_VERSION}" VERSION_EQUAL "${PACKAGE_FIND_VERSION}") 9 | set(PACKAGE_VERSION_EXACT TRUE) 10 | endif() 11 | endif() 12 | -------------------------------------------------------------------------------- /caffe/cmake/Templates/caffe_config.h.in: -------------------------------------------------------------------------------- 1 | /* Sources directory */ 2 | #define SOURCE_FOLDER "${PROJECT_SOURCE_DIR}" 3 | 4 | /* Binaries directory */ 5 | #define BINARY_FOLDER "${PROJECT_BINARY_DIR}" 6 | 7 | /* NVIDA Cuda */ 8 | #cmakedefine HAVE_CUDA 9 | 10 | /* NVIDA cuDNN */ 11 | #cmakedefine HAVE_CUDNN 12 | #cmakedefine USE_CUDNN 13 | 14 | /* NVIDA cuDNN */ 15 | #cmakedefine CPU_ONLY 16 | 17 | /* Test device */ 18 | #define CUDA_TEST_DEVICE ${CUDA_TEST_DEVICE} 19 | 20 | /* Temporary (TODO: remove) */ 21 | #if 1 22 | #define CMAKE_SOURCE_DIR SOURCE_FOLDER "/src/" 23 | #define EXAMPLES_SOURCE_DIR BINARY_FOLDER "/examples/" 24 | #define CMAKE_EXT ".gen.cmake" 25 | #else 26 | #define CMAKE_SOURCE_DIR "src/" 27 | #define EXAMPLES_SOURCE_DIR "examples/" 28 | #define CMAKE_EXT "" 29 | #endif 30 | 31 | /* Matlab */ 32 | #cmakedefine HAVE_MATLAB 33 | 34 | /* IO libraries */ 35 | #cmakedefine USE_OPENCV 36 | #cmakedefine USE_LEVELDB 37 | #cmakedefine USE_LMDB 38 | #cmakedefine ALLOW_LMDB_NOLOCK 39 | -------------------------------------------------------------------------------- /caffe/docs/CNAME: -------------------------------------------------------------------------------- 1 | caffe.berkeleyvision.org 2 | -------------------------------------------------------------------------------- /caffe/docs/README.md: -------------------------------------------------------------------------------- 1 | # Caffe Documentation 2 | 3 | To generate the documentation, run `$CAFFE_ROOT/scripts/build_docs.sh`. 4 | 5 | To push your changes to the documentation to the gh-pages branch of your or the BVLC repo, run `$CAFFE_ROOT/scripts/deploy_docs.sh `. 6 | -------------------------------------------------------------------------------- /caffe/docs/_config.yml: -------------------------------------------------------------------------------- 1 | defaults: 2 | - 3 | scope: 4 | path: "" # an empty string here means all files in the project 5 | values: 6 | layout: "default" 7 | 8 | -------------------------------------------------------------------------------- /caffe/docs/images/GitHub-Mark-64px.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/docs/images/GitHub-Mark-64px.png -------------------------------------------------------------------------------- /caffe/docs/images/caffeine-icon.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/docs/images/caffeine-icon.png -------------------------------------------------------------------------------- /caffe/docs/stylesheets/reset.css: -------------------------------------------------------------------------------- 1 | /* MeyerWeb Reset */ 2 | 3 | html, body, div, span, applet, object, iframe, 4 | h1, h2, h3, h4, h5, h6, p, blockquote, pre, 5 | a, abbr, acronym, address, big, cite, code, 6 | del, dfn, em, img, ins, kbd, q, s, samp, 7 | small, strike, strong, sub, sup, tt, var, 8 | b, u, i, center, 9 | dl, dt, dd, ol, ul, li, 10 | fieldset, form, label, legend, 11 | table, caption, tbody, tfoot, thead, tr, th, td, 12 | article, aside, canvas, details, embed, 13 | figure, figcaption, footer, header, hgroup, 14 | menu, nav, output, ruby, section, summary, 15 | time, mark, audio, video { 16 | margin: 0; 17 | padding: 0; 18 | border: 0; 19 | font: inherit; 20 | vertical-align: baseline; 21 | } 22 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/convolution.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Convolution 3 | --- 4 | # Caffeinated Convolution 5 | 6 | The Caffe strategy for convolution is to reduce the problem to matrix-matrix multiplication. 7 | This linear algebra computation is highly-tuned in BLAS libraries and efficiently computed on GPU devices. 8 | 9 | For more details read Yangqing's [Convolution in Caffe: a memo](https://github.com/Yangqing/caffe/wiki/Convolution-in-Caffe:-a-memo). 10 | 11 | As it turns out, this same reduction was independently explored in the context of conv. nets by 12 | 13 | > K. Chellapilla, S. Puri, P. Simard, et al. High performance convolutional neural networks for document processing. In Tenth International Workshop on Frontiers in Handwriting Recognition, 2006. 14 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/.gitignore: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/docs/tutorial/fig/.gitignore -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/backward.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/docs/tutorial/fig/backward.jpg -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/forward.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/docs/tutorial/fig/forward.jpg -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/forward_backward.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/docs/tutorial/fig/forward_backward.png -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/layer.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/docs/tutorial/fig/layer.jpg -------------------------------------------------------------------------------- /caffe/docs/tutorial/fig/logreg.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/docs/tutorial/fig/logreg.jpg -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/absval.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Absolute Value Layer 3 | --- 4 | 5 | # Absolute Value Layer 6 | 7 | * Layer type: `AbsVal` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1AbsValLayer.html) 9 | * Header: [`./include/caffe/layers/absval_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/absval_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/absval_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/absval_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/absval_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/absval_layer.cu) 12 | 13 | * Sample 14 | 15 | layer { 16 | name: "layer" 17 | bottom: "in" 18 | top: "out" 19 | type: "AbsVal" 20 | } 21 | 22 | The `AbsVal` layer computes the output as abs(x) for each input element x. 23 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/accuracy.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Accuracy and Top-k 3 | --- 4 | 5 | # Accuracy and Top-k 6 | 7 | `Accuracy` scores the output as the accuracy of output with respect to target -- it is not actually a loss and has no backward step. 8 | 9 | * Layer type: `Accuracy` 10 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1AccuracyLayer.html) 11 | * Header: [`./include/caffe/layers/accuracy_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/accuracy_layer.hpp) 12 | * CPU implementation: [`./src/caffe/layers/accuracy_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/accuracy_layer.cpp) 13 | * CUDA GPU implementation: [`./src/caffe/layers/accuracy_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/accuracy_layer.cu) 14 | 15 | ## Parameters 16 | * Parameters (`AccuracyParameter accuracy_param`) 17 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 18 | 19 | {% highlight Protobuf %} 20 | {% include proto/AccuracyParameter.txt %} 21 | {% endhighlight %} -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/argmax.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: ArgMax Layer 3 | --- 4 | 5 | # ArgMax Layer 6 | 7 | * Layer type: `ArgMax` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ArgMaxLayer.html) 9 | * Header: [`./include/caffe/layers/argmax_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/argmax_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/argmax_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/argmax_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/argmax_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/argmax_layer.cu) 12 | 13 | ## Parameters 14 | * Parameters (`ArgMaxParameter argmax_param`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/ArgMaxParameter.txt %} 19 | {% endhighlight %} -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/batchnorm.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Batch Norm Layer 3 | --- 4 | 5 | # Batch Norm Layer 6 | 7 | * Layer type: `BatchNorm` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BatchNormLayer.html) 9 | * Header: [`./include/caffe/layers/batch_norm_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/batch_norm_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/batch_norm_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_norm_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/batch_norm_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_norm_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`BatchNormParameter batch_norm_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/BatchNormParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/batchreindex.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Batch Reindex Layer 3 | --- 4 | 5 | # Batch Reindex Layer 6 | 7 | * Layer type: `BatchReindex` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BatchReindexLayer.html) 9 | * Header: [`./include/caffe/layers/batch_reindex_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/batch_reindex_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/batch_reindex_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_reindex_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/batch_reindex_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_reindex_layer.cu) 12 | 13 | 14 | ## Parameters 15 | 16 | No parameters. 17 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/bias.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Bias Layer 3 | --- 4 | 5 | # Bias Layer 6 | 7 | * Layer type: `Bias` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BiasLayer.html) 9 | * Header: [`./include/caffe/layers/bias_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/bias_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/bias_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bias_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/bias_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bias_layer.cu) 12 | 13 | ## Parameters 14 | * Parameters (`BiasParameter bias_param`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/BiasParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/bnll.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: BNLL Layer 3 | --- 4 | 5 | # BNLL Layer 6 | 7 | * Layer type: `BNLL` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BNLLLayer.html) 9 | * Header: [`./include/caffe/layers/bnll_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/bnll_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/bnll_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/bnll_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cu) 12 | 13 | The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x. 14 | 15 | ## Parameters 16 | No parameters. 17 | 18 | ## Sample 19 | 20 | layer { 21 | name: "layer" 22 | bottom: "in" 23 | top: "out" 24 | type: BNLL 25 | } 26 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/contrastiveloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Contrastive Loss Layer 3 | --- 4 | 5 | # Contrastive Loss Layer 6 | 7 | * Layer type: `ContrastiveLoss` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ContrastiveLossLayer.html) 9 | * Header: [`./include/caffe/layers/contrastive_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/contrastive_loss_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/contrastive_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/contrastive_loss_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/contrastive_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/contrastive_loss_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`ContrastiveLossParameter contrastive_loss_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/ContrastiveLossParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/crop.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Crop Layer 3 | --- 4 | 5 | # Crop Layer 6 | 7 | * Layer type: `Crop` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1CropLayer.html) 9 | * Header: [`./include/caffe/layers/crop_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/crop_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/crop_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/crop_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/crop_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/crop_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`CropParameter crop_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/CropParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/data.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Database Layer 3 | --- 4 | 5 | # Database Layer 6 | 7 | * Layer type: `Data` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DataLayer.html) 9 | * Header: [`./include/caffe/layers/data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/data_layer.cpp) 11 | 12 | 13 | ## Parameters 14 | 15 | * Parameters (`DataParameter data_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/DataParameter.txt %} 20 | {% endhighlight %} 21 | 22 | * Parameters 23 | - Required 24 | - `source`: the name of the directory containing the database 25 | - `batch_size`: the number of inputs to process at one time 26 | - Optional 27 | - `rand_skip`: skip up to this number of inputs at the beginning; useful for asynchronous sgd 28 | - `backend` [default `LEVELDB`]: choose whether to use a `LEVELDB` or `LMDB` 29 | 30 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/deconvolution.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Deconvolution Layer 3 | --- 4 | 5 | # Deconvolution Layer 6 | 7 | * Layer type: `Deconvolution` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DeconvolutionLayer.html) 9 | * Header: [`./include/caffe/layers/deconv_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/deconv_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/deconv_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/deconv_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/deconv_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/deconv_layer.cu) 12 | 13 | ## Parameters 14 | 15 | Uses the same parameters as the Convolution layer. 16 | 17 | * Parameters (`ConvolutionParameter convolution_param`) 18 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 19 | 20 | {% highlight Protobuf %} 21 | {% include proto/ConvolutionParameter.txt %} 22 | {% endhighlight %} 23 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/dropout.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Dropout Layer 3 | --- 4 | 5 | # Dropout Layer 6 | 7 | * Layer type: `Dropout` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DropoutLayer.html) 9 | * Header: [`./include/caffe/layers/dropout_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/dropout_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/dropout_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dropout_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/dropout_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dropout_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`DropoutParameter dropout_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/DropoutParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/dummydata.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Dummy Data Layer 3 | --- 4 | 5 | # Dummy Data Layer 6 | 7 | * Layer type: `DummyData` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DummyDataLayer.html) 9 | * Header: [`./include/caffe/layers/dummy_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/dummy_data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/dummy_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dummy_data_layer.cpp) 11 | 12 | 13 | ## Parameters 14 | 15 | * Parameters (`DummyDataParameter dummy_data_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/DummyDataParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/eltwise.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Eltwise Layer 3 | --- 4 | 5 | # Eltwise Layer 6 | 7 | * Layer type: `Eltwise` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EltwiseLayer.html) 9 | * Header: [`./include/caffe/layers/eltwise_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/eltwise_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/eltwise_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/eltwise_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/eltwise_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/eltwise_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`EltwiseParameter eltwise_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/EltwiseParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/elu.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: ELU Layer 3 | --- 4 | 5 | # ELU Layer 6 | 7 | * Layer type: `ELU` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ELULayer.html) 9 | * Header: [`./include/caffe/layers/elu_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/elu_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/elu_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/elu_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/elu_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/elu_layer.cu) 12 | 13 | ## References 14 | 15 | * Clevert, Djork-Arne, Thomas Unterthiner, and Sepp Hochreiter. 16 | "Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)" [arXiv:1511.07289](https://arxiv.org/abs/1511.07289). (2015). 17 | 18 | ## Parameters 19 | 20 | * Parameters (`ELUParameter elu_param`) 21 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 22 | 23 | {% highlight Protobuf %} 24 | {% include proto/ELUParameter.txt %} 25 | {% endhighlight %} 26 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/embed.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Embed Layer 3 | --- 4 | 5 | # Embed Layer 6 | 7 | * Layer type: `Embed` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EmbedLayer.html) 9 | * Header: [`./include/caffe/layers/embed_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/embed_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/embed_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/embed_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/embed_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/embed_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`EmbedParameter embed_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/EmbedParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/euclideanloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Euclidean Loss Layer 3 | --- 4 | # Sum-of-Squares / Euclidean Loss Layer 5 | 6 | * Layer type: `EuclideanLoss` 7 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EuclideanLossLayer.html) 8 | * Header: [`./include/caffe/layers/euclidean_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/euclidean_loss_layer.hpp) 9 | * CPU implementation: [`./src/caffe/layers/euclidean_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/euclidean_loss_layer.cpp) 10 | * CUDA GPU implementation: [`./src/caffe/layers/euclidean_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/euclidean_loss_layer.cu) 11 | 12 | The Euclidean loss layer computes the sum of squares of differences of its two inputs, $$\frac 1 {2N} \sum_{i=1}^N \| x^1_i - x^2_i \|_2^2$$. 13 | 14 | ## Parameters 15 | 16 | Does not take any parameters. 17 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/exp.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Exponential Layer 3 | --- 4 | 5 | # Exponential Layer 6 | 7 | * Layer type: `Exp` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ExpLayer.html) 9 | * Header: [`./include/caffe/layers/exp_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/exp_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/exp_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/exp_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/exp_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/exp_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`Parameter exp_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/ExpParameter.txt %} 20 | {% endhighlight %} 21 | 22 | ## See also 23 | 24 | * [Power layer](power.html) 25 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/filter.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Filter Layer 3 | --- 4 | 5 | # Filter Layer 6 | 7 | * Layer type: `Filter` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1FilterLayer.html) 9 | * Header: [`./include/caffe/layers/filter_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/filter_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/filter_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/filter_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/filter_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/filter_layer.cu) 12 | 13 | ## Parameters 14 | 15 | Does not take any parameters. 16 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/flatten.