├── .gitignore
├── LICENSE
├── README.md
├── content_sources
├── __init__.py
├── arxiv.py
├── bibtex.py
├── doi2bib.py
└── rss.py
├── data
└── prepositions.dat
├── examples
├── bad.bib
├── good.bib
├── kw.p
└── nb.p
└── shakespeare.py
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pyc
2 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | The MIT License (MIT)
2 |
3 | Copyright (c) 2014 Benjamin Schultz
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy of
6 | this software and associated documentation files (the "Software"), to deal in
7 | the Software without restriction, including without limitation the rights to
8 | use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
9 | the Software, and to permit persons to whom the Software is furnished to do so,
10 | subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
17 | FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
18 | COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
19 | IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20 | CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
21 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | shakespeare
2 | ===========
3 |
4 | Identify relevant scientific papers with simple machine learning techniques
5 |
6 | Installation
7 | ===========
8 | Copy shakespeare.py, data and content\_sources to your pythonpath.
9 |
10 | To intsall an example knowledge set, copy examples' contents to $HOME/.shakespeare
11 |
12 | Depends on `bibtexparser`, `feedparser` `scikit-learn` packages, which can be installed via pip
13 |
14 | pip install bibtexparser scikit-learn feedparser
15 |
16 |
17 |
18 | Features
19 | ========
20 |
21 | * fetch functions for the following journals
22 |
23 | * Phys Rev A-X
24 | * PRL
25 | * PNAS
26 | * Nature + Nature:Stuff
27 | * Science
28 | * Small
29 | * ACS Nano, Nano Letters
30 | * Soft Matter
31 | * Langmuir
32 | * Angewandte Chemie
33 | * JCP, JCP B
34 |
35 | * Fetch functions for arXiv
36 | * support for BibTex Files
37 | * Naive bayes training and classification
38 |
39 | Usage
40 | ======
41 |
42 | The very first thing to do is to let the code know where 'bad stuff' is
43 |
44 | ./shakespeare.py -g good.bib -k examples/ --overwrite-knowledge --train
45 |
46 | Train naive\_bayes algorithm
47 |
48 | ./shakespeare -g thegoodstuff.bib -b thebadstuff.bib -k examples --train
49 |
50 | Find papers from nature nano and PNAS
51 |
52 | ./shakespeare.py -j natnano pnas -o cool_papers.md
53 |
54 | Find papers from the arxiv cond-mat.soft and math, then review the algorithms selection
55 |
56 | ./shakespeare.py -a cond-mat.soft math --feedback
57 |
58 |
59 | Help printout
60 |
61 | usage: shakespeare.py [-h] [-o OUTPUT] [-b [BIBFILES [BIBFILES ...]]]
62 | [-j [JOURNALS [JOURNALS ...]]] [-a [ARXIV [ARXIV ...]]]
63 | [--all_sources] [--all_good_sources] [--train]
64 | [-g GOOD_SOURCE] [-m METHOD] [-k KNOWLEDGE]
65 | [--overwrite-knowledge] [--feedback] [--review_all]
66 | optional arguments:
67 | -h, --help show this help message and exit
68 | -o OUTPUT, --output OUTPUT
69 | output file name. only supports markdown right now.
70 | -b [BIBFILES [BIBFILES ...]], --bibtex [BIBFILES [BIBFILES ...]]
71 | bibtex files to fetch
72 | -j [JOURNALS [JOURNALS ...]], --journals [JOURNALS [JOURNALS ...]]
73 | journals to fetch. Currently supports physreve
74 | physrevd jchemphysb physreva physrevc pnas nature
75 | jchemphys science natmat physrevb acsnano jphyschem
76 | nanoletters natphys prl small angewantechemie langmuir
77 | physrevx natnano.
78 | -a [ARXIV [ARXIV ...]], --arXiv [ARXIV [ARXIV ...]]
79 | arXiv categories to fetch
80 | --all_sources flag to search from all sources.
81 | --all_good_sources flag to search from good sources. Specfied in your
82 | config file.
83 | --train flag to train. All sources beside "--train-input-good"
84 | are treated as bad/irrelevant papers
85 | -g GOOD_SOURCE, --train_input_good GOOD_SOURCE
86 | bibtex file containing relevant articles.
87 | -m METHOD, --method METHOD
88 | Methods to try to find relevent papers. Right now,
89 | only all, title, author, and abstract are valid fields
90 | -k KNOWLEDGE, --knowledge KNOWLEDGE
91 | path to database containing information about good and
92 | bad keywords. If you are training, you must specifiy
93 | this, as it will be where your output is written
94 | --overwrite-knowledge
95 | flag to overwrite knowledge,if training
96 | --feedback flag to give feedback after sorting content
97 | --review_all review all the new selections. Otherwise, you will
98 | only review the good selections
99 |
100 |
101 | TODO
102 | ======
103 | * Train a bunch and see if this is worth any more time
104 | * Make an nice installer
105 | * Add support for a config file for setting defaults (which journals to search, etc)
106 |
--------------------------------------------------------------------------------
/content_sources/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pfdamasceno/shakespeare/e77dd82c0853313d0e309f7494fd284a72ff3698/content_sources/__init__.py
--------------------------------------------------------------------------------
/content_sources/arxiv.py:
--------------------------------------------------------------------------------
1 | from xml.dom.minidom import parseString
2 | import urllib2
3 | import datetime as dt
4 | arxiv_cats = ['astro-ph',
5 | 'cond-mat',
6 | 'gr-gc',
7 | 'hep-ex',
8 | 'hep-lat',
9 | 'hep-ph',
10 | 'hep-th',
11 | 'math-ph',
12 | 'nlin',
13 | 'nucl-ex',
14 | 'nucl-th',
15 | 'physics',
16 | 'quant-ph',
17 | 'math',
18 | 'CoRR',
19 | 'q-bio',
20 | 'q-fin',
21 | 'stat']
22 | #Class for interacting with the arXiv
23 | class ArXiv(object):
24 |
25 | def __init__(self,topic='cond-mat'):
26 | self.topic=topic
27 | self.url_base = 'http://export.arxiv.org/api/'
28 |
29 | def __repr__(self):
30 | return 'arXiv:{}'.format(self.topic)
31 |
32 | def fetch(self):
33 | today=dt.date.today()
34 | week_ago = today - dt.timedelta(days=7)
35 | end_date = "{:04d}{:02d}{:02d}2359".format(today.year,today.month,today.day)
36 | start_date = "{:04d}{:02d}{:02d}0000".format(week_ago.year,week_ago.month,week_ago.day)
37 | self.xml = ''
38 | query = 'query?search_query=cat:{}*+AND+submittedDate:[{}+TO+{}]&max_results=100'.format(self.topic,start_date,end_date)
39 | self.xml = urllib2.urlopen(self.url_base + query).read()
40 |
41 | # extract the relevant fields from the xml returned from our arXiv query
42 | def parse(self):
43 |
44 | articles = list()
45 | entries = parseString(self.xml).getElementsByTagName('entry')
46 |
47 | for entry in entries:
48 | article = dict()
49 | article['abstract'] = entry.getElementsByTagName('summary')[0].toxml().replace('','').replace('','')
50 |
51 | authors =list()
52 | for author in entry.getElementsByTagName('author'):
53 | name = entry.getElementsByTagName('name')[0]
54 | authors.append(author.toxml().replace('','').replace('',''))
55 |
56 | article['author']= ', '.join(authors)
57 |
58 | article['title'] = entry.getElementsByTagName('title')[0].toxml().replace('
','').replace('','')
59 | article['url'] = entry.getElementsByTagName('id')[0].toxml().replace('','').replace('','')
60 |
61 | articles.append(article)
62 |
63 | return articles
64 |
--------------------------------------------------------------------------------
/content_sources/bibtex.py:
--------------------------------------------------------------------------------
1 | import re
2 | import os
3 | from bibtexparser.bparser import BibTexParser
4 |
5 | #Parse Bibtex file and return dictionary
6 | class BibTex(object):
7 |
8 | def __init__(self,filename):
9 | self.filename = filename
10 |
11 | def __repr__(self):
12 | return 'BibTex File {} '.format(self.filename)
13 |
14 | def fetch(self):
15 | if not os.path.exists(self.filename):
16 | raise Exception("Bibtex file {} does not exist".format(self.filename))
17 | if not os.path.isfile(self.filename):
18 | raise Exception("Bibtex file {} is not a file".format(self.filename))
19 |
20 | def parse(self):
21 | articles= list()
22 | with open(self.filename,'r') as bibfile:
23 | entries = BibTexParser(bibfile).get_entry_list()
24 | for entry in entries:
25 | article=dict()
26 | for kw,btpkw in zip(['title','author','abstract','url'],['title','author','abstract','link']):
27 | article[kw]= entry[btpkw] if btpkw in entry else ''
28 | articles.append(article)
29 | return articles
30 |
--------------------------------------------------------------------------------
/content_sources/doi2bib.py:
--------------------------------------------------------------------------------
1 | #modified from https://gist.github.com/zmwangx
2 | #!/usr/bin/env python
3 |
4 | # Take one argument--the doi, and convert it to bibtex using an API
5 | # call to dx.doi.org.
6 |
7 | from sys import argv
8 | import os, re
9 |
10 | #if argv[0].find('doi') != -1:
11 | # # run as executable
12 | # doi = argv[1]
13 | #else:
14 | # # run from python
15 | # doi = argv[2]
16 |
17 | doi_sub_str="dx.doi.org/"
18 |
19 | f = open("/Users/damascus/Documents/Cloud/Dropbox/HipChat_DOIs/DOI.txt", 'r')
20 | for line in f:
21 | try:
22 | doi_str = line
23 | doi = re.split('\s', doi_str[doi_str.find(doi_sub_str)+(len(doi_sub_str)):])[0]
24 |
25 |
26 | cmd = ('curl -sLH "Accept: text/bibliography; style=bibtex" ' +
27 | 'http://dx.doi.org/' + doi)
28 | bib_oneliner = os.popen(cmd).read()
29 |
30 | # convert bib_oneliner to formatted (multiline) bibtex
31 | bib = ''
32 | # extract type
33 | entry_type = bib_oneliner[bib_oneliner.find('@') + 1:
34 | bib_oneliner.find('{')]
35 | bib += '@' + entry_type + '{' + doi + ',\n'; # use doi as cite key
36 | # parse body
37 | body = bib_oneliner[bib_oneliner.find(',')+2:-2] + ','
38 | while body:
39 | # match curly braces
40 | left_minus_right = 0
41 | i = 0
42 | while True:
43 | if body[i] == '{':
44 | left_minus_right += 1
45 | if body[i] == '}':
46 | left_minus_right -= 1
47 | if left_minus_right == 0:
48 | # outermost level matched up, one entry finished
49 | # advance one char for the trailing comma
50 | i += 1
51 | break
52 | i += 1
53 |
54 | bib += ' ' + body[:i+1] + '\n'
55 | body = body[i+1:].strip()
56 |
57 | bib += '}'
58 | print(bib)
59 | except:
60 | pass
61 |
--------------------------------------------------------------------------------
/content_sources/rss.py:
--------------------------------------------------------------------------------
1 | import feedparser
2 | import datetime as dt
3 |
4 | #rss feed dictionary
5 | rss_feeds = {
6 | 'pnas':'http://www.pnas.org/rss/current.xml',
7 | 'small':'http://onlinelibrary.wiley.com/rss/journal/10.1002/(ISSN)1613-6829',
8 | 'advmat':'http://onlinelibrary.wiley.com/rss/journal/10.1002/(ISSN)1521-4095',
9 | 'nature':'http://feeds.nature.com/nature/rss/current?format=xml',
10 | 'science':'https://www.sciencemag.org/rss/current.xml',
11 | 'prl':'http://feeds.aps.org/rss/recent/prl.xml',
12 | 'physreva':'http://feeds.aps.org/rss/recent/pra.xml',
13 | 'physrevb':'http://feeds.aps.org/rss/recent/prb.xml',
14 | 'physrevc':'http://feeds.aps.org/rss/recent/prc.xml',
15 | 'physrevd':'http://feeds.aps.org/rss/recent/prd.xml',
16 | 'physreve':'http://feeds.aps.org/rss/recent/pre.xml',
17 | 'physrevx':'http://feeds.aps.org/rss/recent/prx.xml',
18 | 'acsnano':'http://feeds.feedburner.com/acs/ancac3',
19 | 'nanoletters':'http://feeds.feedburner.com/acs/nalefd',
20 | 'jchemphys':'http://phys.org/rss-feed/journals/journal-of-chemical-physics/',
21 | 'jchemphysb':'http://feeds.feedburner.com/acs/jpcbfk',
22 | 'angewantechemie':'http://onlinelibrary.wiley.com/rss/journal/10.1002/%28ISSN%291521-3773',
23 | 'jphyschem':'http://academic.research.microsoft.com/rss?id=15120&cata=6',
24 | 'natphys':'http://feeds.nature.com/nphys/rss/current',
25 | 'natmat':'http://feeds.nature.com/nmat/rss/current',
26 | 'natnano':'http://feeds.nature.com/nnano/rss/current?format=xml',
27 | 'langmuir':'http://feeds.feedburner.com/acs/langd5'
28 | }
29 | #Class for interacting with the arXiv
30 | class JournalFeed(object):
31 |
32 | def __init__(self,journal):
33 | self.journal=journal
34 |
35 | def __repr__(self):
36 | return 'rss feed : {}'.format(self.journal)
37 |
38 | def fetch(self):
39 | self.address=rss_feeds[self.journal]
40 |
41 | # extract the relevant fields from the xml returned from our arXiv query
42 | def parse(self):
43 | articles = list()
44 | entries = feedparser.parse(self.address)['entries']
45 | today = dt.date.today()
46 | for entry in entries:
47 | article = dict()
48 | for kw,fkw in zip(['title','author','abstract','url'],['title','author','summary','link']):
49 | article[kw] = entry[fkw] if fkw in entry else ''
50 | #make sure this article is recent
51 | t_str=None
52 | if 'updated' in entry:
53 | t_str = entry['updated_parsed']
54 | elif 'published' in entry:
55 | t_str = entry['published_parsed']
56 | if t_str:
57 | day = t_str.tm_mday
58 | month = t_str.tm_mon
59 | year = t_str.tm_year
60 | pdate = dt.date(day=day,month=month,year=year)
61 | if (today-pdate).days<8:
62 | articles.append(article)
63 | else:
64 | articles.append(article)
65 |
66 | return articles
67 |
--------------------------------------------------------------------------------
/data/prepositions.dat:
--------------------------------------------------------------------------------
1 | a
2 | abaft
3 | aboard
4 | about
5 | above
6 | absent
7 | across
8 | afore
9 | after
10 | against
11 | along
12 | alongside
13 | amid
14 | amidst
15 | among
16 | amongst
17 | an
18 | anenst
19 | apropos
20 | apud
21 | around
22 | as
23 | aside
24 | astride
25 | at
26 | athwart
27 | atop
28 | barring
29 | before
30 | behind
31 | below
32 | beneath
33 | beside
34 | besides
35 | between
36 | betwixt
37 | beyond
38 | but
39 | by
40 | circa
41 | concerning
42 | despite
43 | down
44 | during
45 | except
46 | excluding
47 | failing
48 | following
49 | for
50 | forenenst
51 | from
52 | given
53 | in
54 | including
55 | inside
56 | into
57 | lest
58 | like
59 | mid
60 | midst
61 | minus
62 | modulo
63 | near
64 | next
65 | notwithstanding
66 | o'
67 | of
68 | off
69 | on
70 | onto
71 | opposite
72 | out
73 | outside
74 | over
75 | pace
76 | past
77 | per
78 | plus
79 | pro
80 | qua
81 | regarding
82 | round
83 | sans
84 | save
85 | since
86 | than
87 | through, thru
88 | throughout, thruout
89 | till
90 | times
91 | to
92 | toward
93 | towards
94 | under
95 | underneath
96 | unlike
97 | until
98 | unto
99 | up
100 | upon
101 | versus
102 | via
103 | vice
104 | vis-à-vis
105 | with
106 | within
107 | without
108 | worth
109 | according to
110 | ahead of
111 | apart from
112 | as for
113 | as of
114 | as per
115 | as regards
116 | aside from
117 | back to
118 | because of
119 | close to
120 | due to
121 | except for
122 | far from
123 | in to
124 | inside of
125 | instead of
126 | left of
127 | near to
128 | next to
129 | on to
130 | onto
131 | out from
132 | out of
133 | outside of
134 | owing to
135 | prior to
136 | pursuant to
137 | rather than
138 | regardless of
139 | right of
140 | subsequent to
141 | such as
142 | thanks to
143 | that of
144 | up to
145 | where as
146 | the
147 | of
148 | in
149 | on
150 | at
151 | with
152 | while
153 | for
154 | into
155 | by
156 | and
157 |
--------------------------------------------------------------------------------
/examples/bad.bib:
--------------------------------------------------------------------------------
1 | @article{Adami2014,
2 | abstract = {Research investigating the origins of life usually focuses on exploring possible life-bearing chemistries in the pre-biotic Earth, or else on synthetic approaches. Little work has been done exploring fundamental issues concerning the spontaneous emergence of life using only concepts (such as information and evolution) that are divorced from any particular chemistry. Here, I advocate studying the probability of spontaneous molecular self-replication as a function of the information contained in the replicator, and the environmental conditions that might enable this emergence. I show that (under certain simplifying assumptions) the probability to discover a self-replicator by chance depends exponentially on the rate of formation of the monomers. If the rate at which monomers are formed is somewhat similar to the rate at which they would occur in a self-replicating polymer, the likelihood to discover such a replicator by chance is increased by many orders of magnitude. I document such an increase in searches for a self-replicator within the digital life system avida},
3 | archivePrefix = {arXiv},
4 | arxivId = {1409.0590},
5 | author = {Adami, Christoph},
6 | eprint = {1409.0590},
7 | file = {:Users/damascus/Documents/Mendeley\_papers/Adami - 2014 - Unknown.pdf:pdf},
8 | month = sep,
9 | pages = {9},
10 | title = {{Information-theoretic considerations concerning the origin of life}},
11 | url = {http://arxiv.org/abs/1409.0590},
12 | year = {2014}
13 | }
14 | @article{Benner2010,
15 | abstract = {Organic chemistry on a planetary scale is likely to have transformed carbon dioxide and reduced carbon species delivered to an accreting Earth. According to various models for the origin of life on Earth, biological molecules that jump-started Darwinian evolution arose via this planetary chemistry. The grandest of these models assumes that ribonucleic acid (RNA) arose prebiotically, together with components for compartments that held it and a primitive metabolism that nourished it. Unfortunately, it has been challenging to identify possible prebiotic chemistry that might have created RNA. Organic molecules, given energy, have a well-known propensity to form multiple products, sometimes referred to collectively as "tar" or "tholin." These mixtures appear to be unsuited to support Darwinian processes, and certainly have never been observed to spontaneously yield a homochiral genetic polymer. To date, proposed solutions to this challenge either involve too much direct human intervention to satisfy many in the community, or generate molecules that are unreactive "dead ends" under standard conditions of temperature and pressure. Carbohydrates, organic species having carbon, hydrogen, and oxygen atoms in a ratio of 1:2:1 and an aldehyde or ketone group, conspicuously embody this challenge. They are components of RNA and their reactivity can support both interesting spontaneous chemistry as part of a "carbohydrate world," but they also easily form mixtures, polymers and tars. We describe here the latest thoughts on how on this challenge, focusing on how it might be resolved using minerals containing borate, silicate, and molybdate, inter alia.},
16 | author = {Benner, Steven a and Kim, Hyo-Joong and Kim, Myung-Jung and Ricardo, Alonso},
17 | doi = {10.1101/cshperspect.a003467},
18 | file = {:Users/damascus/Documents/Mendeley\_papers/Benner et al. - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
19 | issn = {1943-0264},
20 | journal = {Cold Spring Harbor perspectives in biology},
21 | keywords = {Carbohydrates,Carbohydrates: chemistry,Chemistry, Organic,Polymers},
22 | month = jul,
23 | number = {7},
24 | pages = {a003467},
25 | pmid = {20504964},
26 | title = {{Planetary organic chemistry and the origins of biomolecules.}},
27 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2890202\&tool=pmcentrez\&rendertype=abstract},
28 | volume = {2},
29 | year = {2010}
30 | }
31 | @article{Blackmond2010,
32 | abstract = {The single-handedness of biological molecules has fascinated scientists and laymen alike since Pasteur's first painstaking separation of the enantiomorphic crystals of a tartrate salt more than 150 yr ago. More recently, a number of theoretical and experimental investigations have helped to delineate models for how one enantiomer might have come to dominate over the other from what presumably was a racemic prebiotic world. This article highlights mechanisms for enantioenrichment that include either chemical or physical processes, or a combination of both. The scientific driving force for this work arises from an interest in understanding the origin of life, because the homochirality of biological molecules is a signature of life.},
33 | author = {Blackmond, Donna G},
34 | doi = {10.1101/cshperspect.a002147},
35 | file = {:Users/damascus/Documents/Mendeley\_papers/Blackmond - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
36 | issn = {1943-0264},
37 | journal = {Cold Spring Harbor perspectives in biology},
38 | keywords = {Amino Acids,Amino Acids: chemistry,Carbohydrates,Carbohydrates: chemistry,Stereoisomerism},
39 | month = may,
40 | number = {5},
