├── README.md ├── TweetModel.py ├── __pycache__ ├── TweetModel.cpython-36.pyc ├── depression_detection_tweets.cpython-36.pyc └── models.cpython-36.pyc ├── data1.pickle ├── data2.pickle ├── dataset ├── depressionDataset.csv └── tweets.csv ├── depression_detection_tweets.py ├── models.py ├── requirements.txt ├── server.py ├── static ├── css │ ├── bootstrap.min.css │ ├── font-awesome.min.css │ └── style.css ├── fonts │ ├── FontAwesome.otf │ ├── fontawesome-webfont.eot │ ├── fontawesome-webfont.svg │ ├── fontawesome-webfont.ttf │ ├── fontawesome-webfont.woff │ └── fontawesome-webfont.woff2 ├── img │ ├── bg-banner.jpg │ └── logo.png ├── js │ ├── bootstrap.min.js │ ├── custom.js │ ├── jquery.easing.min.js │ └── jquery.min.js ├── scrn1.png ├── scrn2.png ├── scrn3.png ├── scrn4.png ├── scrn5.png └── scrn6.png └── templates ├── error.html ├── index.html ├── login.html ├── result.html ├── sentiment.html └── tweetresult.html /README.md: -------------------------------------------------------------------------------- 1 | # Depression_Detection_Using_ML_Algorithms 2 | This project used data from social media networks to explore various methods of early detection of MDDs based on machine learning. We performed a thorough analysis of the dataset to characterize the subjects’ behavior based on different aspects of their PHQ9 question answering, textual inputs, Python code for Depression Detection using multiple machine learning algorithms and Twitter dataset for detecting depression also from sentiments 3 | 4 | ### To run application 5 | 6 | 1. Install all libraries 7 | $ pip install -r requirements.txt 8 | 9 | 2. Run the application 10 | $ python server.py 11 | 12 | 3. In Browser open URL localhost:5987 13 | 14 | 4. Login Using: 15 | - Username :admin 16 | - Password :admin 17 | - *Note : Username and password can be chnaged in server.py file 18 | 19 | ### Demo 20 | link : https://youtu.be/CucCcR7J-yc 21 | 22 | ![](static/scrn1.png) 23 | 24 | ![](static/scrn2.png) 25 | 26 | ![](static/scrn3.png) 27 | 28 | ![](static/scrn4.png) 29 | 30 | ![](static/scrn5.png) 31 | 32 | ![](static/scrn6.png) 33 | -------------------------------------------------------------------------------- /TweetModel.py: -------------------------------------------------------------------------------- 1 | import nltk 2 | import pickle 3 | nltk.download('punkt') 4 | from nltk.tokenize import word_tokenize 5 | from nltk.corpus import stopwords 6 | from nltk.stem import PorterStemmer 7 | 8 | import matplotlib.pyplot as plt 9 | from wordcloud import WordCloud 10 | from math import log, sqrt 11 | 12 | class TweetClassifier(object): 13 | def __init__(self, trainData, method='tf-idf'): 14 | self.tweets, self.labels = trainData['message'], trainData['label'] 15 | self.method = method 16 | 17 | def train(self): 18 | self.calc_TF_and_IDF() 19 | if self.method == 'tf-idf': 20 | self.calc_TF_IDF() 21 | else: 22 | self.calc_prob() 23 | 24 | def calc_prob(self): 25 | self.prob_depressive = dict() 26 | self.prob_positive = dict() 27 | for word in self.tf_depressive: 28 | self.prob_depressive[word] = (self.tf_depressive[word] + 1) / (self.depressive_words + \ 29 | len(list(self.tf_depressive.keys()))) 30 | for word in self.tf_positive: 31 | self.prob_positive[word] = (self.tf_positive[word] + 1) / (self.positive_words + \ 32 | len(list(self.tf_positive.keys()))) 33 | self.prob_depressive_tweet, self.prob_positive_tweet = self.depressive_tweets / self.total_tweets, self.positive_tweets / self.total_tweets 34 | 35 | def calc_TF_and_IDF(self): 36 | noOfMessages = self.tweets.shape[0] 37 | self.depressive_tweets, self.positive_tweets = self.labels.value_counts()[1], self.labels.value_counts()[0] 38 | self.total_tweets = self.depressive_tweets + self.positive_tweets 39 | self.depressive_words = 0 40 | self.positive_words = 0 41 | self.tf_depressive = dict() 42 | self.tf_positive = dict() 43 | self.idf_depressive = dict() 44 | self.idf_positive = dict() 45 | for i in range(noOfMessages): 46 | message_processed = process_message(self.tweets.iloc[i]) 47 | count = list() # To keep track of whether the word has ocured in the message or not. 48 | # For IDF 49 | for word in message_processed: 50 | if self.labels.iloc[i]: 51 | self.tf_depressive[word] = self.tf_depressive.get(word, 0) + 1 52 | self.depressive_words += 1 53 | else: 54 | self.tf_positive[word] = self.tf_positive.get(word, 0) + 1 55 | self.positive_words += 1 56 | if word not in count: 57 | count += [word] 58 | for word in count: 59 | if self.labels.iloc[i]: 60 | self.idf_depressive[word] = self.idf_depressive.get(word, 0) + 1 61 | else: 62 | self.idf_positive[word] = self.idf_positive.get(word, 0) + 1 63 | pickle_out = open("data2.pickle","wb") 64 | pickle.dump(self.depressive_words,pickle_out) 65 | pickle.dump(self.positive_words,pickle_out) 66 | pickle_out.close() 67 | 68 | def calc_TF_IDF(self): 69 | self.prob_depressive = dict() 70 | self.prob_positive = dict() 71 | self.sum_tf_idf_depressive = 0 72 | self.sum_tf_idf_positive = 0 73 | for word in self.tf_depressive: 74 | self.prob_depressive[word] = (self.tf_depressive[word]) * log( 75 | (self.depressive_tweets + self.positive_tweets) \ 76 | / (self.idf_depressive[word] + self.idf_positive.get(word, 0))) 77 | self.sum_tf_idf_depressive += self.prob_depressive[word] 78 | for word in self.tf_depressive: 79 | self.prob_depressive[word] = (self.prob_depressive[word] + 1) / ( 80 | self.sum_tf_idf_depressive + len(list(self.prob_depressive.keys()))) 81 | 82 | for word in self.tf_positive: 83 | self.prob_positive[word] = (self.tf_positive[word]) * log((self.depressive_tweets + self.positive_tweets) \ 84 | / (self.idf_depressive.get(word, 0) + 85 | self.idf_positive[word])) 86 | self.sum_tf_idf_positive += self.prob_positive[word] 87 | for word in self.tf_positive: 88 | self.prob_positive[word] = (self.prob_positive[word] + 1) / ( 89 | self.sum_tf_idf_positive + len(list(self.prob_positive.keys()))) 90 | self.prob_depressive_tweet, self.prob_positive_tweet = self.depressive_tweets / self.total_tweets, self.positive_tweets / self.total_tweets 91 | 92 | pickle_out = open("data1.pickle","wb") 93 | pickle.dump(self.prob_depressive,pickle_out) 94 | pickle.dump(self.sum_tf_idf_depressive,pickle_out) 95 | pickle.dump(self.prob_positive,pickle_out) 96 | pickle.dump(self.sum_tf_idf_positive,pickle_out) 97 | pickle.dump(self.prob_depressive_tweet,pickle_out) 98 | pickle.dump(self.prob_positive_tweet,pickle_out) 99 | pickle_out.close() 100 | 101 | def classify(self, processed_message,method): 102 | 103 | pickle_in = open("data1.pickle","rb") 104 | prob_depressive = pickle.load(pickle_in) 105 | sum_tf_idf_depressive = pickle.load(pickle_in) 106 | prob_positive = pickle.load(pickle_in) 107 | sum_tf_idf_positive = pickle.load(pickle_in) 108 | prob_depressive_tweet = pickle.load(pickle_in) 109 | prob_positive_tweet = pickle.load(pickle_in) 110 | 111 | pickle_in = open("data2.pickle","rb") 112 | depressive_words = pickle.load(pickle_in) 113 | positive_words = pickle.load(pickle_in) 114 | 115 | pDepressive, pPositive = 0, 0. 