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Flatten Layer 3 | --- 4 | 5 | # Flatten Layer 6 | 7 | * Layer type: `Flatten` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1FlattenLayer.html) 9 | * Header: [`./include/caffe/layers/flatten_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/flatten_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/flatten_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/flatten_layer.cpp) 11 | 12 | The `Flatten` layer is a utility layer that flattens an input of shape `n * c * h * w` to a simple vector output of shape `n * (c*h*w)`. 13 | 14 | ## Parameters 15 | 16 | * Parameters (`FlattenParameter flatten_param`) 17 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 18 | 19 | {% highlight Protobuf %} 20 | {% include proto/FlattenParameter.txt %} 21 | {% endhighlight %} 22 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/hdf5data.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: HDF5 Data Layer 3 | --- 4 | 5 | # HDF5 Data Layer 6 | 7 | * Layer type: `HDF5Data` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HDF5DataLayer.html) 9 | * Header: [`./include/caffe/layers/hdf5_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hdf5_data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/hdf5_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_data_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/hdf5_data_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_data_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`HDF5DataParameter hdf5_data_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/HDF5DataParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/hdf5output.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: HDF5 Output Layer 3 | --- 4 | 5 | # HDF5 Output Layer 6 | 7 | * Layer type: `HDF5Output` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HDF5OutputLayer.html) 9 | * Header: [`./include/caffe/layers/hdf5_output_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hdf5_output_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/hdf5_output_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_output_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/hdf5_output_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_output_layer.cu) 12 | 13 | The HDF5 output layer performs the opposite function of the other layers in this section: it writes its input blobs to disk. 14 | 15 | ## Parameters 16 | 17 | * Parameters (`HDF5OutputParameter hdf5_output_param`) 18 | - Required 19 | - `file_name`: name of file to write to 20 | 21 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 22 | 23 | {% highlight Protobuf %} 24 | {% include proto/HDF5OutputParameter.txt %} 25 | {% endhighlight %} 26 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/hingeloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Hinge Loss Layer 3 | --- 4 | 5 | # Hinge (L1, L2) Loss Layer 6 | 7 | * Layer type: `HingeLoss` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HingeLossLayer.html) 9 | * Header: [`./include/caffe/layers/hinge_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hinge_loss_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/hinge_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hinge_loss_layer.cpp) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`HingeLossParameter hinge_loss_param`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/HingeLossParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/im2col.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Im2col Layer 3 | --- 4 | 5 | # im2col 6 | 7 | * File type: `Im2col` 8 | * Header: [`./include/caffe/layers/im2col_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/im2col_layer.hpp) 9 | * CPU implementation: [`./src/caffe/layers/im2col_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/im2col_layer.cpp) 10 | * CUDA GPU implementation: [`./src/caffe/layers/im2col_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/im2col_layer.cu) 11 | 12 | `Im2col` is a helper for doing the image-to-column transformation that you most 13 | likely do not need to know about. This is used in Caffe's original convolution 14 | to do matrix multiplication by laying out all patches into a matrix. 15 | 16 | 17 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/imagedata.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: ImageData Layer 3 | --- 4 | 5 | # ImageData Layer 6 | 7 | * Layer type: `ImageData` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ImageDataLayer.html) 9 | * Header: [`./include/caffe/layers/image_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/image_data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/image_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/image_data_layer.cpp) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`ImageDataParameter image_data_parameter`) 15 | - Required 16 | - `source`: name of a text file, with each line giving an image filename and label 17 | - `batch_size`: number of images to batch together 18 | - Optional 19 | - `rand_skip` 20 | - `shuffle` [default false] 21 | - `new_height`, `new_width`: if provided, resize all images to this size 22 | 23 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 24 | 25 | {% highlight Protobuf %} 26 | {% include proto/ImageDataParameter.txt %} 27 | {% endhighlight %} 28 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/infogainloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Infogain Loss Layer 3 | --- 4 | 5 | # Infogain Loss Layer 6 | 7 | * Layer type: `InfogainLoss` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InfogainLossLayer.html) 9 | * Header: [`./include/caffe/layers/infogain_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/infogain_loss_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/infogain_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/infogain_loss_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/infogain_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/infogain_loss_layer.cu) 12 | 13 | A generalization of [MultinomialLogisticLossLayer](layers/multinomiallogisticloss.md) that takes an "information gain" (infogain) matrix specifying the "value" of all label pairs. 14 | 15 | Equivalent to the [MultinomialLogisticLossLayer](layers/multinomiallogisticloss.md) if the infogain matrix is the identity. 16 | 17 | ## Parameters 18 | 19 | * Parameters (`Parameter infogain_param`) 20 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 21 | 22 | {% highlight Protobuf %} 23 | {% include proto/InfogainLossParameter.txt %} 24 | {% endhighlight %} 25 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/input.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Input Layer 3 | --- 4 | 5 | # Input Layer 6 | 7 | * Layer type: `Input` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InputLayer.html) 9 | * Header: [`./include/caffe/layers/input_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/input_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/input_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/input_layer.cpp) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`InputParameter input_param`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/InputParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/log.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Log Layer 3 | --- 4 | 5 | # Log Layer 6 | 7 | * Layer type: `Log` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1LogLayer.html) 9 | * Header: [`./include/caffe/layers/log_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/log_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/log_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/log_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/log_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/log_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`Parameter log_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/LogParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/lstm.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: LSTM Layer 3 | --- 4 | 5 | # LSTM Layer 6 | 7 | * Layer type: `LSTM` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1LSTMLayer.html) 9 | * Header: [`./include/caffe/layers/lstm_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/lstm_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/lstm_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_layer.cpp) 11 | * CPU implementation (helper): [`./src/caffe/layers/lstm_unit_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_unit_layer.cpp) 12 | * CUDA GPU implementation (helper): [`./src/caffe/layers/lstm_unit_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_unit_layer.cu) 13 | 14 | ## Parameters 15 | 16 | * Parameters (`Parameter recurrent_param`) 17 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 18 | 19 | {% highlight Protobuf %} 20 | {% include proto/RecurrentParameter.txt %} 21 | {% endhighlight %} 22 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/memorydata.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Memory Data Layer 3 | --- 4 | 5 | # Memory Data Layer 6 | 7 | * Layer type: `MemoryData` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MemoryDataLayer.html) 9 | * Header: [`./include/caffe/layers/memory_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/memory_data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/memory_data_layer.cpu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/memory_data_layer.cpu) 11 | 12 | The memory data layer reads data directly from memory, without copying it. In order to use it, one must call `MemoryDataLayer::Reset` (from C++) or `Net.set_input_arrays` (from Python) in order to specify a source of contiguous data (as 4D row major array), which is read one batch-sized chunk at a time. 13 | 14 | # Parameters 15 | 16 | * Parameters (`MemoryDataParameter memory_data_param`) 17 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 18 | 19 | {% highlight Protobuf %} 20 | {% include proto/MemoryDataParameter.txt %} 21 | {% endhighlight %} 22 | 23 | * Parameters 24 | - Required 25 | - `batch_size`, `channels`, `height`, `width`: specify the size of input chunks to read from memory 26 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/multinomiallogisticloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Multinomial Logistic Loss Layer 3 | --- 4 | 5 | # Multinomial Logistic Loss Layer 6 | 7 | * Layer type: `MultinomialLogisticLoss` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MultinomialLogisticLossLayer.html) 9 | * Header: [`./include/caffe/layers/multinomial_logistic_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/multinomial_logistic_loss_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/multinomial_logistic_loss_layer.cpu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/multinomial_logistic_loss_layer.cpu) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`LossParameter loss_param`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/LossParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/mvn.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Mean-Variance Normalization (MVN) Layer 3 | --- 4 | 5 | # Mean-Variance Normalization (MVN) Layer 6 | 7 | * Layer type: `MVN` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MVNLayer.html) 9 | * Header: [`./include/caffe/layers/mvn_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/mvn_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/mvn_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/mvn_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/mvn_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/mvn_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`MVNParameter mvn_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/MVNParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/parameter.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Parameter Layer 3 | --- 4 | 5 | # Parameter Layer 6 | 7 | * Layer type: `Parameter` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ParameterLayer.html) 9 | * Header: [`./include/caffe/layers/parameter_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/parameter_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/parameter_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/parameter_layer.cpp) 11 | 12 | See [https://github.com/BVLC/caffe/pull/2079](https://github.com/BVLC/caffe/pull/2079). 13 | 14 | ## Parameters 15 | 16 | * Parameters (`ParameterParameter parameter_param`) 17 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 18 | 19 | {% highlight Protobuf %} 20 | {% include proto/ParameterParameter.txt %} 21 | {% endhighlight %} 22 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/prelu.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: PReLU Layer 3 | --- 4 | 5 | # PReLU Layer 6 | 7 | * Layer type: `PReLU` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PReLULayer.html) 9 | * Header: [`./include/caffe/layers/prelu_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/prelu_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/prelu_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/prelu_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/prelu_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/prelu_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`PReLUParameter prelu_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/PReLUParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/python.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Python Layer 3 | --- 4 | 5 | # Python Layer 6 | 7 | * Layer type: `Python` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PythonLayer.html) 9 | * Header: [`./include/caffe/layers/python_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/python_layer.hpp) 10 | 11 | The Python layer allows users to add customized layers without modifying the Caffe core code. 12 | 13 | ## Parameters 14 | 15 | * Parameters (`PythonParameter python_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/PythonParameter.txt %} 20 | {% endhighlight %} 21 | 22 | ## Examples and tutorials 23 | 24 | * Simple Euclidean loss example 25 | ** [Python code](https://github.com/BVLC/caffe/blob/master/examples/pycaffe/layers/pyloss.py) 26 | ** [Prototxt](https://github.com/BVLC/caffe/blob/master/examples/pycaffe/linreg.prototxt) 27 | * [Tutorial for writing Python layers with DIGITS](https://github.com/NVIDIA/DIGITS/tree/master/examples/python-layer) 28 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/recurrent.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Recurrent Layer 3 | --- 4 | 5 | # Recurrent Layer 6 | 7 | * Layer type: `Recurrent` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1RecurrentLayer.html) 9 | * Header: [`./include/caffe/layers/recurrent_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/recurrent_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/recurrent_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/recurrent_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/recurrent_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/recurrent_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`RecurrentParameter recurrent_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/RecurrentParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/reduction.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Reduction Layer 3 | --- 4 | 5 | # Reduction Layer 6 | 7 | * Layer type: `Reduction` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ReductionLayer.html) 9 | * Header: [`./include/caffe/layers/reduction_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/reduction_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/reduction_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/reduction_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/reduction_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/reduction_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`ReductionParameter reduction_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/ReductionParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/rnn.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: RNN Layer 3 | --- 4 | 5 | # RNN Layer 6 | 7 | * Layer type: `RNN` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1RNNLayer.html) 9 | * Header: [`./include/caffe/layers/rnn_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/rnn_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/rnn_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/rnn_layer.cpp) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`RecurrentParameter recurrent_param`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/RecurrentParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/scale.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Scale Layer 3 | --- 4 | 5 | # Scale Layer 6 | 7 | * Layer type: `Scale` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ScaleLayer.html) 9 | * Header: [`./include/caffe/layers/scale_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/scale_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/scale_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/scale_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/scale_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/scale_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`ScaleParameter scale_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/ScaleParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/sigmoid.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Sigmoid Layer 3 | --- 4 | 5 | # Sigmoid Layer 6 | 7 | * Layer type: `Sigmoid` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SigmoidLayer.html) 9 | * Header: [`./include/caffe/layers/sigmoid_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/sigmoid_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/sigmoid_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/sigmoid_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`SigmoidParameter sigmoid_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/SigmoidParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/sigmoidcrossentropyloss.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Sigmoid Cross-Entropy Loss Layer 3 | --- 4 | 5 | # Sigmoid Cross-Entropy Loss Layer 6 | 7 | * Layer type: `SigmoidCrossEntropyLoss` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SigmoidCrossEntropyLossLayer.html) 9 | * Header: [`./include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu) 12 | 13 | To-do. 14 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/silence.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Silence Layer 3 | --- 4 | 5 | # Silence Layer 6 | 7 | * Layer type: `Silence` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SilenceLayer.html) 9 | * Header: [`./include/caffe/layers/silence_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/silence_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/silence_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/silence_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/silence_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/silence_layer.cu) 12 | 13 | Silences a blob, so that it is not printed. 14 | 15 | ## Parameters 16 | 17 | * Parameters (`SilenceParameter silence_param`) 18 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 19 | 20 | {% highlight Protobuf %} 21 | {% include proto/BatchNormParameter.txt %} 22 | {% endhighlight %} 23 | 24 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/softmax.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Softmax Layer 3 | --- 4 | 5 | # Softmax Layer 6 | 7 | * Layer type: `Softmax` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SoftmaxLayer.html) 9 | * Header: [`./include/caffe/layers/softmax_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/softmax_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/softmax_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/softmax_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`SoftmaxParameter softmax_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/SoftmaxParameter.txt %} 20 | {% endhighlight %} 21 | 22 | ## See also 23 | 24 | * [Softmax loss layer](softmaxwithloss.html) 25 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/split.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Split Layer 3 | --- 4 | 5 | # Split Layer 6 | 7 | * Layer type: `Split` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SplitLayer.html) 9 | * Header: [`./include/caffe/layers/split_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/split_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/split_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/split_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/split_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/split_layer.cu) 12 | 13 | The `Split` layer is a utility layer that splits an input blob to multiple output blobs. This is used when a blob is fed into multiple output layers. 14 | 15 | ## Parameters 16 | 17 | Does not take any parameters. 18 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/spp.