41 | pages = {a002147},
42 | pmid = {20452962},
43 | title = {{The origin of biological homochirality.}},
44 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2857173\&tool=pmcentrez\&rendertype=abstract},
45 | volume = {2},
46 | year = {2010}
47 | }
48 | @article{Bowler2013,
49 | abstract = {The recent synthesis of pyrimidine ribonucleoside-2',3'-cyclic phosphates under prebiotically plausible conditions has strengthened the case for the involvement of ribonucleic acid (RNA) at an early stage in the origin of life. However, a prebiotic conversion of these weakly activated monomers, and their purine counterparts, to the 3',5'-linked RNA polymers of extant biochemistry has been lacking (previous attempts led only to short oligomers with mixed linkages). Here we show that the 2'-hydroxyl group of oligoribonucleotide-3'-phosphates can be chemoselectively acetylated in water under prebiotically credible conditions, which allows rapid and efficient template-directed ligation. The 2'-O-acetyl group at the ligation junction of the product RNA strand can be removed under conditions that leave the internucleotide bonds intact. Remarkably, acetylation of mixed oligomers that possess either 2'- or 3'-terminal phosphates is selective for the 2'-hydroxyl group of the latter. This newly discovered chemistry thus suggests a prebiotic route from ribonucleoside-2',3'-cyclic phosphates to predominantly 3',5'-linked RNA via partially 2'-O-acetylated RNA.},
50 | author = {Bowler, Frank R and Chan, Christopher K W and Duffy, Colm D and Gerland, B\'{e}atrice and Islam, Saidul and Powner, Matthew W and Sutherland, John D and Xu, Jianfeng},
51 | doi = {10.1038/nchem.1626},
52 | file = {:Users/damascus/Documents/Mendeley\_papers/Bowler et al. - 2013 - Nature chemistry.pdf:pdf},
53 | issn = {1755-4349},
54 | journal = {Nature chemistry},
55 | keywords = {Acetylation,Biomolecular,Biopolymers,Biopolymers: chemistry,Nuclear Magnetic Resonance,Prebiotics,RNA,RNA: chemistry},
56 | month = may,
57 | number = {5},
58 | pages = {383--9},
59 | pmid = {23609088},
60 | title = {{Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation.}},
61 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4074891\&tool=pmcentrez\&rendertype=abstract},
62 | volume = {5},
63 | year = {2013}
64 | }
65 | @article{Brewer2014,
66 | abstract = {The route by which the complex and specific molecules of life arose from the 'prebiotic soup' remains an unsolved problem. Evolution provides a large part of the answer, but this requires molecules that can carry information (that is, exist in many variants) and can replicate themselves. The process is commonplace in living organisms, but not so easy to achieve with simple chemical systems. It is especially difficult to contemplate in the chemical chaos of the prebiotic world. Although popular in many quarters, the notion that RNA was the first self-replicator carries many difficulties. Here, we present an alternative view, suggesting that there may be undiscovered self-replication mechanisms possible in much simpler systems. In particular, we highlight the possibility of information coding through stereochemical configurations of substituents in organic polymers. We also show that this coding system leads naturally to enantiopurity, solving the apparent problem of biological homochirality.},
67 | author = {Brewer, Ashley and Davis, Anthony P},
68 | doi = {10.1038/nchem.1981},
69 | file = {:Users/damascus/Documents/Mendeley\_papers/Brewer, Davis - 2014 - Nature chemistry.pdf:pdf},
70 | issn = {1755-4349},
71 | journal = {Nature chemistry},
72 | month = jul,
73 | number = {7},
74 | pages = {569--74},
75 | pmid = {24950314},
76 | title = {{Chiral encoding may provide a simple solution to the origin of life.}},
77 | url = {http://www.ncbi.nlm.nih.gov/pubmed/24950314},
78 | volume = {6},
79 | year = {2014}
80 | }
81 | @article{Chen2010a,
82 | abstract = {Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the biophysics of protocells, as well as conceptual questions in information transmission and self-replication.},
83 | author = {Chen, Irene a and Walde, Peter},
84 | doi = {10.1101/cshperspect.a002170},
85 | file = {:Users/damascus/Documents/Mendeley\_papers/Chen, Walde - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
86 | issn = {1943-0264},
87 | journal = {Cold Spring Harbor perspectives in biology},
88 | keywords = {Cell Membrane,Cell Membrane: metabolism,Cells,Kinetics,Nucleic Acids,Nucleic Acids: metabolism,Thermodynamics},
89 | month = jul,
90 | number = {7},
91 | pages = {a002170},
92 | pmid = {20519344},
93 | title = {{From self-assembled vesicles to protocells.}},
94 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2890201\&tool=pmcentrez\&rendertype=abstract},
95 | volume = {2},
96 | year = {2010}
97 | }
98 | @article{Cheng2010,
99 | abstract = {How life emerged on this planet is one of the most important and fundamental questions of science. Although nearly all details concerning our origins have been lost in the depths of time, there is compelling evidence to suggest that the earliest life might have exploited the catalytic and self-recognition properties of RNA to survive. If an RNA based replicating system could be constructed in the laboratory, it would be much easier to understand the challenges associated with the very earliest steps in evolution and provide important insight into the establishment of the complex metabolic systems that now dominate this planet. Recent progress into the selection and characterization of ribozymes that promote nucleotide synthesis and RNA polymerization are discussed and outstanding problems in the field of RNA-mediated RNA replication are summarized.},
100 | author = {Cheng, Leslie K L and Unrau, Peter J},
101 | doi = {10.1101/cshperspect.a002204},
102 | file = {:Users/damascus/Documents/Mendeley\_papers/Cheng, Unrau - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
103 | issn = {1943-0264},
104 | journal = {Cold Spring Harbor perspectives in biology},
105 | keywords = {Biogenesis,DNA-Directed RNA Polymerases,DNA-Directed RNA Polymerases: genetics,DNA-Directed RNA Polymerases: metabolism,Evolution, Molecular,Polynucleotide Ligases,Polynucleotide Ligases: genetics,Polynucleotide Ligases: metabolism,RNA,RNA, Catalytic,RNA, Catalytic: genetics,RNA, Catalytic: metabolism,RNA: biosynthesis,RNA: genetics},
106 | month = oct,
107 | number = {10},
108 | pages = {a002204},
109 | pmid = {20554706},
110 | title = {{Closing the circle: replicating RNA with RNA.}},
111 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2944364\&tool=pmcentrez\&rendertype=abstract},
112 | volume = {2},
113 | year = {2010}
114 | }
115 | @article{Damasceno,
116 | author = {Damasceno, Pablo F and Glotzer, Sharon C.},
117 | journal = {in prep. (2015)},
118 | title = {{Self-Assembly of Complex Crystals via Isotropic Potentials Derived from Shape}}
119 | }
120 | @article{Damascenoa,
121 | author = {Damasceno, Pablo F. and Engel, Michael and Glotzer, Sharon C.},
122 | file = {:Users/damascus/Library/Application Support/Mendeley Desktop/Downloaded/Damasceno, Engel, Glotzer - Unknown - Self-Assembly of Homochiral Colloidal Crystals.pdf:pdf},
123 | journal = {in prep. (2014)},
124 | title = {{Self-Assembly of Homochiral Colloidal Crystals}}
125 | }
126 | @article{Damascenob,
127 | author = {Damasceno, Pablo F. and Phillips, Carolyn L. and Engel, Michael and Glotzer, Sharon C.},
128 | file = {:Users/damascus/Library/Application Support/Mendeley Desktop/Downloaded/Damasceno, Engel, Glotzer - Unknown - Self-Assembly of Homochiral Colloidal Crystals.pdf:pdf},
129 | journal = {in prep. (2014)},
130 | title = {{Self-Assembly of Complex Crystals from Simple Pair-Potentials}}
131 | }
132 | @article{Deamer2010,
133 | abstract = {Bioenergetics is central to our understanding of living systems, yet has attracted relatively little attention in origins of life research. This article focuses on energy resources available to drive primitive metabolism and the synthesis of polymers that could be incorporated into molecular systems having properties associated with the living state. The compartmented systems are referred to as protocells, each different from all the rest and representing a kind of natural experiment. The origin of life was marked when a rare few protocells happened to have the ability to capture energy from the environment to initiate catalyzed heterotrophic growth directed by heritable genetic information in the polymers. This article examines potential sources of energy available to protocells, and mechanisms by which the energy could be used to drive polymer synthesis.},
134 | author = {Deamer, David and Weber, Arthur L},
135 | doi = {10.1101/cshperspect.a004929},
136 | file = {:Users/damascus/Documents/Mendeley\_papers/Deamer, Weber - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
137 | issn = {1943-0264},
138 | journal = {Cold Spring Harbor perspectives in biology},
139 | keywords = {Animals,Biogenesis,Catalysis,Diphosphates,Diphosphates: chemistry,Energy Metabolism,Humans,Kinetics,Life,Models, Biological,Polymers,Polymers: chemistry,Sunlight,Thermodynamics},
140 | month = feb,
141 | number = {2},
142 | pages = {a004929},
143 | pmid = {20182625},
144 | title = {{Bioenergetics and life's origins.}},
145 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2828274\&tool=pmcentrez\&rendertype=abstract},
146 | volume = {2},
147 | year = {2010}
148 | }
149 | @article{Deck2011,
150 | abstract = {The transition from inanimate materials to the earliest forms of life must have involved multiplication of a catalytically active polymer that is able to replicate. The semiconservative replication that is characteristic of genetic information transfer requires strands that contain more than one type of nucleobase. Short strands of RNA can act as catalysts, but attempts to induce efficient self-copying of mixed sequences (containing four different nucleobases) have been unsuccessful with ribonucleotides. Here we show that inhibition by spent monomers, formed by the hydrolysis of the activated nucleotides, is the cause for incomplete extension of growing daughter strands on RNA templates. Immobilization of strands and periodic displacement of the solution containing the activated monomers overcome this inhibition. Any of the four nucleobases (A/C/G/U) is successfully copied in the absence of enzymes. We conclude therefore that in a prebiotic world, oligoribonucleotides may have formed and undergone self-copying on surfaces.},
151 | author = {Deck, Christopher and Jauker, Mario and Richert, Clemens},
152 | doi = {10.1038/nchem.1086},
153 | file = {:Users/damascus/Documents/Mendeley\_papers/Deck, Jauker, Richert - 2011 - Nature chemistry.pdf:pdf},
154 | issn = {1755-4349},
155 | journal = {Nature chemistry},
156 | keywords = {Base Sequence,RNA,RNA: chemistry,Ribonucleotides,Ribonucleotides: chemistry},
157 | month = aug,
158 | number = {8},
159 | pages = {603--8},
160 | pmid = {21778979},
161 | publisher = {Nature Publishing Group},
162 | title = {{Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA.}},
163 | url = {http://www.ncbi.nlm.nih.gov/pubmed/21778979},
164 | volume = {3},
165 | year = {2011}
166 | }
167 | @article{Engela,
168 | author = {Engel, Michael and Damasceno, Pablo F. and Phillips, Carolyn L. and Glotzer, Sharon C.},
169 | file = {:Users/damascus/Documents/Mendeley\_papers//Engel et al. - Unknown - Nature materials.pdf:pdf},
170 | journal = {Nature materials},
171 | title = {{Computational discovery of a one-component icosahedral quasicrystal via self-assembly}}
172 | }
173 | @article{Engelhart2010,
174 | abstract = {Since the structure of DNA was elucidated more than 50 years ago, Watson-Crick base pairing has been widely speculated to be the likely mode of both information storage and transfer in the earliest genetic polymers. The discovery of catalytic RNA molecules subsequently provided support for the hypothesis that RNA was perhaps even the first polymer of life. However, the de novo synthesis of RNA using only plausible prebiotic chemistry has proven difficult, to say the least. Experimental investigations, made possible by the application of synthetic and physical organic chemistry, have now provided evidence that the nucleobases (A, G, C, and T/U), the trifunctional moiety ([deoxy]ribose), and the linkage chemistry (phosphate esters) of contemporary nucleic acids may be optimally suited for their present roles-a situation that suggests refinement by evolution. Here, we consider studies of variations in these three distinct components of nucleic acids with regard to the question: Is RNA, as is generally acknowledged of DNA, the product of evolution? If so, what chemical and structural features might have been more likely and advantageous for a proto-RNA?},
175 | author = {Engelhart, Aaron E and Hud, Nicholas V},
176 | doi = {10.1101/cshperspect.a002196},
177 | file = {:Users/damascus/Documents/Mendeley\_papers/Engelhart, Hud - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
178 | issn = {1943-0264},
179 | journal = {Cold Spring Harbor perspectives in biology},
180 | keywords = {Biogenesis,Evolution, Chemical,Molecular Structure,Nucleic Acids,Nucleic Acids: chemistry,Polymerization,RNA,RNA: chemistry},
181 | month = dec,
182 | number = {12},
183 | pages = {a002196},
184 | pmid = {20462999},
185 | title = {{Primitive genetic polymers.}},
186 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2982173\&tool=pmcentrez\&rendertype=abstract},
187 | volume = {2},
188 | year = {2010}
189 | }
190 | @article{Engelhart2013,
191 | abstract = {A plausible process for non-enzymatic RNA replication would greatly simplify models of the transition from prebiotic chemistry to simple biology. However, all known conditions for the chemical copying of an RNA template result in the synthesis of a complementary strand that contains a mixture of 2'-5' and 3'-5' linkages, rather than the selective synthesis of only 3'-5' linkages as found in contemporary RNA. Here we show that such backbone heterogeneity is compatible with RNA folding into defined three-dimensional structures that retain molecular recognition and catalytic properties and, therefore, would not prevent the evolution of functional RNAs such as ribozymes. Moreover, the same backbone heterogeneity lowers the melting temperature of RNA duplexes that would otherwise be too stable for thermal strand separation. By allowing copied strands to dissociate, this heterogeneity may have been one of the essential features that allowed RNA to emerge as the first biopolymer.},
192 | author = {Engelhart, Aaron E and Powner, Matthew W and Szostak, Jack W},
193 | doi = {10.1038/nchem.1623},
194 | file = {:Users/damascus/Documents/Mendeley\_papers/Engelhart, Powner, Szostak - 2013 - Nature chemistry.pdf:pdf},
195 | issn = {1755-4349},
196 | journal = {Nature chemistry},
197 | keywords = {Base Sequence,Models,Nucleic Acid Conformation,RNA,RNA: chemistry,Theoretical},
198 | month = may,
199 | number = {5},
200 | pages = {390--4},
201 | pmid = {23609089},
202 | publisher = {Nature Publishing Group},
203 | title = {{Functional RNAs exhibit tolerance for non-heritable 2'-5' versus 3'-5' backbone heterogeneity.}},
204 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4088963\&tool=pmcentrez\&rendertype=abstract},
205 | volume = {5},
206 | year = {2013}
207 | }
208 | @article{Eschenmoser1999,
209 | author = {Eschenmoser, A.},
210 | doi = {10.1126/science.284.5423.2118},
211 | file = {:Users/damascus/Documents/Mendeley\_papers/Eschenmoser - 1999 - Science.pdf:pdf},
212 | issn = {00368075},
213 | journal = {Science},
214 | month = jun,
215 | number = {5423},
216 | pages = {2118--2124},
217 | title = {{Chemical Etiology of Nucleic Acid Structure}},
218 | url = {http://www.sciencemag.org/cgi/doi/10.1126/science.284.5423.2118},
219 | volume = {284},
220 | year = {1999}
221 | }
222 | @article{Fox2010,
223 | abstract = {The modern ribosome was largely formed at the time of the last common ancestor, LUCA. Hence its earliest origins likely lie in the RNA world. Central to its development were RNAs that spawned the modern tRNAs and a symmetrical region deep within the large ribosomal RNA, (rRNA), where the peptidyl transferase reaction occurs. To understand pre-LUCA developments, it is argued that events that are coupled in time are especially useful if one can infer a likely order in which they occurred. Using such timing events, the relative age of various proteins and individual regions within the large rRNA are inferred. An examination of the properties of modern ribosomes strongly suggests that the initial peptides made by the primitive ribosomes were likely enriched for l-amino acids, but did not completely exclude d-amino acids. This has implications for the nature of peptides made by the first ribosomes. From the perspective of ribosome origins, the immediate question regarding coding is when did it arise rather than how did the assignments evolve. The modern ribosome is very dynamic with tRNAs moving in and out and the mRNA moving relative to the ribosome. These movements may have become possible as a result of the addition of a template to hold the tRNAs. That template would subsequently become the mRNA, thereby allowing the evolution of the code and making an RNA genome useful. Finally, a highly speculative timeline of major events in ribosome history is presented and possible future directions discussed.},
224 | author = {Fox, George E},
225 | doi = {10.1101/cshperspect.a003483},
226 | file = {:Users/damascus/Documents/Mendeley\_papers/Fox - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
227 | issn = {1943-0264},
228 | journal = {Cold Spring Harbor perspectives in biology},
229 | keywords = {Evolution, Molecular,RNA, Ribosomal,RNA, Ribosomal: genetics,RNA, Ribosomal: physiology,RNA, Transfer,RNA, Transfer: genetics,RNA, Transfer: physiology,Ribosomes,Ribosomes: genetics,Ribosomes: physiology},
230 | month = sep,
231 | number = {9},
232 | pages = {a003483},
233 | pmid = {20534711},
234 | title = {{Origin and evolution of the ribosome.}},
235 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2926754\&tool=pmcentrez\&rendertype=abstract},
236 | volume = {2},
237 | year = {2010}
238 | }
239 | @article{Gaucher2010,
240 | abstract = {The Darwinian concept of biological evolution assumes that life on Earth shares a common ancestor. The diversification of this common ancestor through speciation events and vertical transmission of genetic material implies that the classification of life can be illustrated in a tree-like manner, commonly referred to as the Tree of Life. This article describes features of the Tree of Life, such as how the tree has been both pruned and become bushier throughout the past century as our knowledge of biology has expanded. We present current views that the classification of life may be best illustrated as a ring or even a coral with tree-like characteristics. This article also discusses how the organization of the Tree of Life offers clues about ancient life on Earth. In particular, we focus on the environmental conditions and temperature history of Precambrian life and show how chemical, biological, and geological data can converge to better understand this history."You know, a tree is a tree. How many more do you need to look at?"--Ronald Reagan (Governor of California), quoted in the Sacramento Bee, opposing expansion of Redwood National Park, March 3, 1966.},
241 | author = {Gaucher, Eric a and Kratzer, James T and Randall, Ryan N},
242 | doi = {10.1101/cshperspect.a002238},
243 | file = {:Users/damascus/Documents/Mendeley\_papers/Gaucher, Kratzer, Randall - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
244 | issn = {1943-0264},
245 | journal = {Cold Spring Harbor perspectives in biology},
246 | keywords = {Adaptation, Physiological,Biological Evolution,Environment,Escherichia coli,Escherichia coli: metabolism,History, Ancient,Paleontology,Paleontology: methods,Phylogeny,Temperature,Thermus,Thermus: metabolism},
247 | month = jan,
248 | number = {1},
249 | pages = {a002238},
250 | pmid = {20182607},
251 | title = {{Deep phylogeny--how a tree can help characterize early life on Earth.}},
252 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2827910\&tool=pmcentrez\&rendertype=abstract},
253 | volume = {2},
254 | year = {2010}
255 | }
256 | @article{Goldman2010,