116 | 117 | for word in processed_message: 118 | if word in prob_depressive: 119 | pDepressive += log(prob_depressive[word]) 120 | else: 121 | if method == 'tf-idf': 122 | pDepressive -= log(sum_tf_idf_depressive + len(list(prob_depressive.keys()))) 123 | else: 124 | pDepressive -= log(depressive_words + len(list(prob_depressive.keys()))) 125 | if word in prob_positive: 126 | pPositive += log(prob_positive[word]) 127 | else: 128 | if method == 'tf-idf': 129 | pPositive -= log(sum_tf_idf_positive + len(list(prob_positive.keys()))) 130 | else: 131 | pPositive -= log(positive_words + len(list(prob_positive.keys()))) 132 | pDepressive += log(prob_depressive_tweet) 133 | pPositive += log(prob_positive_tweet) 134 | return pDepressive >= pPositive 135 | 136 | def predict(self, testData,method): 137 | result = dict() 138 | for (i, message) in enumerate(testData): 139 | processed_message = process_message(message) 140 | result[i] = int(self.classify(processed_message,method)) 141 | return result 142 | 143 | def process_message(message, lower_case = True, stem = True, stop_words = True, gram = 2): 144 | if lower_case: 145 | message = message.lower() 146 | words = word_tokenize(message) 147 | words = [w for w in words if len(w) > 2] 148 | if gram > 1: 149 | w = [] 150 | for i in range(len(words) - gram + 1): 151 | w += [' '.join(words[i:i + gram])] 152 | return w 153 | if stop_words: 154 | sw = stopwords.words('english') 155 | words = [word for word in words if word not in sw] 156 | if stem: 157 | stemmer = PorterStemmer() 158 | words = [stemmer.stem(word) for word in words] 159 | return words -------------------------------------------------------------------------------- /__pycache__/TweetModel.cpython-36.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/__pycache__/TweetModel.cpython-36.pyc -------------------------------------------------------------------------------- /__pycache__/depression_detection_tweets.cpython-36.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/__pycache__/depression_detection_tweets.cpython-36.pyc -------------------------------------------------------------------------------- /__pycache__/models.cpython-36.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/__pycache__/models.cpython-36.pyc -------------------------------------------------------------------------------- /data1.pickle: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/data1.pickle -------------------------------------------------------------------------------- /data2.pickle: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/data2.pickle -------------------------------------------------------------------------------- /depression_detection_tweets.py: -------------------------------------------------------------------------------- 1 | import nltk 2 | nltk.download('punkt') 3 | from TweetModel import TweetClassifier,process_message 4 | from math import log, sqrt 5 | import pandas as pd 6 | import numpy as np 7 | import pickle 8 | 9 | class DepressionDetection: 10 | 11 | """# Loading the Data""" 12 | def __init__(self): 13 | self.tweets = pd.read_csv('dataset/tweets.csv') 14 | self.tweets.drop(['Unnamed: 0'], axis = 1, inplace = True) 15 | self.tweets['label'].value_counts() 16 | self.tweets.info() 17 | 18 | self.totalTweets = 8000 + 2314 19 | trainIndex, testIndex = list(), list() 20 | for i in range(self.tweets.shape[0]): 21 | if np.random.uniform(0, 1) < 0.98: 22 | trainIndex += [i] 23 | else: 24 | testIndex += [i] 25 | 26 | self.trainData = self.tweets.iloc[trainIndex] 27 | self.testData = self.tweets.iloc[testIndex] 28 | self.trainData['label'].value_counts() 29 | self.testData['label'].value_counts() 30 | 31 | def classify(processed_message,method): 32 | 33 | pickle_in = open("data1.pickle","rb") 34 | prob_depressive = pickle.load(pickle_in) 35 | sum_tf_idf_depressive = pickle.load(pickle_in) 36 | prob_positive = pickle.load(pickle_in) 37 | sum_tf_idf_positive = pickle.load(pickle_in) 38 | prob_depressive_tweet = pickle.load(pickle_in) 39 | prob_positive_tweet = pickle.load(pickle_in) 40 | 41 | pickle_in = open("data2.pickle","rb") 42 | depressive_words = pickle.load(pickle_in) 43 | positive_words = pickle.load(pickle_in) 44 | 45 | pDepressive, pPositive = 0, 0. 