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Spatial Pyramid Pooling Layer 3 | --- 4 | 5 | # Spatial Pyramid Pooling Layer 6 | 7 | * Layer type: `SPP` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SPPLayer.html) 9 | * Header: [`./include/caffe/layers/spp_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/spp_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/spp_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/spp_layer.cpp) 11 | 12 | 13 | ## Parameters 14 | 15 | * Parameters (`SPPParameter spp_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/SPPParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/tanh.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: TanH Layer 3 | --- 4 | 5 | # TanH Layer 6 | 7 | * Header: [`./include/caffe/layers/tanh_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/tanh_layer.hpp) 8 | * CPU implementation: [`./src/caffe/layers/tanh_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tanh_layer.cpp) 9 | * CUDA GPU implementation: [`./src/caffe/layers/tanh_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tanh_layer.cu) 10 | 11 | ## Parameters 12 | 13 | * Parameters (`TanHParameter tanh_param`) 14 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 15 | 16 | {% highlight Protobuf %} 17 | {% include proto/TanHParameter.txt %} 18 | {% endhighlight %} 19 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/threshold.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Threshold Layer 3 | --- 4 | 5 | # Threshold Layer 6 | 7 | * Header: [`./include/caffe/layers/threshold_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/threshold_layer.hpp) 8 | * CPU implementation: [`./src/caffe/layers/threshold_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/threshold_layer.cpp) 9 | * CUDA GPU implementation: [`./src/caffe/layers/threshold_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/threshold_layer.cu) 10 | 11 | ## Parameters 12 | 13 | * Parameters (`ThresholdParameter threshold_param`) 14 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 15 | 16 | {% highlight Protobuf %} 17 | {% include proto/ThresholdParameter.txt %} 18 | {% endhighlight %} 19 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/tile.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Tile Layer 3 | --- 4 | 5 | # Tile Layer 6 | 7 | * Layer type: `Tile` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1TileLayer.html) 9 | * Header: [`./include/caffe/layers/tile_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/tile_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/tile_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tile_layer.cpp) 11 | * CUDA GPU implementation: [`./src/caffe/layers/tile_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tile_layer.cu) 12 | 13 | ## Parameters 14 | 15 | * Parameters (`TileParameter tile_param`) 16 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 17 | 18 | {% highlight Protobuf %} 19 | {% include proto/TileParameter.txt %} 20 | {% endhighlight %} 21 | -------------------------------------------------------------------------------- /caffe/docs/tutorial/layers/windowdata.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: WindowData Layer 3 | --- 4 | 5 | # WindowData Layer 6 | 7 | * Layer type: `WindowData` 8 | * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1WindowDataLayer.html) 9 | * Header: [`./include/caffe/layers/window_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/window_data_layer.hpp) 10 | * CPU implementation: [`./src/caffe/layers/window_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/window_data_layer.cpp) 11 | 12 | ## Parameters 13 | 14 | * Parameters (`WindowDataParameter`) 15 | * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): 16 | 17 | {% highlight Protobuf %} 18 | {% include proto/WindowDataParameter.txt %} 19 | {% endhighlight %} 20 | -------------------------------------------------------------------------------- /caffe/examples/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | file(GLOB_RECURSE examples_srcs "${PROJECT_SOURCE_DIR}/examples/*.cpp") 2 | 3 | foreach(source_file ${examples_srcs}) 4 | # get file name 5 | get_filename_component(name ${source_file} NAME_WE) 6 | 7 | # get folder name 8 | get_filename_component(path ${source_file} PATH) 9 | get_filename_component(folder ${path} NAME_WE) 10 | 11 | add_executable(${name} ${source_file}) 12 | target_link_libraries(${name} ${Caffe_LINK}) 13 | caffe_default_properties(${name}) 14 | 15 | # set back RUNTIME_OUTPUT_DIRECTORY 16 | set_target_properties(${name} PROPERTIES 17 | RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/examples/${folder}") 18 | 19 | caffe_set_solution_folder(${name} examples) 20 | 21 | # install 22 | install(TARGETS ${name} DESTINATION bin) 23 | 24 | if(UNIX OR APPLE) 25 | # Funny command to make tutorials work 26 | # TODO: remove in future as soon as naming is standardized everywhere 27 | set(__outname ${PROJECT_BINARY_DIR}/examples/${folder}/${name}${Caffe_POSTFIX}) 28 | add_custom_command(TARGET ${name} POST_BUILD 29 | COMMAND ln -sf "${__outname}" "${__outname}.bin") 30 | endif() 31 | endforeach() 32 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_full_sigmoid_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_sigmoid_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 10 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | #weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "step" 18 | gamma: 1 19 | stepsize: 5000 20 | # Display every 100 iterations 21 | display: 100 22 | # The maximum number of iterations 23 | max_iter: 60000 24 | # snapshot intermediate results 25 | snapshot: 10000 26 | snapshot_prefix: "examples/cifar10_full_sigmoid" 27 | # solver mode: CPU or GPU 28 | solver_mode: GPU 29 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 10 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | #weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "step" 18 | gamma: 1 19 | stepsize: 5000 20 | # Display every 100 iterations 21 | display: 100 22 | # The maximum number of iterations 23 | max_iter: 60000 24 | # snapshot intermediate results 25 | snapshot: 10000 26 | snapshot_prefix: "examples/cifar10_full_sigmoid_bn" 27 | # solver mode: CPU or GPU 28 | solver_mode: GPU 29 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_full_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 60000 22 | # snapshot intermediate results 23 | snapshot: 10000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_full_solver_lr1.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.0001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 65000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_full_solver_lr2.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.00001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 70000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_quick_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce the learning rate after 8 epochs (4000 iters) by a factor of 10 2 | 3 | # The train/test net protocol buffer definition 4 | net: "examples/cifar10/cifar10_quick_train_test.prototxt" 5 | # test_iter specifies how many forward passes the test should carry out. 6 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 7 | # covering the full 10,000 testing images. 8 | test_iter: 100 9 | # Carry out testing every 500 training iterations. 10 | test_interval: 500 11 | # The base learning rate, momentum and the weight decay of the network. 12 | base_lr: 0.001 13 | momentum: 0.9 14 | weight_decay: 0.004 15 | # The learning rate policy 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 4000 21 | # snapshot intermediate results 22 | snapshot: 4000 23 | snapshot_format: HDF5 24 | snapshot_prefix: "examples/cifar10/cifar10_quick" 25 | # solver mode: CPU or GPU 26 | solver_mode: GPU 27 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/cifar10_quick_solver_lr1.prototxt: -------------------------------------------------------------------------------- 1 | # reduce the learning rate after 8 epochs (4000 iters) by a factor of 10 2 | 3 | # The train/test net protocol buffer definition 4 | net: "examples/cifar10/cifar10_quick_train_test.prototxt" 5 | # test_iter specifies how many forward passes the test should carry out. 6 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 7 | # covering the full 10,000 testing images. 8 | test_iter: 100 9 | # Carry out testing every 500 training iterations. 10 | test_interval: 500 11 | # The base learning rate, momentum and the weight decay of the network. 12 | base_lr: 0.0001 13 | momentum: 0.9 14 | weight_decay: 0.004 15 | # The learning rate policy 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 5000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_format: HDF5 24 | snapshot_prefix: "examples/cifar10/cifar10_quick" 25 | # solver mode: CPU or GPU 26 | solver_mode: GPU 27 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/create_cifar10.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the cifar data into leveldb format. 3 | set -e 4 | 5 | EXAMPLE=examples/cifar10 6 | DATA=data/cifar10 7 | DBTYPE=lmdb 8 | 9 | echo "Creating $DBTYPE..." 10 | 11 | rm -rf $EXAMPLE/cifar10_train_$DBTYPE $EXAMPLE/cifar10_test_$DBTYPE 12 | 13 | ./build/examples/cifar10/convert_cifar_data.bin $DATA $EXAMPLE $DBTYPE 14 | 15 | echo "Computing image mean..." 16 | 17 | ./build/tools/compute_image_mean -backend=$DBTYPE \ 18 | $EXAMPLE/cifar10_train_$DBTYPE $EXAMPLE/mean.binaryproto 19 | 20 | echo "Done." 21 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/train_full.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_solver.prototxt $@ 8 | 9 | # reduce learning rate by factor of 10 10 | $TOOLS/caffe train \ 11 | --solver=examples/cifar10/cifar10_full_solver_lr1.prototxt \ 12 | --snapshot=examples/cifar10/cifar10_full_iter_60000.solverstate.h5 $@ 13 | 14 | # reduce learning rate by factor of 10 15 | $TOOLS/caffe train \ 16 | --solver=examples/cifar10/cifar10_full_solver_lr2.prototxt \ 17 | --snapshot=examples/cifar10/cifar10_full_iter_65000.solverstate.h5 $@ 18 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/train_full_sigmoid.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_sigmoid_solver.prototxt $@ 8 | 9 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/train_full_sigmoid_bn.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt $@ 8 | 9 | -------------------------------------------------------------------------------- /caffe/examples/cifar10/train_quick.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_quick_solver.prototxt $@ 8 | 9 | # reduce learning rate by factor of 10 after 8 epochs 10 | $TOOLS/caffe train \ 11 | --solver=examples/cifar10/cifar10_quick_solver_lr1.prototxt \ 12 | --snapshot=examples/cifar10/cifar10_quick_iter_4000.solverstate.h5 $@ 13 | -------------------------------------------------------------------------------- /caffe/examples/finetune_flickr_style/flickr_style.csv.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/examples/finetune_flickr_style/flickr_style.csv.gz -------------------------------------------------------------------------------- /caffe/examples/finetune_flickr_style/style_names.txt: -------------------------------------------------------------------------------- 1 | Detailed 2 | Pastel 3 | Melancholy 4 | Noir 5 | HDR 6 | Vintage 7 | Long Exposure 8 | Horror 9 | Sunny 10 | Bright 11 | Hazy 12 | Bokeh 13 | Serene 14 | Texture 15 | Ethereal 16 | Macro 17 | Depth of Field 18 | Geometric Composition 19 | Minimal 20 | Romantic 21 | -------------------------------------------------------------------------------- /caffe/examples/finetune_pascal_detection/pascal_finetune_solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/finetune_pascal_detection/pascal_finetune_trainval_test.prototxt" 2 | test_iter: 100 3 | test_interval: 1000 4 | base_lr: 0.001 5 | lr_policy: "step" 6 | gamma: 0.1 7 | stepsize: 20000 8 | display: 20 9 | max_iter: 100000 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 10000 13 | snapshot_prefix: "examples/finetune_pascal_detection/pascal_det_finetune" 14 | -------------------------------------------------------------------------------- /caffe/examples/hdf5_classification/nonlinear_auto_test.prototxt: -------------------------------------------------------------------------------- 1 | layer { 2 | name: "data" 3 | type: "HDF5Data" 4 | top: "data" 5 | top: "label" 6 | hdf5_data_param { 7 | source: "examples/hdf5_classification/data/test.txt" 8 | batch_size: 10 9 | } 10 | } 11 | layer { 12 | name: "ip1" 13 | type: "InnerProduct" 14 | bottom: "data" 15 | top: "ip1" 16 | inner_product_param { 17 | num_output: 40 18 | weight_filler { 19 | type: "xavier" 20 | } 21 | } 22 | } 23 | layer { 24 | name: "relu1" 25 | type: "ReLU" 26 | bottom: "ip1" 27 | top: "ip1" 28 | } 29 | layer { 30 | name: "ip2" 31 | type: "InnerProduct" 32 | bottom: "ip1" 33 | top: "ip2" 34 | inner_product_param { 35 | num_output: 2 36 | weight_filler { 37 | type: "xavier" 38 | } 39 | } 40 | } 41 | layer { 42 | name: "accuracy" 43 | type: "Accuracy" 44 | bottom: "ip2" 45 | bottom: "label" 46 | top: "accuracy" 47 | } 48 | layer { 49 | name: "loss" 50 | type: "SoftmaxWithLoss" 51 | bottom: "ip2" 52 | bottom: "label" 53 | top: "loss" 54 | } 55 | -------------------------------------------------------------------------------- /caffe/examples/hdf5_classification/nonlinear_auto_train.prototxt: -------------------------------------------------------------------------------- 1 | layer { 2 | name: "data" 3 | type: "HDF5Data" 4 | top: "data" 5 | top: "label" 6 | hdf5_data_param { 7 | source: "examples/hdf5_classification/data/train.txt" 8 | batch_size: 10 9 | } 10 | } 11 | layer { 12 | name: "ip1" 13 | type: "InnerProduct" 14 | bottom: "data" 15 | top: "ip1" 16 | inner_product_param { 17 | num_output: 40 18 | weight_filler { 19 | type: "xavier" 20 | } 21 | } 22 | } 23 | layer { 24 | name: "relu1" 25 | type: "ReLU" 26 | bottom: "ip1" 27 | top: "ip1" 28 | } 29 | layer { 30 | name: "ip2" 31 | type: "InnerProduct" 32 | bottom: "ip1" 33 | top: "ip2" 34 | inner_product_param { 35 | num_output: 2 36 | weight_filler { 37 | type: "xavier" 38 | } 39 | } 40 | } 41 | layer { 42 | name: "accuracy" 43 | type: "Accuracy" 44 | bottom: "ip2" 45 | bottom: "label" 46 | top: "accuracy" 47 | } 48 | layer { 49 | name: "loss" 50 | type: "SoftmaxWithLoss" 51 | bottom: "ip2" 52 | bottom: "label" 53 | top: "loss" 54 | } 55 | -------------------------------------------------------------------------------- /caffe/examples/hdf5_classification/train_val.prototxt: -------------------------------------------------------------------------------- 1 | name: "LogisticRegressionNet" 2 | layer { 3 | name: "data" 4 | type: "HDF5Data" 5 | top: "data" 6 | top: "label" 7 | include { 8 | phase: TRAIN 9 | } 10 | hdf5_data_param { 11 | source: "examples/hdf5_classification/data/train.txt" 12 | batch_size: 10 13 | } 14 | } 15 | layer { 16 | name: "data" 17 | type: "HDF5Data" 18 | top: "data" 19 | top: "label" 20 | include { 21 | phase: TEST 22 | } 23 | hdf5_data_param { 24 | source: "examples/hdf5_classification/data/test.txt" 25 | batch_size: 10 26 | } 27 | } 28 | layer { 29 | name: "fc1" 30 | type: "InnerProduct" 31 | bottom: "data" 32 | top: "fc1" 33 | param { 34 | lr_mult: 1 35 | decay_mult: 1 36 | } 37 | param { 38 | lr_mult: 2 39 | decay_mult: 0 40 | } 41 | inner_product_param { 42 | num_output: 2 43 | weight_filler { 44 | type: "xavier" 45 | } 46 | bias_filler { 47 | type: "constant" 48 | value: 0 49 | } 50 | } 51 | } 52 | layer { 53 | name: "loss" 54 | type: "SoftmaxWithLoss" 55 | bottom: "fc1" 56 | bottom: "label" 57 | top: "loss" 58 | } 59 | layer { 60 | name: "accuracy" 61 | type: "Accuracy" 62 | bottom: "fc1" 63 | bottom: "label" 64 | top: "accuracy" 65 | include { 66 | phase: TEST 67 | } 68 | } 69 | -------------------------------------------------------------------------------- /caffe/examples/imagenet/make_imagenet_mean.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # Compute the mean image from the imagenet training lmdb 3 | # N.B. this is available in data/ilsvrc12 4 | 5 | EXAMPLE=examples/imagenet 6 | DATA=data/ilsvrc12 7 | TOOLS=build/tools 8 | 9 | $TOOLS/compute_image_mean $EXAMPLE/ilsvrc12_train_lmdb \ 10 | $DATA/imagenet_mean.binaryproto 11 | 12 | echo "Done." 13 | -------------------------------------------------------------------------------- /caffe/examples/imagenet/resume_training.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=models/bvlc_reference_caffenet/solver.prototxt \ 6 | --snapshot=models/bvlc_reference_caffenet/caffenet_train_10000.solverstate.h5 \ 7 | $@ 8 | -------------------------------------------------------------------------------- /caffe/examples/imagenet/train_caffenet.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=models/bvlc_reference_caffenet/solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/images/cat gray.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/examples/images/cat gray.jpg -------------------------------------------------------------------------------- /caffe/examples/images/cat.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/examples/images/cat.jpg -------------------------------------------------------------------------------- /caffe/examples/images/cat_gray.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/examples/images/cat_gray.jpg -------------------------------------------------------------------------------- /caffe/examples/images/fish-bike.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/examples/images/fish-bike.jpg -------------------------------------------------------------------------------- /caffe/examples/mnist/create_mnist.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the mnist data into lmdb/leveldb format, 3 | # depending on the value assigned to $BACKEND. 4 | set -e 5 | 6 | EXAMPLE=examples/mnist 7 | DATA=data/mnist 8 | BUILD=build/examples/mnist 9 | 10 | BACKEND="lmdb" 11 | 12 | echo "Creating ${BACKEND}..." 13 | 14 | rm -rf $EXAMPLE/mnist_train_${BACKEND} 15 | rm -rf $EXAMPLE/mnist_test_${BACKEND} 16 | 17 | $BUILD/convert_mnist_data.bin $DATA/train-images-idx3-ubyte \ 18 | $DATA/train-labels-idx1-ubyte $EXAMPLE/mnist_train_${BACKEND} --backend=${BACKEND} 19 | $BUILD/convert_mnist_data.bin $DATA/t10k-images-idx3-ubyte \ 20 | $DATA/t10k-labels-idx1-ubyte $EXAMPLE/mnist_test_${BACKEND} --backend=${BACKEND} 21 | 22 | echo "Done." 23 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_adadelta_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 1.0 11 | lr_policy: "fixed" 12 | momentum: 0.95 13 | weight_decay: 0.0005 14 | # Display every 100 iterations 15 | display: 100 16 | # The maximum number of iterations 17 | max_iter: 10000 18 | # snapshot intermediate results 19 | snapshot: 5000 20 | snapshot_prefix: "examples/mnist/lenet_adadelta" 21 | # solver mode: CPU or GPU 22 | solver_mode: GPU 23 | type: "AdaDelta" 24 | delta: 1e-6 25 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_auto_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | train_net: "mnist/lenet_auto_train.prototxt" 3 | test_net: "mnist/lenet_auto_test.prototxt" 4 | # test_iter specifies how many forward passes the test should carry out. 5 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 6 | # covering the full 10,000 testing images. 7 | test_iter: 100 8 | # Carry out testing every 500 training iterations. 9 | test_interval: 500 10 | # The base learning rate, momentum and the weight decay of the network. 11 | base_lr: 0.01 12 | momentum: 0.9 13 | weight_decay: 0.0005 14 | # The learning rate policy 15 | lr_policy: "inv" 16 | gamma: 0.0001 17 | power: 0.75 18 | # Display every 100 iterations 19 | display: 100 20 | # The maximum number of iterations 21 | max_iter: 10000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_prefix: "mnist/lenet" 25 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_multistep_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "multistep" 15 | gamma: 0.9 16 | stepvalue: 5000 17 | stepvalue: 7000 18 | stepvalue: 8000 19 | stepvalue: 9000 20 | stepvalue: 9500 21 | # Display every 100 iterations 22 | display: 100 23 | # The maximum number of iterations 24 | max_iter: 10000 25 | # snapshot intermediate results 26 | snapshot: 5000 27 | snapshot_prefix: "examples/mnist/lenet_multistep" 28 | # solver mode: CPU or GPU 29 | solver_mode: GPU 30 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_solver_adam.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | # this follows "ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION" 3 | net: "examples/mnist/lenet_train_test.prototxt" 4 | # test_iter specifies how many forward passes the test should carry out. 5 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 6 | # covering the full 10,000 testing images. 7 | test_iter: 100 8 | # Carry out testing every 500 training iterations. 9 | test_interval: 500 10 | # All parameters are from the cited paper above 11 | base_lr: 0.001 12 | momentum: 0.9 13 | momentum2: 0.999 14 | # since Adam dynamically changes the learning rate, we set the base learning 15 | # rate to a fixed value 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet" 24 | # solver mode: CPU or GPU 25 | type: "Adam" 26 | solver_mode: GPU 27 | -------------------------------------------------------------------------------- /caffe/examples/mnist/lenet_solver_rmsprop.