257 | abstract = {Delivery of prebiotic compounds to early Earth from an impacting comet is thought to be an unlikely mechanism for the origins of life because of unfavourable chemical conditions on the planet and the high heat from impact. In contrast, we find that impact-induced shock compression of cometary ices followed by expansion to ambient conditions can produce complexes that resemble the amino acid glycine. Our ab initio molecular dynamics simulations show that shock waves drive the synthesis of transient C-N bonded oligomers at extreme pressures and temperatures. On post impact quenching to lower pressures, the oligomers break apart to form a metastable glycine-containing complex. We show that impact from cometary ice could possibly yield amino acids by a synthetic route independent of the pre-existing atmospheric conditions and materials on the planet.},
258 | author = {Goldman, Nir and Reed, Evan J and Fried, Laurence E and {William Kuo}, I-F and Maiti, Amitesh},
259 | doi = {10.1038/nchem.827},
260 | file = {:Users/damascus/Documents/Mendeley\_papers/Goldman et al. - 2010 - Nature chemistry.pdf:pdf},
261 | issn = {1755-4349},
262 | journal = {Nature chemistry},
263 | keywords = {Earth (Planet),Glycine,Glycine: analysis,Meteoroids,Molecular Dynamics Simulation},
264 | month = nov,
265 | number = {11},
266 | pages = {949--54},
267 | pmid = {20966951},
268 | publisher = {Nature Publishing Group},
269 | title = {{Synthesis of glycine-containing complexes in impacts of comets on early Earth.}},
270 | url = {http://www.ncbi.nlm.nih.gov/pubmed/20966951},
271 | volume = {2},
272 | year = {2010}
273 | }
274 | @article{Gollihar2014,
275 | author = {Gollihar, Jimmy and Levy, Matthew and Ellington, Andrew D},
276 | doi = {10.1126/science.1246704},
277 | file = {:Users/damascus/Documents/Mendeley\_papers/Gollihar, Levy, Ellington - 2014 - Science (New York, N.Y.).pdf:pdf},
278 | issn = {1095-9203},
279 | journal = {Science (New York, N.Y.)},
280 | keywords = {Biogenesis,Carbohydrates,Carbohydrates: chemistry,Earth (Planet),Ligases,Ligases: chemistry,Mars,RNA, Catalytic,RNA, Catalytic: chemistry,Ribose,Ribose: chemistry},
281 | month = jan,
282 | number = {6168},
283 | pages = {259--60},
284 | pmid = {24436411},
285 | title = {{Biochemistry. Many paths to the origin of life.}},
286 | url = {http://www.ncbi.nlm.nih.gov/pubmed/24436411},
287 | volume = {343},
288 | year = {2014}
289 | }
290 | @article{Hazen2010,
291 | abstract = {Crystalline surfaces of common rock-forming minerals are likely to have played several important roles in life's geochemical origins. Transition metal sulfides and oxides promote a variety of organic reactions, including nitrogen reduction, hydroformylation, amination, and Fischer-Tropsch-type synthesis. Fine-grained clay minerals and hydroxides facilitate lipid self-organization and condensation polymerization reactions, notably of RNA monomers. Surfaces of common rock-forming oxides, silicates, and carbonates select and concentrate specific amino acids, sugars, and other molecular species, while potentially enhancing their thermal stabilities. Chiral surfaces of these minerals also have been shown to separate left- and right-handed molecules. Thus, mineral surfaces may have contributed centrally to the linked prebiotic problems of containment and organization by promoting the transition from a dilute prebiotic "soup" to highly ordered local domains of key biomolecules.},
292 | author = {Hazen, Robert M and Sverjensky, Dimitri a},
293 | doi = {10.1101/cshperspect.a002162},
294 | file = {:Users/damascus/Documents/Mendeley\_papers/Hazen, Sverjensky - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
295 | issn = {1943-0264},
296 | journal = {Cold Spring Harbor perspectives in biology},
297 | keywords = {Biogenesis,Crystallization,Minerals,Minerals: chemistry,Surface Properties},
298 | month = may,
299 | number = {5},
300 | pages = {a002162},
301 | pmid = {20452963},
302 | title = {{Mineral surfaces, geochemical complexities, and the origins of life.}},
303 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2857174\&tool=pmcentrez\&rendertype=abstract},
304 | volume = {2},
305 | year = {2010}
306 | }
307 | @article{Hein2011,
308 | abstract = {The single-handedness of biological molecules is critical for molecular recognition and replication processes and would seem to be a prerequisite for the origin of life. A drawback of recently reported synthetic routes to RNA is the requirement for enantioenriched reactants, which fails to address the puzzle of how the single chirality of biological molecules arose. Here, we report the synthesis of highly enantioenriched RNA precursor molecules from racemic starting materials, with the molecular asymmetry derived solely from a small initial imbalance of the amino-acid enantiomers present in the reaction mixture. Acting as spectators to the main reaction chemistry, the amino acids orchestrate a sequence of physical and chemical amplification processes. The emergence of molecules of single chirality from complex, multi-component mixtures supports the robustness of this synthesis process under potential prebiotic conditions and provides a plausible explanation for the single-handedness of biological molecules before the emergence of self-replicating informational polymers.},
309 | author = {Hein, Jason E and Tse, Eric and Blackmond, Donna G},
310 | doi = {10.1038/nchem.1108},
311 | file = {:Users/damascus/Documents/Mendeley\_papers/Hein, Tse, Blackmond - 2011 - Nature chemistry.pdf:pdf},
312 | issn = {1755-4349},
313 | journal = {Nature chemistry},
314 | keywords = {Amino Acids,Amino Acids: chemistry,Glyceraldehyde,Glyceraldehyde: chemistry,Oxazoles,Oxazoles: chemistry,RNA Precursors,RNA Precursors: chemical synthesis,RNA Precursors: chemistry,RNA Precursors: genetics,Stereoisomerism},
315 | month = sep,
316 | number = {9},
317 | pages = {704--6},
318 | pmid = {21860459},
319 | publisher = {Nature Publishing Group},
320 | title = {{A route to enantiopure RNA precursors from nearly racemic starting materials.}},
321 | url = {http://www.ncbi.nlm.nih.gov/pubmed/21860459},
322 | volume = {3},
323 | year = {2011}
324 | }
325 | @article{Hernandez2013,
326 | author = {Hern\'{a}ndez, Armando R and Piccirilli, Joseph a},
327 | doi = {10.1038/nchem.1636},
328 | file = {:Users/damascus/Documents/Mendeley\_papers/Hern\'{a}ndez, Piccirilli - 2013 - Nature chemistry.pdf:pdf},
329 | issn = {1755-4349},
330 | journal = {Nature chemistry},
331 | keywords = {Models, Theoretical,Prebiotics,RNA,RNA: chemistry},
332 | month = may,
333 | number = {5},
334 | pages = {360--2},
335 | pmid = {23609081},
336 | publisher = {Nature Publishing Group},
337 | title = {{Chemical origins of life: Prebiotic RNA unstuck.}},
338 | url = {http://www.ncbi.nlm.nih.gov/pubmed/23609081},
339 | volume = {5},
340 | year = {2013}
341 | }
342 | @article{Hormoz2011,
343 | abstract = {Recent experimental advances have opened up the possibility of equilibrium self-assembly of functionalized nanoblocks with a high degree of controllable specific interactions. Here, we propose design principles for selecting the short-range interactions between self-assembling components to maximize yield. We illustrate the approach with an example from colloidal engineering. We construct an optimal set of local interactions for eight colloidal particles (coated, e.g., with DNA strands) to assemble into a particular polytetrahedral cluster. Maximum yield is attained when the interactions between the colloids follow the design rules: All energetically favorable interactions have the same strength, as do all unfavorable ones, and the number of components and energies fall within the proposed range. In general, it might be necessary to use more component than strictly required for enforcing the ground state configuration. The results motivate design strategies for engineering components that can reliably self-assemble.},
344 | author = {Hormoz, Sahand and Brenner, Michael P},
345 | doi = {10.1073/pnas.1014094108},
346 | file = {:Users/damascus/Documents/Mendeley\_papers/Hormoz, Brenner - 2011 - Proceedings of the National Academy of Sciences of the United States of America.pdf:pdf},
347 | issn = {1091-6490},
348 | journal = {Proceedings of the National Academy of Sciences of the United States of America},
349 | keywords = {Colloids,Colloids: chemistry,Models, Molecular,Molecular Structure,Nanostructures,Nanostructures: chemistry},
350 | month = mar,
351 | number = {13},
352 | pages = {5193--8},
353 | pmid = {21383135},
354 | title = {{Design principles for self-assembly with short-range interactions.}},
355 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3069168\&tool=pmcentrez\&rendertype=abstract},
356 | volume = {108},
357 | year = {2011}
358 | }
359 | @article{Ichihashi2010,
360 | abstract = {Understanding the origin of life requires knowledge not only of the origin of biological molecules such as amino acids, nucleotides and their polymers, but also the manner in which those molecules are integrated into the organized systems that characterize cellular life. In this article, we introduce a constructive approach to understand how biological molecules can be arranged to achieve a higher-order biological function: replication of genetic information.},
361 | author = {Ichihashi, Norikazu and Matsuura, Tomoaki and Kita, Hiroshi and Sunami, Takeshi and Suzuki, Hiroaki and Yomo, Tetsuya},
362 | doi = {10.1101/cshperspect.a004945},
363 | file = {:Users/damascus/Documents/Mendeley\_papers/Ichihashi et al. - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
364 | issn = {1943-0264},
365 | journal = {Cold Spring Harbor perspectives in biology},
366 | keywords = {Biological Evolution,DNA Replication,DNA Replication: genetics,Gene Regulatory Networks,Liposomes,Models, Genetic,Templates, Genetic},
367 | month = jun,
368 | number = {6},
369 | pages = {a004945},
370 | pmid = {20516136},
371 | title = {{Constructing partial models of cells.}},
372 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2869526\&tool=pmcentrez\&rendertype=abstract},
373 | volume = {2},
374 | year = {2010}
375 | }
376 | @article{Koga2011,
377 | abstract = {Although phospholipid bilayers are ubiquitous in modern cells, their impermeability, lack of dynamic properties, and synthetic complexity are difficult to reconcile with plausible pathways of proto-metabolism, growth and division. Here, we present an alternative membrane-free model, which demonstrates that low-molecular-weight mononucleotides and simple cationic peptides spontaneously accumulate in water into microdroplets that are stable to changes in temperature and salt concentration, undergo pH-induced cycles of growth and decay, and promote $\alpha$-helical peptide secondary structure. Moreover, the microdroplets selectively sequester porphyrins, inorganic nanoparticles and enzymes to generate supramolecular stacked arrays of light-harvesting molecules, nanoparticle-mediated oxidase activity, and enhanced rates of glucose phosphorylation, respectively. Taken together, our results suggest that peptide-nucleotide microdroplets can be considered as a new type of protocell model that could be used to develop novel bioreactors, primitive artificial cells and plausible pathways to prebiotic organization before the emergence of lipid-based compartmentalization on the early Earth.},
378 | author = {Koga, Shogo and Williams, David S and Perriman, Adam W and Mann, Stephen},
379 | doi = {10.1038/nchem.1110},
380 | file = {:Users/damascus/Documents/Mendeley\_papers/Koga et al. - 2011 - Nature chemistry.pdf:pdf},
381 | issn = {1755-4349},
382 | journal = {Nature chemistry},
383 | keywords = {Artificial Cells,Artificial Cells: chemistry,Catalysis,Nanoparticles,Nanoparticles: chemistry,Nucleotides,Nucleotides: chemistry,Peptides,Peptides: chemistry},
384 | month = sep,
385 | number = {9},
386 | pages = {720--4},
387 | pmid = {21860462},
388 | publisher = {Nature Publishing Group},
389 | title = {{Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model.}},
390 | url = {http://www.ncbi.nlm.nih.gov/pubmed/21860462},
391 | volume = {3},
392 | year = {2011}
393 | }
394 | @article{Kurihara2011,
395 | abstract = {The construction of a protocell from a materials point of view is important in understanding the origin of life. Both self-reproduction of a compartment and self-replication of an informational substance have been studied extensively, but these processes have typically been carried out independently, rather than linked to one another. Here, we demonstrate the amplification of DNA (encapsulated guest) within a self-reproducible cationic giant vesicle (host). With the addition of a vesicular membrane precursor, we observe the growth and spontaneous division of the giant vesicles, accompanied by distribution of the DNA to the daughter giant vesicles. In particular, amplification of the DNA accelerated the division of the giant vesicles. This means that self-replication of an informational substance has been linked to self-reproduction of a compartment through the interplay between polyanionic DNA and the cationic vesicular membrane. Our self-reproducing giant vesicle system therefore represents a step forward in the construction of an advanced model protocell.},
396 | author = {Kurihara, Kensuke and Tamura, Mieko and Shohda, Koh-Ichiroh and Toyota, Taro and Suzuki, Kentaro and Sugawara, Tadashi},
397 | doi = {10.1038/nchem.1127},
398 | file = {:Users/damascus/Documents/Mendeley\_papers/Kurihara et al. - 2011 - Nature chemistry.pdf:pdf},
399 | issn = {1755-4349},
400 | journal = {Nature chemistry},
401 | keywords = {Artificial Cells,Artificial Cells: chemistry,Artificial Cells: metabolism,Biogenesis,DNA,DNA: metabolism,Lipid Bilayers,Lipid Bilayers: chemistry,Lipid Bilayers: metabolism,Phosphatidylcholines,Phosphatidylcholines: chemistry,Phosphatidylglycerols,Phosphatidylglycerols: chemistry,Polymerase Chain Reaction,Rhodamines,Rhodamines: chemistry},
402 | month = oct,
403 | number = {10},
404 | pages = {775--81},
405 | pmid = {21941249},
406 | publisher = {Nature Publishing Group},
407 | title = {{Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA.}},
408 | url = {http://www.ncbi.nlm.nih.gov/pubmed/21941249},
409 | volume = {3},
410 | year = {2011}
411 | }
412 | @article{Lazcano2010,
413 | abstract = {Following the publication of the Origin of Species in 1859, many naturalists adopted the idea that living organisms were the historical outcome of gradual transformation of lifeless matter. These views soon merged with the developments of biochemistry and cell biology and led to proposals in which the origin of protoplasm was equated with the origin of life. The heterotrophic origin of life proposed by Oparin and Haldane in the 1920s was part of this tradition, which Oparin enriched by transforming the discussion of the emergence of the first cells into a workable multidisciplinary research program. On the other hand, the scientific trend toward understanding biological phenomena at the molecular level led authors like Troland, Muller, and others to propose that single molecules or viruses represented primordial living systems. The contrast between these opposing views on the origin of life represents not only contrasting views of the nature of life itself, but also major ideological discussions that reached a surprising intensity in the years following Stanley Miller's seminal result which showed the ease with which organic compounds of biochemical significance could be synthesized under putative primitive conditions. In fact, during the years following the Miller experiment, attempts to understand the origin of life were strongly influenced by research on DNA replication and protein biosynthesis, and, in socio-political terms, by the atmosphere created by Cold War tensions. The catalytic versatility of RNA molecules clearly merits a critical reappraisal of Muller's viewpoint. However, the discovery of ribozymes does not imply that autocatalytic nucleic acid molecules ready to be used as primordial genes were floating in the primitive oceans, or that the RNA world emerged completely assembled from simple precursors present in the prebiotic soup. The evidence supporting the presence of a wide range of organic molecules on the primitive Earth, including membrane-forming compounds, suggests that the evolution of membrane-bounded molecular systems preceded cellular life on our planet, and that life is the evolutionary outcome of a process, not of a single, fortuitous event.},
414 | author = {Lazcano, Antonio},
415 | doi = {10.1101/cshperspect.a002089},
416 | file = {:Users/damascus/Documents/Mendeley\_papers/Lazcano - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
417 | issn = {1943-0264},
418 | journal = {Cold Spring Harbor perspectives in biology},
419 | keywords = {Biogenesis,Biological Evolution,Biology,Biology: history,History, 19th Century,History, 20th Century},
420 | month = nov,
421 | number = {11},
422 | pages = {a002089},
423 | pmid = {20534710},
424 | title = {{Historical development of origins research.}},
425 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2964185\&tool=pmcentrez\&rendertype=abstract},
426 | volume = {2},
427 | year = {2010}
428 | }
429 | @article{Li2014,
430 | abstract = {The five-membered furanose ring is a central component of the chemical structure of biological nucleic acids. The conformations of the furanose ring can be analytically described using the concept of pseudorotation, and for RNA and DNA they are dominated by the C2'-endo and C3'-endo conformers. While the free energy difference between these two conformers can be inferred from NMR measurements, a free energy landscape of the complete pseudorotation cycle of nucleic acids in solution has remained elusive. Here, we describe a new free energy calculation method for molecular dynamics (MD) simulations using the two pseudorotation parameters directly as the collective variables. To validate our approach, we calculated the free energy surface of ribose pseudorotation in guanosine and 2'-deoxyguanosine. The calculated free energy landscape reveals not only the relative stability of the different pseudorotation conformers, but also the main transition path between the stable conformations. Applying this method to a standard A-form RNA duplex uncovered the expected minimum at the C3'-endo state. However, at a 2'-5' linkage, the minimum shifts to the C2'-endo conformation. The free energy of the C3'-endo conformation is 3 kcal/mol higher due to a weaker hydrogen bond and a reduced base stacking interaction. Unrestrained MD simulations suggest that the conversion from C3'-endo to C2'-endo and vice versa is on the nanosecond and microsecond time scale, respectively. These calculations suggest that 2'-5' linkages may enable folded RNAs to sample a wider spectrum of their pseudorotation conformations.},
431 | author = {Li, Li and Szostak, Jack W},
432 | doi = {10.1021/ja412079b},
433 | file = {:Users/damascus/Documents/Mendeley\_papers/Li, Szostak - 2014 - Journal of the American Chemical Society.pdf:pdf},
434 | issn = {1520-5126},
435 | journal = {Journal of the American Chemical Society},
436 | month = feb,
437 | number = {7},
438 | pages = {2858--65},
439 | pmid = {24499340},
440 | title = {{The free energy landscape of pseudorotation in 3'-5' and 2'-5' linked nucleic acids.}},
441 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3982932\&tool=pmcentrez\&rendertype=abstract},
442 | volume = {136},
443 | year = {2014}
444 | }
445 | @article{Luisi2011,
446 | author = {Luisi, Pier Luigi and Stano, Pasquale},
447 | doi = {10.1038/nchem.1156},
448 | file = {:Users/damascus/Documents/Mendeley\_papers/Luisi, Stano - 2011 - Nature chemistry.pdf:pdf},
449 | issn = {1755-4349},
450 | journal = {Nature chemistry},
451 | keywords = {Artificial Cells,Artificial Cells: metabolism,DNA,DNA: metabolism,Lipid Bilayers,Lipid Bilayers: chemistry},
452 | month = oct,
453 | number = {10},
454 | pages = {755--6},
455 | pmid = {21941243},
456 | publisher = {Nature Publishing Group},
457 | title = {{Synthetic biology: minimal cell mimicry.}},
458 | url = {http://www.ncbi.nlm.nih.gov/pubmed/21941243},
459 | volume = {3},
460 | year = {2011}
461 | }
462 | @article{Mansy2010,