46 | 47 | for word in processed_message: 48 | if word in prob_depressive: 49 | pDepressive += log(prob_depressive[word]) 50 | else: 51 | if method == 'tf-idf': 52 | pDepressive -= log(sum_tf_idf_depressive + len(list(prob_depressive.keys()))) 53 | else: 54 | pDepressive -= log(depressive_words + len(list(prob_depressive.keys()))) 55 | if word in prob_positive: 56 | pPositive += log(prob_positive[word]) 57 | else: 58 | if method == 'tf-idf': 59 | pPositive -= log(sum_tf_idf_positive + len(list(prob_positive.keys()))) 60 | else: 61 | pPositive -= log(positive_words + len(list(prob_positive.keys()))) 62 | pDepressive += log(prob_depressive_tweet) 63 | pPositive += log(prob_positive_tweet) 64 | if pDepressive >= pPositive: 65 | return 1 66 | else: 67 | return 0 68 | 69 | def metrics(self,labels, predictions): 70 | true_pos, true_neg, false_pos, false_neg = 0, 0, 0, 0 71 | for i in range(len(labels)): 72 | true_pos += int(labels.iloc[i] == 1 and predictions[i] == 1) 73 | true_neg += int(labels.iloc[i] == 0 and predictions[i] == 0) 74 | false_pos += int(labels.iloc[i] == 0 and predictions[i] == 1) 75 | false_neg += int(labels.iloc[i] == 1 and predictions[i] == 0) 76 | precision = true_pos / (true_pos + false_pos) 77 | recall = true_pos / (true_pos + false_neg) 78 | Fscore = 2 * precision * recall / (precision + recall) 79 | accuracy = (true_pos + true_neg) / (true_pos + true_neg + false_pos + false_neg) 80 | 81 | print("Precision: ", precision) 82 | print("Recall: ", recall) 83 | print("F-score: ", Fscore) 84 | print("Accuracy: ", accuracy) 85 | 86 | 87 | if __name__ == "__main__": 88 | 89 | obj = DepressionDetection() 90 | sc_tf_idf = TweetClassifier(obj.trainData, 'tf-idf') 91 | #sc_tf_idf.train() 92 | preds_tf_idf = sc_tf_idf.predict(obj.testData['message'],'tf-idf') 93 | obj.metrics(obj.testData['label'], preds_tf_idf) 94 | 95 | sc_bow = TweetClassifier(obj.trainData, 'bow') 96 | #sc_bow.train() 97 | preds_bow = sc_bow.predict(obj.testData['message'],'bow') 98 | obj.metrics(obj.testData['label'], preds_bow) 99 | 100 | """# Predictions with TF-IDF 101 | # Depressive Tweets 102 | """ 103 | pm = process_message('Extreme sadness, lack of energy, hopelessness') 104 | print(f"Extreme sadness, lack of energy, hopelessness : {sc_tf_idf.classify(pm,'tf-idf')}") 105 | """# Positive Tweets""" 106 | pm = process_message('Loving how me and my lovely partner is talking about what we want.') 107 | print(f"Loving how me and my lovely partner is talking about what we want. : {sc_tf_idf.classify(pm,'tf-idf')}") 108 | 109 | 110 | 111 | """# Predictions with Bag-of-Words (BOW) 112 | # Depressive tweets """ 113 | pm = process_message('Hi hello depression and anxiety are the worst') 114 | sc_bow.classify(pm,'bow') 115 | """# Positive Tweets""" 116 | pm = process_message('Loving how me and my lovely partner is talking about what we want.') 117 | sc_bow.classify(pm,'bow') 118 | 119 | -------------------------------------------------------------------------------- /models.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import pandas as pd 3 | from sklearn.preprocessing import LabelEncoder 4 | from sklearn.model_selection import train_test_split 5 | from sklearn.svm import SVC 6 | from sklearn.tree import DecisionTreeClassifier 7 | from sklearn.ensemble import RandomForestClassifier 8 | from sklearn.naive_bayes import GaussianNB 9 | from sklearn.neighbors import KNeighborsClassifier 10 | from sklearn.metrics import confusion_matrix 11 | 12 | 13 | class Model: 14 | 15 | def __init__(self): 16 | self.name = '' 17 | path = 