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.0 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet_rmsprop" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | type: "RMSProp" 27 | rms_decay: 0.98 28 | -------------------------------------------------------------------------------- /caffe/examples/mnist/mnist_autoencoder_solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "step" 10 | gamma: 0.1 11 | stepsize: 10000 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder" 17 | momentum: 0.9 18 | # solver mode: CPU or GPU 19 | solver_mode: GPU 20 | -------------------------------------------------------------------------------- /caffe/examples/mnist/mnist_autoencoder_solver_adadelta.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 1.0 9 | lr_policy: "fixed" 10 | momentum: 0.95 11 | delta: 1e-8 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder_adadelta_train" 17 | # solver mode: CPU or GPU 18 | solver_mode: GPU 19 | type: "AdaDelta" 20 | -------------------------------------------------------------------------------- /caffe/examples/mnist/mnist_autoencoder_solver_adagrad.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "fixed" 10 | display: 100 11 | max_iter: 65000 12 | weight_decay: 0.0005 13 | snapshot: 10000 14 | snapshot_prefix: "examples/mnist/mnist_autoencoder_adagrad_train" 15 | # solver mode: CPU or GPU 16 | solver_mode: GPU 17 | type: "AdaGrad" 18 | -------------------------------------------------------------------------------- /caffe/examples/mnist/mnist_autoencoder_solver_nesterov.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "step" 10 | gamma: 0.1 11 | stepsize: 10000 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train" 17 | momentum: 0.95 18 | # solver mode: CPU or GPU 19 | solver_mode: GPU 20 | type: "Nesterov" 21 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_lenet.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt $@ 5 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_lenet_adam.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train --solver=examples/mnist/lenet_solver_adam.prototxt $@ 5 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_lenet_consolidated.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/lenet_consolidated_solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_lenet_rmsprop.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/lenet_solver_rmsprop.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_mnist_autoencoder.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_mnist_autoencoder_adadelta.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_adadelta.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_mnist_autoencoder_adagrad.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_adagrad.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/mnist/train_mnist_autoencoder_nesterov.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_nesterov.prototxt $@ 6 | -------------------------------------------------------------------------------- /caffe/examples/net_surgery/conv.prototxt: -------------------------------------------------------------------------------- 1 | # Simple single-layer network to showcase editing model parameters. 2 | name: "convolution" 3 | layer { 4 | name: "data" 5 | type: "Input" 6 | top: "data" 7 | input_param { shape: { dim: 1 dim: 1 dim: 100 dim: 100 } } 8 | } 9 | layer { 10 | name: "conv" 11 | type: "Convolution" 12 | bottom: "data" 13 | top: "conv" 14 | convolution_param { 15 | num_output: 3 16 | kernel_size: 5 17 | stride: 1 18 | weight_filler { 19 | type: "gaussian" 20 | std: 0.01 21 | } 22 | bias_filler { 23 | type: "constant" 24 | value: 0 25 | } 26 | } 27 | } 28 | -------------------------------------------------------------------------------- /caffe/examples/siamese/create_mnist_siamese.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the mnist data into leveldb format. 3 | set -e 4 | 5 | EXAMPLES=./build/examples/siamese 6 | DATA=./data/mnist 7 | 8 | echo "Creating leveldb..." 9 | 10 | rm -rf ./examples/siamese/mnist_siamese_train_leveldb 11 | rm -rf ./examples/siamese/mnist_siamese_test_leveldb 12 | 13 | $EXAMPLES/convert_mnist_siamese_data.bin \ 14 | $DATA/train-images-idx3-ubyte \ 15 | $DATA/train-labels-idx1-ubyte \ 16 | ./examples/siamese/mnist_siamese_train_leveldb 17 | $EXAMPLES/convert_mnist_siamese_data.bin \ 18 | $DATA/t10k-images-idx3-ubyte \ 19 | $DATA/t10k-labels-idx1-ubyte \ 20 | ./examples/siamese/mnist_siamese_test_leveldb 21 | 22 | echo "Done." 23 | -------------------------------------------------------------------------------- /caffe/examples/siamese/mnist_siamese_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/siamese/mnist_siamese_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0000 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 50000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/siamese/mnist_siamese" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | -------------------------------------------------------------------------------- /caffe/examples/siamese/train_mnist_siamese.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train --solver=examples/siamese/mnist_siamese_solver.prototxt $@ 7 | -------------------------------------------------------------------------------- /caffe/examples/web_demo/exifutil.py: -------------------------------------------------------------------------------- 1 | """ 2 | This script handles the skimage exif problem. 3 | """ 4 | 5 | from PIL import Image 6 | import numpy as np 7 | 8 | ORIENTATIONS = { # used in apply_orientation 9 | 2: (Image.FLIP_LEFT_RIGHT,), 10 | 3: (Image.ROTATE_180,), 11 | 4: (Image.FLIP_TOP_BOTTOM,), 12 | 5: (Image.FLIP_LEFT_RIGHT, Image.ROTATE_90), 13 | 6: (Image.ROTATE_270,), 14 | 7: (Image.FLIP_LEFT_RIGHT, Image.ROTATE_270), 15 | 8: (Image.ROTATE_90,) 16 | } 17 | 18 | 19 | def open_oriented_im(im_path): 20 | im = Image.open(im_path) 21 | if hasattr(im, '_getexif'): 22 | exif = im._getexif() 23 | if exif is not None and 274 in exif: 24 | orientation = exif[274] 25 | im = apply_orientation(im, orientation) 26 | img = np.asarray(im).astype(np.float32) / 255. 27 | if img.ndim == 2: 28 | img = img[:, :, np.newaxis] 29 | img = np.tile(img, (1, 1, 3)) 30 | elif img.shape[2] == 4: 31 | img = img[:, :, :3] 32 | return img 33 | 34 | 35 | def apply_orientation(im, orientation): 36 | if orientation in ORIENTATIONS: 37 | for method in ORIENTATIONS[orientation]: 38 | im = im.transpose(method) 39 | return im 40 | -------------------------------------------------------------------------------- /caffe/examples/web_demo/requirements.txt: -------------------------------------------------------------------------------- 1 | werkzeug 2 | flask 3 | tornado 4 | numpy 5 | pandas 6 | pillow 7 | pyyaml 8 | -------------------------------------------------------------------------------- /caffe/include/caffe/caffe.hpp: -------------------------------------------------------------------------------- 1 | // caffe.hpp is the header file that you need to include in your code. It wraps 2 | // all the internal caffe header files into one for simpler inclusion. 3 | 4 | #ifndef CAFFE_CAFFE_HPP_ 5 | #define CAFFE_CAFFE_HPP_ 6 | 7 | #include "caffe/blob.hpp" 8 | #include "caffe/common.hpp" 9 | #include "caffe/filler.hpp" 10 | #include "caffe/layer.hpp" 11 | #include "caffe/layer_factory.hpp" 12 | #include "caffe/net.hpp" 13 | #include "caffe/parallel.hpp" 14 | #include "caffe/proto/caffe.pb.h" 15 | #include "caffe/solver.hpp" 16 | #include "caffe/solver_factory.hpp" 17 | #include "caffe/util/benchmark.hpp" 18 | #include "caffe/util/io.hpp" 19 | #include "caffe/util/upgrade_proto.hpp" 20 | 21 | #endif // CAFFE_CAFFE_HPP_ 22 | -------------------------------------------------------------------------------- /caffe/include/caffe/layers/neuron_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_NEURON_LAYER_HPP_ 2 | #define CAFFE_NEURON_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief An interface for layers that take one blob as input (@f$ x @f$) 14 | * and produce one equally-sized blob as output (@f$ y @f$), where 15 | * each element of the output depends only on the corresponding input 16 | * element. 17 | */ 18 | template 19 | class NeuronLayer : public Layer { 20 | public: 21 | explicit NeuronLayer(const LayerParameter& param) 22 | : Layer(param) {} 23 | virtual void Reshape(const vector*>& bottom, 24 | const vector*>& top); 25 | 26 | virtual inline int ExactNumBottomBlobs() const { return 1; } 27 | virtual inline int ExactNumTopBlobs() const { return 1; } 28 | }; 29 | 30 | } // namespace caffe 31 | 32 | #endif // CAFFE_NEURON_LAYER_HPP_ 33 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/blocking_queue.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_BLOCKING_QUEUE_HPP_ 2 | #define CAFFE_UTIL_BLOCKING_QUEUE_HPP_ 3 | 4 | #include 5 | #include 6 | 7 | namespace caffe { 8 | 9 | template 10 | class BlockingQueue { 11 | public: 12 | explicit BlockingQueue(); 13 | 14 | void push(const T& t); 15 | 16 | bool try_pop(T* t); 17 | 18 | // This logs a message if the threads needs to be blocked 19 | // useful for detecting e.g. when data feeding is too slow 20 | T pop(const string& log_on_wait = ""); 21 | 22 | bool try_peek(T* t); 23 | 24 | // Return element without removing it 25 | T peek(); 26 | 27 | size_t size() const; 28 | 29 | protected: 30 | /** 31 | Move synchronization fields out instead of including boost/thread.hpp 32 | to avoid a boost/NVCC issues (#1009, #1010) on OSX. Also fails on 33 | Linux CUDA 7.0.18. 34 | */ 35 | class sync; 36 | 37 | std::queue queue_; 38 | shared_ptr sync_; 39 | 40 | DISABLE_COPY_AND_ASSIGN(BlockingQueue); 41 | }; 42 | 43 | } // namespace caffe 44 | 45 | #endif 46 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/db.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_DB_HPP 2 | #define CAFFE_UTIL_DB_HPP 3 | 4 | #include 5 | 6 | #include "caffe/common.hpp" 7 | #include "caffe/proto/caffe.pb.h" 8 | 9 | namespace caffe { namespace db { 10 | 11 | enum Mode { READ, WRITE, NEW }; 12 | 13 | class Cursor { 14 | public: 15 | Cursor() { } 16 | virtual ~Cursor() { } 17 | virtual void SeekToFirst() = 0; 18 | virtual void Next() = 0; 19 | virtual string key() = 0; 20 | virtual string value() = 0; 21 | virtual bool valid() = 0; 22 | 23 | DISABLE_COPY_AND_ASSIGN(Cursor); 24 | }; 25 | 26 | class Transaction { 27 | public: 28 | Transaction() { } 29 | virtual ~Transaction() { } 30 | virtual void Put(const string& key, const string& value) = 0; 31 | virtual void Commit() = 0; 32 | 33 | DISABLE_COPY_AND_ASSIGN(Transaction); 34 | }; 35 | 36 | class DB { 37 | public: 38 | DB() { } 39 | virtual ~DB() { } 40 | virtual void Open(const string& source, Mode mode) = 0; 41 | virtual void Close() = 0; 42 | virtual Cursor* NewCursor() = 0; 43 | virtual Transaction* NewTransaction() = 0; 44 | 45 | DISABLE_COPY_AND_ASSIGN(DB); 46 | }; 47 | 48 | DB* GetDB(DataParameter::DB backend); 49 | DB* GetDB(const string& backend); 50 | 51 | } // namespace db 52 | } // namespace caffe 53 | 54 | #endif // CAFFE_UTIL_DB_HPP 55 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/format.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_FORMAT_H_ 2 | #define CAFFE_UTIL_FORMAT_H_ 3 | 4 | #include // NOLINT(readability/streams) 5 | #include // NOLINT(readability/streams) 6 | #include 7 | 8 | namespace caffe { 9 | 10 | inline std::string format_int(int n, int numberOfLeadingZeros = 0 ) { 11 | std::ostringstream s; 12 | s << std::setw(numberOfLeadingZeros) << std::setfill('0') << n; 13 | return s.str(); 14 | } 15 | 16 | } 17 | 18 | #endif // CAFFE_UTIL_FORMAT_H_ 19 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/gpu_util.cuh: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_GPU_UTIL_H_ 2 | #define CAFFE_UTIL_GPU_UTIL_H_ 3 | 4 | namespace caffe { 5 | 6 | template 7 | inline __device__ Dtype caffe_gpu_atomic_add(const Dtype val, Dtype* address); 8 | 9 | template <> 10 | inline __device__ 11 | float caffe_gpu_atomic_add(const float val, float* address) { 12 | return atomicAdd(address, val); 13 | } 14 | 15 | // double atomicAdd implementation taken from: 16 | // http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3PVCpVsEG 17 | template <> 18 | inline __device__ 19 | double caffe_gpu_atomic_add(const double val, double* address) { 20 | unsigned long long int* address_as_ull = // NOLINT(runtime/int) 21 | // NOLINT_NEXT_LINE(runtime/int) 22 | reinterpret_cast(address); 23 | unsigned long long int old = *address_as_ull; // NOLINT(runtime/int) 24 | unsigned long long int assumed; // NOLINT(runtime/int) 25 | do { 26 | assumed = old; 27 | old = atomicCAS(address_as_ull, assumed, 28 | __double_as_longlong(val + __longlong_as_double(assumed))); 29 | } while (assumed != old); 30 | return __longlong_as_double(old); 31 | } 32 | 33 | } // namespace caffe 34 | 35 | #endif // CAFFE_UTIL_GPU_UTIL_H_ 36 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/hdf5.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_HDF5_H_ 2 | #define CAFFE_UTIL_HDF5_H_ 3 | 4 | #include 5 | 6 | #include "hdf5.h" 7 | #include "hdf5_hl.h" 8 | 9 | #include "caffe/blob.hpp" 10 | 11 | namespace caffe { 12 | 13 | template 14 | void hdf5_load_nd_dataset_helper( 15 | hid_t file_id, const char* dataset_name_, int min_dim, int max_dim, 16 | Blob* blob); 17 | 18 | template 19 | void hdf5_load_nd_dataset( 20 | hid_t file_id, const char* dataset_name_, int min_dim, int max_dim, 21 | Blob* blob); 22 | 23 | template 24 | void hdf5_save_nd_dataset( 25 | const hid_t file_id, const string& dataset_name, const Blob& blob, 26 | bool write_diff = false); 27 | 28 | int hdf5_load_int(hid_t loc_id, const string& dataset_name); 29 | void hdf5_save_int(hid_t loc_id, const string& dataset_name, int i); 30 | string hdf5_load_string(hid_t loc_id, const string& dataset_name); 31 | void hdf5_save_string(hid_t loc_id, const string& dataset_name, 32 | const string& s); 33 | 34 | int hdf5_get_num_links(hid_t loc_id); 35 | string hdf5_get_name_by_idx(hid_t loc_id, int idx); 36 | 37 | } // namespace caffe 38 | 39 | #endif // CAFFE_UTIL_HDF5_H_ 40 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/insert_splits.hpp: -------------------------------------------------------------------------------- 1 | #ifndef _CAFFE_UTIL_INSERT_SPLITS_HPP_ 2 | #define _CAFFE_UTIL_INSERT_SPLITS_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/proto/caffe.pb.h" 7 | 8 | namespace caffe { 9 | 10 | // Copy NetParameters with SplitLayers added to replace any shared bottom 11 | // blobs with unique bottom blobs provided by the SplitLayer. 12 | void InsertSplits(const NetParameter& param, NetParameter* param_split); 13 | 14 | void ConfigureSplitLayer(const string& layer_name, const string& blob_name, 15 | const int blob_idx, const int split_count, const float loss_weight, 16 | LayerParameter* split_layer_param); 17 | 18 | string SplitLayerName(const string& layer_name, const string& blob_name, 19 | const int blob_idx); 20 | 21 | string SplitBlobName(const string& layer_name, const string& blob_name, 22 | const int blob_idx, const int split_idx); 23 | 24 | } // namespace caffe 25 | 26 | #endif // CAFFE_UTIL_INSERT_SPLITS_HPP_ 27 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/nccl.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_NCCL_H_ 2 | #define CAFFE_UTIL_NCCL_H_ 3 | #ifdef USE_NCCL 4 | 5 | #include 6 | 7 | #include "caffe/common.hpp" 8 | 9 | #define NCCL_CHECK(condition) \ 10 | { \ 11 | ncclResult_t result = condition; \ 12 | CHECK_EQ(result, ncclSuccess) << " " \ 13 | << ncclGetErrorString(result); \ 14 | } 15 | 16 | namespace caffe { 17 | 18 | namespace nccl { 19 | 20 | template class dataType; 21 | 22 | template<> class dataType { 23 | public: 24 | static const ncclDataType_t type = ncclFloat; 25 | }; 26 | template<> class dataType { 27 | public: 28 | static const ncclDataType_t type = ncclDouble; 29 | }; 30 | 31 | } // namespace nccl 32 | 33 | } // namespace caffe 34 | 35 | #endif // end USE_NCCL 36 | 37 | #endif // CAFFE_UTIL_NCCL_H_ 38 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/rng.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_RNG_CPP_HPP_ 2 | #define CAFFE_RNG_CPP_HPP_ 3 | 4 | #include 5 | #include 6 | 7 | #include "boost/random/mersenne_twister.hpp" 8 | #include "boost/random/uniform_int.hpp" 9 | 10 | #include "caffe/common.hpp" 11 | 12 | namespace caffe { 13 | 14 | typedef boost::mt19937 rng_t; 15 | 16 | inline rng_t* caffe_rng() { 17 | return static_cast(Caffe::rng_stream().generator()); 18 | } 19 | 20 | // Fisher–Yates algorithm 21 | template 22 | inline void shuffle(RandomAccessIterator begin, RandomAccessIterator end, 23 | RandomGenerator* gen) { 24 | typedef typename std::iterator_traits::difference_type 25 | difference_type; 26 | typedef typename boost::uniform_int dist_type; 27 | 28 | difference_type length = std::distance(begin, end); 29 | if (length <= 0) return; 30 | 31 | for (difference_type i = length - 1; i > 0; --i) { 32 | dist_type dist(0, i); 33 | std::iter_swap(begin + i, begin + dist(*gen)); 34 | } 35 | } 36 | 37 | template 38 | inline void shuffle(RandomAccessIterator begin, RandomAccessIterator end) { 39 | shuffle(begin, end, caffe_rng()); 40 | } 41 | } // namespace caffe 42 | 43 | #endif // CAFFE_RNG_HPP_ 44 | -------------------------------------------------------------------------------- /caffe/include/caffe/util/signal_handler.h: -------------------------------------------------------------------------------- 1 | #ifndef INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 2 | #define INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 3 | 4 | #include "caffe/proto/caffe.pb.h" 5 | #include "caffe/solver.hpp" 6 | 7 | namespace caffe { 8 | 9 | class SignalHandler { 10 | public: 11 | // Contructor. Specify what action to take when a signal is received. 12 | SignalHandler(SolverAction::Enum SIGINT_action, 13 | SolverAction::Enum SIGHUP_action); 14 | ~SignalHandler(); 15 | ActionCallback GetActionFunction(); 16 | private: 17 | SolverAction::Enum CheckForSignals() const; 18 | SolverAction::Enum SIGINT_action_; 19 | SolverAction::Enum SIGHUP_action_; 20 | }; 21 | 22 | } // namespace caffe 23 | 24 | #endif // INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 25 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/+test/test_io.m: -------------------------------------------------------------------------------- 1 | classdef test_io < matlab.unittest.TestCase 2 | methods (Test) 3 | function test_read_write_mean(self) 4 | % randomly generate mean data 5 | width = 200; 6 | height = 300; 7 | channels = 3; 8 | mean_data_write = 255 * rand(width, height, channels, 'single'); 9 | % write mean data to binary proto 10 | mean_proto_file = tempname(); 11 | caffe.io.write_mean(mean_data_write, mean_proto_file); 12 | % read mean data from saved binary proto and test whether they are equal 13 | mean_data_read = caffe.io.read_mean(mean_proto_file); 14 | self.verifyEqual(mean_data_write, mean_data_read) 15 | delete(mean_proto_file); 16 | end 17 | end 18 | end 19 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/Layer.m: -------------------------------------------------------------------------------- 1 | classdef Layer < handle 2 | % Wrapper class of caffe::Layer in matlab 3 | 4 | properties (Access = private) 5 | hLayer_self 6 | attributes 7 | % attributes fields: 8 | % hBlob_blobs 9 | end 10 | properties (SetAccess = private) 11 | params 12 | end 13 | 14 | methods 15 | function self = Layer(hLayer_layer) 16 | CHECK(is_valid_handle(hLayer_layer), 'invalid Layer handle'); 17 | 18 | % setup self handle and attributes 19 | self.hLayer_self = hLayer_layer; 20 | self.attributes = caffe_('layer_get_attr', self.hLayer_self); 21 | 22 | % setup weights 23 | self.params = caffe.Blob.empty(); 24 | for n = 1:length(self.attributes.hBlob_blobs) 25 | self.params(n) = caffe.Blob(self.attributes.hBlob_blobs(n)); 26 | end 27 | end 28 | function layer_type = type(self) 29 | layer_type = caffe_('layer_get_type', self.hLayer_self); 30 | end 31 | end 32 | end 33 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/get_solver.m: -------------------------------------------------------------------------------- 1 | function solver = get_solver(solver_file) 2 | % solver = get_solver(solver_file) 3 | % Construct a Solver object from solver_file 4 | 5 | CHECK(ischar(solver_file), 'solver_file must be a string'); 6 | CHECK_FILE_EXIST(solver_file); 7 | pSolver = caffe_('get_solver', solver_file); 8 | solver = caffe.Solver(pSolver); 9 | 10 | end 11 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat -------------------------------------------------------------------------------- /caffe/matlab/+caffe/private/CHECK.m: -------------------------------------------------------------------------------- 1 | function CHECK(expr, error_msg) 2 | 3 | if ~expr 4 | error(error_msg); 5 | end 6 | 7 | end 8 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/private/CHECK_FILE_EXIST.m: -------------------------------------------------------------------------------- 1 | function CHECK_FILE_EXIST(filename) 2 | 3 | if exist(filename, 'file') == 0 4 | error('%s does not exist', filename); 5 | end 6 | 7 | end 8 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/private/is_valid_handle.m: -------------------------------------------------------------------------------- 1 | function valid = is_valid_handle(hObj) 2 | % valid = is_valid_handle(hObj) or is_valid_handle('get_new_init_key') 3 | % Check if a handle is valid (has the right data type and init_key matches) 4 | % Use is_valid_handle('get_new_init_key') to get new init_key from C++; 5 | 6 | % a handle is a struct array with the following fields 7 | % (uint64) ptr : the pointer to the C++ object 8 | % (double) init_key : caffe initialization key 9 | 10 | persistent init_key; 11 | if isempty(init_key) 12 | init_key = caffe_('get_init_key'); 13 | end 14 | 15 | % is_valid_handle('get_new_init_key') to get new init_key from C++; 16 | if ischar(hObj) && strcmp(hObj, 'get_new_init_key') 17 | init_key = caffe_('get_init_key'); 18 | return 19 | else 20 | % check whether data types are correct and init_key matches 21 | valid = isstruct(hObj) ... 