463 | abstract = {Although model protocellular membranes consisting of monoacyl lipids are similar to membranes composed of contemporary diacyl lipids, they differ in at least one important aspect. Model protocellular membranes allow for the passage of polar solutes and thus can potentially support cell-to functions without the aid of transport machinery. The ability to transport polar molecules likely stems from increased lipid dynamics. Selectively permeable vesicle membranes composed of monoacyl lipids allow for many lifelike processes to emerge from a remarkably small set of molecules.},
464 | author = {Mansy, Sheref S},
465 | doi = {10.1101/cshperspect.a002188},
466 | file = {:Users/damascus/Documents/Mendeley\_papers/Mansy - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
467 | issn = {1943-0264},
468 | journal = {Cold Spring Harbor perspectives in biology},
469 | keywords = {Biological Evolution,Biological Transport,Cell Membrane,Cell Membrane: metabolism,Diffusion,Fatty Acids,Fatty Acids: chemistry,Lipids,Lipids: chemistry,Membrane Lipids,Membrane Lipids: metabolism,Models, Biological,Models, Chemical,Permeability,Protein Transport,Solubility},
470 | month = aug,
471 | number = {8},
472 | pages = {a002188},
473 | pmid = {20679338},
474 | title = {{Membrane transport in primitive cells.}},
475 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2908771\&tool=pmcentrez\&rendertype=abstract},
476 | volume = {2},
477 | year = {2010}
478 | }
479 | @article{McKay2010,
480 | abstract = {Evidence of past liquid water on the surface of Mars suggests that this world once had habitable conditions and leads to the question of life. If there was life on Mars, it would be interesting to determine if it represented a separate origin from life on Earth. To determine the biochemistry and genetics of life on Mars requires that we have access to an organism or the biological remains of one-possibly preserved in ancient permafrost. A way to determine if organic material found on Mars represents the remains of an alien biological system could be based on the observation that biological systems select certain organic molecules over others that are chemically similar (e.g., chirality in amino acids).},
481 | author = {McKay, Christopher P},
482 | doi = {10.1101/cshperspect.a003509},
483 | file = {:Users/damascus/Documents/Mendeley\_papers/McKay - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
484 | issn = {1943-0264},
485 | journal = {Cold Spring Harbor perspectives in biology},
486 | keywords = {Biogenesis,Exobiology,Mars,Water},
487 | month = apr,
488 | number = {4},
489 | pages = {a003509},
490 | pmid = {20452949},
491 | title = {{An origin of life on Mars.}},
492 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2845199\&tool=pmcentrez\&rendertype=abstract},
493 | volume = {2},
494 | year = {2010}
495 | }
496 | @article{Pizzarello2010,
497 | abstract = {Carbon-containing meteorites provide a natural sample of the extraterrestrial organic chemistry that occurred in the solar system ahead of life's origin on the Earth. Analyses of 40 years have shown the organic content of these meteorites to be materials as diverse as kerogen-like macromolecules and simpler soluble compounds such as amino acids and polyols. Many meteoritic molecules have identical counterpart in the biosphere and, in a primitive group of meteorites, represent the majority of their carbon. Most of the compounds in meteorites have isotopic compositions that date their formation to presolar environments and reveal a long and active cosmochemical evolution of the biogenic elements. Whether this evolution resumed on the Earth to foster biogenesis after exogenous delivery of meteoritic and cometary materials is not known, yet, the selective abundance of biomolecule precursors evident in some cosmic environments and the unique L-asymmetry of some meteoritic amino acids are suggestive of their possible contribution to terrestrial molecular evolution.},
498 | author = {Pizzarello, Sandra and Shock, Everett},
499 | doi = {10.1101/cshperspect.a002105},
500 | file = {:Users/damascus/Documents/Mendeley\_papers/Pizzarello, Shock - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
501 | issn = {1943-0264},
502 | journal = {Cold Spring Harbor perspectives in biology},
503 | keywords = {Biogenesis,Carbon,Carbon: chemistry,Chemistry, Organic,Chemistry, Organic: methods,Earth (Planet),Evolution, Chemical,Extraterrestrial Environment,Meteoroids,Solar System},
504 | month = mar,
505 | number = {3},
506 | pages = {a002105},
507 | pmid = {20300213},
508 | title = {{The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry.}},
509 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2829962\&tool=pmcentrez\&rendertype=abstract},
510 | volume = {2},
511 | year = {2010}
512 | }
513 | @article{Powner2013,
514 | author = {Powner, Matthew},
515 | doi = {10.1038/nchem.1629},
516 | file = {:Users/damascus/Documents/Mendeley\_papers/Powner - 2013 - Nature chemistry.pdf:pdf},
517 | issn = {1755-4349},
518 | journal = {Nature chemistry},
519 | month = may,
520 | number = {5},
521 | pages = {355--7},
522 | pmid = {23609075},
523 | title = {{Asking original questions. Interview by Stephen Davey.}},
524 | url = {http://www.ncbi.nlm.nih.gov/pubmed/23609075},
525 | volume = {5},
526 | year = {2013}
527 | }
528 | @article{Ritson2012,
529 | abstract = {A recent synthesis of activated pyrimidine ribonucleotides under prebiotically plausible conditions relied on mixed oxygenous and nitrogenous systems chemistry. As it stands, this synthesis provides support for the involvement of RNA in the origin of life, but such support would be considerably strengthened if the sugar building blocks for the synthesis--glycolaldehyde and glyceraldehyde--could be shown to derive from one carbon feedstock molecules using similarly mixed oxygenous and nitrogenous systems chemistry. Here, we show that these sugars can be formed from hydrogen cyanide by ultraviolet irradiation in the presence of cyanometallates in a remarkable systems chemistry process. Using copper cyanide complexes, the process operates catalytically to disproportionate hydrogen cyanide, first generating the sugars and then sequestering them as simple derivatives.},
530 | author = {Ritson, Dougal and Sutherland, John D},
531 | doi = {10.1038/nchem.1467},
532 | file = {:Users/damascus/Documents/Mendeley\_papers/Ritson, Sutherland - 2012 - Nature chemistry.pdf:pdf},
533 | issn = {1755-4349},
534 | journal = {Nature chemistry},
535 | keywords = {Carbohydrates,Carbohydrates: chemical synthesis,Carbohydrates: chemistry,Chemistry Techniques,Hydrogen Cyanide,Hydrogen Cyanide: chemistry,Oxidation-Reduction,Photochemical Processes,Prebiotics,Synthetic},
536 | month = nov,
537 | number = {11},
538 | pages = {895--9},
539 | pmid = {23089863},
540 | publisher = {Nature Publishing Group},
541 | title = {{Prebiotic synthesis of simple sugars by photoredox systems chemistry.}},
542 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3589744\&tool=pmcentrez\&rendertype=abstract},
543 | volume = {4},
544 | year = {2012}
545 | }
546 | @article{Rodrigo2012,
547 | abstract = {A grand challenge in synthetic biology is to use our current knowledge of RNA science to perform the automatic engineering of completely synthetic sequences encoding functional RNAs in living cells. We report here a fully automated design methodology and experimental validation of synthetic RNA interaction circuits working in a cellular environment. The computational algorithm, based on a physicochemical model, produces novel RNA sequences by exploring the space of possible sequences compatible with predefined structures. We tested our methodology in Escherichia coli by designing several positive riboregulators with diverse structures and interaction models, suggesting that only the energy of formation and the activation energy (free energy barrier to overcome for initiating the hybridization reaction) are sufficient criteria to engineer RNA interaction and regulation in bacteria. The designed sequences exhibit nonsignificant similarity to any known noncoding RNA sequence. Our riboregulatory devices work independently and in combination with transcription regulation to create complex logic circuits. Our results demonstrate that a computational methodology based on first-principles can be used to engineer interacting RNAs with allosteric behavior in living cells.},
548 | author = {Rodrigo, Guillermo and Landrain, Thomas E and Jaramillo, Alfonso},
549 | doi = {10.1073/pnas.1203831109},
550 | file = {:Users/damascus/Documents/Mendeley\_papers/Rodrigo, Landrain, Jaramillo - 2012 - Proceedings of the National Academy of Sciences of the United States of America.pdf:pdf},
551 | issn = {1091-6490},
552 | journal = {Proceedings of the National Academy of Sciences of the United States of America},
553 | keywords = {Automation,Chemistry, Physical,Chemistry, Physical: methods,Computational Biology,Computational Biology: methods,Escherichia coli,Escherichia coli: genetics,Escherichia coli: metabolism,Evolution, Molecular,Flow Cytometry,Flow Cytometry: methods,Genes, Reporter,Genetic Engineering,Genetic Engineering: methods,Models, Genetic,Nucleic Acid Conformation,Plasmids,Plasmids: metabolism,Promoter Regions, Genetic,RNA,RNA Processing, Post-Transcriptional,RNA Processing, Post-Transcriptional: genetics,RNA: chemistry,RNA: genetics,Spectrometry, Fluorescence,Spectrometry, Fluorescence: methods,Synthetic Biology,Synthetic Biology: methods,Thermodynamics},
554 | month = sep,
555 | number = {38},
556 | pages = {15271--6},
557 | pmid = {22949707},
558 | title = {{De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells.}},
559 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3458397\&tool=pmcentrez\&rendertype=abstract},
560 | volume = {109},
561 | year = {2012}
562 | }
563 | @article{Schoning2000,
564 | author = {Schoning, K.-U. and Scholz, P. and Guntha, S. and Wu, X. and Krishnamurthy, R. and Eschenmoser, A.},
565 | doi = {10.1126/science.290.5495.1347},
566 | file = {:Users/damascus/Documents/Mendeley\_papers/Schoning et al. - 2000 - Science.pdf:pdf},
567 | issn = {00368075},
568 | journal = {Science},
569 | month = nov,
570 | number = {5495},
571 | pages = {1347--1351},
572 | title = {{Chemical Etiology of Nucleic Acid Structure: The alpha -Threofuranosyl-(3'rightarrow 2') Oligonucleotide System}},
573 | url = {http://www.sciencemag.org/cgi/doi/10.1126/science.290.5495.1347},
574 | volume = {290},
575 | year = {2000}
576 | }
577 | @article{Schrum2010,
578 | abstract = {Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.},
579 | author = {Schrum, Jason P and Zhu, Ting F and Szostak, Jack W},
580 | doi = {10.1101/cshperspect.a002212},
581 | file = {:Users/damascus/Documents/Mendeley\_papers/Schrum, Zhu, Szostak - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
582 | issn = {1943-0264},
583 | journal = {Cold Spring Harbor perspectives in biology},
584 | keywords = {Artificial Cells,Artificial Cells: chemistry,Biogenesis,Cell Membrane,Cell Membrane: chemistry,Evolution, Chemical,Fatty Acids,Fatty Acids: chemistry},
585 | month = sep,
586 | number = {9},
587 | pages = {a002212},
588 | pmid = {20484387},
589 | title = {{The origins of cellular life.}},
590 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2926753\&tool=pmcentrez\&rendertype=abstract},
591 | volume = {2},
592 | year = {2010}
593 | }
594 | @article{Sheng2014,
595 | abstract = {The mixture of 2'-5' and 3'-5' linkages generated during the nonenzymatic replication of RNA has long been regarded as a central problem for the origin of the RNA world. However, we recently observed that both a ribozyme and an RNA aptamer retain considerable functionality in the presence of prebiotically plausible levels of linkage heterogeneity. To better understand the RNA structure and function in the presence of backbone linkage heterogeneity, we obtained high-resolution X-ray crystal structures of a native 10-mer RNA duplex (1.32 \AA) and two variants: one containing one 2'-5' linkage per strand (1.55 \AA) and one containing three such linkages per strand (1.20 \AA). We found that RNA duplexes adjust their local structures to accommodate the perturbation caused by 2'-5' linkages, with the flanking nucleotides buffering the disruptive effects of the isomeric linkage and resulting in a minimally altered global structure. Although most 2'-linked sugars were in the expected 2'-endo conformation, some were partially or fully in the 3'-endo conformation, suggesting that the energy difference between these conformations was relatively small. Our structural and molecular dynamic studies also provide insight into the diminished thermal and chemical stability of the duplex state associated with the presence of 2'-5' linkages. Our results contribute to the view that a low level of 2'-5' substitution would not have been fatal in an early RNA world and may in contrast have been helpful for both the emergence of nonenzymatic RNA replication and the early evolution of functional RNAs.},
596 | author = {Sheng, Jia and Li, Li and Engelhart, Aaron E and Gan, Jianhua and Wang, Jiawei and Szostak, Jack W},
597 | doi = {10.1073/pnas.1317799111},
598 | file = {:Users/damascus/Documents/Mendeley\_papers/Sheng et al. - 2014 - Proceedings of the National Academy of Sciences of the United States of America.pdf:pdf},
599 | issn = {1091-6490},
600 | journal = {Proceedings of the National Academy of Sciences of the United States of America},
601 | keywords = {Base Sequence,Crystallography, X-Ray,Models, Molecular,Molecular Dynamics Simulation,Nucleic Acid Conformation,Nucleic Acid Heteroduplexes,Nucleic Acid Heteroduplexes: chemistry,Oligonucleotides,Oligonucleotides: genetics,RNA,RNA: chemistry},
602 | month = feb,
603 | number = {8},
604 | pages = {3050--5},
605 | pmid = {24516151},
606 | title = {{Structural insights into the effects of 2'-5' linkages on the RNA duplex.}},
607 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3939906\&tool=pmcentrez\&rendertype=abstract},
608 | volume = {111},
609 | year = {2014}
610 | }
611 | @article{Sleep2010,
612 | abstract = {A sparse geological record combined with physics and molecular phylogeny constrains the environmental conditions on the early Earth. The Earth began hot after the moon-forming impact and cooled to the point where liquid water was present in approximately 10 million years. Subsequently, a few asteroid impacts may have briefly heated surface environments, leaving only thermophile survivors in kilometer-deep rocks. A warm 500 K, 100 bar CO(2) greenhouse persisted until subducted oceanic crust sequestered CO(2) into the mantle. It is not known whether the Earth's surface lingered in a approximately 70 degrees C thermophile environment well into the Archaean or cooled to clement or freezing conditions in the Hadean. Recently discovered approximately 4.3 Ga rocks near Hudson Bay may have formed during the warm greenhouse. Alkalic rocks in India indicate carbonate subduction by 4.26 Ga. The presence of 3.8 Ga black shales in Greenland indicates that S-based photosynthesis had evolved in the oceans and likely Fe-based photosynthesis and efficient chemical weathering on land. Overall, mantle derived rocks, especially kimberlites and similar CO(2)-rich magmas, preserve evidence of subducted upper oceanic crust, ancient surface environments, and biosignatures of photosynthesis.},
613 | author = {Sleep, Norman H},
614 | doi = {10.1101/cshperspect.a002527},
615 | file = {:Users/damascus/Documents/Mendeley\_papers/Sleep - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
616 | issn = {1943-0264},
617 | journal = {Cold Spring Harbor perspectives in biology},
618 | keywords = {Earth (Planet),Environment,Evolution, Planetary,Geologic Sediments,Geologic Sediments: chemistry,Minerals,Minerals: chemistry},
619 | month = jun,
620 | number = {6},
621 | pages = {a002527},
622 | pmid = {20516134},
623 | title = {{The Hadean-Archaean environment.}},
624 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2869525\&tool=pmcentrez\&rendertype=abstract},
625 | volume = {2},
626 | year = {2010}
627 | }
628 | @article{Strulson2012,
629 | abstract = {RNA performs important cellular functions in contemporary life forms. Its ability to act both as a catalyst and a storage mechanism for genetic information is also an important part of the RNA world hypothesis. Compartmentalization within modern cells allows the local concentration of RNA to be controlled and it has been suggested that this was also important in early life forms. Here, we mimic intracellular compartmentalization and macromolecular crowding by partitioning RNA in an aqueous two-phase system (ATPS). We show that the concentration of RNA is enriched by up to 3,000-fold in the dextran-rich phase of a polyethylene glycol/dextran ATPS and demonstrate that this can lead to approximately 70-fold increase in the rate of ribozyme cleavage. This rate enhancement can be tuned by the relative volumes of the two phases in the ATPS. Our observations support the importance of compartmentalization in the attainment of function in an RNA World as well as in modern biology.},
630 | author = {Strulson, Christopher a and Molden, Rosalynn C and Keating, Christine D and Bevilacqua, Philip C},
631 | doi = {10.1038/nchem.1466},
632 | file = {:Users/damascus/Documents/Mendeley\_papers/Strulson et al. - 2012 - Nature chemistry.pdf:pdf},
633 | issn = {1755-4349},
634 | journal = {Nature chemistry},
635 | keywords = {Biocatalysis,Biomimetics,Catalytic,Catalytic: metabolism,Cell Compartmentation,Dextrans,Dextrans: chemistry,Intracellular Space,Intracellular Space: metabolism,Polyethylene Glycols,Polyethylene Glycols: chemistry,RNA,Water,Water: chemistry},
636 | month = nov,
637 | number = {11},
638 | pages = {941--6},
639 | pmid = {23089870},
640 | publisher = {Nature Publishing Group},
641 | title = {{RNA catalysis through compartmentalization.}},
642 | url = {http://www.ncbi.nlm.nih.gov/pubmed/23089870},
643 | volume = {4},
644 | year = {2012}
645 | }
646 | @article{Sutherland2010,
647 | abstract = {It has normally been assumed that ribonucleotides arose on the early Earth through a process in which ribose, the nucleobases, and phosphate became conjoined. However, under plausible prebiotic conditions, condensation of nucleobases with ribose to give beta-ribonucleosides is fraught with difficulties. The reaction with purine nucleobases is low-yielding and the reaction with the canonical pyrimidine nucleobases does not work at all. The reasons for these difficulties are considered and an alternative high-yielding synthesis of pyrimidine nucleotides is discussed. Fitting the new synthesis to a plausible geochemical scenario is a remaining challenge but the prospects appear good. Discovery of an improved method of purine synthesis, and an efficient means of stringing activated nucleotides together, will provide underpinning support to those theories that posit a central role for RNA in the origins of life.},
648 | author = {Sutherland, John D},
649 | doi = {10.1101/cshperspect.a005439},
650 | file = {:Users/damascus/Documents/Mendeley\_papers/Sutherland - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
651 | issn = {1943-0264},
652 | journal = {Cold Spring Harbor perspectives in biology},
653 | keywords = {Biogenesis,Evolution, Chemical,Ribonucleotides,Ribonucleotides: biosynthesis,Ribonucleotides: chemistry,Ribonucleotides: genetics},
654 | month = apr,
655 | number = {4},
656 | pages = {a005439},
657 | pmid = {20452951},
658 | title = {{Ribonucleotides.}},
659 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2845210\&tool=pmcentrez\&rendertype=abstract},
660 | volume = {2},
661 | year = {2010}
662 | }
663 | @article{Walker2014,
664 | author = {Walker, Sara},
665 | doi = {10.3390/info5030424},
666 | file = {:Users/damascus/Documents/Mendeley\_papers/Walker - 2014 - Information.pdf:pdf},
667 | issn = {2078-2489},
668 | journal = {Information},
669 | keywords = {"origin of life,emergence,origin of life,top-down causation,top-down causation"},
670 | month = jul,
671 | number = {3},
672 | pages = {424--439},
673 | title = {{Top-Down Causation and the Rise of Information in the Emergence of Life}},
674 | url = {http://www.mdpi.com/2078-2489/5/3/424/},
675 | volume = {5},
676 | year = {2014}
677 | }
678 | @article{Xayaphoummine2007,