'dataset/depressionDataset.csv' 18 | df = pd.read_csv(path) 19 | df = df[['q1', 'q2', 'q3', 'q4', 'q5', 'q6', 'q7', 'q8', 'q9', 'q10', 'class']] 20 | 21 | # Handling Missing Data 22 | df['q1'] = df['q1'].fillna(df['q1'].mode()[0]) 23 | df['q2'] = df['q2'].fillna(df['q2'].mode()[0]) 24 | df['q3'] = df['q3'].fillna(df['q3'].mode()[0]) 25 | df['q4'] = df['q4'].fillna(df['q4'].mode()[0]) 26 | df['q5'] = df['q5'].fillna(df['q5'].mode()[0]) 27 | df['q6'] = df['q6'].fillna(df['q6'].mode()[0]) 28 | df['q7'] = df['q7'].fillna(df['q7'].mode()[0]) 29 | df['q8'] = df['q8'].fillna(df['q8'].mode()[0]) 30 | df['q9'] = df['q9'].fillna(df['q9'].mode()[0]) 31 | df['q10'] = df['q10'].fillna(df['q10'].mode()[0]) 32 | df['class'] = df['class'].fillna(df['class'].mode()[0]) 33 | 34 | self.split_data(df) 35 | 36 | def split_data(self,df): 37 | x = df.iloc[:, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]].values 38 | y = df.iloc[:, 10].values 39 | x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=24) 40 | self.x_train = x_train 41 | self.x_test = x_test 42 | self.y_train = y_train 43 | self.y_test = y_test 44 | 45 | def svm_classifier(self): 46 | self.name = 'Svm Classifier' 47 | classifier = SVC() 48 | return classifier.fit(self.x_train, self.y_train) 49 | 50 | def decisionTree_classifier(self): 51 | self.name = 'Decision tree Classifier' 52 | classifier = DecisionTreeClassifier() 53 | return classifier.fit(self.x_train,self.y_train) 54 | 55 | 56 | def randomforest_classifier(self): 57 | self.name = 'Random Forest Classifier' 58 | classifier = RandomForestClassifier() 59 | return classifier.fit(self.x_train,self.y_train) 60 | 61 | def naiveBayes_classifier(self): 62 | self.name = 'Naive Bayes Classifier' 63 | classifier = GaussianNB() 64 | return classifier.fit(self.x_train,self.y_train) 65 | 66 | 67 | def knn_classifier(self): 68 | self.name = 'Knn Classifier' 69 | classifier = KNeighborsClassifier() 70 | return classifier.fit(self.x_train,self.y_train) 71 | 72 | 73 | def accuracy(self,model): 74 | predictions = model.predict(self.x_test) 75 | cm = confusion_matrix(self.y_test, predictions) 76 | accuracy = (cm[0][0] + cm[1][1]) / (cm[0][0] + cm[0][1] + cm[1][0] + cm[1][1]) 77 | print(f"{self.name} has accuracy of {accuracy *100} % ") 78 | 79 | if __name__ == '__main__': 80 | model = Model() 81 | model.accuracy(model.svm_classifier()) 82 | model.accuracy(model.decisionTree_classifier()) 83 | model.accuracy(model.randomforest_classifier()) 84 | model.accuracy(model.naiveBayes_classifier()) 85 | model.accuracy(model.knn_classifier()) 86 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | absl-py==0.9.0 2 | annoy==1.14.0 3 | appdirs==1.4.3 4 | asn1crypto==0.24.0 5 | astor==0.8.1 6 | backports.functools-lru-cache==1.6.1 7 | backports.weakref==1.0.post1 8 | bidaf-keras==1.0.0 9 | cassandra-driver==3.19.0 10 | cassandra-pylib==0.0.0 11 | certifi==2020.6.20 12 | chardet==3.0.4 13 | chrome-driver==2.26.0.1 14 | click==7.1.2 15 | cloudpickle==1.3.0 16 | configparser==4.0.2 17 | contextlib2==0.6.0.post1 18 | cryptography==2.1.4 19 | cycler==0.10.0 20 | decorator==4.4.2 21 | distlib==0.3.0 22 | enum34==1.1.6 23 | fasteners==0.14.1 24 | filelock==3.0.12 25 | Flask==1.1.2 26 | funcsigs==1.0.2 27 | future==0.18.2 28 | futures==3.3.0 29 | gast==0.3.2 30 | google-pasta==0.1.8 31 | grpcio==1.26.0 32 | h5py==2.10.0 33 | idna==2.10 34 | importlib-metadata==1.5.0 35 | importlib-resources==1.3.1 36 | ipaddress==1.0.17 37 | itsdangerous==1.1.0 38 | Jinja2==2.11.2 39 | Keras==2.3.1 40 | Keras-Applications==1.0.8 41 | Keras-Preprocessing==1.1.0 42 | keyring==10.6.0 43 | keyrings.alt==3.0 44 | kiwisolver==1.1.0 45 | lz4==2.1.2 46 | Markdown==3.1.1 47 | MarkupSafe==1.1.1 48 | matplotlib==2.2.5 49 | mercurial==4.5.3 50 | mock==3.0.5 51 | monotonic==1.5 52 | mysql-connector-python==2.1.6 53 | mysql-utilities==1.6.4 54 | networkx==2.2 55 | nltk==3.4.5 56 | numpy==1.16.6 57 | opencv-contrib-python==4.2.0.32 58 | pandas==0.24.2 59 | paramiko==2.0.0 60 | pathlib2==2.3.5 61 | pexpect==4.2.1 62 | Pillow==6.2.2 63 | protobuf==3.11.2 64 | pyasn1==0.4.2 65 | pycrypto==2.6.1 66 | pyflakes==1.6.0 67 | pygobject==3.26.1 68 | pymagnitude==0.1.120 69 | pyodbc==4.0.17 70 | pyparsing==2.4.6 71 | pysqlite==2.7.0 72 | python-dateutil==2.8.1 73 | pytz==2019.3 74 | PyWavelets==1.0.3 75 | pyxdg==0.25 76 | PyYAML==5.2 77 | requests==2.24.0 78 | scandir==1.10.0 79 | scikit-fuzzy==0.4.2 80 | scikit-image==0.14.5 81 | scikit-learn==0.20.4 82 | scipy==1.2.3 83 | SecretStorage==2.3.1 84 | selenium==3.141.0 85 | singledispatch==3.4.0.3 86 | six==1.14.0 87 | sklearn==0.0 88 | subprocess32==3.5.4 89 | tensorboard==1.14.0 90 | tensorflow==1.14.0 91 | tensorflow-estimator==1.14.0 92 | termcolor==1.1.0 93 | torch==0.4.1 94 | tqdm==4.41.0 95 | typing==3.7.4.1 96 | urllib3==1.25.10 97 | virtualenv==20.0.10 98 | Werkzeug==1.0.1 99 | wrapt==1.11.2 100 | xlrd==1.2.0 101 | XlsxWriter==1.2.5 102 | xxhash==1.3.0 103 | zipp==1.2.0 104 | -------------------------------------------------------------------------------- /server.py: -------------------------------------------------------------------------------- 1 | from flask import Flask, request, render_template,flash,redirect,session,abort,jsonify 2 | from models import Model 3 | from depression_detection_tweets import DepressionDetection 4 | from TweetModel import process_message 5 | import os 6 | 7 | app = Flask(__name__) 8 | 9 | 10 | @app.route('/') 11 | def root(): 12 | if not session.get('logged_in'): 13 | return render_template('login.html') 14 | else: 15 | return render_template('index.html') 16 | 17 | 18 | @app.route('/login', methods=['POST']) 19 | def do_admin_login(): 20 | if request.form['password'] == 'admin' and request.form['username'] == 'admin': 21 | session['logged_in'] = True 22 | else : 23 | flash('wrong password!') 24 | return root() 25 | 26 | @app.route("/logout") 27 | def logout(): 28 | session['logged_in'] = False 29 | return root() 30 | 31 | 32 | @app.route("/sentiment") 33 | def sentiment(): 34 | return render_template("sentiment.html") 35 | 36 | 37 | @app.route("/predictSentiment", methods=["POST"]) 38 | def predictSentiment(): 39 | message = request.form['form10'] 40 | pm = process_message(message) 41 | result = DepressionDetection.classify(pm, 'bow') or DepressionDetection.classify(pm, 'tf-idf') 42 | return render_template("tweetresult.html",result=result) 43 | 44 | 45 | @app.route('/predict', methods=["POST"]) 46 | def predict(): 47 | q1 = int(request.form['a1']) 48 | q2 = int(request.form['a2']) 49 | q3 = int(request.form['a3']) 50 | q4 = int(request.form['a4']) 51 | q5 = int(request.form['a5']) 52 | q6 = int(request.form['a6']) 53 | q7 = int(request.form['a7']) 54 | q8 = int(request.form['a8']) 55 | q9 = int(request.form['a9']) 56 | q10 = int(request.form['a10']) 57 | 58 | values = [q1, q2, q3, q4, q5, q6, q7, q8, q9, q10] 59 | model = Model() 60 | classifier = model.svm_classifier() 61 | prediction = classifier.predict([values]) 62 | if prediction[0] == 0: 63 | result = 'Your Depression test result : No Depression' 64 | if prediction[0] == 1: 65 | result = 'Your Depression test result : Mild Depression' 66 | if prediction[0] == 2: 67 | result = 'Your Depression test result : Moderate Depression' 68 | if prediction[0] == 3: 69 | result = 'Your Depression test result : Moderately severe Depression' 70 | if prediction[0] == 4: 71 | result = 'Your Depression test result : Severe Depression' 72 | return render_template("result.html", result=result) 73 | 74 | app.secret_key = os.urandom(12) 75 | app.run(port=5987, host='0.0.0.0', debug=True) -------------------------------------------------------------------------------- /static/css/font-awesome.min.css: -------------------------------------------------------------------------------- 1 | /*! 