22 | && isscalar(hObj.ptr) && isa(hObj.ptr, 'uint64') ... 23 | && isscalar(hObj.init_key) && isa(hObj.init_key, 'double') ... 24 | && hObj.init_key == init_key; 25 | end 26 | 27 | end 28 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/reset_all.m: -------------------------------------------------------------------------------- 1 | function reset_all() 2 | % reset_all() 3 | % clear all solvers and stand-alone nets and reset Caffe to initial status 4 | 5 | caffe_('reset'); 6 | is_valid_handle('get_new_init_key'); 7 | 8 | end 9 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/run_tests.m: -------------------------------------------------------------------------------- 1 | function results = run_tests() 2 | % results = run_tests() 3 | % run all tests in this caffe matlab wrapper package 4 | 5 | % use CPU for testing 6 | caffe.set_mode_cpu(); 7 | 8 | % reset caffe before testing 9 | caffe.reset_all(); 10 | 11 | % put all test cases here 12 | results = [... 13 | run(caffe.test.test_net) ... 14 | run(caffe.test.test_solver) ... 15 | run(caffe.test.test_io) ]; 16 | 17 | % reset caffe after testing 18 | caffe.reset_all(); 19 | 20 | end 21 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/set_device.m: -------------------------------------------------------------------------------- 1 | function set_device(device_id) 2 | % set_device(device_id) 3 | % set Caffe's GPU device ID 4 | 5 | CHECK(isscalar(device_id) && device_id >= 0, ... 6 | 'device_id must be non-negative integer'); 7 | device_id = double(device_id); 8 | 9 | caffe_('set_device', device_id); 10 | 11 | end 12 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/set_mode_cpu.m: -------------------------------------------------------------------------------- 1 | function set_mode_cpu() 2 | % set_mode_cpu() 3 | % set Caffe to CPU mode 4 | 5 | caffe_('set_mode_cpu'); 6 | 7 | end 8 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/set_mode_gpu.m: -------------------------------------------------------------------------------- 1 | function set_mode_gpu() 2 | % set_mode_gpu() 3 | % set Caffe to GPU mode 4 | 5 | caffe_('set_mode_gpu'); 6 | 7 | end 8 | -------------------------------------------------------------------------------- /caffe/matlab/+caffe/version.m: -------------------------------------------------------------------------------- 1 | function version_str = version() 2 | % version() 3 | % show Caffe's version. 4 | 5 | version_str = caffe_('version'); 6 | 7 | end 8 | -------------------------------------------------------------------------------- /caffe/matlab/hdf5creation/.gitignore: -------------------------------------------------------------------------------- 1 | *.h5 2 | list.txt 3 | -------------------------------------------------------------------------------- /caffe/python/caffe/__init__.py: -------------------------------------------------------------------------------- 1 | from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer 2 | from ._caffe import init_log, log, set_mode_cpu, set_mode_gpu, set_device, Layer, get_solver, layer_type_list, set_random_seed, solver_count, set_solver_count, solver_rank, set_solver_rank, set_multiprocess, Layer, get_solver 3 | from ._caffe import __version__ 4 | from .proto.caffe_pb2 import TRAIN, TEST 5 | from .classifier import Classifier 6 | from .detector import Detector 7 | from . import io 8 | from .net_spec import layers, params, NetSpec, to_proto 9 | -------------------------------------------------------------------------------- /caffe/python/caffe/imagenet/ilsvrc_2012_mean.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/python/caffe/imagenet/ilsvrc_2012_mean.npy -------------------------------------------------------------------------------- /caffe/python/caffe/test/test_layer_type_list.py: -------------------------------------------------------------------------------- 1 | import unittest 2 | 3 | import caffe 4 | 5 | class TestLayerTypeList(unittest.TestCase): 6 | 7 | def test_standard_types(self): 8 | #removing 'Data' from list 9 | for type_name in ['Data', 'Convolution', 'InnerProduct']: 10 | self.assertIn(type_name, caffe.layer_type_list(), 11 | '%s not in layer_type_list()' % type_name) 12 | -------------------------------------------------------------------------------- /caffe/python/requirements.txt: -------------------------------------------------------------------------------- 1 | Cython>=0.19.2 2 | numpy>=1.7.1 3 | scipy>=0.13.2 4 | scikit-image>=0.9.3 5 | matplotlib>=1.3.1 6 | ipython>=3.0.0 7 | h5py>=2.2.0 8 | leveldb>=0.191 9 | networkx>=1.8.1 10 | nose>=1.3.0 11 | pandas>=0.12.0 12 | python-dateutil>=1.4,<2 13 | protobuf>=2.5.0 14 | python-gflags>=2.0 15 | pyyaml>=3.10 16 | Pillow>=2.3.0 17 | six>=1.1.0 -------------------------------------------------------------------------------- /caffe/scripts/build_docs.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # Build documentation for display in web browser. 3 | 4 | PORT=${1:-4000} 5 | 6 | echo "usage: build_docs.sh [port]" 7 | 8 | # Find the docs dir, no matter where the script is called 9 | ROOT_DIR="$( cd "$(dirname "$0")"/.. ; pwd -P )" 10 | cd $ROOT_DIR 11 | 12 | # Gather docs. 13 | scripts/gather_examples.sh 14 | 15 | # Split caffe.proto for inclusion by layer catalogue. 16 | scripts/split_caffe_proto.py 17 | 18 | # Generate developer docs. 19 | make docs 20 | 21 | # Display docs using web server. 22 | cd docs 23 | jekyll serve -w -s . -d _site --port=$PORT 24 | -------------------------------------------------------------------------------- /caffe/scripts/copy_notebook.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | """ 3 | Takes as arguments: 4 | 1. the path to a JSON file (such as an IPython notebook). 5 | 2. the path to output file 6 | 7 | If 'metadata' dict in the JSON file contains 'include_in_docs': true, 8 | then copies the file to output file, appending the 'metadata' property 9 | as YAML front-matter, adding the field 'category' with value 'notebook'. 10 | """ 11 | import os 12 | import sys 13 | import json 14 | 15 | filename = sys.argv[1] 16 | output_filename = sys.argv[2] 17 | content = json.load(open(filename)) 18 | 19 | if 'include_in_docs' in content['metadata'] and content['metadata']['include_in_docs']: 20 | yaml_frontmatter = ['---'] 21 | for key, val in content['metadata'].iteritems(): 22 | if key == 'example_name': 23 | key = 'title' 24 | if val == '': 25 | val = os.path.basename(filename) 26 | yaml_frontmatter.append('{}: {}'.format(key, val)) 27 | yaml_frontmatter += ['category: notebook'] 28 | yaml_frontmatter += ['original_path: ' + filename] 29 | 30 | with open(output_filename, 'w') as fo: 31 | fo.write('\n'.join(yaml_frontmatter + ['---']) + '\n') 32 | fo.write(open(filename).read()) 33 | -------------------------------------------------------------------------------- /caffe/scripts/download_model_from_gist.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | 3 | GIST=$1 4 | DIRNAME=${2:-./models} 5 | 6 | if [ -z $GIST ]; then 7 | echo "usage: download_model_from_gist.sh " 8 | exit 9 | fi 10 | 11 | GIST_DIR=$(echo $GIST | tr '/' '-') 12 | MODEL_DIR="$DIRNAME/$GIST_DIR" 13 | 14 | if [ -d $MODEL_DIR ]; then 15 | echo "$MODEL_DIR already exists! Please make sure you're not overwriting anything important!" 16 | exit 17 | fi 18 | 19 | echo "Downloading Caffe model info to $MODEL_DIR ..." 20 | mkdir -p $MODEL_DIR 21 | wget https://gist.github.com/$GIST/download -O $MODEL_DIR/gist.zip 22 | unzip -j $MODEL_DIR/gist.zip -d $MODEL_DIR 23 | rm $MODEL_DIR/gist.zip 24 | echo "Done" 25 | -------------------------------------------------------------------------------- /caffe/scripts/gather_examples.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # Assemble documentation for the project into one directory via symbolic links. 3 | 4 | # Find the docs dir, no matter where the script is called 5 | ROOT_DIR="$( cd "$(dirname "$0")"/.. ; pwd -P )" 6 | cd $ROOT_DIR 7 | 8 | # Gather docs from examples/**/readme.md 9 | GATHERED_DIR=docs/gathered 10 | rm -r $GATHERED_DIR 11 | mkdir $GATHERED_DIR 12 | for README_FILENAME in $(find examples -iname "readme.md"); do 13 | # Only use file if it is to be included in docs. 14 | if grep -Fxq "include_in_docs: true" $README_FILENAME; then 15 | # Make link to readme.md in docs/gathered/. 16 | # Since everything is called readme.md, rename it by its dirname. 17 | README_DIRNAME=`dirname $README_FILENAME` 18 | DOCS_FILENAME=$GATHERED_DIR/$README_DIRNAME.md 19 | mkdir -p `dirname $DOCS_FILENAME` 20 | ln -s $ROOT_DIR/$README_FILENAME $DOCS_FILENAME 21 | fi 22 | done 23 | 24 | # Gather docs from examples/*.ipynb and add YAML front-matter. 25 | for NOTEBOOK_FILENAME in $(find examples -depth -iname "*.ipynb"); do 26 | DOCS_FILENAME=$GATHERED_DIR/$NOTEBOOK_FILENAME 27 | mkdir -p `dirname $DOCS_FILENAME` 28 | python scripts/copy_notebook.py $NOTEBOOK_FILENAME $DOCS_FILENAME 29 | done 30 | -------------------------------------------------------------------------------- /caffe/scripts/split_caffe_proto.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | import mmap 3 | import re 4 | import os 5 | import errno 6 | 7 | script_path = os.path.dirname(os.path.realpath(__file__)) 8 | 9 | # a regex to match the parameter definitions in caffe.proto 10 | r = re.compile(r'(?://.*\n)*message ([^ ]*) \{\n(?: .*\n|\n)*\}') 11 | 12 | # create directory to put caffe.proto fragments 13 | try: 14 | os.mkdir( 15 | os.path.join(script_path, 16 | '../docs/_includes/')) 17 | os.mkdir( 18 | os.path.join(script_path, 19 | '../docs/_includes/proto/')) 20 | except OSError as exception: 21 | if exception.errno != errno.EEXIST: 22 | raise 23 | 24 | caffe_proto_fn = os.path.join( 25 | script_path, 26 | '../src/caffe/proto/caffe.proto') 27 | 28 | with open(caffe_proto_fn, 'r') as fin: 29 | 30 | for m in r.finditer(fin.read(), re.MULTILINE): 31 | fn = os.path.join( 32 | script_path, 33 | '../docs/_includes/proto/%s.txt' % m.group(1)) 34 | with open(fn, 'w') as fout: 35 | fout.write(m.group(0)) 36 | -------------------------------------------------------------------------------- /caffe/scripts/travis/build.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # build the project 3 | 4 | BASEDIR=$(dirname $0) 5 | source $BASEDIR/defaults.sh 6 | 7 | if ! $WITH_CMAKE ; then 8 | make --jobs $NUM_THREADS all test pycaffe warn 9 | else 10 | cd build 11 | make --jobs $NUM_THREADS all test.testbin 12 | fi 13 | make lint 14 | -------------------------------------------------------------------------------- /caffe/scripts/travis/configure-cmake.sh: -------------------------------------------------------------------------------- 1 | # CMake configuration 2 | 3 | mkdir -p build 4 | cd build 5 | 6 | ARGS="-DCMAKE_BUILD_TYPE=Release -DBLAS=Open" 7 | 8 | if $WITH_PYTHON3 ; then 9 | ARGS="$ARGS -Dpython_version=3" 10 | fi 11 | 12 | if $WITH_IO ; then 13 | ARGS="$ARGS -DUSE_OPENCV=On -DUSE_LMDB=On -DUSE_LEVELDB=On" 14 | else 15 | ARGS="$ARGS -DUSE_OPENCV=Off -DUSE_LMDB=Off -DUSE_LEVELDB=Off" 16 | fi 17 | 18 | if $WITH_CUDA ; then 19 | # Only build SM50 20 | ARGS="$ARGS -DCPU_ONLY=Off -DCUDA_ARCH_NAME=Manual -DCUDA_ARCH_BIN=\"50\" -DCUDA_ARCH_PTX=\"\"" 21 | else 22 | ARGS="$ARGS -DCPU_ONLY=On" 23 | fi 24 | 25 | if $WITH_CUDNN ; then 26 | ARGS="$ARGS -DUSE_CUDNN=On" 27 | else 28 | ARGS="$ARGS -DUSE_CUDNN=Off" 29 | fi 30 | 31 | cmake .. $ARGS 32 | 33 | -------------------------------------------------------------------------------- /caffe/scripts/travis/configure-make.sh: -------------------------------------------------------------------------------- 1 | # raw Makefile configuration 2 | 3 | LINE () { 4 | echo "$@" >> Makefile.config 5 | } 6 | 7 | cp Makefile.config.example Makefile.config 8 | 9 | LINE "BLAS := open" 10 | LINE "WITH_PYTHON_LAYER := 1" 11 | 12 | if $WITH_PYTHON3 ; then 13 | # TODO(lukeyeager) this path is currently disabled because of test errors like: 14 | # ImportError: dynamic module does not define init function (PyInit__caffe) 15 | LINE "PYTHON_LIBRARIES := python3.4m boost_python-py34" 16 | LINE "PYTHON_INCLUDE := /usr/include/python3.4 /usr/lib/python3/dist-packages/numpy/core/include" 17 | LINE "INCLUDE_DIRS := \$(INCLUDE_DIRS) \$(PYTHON_INCLUDE)" 18 | fi 19 | 20 | if ! $WITH_IO ; then 21 | LINE "USE_OPENCV := 0" 22 | LINE "USE_LEVELDB := 0" 23 | LINE "USE_LMDB := 0" 24 | fi 25 | 26 | if $WITH_CUDA ; then 27 | # Only build SM50 28 | LINE "CUDA_ARCH := -gencode arch=compute_50,code=sm_50" 29 | else 30 | LINE "CPU_ONLY := 1" 31 | fi 32 | 33 | if $WITH_CUDNN ; then 34 | LINE "USE_CUDNN := 1" 35 | fi 36 | 37 | -------------------------------------------------------------------------------- /caffe/scripts/travis/configure.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # configure the project 3 | 4 | BASEDIR=$(dirname $0) 5 | source $BASEDIR/defaults.sh 6 | 7 | if ! $WITH_CMAKE ; then 8 | source $BASEDIR/configure-make.sh 9 | else 10 | source $BASEDIR/configure-cmake.sh 11 | fi 12 | -------------------------------------------------------------------------------- /caffe/scripts/travis/defaults.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # set default environment variables 3 | 4 | set -e 5 | 6 | WITH_CMAKE=${WITH_CMAKE:-false} 7 | WITH_PYTHON3=${WITH_PYTHON3:-false} 8 | WITH_IO=${WITH_IO:-true} 9 | WITH_CUDA=${WITH_CUDA:-false} 10 | WITH_CUDNN=${WITH_CUDNN:-false} 11 | -------------------------------------------------------------------------------- /caffe/scripts/travis/install-python-deps.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # install extra Python dependencies 3 | # (must come after setup-venv) 4 | 5 | BASEDIR=$(dirname $0) 6 | source $BASEDIR/defaults.sh 7 | 8 | if ! $WITH_PYTHON3 ; then 9 | # Python2 10 | : 11 | else 12 | # Python3 13 | pip install --pre protobuf==3.0.0b3 14 | fi 15 | -------------------------------------------------------------------------------- /caffe/scripts/travis/setup-venv.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # setup a Python virtualenv 3 | # (must come after install-deps) 4 | 5 | BASEDIR=$(dirname $0) 6 | source $BASEDIR/defaults.sh 7 | 8 | VENV_DIR=${1:-~/venv} 9 | 10 | # setup our own virtualenv 11 | if $WITH_PYTHON3; then 12 | PYTHON_EXE='/usr/bin/python3' 13 | else 14 | PYTHON_EXE='/usr/bin/python2' 15 | fi 16 | 17 | # use --system-site-packages so that Python will use deb packages 18 | virtualenv $VENV_DIR -p $PYTHON_EXE --system-site-packages 19 | -------------------------------------------------------------------------------- /caffe/scripts/travis/test.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # test the project 3 | 4 | BASEDIR=$(dirname $0) 5 | source $BASEDIR/defaults.sh 6 | 7 | if $WITH_CUDA ; then 8 | echo "Skipping tests for CUDA build" 9 | exit 0 10 | fi 11 | 12 | if ! $WITH_CMAKE ; then 13 | make runtest 14 | make pytest 15 | else 16 | cd build 17 | make runtest 18 | make pytest 19 | fi 20 | -------------------------------------------------------------------------------- /caffe/src/caffe/layer.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/layer.hpp" 2 | 3 | namespace caffe { 4 | 5 | INSTANTIATE_CLASS(Layer); 6 | 7 | } // namespace caffe 8 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/absval_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/absval_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void AbsValLayer::Forward_gpu( 10 | const vector*>& bottom, const vector*>& top) { 11 | const int count = top[0]->count(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | caffe_gpu_abs(count, bottom[0]->gpu_data(), top_data); 14 | } 15 | 16 | template 17 | void AbsValLayer::Backward_gpu(const vector*>& top, 18 | const vector& propagate_down, const vector*>& bottom) { 19 | const int count = top[0]->count(); 20 | const Dtype* top_diff = top[0]->gpu_diff(); 21 | if (propagate_down[0]) { 22 | const Dtype* bottom_data = bottom[0]->gpu_data(); 23 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 24 | caffe_gpu_sign(count, bottom_data, bottom_diff); 25 | caffe_gpu_mul(count, bottom_diff, top_diff, bottom_diff); 26 | } 27 | } 28 | 29 | INSTANTIATE_LAYER_GPU_FUNCS(AbsValLayer); 30 | 31 | 32 | } // namespace caffe 33 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/base_data_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/base_data_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void BasePrefetchingDataLayer::Forward_gpu( 9 | const vector*>& bottom, const vector*>& top) { 10 | if (prefetch_current_) { 11 | prefetch_free_.push(prefetch_current_); 12 | } 13 | prefetch_current_ = prefetch_full_.pop("Waiting for data"); 14 | // Reshape to loaded data. 15 | top[0]->ReshapeLike(prefetch_current_->data_); 16 | top[0]->set_gpu_data(prefetch_current_->data_.mutable_gpu_data()); 17 | if (this->output_labels_) { 18 | // Reshape to loaded labels. 19 | top[1]->ReshapeLike(prefetch_current_->label_); 20 | top[1]->set_gpu_data(prefetch_current_->label_.mutable_gpu_data()); 21 | } 22 | } 23 | 24 | INSTANTIATE_LAYER_GPU_FORWARD(BasePrefetchingDataLayer); 25 | 26 | } // namespace caffe 27 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/hdf5_data_layer.cu: -------------------------------------------------------------------------------- 1 | /* 2 | TODO: 3 | - only load parts of the file, in accordance with a prototxt param "max_mem" 4 | */ 5 | 6 | #include 7 | #include 8 | 9 | #include "hdf5.h" 10 | #include "hdf5_hl.h" 11 | 12 | #include "caffe/layers/hdf5_data_layer.hpp" 13 | 14 | namespace caffe { 15 | 16 | template 17 | void HDF5DataLayer::Forward_gpu(const vector*>& bottom, 18 | const vector*>& top) { 19 | const int batch_size = this->layer_param_.hdf5_data_param().batch_size(); 20 | for (int i = 0; i < batch_size; ++i) { 21 | while (Skip()) { 22 | Next(); 23 | } 24 | for (int j = 0; j < this->layer_param_.top_size(); ++j) { 25 | int data_dim = top[j]->count() / top[j]->shape(0); 26 | caffe_copy(data_dim, 27 | &hdf_blobs_[j]->cpu_data()[data_permutation_[current_row_] 28 | * data_dim], &top[j]->mutable_gpu_data()[i * data_dim]); 29 | } 30 | Next(); 31 | } 32 | } 33 | 34 | INSTANTIATE_LAYER_GPU_FUNCS(HDF5DataLayer); 35 | 36 | } // namespace caffe 37 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/inner_product_blob_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/filler.hpp" 4 | #include "caffe/layers/inner_product_blob_layer.hpp" 5 | #include "caffe/util/math_functions.hpp" 6 | 7 | namespace caffe { 8 | 9 | template 10 | void InnerProductBlobLayer::Forward_gpu(const vector*>& bottom, 11 | const vector*>& top) { 12 | const Dtype* bottom_data = bottom[0]->gpu_data(); 13 | Dtype* top_data = top[0]->mutable_gpu_data(); 14 | const Dtype* weight = bottom[1]->gpu_data(); 15 | if (M_ == 1) { 16 | caffe_gpu_gemv(CblasNoTrans, N_, K_, (Dtype)1., 17 | weight, bottom_data, (Dtype)0., top_data); 18 | } else { 19 | // printf("%d %d %d", M_, N_, K_); 20 | caffe_gpu_gemm(CblasNoTrans, 21 | CblasTrans, 22 | M_, N_, K_, (Dtype)1., 23 | bottom_data, weight, (Dtype)0., top_data); 24 | } 25 | } 26 | 27 | template 28 | void InnerProductBlobLayer::Backward_gpu(const vector*>& top, 29 | const vector& propagate_down, 30 | const vector*>& bottom) { 31 | NOT_IMPLEMENTED; 32 | } 33 | 34 | 35 | INSTANTIATE_LAYER_GPU_FUNCS(InnerProductBlobLayer); 36 | 37 | } // namespace caffe 38 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/input_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/input_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void InputLayer::LayerSetUp(const vector*>& bottom, 9 | const vector*>& top) { 10 | const int num_top = top.size(); 11 | const InputParameter& param = this->layer_param_.input_param(); 12 | const int num_shape = param.shape_size(); 13 | CHECK(num_shape == 0 || num_shape == 1 || num_shape == num_top) 14 | << "Must specify 'shape' once, once per top blob, or not at all: " 15 | << num_top << " tops vs. " << num_shape << " shapes."; 16 | if (num_shape > 0) { 17 | for (int i = 0; i < num_top; ++i) { 18 | const int shape_index = (param.shape_size() == 1) ? 