679 | abstract = {RNA co-transcriptional folding has long been suspected to play an active role in helping proper native folding of ribozymes and structured regulatory motifs in mRNA untranslated regions (UTRs). Yet, the underlying mechanisms and coding requirements for efficient co-transcriptional folding remain unclear. Traditional approaches have intrinsic limitations to dissect RNA folding paths, as they rely on sequence mutations or circular permutations that typically perturb both RNA folding paths and equilibrium structures. Here, we show that exploiting sequence symmetries instead of mutations can circumvent this problem by essentially decoupling folding paths from equilibrium structures of designed RNA sequences. Using bistable RNA switches with symmetrical helices conserved under sequence reversal, we demonstrate experimentally that native and transiently formed helices can guide efficient co-transcriptional folding into either long-lived structure of these RNA switches. Their folding path is controlled by the order of helix nucleations and subsequent exchanges during transcription, and may also be redirected by transient antisense interactions. Hence, transient intra- and inter-molecular base pair interactions can effectively regulate the folding of nascent RNA molecules into different native structures, provided limited coding requirements, as discussed from an information theory perspective. This constitutive coupling between RNA synthesis and RNA folding regulation may have enabled the early emergence of autonomous RNA-based regulation networks.},
680 | author = {Xayaphoummine, a and Viasnoff, V and Harlepp, S and Isambert, H},
681 | doi = {10.1093/nar/gkl1036},
682 | file = {:Users/damascus/Documents/Mendeley\_papers/Xayaphoummine et al. - 2007 - Nucleic acids research.pdf:pdf},
683 | issn = {1362-4962},
684 | journal = {Nucleic acids research},
685 | keywords = {Base Sequence,Molecular Sequence Data,Nucleic Acid Conformation,RNA,RNA: chemistry,Regulatory Sequences, Ribonucleic Acid,Sequence Alignment,Transcription, Genetic},
686 | month = jan,
687 | number = {2},
688 | pages = {614--22},
689 | pmid = {17178750},
690 | title = {{Encoding folding paths of RNA switches.}},
691 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1802593\&tool=pmcentrez\&rendertype=abstract},
692 | volume = {35},
693 | year = {2007}
694 | }
695 | @article{Yu2012,
696 | abstract = {The pre-RNA world hypothesis postulates that RNA was preceded in the evolution of life by a simpler genetic material, but it is not known if such systems can fold into structures capable of eliciting a desired function. Presumably, whatever chemistry gave rise to RNA would have produced other RNA analogues, some of which may have preceded or competed directly with RNA. Threose nucleic acid (TNA), a potentially natural derivative of RNA, has received considerable interest as a possible RNA progenitor due to its chemical simplicity and ability to exchange genetic information with itself and RNA. Here, we have applied Darwinian evolution methods to evolve, in vitro, a TNA receptor that binds to an arbitrary target with high affinity and specificity. This demonstration shows that TNA has the ability to fold into tertiary structures with sophisticated chemical functions, which provides evidence that TNA could have served as an ancestral genetic system during an early stage of life.},
697 | author = {Yu, Hanyang and Zhang, Su and Chaput, John C},
698 | doi = {10.1038/nchem.1241},
699 | file = {:Users/damascus/Documents/Mendeley\_papers/Yu, Zhang, Chaput - 2012 - Nature chemistry.pdf:pdf},
700 | issn = {1755-4349},
701 | journal = {Nature chemistry},
702 | keywords = {Animals,Aptamers, Nucleotide,Aptamers, Nucleotide: chemistry,Aptamers, Nucleotide: genetics,Base Sequence,Cattle,DNA,DNA: chemistry,DNA: genetics,DNA: metabolism,Evolution, Molecular,Gene Library,Humans,Models, Genetic,Molecular Sequence Data,Protein Binding,RNA,RNA: chemistry,RNA: genetics,RNA: metabolism,Serum Albumin, Bovine,Serum Albumin, Bovine: chemistry,Serum Albumin, Bovine: genetics,Streptavidin,Streptavidin: chemistry,Streptavidin: genetics,Tetroses,Tetroses: chemistry,Tetroses: genetics,Thrombin,Thrombin: chemistry,Thrombin: genetics},
703 | month = mar,
704 | number = {3},
705 | pages = {183--7},
706 | pmid = {22354431},
707 | publisher = {Nature Publishing Group},
708 | title = {{Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor.}},
709 | url = {http://www.ncbi.nlm.nih.gov/pubmed/22354431},
710 | volume = {4},
711 | year = {2012}
712 | }
713 | @article{Zahnle2010,
714 | abstract = {Earth is the one known example of an inhabited planet and to current knowledge the likeliest site of the one known origin of life. Here we discuss the origin of Earth's atmosphere and ocean and some of the environmental conditions of the early Earth as they may relate to the origin of life. A key punctuating event in the narrative is the Moon-forming impact, partly because it made Earth for a short time absolutely uninhabitable, and partly because it sets the boundary conditions for Earth's subsequent evolution. If life began on Earth, as opposed to having migrated here, it would have done so after the Moon-forming impact. What took place before the Moon formed determined the bulk properties of the Earth and probably determined the overall compositions and sizes of its atmospheres and oceans. What took place afterward animated these materials. One interesting consequence of the Moon-forming impact is that the mantle is devolatized, so that the volatiles subsequently fell out in a kind of condensation sequence. This ensures that the volatiles were concentrated toward the surface so that, for example, the oceans were likely salty from the start. We also point out that an atmosphere generated by impact degassing would tend to have a composition reflective of the impacting bodies (rather than the mantle), and these are almost without exception strongly reducing and volatile-rich. A consequence is that, although CO- or methane-rich atmospheres are not necessarily stable as steady states, they are quite likely to have existed as long-lived transients, many times. With CO comes abundant chemical energy in a metastable package, and with methane comes hydrogen cyanide and ammonia as important albeit less abundant gases.},
715 | author = {Zahnle, Kevin and Schaefer, Laura and Fegley, Bruce},
716 | doi = {10.1101/cshperspect.a004895},
717 | file = {:Users/damascus/Documents/Mendeley\_papers/Zahnle, Schaefer, Fegley - 2010 - Cold Spring Harbor perspectives in biology.pdf:pdf},
718 | issn = {1943-0264},
719 | journal = {Cold Spring Harbor perspectives in biology},
720 | keywords = {Atmosphere,Atmosphere: chemistry,Biogenesis,Earth (Planet),Moon},
721 | month = oct,
722 | number = {10},
723 | pages = {a004895},
724 | pmid = {20573713},
725 | title = {{Earth's earliest atmospheres.}},
726 | url = {http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2944365\&tool=pmcentrez\&rendertype=abstract},
727 | volume = {2},
728 | year = {2010}
729 | }
730 | @article{Zeravcic2014,
731 | author = {Zeravcic, Z and Brenner, M P},
732 | doi = {10.1073/pnas.1313601111},
733 | file = {:Users/damascus/Desktop/toRead/Brenner.pdf:pdf},
734 | journal = {Proceedings of the National Academy of Sciences},
735 | month = jan,
736 | number = {13},
737 | pages = {1--6},
738 | title = {{Self-replicating colloidal clusters}},
739 | url = {http://www.pnas.org/cgi/doi/10.1073/pnas.1313601111},
740 | volume = {2013},
741 | year = {2014}
742 | }
743 | @misc{,
744 | file = {:Users/damascus/Documents/Mendeley\_papers/Unknown - Unknown - Unknown(3).pdf:pdf},
745 | title = {{Isambert\_1.pdf}}
746 | }
747 | @article{,
748 | doi = {10.1038/nchem.1647},
749 | file = {:Users/damascus/Documents/Mendeley\_papers/Unknown - 2013 - Nature chemistry.pdf:pdf},
750 | issn = {1755-4349},
751 | journal = {Nature chemistry},
752 | month = may,
753 | number = {5},
754 | pages = {349},
755 | pmid = {23609072},
756 | title = {{The ascent of molecules.}},
757 | url = {http://www.ncbi.nlm.nih.gov/pubmed/23609072},
758 | volume = {5},
759 | year = {2013}
760 | }
761 |
--------------------------------------------------------------------------------
/examples/kw.p:
--------------------------------------------------------------------------------
1 | (lp1
2 | S'DIALOGUE'
3 | p2
4 | aS'RECALCULATION'
5 | p3
6 | aS'SPHEROCYLINDERS'
7 | p4
8 | aS'SIMPLE'
9 | p5
10 | aS'NON-EQUILIBRIUM'
11 | p6
12 | aS'PREDICTION'
13 | p7
14 | aS'STORED'
15 | p8
16 | aS'PACKED'
17 | p9
18 | aS'STABILIZED'
19 | p10
20 | aS'FORCE'
21 | p11
22 | aS'QUASICRYSTALS'
23 | p12
24 | aS'FLUID'
25 | p13
26 | aS'COLLOIDS'
27 | p14
28 | aS'ENGINEERING'
29 | p15
30 | aS'PRINTING'
31 | p16
32 | aS'BEHAVIOR'
33 | p17
34 | aS'TRANSITIONS'
35 | p18
36 | aS'EXTENDED'
37 | p19
38 | aS'DISORDERED'
39 | p20
40 | aS'EQUALITIES'
41 | p21
42 | aS'OBSERVABLES'
43 | p22
44 | aS'PROCEDURE'
45 | p23
46 | aS'DNA-COATED'
47 | p24
48 | aS'DIFFERENCES'
49 | p25
50 | aS'PRIMARY'
51 | p26
52 | aS'WATER'
53 | p27
54 | aS'Y-EXPANSION'
55 | p28
56 | aS'BRICKS'
57 | p29
58 | aS'LAW'
59 | p30
60 | aS'STRUCTURES'
61 | p31
62 | aS'VIEW'
63 | p32
64 | aS'SHORT-RANGED'
65 | p33
66 | aS'BEN'
67 | p34
68 | aS'TWO-DIMENSIONAL'
69 | p35
70 | aS'LARGE-SCALE'
71 | p36
72 | aS'ELLIPSOID-'
73 | p37
74 | aS'RESULTS'
75 | p38
76 | aS'VOLUME'
77 | p39
78 | aS'NANOPARTICLE'
79 | p40
80 | aS'NANOSCALE'
81 | p41
82 | aS'LATTICES'
83 | p42
84 | aS'GEOMETRIC'
85 | p43
86 | aS'PHASES'
87 | p44
88 | aS'DENSEST'
89 | p45
90 | aS'GEOMETRIES'
91 | p46
92 | aS'THERMODYNAMICS'
93 | p47
94 | aS'ANALYTIC'
95 | p48
96 | aS'PACKING'
97 | p49
98 | aS'COMMON'
99 | p50
100 | aS'CLUSTERS'
101 | p51
102 | aS'DELAUNAY'
103 | p52
104 | aS'BLOCKS'
105 | p53
106 | aS'ASYMMETRIC'
107 | p54
108 | aS'DRIVEN'
109 | p55
110 | aS'SYSTEMS'
111 | p56
112 | aS'ARBITRARY'
113 | p57
114 | aS'BRICK'
115 | p58
116 | aS'HOMOLOGY-'
117 | p59
118 | aS'REGARDED'
119 | p60
120 | aS'FORMATION'
121 | p61
122 | aS'LEVITATED'
123 | p62
124 | aS'DEMONSTRATION'
125 | p63
126 | aS'DETAILED'
127 | p64
128 | aS'POURING'
129 | p65
130 | aS'COLLOIDAL'
131 | p66
132 | aS'DEMYSTIFIED'
133 | p67
134 | aS'QUASICRYSTALLINE'
135 | p68
136 | aS'ARCHIMEDEAN'
137 | p69
138 | aS'PATHWAYS'
139 | p70
140 | aS'SELF-REPLICATION'
141 | p71
142 | aS'NUMERICAL'
143 | p72
144 | aS'ONE-COMPONENT'
145 | p73
146 | aS'SHAPES'
147 | p74
148 | aS'ATTRACTION'
149 | p75
150 | aS'STEADY-STATE'
151 | p76
152 | aS'FCC'
153 | p77
154 | aS'JARZYNSKI'
155 | p78
156 | aS'DIBLOCK'
157 | p79
158 | aS'STATE'
159 | p80
160 | aS'NANOCOMPOSITES'
161 | p81
162 | aS'INTRA-'
163 | p82
164 | aS'UNDESIRED'
165 | p83
166 | aS'DENSITY'
167 | p84
168 | aS'SOLID'
169 | p85
170 | aS'PLAIN'
171 | p86
172 | aS'ELEMENT'
173 | p87
174 | aS'VORONOI'
175 | p88
176 | aS'WULFF'
177 | p89
178 | aS'VARIATIONAL'
179 | p90
180 | aS'IRREVERSIBLE'
181 | p91
182 | aS'RETRIEVAL'
183 | p92
184 | aS'TWINNED'
185 | p93
186 | aS'PARTICLES'
187 | p94
188 | aS'NONLINEARITY'
189 | p95
190 | aS'ENERGIES'
191 | p96
192 | aS'ASSEMBLIES'
193 | p97
194 | aS'PROPENSITY'
195 | p98
196 | aS'SHORT'
197 | p99
198 | aS'WAVES'
199 | p100
200 | aS'MAKING'
201 | p101
202 | aS'ROUGH'
203 | p102
204 | aS'INTRINSIC'
205 | p103
206 | aS'STRUCTURE'
207 | p104
208 | aS'ASYMPTOTICS'
209 | p105
210 | aS'RELATIONSHIP'
211 | p106
212 | aS'ELASTICITY'
213 | p107
214 | aS'FORMS'
215 | p108
216 | aS'CAN'
217 | p109
218 | aS'PLURIPOTENT'
219 | p110
220 | aS'FEEDBACK'
221 | p111
222 | aS'CONDENSED'
223 | p112
224 | aS'TETRAVALENT'
225 | p113
226 | aS'PATCHINESS'
227 | p114
228 | aS'POLYHEDRA'
229 | p115
230 | aS'FLOWS'
231 | p116
232 | aS'GRANULAR'
233 | p117
234 | aS'COPOLYMER'
235 | p118
236 | aS'VIRUS'
237 | p119
238 | aS'LANDSCAPES'
239 | p120
240 | aS'STEADY'
241 | p121
242 | aS'INTERACTION'
243 | p122
244 | aS'TASK-EVOKED'
245 | p123
246 | aS'SELF-ASSEMBLED'
247 | p124
248 | aS'HEAT'
249 | p125
250 | aS'NONEQUILIBRIUM'
251 | p126
252 | aS'DIGITAL'
253 | p127
254 | aS'HOUCHES'
255 | p128
256 | aS'GRAPHICAL'
257 | p129
258 | aS'GRADIENT'
259 | p130
260 | aS'RECONFIGURABLE'
261 | p131
262 | aS'SIMULATION'
263 | p132
264 | aS'SHAPE-BASED'
265 | p133
266 | aS'LINKERS'
267 | p134
268 | aS'ALGORITHMS'
269 | p135
270 | aS'EXACT'
271 | p136
272 | aS'BLEBBING'
273 | p137
274 | aS'MORPHOLOGICAL'
275 | p138
276 | aS'FOLDING'
277 | p139
278 | aS'FAREWELL'
279 | p140
280 | aS'COMPETITION'
281 | p141
282 | aS'NANOPLATES'
283 | p142
284 | aS'EQUALITY'
285 | p143
286 | aS'DISCRETE'
287 | p144
288 | aS'ANISOTROPY'
289 | p145
290 | aS'INFLUENCE'
291 | p146
292 | aS'FLUIDS'
293 | p147
294 | aS'IGUSA'
295 | p148
296 | aS'DNA-COLLOIDAL'
297 | p149
298 | aS'CARLO'
299 | p150
300 | aS'ASSEMBLY'
301 | p151
302 | aS'ENERGY'
303 | p152
304 | aS'HIGH'
305 | p153
306 | aS'POLYTETRAHEDRAL'
307 | p154
308 | aS'OIL'
309 | p155
310 | aS'LEARNING'
311 | p156
312 | aS'POTENTIALS'
313 | p157
314 | aS'ASSEMBLE'
315 | p158
316 | aS'ROBUST'
317 | p159
318 | aS'MASTER-EQUATION'
319 | p160
320 | aS'SOFT'
321 | p161
322 | aS'EFFECTS'
323 | p162
324 | aS'VALIDATION'
325 | p163
326 | aS'FRACTAL'
327 | p164
328 | aS'ALLOYS'
329 | p165
330 | aS'THEOREMS'
331 | p166
332 | aS'BASED'
333 | p167
334 | aS'KAMIEN'
335 | p168
336 | aS'SYMMETRY'
337 | p169
338 | aS'PRINCIPLES'
339 | p170
340 | aS'REFLECTIONS'
341 | p171
342 | aS'SURFACES'
343 | p172
344 | aS'MOUNTAIN'
345 | p173
346 | aS'MADE'
347 | p174
348 | aS'IRREVERSIBILITY'
349 | p175
350 | aS'EXACTLY'
351 | p176
352 | aS'FLOW'
353 | p177
354 | aS'VERIFICATION'
355 | p178
356 | aS'PROGRAMMABLE'
357 | p179
358 | aS'APPLIED'
359 | p180
360 | aS'DIRECTED'
361 | p181
362 | aS'OBSERVATION'
363 | p182
364 | aS'RELATIONS'
365 | p183
366 | aS'ADAPTATION'
367 | p184
368 | aS'ANISOTROPIC'
369 | p185
370 | aS'MOBILE'
371 | p186
372 | aS'GEOMETRICAL'
373 | p187
374 | aS'SENSORY'
375 | p188
376 | aS'THROUGH'
377 | p189
378 | aS'TIME'
379 | p190
380 | aS'SELF-ASSEMBLY'
381 | p191
382 | aS'INFORMATION-'
383 | p192
384 | aS'CONTINUOUS'
385 | p193
386 | aS'MATERIALS'
387 | p194
388 | aS'ATOMIC'
389 | p195
390 | aS'AL-ZN-CR'
391 | p196
392 | aS'SMALL'
393 | p197
394 | aS'CHEMISTRY'
395 | p198
396 | aS'MECHANICS'
397 | p199
398 | aS'MUTUAL'
399 | p200
400 | aS'LIQUID'
401 | p201
402 | aS'ORDERING'
403 | p202
404 | aS'WORK'
405 | p203
406 | aS'BRAIN'
407 | p204
408 | aS'HOOMD'
409 | p205
410 | aS'HAYSTACK'
411 | p206
412 | aS'DENSE'
413 | p207
414 | aS'VALENCY'
415 | p208
416 | aS'MODELS'
417 | p209
418 | aS'MAXWELLS'
419 | p210
420 | aS'CDTE'
421 | p211
422 | aS'REVISITED'
423 | p212
424 | aS'VALENCE'
425 | p213
426 | aS'BLUE'
427 | p214
428 | aS'DERIVING'
429 | p215
430 | aS'PARTICLE'
431 | p216
432 | aS'MATTER'
433 | p217
434 | aS'SURVEY'
435 | p218
436 | aS'KEY'
437 | p219
438 | aS'DISTRIBUTION'
439 | p220
440 | aS'QUASICRYSTAL'
441 | p221
442 | aS'IMPROVE'
443 | p222
444 | aS'PROCESSES'
445 | p223
446 | aS'NETWORK'
447 | p224
448 | aS'HAMILTONIAN'
449 | p225
450 | aS'NUCLEAR'
451 | p226
452 | aS'TETRAHEDRA'
453 | p227
454 | aS'HELIX'
455 | p228
456 | aS'BASIC'
457 | p229
458 | aS'PATH'
459 | p230
460 | aS'RECOVERY'
461 | p231
462 | aS'DIRECTIONAL'
463 | p232
464 | aS'COMPLEXITY'
465 | p233
466 | aS'UNDERSTANDING'
467 | p234
468 | aS'HEALTH'
469 | p235
470 | aS'VIOLATIONS'
471 | p236
472 | aS'FROTHS'
473 | p237
474 | aS'SUSPENSIONS'
475 | p238
476 | aS'PLATONIC'
477 | p239
478 | aS'ENSEMBLES'
479 | p240
480 | aS'LAMIN'
481 | p241
482 | aS'CROOKS'
483 | p242
484 | aS'MEMORY'
485 | p243
486 | aS'YIELD'
487 | p244
488 | aS'DELIVERY'
489 | p245
490 | aS'THEIR'
491 | p246
492 | aS'RELATION'
493 | p247
494 | aS'SYNTHESIS'
495 | p248
496 | aS'MEMBRANES'
497 | p249
498 | aS'ROLE'
499 | p250
500 | aS'TEST'
501 | p251
502 | aS'STOCKHOLM'
503 | p252
504 | aS'PREDICTIVE'
505 | p253
506 | aS'-ENERGY'
507 | p254
508 | aS'GENERALIZED'
509 | p255
510 | aS'THEOREM'
511 | p256
512 | aS'DEFINITIONS'
513 | p257
514 | aS'EQUILIBRIUM'
515 | p258
516 | aS'LIMITS'
517 | p259
518 | aS'NEURAL'
519 | p260
520 | aS'DEMON'
521 | p261
522 | aS'GENERAL'
523 | p262
524 | aS'GALLAVOTTI-COHEN'
525 | p263
526 | aS'PUMPS'
527 | p264
528 | aS'PROTEIN'
529 | p265
530 | aS'METHOD'
531 | p266
532 | aS'QUASICRYSTAL-ENHANCED'
533 | p267
534 | aS'ENTROPICALLY'
535 | p268
536 | aS'MAGNETIC'
537 | p269
538 | aS'PROCESSING'
539 | p270
540 | aS'INTERACTING'
541 | p271
542 | aS'PARALLEL'
543 | p272
544 | aS'DEVIATION'
545 | p273
546 | aS'COMPUTATIONAL'
547 | p274
548 | aS'KIRIGAMI'
549 | p275
550 | aS'PATTERNS'
551 | p276
552 | aS'TOUGHEN'
553 | p277
554 | aS'EXPERIMENTAL'
555 | p278
556 | aS'TRANSITION'
557 | p279
558 | aS'DIP-PEN'
559 | p280
560 | aS'LARGE'
561 | p281
562 | aS'COMPLEX'
563 | p282
564 | aS'DESIGN'
565 | p283
566 | aS'DYNAMICS'
567 | p284
568 | aS'CURRENTS'
569 | p285
570 | aS'INEQUALITIES'
571 | p286
572 | aS'FREE-FLOATING'
573 | p287
574 | aS'JARZYNSKIS'
575 | p288
576 | aS'REPLICATION'
577 | p289
578 | aS'APPROACH'
579 | p290
580 | aS'LANDSCAPE'
581 | p291
582 | aS'FRANKLIN'
583 | p292
584 | aS'SMECTIC'
585 | p293
586 | aS'THEORY'
587 | p294
588 | aS'TIME-DEPENDENT'
589 | p295
590 | aS'DIPOLAR'
591 | p296
592 | aS'CRYSTALS'
593 | p297
594 | aS'RNA'
595 | p298
596 | aS'PHASE-SPACE'
597 | p299
598 | aS'ENTROPY'
599 | p300
600 | aS'BIOLOGICAL'
601 | p301
602 | aS'FINITE'
603 | p302
604 | aS'PATCHES'
605 | p303
606 | aS'LANGEVIN'
607 | p304
608 | aS'HARD'
609 | p305
610 | aS'SAMPLING'
611 | p306
612 | aS'SPHERES'
613 | p307
614 | aS'ACCELERATED'
615 | p308
616 | aS'MODELING'
617 | p309
618 | aS'PHYSICS'
619 | p310
620 | aS'CDSE'
621 | p311
622 | aS'SUPERLATTICES'
623 | p312
624 | aS'ENTROPIC'
625 | p313
626 | aS'ALTERED'
627 | p314
628 | aS'INCLUSIVE'
629 | p315
630 | aS'AUTOMATA'
631 | p316
632 | aS'ATTRACTIVE'
633 | p317
634 | aS'CRYSTALLIZATION'
635 | p318
636 | aS'PHASE'
637 | p319
638 | aS'STOCHASTIC'
639 | p320
640 | aS'EXPRESSION'
641 | p321
642 | aS'CONSIDERATIONS'
643 | p322
644 | aS'SCALES'
645 | p323
646 | aS'TARGETED'
647 | p324
648 | aS'LOCK'
649 | p325
650 | aS'FREE'
651 | p326
652 | aS'INTER-FREQUENCY'
653 | p327
654 | aS'DENDRITES'
655 | p328
656 | aS'SECOND'
657 | p329
658 | aS'FINDING'
659 | p330
660 | aS'CR'
661 | p331
662 | aS'RESTING'
663 | p332
664 | aS'CONVERSION'
665 | p333
666 | aS'DIVERSITY'
667 | p334
668 | aS'THERMODYNAMIC'
669 | p335
670 | aS'EQUATION'
671 | p336
672 | aS'PERSISTENT'
673 | p337
674 | aS'PERSPECTIVE'
675 | p338
676 | aS'STATISTICAL'
677 | p339
678 | aS'RANDALL'
679 | p340
680 | aS'TYPE'
681 | p341
682 | aS'DOWNS'
683 | p342
684 | aS'ELEMENTS'
685 | p343
686 | aS'NONADIABATIC'
687 | p344
688 | aS'APPLICATIONS'
689 | p345
690 | aS'KIRIGAMI'
691 | p346
692 | aS'CONTROL'
693 | p347
694 | aS'HISTORY'
695 | p348
696 | aS'CALCULATION'
697 | p349
698 | aS'CREATE'
699 | p350
700 | aS'PROTEINS'
701 | p351
702 | aS'NUCLEATION'
703 | p352
704 | aS'SCHIZOPHRENIA'
705 | p353
706 | aS'DIVERSE'
707 | p354
708 | aS'DISSIPATION'
709 | p355
710 | aS'ELLIPSOIDS'
711 | p356
712 | aS'PATCHY'
713 | p357
714 | aS'DYNAMICAL'
715 | p358
716 | aS'SASAS'
717 | p359
718 | aS'I'
719 | aS'II'
720 | p360
721 | aS'SPHERE'
722 | p361
723 | aS'RELAXATION'
724 | p362
725 | aS'ALLOY'
726 | p363
727 | aS'CONNECTIVITY'
728 | p364
729 | aS'VIOLATION'
730 | p365
731 | aS'FLUCTUATION'
732 | p366
733 | aS'CONTINUES'
734 | p367
735 | aS'MIXTURES'
736 | p368
737 | aS'MESHWORKS'
738 | p369
739 | aS'HATANO'
740 | p370
741 | aS'DARK'
742 | p371
743 | aS'NANO-OBJECTS'
744 | p372
745 | aS'PACKINGS'
746 | p373
747 | aS'ORDER'
748 | p374
749 | aS'REFRIGERATOR'
750 | p375
751 | aS'LOGICALLY'
752 | p376
753 | aS'MAXWELL'
754 | p377
755 | aS'DERIVED'
756 | p378
757 | aS'SPECIFIC'
758 | p379
759 | aS'HUMAN'
760 | p380
761 | aS'MECHANICAL'
762 | p381
763 | aS'MACROSCOPIC'
764 | p382
765 | aS'D'
766 | aS'NEEDLE'
767 | p383
768 | aS'MONTE'
769 | p384
770 | aS'CRYSTAL'
771 | p385
772 | aS'ONSAGERS'
773 | p386
774 | aS'HETEROGENEOUS'
775 | p387
776 | aS'BALANCE'
777 | p388
778 | aS'REDUCED'
779 | p389
780 | aS'BINARY'
781 | p390
782 | aS'HOUSEKEEPING'
783 | p391
784 | aS'LATTICE'
785 | p392
786 | aS'MAGNETS'
787 | p393
788 | aS'SCHNAKENBERG'
789 | p394
790 | aS'SOLVABLE'
791 | p395
792 | aS'STILLED'
793 | p396
794 | aS'ICOSAHEDRAL'
795 | p397
796 | aS'MICROSCOPIC'
797 | p398
798 | aS'ALLOWING'
799 | p399
800 | aS'-REVOLUTION'
801 | p400
802 | aS'THREE-DIMENSIONAL'
803 | p401
804 | aS'PASSES'
805 | p402
806 | aS'INFORMAL'
807 | p403
808 | aS'ELECTRONIC'
809 | p404
810 | aS'DYNAMIC'
811 | p405
812 | aS'MULTIFARIOUS'
813 | p406
814 | aS'PRODUCTION'
815 | p407
816 | aS'RATIONAL'
817 | p408
818 | aS'INFORMATION'
819 | p409
820 | aS'FREE-ENERGY'
821 | p410
822 | aS'FUNCTIONAL'
823 | p411
824 | aS'SHEETS'
825 | p412
826 | aS'USAGE'
827 | p413
828 | aS'SOFT-MATTER'
829 | p414
830 | aS'MOLECULAR'
831 | p415
832 | aS'UPS'
833 | p416
834 | aS'SIZE'
835 | p417
836 | aS'MANY-ELECTRON'
837 | p418
838 | aS'YB-CD'
839 | p419
840 | aS'ALGORITHMIC'