2 | * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome 3 | * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) 4 | */@font-face{font-family:'FontAwesome';src:url('../fonts/fontawesome-webfont.eot?v=4.7.0');src:url('../fonts/fontawesome-webfont.eot?#iefix&v=4.7.0') format('embedded-opentype'),url('../fonts/fontawesome-webfont.woff2?v=4.7.0') format('woff2'),url('../fonts/fontawesome-webfont.woff?v=4.7.0') format('woff'),url('../fonts/fontawesome-webfont.ttf?v=4.7.0') format('truetype'),url('../fonts/fontawesome-webfont.svg?v=4.7.0#fontawesomeregular') format('svg');font-weight:normal;font-style:normal}.fa{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571429em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14285714em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14285714em;width:2.14285714em;top:.14285714em;text-align:center}.fa-li.fa-lg{left:-1.85714286em}.fa-border{padding:.2em .25em .15em;border:solid .08em #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa.fa-pull-left{margin-right:.3em}.fa.fa-pull-right{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left{margin-right:.3em}.fa.pull-right{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s infinite linear;animation:fa-spin 2s infinite linear}.fa-pulse{-webkit-animation:fa-spin 1s infinite steps(8);animation:fa-spin 1s infinite steps(8)}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scale(-1, 1);-ms-transform:scale(-1, 1);transform:scale(-1, 1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scale(1, -1);-ms-transform:scale(1, -1);transform:scale(1, -1)}:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270,:root .fa-flip-horizontal,:root .fa-flip-vertical{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:"\f000"}.fa-music:before{content:"\f001"}.fa-search:before{content:"\f002"}.fa-envelope-o:before{content:"\f003"}.fa-heart:before{content:"\f004"}.fa-star:before{content:"\f005"}.fa-star-o:before{content:"\f006"}.fa-user:before{content:"\f007"}.fa-film:before{content:"\f008"}.fa-th-large:before{content:"\f009"}.fa-th:before{content:"\f00a"}.fa-th-list:before{content:"\f00b"}.fa-check:before{content:"\f00c"}.fa-remove:before,.fa-close:before,.fa-times:before{content:"\f00d"}.fa-search-plus:before{content:"\f00e"}.fa-search-minus:before{content:"\f010"}.fa-power-off:before{content:"\f011"}.fa-signal:before{content:"\f012"}.fa-gear:before,.fa-cog:before{content:"\f013"}.fa-trash-o:before{content:"\f014"}.fa-home:before{content:"\f015"}.fa-file-o:before{content:"\f016"}.fa-clock-o:before{content:"\f017"}.fa-road:before{content:"\f018"}.fa-download:before{content:"\f019"}.fa-arrow-circle-o-down:before{content:"\f01a"}.fa-arrow-circle-o-up:before{content:"\f01b"}.fa-inbox:before{content:"\f01c"}.fa-play-circle-o:before{content:"\f01d"}.fa-rotate-right:before,.fa-repeat:before{content:"\f01e"}.fa-refresh:before{content:"\f021"}.fa-list-alt:before{content:"\f022"}.fa-lock:before{content:"\f023"}.fa-flag:before{content:"\f024"}.fa-headphones:before{content:"\f025"}.fa-volume-off:before{content:"\f026"}.fa-volume-down:before{content:"\f027"}.fa-volume-up:before{content:"\f028"}.fa-qrcode:before{content:"\f029"}.fa-barcode:before{content:"\f02a"}.fa-tag:before{content:"\f02b"}.fa-tags:before{content:"\f02c"}.fa-book:before{content:"\f02d"}.fa-bookmark:before{content:"\f02e"}.fa-print:before{content:"\f02f"}.fa-camera:before{content:"\f030"