0 : i; 19 | top[i]->Reshape(param.shape(shape_index)); 20 | } 21 | } 22 | } 23 | 24 | INSTANTIATE_CLASS(InputLayer); 25 | REGISTER_LAYER_CLASS(Input); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/loss_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/loss_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void LossLayer::LayerSetUp( 9 | const vector*>& bottom, const vector*>& top) { 10 | // LossLayers have a non-zero (1) loss by default. 11 | if (this->layer_param_.loss_weight_size() == 0) { 12 | this->layer_param_.add_loss_weight(Dtype(1)); 13 | } 14 | } 15 | 16 | template 17 | void LossLayer::Reshape( 18 | const vector*>& bottom, const vector*>& top) { 19 | CHECK_EQ(bottom[0]->num(), bottom[1]->num()) 20 | << "The data and label should have the same number."; 21 | vector loss_shape(0); // Loss layers output a scalar; 0 axes. 22 | top[0]->Reshape(loss_shape); 23 | } 24 | 25 | INSTANTIATE_CLASS(LossLayer); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/neuron_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/neuron_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void NeuronLayer::Reshape(const vector*>& bottom, 9 | const vector*>& top) { 10 | top[0]->ReshapeLike(*bottom[0]); 11 | } 12 | 13 | INSTANTIATE_CLASS(NeuronLayer); 14 | 15 | } // namespace caffe 16 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/parameter_layer.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/layers/parameter_layer.hpp" 2 | 3 | namespace caffe { 4 | 5 | INSTANTIATE_CLASS(ParameterLayer); 6 | REGISTER_LAYER_CLASS(Parameter); 7 | 8 | } // namespace caffe 9 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/silence_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/silence_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SilenceLayer::Backward_cpu(const vector*>& top, 10 | const vector& propagate_down, const vector*>& bottom) { 11 | for (int i = 0; i < bottom.size(); ++i) { 12 | if (propagate_down[i]) { 13 | caffe_set(bottom[i]->count(), Dtype(0), 14 | bottom[i]->mutable_cpu_diff()); 15 | } 16 | } 17 | } 18 | 19 | #ifdef CPU_ONLY 20 | STUB_GPU(SilenceLayer); 21 | #endif 22 | 23 | INSTANTIATE_CLASS(SilenceLayer); 24 | REGISTER_LAYER_CLASS(Silence); 25 | 26 | } // namespace caffe 27 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/silence_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/silence_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SilenceLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | // Do nothing. 12 | } 13 | 14 | template 15 | void SilenceLayer::Backward_gpu(const vector*>& top, 16 | const vector& propagate_down, const vector*>& bottom) { 17 | for (int i = 0; i < bottom.size(); ++i) { 18 | if (propagate_down[i]) { 19 | caffe_gpu_set(bottom[i]->count(), Dtype(0), 20 | bottom[i]->mutable_gpu_diff()); 21 | } 22 | } 23 | } 24 | 25 | INSTANTIATE_LAYER_GPU_FUNCS(SilenceLayer); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/split_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/split_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SplitLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | for (int i = 0; i < top.size(); ++i) { 12 | top[i]->ShareData(*bottom[0]); 13 | } 14 | } 15 | 16 | template 17 | void SplitLayer::Backward_gpu(const vector*>& top, 18 | const vector& propagate_down, const vector*>& bottom) { 19 | if (!propagate_down[0]) { return; } 20 | if (top.size() == 1) { 21 | caffe_copy(count_, top[0]->gpu_diff(), bottom[0]->mutable_gpu_diff()); 22 | return; 23 | } 24 | caffe_gpu_add(count_, top[0]->gpu_diff(), top[1]->gpu_diff(), 25 | bottom[0]->mutable_gpu_diff()); 26 | // Add remaining top blob diffs. 27 | for (int i = 2; i < top.size(); ++i) { 28 | const Dtype* top_diff = top[i]->gpu_diff(); 29 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 30 | caffe_gpu_axpy(count_, Dtype(1.), top_diff, bottom_diff); 31 | } 32 | } 33 | 34 | 35 | INSTANTIATE_LAYER_GPU_FUNCS(SplitLayer); 36 | 37 | } // namespace caffe 38 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/threshold_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/threshold_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void ThresholdLayer::LayerSetUp(const vector*>& bottom, 9 | const vector*>& top) { 10 | NeuronLayer::LayerSetUp(bottom, top); 11 | threshold_ = this->layer_param_.threshold_param().threshold(); 12 | } 13 | 14 | template 15 | void ThresholdLayer::Forward_cpu(const vector*>& bottom, 16 | const vector*>& top) { 17 | const Dtype* bottom_data = bottom[0]->cpu_data(); 18 | Dtype* top_data = top[0]->mutable_cpu_data(); 19 | const int count = bottom[0]->count(); 20 | for (int i = 0; i < count; ++i) { 21 | top_data[i] = (bottom_data[i] > threshold_) ? Dtype(1) : Dtype(0); 22 | } 23 | } 24 | 25 | #ifdef CPU_ONLY 26 | STUB_GPU_FORWARD(ThresholdLayer, Forward); 27 | #endif 28 | 29 | INSTANTIATE_CLASS(ThresholdLayer); 30 | REGISTER_LAYER_CLASS(Threshold); 31 | 32 | } // namespace caffe 33 | -------------------------------------------------------------------------------- /caffe/src/caffe/layers/threshold_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/threshold_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | __global__ void ThresholdForward(const int n, const Dtype threshold, 9 | const Dtype* in, Dtype* out) { 10 | CUDA_KERNEL_LOOP(index, n) { 11 | out[index] = in[index] > threshold ? 1 : 0; 12 | } 13 | } 14 | 15 | template 16 | void ThresholdLayer::Forward_gpu(const vector*>& bottom, 17 | const vector*>& top) { 18 | const Dtype* bottom_data = bottom[0]->gpu_data(); 19 | Dtype* top_data = top[0]->mutable_gpu_data(); 20 | const int count = bottom[0]->count(); 21 | // NOLINT_NEXT_LINE(whitespace/operators) 22 | ThresholdForward<<>>( 23 | count, threshold_, bottom_data, top_data); 24 | CUDA_POST_KERNEL_CHECK; 25 | } 26 | 27 | 28 | INSTANTIATE_LAYER_GPU_FORWARD(ThresholdLayer); 29 | 30 | 31 | } // namespace caffe 32 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/adadelta_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdaDeltaUpdate(int N, Dtype* g, Dtype* h, Dtype* h2, 8 | Dtype momentum, Dtype delta, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = momentum * h[i] + (1-momentum) * gi * gi; 12 | gi = gi * sqrt((h2[i] + delta) / (hi + delta)); 13 | h2[i] = momentum * h2[i] + (1-momentum) * gi * gi; 14 | g[i] = local_rate * gi; 15 | } 16 | } 17 | template 18 | void adadelta_update_gpu(int N, Dtype* g, Dtype* h, Dtype* h2, Dtype momentum, 19 | Dtype delta, Dtype local_rate) { 20 | AdaDeltaUpdate // NOLINT_NEXT_LINE(whitespace/operators) 21 | <<>>( 22 | N, g, h, h2, momentum, delta, local_rate); 23 | CUDA_POST_KERNEL_CHECK; 24 | } 25 | template void adadelta_update_gpu(int , float*, float*, float*, 26 | float, float, float); 27 | template void adadelta_update_gpu(int, double*, double*, double*, 28 | double, double, double); 29 | 30 | } // namespace caffe 31 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/adagrad_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdaGradUpdate(int N, Dtype* g, Dtype* h, Dtype delta, 8 | Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = h[i] + gi*gi; 12 | g[i] = local_rate * gi / (sqrt(hi) + delta); 13 | } 14 | } 15 | template 16 | void adagrad_update_gpu(int N, Dtype* g, Dtype* h, Dtype delta, 17 | Dtype local_rate) { 18 | AdaGradUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, delta, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void adagrad_update_gpu(int, float*, float*, float, float); 24 | template void adagrad_update_gpu(int, double*, double*, double, double); 25 | 26 | } // namespace caffe 27 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/adam_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdamUpdate(int N, Dtype* g, Dtype* m, Dtype* v, 8 | Dtype beta1, Dtype beta2, Dtype eps_hat, Dtype corrected_local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float mi = m[i] = m[i]*beta1 + gi*(1-beta1); 12 | float vi = v[i] = v[i]*beta2 + gi*gi*(1-beta2); 13 | g[i] = corrected_local_rate * mi / (sqrt(vi) + eps_hat); 14 | } 15 | } 16 | template 17 | void adam_update_gpu(int N, Dtype* g, Dtype* m, Dtype* v, Dtype beta1, 18 | Dtype beta2, Dtype eps_hat, Dtype corrected_local_rate) { 19 | AdamUpdate // NOLINT_NEXT_LINE(whitespace/operators) 20 | <<>>( 21 | N, g, m, v, beta1, beta2, eps_hat, corrected_local_rate); 22 | CUDA_POST_KERNEL_CHECK; 23 | } 24 | template void adam_update_gpu(int, float*, float*, float*, 25 | float, float, float, float); 26 | template void adam_update_gpu(int, double*, double*, double*, 27 | double, double, double, double); 28 | 29 | } // namespace caffe 30 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/nesterov_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void NesterovUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype momentum, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float hi = h[i]; 11 | float hi_new = h[i] = momentum * hi + local_rate * g[i]; 12 | g[i] = (1+momentum) * hi_new - momentum * hi; 13 | } 14 | } 15 | template 16 | void nesterov_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, 17 | Dtype local_rate) { 18 | NesterovUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, momentum, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void nesterov_update_gpu(int, float*, float*, float, float); 24 | template void nesterov_update_gpu(int, double*, double*, double, 25 | double); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/rmsprop_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void RMSPropUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype rms_decay, Dtype delta, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = rms_decay*h[i] + (1-rms_decay)*gi*gi; 12 | g[i] = local_rate * g[i] / (sqrt(hi) + delta); 13 | } 14 | } 15 | template 16 | void rmsprop_update_gpu(int N, Dtype* g, Dtype* h, Dtype rms_decay, 17 | Dtype delta, Dtype local_rate) { 18 | RMSPropUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, rms_decay, delta, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void rmsprop_update_gpu(int, float*, float*, float, float, 24 | float); 25 | template void rmsprop_update_gpu(int, double*, double*, double, double, 26 | double); 27 | 28 | } // namespace caffe 29 | -------------------------------------------------------------------------------- /caffe/src/caffe/solvers/sgd_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void SGDUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype momentum, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | g[i] = h[i] = momentum*h[i] + local_rate*g[i]; 11 | } 12 | } 13 | template 14 | void sgd_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, 15 | Dtype local_rate) { 16 | SGDUpdate // NOLINT_NEXT_LINE(whitespace/operators) 17 | <<>>( 18 | N, g, h, momentum, local_rate); 19 | CUDA_POST_KERNEL_CHECK; 20 | } 21 | template void sgd_update_gpu(int, float*, float*, float, float); 22 | template void sgd_update_gpu(int, double*, double*, double, double); 23 | 24 | } // namespace caffe 25 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_caffe_main.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | #include "caffe/test/test_caffe_main.hpp" 3 | 4 | namespace caffe { 5 | #ifndef CPU_ONLY 6 | cudaDeviceProp CAFFE_TEST_CUDA_PROP; 7 | #endif 8 | } 9 | 10 | #ifndef CPU_ONLY 11 | using caffe::CAFFE_TEST_CUDA_PROP; 12 | #endif 13 | 14 | int main(int argc, char** argv) { 15 | ::testing::InitGoogleTest(&argc, argv); 16 | caffe::GlobalInit(&argc, &argv); 17 | #ifndef CPU_ONLY 18 | // Before starting testing, let's first print out a few cuda defice info. 19 | int device; 20 | cudaGetDeviceCount(&device); 21 | cout << "Cuda number of devices: " << device << endl; 22 | if (argc > 1) { 23 | // Use the given device 24 | device = atoi(argv[1]); 25 | cudaSetDevice(device); 26 | cout << "Setting to use device " << device << endl; 27 | } else if (CUDA_TEST_DEVICE >= 0) { 28 | // Use the device assigned in build configuration; but with a lower priority 29 | device = CUDA_TEST_DEVICE; 30 | } 31 | cudaGetDevice(&device); 32 | cout << "Current device id: " << device << endl; 33 | cudaGetDeviceProperties(&CAFFE_TEST_CUDA_PROP, device); 34 | cout << "Current device name: " << CAFFE_TEST_CUDA_PROP.name << endl; 35 | #endif 36 | // invoke the test. 37 | return RUN_ALL_TESTS(); 38 | } 39 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_data/sample_data.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/src/caffe/test/test_data/sample_data.h5 -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_data/sample_data_2_gzip.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/src/caffe/test/test_data/sample_data_2_gzip.h5 -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_data/sample_data_list.txt: -------------------------------------------------------------------------------- 1 | src/caffe/test/test_data/sample_data.h5 2 | src/caffe/test/test_data/sample_data_2_gzip.h5 3 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_data/solver_data.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/caffe/src/caffe/test/test_data/solver_data.h5 -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_data/solver_data_list.txt: -------------------------------------------------------------------------------- 1 | src/caffe/test/test_data/solver_data.h5 2 | -------------------------------------------------------------------------------- /caffe/src/caffe/test/test_protobuf.cpp: -------------------------------------------------------------------------------- 1 | // This is simply a script that tries serializing protocol buffer in text 2 | // format. Nothing special here and no actual code is being tested. 3 | #include 4 | 5 | #include "google/protobuf/text_format.h" 6 | #include "gtest/gtest.h" 7 | 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/test/test_caffe_main.hpp" 11 | 12 | namespace caffe { 13 | 14 | class ProtoTest : public ::testing::Test {}; 15 | 16 | TEST_F(ProtoTest, TestSerialization) { 17 | LayerParameter param; 18 | param.set_name("test"); 19 | param.set_type("Test"); 20 | std::cout << "Printing in binary format." << std::endl; 21 | std::cout << param.SerializeAsString() << std::endl; 22 | std::cout << "Printing in text format." << std::endl; 23 | std::string str; 24 | google::protobuf::TextFormat::PrintToString(param, &str); 25 | std::cout << str << std::endl; 26 | EXPECT_TRUE(true); 27 | } 28 | 29 | } // namespace caffe 30 | -------------------------------------------------------------------------------- /caffe/src/caffe/util/cudnn.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include "caffe/util/cudnn.hpp" 3 | 4 | namespace caffe { 5 | namespace cudnn { 6 | 7 | float dataType::oneval = 1.0; 8 | float dataType::zeroval = 0.0; 9 | const void* dataType::one = 10 | static_cast(&dataType::oneval); 11 | const void* dataType::zero = 12 | static_cast(&dataType::zeroval); 13 | 14 | double dataType::oneval = 1.0; 15 | double dataType::zeroval = 0.0; 16 | const void* dataType::one = 17 | static_cast(&dataType::oneval); 18 | const void* dataType::zero = 19 | static_cast(&dataType::zeroval); 20 | 21 | } // namespace cudnn 22 | } // namespace caffe 23 | #endif 24 | -------------------------------------------------------------------------------- /caffe/src/caffe/util/db.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/util/db.hpp" 2 | #include "caffe/util/db_leveldb.hpp" 3 | #include "caffe/util/db_lmdb.hpp" 4 | 5 | #include 6 | 7 | namespace caffe { namespace db { 8 | 9 | DB* GetDB(DataParameter::DB backend) { 10 | switch (backend) { 11 | #ifdef USE_LEVELDB 12 | case DataParameter_DB_LEVELDB: 13 | return new LevelDB(); 14 | #endif // USE_LEVELDB 15 | #ifdef USE_LMDB 16 | case DataParameter_DB_LMDB: 17 | return new LMDB(); 18 | #endif // USE_LMDB 19 | default: 20 | LOG(FATAL) << "Unknown database backend"; 21 | return NULL; 22 | } 23 | } 24 | 25 | DB* GetDB(const string& backend) { 26 | #ifdef USE_LEVELDB 27 | if (backend == "leveldb") { 28 | return new LevelDB(); 29 | } 30 | #endif // USE_LEVELDB 31 | #ifdef USE_LMDB 32 | if (backend == "lmdb") { 33 | return new LMDB(); 34 | } 35 | #endif // USE_LMDB 36 | LOG(FATAL) << "Unknown database backend"; 37 | return NULL; 38 | } 39 | 40 | } // namespace db 41 | } // namespace caffe 42 | -------------------------------------------------------------------------------- /caffe/src/caffe/util/db_leveldb.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_LEVELDB 2 | #include "caffe/util/db_leveldb.hpp" 3 | 4 | #include 5 | 6 | namespace caffe { namespace db { 7 | 8 | void LevelDB::Open(const string& source, Mode mode) { 9 | leveldb::Options options; 10 | options.block_size = 65536; 11 | options.write_buffer_size = 268435456; 12 | options.max_open_files = 100; 13 | options.error_if_exists = mode == NEW; 14 | options.create_if_missing = mode != READ; 15 | leveldb::Status status = leveldb::DB::Open(options, source, &db_); 16 | CHECK(status.ok()) << "Failed to open leveldb " << source 17 | << std::endl << status.ToString(); 18 | LOG(INFO) << "Opened leveldb " << source; 19 | } 20 | 21 | } // namespace db 22 | } // namespace caffe 23 | #endif // USE_LEVELDB 24 | -------------------------------------------------------------------------------- /caffe/src/gtest/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | add_library(gtest STATIC EXCLUDE_FROM_ALL gtest.h gtest-all.cpp) 2 | caffe_default_properties(gtest) 3 | 4 | #add_library(gtest_main gtest_main.cc) 5 | #target_link_libraries(gtest_main gtest) 6 | -------------------------------------------------------------------------------- /caffe/tools/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | # Collect source files 2 | file(GLOB_RECURSE srcs ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp) 3 | 4 | # Build each source file independently 5 | foreach(source ${srcs}) 6 | get_filename_component(name ${source} NAME_WE) 7 | 8 | # caffe target already exits 9 | if(name MATCHES "caffe") 10 | set(name ${name}.bin) 11 | endif() 12 | 13 | # target 14 | add_executable(${name} ${source}) 15 | target_link_libraries(${name} ${Caffe_LINK}) 16 | caffe_default_properties(${name}) 17 | 18 | # set back RUNTIME_OUTPUT_DIRECTORY 19 | caffe_set_runtime_directory(${name} "${PROJECT_BINARY_DIR}/tools") 20 | caffe_set_solution_folder(${name} tools) 21 | 22 | # restore output name without suffix 23 | if(name MATCHES "caffe.bin") 24 | set_target_properties(${name} PROPERTIES OUTPUT_NAME caffe) 25 | endif() 26 | 27 | # Install 28 | install(TARGETS ${name} DESTINATION bin) 29 | endforeach(source) 30 | -------------------------------------------------------------------------------- /caffe/tools/device_query.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/common.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe device_query " 5 | "[--device_id=0] instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /caffe/tools/finetune_net.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe train --solver=... " 5 | "[--weights=...] instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /caffe/tools/net_speed_benchmark.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe time --model=... " 5 | "[--iterations=50] [--gpu] [--device_id=0]"; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /caffe/tools/test_net.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe test --model=... " 5 | "--weights=... instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /caffe/tools/train_net.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe train --solver=... " 5 | "[--snapshot=...] instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /data/demo/000456.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/data/demo/000456.jpg -------------------------------------------------------------------------------- /data/demo/000542.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/data/demo/000542.jpg -------------------------------------------------------------------------------- /data/demo/001150.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/data/demo/001150.jpg -------------------------------------------------------------------------------- /data/demo/001763.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/data/demo/001763.jpg -------------------------------------------------------------------------------- /data/demo/004545.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/data/demo/004545.jpg -------------------------------------------------------------------------------- /data/demo/rcnn_example.