841 | p420
842 | aS'GEOMETRY'
843 | p421
844 | aS'COMPUTING'
845 | p422
846 | aS'ADELIC'
847 | p423
848 | aS'DENSELY'
849 | p424
850 | aS'ARCHITECTURES'
851 | p425
852 | aS'SENSE'
853 | p426
854 | aS'LITHOGRAPHY'
855 | p427
856 | aS'FAMILIES'
857 | p428
858 | aS'ELASTIC'
859 | p429
860 | aS'INTERACTIONS'
861 | p430
862 | aS'ROUTE'
863 | p431
864 | aS'MODEL'
865 | p432
866 | aS'MACHINES'
867 | p433
868 | aS'NANOLITHOGRAPHY'
869 | p434
870 | aS'DIAGRAM'
871 | p435
872 | aS'SHAPE'
873 | p436
874 | aS'MASTER'
875 | p437
876 | aS'DEFECTS'
877 | p438
878 | aS'PRELIMINARY'
879 | p439
880 | aS'KINETIC'
881 | p440
882 | aS'CRYSTALLINE'
883 | p441
884 | aS'LAWS'
885 | p442
886 | aS'PATTERNED'
887 | p443
888 | aS'LIFE'
889 | p444
890 | aS'CUT'
891 | p445
892 | aS'DNA'
893 | p446
894 | aS'SCIENTIFIC'
895 | p447
896 | aS'ROPES'
897 | p448
898 | aS'SETS'
899 | p449
900 | aS'ALLOTROPE'
901 | p450
902 | aS'APPROXIMANTS'
903 | p451
904 | aS'QUANTUM'
905 | p452
906 | aS'COSTS'
907 | p453
908 | aS'SELF-ASSEMBLING'
909 | p454
910 | aS'NETWORKS'
911 | p455
912 | aS'STRUCTURAL'
913 | p456
914 | aS'DISSIPATIVE'
915 | p457
916 | aS'INTEGRAL'
917 | p458
918 | aS'MEASUREMENTS'
919 | p459
920 | aS'SELF-REPLICATING'
921 | p460
922 | aS'TIME-OSCILLATORY'
923 | p461
924 | aS'LES'
925 | p462
926 | aS'ARCHITECTURE'
927 | p463
928 | aS'RECONFIGURATION'
929 | p464
930 | aS'USING'
931 | p465
932 | aS'ISOTROPIC'
933 | p466
934 | aS'GOLD'
935 | p467
936 | aS'MOLECULE'
937 | p468
938 | aS'MULTICOMPONENT'
939 | p469
940 | aS'EVIDENCE'
941 | p470
942 | aS'NANOPARTICLES'
943 | p471
944 | aS'NANOCRYSTALS'
945 | p472
946 | aS'NUCLEATED'
947 | p473
948 | aS'RULES'
949 | p474
950 | aS'NONHARMONIC'
951 | p475
952 | aS'PLAY'
953 | p476
954 | aS'CUBE'
955 | p477
956 | aS'THROWING'
957 | p478
958 | aS'AL'
959 | p479
960 | aS'POTENTIAL'
961 | p480
962 | aS'INTEGRALS'
963 | p481
964 | aS'LOCAL'
965 | p482
966 | aS'DNA-MEDIATED'
967 | p483
968 | aS'BUILDING'
969 | p484
970 | aS'SELF'
971 | p485
972 | aS'SYSTEM'
973 | p486
974 | aS'PERIODIC'
975 | p487
976 | aS'SOAP'
977 | p488
978 | aS'RNAS'
979 | p489
980 | aS'ENVIRONMENT'
981 | p490
982 | aS'EARLIEST'
983 | p491
984 | aS'PRECURSORS'
985 | p492
986 | aS'CHEMOSELECTIVE'
987 | p493
988 | aS'IMPACTS'
989 | p494
990 | aS'DUPLEX'
991 | p495
992 | aS'MANY'
993 | p496
994 | aS'OLIGONUCLEOTIDE'
995 | p497
996 | aS'PATHS'
997 | p498
998 | aS'RISE'
999 | p499
1000 | aS'CATALYSIS'
1001 | p500
1002 | aS'BIOLOGY'
1003 | p501
1004 | aS'PARTIAL'
1005 | p502
1006 | aS'SHORT-RANGE'
1007 | p503
1008 | aS'MAY'
1009 | p504
1010 | aS'ASKING'
1011 | p505
1012 | aS'CIRCLE'
1013 | p506
1014 | aS'EVOLUTION'
1015 | p507
1016 | aS'HELP'
1017 | p508
1018 | aS'SUGARS'
1019 | p509
1020 | aS'SWITCHES'
1021 | p510
1022 | aS'CHARACTERIZE'
1023 | p511
1024 | aS'COMPOSITION'
1025 | p512
1026 | aS'DAVEY'
1027 | p513
1028 | aS'EXHIBIT'
1029 | p514
1030 | aS'CHEMICAL'
1031 | p515
1032 | aS'MIMICRY'
1033 | p516
1034 | aS'GLYCINE-CONTAINING'
1035 | p517
1036 | aS'MICRODROPLETS'
1037 | p518
1038 | aS'COMBINED'
1039 | p519
1040 | aS'HISTORICAL'
1041 | p520
1042 | aS'STARTING'
1043 | p521
1044 | aS'MINERAL'
1045 | p522
1046 | aS'ALTERNATIVE'
1047 | p523
1048 | aS'EARTHS'
1049 | p524
1050 | aS'FACILITATED'
1051 | p525
1052 | aS'TOP-'
1053 | p526
1054 | aS'PROVIDES'
1055 | p527
1056 | aS'SYNTHETIC'
1057 | p528
1058 | aS'ENZYME-FREE'
1059 | p529
1060 | aS'METEORITES'
1061 | p530
1062 | aS'ACID'
1063 | p531
1064 | aS'PREBIOTIC'
1065 | p532
1066 | aS'LINKED'
1067 | p533
1068 | aS'ETIOLOGY'
1069 | p534
1070 | aS'EARLY'
1071 | p535
1072 | aS'PROTOCELL'
1073 | p536
1074 | aS'INFORMATION-THEORETIC'
1075 | p537
1076 | aS'ORGANIC'
1077 | p538
1078 | aS'ACIDS'
1079 | p539
1080 | aS'NON-HERITABLE'
1081 | p540
1082 | aS'CLOSING'
1083 | p541
1084 | aS'ALL'
1085 | p542
1086 | aS'COMPLEXITIES'
1087 | p543
1088 | aS'CAUSATION'
1089 | p544
1090 | aS'PLAUSIBLE'
1091 | p545
1092 | aS'COMPLEXES'
1093 | p546
1094 | aS'MARS'
1095 | p547
1096 | aS'NUCLEOBASES'
1097 | p548
1098 | aS'HOMOCHIRALITY'
1099 | p549
1100 | aS'STEP'
1101 | p550
1102 | aS'COPYING'
1103 | p551
1104 | aS'GEOCHEMICAL'
1105 | p552
1106 | aS'HADEAN-ARCHAEAN'
1107 | p553
1108 | aS'BIOENERGETICS'
1109 | p554
1110 | aS'POLYMERS'
1111 | p555
1112 | aS'PSEUDOROTATION'
1113 | p556
1114 | aS'CELL'
1115 | p557
1116 | aS'SELF-REPRODUCTION'
1117 | p558
1118 | aS'LIFES'
1119 | p559
1120 | aS'CELLULAR'
1121 | p560
1122 | aS'PHOTOREDOX'
1123 | p561
1124 | aS'PROGENITOR'
1125 | p562
1126 | aS'HOMOCHIRAL'
1127 | p563
1128 | aS'-THREOFURANOSYL-3RIGHTARROW'
1129 | p564
1130 | aS'PEPTIDE-NUCLEOTIDE'
1131 | p565
1132 | aS'NUCLEIC'
1133 | p566
1134 | aS'INTERVIEW'
1135 | p567
1136 | aS'VESICLES'
1137 | p568
1138 | aS'RIBONUCLEOTIDES'
1139 | p569
1140 | aS'CHIRAL'
1141 | p570
1142 | aS'ENCAPSULATED'
1143 | p571
1144 | aS'DARWINIAN'
1145 | p572
1146 | aS'MEMBRANE-FREE'
1147 | p573
1148 | aS'ATMOSPHERES'
1149 | p574
1150 | aS'COMETS'
1151 | p575
1152 | aS'PROVIDE'
1153 | p576
1154 | aS'SUPRAMOLECULAR'
1155 | p577
1156 | aS'CELLS'
1157 | p578
1158 | aS'TEMPLATED'
1159 | p579
1160 | aS'INSIGHTS'
1161 | p580
1162 | aS'LIVING'
1163 | p581
1164 | aS'TREE'
1165 | p582
1166 | aS'PROTOCELLS'
1167 | p583
1168 | aS'EMERGENCE'
1169 | p584
1170 | aS'ACETYLATION'
1171 | p585
1172 | aS'SUPPORT'
1173 | p586
1174 | aS'GIANT'
1175 | p587
1176 | aS'FOUR'
1177 | p588
1178 | aS'ENANTIOPURE'
1179 | p589
1180 | aS'DISCOVERY'
1181 | p590
1182 | aS'PLANETARY'
1183 | p591
1184 | aS'BIOCHEMISTRY'
1185 | p592
1186 | aS'RIBOREGULATION'
1187 | p593
1188 | aS'RESEARCH'
1189 | p594
1190 | aS'LINKAGES'
1191 | p595
1192 | aS'OLIGORIBONUCLEOTIDE'
1193 | p596
1194 | aS'CARBONACEOUS'
1195 | p597
1196 | aS'LIGATION'
1197 | p598
1198 | aS'PHYLOGENY--HOW'
1199 | p599
1200 | aS'CIRCUITS'
1201 | p600
1202 | aS'PAIR-POTENTIALS'
1203 | p601
1204 | aS'NEARLY'
1205 | p602
1206 | aS'AMPLIFICATION'
1207 | p603
1208 | aS'ORIGINS'
1209 | p604
1210 | aS'DEEP'
1211 | p605
1212 | aS'RACEMIC'
1213 | p606
1214 | aS'STEPHEN'
1215 | p607
1216 | aS'HETEROGENEITY'
1217 | p608
1218 | aS'CONSTRUCTING'
1219 | p609
1220 | aS'PRIMITIVE'
1221 | p610
1222 | aS'ISAMBERT\\1PDF'
1223 | p611
1224 | aS'2'
1225 | aS'EARTH'
1226 | p612
1227 | aS'ORIGIN'
1228 | p613
1229 | aS'EVOLUTIONARY'
1230 | p614
1231 | aS'2-5'
1232 | p615
1233 | aS'PREBIOTICALLY'
1234 | p616
1235 | aS'NOVO'
1236 | p617
1237 | aS'UNSTUCK'
1238 | p618
1239 | aS'SOLUTION'
1240 | p619
1241 | aS'AUTOMATED'
1242 | p620
1243 | aS'REPLICATING'
1244 | p621
1245 | aS'TRANSPORT'
1246 | p622
1247 | aS'ENCODING'
1248 | p623
1249 | aS'EFFICIENT'
1250 | p624
1251 | aS'DE'
1252 | p625
1253 | aS'IMMOBILIZED'
1254 | p626
1255 | aS'COMPARTMENTALIZATION'
1256 | p627
1257 | aS'ASCENT'
1258 | p628
1259 | aS'MINIMAL'
1260 | p629
1261 | aS'RIBOSOME'
1262 | p630
1263 | aS'QUESTIONS'
1264 | p631
1265 | aS'MEMBRANE'
1266 | p632
1267 | aS'ORIGINAL'
1268 | p633
1269 | aS'STORY'
1270 | p634
1271 | aS'BACKBONE'
1272 | p635
1273 | aS'GENETIC'
1274 | p636
1275 | aS'TNA'
1276 | p637
1277 | aS'BIOMOLECULES'
1278 | p638
1279 | aS'MOLECULES'
1280 | p639
1281 | aS'TOLERANCE'
1282 | p640
1283 | aS'DEVELOPMENT'
1284 | p641
1285 | aS'3-5'
1286 | p642
1287 | aS'ALPHA'
1288 | p643
1289 | aS'RATIO'
1290 | p644
1291 | aS'APPROACHAPPLICATION'
1292 | p645
1293 | aS'AGI'
1294 | p646
1295 | aS'AGE'
1296 | p647
1297 | aS'SIX'
1298 | p648
1299 | aS'TWINNING'
1300 | p649
1301 | aS'SCISSION'
1302 | p650
1303 | aS'GROWING'
1304 | p651
1305 | aS'SIO'
1306 | p652
1307 | aS'OCTAHEDRAL'
1308 | p653
1309 | aS'DEEPER'
1310 | p654
1311 | aS'INTERFACIAL'
1312 | p655
1313 | aS'ATTRACTIONS'
1314 | p656
1315 | aS'PLATELETS'
1316 | p657
1317 | aS'LUBRICATION'
1318 | p658
1319 | aS'REPRESENTATION'
1320 | p659
1321 | aS'TRANSLATION'
1322 | p660
1323 | aS'BODY'
1324 | p661
1325 | aS'NATURE'
1326 | p662
1327 | aS'STABLE'
1328 | p663
1329 | aS'TWISTED'
1330 | p664
1331 | aS'PASSIVE'
1332 | p665
1333 | aS'ORIENTATION-ORDERED'
1334 | p666
1335 | aS'GOOGLE'
1336 | p667
1337 | aS'SHARP'
1338 | p668
1339 | aS'HARD-SPHERES'
1340 | p669
1341 | aS'MOBILITY'
1342 | p670
1343 | aS'TWO-STEP'
1344 | p671
1345 | aS'LIGAND'
1346 | p672
1347 | aS'METALLIC'
1348 | p673
1349 | aS'STABILITY'
1350 | p674
1351 | aS'CHARGE'
1352 | p675
1353 | aS'EXPERIMENT'
1354 | p676
1355 | aS'NEAT'
1356 | p677
1357 | aS'MICROSWIMMERS'
1358 | p678
1359 | aS'PROPERTY'
1360 | p679
1361 | aS'PACK'
1362 | p680
1363 | aS'TEXTURES'
1364 | p681
1365 | aS'USED'
1366 | p682
1367 | aS'ENHANCED'
1368 | p683
1369 | aS'COMPILED'
1370 | p684
1371 | aS'EMERGENT'
1372 | p685
1373 | aS'NANOCRYSTAL'
1374 | p686
1375 | aS'CARBON'
1376 | p687
1377 | aS'STRATEGY'
1378 | p688
1379 | aS'WAVELENGTHS'
1380 | p689
1381 | aS'15TH-'
1382 | p690
1383 | aS'NON-THERMAL'
1384 | p691
1385 | aS'BREAKING'
1386 | p692
1387 | aS'CONSERVATIVE'
1388 | p693
1389 | aS'BEHAVIOUR'
1390 | p694
1391 | aS'SELECTIVE'
1392 | p695
1393 | aS'PHONONIC'
1394 | p696
1395 | aS'SUPPRESSION'
1396 | p697
1397 | aS'NANOCUBE'
1398 | p698
1399 | aS'QUASI-CRYSTAL'
1400 | p699
1401 | aS'CHINAS'
1402 | p700
1403 | aS'GPU-ACCELERATED'
1404 | p701
1405 | aS'K'
1406 | aS'SCALABLE'
1407 | p702
1408 | aS'CHAPERONS'
1409 | p703
1410 | aS'STRATEGIES'
1411 | p704
1412 | aS'ACTIVE'
1413 | p705
1414 | aS'DOPING'
1415 | p706
1416 | aS'JAYNES'
1417 | p707
1418 | aS'DIPOLE'
1419 | p708
1420 | aS'APPROXIMATION'
1421 | p709
1422 | aS'MEDIATED'
1423 | p710
1424 | aS'ANOMALIES'
1425 | p711
1426 | aS'MEMORIES'
1427 | p712
1428 | aS'NOT'
1429 | p713
1430 | aS'QUANTITATIVE'
1431 | p714
1432 | aS'BOUNDARY'
1433 | p715
1434 | aS'CYLINDER-FORMING'
1435 | p716
1436 | aS'DIMERIC'
1437 | p717
1438 | aS'FUSION'
1439 | p718
1440 | aS'WEAKENING'
1441 | p719
1442 | aS'PHOTORESPONSIVE'
1443 | p720
1444 | aS'MOSAIC'
1445 | p721
1446 | aS'COMPRESSION'
1447 | p722
1448 | aS'POLYHEDRAL'
1449 | p723
1450 | aS'CAPACITY'
1451 | p724
1452 | aS'METHODS'
1453 | p725
1454 | aS'SHAPED'
1455 | p726
1456 | aS'THERMALLY'
1457 | p727
1458 | aS'THERMAL'
1459 | p728
1460 | aS'ASPHERICAL'
1461 | p729
1462 | aS'LIQUIDS'
1463 | p730
1464 | aS'THIN-FILM'
1465 | p731
1466 | aS'6'
1467 | aS'NONUNIVERSAL'
1468 | p732
1469 | aS'ORGANIZATION'
1470 | p733
1471 | aS'WHY'
1472 | p734
1473 | aS'DIFFERENT'
1474 | p735
1475 | aS'DETERMINING'
1476 | p736
1477 | aS'APPROXIMANT'
1478 | p737
1479 | aS'STIFFNESS'
1480 | p738
1481 | aS'WAALS'
1482 | p739
1483 | aS'UNITS'
1484 | p740
1485 | aS'SPIN'
1486 | p741
1487 | aS'GLASSES'
1488 | p742
1489 | aS'TETHERED'
1490 | p743
1491 | aS'VORTICITY'
1492 | p744
1493 | aS'MARBLES'
1494 | p745
1495 | aS'UNIVERSAL'
1496 | p746
1497 | aS'ACTIVATED'
1498 | p747
1499 | aS'NANOTUBES'
1500 | p748
1501 | aS'MULTI-COMPONENT'
1502 | p749
1503 | aS'20TH'
1504 | p750
1505 | aS'SUSPENDED'
1506 | p751
1507 | aS'CLOAKING'
1508 | p752
1509 | aS'ENSEMBLE'
1510 | p753
1511 | aS'FLOATING-POINT'
1512 | p754
1513 | aS'CERAMIC'
1514 | p755
1515 | aS'CONTROLLED'
1516 | p756
1517 | aS'ELECTRIC'
1518 | p757
1519 | aS'HARD-CORE'
1520 | p758
1521 | aS'CLOT'
1522 | p759
1523 | aS'SINGLE'
1524 | p760
1525 | aS'PRESTRUCTURED'
1526 | p761
1527 | aS'PREDICTED'
1528 | p762
1529 | aS'PHOSPHONIC'
1530 | p763
1531 | aS'PEANUTS'
1532 | p764
1533 | aS'RODS'
1534 | p765
1535 | aS'FRANK-KASPER'
1536 | p766
1537 | aS'SANTOS'
1538 | p767
1539 | aS'LIPID'
1540 | p768
1541 | aS'EMBEDDED'
1542 | p769
1543 | aS'RESTRICTED'
1544 | p770
1545 | aS'ROADMAP'
1546 | p771
1547 | aS'HYDRODYNAMIC'
1548 | p772
1549 | aS'RIBBONS'
1550 | p773
1551 | aS'THREADED'
1552 | p774
1553 | aS'FORM'
1554 | p775
1555 | aS'ELASTOMERIC'
1556 | p776
1557 | aS'STUDY'
1558 | p777
1559 | aS'TOPOLOGICAL'
1560 | p778
1561 | aS'POLYDISPERSE'
1562 | p779
1563 | aS'POLYION'
1564 | p780
1565 | aS'COATINGS'
1566 | p781
1567 | aS'HYDROPHOBIC'
1568 | p782
1569 | aS'TEMPERATURE-SUPPLE'
1570 | p783
1571 | aS'M24L48'
1572 | p784
1573 | aS'OCTAGONAL'
1574 | p785
1575 | aS'WALLS'
1576 | p786
1577 | aS'PURCELLPDF'
1578 | p787
1579 | aS'CONCURRENCY'
1580 | p788
1581 | aS'SWARMING'
1582 | p789
1583 | aS'CONTINUOUS-FLOW'
1584 | p790
1585 | aS'PLANAR'
1586 | p791
1587 | aS'RAPID'
1588 | p792
1589 | aS'MULTIPLE'
1590 | p793
1591 | aS'GOLD-SILVER'
1592 | p794
1593 | aS'MONTHLY'
1594 | p795
1595 | aS'CHALLENGES'
1596 | p796
1597 | aS'CONVEX'
1598 | p797
1599 | aS'AGENTS'
1600 | p798
1601 | aS'ALTHOUGH'
1602 | p799
1603 | aS'MULTIPLY'
1604 | p800
1605 | aS'LINE'
1606 | p801
1607 | aS'HOLONOMIC'
1608 | p802
1609 | aS'BANDGAPS'
1610 | p803
1611 | aS'HEAVY'
1612 | p804
1613 | aS'MONOPOLES'
1614 | p805
1615 | aS'HARD-PARTICLE'
1616 | p806
1617 | aS'ENTROPY-DRIVEN'
1618 | p807
1619 | aS'POLARIZATION'
1620 | p808
1621 | aS'SHAPE-CONTROLLED'
1622 | p809
1623 | aS'CONDITIONS'
1624 | p810
1625 | aS'TRANSFORMATION'
1626 | p811
1627 | aS'GILBERTPDF'
1628 | p812
1629 | aS'AREAL'
1630 | p813
1631 | aS'FREEZING'
1632 | p814
1633 | aS'PROPERTIES'
1634 | p815
1635 | aS'TAPESTRY'
1636 | p816
1637 | aS'ADSORBENT'
1638 | p817
1639 | aS'POLYMERIC'
1640 | p818
1641 | aS'PLANEWAVE'
1642 | p819
1643 | aS'FILLS'
1644 | p820
1645 | aS'IMPLICATIONS'
1646 | p821
1647 | aS'ADSORPTION'
1648 | p822
1649 | aS'CLUSTER'
1650 | p823
1651 | aS'BONDING'
1652 | p824
1653 | aS'APERIODIC'
1654 | p825
1655 | aS'AVOIDING'
1656 | p826
1657 | aS'BARRIERS'
1658 | p827
1659 | aS'CIRCULAR'
1660 | p828
1661 | aS'CROWDING'
1662 | p829
1663 | aS'BUCKLED'
1664 | p830
1665 | aS'ALL-DIELECTRIC'
1666 | p831
1667 | aS'TORQUES'
1668 | p832
1669 | aS'ASSEMBLYDISASSEMBLY'
1670 | p833
1671 | aS'SOME'
1672 | p834
1673 | aS'BASES'
1674 | p835
1675 | aS'CLIMATE'
1676 | p836
1677 | aS'TURBULENCE'
1678 | p837
1679 | aS'AMORPHOUS'
1680 | p838
1681 | aS'SEVERAL'
1682 | p839
1683 | aS'INTERSTITIALS'
1684 | p840
1685 | aS'CRYSTALLIZING'
1686 | p841
1687 | aS'CONTAINING'
1688 | p842
1689 | aS'CHAIN'
1690 | p843
1691 | aS'MODELLING'
1692 | p844
1693 | aS'DENDRIMER'
1694 | p845
1695 | aS'CRYSTAL-CRYSTAL'
1696 | p846
1697 | aS'MEASUREMENT'
1698 | p847
1699 | aS'PHYSICAL'
1700 | p848
1701 | aS'FOCAL'
1702 | p849
1703 | aS'BRANCHED'
1704 | p850
1705 | aS'ENFORCED'
1706 | p851
1707 | aS'TEMPERATURE'
1708 | p852
1709 | aS'MEDIA'
1710 | p853
1711 | aS'ERROR-FREE'
1712 | p854
1713 | aS'SEEDS'
1714 | p855
1715 | aS'FRUSTRATION'
1716 | p856
1717 | aS'CUSTOMIZING'
1718 | p857
1719 | aS'ET'
1720 | p858
1721 | aS'TILING'
1722 | p859
1723 | aS'DNA-BONDED'
1724 | p860
1725 | aS'CORE-SHELL'
1726 | p861
1727 | aS'UNCONSCIOUS'
1728 | p862
1729 | aS'OSCILLATING'
1730 | p863
1731 | aS'AGGREGATION'
1732 | p864
1733 | aS'NANOPEANUTS'
1734 | p865
1735 | aS'BODY-CENTERED'
1736 | p866
1737 | aS'GLASS'
1738 | p867
1739 | aS'VORTEX'
1740 | p868
1741 | aS'SULFIDE'
1742 | p869
1743 | aS'FRAGMENTATION'
1744 | p870
1745 | aS'DESCRIBED'
1746 | p871
1747 | aS'MONODISPERSED'
1748 | p872
1749 | aS'LATTICE'
1750 | p873
1751 | aS'MODEL-DRIVEN'
1752 | p874
1753 | aS'FORMED'
1754 | p875
1755 | aS'RECIPE'
1756 | p876
1757 | aS'STICKY'
1758 | p877
1759 | aS'SYMMETRIC'
1760 | p878
1761 | aS'FOLD'
1762 | p879
1763 | aS'EXTRAPOLATION'
1764 | p880
1765 | aS'MICRO-'
1766 | p881
1767 | aS'DATASET'
1768 | p882
1769 | aS'CRITCHLEY'
1770 | p883
1771 | aS'FORMER'
1772 | p884
1773 | aS'TECHNIQUES'
1774 | p885
1775 | aS'ORIENTATION'
1776 | p886
1777 | aS'AREA'
1778 | p887
1779 | aS'ARRAYS'
1780 | p888
1781 | aS'NETS'
1782 | p889
1783 | aS'BACTERIUM'
1784 | p890
1785 | aS'NANOMECHANICAL'
1786 | p891
1787 | aS'COMING'
1788 | p892
1789 | aS'THEORIES'
1790 | p893
1791 | aS'SWITCH'
1792 | p894
1793 | aS'MOTILITY'
1794 | p895
1795 | aS'COMMUNITIES'
1796 | p896
1797 | aS'ZN-SC'
1798 | p897
1799 | aS'IMPLEMENTED'
1800 | p898
1801 | aS'BITS'
1802 | p899
1803 | aS'STRESS-GEOMETRY'
1804 | p900
1805 | aS'DNA-ORIGAMI'
1806 | p901
1807 | aS'CURVED'
1808 | p902
1809 | aS'DIFFERENCE'
1810 | p903
1811 | aS'NEGLECTING'
1812 | p904
1813 | aS'RHEOLOGY'
1814 | p905
1815 | aS'CHANNEL'
1816 | p906
1817 | aS'XU'
1818 | p907
1819 | aS'ROUGHNESS-CONTROLLED'
1820 | p908
1821 | aS'ACCELERATING'
1822 | p909
1823 | aS'SUPERCONDUCTING'
1824 | p910
1825 | aS'INORGANIC'
1826 | p911
1827 | aS'NANOROD'
1828 | p912
1829 | aS'HYDRATED'
1830 | p913
1831 | aS'LITHIUM-ION'
1832 | p914
1833 | aS'BLISTER'
1834 | p915
1835 | aS'VISUALIZATION'
1836 | p916
1837 | aS'EFFECTIVE'
1838 | p917
1839 | aS'MESOSTRUCTURES'
1840 | p918
1841 | aS'CRYSTAL-NUCLEATION'
1842 | p919
1843 | aS'POLYAMORPHISM'
1844 | p920
1845 | aS'8-FOLD'
1846 | p921
1847 | aS'SUPERCOMPUTING'
1848 | p922
1849 | aS'NONSPHERICAL'
1850 | p923
1851 | aS'NANOTECHNOLOGY'
1852 | p924
1853 | aS'ARISING'
1854 | p925
1855 | aS'EMULSION'
1856 | p926
1857 | aS'HYBRIDIZATION'
1858 | p927
1859 | aS'IMPACT'
1860 | p928
1861 | aS'UNIVERSITY'
1862 | p929
1863 | aS'-'
1864 | aS'METASTABLE'
1865 | p930
1866 | aS'COMPONENTS'
1867 | p931
1868 | aS'LOOPS'
1869 | p932
1870 | aS'OPERATING'
1871 | p933
1872 | aS'INTERMOLECULAR'
1873 | p934
1874 | aS'CLASS'
1875 | p935
1876 | aS'CLOUD'
1877 | p936
1878 | aS'TETRATIC'
1879 | p937
1880 | aS'ACCELERATION'
1881 | p938
1882 | aS'VERY'
1883 | p939
1884 | aS'ACTIVATION'
1885 | p940
1886 | aS'POLYSACCHARIDES'
1887 | p941
1888 | aS'CONIC'
1889 | p942
1890 | aS'NANOPRISMS'
1891 | p943
1892 | aS'ASYNCHRONOUS'
1893 | p944
1894 | aS'MATHEMATICS'
1895 | p945
1896 | aS'TWEEZERS'
1897 | p946
1898 | aS'GROUND'
1899 | p947
1900 | aS'DICE'
1901 | p948
1902 | aS'NANORODS'
1903 | p949
1904 | aS'DISLOCATION'
1905 | p950
1906 | aS'REFRACTION'
1907 | p951
1908 | aS'OCTAHEDRA'
1909 | p952
1910 | aS'BALLERINA'
1911 | p953
1912 | aS'DEFECT'
1913 | p954
1914 | aS'TAILORING'
1915 | p955
1916 | aS'OBJECT'
1917 | p956
1918 | aS'PHOTONIC'
1919 | p957
1920 | aS'PATCH'
1921 | p958
1922 | aS'RANGES'
1923 | p959
1924 | aS'SWARM'
1925 | p960
1926 | aS'OXIDE'
1927 | p961
1928 | aS'ASPECT'
1929 | p962
1930 | aS'CLIMBING'
1931 | p963
1932 | aS'COUNTERIONS'
1933 | p964
1934 | aS'HARD-SPHERE'
1935 | p965
1936 | aS'CITRATE'
1937 | p966
1938 | aS'ABSOLUTE'
1939 | p967
1940 | aS'LENNARD-JONES'
1941 | p968
1942 | aS'TURBID'
1943 | p969
1944 | aS'GYROID'
1945 | p970
1946 | aS'FACETED'
1947 | p971
1948 | aS'NEAREST-NEIGHBOR'
1949 | p972
1950 | aS'LIVE'
1951 | p973
1952 | aS'HOMOGENEOUS'
1953 | p974
1954 | aS'CONTROLLABLE'
1955 | p975
1956 | aS'UNIVERSALITY'
1957 | p976
1958 | aS'ZERO-TEMPERATURE'
1959 | p977
1960 | aS'FAVOR'
1961 | p978
1962 | aS'DESIGNER'
1963 | p979
1964 | aS'PICKERING'
1965 | p980
1966 | aS'HELIUM'
1967 | p981
1968 | aS'DIAMOND-STRUCTURED'
1969 | p982
1970 | aS'CONSTITUTE'
1971 | p983
1972 | aS'COMMENTS'
1973 | p984
1974 | aS'FREQUENCY'
1975 | p985
1976 | aS'THIN'
1977 | p986
1978 | aS'SEQUENCES'
1979 | p987
1980 | aS'CONSTRUCTAL'
1981 | p988
1982 | aS'CAPTURE'
1983 | p989
1984 | aS'GROUP'
1985 | p990
1986 | aS'POLYMERSOMES'
1987 | p991
1988 | aS'MECHANISMS'
1989 | p992
1990 | aS'VIBRATIONAL'
1991 | p993
1992 | aS'GRAIN'
1993 | p994
1994 | aS'MICROSCALE'
1995 | p995
1996 | aS'ANTENNAS'
1997 | p996
1998 | aS'REPEATING'
1999 | p997
2000 | aS'FORCING'
2001 | p998
2002 | aS'CONDUCTIVITY'
2003 | p999
2004 | aS'PATTERN'
2005 | p1000
2006 | aS'SELF-PROPELLING'
2007 | p1001
2008 | aS'BOWL-SHAPED'
2009 | p1002
2010 | aS'FIELDS'
2011 | p1003
2012 | aS'\\LDOTS'
2013 | p1004
2014 | aS'POSSIBILITY'
2015 | p1005
2016 | aS'PLAYING'
2017 | p1006
2018 | aS'QUASIREGULAR'
2019 | p1007
2020 | aS'-PACKING'
2021 | p1008
2022 | aS'SIMULTANEOUS'
2023 | p1009
2024 | aS'REPULSIVE'
2025 | p1010
2026 | aS'COOPERATIVE'
2027 | p1011
2028 | aS'SELECTIVELY'
2029 | p1012
2030 | aS'HEALS'
2031 | p1013
2032 | aS'WATERS'
2033 | p1014
2034 | aS'SUBSTRATES'
2035 | p1015
2036 | aS'GEL'
2037 | p1016
2038 | aS'HONEYCOMB'
2039 | p1017
2040 | aS'CRITICAL'
2041 | p1018
2042 | aS'C'
2043 | aS'DOUBLE-WELL'
2044 | p1019
2045 | aS'SYNTHESES'
2046 | p1020
2047 | aS'DRIVES'
2048 | p1021
2049 | aS'ATOMISTIC'
2050 | p1022
2051 | aS'HYPERSWARMING'
2052 | p1023
2053 | aS'EXTERNAL'
2054 | p1024
2055 | aS'LITHIUM'
2056 | p1025
2057 | aS'NANOSPHERES'
2058 | p1026
2059 | aS'SPHERICAL'
2060 | p1027
2061 | aS'VISUALIZED'
2062 | p1028
2063 | aS'OPPORTUNITIES'
2064 | p1029
2065 | aS'SPIN-TRANSFER'
2066 | p1030
2067 | aS'CROSSOVER'
2068 | p1031
2069 | aS'PURPOSE'
2070 | p1032
2071 | aS'PROBING'
2072 | p1033
2073 | aS'HIGH-PRESSURE'
2074 | p1034
2075 | aS'STRONGLY'
2076 | p1035
2077 | aS'NON-SPHERICAL'
2078 | p1036
2079 | aS'SUPPORTED'
2080 | p1037
2081 | aS'BROWNIAN'
2082 | p1038
2083 | aS'GRAFTED'
2084 | p1039
2085 | aS'DICHROISM'
2086 | p1040
2087 | aS'BULK'
2088 | p1041
2089 | aS'OMNIDIRECTONAL'
2090 | p1042
2091 | aS'EXOTICSUPERLATTICES'
2092 | p1043
2093 | aS'BERNAL'
2094 | p1044
2095 | aS'ORDERED'
2096 | p1045
2097 | aS'ANTENNA'
2098 | p1046
2099 | aS'ULTRALONG'
2100 | p1047
2101 | aS'PODSIADLO'
2102 | p1048
2103 | aS'CHLORIDE'
2104 | p1049
2105 | aS'ALGORITHM'
2106 | p1050
2107 | aS'TENSION'
2108 | p1051
2109 | aS'TIGHTLY'
2110 | p1052
2111 | aS'N'
2112 | aS'SUPERPARAMAGNETIC'
2113 | p1053
2114 | aS'AVAILABLE'
2115 | p1054
2116 | aS'INDUCTION'
2117 | p1055
2118 | aS'RETRACTION'
2119 | p1056
2120 | aS'OPTICALLY'
2121 | p1057
2122 | aS'STATES'
2123 | p1058
2124 | aS'GELS'
2125 | p1059
2126 | aS'SIZE-CONTROLLED'
2127 | p1060
2128 | aS'OCTAHEDRON'
2129 | p1061
2130 | aS'QUASIPERIODIC'
2131 | p1062
2132 | aS'ENTHALPIC'
2133 | p1063
2134 | aS'CHANNELS'
2135 | p1064
2136 | aS'REJECTION-FREE'
2137 | p1065
2138 | aS'NANOPHOTONICS'
2139 | p1066
2140 | aS'ELLIPTIC'
2141 | p1067
2142 | aS'SHAPE-ANISOTROPIC'
2143 | p1068
2144 | aS'PARADOX'
2145 | p1069
2146 | aS'ZINC'
2147 | p1070
2148 | aS'DIAMOND-'
2149 | p1071
2150 | aS'BISTABILITY'
2151 | p1072
2152 | aS'THERMOPHORETIC'
2153 | p1073
2154 | aS'CULTURAL'
2155 | p1074
2156 | aS'BIOINSPIRED'
2157 | p1075
2158 | aS'ORGANIZING'
2159 | p1076
2160 | aS'NORMAL-STRESS'
2161 | p1077
2162 | aS'\\BETA-MN'
2163 | p1078
2164 | aS'LETTERS'
2165 | p1079
2166 | aS'VERSIONS'
2167 | p1080
2168 | aS'COARSE-GRAINED'
2169 | p1081
2170 | aS'OPPOSITELY'
2171 | p1082
2172 | aS'SEDIMENTATION'
2173 | p1083
2174 | aS'MASSIVELY'
2175 | p1084
2176 | aS'SEGREGATION'
2177 | p1085
2178 | aS'ASSEMBLING'
2179 | p1086
2180 | aS'PARALLELEPIPEDS'
2181 | p1087
2182 | aS'PARALLELIZATION'
2183 | p1088
2184 | aS'WHITE-LIGHT'
2185 | p1089
2186 | aS'EFFECT'
2187 | p1090
2188 | aS'COMPETITION-INDUCED'
2189 | p1091
2190 | aS'SIX-DIMENSIONAL'
2191 | p1092
2192 | aS'SENSING'
2193 | p1093
2194 | aS'SENIOR'
2195 | p1094
2196 | aS'SHEAR'
2197 | p1095
2198 | aS'FACETS'
2199 | p1096
2200 | aS'BRUSHES'
2201 | p1097
2202 | aS'MICROSCOPY'
2203 | p1098
2204 | aS'PAIRING'
2205 | p1099
2206 | aS'GEOMETRICALLY'
2207 | p1100
2208 | aS'PURE'
2209 | p1101
2210 | aS'LONG-TIME'
2211 | p1102
2212 | aS'CORE\\`ASHELL'
2213 | p1103
2214 | aS'RECOGNITION'
2215 | p1104
2216 | aS'SUPPORTING'
2217 | p1105
2218 | aS'NANOARCHITECTURES'
2219 | p1106
2220 | aS'ADAPTATIONS'
2221 | p1107
2222 | aS'GRAVITATIONAL'
2223 | p1108
2224 | aS'THIRD-ORDER'
2225 | p1109
2226 | aS'CHIRALITY'
2227 | p1110
2228 | aS'THREE'
2229 | p1111
2230 | aS'ELECTRON'
2231 | p1112
2232 | aS'AGGREGATION-DISAGGREGATION'
2233 | p1113
2234 | aS'STEPS'
2235 | p1114
2236 | aS'NANO-OPTICS'
2237 | p1115
2238 | aS'SIZE-ASYMMETRICAL'
2239 | p1116
2240 | aS'SELF-FOLDING'
2241 | p1117
2242 | aS'CHARGED'
2243 | p1118
2244 | aS'COMETLIKE'
2245 | p1119
2246 | aS'FLOWER'
2247 | p1120
2248 | aS'DIELECTRICS'
2249 | p1121
2250 | aS'DIMENSIONS'
2251 | p1122
2252 | aS'ENHANCING'
2253 | p1123
2254 | aS'FAN\\1997\\PDF'
2255 | p1124
2256 | aS'CIRCULARLY'
2257 | p1125
2258 | aS'COLLECTIVE'
2259 | p1126
2260 | aS'LINDEMANN'
2261 | p1127
2262 | aS'CORONA'
2263 | p1128
2264 | aS'ION'
2265 | p1129
2266 | aS'DNA-GUIDED'
2267 | p1130
2268 | aS'VOLCANIC'
2269 | p1131
2270 | aS'OVERVIEW'
2271 | p1132
2272 | aS'ORBITS'
2273 | p1133
2274 | aS'NESTED'
2275 | p1134
2276 | aS'GROWTH'
2277 | p1135
2278 | aS'MASSIVE'
2279 | p1136
2280 | aS'WHICH'
2281 | p1137
2282 | aS'MICRORADIAN'
2283 | p1138
2284 | aS'ATTACHMENT'
2285 | p1139
2286 | aS'CRYSTAL-LIQUID'
2287 | p1140
2288 | aS'DIRECTING'
2289 | p1141
2290 | aS'MEASURE'
2291 | p1142
2292 | aS'NON-VOLATILE'
2293 | p1143
2294 | aS'LYOTROPIC'
2295 | p1144
2296 | aS'INTERFACE'
2297 | p1145
2298 | aS'EXPLORATION'
2299 | p1146
2300 | aS'PARTIALLY'
2301 | p1147
2302 | aS'DOMAIN'
2303 | p1148
2304 | aS'POLARIZED'
2305 | p1149
2306 | aS'ANALOGY'
2307 | p1150
2308 | aS'VERTEX'
2309 | p1151
2310 | aS'CLOAK'
2311 | p1152
2312 | aS'REENTRANT'
2313 | p1153
2314 | aS'MANY-BODY'
2315 | p1154
2316 | aS'3-POLYTOPES'
2317 | p1155
2318 | aS'INJAVIS'
2319 | p1156
2320 | aS'PRINCIPLE'
2321 | p1157
2322 | aS'PAIR'
2323 | p1158
2324 | aS'EMPTY'
2325 | p1159
2326 | aS'CATALYTIC'
2327 | p1160
2328 | aS'PLATINUM'
2329 | p1161
2330 | aS'FORBIDDEN'
2331 | p1162
2332 | aS'VARIATIONS'
2333 | p1163
2334 | aS'SCALING'
2335 | p1164
2336 | aS'SUGGESTS'
2337 | p1165
2338 | aS'REGULATION'
2339 | p1166
2340 | aS'MIGRATION'
2341 | p1167
2342 | aS'PSEUDO-SPHERICAL'
2343 | p1168
2344 | aS'CURVATURE-INDUCED'
2345 | p1169
2346 | aS'HIERARCHICAL'
2347 | p1170
2348 | aS'PBS'
2349 | p1171
2350 | aS'HYDRIDING'
2351 | p1172
2352 | aS'CORRELATIONS'
2353 | p1173
2354 | aS'APPLICATION'
2355 | p1174
2356 | aS'SRIVASTAVA'
2357 | p1175
2358 | aS'O'
2359 | aS'CAPS'
2360 | p1176
2361 | aS'DUMBBELLS'
2362 | p1177
2363 | aS'CLATHRATE'
2364 | p1178
2365 | aS'FLUCTUATIONS'
2366 | p1179
2367 | aS'QUANTIFYING'
2368 | p1180
2369 | aS'STEPWISE'
2370 | p1181
2371 | aS'BUTTERFLY'
2372 | p1182
2373 | aS'DISTANCE'
2374 | p1183
2375 | aS'DIAMOND'
2376 | p1184
2377 | aS'MICROCRYSTALS'
2378 | p1185
2379 | aS'POINT'
2380 | p1186
2381 | aS'PRECISION'
2382 | p1187
2383 | aS'EXPANSION'
2384 | p1188
2385 | aS'TETRAHEXAHEDRAL'
2386 | p1189
2387 | aS'REQUISITE'
2388 | p1190
2389 | aS'CHAINS'
2390 | p1191
2391 | aS'IMPERFECTIONS'
2392 | p1192
2393 | aS'FDTD'
2394 | p1193
2395 | aS'ELECTROMAGNETIC'
2396 | p1194
2397 | aS'NANOSPHERE'
2398 | p1195
2399 | aS'ENABLED'
2400 | p1196
2401 | aS'GAME'
2402 | p1197
2403 | aS'RATES'
2404 | p1198
2405 | aS'NEW'
2406 | p1199
2407 | aS'RING'
2408 | p1200
2409 | aS'OPEN'
2410 | p1201
2411 | aS'REVEAL'
2412 | p1202
2413 | aS'FIRST-ORDER'
2414 | p1203
2415 | aS'PROLIFERATION'
2416 | p1204
2417 | aS'MINIMIZING'
2418 | p1205
2419 | aS'OPTIMIZATION'
2420 | p1206
2421 | aS'MARKOV'
2422 | p1207
2423 | aS'MASSIVELY-PARALLEL'
2424 | p1208
2425 | aS'DER'
2426 | p1209
2427 | aS'\\'
2428 | aS'CHEMICALLY'
2429 | p1210
2430 | aS'BROADBAND'
2431 | p1211
2432 | aS'HIGHLY'
2433 | p1212
2434 | aS'DEPLETION'
2435 | p1213
2436 | aS'HARMONY'
2437 | p1214
2438 | aS'TETRAGONAL'
2439 | p1215
2440 | aS'IMPURITIES'
2441 | p1216
2442 | aS'SLAB'
2443 | p1217
2444 | aS'MACROPHAGE'
2445 | p1218
2446 | aS'REACTIONS'
2447 | p1219
2448 | aS'CONCENTRATION-DEPENDENT'
2449 | p1220
2450 | aS'GALLAVOTTI\\\\BACKSLASHTEXTENDASH\\COHEN-TYPE'
2451 | p1221
2452 | aS'PROCESSORS'
2453 | p1222
2454 | aS'TRUNCATED'
2455 | p1223
2456 | aS'VECTOR'
2457 | p1224
2458 | aS'GAMES'
2459 | p1225
2460 | aS'CANONICAL'
2461 | p1226
2462 | aS'PROTEIN-PROTEIN'
2463 | p1227
2464 | aS'3-DIMENSIONAL'
2465 | p1228
2466 | aS'SPACE-FILLING'
2467 | p1229
2468 | aS'SIGNATURE'
2469 | p1230
2470 | aS'TWO'
2471 | p1231
2472 | aS'DIAMOND-LATTICE'
2473 | p1232
2474 | aS'BIOPHOTONIC'
2475 | p1233
2476 | aS'TRPA1'
2477 | p1234
2478 | aS'PATHWAY'
2479 | p1235
2480 | aS'INERTIA'
2481 | p1236
2482 | aS'SOLID-LIQUID'
2483 | p1237
2484 | aS'ILLINOIS'
2485 | p1238
2486 | aS'MICROSECOND'
2487 | p1239
2488 | aS'BLOCK'
2489 | p1240
2490 | aS'SELF-AGGREGATION'
2491 | p1241
2492 | aS'SEEDING'
2493 | p1242
2494 | aS'EXOTIC'
2495 | p1243
2496 | aS'AC'
2497 | p1244
2498 | aS'MULTI-LAYER'
2499 | p1245
2500 | aS'METAL'
2501 | p1246
2502 | aS'DROPLETS'
2503 | p1247
2504 | aS'HOW'
2505 | p1248
2506 | aS'HOT'
2507 | p1249
2508 | aS'SQUARES'
2509 | p1250
2510 | aS'SHEPP--OLKIN'
2511 | p1251
2512 | aS'-PACKED'
2513 | p1252
2514 | aS'COMPLETE'
2515 | p1253
2516 | aS'RIBBONS1'
2517 | p1254
2518 | aS'ELECTRICAL'
2519 | p1255
2520 | aS'HOMOPOLYMER'
2521 | p1256
2522 | aS'CALCULATIONS'
2523 | p1257
2524 | aS'MANUSCRIPTS'
2525 | p1258
2526 | aS'ORIENTATIONS'
2527 | p1259
2528 | aS'FIBRIN'
2529 | p1260
2530 | aS'SCREENING'
2531 | p1261
2532 | aS'GIBBS'
2533 | p1262
2534 | aS'PENROSE-TYPE'
2535 | p1263
2536 | aS'INDUCED'
2537 | p1264
2538 | aS'TUBES'
2539 | p1265
2540 | aS'POLYMER'
2541 | p1266
2542 | aS'ENANTIOSELECTIVE'
2543 | p1267
2544 | aS'IMPROVED'
2545 | p1268
2546 | aS'MICRONANO-STRUCTURED'
2547 | p1269
2548 | aS'NEMATICS'
2549 | p1270
2550 | aS'TOPOLOGICALLY'
2551 | p1271
2552 | aS'DEPARTMENT'
2553 | p1272
2554 | aS'SIZE-DEPENDENT'
2555 | p1273
2556 | aS'CHARACTERIZING'
2557 | p1274
2558 | aS'BUTA-13-DIENE'
2559 | p1275
2560 | aS'VAN'
2561 | p1276
2562 | aS'NANOSHELLS'
2563 | p1277
2564 | aS'CHEMOTACTIC'
2565 | p1278
2566 | aS'SEDIMENTARY'
2567 | p1279
2568 | aS'RANDOM'
2569 | p1280
2570 | aS'P'
2571 | aS'CRITERION'
2572 | p1281
2573 | aS'ISLANDS'
2574 | p1282
2575 | aS'MAGNESIUM-FREE'
2576 | p1283
2577 | aS'CUBIC'
2578 | p1284
2579 | aS'PROCESS'
2580 | p1285
2581 | aS'LIQUID-HEXATIC'
2582 | p1286
2583 | aS'REVIEW'
2584 | p1287
2585 | aS'ENTHALPY'
2586 | p1288
2587 | aS'WILL'
2588 | p1289
2589 | aS'-SITU'
2590 | p1290
2591 | aS'WURTZITE'
2592 | p1291
2593 | aS'COMMUNICATION'
2594 | p1292
2595 | aS'MESOSCALE'
2596 | p1293
2597 | aS'DRIVE'
2598 | p1294
2599 | aS'RINGS'
2600 | p1295
2601 | aS'NESS'
2602 | p1296
2603 | aS'PLASTIC'
2604 | p1297
2605 | aS'JANUS'
2606 | p1298
2607 | aS'SQUARE'
2608 | p1299
2609 | aS'SPIRALS'
2610 | p1300
2611 | aS'SUBTLE'
2612 | p1301
2613 | aS'FILMS'
2614 | p1302
2615 | aS'3D'
2616 | p1303
2617 | aS'RAMAN'
2618 | p1304
2619 | aS'IRREGULAR'
2620 | p1305
2621 | aS'CRITICALITY'
2622 | p1306
2623 | aS'CONFIGURATIONAL'
2624 | p1307
2625 | aS'MODULATED'
2626 | p1308
2627 | aS'FITNESS'
2628 | p1309
2629 | aS'SIMULATIONS'
2630 | p1310
2631 | aS'THREE-PERIODIC'
2632 | p1311
2633 | aS'DENSE-PACKING'
2634 | p1312
2635 | aS'SI-34'
2636 | p1313
2637 | aS'SURFACE-ENHANCED'
2638 | p1314
2639 | aS'NON-BROWNIAN'
2640 | p1315
2641 | aS'MONODISPERSE'
2642 | p1316
2643 | aS'FULLY'
2644 | p1317
2645 | aS'DISLOCATIONS'
2646 | p1318
2647 | aS'UNRESTRICTED'
2648 | p1319
2649 | aS'ONSET'
2650 | p1320
2651 | aS'TWIN'
2652 | p1321
2653 | aS'INDIVIDUAL'
2654 | p1322
2655 | aS'FIVE'
2656 | p1323
2657 | aS'FAVOURS'
2658 | p1324
2659 | aS'PROTRUSIONS'
2660 | p1325
2661 | aS'TECHNOLOGY'
2662 | p1326
2663 | aS'MD'
2664 | p1327
2665 | aS'MC'
2666 | p1328
2667 | aS'TWO-LENGTHSCALE'
2668 | p1329
2669 | aS'DISCONTINUOUS'
2670 | p1330
2671 | aS'FREQUENCIES'
2672 | p1331
2673 | aS'NON-BASE'
2674 | p1332
2675 | aS'POSITIONAL'
2676 | p1333
2677 | aS'BIONANOCOMBINATORICS'
2678 | p1334
2679 | aS'PURSUIT'
2680 | p1335
2681 | aS'SOCIAL'
2682 | p1336
2683 | aS'N-ALKYLIMIDAZOLE'
2684 | p1337
2685 | aS'FABRICATION'
2686 | p1338
2687 | aS'SWIM'
2688 | p1339
2689 | aS'DIMERS'
2690 | p1340
2691 | aS'TRANSFORMATIONS'
2692 | p1341
2693 | aS'COSMOGRAPHICUM'
2694 | p1342
2695 | aS'GLOTZER'
2696 | p1343
2697 | aS'STRAIN'
2698 | p1344
2699 | aS'SPINODAL'
2700 | p1345
2701 | aS'NOVEL'
2702 | p1346
2703 | aS'MOVING'
2704 | p1347
2705 | aS'THESIS'
2706 | p1348
2707 | aS'PERFORMANCE'
2708 | p1349
2709 | aS'DIRECTIONS'
2710 | p1350
2711 | aS'ELECTROSTATIC'
2712 | p1351
2713 | aS'LILLY'
2714 | p1352
2715 | aS'RIGIDITY'
2716 | p1353
2717 | aS'BIFRUSTUM-SHAPED'
2718 | p1354
2719 | aS'16TH-CENTURY'
2720 | p1355
2721 | aS'BRANCHES'
2722 | p1356
2723 | aS'SINGLE-CRYSTALLINE'
2724 | p1357
2725 | aS'SELF-MADE'
2726 | p1358
2727 | aS'NANOSTRUCTURE'
2728 | p1359
2729 | aS'HELICAL'
2730 | p1360
2731 | aS'OBJECTS'
2732 | p1361
2733 | aS'FACET-SPECIFIC'
2734 | p1362
2735 | aS'BIPYRAMIDS'
2736 | p1363
2737 | aS'POLYMER-INDUCED'
2738 | p1364
2739 | aS'SILICA'
2740 | p1365
2741 | aS'ANTINEMATIC'
2742 | p1366
2743 | aS'DIAGRAMS'
2744 | p1367
2745 | aS'BOND'
2746 | p1368
2747 | aS'IRREVERSIBLY'
2748 | p1369
2749 | aS'BIPYRAMID-'
2750 | p1370
2751 | aS'FOCUSSING'
2752 | p1371
2753 | aS'PARTITION'
2754 | p1372
2755 | aS'DEVICES'
2756 | p1373
2757 | aS'MIXTURE'
2758 | p1374
2759 | aS'MAXIMIZING'
2760 | p1375
2761 | aS'PLATINUM-COATED'
2762 | p1376
2763 | aS'ZN-MG-SC'
2764 | p1377
2765 | aS'FORMING'
2766 | p1378
2767 | aS'FREQUENCY-DOMAIN'
2768 | p1379
2769 | aS'BLOGROLL'
2770 | p1380
2771 | aS'INITIATES'
2772 | p1381
2773 | aS'SOLIDS'
2774 | p1382
2775 | aS'CONFINEMENT'
2776 | p1383
2777 | aS'TILINGS'
2778 | p1384
2779 | aS'PUBLICATION'
2780 | p1385
2781 | aS'MATERIAL'
2782 | p1386
2783 | aS'VIRAL'
2784 | p1387
2785 | aS'UNUSUALLY'
2786 | p1388
2787 | aS'BLOCHS'
2788 | p1389
2789 | aS'PROTEIN-FOLDING'
2790 | p1390
2791 | aS'NANOTETRAHEDRA'
2792 | p1391
2793 | aS'SUPRA-BIOMOLECULAR'
2794 | p1392
2795 | aS'TENSOR'
2796 | p1393
2797 | aS'NANOPATTERNED'
2798 | p1394
2799 | aS'CREATED'
2800 | p1395
2801 | aS'ACHIRAL'
2802 | p1396
2803 | aS'SEQUENTIAL'
2804 | p1397
2805 | aS'CONJUGATED'
2806 | p1398
2807 | aS'FOLDINGHOME'
2808 | p1399
2809 | aS'COMPUTATION'
2810 | p1400
2811 | aS'N-ALKANE'
2812 | p1401
2813 | aS'SILVERI'
2814 | p1402
2815 | aS'DIFFUSION'
2816 | p1403
2817 | aS'HOLOGRAPHIC'
2818 | p1404
2819 | aS'PHOTONICS'
2820 | p1405
2821 | aS'SNOWMANLIKE'
2822 | p1406
2823 | aS'SPECTRA'
2824 | p1407
2825 | aS'STI'
2826 | p1408
2827 | aS'BAND'
2828 | p1409
2829 | aS'COMPUTER'
2830 | p1410
2831 | aS'BE'
2832 | p1411
2833 | aS'ROTATION'
2834 | p1412
2835 | aS'OPERATES'
2836 | p1413
2837 | aS'DETACHED'
2838 | p1414
2839 | aS'ELECTRO-OXIDATION'
2840 | p1415
2841 | aS'FRACTIONS'
2842 | p1416
2843 | aS'POLYMORPHISM'
2844 | p1417
2845 | aS'HIERARCHICALLY'
2846 | p1418
2847 | aS'PARAMETERS'
2848 | p1419
2849 | aS'PRESSURE'
2850 | p1420
2851 | aS'POLYDISPERSITY'
2852 | p1421
2853 | aS'SIGNAL'
2854 | p1422
2855 | aS'LONG-RANGE'
2856 | p1423
2857 | aS'TERMS'
2858 | p1424
2859 | aS'EDGE'
2860 | p1425
2861 | aS'HEXAGONAL'
2862 | p1426
2863 | aS'DISORDER'
2864 | p1427
2865 | aS'BRIDGES'
2866 | p1428
2867 | aS'PLATE-'
2868 | p1429
2869 | aS'COMPUTERS'
2870 | p1430
2871 | aS'PYRAMIDAL'
2872 | p1431
2873 | aS'TA97TE60'
2874 | p1432
2875 | aS'CHANGING'
2876 | p1433
2877 | aS'PARALLELISM'
2878 | p1434
2879 | aS'ROUTINE'
2880 | p1435
2881 | aS'OPTIMIZE'
2882 | p1436
2883 | aS'FILM'
2884 | p1437
2885 | aS'FILL'
2886 | p1438
2887 | aS'CAGE-JUMP'
2888 | p1439
2889 | aS'CENTURY'
2890 | p1440
2891 | aS'DETERMINED'
2892 | p1441
2893 | aS'HIGH-THROUGHPUT'
2894 | p1442
2895 | aS'GOALS'
2896 | p1443
2897 | aS'SUN'
2898 | p1444
2899 | aS'ROAD'
2900 | p1445
2901 | aS'EMITTERS'
2902 | p1446
2903 | aS'SI111'
2904 | p1447
2905 | aS'DNA-FUNCTIONALIZED'
2906 | p1448
2907 | aS'FAMILY'
2908 | p1449
2909 | aS'SPHERE-BOUND'
2910 | p1450
2911 | aS'COMBINATORIAL'
2912 | p1451
2913 | aS'MECHANISM'
2914 | p1452
2915 | aS'ROTATOR'
2916 | p1453
2917 | aS'MATCHING'
2918 | p1454
2919 | aS'INTERACTIVE'
2920 | p1455
2921 | aS'LEVITATION'
2922 | p1456
2923 | aS'REDISCOVERING'
2924 | p1457
2925 | aS'BANDGAP'
2926 | p1458
2927 | aS'VARIATION'
2928 | p1459
2929 | aS'HEXATIC'
2930 | p1460
2931 | aS'REGULAR'
2932 | p1461
2933 | aS'FRACTURE'
2934 | p1462
2935 | aS'PLASMONIC'
2936 | p1463
2937 | aS'REDISTRIBUTION'
2938 | p1464
2939 | aS'PALLADIUM'
2940 | p1465
2941 | aS'LOCALIZED'
2942 | p1466
2943 | aS'CONTRACTION'
2944 | p1467
2945 | aS'OPTIMA'
2946 | p1468
2947 | aS'SCALE'
2948 | p1469
2949 | aS'CONSTANT'
2950 | p1470
2951 | aS'SUPERLATTICE'
2952 | p1471
2953 | aS'TETRAHEDRON'
2954 | p1472
2955 | aS'DIFFRACTION'
2956 | p1473
2957 | aS'UNPHYSICAL'
2958 | p1474
2959 | aS'ONE-STEP'
2960 | p1475
2961 | aS'WALKERS'
2962 | p1476
2963 | aS'LIQUID-LIQUID'
2964 | p1477
2965 | aS'ELUCIDATE'
2966 | p1478
2967 | aS'MISFOLDING'
2968 | p1479
2969 | aS'MAGNETITE'
2970 | p1480
2971 | aS'TIIV-HELICATE'
2972 | p1481
2973 | aS'CLOSEST-PACKED'
2974 | p1482
2975 | aS'INHERENT'
2976 | p1483
2977 | aS'WEAVES'
2978 | p1484
2979 | aS'INTERFACES'
2980 | p1485
2981 | aS'X-RAY'
2982 | p1486
2983 | aS'SUPERMATERIALS'
2984 | p1487
2985 | aS'FUNCTION'
2986 | p1488
2987 | aS'G'
2988 | aS'MICRON-SIZED'
2989 | p1489
2990 | aS'MICROGEAR'
2991 | p1490
2992 | aS'PREPARATION'
2993 | p1491
2994 | aS'RANGE'
2995 | p1492
2996 | aS'DISCS'
2997 | p1493
2998 | aS'DEGREES'
2999 | p1494
3000 | aS'PROMISING'
3001 | p1495
3002 | aS'NANOCUBES'
3003 | p1496
3004 | aS'SIMULATING'
3005 | p1497
3006 | aS'NEMATIC'
3007 | p1498
3008 | aS'SELF-ASSEMBLE'
3009 | p1499
3010 | aS'STRANDED'
3011 | p1500
3012 | aS'COMPONENT'
3013 | p1501
3014 | aS'TITLE'
3015 | p1502
3016 | aS'DECAHEDRAL'
3017 | p1503
3018 | aS'NANOMATERIALS'
3019 | p1504
3020 | aS'FORCES'
3021 | p1505
3022 | aS'MONATOMIC'
3023 | p1506
3024 | aS'SUSPENSION'
3025 | p1507
3026 | aS'SENSORS'
3027 | p1508
3028 | aS'PLASMA'
3029 | p1509
3030 | aS'STONES'
3031 | p1510
3032 | aS'INDEX'
3033 | p1511
3034 | aS'MESOSCOPIC'
3035 | p1512
3036 | aS'NGERPRINTS'
3037 | p1513
3038 | aS'FAST'
3039 | p1514
3040 | aS'PLASMONS'
3041 | p1515
3042 | aS'JAMMING'
3043 | p1516
3044 | aS'VINCI'
3045 | p1517
3046 | aS'RULE'
3047 | p1518
3048 | aS'INCREASE'
3049 | p1519
3050 | aS'NANOPORES'
3051 | p1520
3052 | aS'IMAGING'
3053 | p1521
3054 | aS'DISPERSIONS'
3055 | p1522
3056 | aS'LIGHT'
3057 | p1523
3058 | aS'SUPERSTRUCTURES'
3059 | p1524
3060 | aS'HIGHER'
3061 | p1525
3062 | aS'PHENOMENON'
3063 | p1526
3064 | aS'PROGRAMMED'
3065 | p1527
3066 | aS'DIRECT'
3067 | p1528
3068 | aS'SEMICONDUCTOR'
3069 | p1529
3070 | aS'KEPLER'
3071 | p1530
3072 | aS'INCSIM'
3073 | p1531
3074 | aS'SEPARATION'
3075 | p1532
3076 | aS'MANIPULATION'
3077 | p1533
3078 | aS'STABILISED'
3079 | p1534
3080 | aS'11'
3081 | p1535
3082 | aS'INTERMEDIATE'
3083 | p1536
3084 | aS'CHINA'
3085 | p1537
3086 | aS'ITS'
3087 | p1538
3088 | aS'MICROSPHERES'
3089 | p1539
3090 | aS'FRICTIONAL'
3091 | p1540
3092 | aS'MEME'
3093 | p1541
3094 | aS'COMPLETE'
3095 | p1542
3096 | aS'DRIVING'
3097 | p1543
3098 | aS'BASIS'
3099 | p1544
3100 | aS'BREAKTHROUGHS'
3101 | p1545
3102 | aS'SELF-PROPELLED'
3103 | p1546
3104 | aS'MANY-PARTICLE'
3105 | p1547
3106 | aS'DA'
3107 | p1548
3108 | aS'ROTATING'
3109 | p1549
3110 | aS'IMPLEMENTING'
3111 | p1550
3112 | aS'CUBES'
3113 | p1551
3114 | aS'CLOUD-BASED'
3115 | p1552
3116 | aS'V-SHAPED'
3117 | p1553
3118 | aS'LIGHT-CONTROLLED'
3119 | p1554
3120 | aS'REALIZED'
3121 | p1555
3122 | aS'PERSPECTIVES'
3123 | p1556
3124 | aS'NEMATIC-FIELD-DRIVEN'
3125 | p1557
3126 | aS'DEFORMATION'
3127 | p1558
3128 | aS'DIMENSIONAL'
3129 | p1559
3130 | aS'ENVIRONMENTAL'
3131 | p1560
3132 | aS'EXPERIMENTS'
3133 | p1561
3134 | aS'SPHERICALLY'
3135 | p1562
3136 | aS'SANN'
3137 | p1563
3138 | aS'INTERPOLATION'
3139 | p1564
3140 | aS'SOLUBILITY'
3141 | p1565
3142 | aS'CHARACTERIZATION'
3143 | p1566
3144 | aS'TELLURIDE'
3145 | p1567
3146 | aS'EXTRINSIC'
3147 | p1568
3148 | aS'HYDROTHERMAL'
3149 | p1569
3150 | aS'HOLLOW'
3151 | p1570
3152 | aS'VISUALIZING'
3153 | p1571
3154 | aS'PERTURBATION'
3155 | p1572
3156 | aS'INSTABILITY'
3157 | p1573
3158 | aS'CITY'
3159 | p1574
3160 | aS'RESPONSES'
3161 | p1575
3162 | aS'ZONE'
3163 | p1576
3164 | aS'HYBRID'
3165 | p1577
3166 | aS'MICROMETER-SIZED'
3167 | p1578
3168 | aS'CONFOCAL'
3169 | p1579
3170 | aS'END-TETHERED'
3171 | p1580
3172 | aS'12-FOLD'
3173 | p1581
3174 | aS'CUBOIDS'
3175 | p1582
3176 | aS'SOLVENT-STIMULATED'
3177 | p1583
3178 | aS'CATALYTICALLY'
3179 | p1584
3180 | aS'EDITED'
3181 | p1585
3182 | aS'CONJECTURE'
3183 | p1586
3184 | aS'KNITTING'
3185 | p1587
3186 | aS'HOOMD-BLUE'
3187 | p1588
3188 | aS'NONAMPHIPHILIC'
3189 | p1589
3190 | aS'PHOTON'
3191 | p1590
3192 | aS'FUNCTIONS'
3193 | p1591
3194 | aS'SYNONYMOUSLY'
3195 | p1592
3196 | aS'QUASI'
3197 | p1593
3198 | aS'SELF-CONSISTENT'
3199 | p1594
3200 | aS'SHAPE-INDUCED'
3201 | p1595
3202 | aS'EMULSIONS'
3203 | p1596
3204 | aS'HETEROGENEITIES'
3205 | p1597
3206 | aS'CONSTRAINTS'
3207 | p1598
3208 | aS'BOUNDARIES'
3209 | p1599
3210 | aS'PEPTIDE'
3211 | p1600
3212 | aS'FRAMEWORK'
3213 | p1601
3214 | aS'CAVITY'
3215 | p1602
3216 | aS'3'
3217 | aS'BLENDE'
3218 | p1603
3219 | aS'SYNCHRONIZATION'
3220 | p1604
3221 | aS'INTERPLAY'
3222 | p1605
3223 | aS'ACTIVITY'
3224 | p1606
3225 | aS'NATURAL'
3226 | p1607
3227 | aS'FRACTION'
3228 | p1608
3229 | aS'LEVEL'
3230 | p1609
3231 | aS'H'
3232 | aS'TIMAEUS'
3233 | p1610
3234 | aS'NANOCYLINDERS'
3235 | p1611
3236 | aS'LIQUID-CRYSTAL'
3237 | p1612
3238 | aS'GAPS'
3239 | p1613
3240 | aS'JAMMED'
3241 | p1614
3242 | aS'DIFFERENTLY'
3243 | p1615
3244 | aS'MORPHOLOGIES'
3245 | p1616
3246 | aS'START-'
3247 | p1617
3248 | aS'GPU'
3249 | p1618
3250 | aS'PRIMER'
3251 | p1619
3252 | aS'SILVER'
3253 | p1620
3254 | aS'AWARENESS'
3255 | p1621
3256 | aS'ZNS'
3257 | p1622
3258 | aS'TRAPPING'
3259 | p1623
3260 | aS'SHAPE-ANISOTROPY'
3261 | p1624
3262 | aS'APPROXIMATIONS'
3263 | p1625
3264 | aS'BILAYER'
3265 | p1626
3266 | aS'SYNERGY'
3267 | p1627
3268 | aS'SHAPE-COMPLEMENTARY'
3269 | p1628
3270 | aS'K-S'
3271 | p1629
3272 | aS'FRACTIONALIZATION'
3273 | p1630
3274 | aS'KIM'
3275 | p1631
3276 | aS'LIMIT'
3277 | p1632
3278 | aS'LEONARDO'
3279 | p1633
3280 | aS'ADSORBED'
3281 | p1634
3282 | aS'LEGO-'
3283 | p1635
3284 | aS'MODULATION'
3285 | p1636
3286 | aS'PROGRAMMING'
3287 | p1637
3288 | aS'ERYTHROCYTES'
3289 | p1638
3290 | aS'RATE'
3291 | p1639
3292 | aS'BLOCK-ITERATIVE'
3293 | p1640
3294 | aS'DEGENERATE'
3295 | p1641
3296 | aS'THOUSAND-ROBOT'
3297 | p1642
3298 | aS'UNIFORM'
3299 | p1643
3300 | aS'BAZAAR'
3301 | p1644
3302 | aS'FACET-DEPENDENT'
3303 | p1645
3304 | aS'ROTATIONAL'
3305 | p1646