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/data/demo/rcnn_example.png -------------------------------------------------------------------------------- /data/demo/rcnn_example_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/data/demo/rcnn_example_2.png -------------------------------------------------------------------------------- /data/genome/1600-400-20/relations_vocab.txt: -------------------------------------------------------------------------------- 1 | on,on top of,on a,sitting on,on side of,are on,attached to,standing on,walking on,laying on 2 | has,has a,have 3 | in,in a,inside,standing in,are in,inside of,sitting in 4 | wearing,wears,wearing a,is wearing a 5 | behind,behind a,is behind,are behind,behind an 6 | holding,carrying,carrying a,carrying an,are carrying,holds,holding an,holds a,holding on to,holding onto a 7 | near,next to,by,at,around,beside 8 | below,under 9 | above,over,hanging over,hanging above 10 | in front of,in front of a,in front 11 | riding,riding a,riding on,is riding,riding in 12 | hanging on,hanging from,hanging off,hanging in,hanging on a,are hanging on 13 | eating,eating a,are eating,eats,grazing,grazing on 14 | against,leaning on,leaning against,leaning on a,leaning against a 15 | looking at,watching,are watching,looking at,looking in 16 | left of,to left of,left,on left side of,on left of 17 | right of,to right of,right,on right side of,on right of 18 | made of,made from,made with,made out of,are made of 19 | drinking,drinking from,drinks,drinking out of,drinks from,drink,drinking a,drink from 20 | swimming in, swimming,swims in -------------------------------------------------------------------------------- /data/genome/visual_genome_python_driver/LICENSE.txt: -------------------------------------------------------------------------------- 1 | Copyright (c) 2015 Ranjay Krishna 2 | 3 | 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | 13 | 14 | The above copyright notice and this permission notice shall be included in 15 | all copies or substantial portions of the Software. 16 | 17 | 18 | 19 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 22 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 23 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 24 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 25 | THE SOFTWARE. 26 | -------------------------------------------------------------------------------- /data/genome/visual_genome_python_driver/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/data/genome/visual_genome_python_driver/__init__.py -------------------------------------------------------------------------------- /data/scripts/fetch_faster_rcnn_models.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )/../" && pwd )" 4 | cd $DIR 5 | 6 | FILE=faster_rcnn_models.tgz 7 | URL=http://www.cs.berkeley.edu/~rbg/faster-rcnn-data/$FILE 8 | CHECKSUM=ac116844f66aefe29587214272054668 9 | 10 | if [ -f $FILE ]; then 11 | echo "File already exists. Checking md5..." 12 | os=`uname -s` 13 | if [ "$os" = "Linux" ]; then 14 | checksum=`md5sum $FILE | awk '{ print $1 }'` 15 | elif [ "$os" = "Darwin" ]; then 16 | checksum=`cat $FILE | md5` 17 | fi 18 | if [ "$checksum" = "$CHECKSUM" ]; then 19 | echo "Checksum is correct. No need to download." 20 | exit 0 21 | else 22 | echo "Checksum is incorrect. Need to download again." 23 | fi 24 | fi 25 | 26 | echo "Downloading Faster R-CNN demo models (695M)..." 27 | 28 | wget $URL -O $FILE 29 | 30 | echo "Unzipping..." 31 | 32 | tar zxvf $FILE 33 | 34 | echo "Done. Please run this command again to verify that checksum = $CHECKSUM." 35 | -------------------------------------------------------------------------------- /data/scripts/fetch_imagenet_models.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )/../" && pwd )" 4 | cd $DIR 5 | 6 | FILE=imagenet_models.tgz 7 | URL=http://www.cs.berkeley.edu/~rbg/faster-rcnn-data/$FILE 8 | CHECKSUM=ed34ca912d6782edfb673a8c3a0bda6d 9 | 10 | if [ -f $FILE ]; then 11 | echo "File already exists. Checking md5..." 12 | os=`uname -s` 13 | if [ "$os" = "Linux" ]; then 14 | checksum=`md5sum $FILE | awk '{ print $1 }'` 15 | elif [ "$os" = "Darwin" ]; then 16 | checksum=`cat $FILE | md5` 17 | fi 18 | if [ "$checksum" = "$CHECKSUM" ]; then 19 | echo "Checksum is correct. No need to download." 20 | exit 0 21 | else 22 | echo "Checksum is incorrect. Need to download again." 23 | fi 24 | fi 25 | 26 | echo "Downloading pretrained ImageNet models (1G)..." 27 | 28 | wget $URL -O $FILE 29 | 30 | echo "Unzipping..." 31 | 32 | tar zxvf $FILE 33 | 34 | echo "Done. Please run this command again to verify that checksum = $CHECKSUM." 35 | -------------------------------------------------------------------------------- /data/scripts/fetch_selective_search_data.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )/../" && pwd )" 4 | cd $DIR 5 | 6 | FILE=selective_search_data.tgz 7 | URL=http://www.cs.berkeley.edu/~rbg/fast-rcnn-data/$FILE 8 | CHECKSUM=7078c1db87a7851b31966b96774cd9b9 9 | 10 | if [ -f $FILE ]; then 11 | echo "File already exists. Checking md5..." 12 | os=`uname -s` 13 | if [ "$os" = "Linux" ]; then 14 | checksum=`md5sum $FILE | awk '{ print $1 }'` 15 | elif [ "$os" = "Darwin" ]; then 16 | checksum=`cat $FILE | md5` 17 | fi 18 | if [ "$checksum" = "$CHECKSUM" ]; then 19 | echo "Checksum is correct. No need to download." 20 | exit 0 21 | else 22 | echo "Checksum is incorrect. Need to download again." 23 | fi 24 | fi 25 | 26 | echo "Downloading precomputed selective search boxes (0.5G)..." 27 | 28 | wget $URL -O $FILE 29 | 30 | echo "Unzipping..." 31 | 32 | tar zxvf $FILE 33 | 34 | echo "Done. Please run this command again to verify that checksum = $CHECKSUM." 35 | -------------------------------------------------------------------------------- /experiments/README.md: -------------------------------------------------------------------------------- 1 | Scripts are under `experiments/scripts`. 2 | 3 | Each script saves a log file under `experiments/logs`. 4 | 5 | Configuration override files used in the experiments are stored in `experiments/cfgs`. 6 | -------------------------------------------------------------------------------- /experiments/cfgs/faster_rcnn_alt_opt.yml: -------------------------------------------------------------------------------- 1 | EXP_DIR: faster_rcnn_alt_opt 2 | TRAIN: 3 | BG_THRESH_LO: 0.0 4 | TEST: 5 | HAS_RPN: True 6 | -------------------------------------------------------------------------------- /experiments/cfgs/faster_rcnn_end2end.yml: -------------------------------------------------------------------------------- 1 | EXP_DIR: faster_rcnn_end2end 2 | TRAIN: 3 | HAS_RPN: True 4 | IMS_PER_BATCH: 1 5 | BBOX_NORMALIZE_TARGETS_PRECOMPUTED: True 6 | RPN_POSITIVE_OVERLAP: 0.7 7 | RPN_BATCHSIZE: 256 8 | PROPOSAL_METHOD: gt 9 | BG_THRESH_LO: 0.0 10 | TEST: 11 | HAS_RPN: True -------------------------------------------------------------------------------- /experiments/cfgs/faster_rcnn_end2end_resnet.yml: -------------------------------------------------------------------------------- 1 | EXP_DIR: faster_rcnn_resnet 2 | USE_GPU_NMS: False 3 | TRAIN: 4 | HAS_RPN: True 5 | HAS_ATTRIBUTES: True 6 | HAS_RELATIONS: False 7 | IMS_PER_BATCH: 1 8 | BATCH_SIZE: 64 9 | FG_FRACTION: 0.5 10 | BBOX_NORMALIZE_TARGETS_PRECOMPUTED: True 11 | RPN_POSITIVE_OVERLAP: 0.7 12 | RPN_BATCHSIZE: 64 13 | PROPOSAL_METHOD: gt 14 | BG_THRESH_LO: 0.0 15 | TEST: 16 | HAS_RPN: True 17 | HAS_ATTRIBUTES: True 18 | HAS_RELATIONS: False 19 | SOFT_NMS: 0 20 | -------------------------------------------------------------------------------- /experiments/cfgs/rfcn_alt_opt_5step_ohem.yml: -------------------------------------------------------------------------------- 1 | EXP_DIR: rfcn_alt_opt_5step_ohem 2 | TRAIN: 3 | BG_THRESH_LO: 0.0 4 | RPN_PRE_NMS_TOP_N: 6000 5 | RPN_POST_NMS_TOP_N: 300 6 | AGNOSTIC: True 7 | BATCH_SIZE: -1 8 | RPN_NORMALIZE_TARGETS: True 9 | TEST: 10 | PROPOSAL_METHOD: 'rpn' 11 | HAS_RPN: False 12 | AGNOSTIC: True 13 | -------------------------------------------------------------------------------- /experiments/cfgs/rfcn_end2end.yml: -------------------------------------------------------------------------------- 1 | EXP_DIR: rfcn_end2end 2 | TRAIN: 3 | HAS_RPN: True 4 | IMS_PER_BATCH: 1 5 | BBOX_NORMALIZE_TARGETS_PRECOMPUTED: True 6 | RPN_POSITIVE_OVERLAP: 0.7 7 | RPN_BATCHSIZE: 256 8 | PROPOSAL_METHOD: gt 9 | BG_THRESH_LO: 0.1 10 | BATCH_SIZE: 128 11 | AGNOSTIC: True 12 | SNAPSHOT_ITERS: 10000 13 | RPN_PRE_NMS_TOP_N: 6000 14 | RPN_POST_NMS_TOP_N: 300 15 | TEST: 16 | HAS_RPN: True 17 | AGNOSTIC: True 18 | -------------------------------------------------------------------------------- /experiments/cfgs/rfcn_end2end_ohem.yml: -------------------------------------------------------------------------------- 1 | EXP_DIR: rfcn_end2end_ohem 2 | TRAIN: 3 | HAS_RPN: True 4 | IMS_PER_BATCH: 1 5 | BBOX_NORMALIZE_TARGETS_PRECOMPUTED: True 6 | RPN_POSITIVE_OVERLAP: 0.7 7 | RPN_NORMALIZE_TARGETS: True 8 | RPN_BATCHSIZE: 128 9 | PROPOSAL_METHOD: gt 10 | BG_THRESH_LO: 0.0 11 | BATCH_SIZE: -1 12 | AGNOSTIC: True 13 | SNAPSHOT_ITERS: 10000 14 | RPN_PRE_NMS_TOP_N: 6000 15 | RPN_POST_NMS_TOP_N: 300 16 | TEST: 17 | HAS_RPN: True 18 | AGNOSTIC: True 19 | -------------------------------------------------------------------------------- /experiments/logs/.gitignore: -------------------------------------------------------------------------------- 1 | *.txt* 2 | -------------------------------------------------------------------------------- /lib/Makefile: -------------------------------------------------------------------------------- 1 | all: 2 | python setup.py build_ext --inplace 3 | rm -rf build 4 | -------------------------------------------------------------------------------- /lib/datasets/VOCdevkit-matlab-wrapper/get_voc_opts.m: -------------------------------------------------------------------------------- 1 | function VOCopts = get_voc_opts(path) 2 | 3 | tmp = pwd; 4 | cd(path); 5 | try 6 | addpath('VOCcode'); 7 | VOCinit; 8 | catch 9 | rmpath('VOCcode'); 10 | cd(tmp); 11 | error(sprintf('VOCcode directory not found under %s', path)); 12 | end 13 | rmpath('VOCcode'); 14 | cd(tmp); 15 | -------------------------------------------------------------------------------- /lib/datasets/VOCdevkit-matlab-wrapper/xVOCap.m: -------------------------------------------------------------------------------- 1 | function ap = xVOCap(rec,prec) 2 | % From the PASCAL VOC 2011 devkit 3 | 4 | mrec=[0 ; rec ; 1]; 5 | mpre=[0 ; prec ; 0]; 6 | for i=numel(mpre)-1:-1:1 7 | mpre(i)=max(mpre(i),mpre(i+1)); 8 | end 9 | i=find(mrec(2:end)~=mrec(1:end-1))+1; 10 | ap=sum((mrec(i)-mrec(i-1)).*mpre(i)); 11 | -------------------------------------------------------------------------------- /lib/datasets/__init__.py: -------------------------------------------------------------------------------- 1 | # -------------------------------------------------------- 2 | # Fast R-CNN 3 | # Copyright (c) 2015 Microsoft 4 | # Licensed under The MIT License [see LICENSE for details] 5 | # Written by Ross Girshick 6 | # -------------------------------------------------------- 7 | -------------------------------------------------------------------------------- /lib/fast_rcnn/__init__.py: -------------------------------------------------------------------------------- 1 | # -------------------------------------------------------- 2 | # Fast R-CNN 3 | # Copyright (c) 2015 Microsoft 4 | # Licensed under The MIT License [see LICENSE for details] 5 | # Written by Ross Girshick 6 | # -------------------------------------------------------- 7 | -------------------------------------------------------------------------------- /lib/fast_rcnn/nms_wrapper.py: -------------------------------------------------------------------------------- 1 | # ---------------------------------------------------------- 2 | # Soft-NMS: Improving Object Detection With One Line of Code 3 | # Copyright (c) University of Maryland, College Park 4 | # Licensed under The MIT License [see LICENSE for details] 5 | # Written by Navaneeth Bodla and Bharat Singh 6 | # ---------------------------------------------------------- 7 | 8 | from fast_rcnn.config import cfg 9 | from nms.gpu_nms import gpu_nms 10 | from nms.cpu_nms import cpu_nms, cpu_soft_nms 11 | import numpy as np 12 | 13 | 14 | def soft_nms(dets, sigma=0.5, Nt=0.3, threshold=0.001, method=1): 15 | 16 | keep = cpu_soft_nms(np.ascontiguousarray(dets, dtype=np.float32), 17 | np.float32(sigma), np.float32(Nt), 18 | np.float32(threshold), 19 | np.uint8(method)) 20 | return keep 21 | 22 | 23 | # Original NMS implementation 24 | def nms(dets, thresh, force_cpu=False): 25 | """Dispatch to either CPU or GPU NMS implementations.""" 26 | if dets.shape[0] == 0: 27 | return [] 28 | if cfg.USE_GPU_NMS and not force_cpu: 29 | return gpu_nms(dets, thresh, device_id=cfg.GPU_ID) 30 | else: 31 | return cpu_nms(dets, thresh) 32 | -------------------------------------------------------------------------------- /lib/nms/.gitignore: -------------------------------------------------------------------------------- 1 | *.c 2 | *.cpp 3 | *.so 4 | -------------------------------------------------------------------------------- /lib/nms/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/lib/nms/__init__.py -------------------------------------------------------------------------------- /lib/nms/gpu_nms.hpp: -------------------------------------------------------------------------------- 1 | void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num, 2 | int boxes_dim, float nms_overlap_thresh, int device_id); 3 | -------------------------------------------------------------------------------- /lib/nms/gpu_nms.pyx: -------------------------------------------------------------------------------- 1 | # -------------------------------------------------------- 2 | # Faster R-CNN 3 | # Copyright (c) 2015 Microsoft 4 | # Licensed under The MIT License [see LICENSE for details] 5 | # Written by Ross Girshick 6 | # -------------------------------------------------------- 7 | 8 | import numpy as np 9 | cimport numpy as np 10 | 11 | assert sizeof(int) == sizeof(np.int32_t) 12 | 13 | cdef extern from "gpu_nms.hpp": 14 | void _nms(np.int32_t*, int*, np.float32_t*, int, int, float, int) 15 | 16 | def gpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh, 17 | np.int32_t device_id=0): 18 | cdef int boxes_num = dets.shape[0] 19 | cdef int boxes_dim = dets.shape[1] 20 | cdef int num_out 21 | cdef np.ndarray[np.int32_t, ndim=1] \ 22 | keep = np.zeros(boxes_num, dtype=np.int32) 23 | cdef np.ndarray[np.float32_t, ndim=1] \ 24 | scores = dets[:, 4] 25 | cdef np.ndarray[np.int_t, ndim=1] \ 26 | order = scores.argsort()[::-1] 27 | cdef np.ndarray[np.float32_t, ndim=2] \ 28 | sorted_dets = dets[order, :] 29 | _nms(&keep[0], &num_out, &sorted_dets[0, 0], boxes_num, boxes_dim, thresh, device_id) 30 | keep = keep[:num_out] 31 | return list(order[keep]) 32 | -------------------------------------------------------------------------------- /lib/nms/py_cpu_nms.py: -------------------------------------------------------------------------------- 1 | # -------------------------------------------------------- 2 | # Fast R-CNN 3 | # Copyright (c) 2015 Microsoft 4 | # Licensed under The MIT License [see LICENSE for details] 5 | # Written by Ross Girshick 6 | # -------------------------------------------------------- 7 | 8 | import numpy as np 9 | 10 | def py_cpu_nms(dets, thresh): 11 | """Pure Python NMS baseline.""" 12 | x1 = dets[:, 0] 13 | y1 = dets[:, 1] 14 | x2 = dets[:, 2] 15 | y2 = dets[:, 3] 16 | scores = dets[:, 4] 17 | 18 | areas = (x2 - x1 + 1) * (y2 - y1 + 1) 19 | order = scores.argsort()[::-1] 20 | 21 | keep = [] 22 | while order.size > 0: 23 | i = order[0] 24 | keep.append(i) 25 | xx1 = np.maximum(x1[i], x1[order[1:]]) 26 | yy1 = np.maximum(y1[i], y1[order[1:]]) 27 | xx2 = np.minimum(x2[i], x2[order[1:]]) 28 | yy2 = np.minimum(y2[i], y2[order[1:]]) 29 | 30 | w = np.maximum(0.0, xx2 - xx1 + 1) 31 | h = np.maximum(0.0, yy2 - yy1 + 1) 32 | inter = w * h 33 | ovr = inter / (areas[i] + areas[order[1:]] - inter) 34 | 35 | inds = np.where(ovr <= thresh)[0] 36 | order = order[inds + 1] 37 | 38 | return keep 39 | -------------------------------------------------------------------------------- /lib/pycocotools/UPSTREAM_REV: -------------------------------------------------------------------------------- 1 | https://github.com/pdollar/coco/commit/3ac47c77ebd5a1ed4254a98b7fbf2ef4765a3574 2 | -------------------------------------------------------------------------------- /lib/pycocotools/__init__.py: -------------------------------------------------------------------------------- 1 | __author__ = 'tylin' 2 | -------------------------------------------------------------------------------- /lib/roi_data_layer/__init__.py: -------------------------------------------------------------------------------- 1 | # -------------------------------------------------------- 2 | # Fast R-CNN 3 | # Copyright (c) 2015 Microsoft 4 | # Licensed under The MIT License [see LICENSE for details] 5 | # Written by Ross Girshick 6 | # -------------------------------------------------------- 7 | -------------------------------------------------------------------------------- /lib/rpn/README.md: -------------------------------------------------------------------------------- 1 | ### `rpn` module overview 2 | 3 | ##### `generate_anchors.py` 4 | 5 | Generates a regular grid of multi-scale, multi-aspect anchor boxes. 6 | 7 | ##### `proposal_layer.py` 8 | 9 | Converts RPN outputs (per-anchor scores and bbox regression estimates) into object proposals. 10 | 11 | ##### `anchor_target_layer.py` 12 | 13 | Generates training targets/labels for each anchor. Classification labels are 1 (object), 0 (not object) or -1 (ignore). 14 | Bbox regression targets are specified when the classification label is > 0. 15 | 16 | ##### `proposal_target_layer.py` 17 | 18 | Generates training targets/labels for each object proposal: classification labels 0 - K (bg or object class 1, ... , K) 19 | and bbox regression targets in that case that the label is > 0. 20 | 21 | ##### `generate.py` 22 | 23 | Generate object detection proposals from an imdb using an RPN. 24 | -------------------------------------------------------------------------------- /lib/rpn/__init__.py: -------------------------------------------------------------------------------- 1 | # -------------------------------------------------------- 2 | # Fast R-CNN 3 | # Copyright (c) 2015 Microsoft 4 | # Licensed under The MIT License [see LICENSE for details] 5 | # Written by Ross Girshick and Sean Bell 6 | # -------------------------------------------------------- 7 | -------------------------------------------------------------------------------- /lib/transform/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/peteanderson80/bottom-up-attention/514e561b7179be38f7f93ada102cdf98a5e32c72/lib/transform/__init__.py -------------------------------------------------------------------------------- /lib/utils/.gitignore: -------------------------------------------------------------------------------- 1 | *.c 2 | *.so 3 | -------------------------------------------------------------------------------- /lib/utils/__init__.py: -------------------------------------------------------------------------------- 1 | # -------------------------------------------------------- 2 | # Fast R-CNN 3 | # Copyright (c) 2015 Microsoft 4 | # Licensed under The MIT License [see LICENSE for details] 5 | # Written by Ross Girshick 6 | # -------------------------------------------------------- 7 | -------------------------------------------------------------------------------- /lib/utils/timer.py: -------------------------------------------------------------------------------- 1 | # -------------------------------------------------------- 2 | # Fast R-CNN 3 | # Copyright (c) 2015 Microsoft 4 | # Licensed under The MIT License [see LICENSE for details] 5 | # Written by Ross Girshick 6 | # -------------------------------------------------------- 7 | 8 | import time 9 | 10 | class Timer(object): 11 | """A simple timer.""" 12 | def __init__(self): 13 | self.total_time = 0. 14 | self.calls = 0 15 | self.start_time = 0. 16 | self.diff = 0. 17 | self.average_time = 0. 