3306 | aS'PT'
3307 | p1647
3308 | aS'INTRODUCTION'
3309 | p1648
3310 | aS'TERAHERTZ'
3311 | p1649
3312 | aS'ESTIMATING'
3313 | p1650
3314 | aS'TANTALUM'
3315 | p1651
3316 | aS'OPTICAL'
3317 | p1652
3318 | aS'SUPERCOOLED'
3319 | p1653
3320 | aS'STRETCHED'
3321 | p1654
3322 | aS'BIOMOLECULAR'
3323 | p1655
3324 | aS'MULTI-STABILITY'
3325 | p1656
3326 | aS'STABILIZATION'
3327 | p1657
3328 | aS'MONOLAYERS'
3329 | p1658
3330 | aS'S'
3331 | aS'CLASSICAL'
3332 | p1659
3333 | aS'FACES'
3334 | p1660
3335 | aS'TRIANGULAR'
3336 | p1661
3337 | aS'ORIENTATIONAL'
3338 | p1662
3339 | aS'SELECTION'
3340 | p1663
3341 | aS'POLYCHROMATIC'
3342 | p1664
3343 | aS'THINKING'
3344 | p1665
3345 | aS'SURFACE'
3346 | p1666
3347 | aS'NANO-PHOTONIC'
3348 | p1667
3349 | aS'CONTOURS'
3350 | p1668
3351 | aS'SHEARED'
3352 | p1669
3353 | aS'EQUATIONS'
3354 | p1670
3355 | aS'WING'
3356 | p1671
3357 | aS'MULTI'
3358 | p1672
3359 | aS'NANOLADDERS'
3360 | p1673
3361 | aS'MICROPARTICLE'
3362 | p1674
3363 | aS'NOTEBOOKS'
3364 | p1675
3365 | aS'CONCAVE'
3366 | p1676
3367 | aS'INFRARED'
3368 | p1677
3369 | aS'IDEAL'
3370 | p1678
3371 | aS'THEY'
3372 | p1679
3373 | aS'INSTABILITIES'
3374 | p1680
3375 | aS'ADAPTIVITY'
3376 | p1681
3377 | aS'DROPS'
3378 | p1682
3379 | aS'ANALOGUE'
3380 | p1683
3381 | aS'RECENT'
3382 | p1684
3383 | aS'CASE'
3384 | p1685
3385 | aS'VACANCY-STABILIZED'
3386 | p1686
3387 | aS'CDII'
3388 | p1687
3389 | aS'COEXISTENCE'
3390 | p1688
3391 | aS'RELATED'
3392 | p1689
3393 | aS'PAPER-BASED'
3394 | p1690
3395 | aS'CAST'
3396 | p1691
3397 | aS'OPTIMIZED'
3398 | p1692
3399 | aS'AMPHIPHILES'
3400 | p1693
3401 | aS'SUB-MICRON'
3402 | p1694
3403 | aS'NANOBUILDING'
3404 | p1695
3405 | aS'FRACTIONAL-STEP'
3406 | p1696
3407 | aS'INFORMATION-BEARING'
3408 | p1697
3409 | aS'FACTORS'
3410 | p1698
3411 | aS'EQUAL'
3412 | p1699
3413 | aS'FIELD'
3414 | p1700
3415 | aS'SOLUTES'
3416 | p1701
3417 | aS'MALDOVAN\\2004\\PDF'
3418 | p1702
3419 | aS'LOW-DENSITY'
3420 | p1703
3421 | aS'PRESSURE-INDUCED'
3422 | p1704
3423 | aS'STATISTICS'
3424 | p1705
3425 | aS'SOLVENT'
3426 | p1706
3427 | aS'MELTS'
3428 | p1707
3429 | aS'PRECIPITATION'
3430 | p1708
3431 | aS'NANOPILLARS'
3432 | p1709
3433 | aS'THICKENING'
3434 | p1710
3435 | aS'SURFACTANTS'
3436 | p1711
3437 | aS'TETRAHEDRAL'
3438 | p1712
3439 | aS'OSMOSIS'
3440 | p1713
3441 | aS'SUBSET'
3442 | p1714
3443 | aS'GLASSY'
3444 | p1715
3445 | aS'DIRECTLY'
3446 | p1716
3447 | aS'SPHERE-FORMING'
3448 | p1717
3449 | aS'ANOMALOUS'
3450 | p1718
3451 | aS'SELF-ORGANIZATION'
3452 | p1719
3453 | aS'EXCITABLE'
3454 | p1720
3455 | aS'WORM-'
3456 | p1721
3457 | aS'ONLINE'
3458 | p1722
3459 | aS'HEMATITE'
3460 | p1723
3461 | aS'UPDATING'
3462 | p1724
3463 | aS'IONIC'
3464 | p1725
3465 | aS'TETROMINO'
3466 | p1726
3467 | aS'ILLUSORY'
3468 | p1727
3469 | aS'REQUIREMENTS'
3470 | p1728
3471 | aS'NSF'
3472 | p1729
3473 | aS'GAP'
3474 | p1730
3475 | aS'NANOCONFINEMENT'
3476 | p1731
3477 | aS'BATTERIES'
3478 | p1732
3479 | aS'CYLINDRICAL'
3480 | p1733
3481 | aS'RIGID'
3482 | p1734
3483 | aS'COEFFICIENTS'
3484 | p1735
3485 | aS'BACTERIAL'
3486 | p1736
3487 | aS'MODERATE'
3488 | p1737
3489 | aS'ANGULAR'
3490 | p1738
3491 | aS'CRYSTAL-PACKING'
3492 | p1739
3493 | aS'PERFECT'
3494 | p1740
3495 | aS'MICROPARTICLES'
3496 | p1741
3497 | aS'IS'
3498 | p1742
3499 | aS'STIRRING'
3500 | p1743
3501 | aS'DODECAHEDRAL'
3502 | p1744
3503 | aS'SCATTERING'
3504 | p1745
3505 | aS'2D'
3506 | p1746
3507 | aS'ART'
3508 | p1747
3509 | aS'YEARS'
3510 | p1748
3511 | aS'1'
3512 | aS'BORN'
3513 | p1749
3514 | aS'ARE'
3515 | p1750
3516 | aS'REGIME'
3517 | p1751
3518 | aS'PRECISELY'
3519 | p1752
3520 | aS'GRAFTING'
3521 | p1753
3522 | aS'TWELVEFOLD'
3523 | p1754
3524 | aS'DENSITIES'
3525 | p1755
3526 | aS'VACANCIES'
3527 | p1756
3528 | aS'SILICON'
3529 | p1757
3530 | aS'TIN'
3531 | p1758
3532 | aS'FUNDAMENTAL'
3533 | p1759
3534 | aS'EVENT-CHAIN'
3535 | p1760
3536 | aS'REGULATORY'
3537 | p1761
3538 | aS'VIRIAL'
3539 | p1762
3540 | aS'PROCESSOR'
3541 | p1763
3542 | aS'CAPSIDS'
3543 | p1764
3544 | aS'ROD'
3545 | p1765
3546 | aS'SODIUM'
3547 | p1766
3548 | aS'CONSCIOUS'
3549 | p1767
3550 | aS'DECOMPOSITION'
3551 | p1768
3552 | aS'SWITCHING'
3553 | p1769
3554 | aS'POINTS'
3555 | p1770
3556 | aS'FIRST'
3557 | p1771
3558 | aS'EVENTS'
3559 | p1772
3560 | aS'DEPLETION-INTERACTION'
3561 | p1773
3562 | aS'MELTING'
3563 | p1774
3564 | aS'CAVEATS'
3565 | p1775
3566 | aS'BUILT'
3567 | p1776
3568 | aS'PREDICTING'
3569 | p1777
3570 | aS'VESICULAR'
3571 | p1778
3572 | aS'REDUCTION'
3573 | p1779
3574 | aS'DESIGNED'
3575 | p1780
3576 | aS'GRAND'
3577 | p1781
3578 | aS'TUNNELING'
3579 | p1782
3580 | aS'SPONTANEOUS'
3581 | p1783
3582 | aS'EQUIVALENCES'
3583 | p1784
3584 | aS'LIMITED'
3585 | p1785
3586 | aS'NANOSTRUCTURES'
3587 | p1786
3588 | aS'DOUBLE'
3589 | p1787
3590 | aS'BIPHENOLATE-BASED'
3591 | p1788
3592 | aS'SUPERBALLS'
3593 | p1789
3594 | aS'ANNIHILATION'
3595 | p1790
3596 | aS'NANODECAHEDRA'
3597 | p1791
3598 | aS'LENGTH'
3599 | p1792
3600 | aS'MYSTERIUM'
3601 | p1793
3602 | aS'NANOSTRUCTURED'
3603 | p1794
3604 | aS'LATITUDINALLY'
3605 | p1795
3606 | aS'CONSTRAINED'
3607 | p1796
3608 | aS'HANDS-'
3609 | p1797
3610 | aS'ADVANCE'
3611 | p1798
3612 | aS'POLYMORPHS'
3613 | p1799
3614 | aS'TRANSVERSE'
3615 | p1800
3616 | aS'BALLS'
3617 | p1801
3618 | aS'STABILIZING'
3619 | p1802
3620 | aS'ATOMS'
3621 | p1803
3622 | aS'SIGMA'
3623 | p1804
3624 | aS'TM'
3625 | p1805
3626 | aS'TUNABLE'
3627 | p1806
3628 | aS'MIRRORS'
3629 | p1807
3630 | aS'LIQUID-VAPOR'
3631 | p1808
3632 | aS'MOTION'
3633 | p1809
3634 | aS'POLYMER-TETHERED'
3635 | p1810
3636 | aS'ISING'
3637 | p1811
3638 | aS'PARAMAGNETIC'
3639 | p1812
3640 | aS'INTEGRATED'
3641 | p1813
3642 | aS'INVERSE'
3643 | p1814
3644 | aS'SHEET'
3645 | p1815
3646 | aS'TRAPS'
3647 | p1816
3648 | aS'LOCALIZATION'
3649 | p1817
3650 | aS'LOCKING'
3651 | p1818
3652 | aS'CENTRIFUGATION'
3653 | p1819
3654 | aS'PHENOTYPE'
3655 | p1820
3656 | aS'GRAPHICS'
3657 | p1821
3658 | aS'CONFINED'
3659 | p1822
3660 | aS'1-MICROSECOND'
3661 | p1823
3662 | aS'DIMER'
3663 | p1824
3664 | aS'WIRES'
3665 | p1825
3666 | aS'FLUID-SOLID'
3667 | p1826
3668 | aS'SCAFFOLDED'
3669 | p1827
3670 | aS'POLYOXOMETALATES'
3671 | p1828
3672 | aS'DISSOLUTION'
3673 | p1829
3674 | aS'VICINITY'
3675 | p1830
3676 | aS'QUASICRYSTALS-WHY'
3677 | p1831
3678 | aS'CATALAN'
3679 | p1832
3680 | aS'INVESTIGATION'
3681 | p1833
3682 | aS'NUCLEUS'
3683 | p1834
3684 | aS'STRIPED'
3685 | p1835
3686 | aS'CRYO-EM'
3687 | p1836
3688 | aS'BUCKLING'
3689 | p1837
3690 | aS'MICROMACHINING'
3691 | p1838
3692 | aS'PARAMETER-FREE'
3693 | p1839
3694 | aS'FRICTION'
3695 | p1840
3696 | aS'EMISSIONS'
3697 | p1841
3698 | aS'MORPHOLOGY'
3699 | p1842
3700 | aS'STAR'
3701 | p1843
3702 | aS'-EQUILIBRIUM'
3703 | p1844
3704 | aS'COMPOSITIONALLY'
3705 | p1845
3706 | aS'I4132'
3707 | p1846
3708 | aS'PSEUDO-HARD'
3709 | p1847
3710 | aS'COULOMB'
3711 | p1848
3712 | aS'LIMITED-VALENCE'
3713 | p1849
3714 | aS'NO'
3715 | p1850
3716 | aS'KOTOV'
3717 | p1851
3718 | aS'POPULARITY'
3719 | p1852
3720 | aS'NONCONVEX'
3721 | p1853
3722 | aS'FULFILLMENT'
3723 | p1854
3724 | aS'SPECTROSCOPY'
3725 | p1855
3726 | aS'ORIGAMI'
3727 | p1856
3728 | aS'TETRAHEDRONS'
3729 | p1857
3730 | aS'CAPILLARY'
3731 | p1858
3732 | aS'VISCOUS'
3733 | p1859
3734 | aS'TRIATIC'
3735 | p1860
3736 | aS'CHLORATE'
3737 | p1861
3738 | aS'ONE-DIMENSIONAL'
3739 | p1862
3740 | aS'J'
3741 | aS'NANOSTARS'
3742 | p1863
3743 | aS'MAXIMUM'
3744 | p1864
3745 | aS'NANO-'
3746 | p1865
3747 | aS'STIMULUS-SENSITIVE'
3748 | p1866
3749 | aS'DESIGNING'
3750 | p1867
3751 | aS'OCTAPOD-SHAPED'
3752 | p1868
3753 | aS'CUI'
3754 | p1869
3755 | aS'FF'
3756 | p1870
3757 | aS'MESOPHASE'
3758 | p1871
3759 | aS'LEE'
3760 | p1872
3761 | aS'CAVITIES'
3762 | p1873
3763 | aS'GOVERNS'
3764 | p1874
3765 | aS'TRANSMISSION'
3766 | p1875
3767 | aS'SENSITIVITY'
3768 | p1876
3769 | aS'ANALYSIS'
3770 | p1877
3771 | aS'MOTIFS'
3772 | p1878
3773 | aS'QUENCHED'
3774 | p1879
3775 | aS'USE'
3776 | p1880
3777 | aS'SOFT-CORE'
3778 | p1881
3779 | aS'NANOPARTICLE-BASED'
3780 | p1882
3781 | aS'TEMPLATING'
3782 | p1883
3783 | aS'CHANGE'
3784 | p1884
3785 | aS'SCIENCE'
3786 | p1885
3787 | aS'NANOPYRAMID'
3788 | p1886
3789 | aS'HYDROGENATION'
3790 | p1887
3791 | aS'REMOVAL'
3792 | p1888
3793 | aS'CRYSTALLISATION'
3794 | p1889
3795 | aS'3-D'
3796 | p1890
3797 | aS'COMPARISON'
3798 | p1891
3799 | aS'SHELLS'
3800 | p1892
3801 | aS'VARYING'
3802 | p1893
3803 | aS'GPCR'
3804 | p1894
3805 | aS'FLEXIBLE'
3806 | p1895
3807 | aS'RESOLUTION'
3808 | p1896
3809 | aS'COORDINATION'
3810 | p1897
3811 | aS'PD'
3812 | p1898
3813 | aS'SPACE'
3814 | p1899
3815 | aS'AQUEOUS'
3816 | p1900
3817 | aS'DEPENDENCE'
3818 | p1901
3819 | aS'POSITIONING'
3820 | p1902
3821 | aS'ICE'
3822 | p1903
3823 | aS'PINNING'
3824 | p1904
3825 | aS'MICELLES'
3826 | p1905
3827 | aS'AMBER'
3828 | p1906
3829 | aS'MIXED'
3830 | p1907
3831 | aS'GPUS'
3832 | p1908
3833 | aS'OBSERVED'
3834 | p1909
3835 | aS'JAVA'
3836 | p1910
3837 | aS'MACROMOLECULE'
3838 | p1911
3839 | aS'CONTACTS'
3840 | p1912
3841 | aS'UNCOVERING'
3842 | p1913
3843 | aS'HIGH-INDEX'
3844 | p1914
3845 | aS'MICRORHEOLOGY'
3846 | p1915
3847 | aS'EXACYCLE'
3848 | p1916
3849 | a.
--------------------------------------------------------------------------------
/shakespeare.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | import re, glob, sys,os
3 | import argparse
4 | import itertools as it
5 | import numpy as np
6 | import scipy.sparse
7 | import cPickle as pickle
8 | from sklearn.naive_bayes import MultinomialNB
9 | from content_sources import arxiv, bibtex, rss
10 |
11 | #remove punctuation and prepositions from a string
12 | def find_keywords(text):
13 | keywords=re.sub('[{}:?!@#$%^&*\(\)_.\\/,\'\"]','',text).upper()
14 | prepositions = open('data/prepositions.dat').read().upper().split()
15 |
16 | for p in prepositions:
17 | keywords = re.sub(r"\b{!s}\b".format(p),' ',keywords)
18 |
19 | return keywords.encode('ascii','ignore').split()
20 |
21 | #Identify good entries using naive_bayes object
22 | def filter_content(content,
23 | method,
24 | naive_bayes,
25 | keywords):
26 |
27 | new_samples = [find_keywords(entry[method]) for entry in content]
28 |
29 | #compute vector for each new entry
30 | X = scipy.sparse.lil_matrix((len(new_samples),len(keywords)))
31 |
32 | for j,kw in enumerate(keywords):
33 | for i,ns in enumerate(new_samples):
34 | X[i,j]=ns.count(kw)
35 |
36 | categories = naive_bayes.predict(X)
37 | return [e for c,e in zip(categories,content) if c =='good']
38 |
39 | #Gather content from all sources (BibTex files, arXiv, journal RSS feeds, etc)
40 | def get_content(sources):
41 | all_content = list()
42 | for src in sources:
43 | try:
44 | src.fetch()
45 | except:
46 | print("Fetch of content from {!r} has failed".format(src))
47 |
48 | content = None
49 | try:
50 | print('parsing {!r}'.format(src))
51 | content = src.parse()
52 | except:
53 | print("parsing of content from {!r} has failed".format(src))
54 |
55 | if content:
56 | all_content += content
57 |
58 | return all_content
59 |
60 | #Human review of content classification
61 | #You can review all the content, or just one that the nb classifier thought were good.
62 | #Human input is used to train the NB classifier.
63 | def review_content(good_content,content,method,review_all=False):
64 | to_review=[]
65 | if review_all:
66 | to_review = content
67 | else:
68 | to_review = good_content
69 |
70 | human_class=[]
71 | for entry in to_review:
72 | print("Is \"{}\" a good entry?".format(entry[method].encode('ascii','ignore')))
73 | decision = raw_input('Y/n?').lower()
74 | human_class.append('good' if decision=='y' else 'bad')
75 | return human_class, to_review
76 |
77 | #Load in a trained naive_bayes object and keyword list
78 | def load_knowledge(knowledge):
79 | #existing naive_bayes object and keyword list
80 | nb=None
81 | kw=list()
82 | if knowledge is not None:
83 | if not os.path.isdir(knowledge):
84 | print("Knowledge bust be a directory")
85 | exit()
86 |
87 | kfiles = glob.glob(knowledge+'/*')
88 | if not any(f.endswith('nb.p') for f in kfiles):
89 | print("Knowledge does not contain nb.p (pickled naive bayes object)")
90 | exit()
91 | if not any(f.endswith('kw.p') for f in kfiles):
92 | print("Knowledge does not contain kw.p (pickled keyword list)")
93 | exit()
94 |
95 | else:
96 | knowledge =os.path.expanduser('~/.shakespeare')
97 |
98 | if os.path.exists(knowledge):
99 | nb=pickle.load(open(knowledge+'/nb.p'))
100 | kw=pickle.load(open(knowledge+'/kw.p'))
101 |
102 | return(nb,kw, knowledge)
103 |
104 | #Train naive_bayes object on a data set
105 | def train(good_sources, bad_sources,method,naive_bayes=None,keywords=list()):
106 | #train the algorithm
107 | good_samples = find_keywords(' '.join([entry[method] for entry in good_sources]))
108 | bad_samples = find_keywords(' '.join([entry[method] for entry in bad_sources]))
109 |
110 |
111 | #if we have an exists knowledge base to append this new information to, do so
112 | if naive_bayes:
113 | new_kws = set(good_samples+bad_samples)
114 | print('Using old keywords as well')
115 | print("# old keywords = {}\n # new keywords = {}".format(len(keywords),len(new_kws)))
116 | new_kws = set(good_samples+bad_samples).difference(keywords)
117 | print("# fresh keywords = {}\n".format(len(new_kws)))
118 |
119 | #make some call to naive_bayes.partial_fssit in here
120 | X = np.concatenate((naive_bayes.feature_count_, np.zeros((naive_bayes.feature_count_.shape[0],len(new_kws)))),1)
121 | all_kw = keywords + list(new_kws)
122 |
123 | else:
124 | print('Only using keywords from this content set')
125 | all_kw = list(set(good_samples+bad_samples))
126 | X = np.zeros((2,len(all_kw)))
127 |
128 | for j,kw in enumerate(all_kw):
129 | X[0,j] += good_samples.count(kw)
130 | X[1,j] += bad_samples.count(kw)
131 |
132 | y = ['good','bad']
133 |
134 | naive_bayes = MultinomialNB()
135 | naive_bayes.fit(X,y)
136 |
137 | return naive_bayes, all_kw
138 |
139 | #export content to simple markdown format
140 | def to_markdown(content,output_file):
141 | try:
142 | with open(output_file,'w') as outf:
143 | outf.write('# Relevant articles\n')
144 | for article in content:
145 | outf.write("## {}\n".format(re.sub(r'\n',' ',article['title']).encode('ascii','ignore')))
146 | outf.write("* authors: {}\n".format(re.sub(r'\n',' ',article['author']).encode('ascii','ignore')))
147 | outf.write("* abstract: {}\n".format(re.sub(r'\n',' ',article['abstract']).encode('ascii','ignore')))
148 | outf.write("* [link]({})\n\n".format(re.sub(r'\n',' ',article['url']).encode('ascii','ignore')))
149 | except:
150 | print("Failed to write markdown file")
151 |
152 | def main(argv):
153 |
154 | #add command line options for sources, output prefs, database of "good" keywords
155 | parser = argparse.ArgumentParser()
156 | parser.add_argument('-o','--output', help='output file name. only supports markdown right now.',dest ='output',default=None)
157 | parser.add_argument('-b','--bibtex', help='bibtex files to fetch',dest='bibfiles', nargs='*',default=list())
158 | parser.add_argument('-j','--journals', help='journals to fetch. Currently supports {}.'.format(' '.join(rss.rss_feeds.keys())),
159 | nargs='*',dest='journals',default=list())
160 | parser.add_argument('-a','--arXiv', help='arXiv categories to fetch',
161 | nargs='*',dest='arXiv',default=list())
162 | parser.add_argument('--all_sources', help='flag to search from all sources.',action ='store_true')
163 | parser.add_argument('--all_good_sources', help='flag to search from good sources. Specfied in your config file.',action ='store_true')
164 | parser.add_argument('--train', help='flag to train. All sources beside "--train-input-good" are treated as bad/irrelevant papers',action ='store_true')
165 | parser.add_argument('-g','--train_input_good', help='bibtex file containing relevant articles.',dest ='good_source',default=None)
166 | parser.add_argument('-m','--method', help='Methods to try to find relevent papers. Right now, only all, title, author, and abstract are valid fields',
167 | dest='method',default='title')
168 | parser.add_argument('-k', '--knowledge',
169 | help='path to database containing information about good and bad keywords. \
170 | If you are training, you must specifiy this, as it will be where your output is written ',
171 | dest='knowledge',default=None)
172 | parser.add_argument('--overwrite-knowledge', help='flag to overwrite knowledge,if training',action ='store_true',default=False, dest='overwrite_knowledge')
173 | parser.add_argument('--feedback', help='flag to give feedback after sorting content',action ='store_true',default=False, dest='feedback')
174 | parser.add_argument('--review_all', help='review all the new selections. Otherwise, you will only review the good selections',action ='store_true',default=False, dest='review_all')
175 | args = parser.parse_args(argv)
176 |
177 | if not args.method in ['title','abstract','author, all']:
178 | print("Invalid method. Options are title, abstract, author, and all")
179 | exit()
180 |
181 | method = args.method
182 |
183 | #Set up training if that's what we're doing
184 | if args.train:
185 |
186 | #check to make sure we have a good training input
187 | if args.good_source is None:
188 | print("When training, you must specify one good source")
189 | exit()
190 | if not os.path.exists(args.good_source):
191 | print("Specified training input does not exist")
192 | exit()
193 | if not os.path.isfile(args.good_source):
194 | print("Specified training input is not a file")
195 | exit()
196 | if not os.path.splitext(args.good_source)[1] == '.bib' :
197 | print("Training input must be in bibtex format")
198 | exit()
199 |
200 | #load the existing knowledge
201 | nb,kw,knowledge = load_knowledge(args.knowledge)
202 | if args.overwrite_knowledge:
203 | nb=None
204 | kw=list()
205 |
206 | good_content = get_content([bibtex.BibTex(args.good_source)])
207 |
208 | if args.all_sources:
209 | bad_content = get_content([arxiv.ArXiv(cat) for cat in arxiv.arxiv_cats] +
210 | [rss.JournalFeed(journal) for journal in rss.rss_feeds.keys()])
211 | else:
212 | bad_content = get_content([arxiv.ArXiv(cat) for cat in args.arXiv] +
213 | [bibtex.BibTex(bibfile) for bibfile in args.bibfiles] +
214 | [rss.JournalFeed(journal) for journal in args.journals])
215 |
216 | #train, and write out knowledge (naive_bayes class and keywords)
217 | nb, kw = train(good_content,bad_content,method,naive_bayes=nb, keywords=kw)
218 | pickle.dump(nb,open(knowledge+'/nb.p','w'))
219 | pickle.dump(kw,open(knowledge+'/kw.p','w'))
220 |
221 | #we are filtering new content through our existing knowledge
222 | else:
223 |
224 | #load the old knowledge
225 | nb,kw,knowledge = load_knowledge(args.knowledge)
226 | if args.all_sources:
227 | sources = [arxiv.ArXiv(cat) for cat in arxiv.arxiv_cats] + \
228 | [rss.JournalFeed(journal) for journal in rss.rss_feeds.keys()]
229 | elif args.all_good_sources:
230 | arxiv_cats = ['cond-mat','stat']
231 | journals = ['science','nature','small','prl','pnas',
232 | 'physreve','physrevx','acsnano',
233 | 'advmat','jchemphysb','natphys',
234 | 'natmat','natnano','langmuir']
235 |
236 | sources = [arxiv.ArXiv(cat) for cat in arxiv_cats] + \
237 | [rss.JournalFeed(journal) for journal in journals]
238 | else:
239 | sources = [arxiv.ArXiv(cat) for cat in args.arXiv] + \
240 | [ bibtex.BibTex (bibfile) for bibfile in args.bibfiles] + \
241 | [rss.JournalFeed(journal) for journal in args.journals]
242 |
243 | new_content = get_content(sources)
244 | good_content = filter_content(new_content,method,nb,kw)
245 | print("Fraction of good new content: {!r}".format(len(good_content)*1.0/len(new_content)))
246 | print("total content parsed: {!r}".format(len(new_content)))
247 |
248 | if (args.output):
249 | to_markdown(good_content,args.output)
250 | else:
251 | pass
252 | #print(good_content)
253 |
254 | if(args.feedback):
255 | human_class, reviewed_content = review_content(good_content,new_content,method,args.review_all)
256 | good_content = [entry for cat,entry in zip(human_class,reviewed_content) if cat=='good']
257 | bad_content = [entry for cat,entry in zip(human_class,reviewed_content) if cat=='bad']
258 | nb, kw = train(good_content,bad_content,method,naive_bayes=nb, keywords=kw)
259 | pickle.dump(nb,open(knowledge+'/nb.p','w'))
260 | pickle.dump(kw,open(knowledge+'/kw.p','w'))
261 |
262 |
263 |
264 |
265 | if __name__=="__main__":
266 | main(sys.argv[1:])
267 |
--------------------------------------------------------------------------------