18 | 19 | def tic(self): 20 | # using time.time instead of time.clock because time time.clock 21 | # does not normalize for multithreading 22 | self.start_time = time.time() 23 | 24 | def toc(self, average=True): 25 | self.diff = time.time() - self.start_time 26 | self.total_time += self.diff 27 | self.calls += 1 28 | self.average_time = self.total_time / self.calls 29 | if average: 30 | return self.average_time 31 | else: 32 | return self.diff 33 | -------------------------------------------------------------------------------- /models/coco/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rfcn_ohem_solver360k480k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/coco/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rfcn_ohem_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 360000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | # We disable standard caffe solver snapshotting and implement our own snapshot 12 | # function 13 | snapshot: 0 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "resnet101_rfcn_ohem" 16 | iter_size: 2 17 | -------------------------------------------------------------------------------- /models/coco/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rpn_solver360k480k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/coco/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 360000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet101_rpn" 17 | -------------------------------------------------------------------------------- /models/coco/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rfcn_ohem_solver360k480k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/coco/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rfcn_ohem_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 360000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | # We disable standard caffe solver snapshotting and implement our own snapshot 12 | # function 13 | snapshot: 0 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "resnet101_rfcn_ohem" 16 | iter_size: 2 17 | -------------------------------------------------------------------------------- /models/coco/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rpn_solver360k480k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/coco/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 360000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet101_rpn" 17 | -------------------------------------------------------------------------------- /models/coco/ResNet-101/rfcn_alt_opt_5step_ohem/stage3_rpn_solver360k480k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/coco/ResNet-101/rfcn_alt_opt_5step_ohem/stage3_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 360000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet101_rpn" 17 | -------------------------------------------------------------------------------- /models/coco/ResNet-101/rfcn_end2end/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/coco/ResNet-101/rfcn_end2end/train_agnostic.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 640000 6 | display: 100 7 | 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "resnet101_rfcn" 15 | # debug_info: true 16 | -------------------------------------------------------------------------------- /models/coco/ResNet-101/rfcn_end2end/solver_ohem.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/coco/ResNet-101/rfcn_end2end/train_agnostic_ohem.prototxt" 2 | base_lr: 0.0005 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 1280000 6 | display: 100 7 | 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | average_loss: 100 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "resnet101_rfcn_ohem" 16 | # debug_info: true 17 | -------------------------------------------------------------------------------- /models/coco/VGG16/fast_rcnn/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/coco/VGG16/fast_rcnn/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 200000 6 | display: 20 7 | average_loss: 100 8 | # iter_size: 1 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | # We disable standard caffe solver snapshotting and implement our own snapshot 12 | # function 13 | snapshot: 0 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "vgg16_fast_rcnn" 16 | #debug_info: true 17 | -------------------------------------------------------------------------------- /models/coco/VGG16/faster_rcnn_end2end/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/coco/VGG16/faster_rcnn_end2end/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 350000 6 | display: 20 7 | average_loss: 100 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "vgg16_faster_rcnn" 15 | iter_size: 2 16 | -------------------------------------------------------------------------------- /models/coco/VGG_CNN_M_1024/fast_rcnn/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/coco/VGG_CNN_M_1024/fast_rcnn/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 200000 6 | display: 20 7 | average_loss: 100 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "vgg_cnn_m_1024_fast_rcnn" 15 | #debug_info: true 16 | -------------------------------------------------------------------------------- /models/coco/VGG_CNN_M_1024/faster_rcnn_end2end/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/coco/VGG_CNN_M_1024/faster_rcnn_end2end/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 350000 6 | display: 20 7 | average_loss: 100 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "vgg_cnn_m_1024_faster_rcnn" 15 | -------------------------------------------------------------------------------- /models/imagenet/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rfcn_ohem_solver80k120k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rfcn_ohem_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 80000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | # We disable standard caffe solver snapshotting and implement our own snapshot 12 | # function 13 | snapshot: 0 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "resnet101_rfcn_ohem" 16 | iter_size: 2 17 | -------------------------------------------------------------------------------- /models/imagenet/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet101_rpn" 17 | -------------------------------------------------------------------------------- /models/imagenet/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rfcn_ohem_solver80k120k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rfcn_ohem_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 80000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | # We disable standard caffe solver snapshotting and implement our own snapshot 12 | # function 13 | snapshot: 0 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "resnet101_rfcn_ohem" 16 | iter_size: 2 17 | -------------------------------------------------------------------------------- /models/imagenet/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet101_rpn" 17 | -------------------------------------------------------------------------------- /models/imagenet/ResNet-101/rfcn_alt_opt_5step_ohem/stage3_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage3_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet101_rpn" 17 | -------------------------------------------------------------------------------- /models/imagenet/ResNet-101/rfcn_end2end/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_end2end/train_agnostic.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 80000 6 | display: 20 7 | 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "resnet101_rfcn" 15 | iter_size: 2 16 | # debug_info: true 17 | -------------------------------------------------------------------------------- /models/imagenet/ResNet-101/rfcn_end2end/solver_ohem.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_end2end/train_agnostic_ohem.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 240000 6 | display: 20 7 | 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "resnet101_rfcn_ohem" 15 | iter_size: 1 16 | # debug_info: true 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rfcn_ohem_solver80k120k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rfcn_ohem_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 80000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | # We disable standard caffe solver snapshotting and implement our own snapshot 12 | # function 13 | snapshot: 0 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "resnet101_rfcn_ohem" 16 | iter_size: 2 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage1_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet101_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rfcn_ohem_solver80k120k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rfcn_ohem_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 80000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | # We disable standard caffe solver snapshotting and implement our own snapshot 12 | # function 13 | snapshot: 0 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "resnet101_rfcn_ohem" 16 | iter_size: 2 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage2_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet101_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage3_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_alt_opt_5step_ohem/stage3_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet101_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-101/rfcn_end2end/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_end2end/train_agnostic.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 80000 6 | display: 20 7 | 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "resnet101_rfcn" 15 | iter_size: 2 16 | # debug_info: true 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-101/rfcn_end2end/solver_ohem.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-101/rfcn_end2end/train_agnostic_ohem.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 80000 6 | display: 20 7 | 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "resnet101_rfcn_ohem" 15 | iter_size: 1 16 | # debug_info: true 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-50/rfcn_alt_opt_5step_ohem/stage1_rfcn_ohem_solver80k120k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-50/rfcn_alt_opt_5step_ohem/stage1_rfcn_ohem_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 80000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | # We disable standard caffe solver snapshotting and implement our own snapshot 12 | # function 13 | snapshot: 0 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "resnet50_rfcn_ohem" 16 | iter_size: 2 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-50/rfcn_alt_opt_5step_ohem/stage1_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-50/rfcn_alt_opt_5step_ohem/stage1_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet50_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-50/rfcn_alt_opt_5step_ohem/stage2_rfcn_ohem_solver80k120k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-50/rfcn_alt_opt_5step_ohem/stage2_rfcn_ohem_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 80000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | # We disable standard caffe solver snapshotting and implement our own snapshot 12 | # function 13 | snapshot: 0 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "resnet50_rfcn_ohem" 16 | iter_size: 2 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-50/rfcn_alt_opt_5step_ohem/stage2_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-50/rfcn_alt_opt_5step_ohem/stage2_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet50_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-50/rfcn_alt_opt_5step_ohem/stage3_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-50/rfcn_alt_opt_5step_ohem/stage3_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "resnet50_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-50/rfcn_end2end/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-50/rfcn_end2end/train_agnostic.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 80000 6 | display: 20 7 | 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "resnet50_rfcn" 15 | iter_size: 2 16 | # debug_info: true 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ResNet-50/rfcn_end2end/solver_ohem.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ResNet-50/rfcn_end2end/train_agnostic_ohem.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 80000 6 | display: 20 7 | 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "resnet50_rfcn_ohem" 15 | iter_size: 2 16 | # debug_info: true 17 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG16/fast_rcnn/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG16/fast_rcnn/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 30000 6 | display: 20 7 | average_loss: 100 8 | # iter_size: 1 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | # We disable standard caffe solver snapshotting and implement our own snapshot 12 | # function 13 | snapshot: 0 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "vgg16_fast_rcnn" 16 | #debug_info: true 17 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_fast_rcnn_solver30k40k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 30000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "vgg16_fast_rcnn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "vgg16_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_fast_rcnn_solver30k40k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_fast_rcnn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 30000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "vgg16_fast_rcnn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "vgg16_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG16/faster_rcnn_end2end/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG16/faster_rcnn_end2end/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 50000 6 | display: 20 7 | average_loss: 100 8 | # iter_size: 1 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | # We disable standard caffe solver snapshotting and implement our own snapshot 12 | # function 13 | snapshot: 0 14 | # We still use the snapshot prefix, though 15 | snapshot_prefix: "vgg16_faster_rcnn" 16 | iter_size: 1 17 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG_CNN_M_1024/fast_rcnn/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/fast_rcnn/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 30000 6 | display: 20 7 | average_loss: 100 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "vgg_cnn_m_1024_fast_rcnn" 15 | #debug_info: true 16 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage1_fast_rcnn_solver30k40k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 30000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "vgg_cnn_m_1024_fast_rcnn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage1_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage1_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "vgg_cnn_m_1024_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage2_fast_rcnn_solver30k40k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage2_fast_rcnn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 30000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "vgg_cnn_m_1024_fast_rcnn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage2_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/stage2_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "vgg_cnn_m_1024_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_end2end/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_end2end/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 50000 6 | display: 20 7 | average_loss: 100 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "vgg_cnn_m_1024_faster_rcnn" 15 | -------------------------------------------------------------------------------- /models/pascal_voc/ZF/fast_rcnn/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ZF/fast_rcnn/train.prototxt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 30000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "zf_fast_rcnn" 17 | #debug_info: true 18 | #iter_size: 2 19 | -------------------------------------------------------------------------------- /models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_fast_rcnn_solver30k40k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 30000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "zf_fast_rcnn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ZF/faster_rcnn_alt_opt/stage1_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "zf_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ZF/faster_rcnn_alt_opt/stage2_fast_rcnn_solver30k40k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ZF/faster_rcnn_alt_opt/stage2_fast_rcnn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 30000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "zf_fast_rcnn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ZF/faster_rcnn_alt_opt/stage2_rpn_solver60k80k.pt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ZF/faster_rcnn_alt_opt/stage2_rpn_train.pt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 60000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | # We disable standard caffe solver snapshotting and implement our own snapshot 13 | # function 14 | snapshot: 0 15 | # We still use the snapshot prefix, though 16 | snapshot_prefix: "zf_rpn" 17 | -------------------------------------------------------------------------------- /models/pascal_voc/ZF/faster_rcnn_end2end/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/pascal_voc/ZF/faster_rcnn_end2end/train.prototxt" 2 | 3 | base_lr: 0.001 4 | lr_policy: "step" 5 | gamma: 0.1 6 | stepsize: 50000 7 | display: 20 8 | average_loss: 100 9 | momentum: 0.9 10 | weight_decay: 0.0005 11 | 12 | #base_lr: 0.001 13 | #lr_policy: "exp" 14 | #gamma: 0.999539589 # (0.00001/0.001)^(1/10000) 15 | #display: 1 16 | #average_loss: 100 17 | #momentum: 0.9 18 | #weight_decay: 0.0005 19 | 20 | # We disable standard caffe solver snapshotting and implement our own snapshot 21 | # function 22 | snapshot: 0 23 | # We still use the snapshot prefix, though 24 | snapshot_prefix: "zf_faster_rcnn" 25 | iter_size: 2 26 | -------------------------------------------------------------------------------- /models/vg/ResNet-101/faster_rcnn_end2end_final/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/vg/ResNet-101/faster_rcnn_end2end_final/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 350000 6 | display: 100 7 | average_loss: 100 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "resnet101_faster_rcnn_final" 15 | iter_size: 1 16 | -------------------------------------------------------------------------------- /models/vg/VGG16/faster_rcnn_end2end/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/vg/VGG16/faster_rcnn_end2end/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 350000 6 | display: 20 7 | average_loss: 100 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "vgg16_faster_rcnn" 15 | iter_size: 1 16 | -------------------------------------------------------------------------------- /models/vg/VGG16/faster_rcnn_end2end_attr/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/vg/VGG16/faster_rcnn_end2end_attr/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 350000 6 | display: 20 7 | average_loss: 100 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "vgg16_faster_rcnn_attr" 15 | iter_size: 1 16 | -------------------------------------------------------------------------------- /models/vg/VGG16/faster_rcnn_end2end_attr_softmax_primed/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/vg/VGG16/faster_rcnn_end2end_attr_softmax_primed/train.prototxt" 2 | base_lr: 0.001 3 | lr_policy: "step" 4 | gamma: 0.1 5 | stepsize: 350000 6 | display: 20 7 | average_loss: 100 8 | momentum: 0.9 9 | weight_decay: 0.0005 10 | # We disable standard caffe solver snapshotting and implement our own snapshot 11 | # function 12 | snapshot: 0 13 | # We still use the snapshot prefix, though 14 | snapshot_prefix: "vgg16_faster_rcnn_attr_softmax_primed" 15 | iter_size: 1 16 | -------------------------------------------------------------------------------- /tools/README.md: -------------------------------------------------------------------------------- 1 | Tools for training, testing, and compressing Fast R-CNN networks. 2 | -------------------------------------------------------------------------------- /tools/_init_paths.py: -------------------------------------------------------------------------------- 1 | # -------------------------------------------------------- 2 | # Fast R-CNN 3 | # Copyright (c) 2015 Microsoft 4 | # Licensed under The MIT License [see LICENSE for details] 5 | # Written by Ross Girshick 6 | # -------------------------------------------------------- 7 | 8 | """Set up paths for Fast R-CNN.""" 9 | 10 | import os.path as osp 11 | import sys 12 | 13 | def add_path(path): 14 | if path not in sys.path: 15 | sys.path.insert(0, path) 16 | 17 | this_dir = osp.dirname(__file__) 18 | 19 | # Add caffe to PYTHONPATH 20 | caffe_path = osp.join(this_dir, '..', 'caffe', 'python') 21 | add_path(caffe_path) 22 | 23 | # Add lib to PYTHONPATH 24 | lib_path = osp.join(this_dir, '..', 'lib') 25 | add_path(lib_path) 26 | -------------------------------------------------------------------------------- /tools/read_tsv.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | 3 | 4 | import base64 5 | import numpy as np 6 | import csv 7 | import sys 8 | import zlib 9 | import time 10 | import mmap 11 | 12 | csv.field_size_limit(sys.maxsize) 13 | 14 | FIELDNAMES = ['image_id', 'image_w','image_h','num_boxes', 'boxes', 'features'] 15 | infile = '/data/coco/tsv/trainval/karpathy_val_resnet101_faster_rcnn_genome.tsv' 16 | 17 | 18 | 19 | if __name__ == '__main__': 20 | 21 | # Verify we can read a tsv 22 | in_data = {} 23 | with open(infile, "r+b") as tsv_in_file: 24 | reader = csv.DictReader(tsv_in_file, delimiter='\t', fieldnames = FIELDNAMES) 25 | for item in reader: 26 | item['image_id'] = int(item['image_id']) 27 | item['image_h'] = int(item['image_h']) 28 | item['image_w'] = int(item['image_w']) 29 | item['num_boxes'] = int(item['num_boxes']) 30 | for field in ['boxes', 'features']: 31 | item[field] = np.frombuffer(base64.decodestring(item[field]), 32 | dtype=np.float32).reshape((item['num_boxes'],-1)) 33 | in_data[item['image_id']] = item 34 | break 35 | print in_data 36 | 37 | 38 | --------------------------------------------------------------------------------