}.fa-font:before{content:"\f031"}.fa-bold:before{content:"\f032"}.fa-italic:before{content:"\f033"}.fa-text-height:before{content:"\f034"}.fa-text-width:before{content:"\f035"}.fa-align-left:before{content:"\f036"}.fa-align-center:before{content:"\f037"}.fa-align-right:before{content:"\f038"}.fa-align-justify:before{content:"\f039"}.fa-list:before{content:"\f03a"}.fa-dedent:before,.fa-outdent:before{content:"\f03b"}.fa-indent:before{content:"\f03c"}.fa-video-camera:before{content:"\f03d"}.fa-photo:before,.fa-image:before,.fa-picture-o:before{content:"\f03e"}.fa-pencil:before{content:"\f040"}.fa-map-marker:before{content:"\f041"}.fa-adjust:before{content:"\f042"}.fa-tint:before{content:"\f043"}.fa-edit:before,.fa-pencil-square-o:before{content:"\f044"}.fa-share-square-o:before{content:"\f045"}.fa-check-square-o:before{content:"\f046"}.fa-arrows:before{content:"\f047"}.fa-step-backward:before{content:"\f048"}.fa-fast-backward:before{content:"\f049"}.fa-backward:before{content:"\f04a"}.fa-play:before{content:"\f04b"}.fa-pause:before{content:"\f04c"}.fa-stop:before{content:"\f04d"}.fa-forward:before{content:"\f04e"}.fa-fast-forward:before{content:"\f050"}.fa-step-forward:before{content:"\f051"}.fa-eject:before{content:"\f052"}.fa-chevron-left:before{content:"\f053"}.fa-chevron-right:before{content:"\f054"}.fa-plus-circle:before{content:"\f055"}.fa-minus-circle:before{content:"\f056"}.fa-times-circle:before{content:"\f057"}.fa-check-circle:before{content:"\f058"}.fa-question-circle:before{content:"\f059"}.fa-info-circle:before{content:"\f05a"}.fa-crosshairs:before{content:"\f05b"}.fa-times-circle-o:before{content:"\f05c"}.fa-check-circle-o:before{content:"\f05d"}.fa-ban:before{content:"\f05e"}.fa-arrow-left:before{content:"\f060"}.fa-arrow-right:before{content:"\f061"}.fa-arrow-up:before{content:"\f062"}.fa-arrow-down:before{content:"\f063"}.fa-mail-forward:before,.fa-share:before{content:"\f064"}.fa-expand:before{content:"\f065"}.fa-compress:before{content:"\f066"}.fa-plus:before{content:"\f067"}.fa-minus:before{content:"\f068"}.fa-asterisk:before{content:"\f069"}.fa-exclamation-circle:before{content:"\f06a"}.fa-gift:before{content:"\f06b"}.fa-leaf:before{content:"\f06c"}.fa-fire:before{content:"\f06d"}.fa-eye:before{content:"\f06e"}.fa-eye-slash:before{content:"\f070"}.fa-warning:before,.fa-exclamation-triangle:before{content:"\f071"}.fa-plane:before{content:"\f072"}.fa-calendar:before{content:"\f073"}.fa-random:before{content:"\f074"}.fa-comment:before{content:"\f075"}.fa-magnet:before{content:"\f076"}.fa-chevron-up:before{content:"\f077"}.fa-chevron-down:before{content:"\f078"}.fa-retweet:before{content:"\f079"}.fa-shopping-cart:before{content:"\f07a"}.fa-folder:before{content:"\f07b"}.fa-folder-open:before{content:"\f07c"}.fa-arrows-v:before{content:"\f07d"}.fa-arrows-h:before{content:"\f07e"}.fa-bar-chart-o:before,.fa-bar-chart:before{content:"\f080"}.fa-twitter-square:before{content:"\f081"}.fa-facebook-square:before{content:"\f082"}.fa-camera-retro:before{content:"\f083"}.fa-key:before{content:"\f084"}.fa-gears:before,.fa-cogs:before{content:"\f085"}.fa-comments:before{content:"\f086"}.fa-thumbs-o-up:before{content:"\f087"}.fa-thumbs-o-down:before{content:"\f088"}.fa-star-half:before{content:"\f089"}.fa-heart-o:before{content:"\f08a"}.fa-sign-out:before{content:"\f08b"}.fa-linkedin-square:before{content:"\f08c"}.fa-thumb-tack:before{content:"\f08d"}.fa-external-link:before{content:"\f08e"}.fa-sign-in:before{content:"\f090"}.fa-trophy:before{content:"\f091"}.fa-github-square:before{content:"\f092"}.fa-upload:before{content:"\f093"}.fa-lemon-o:before{content:"\f094"}.fa-phone:before{content:"\f095"}.fa-square-o:before{content:"\f096"}.fa-bookmark-o:before{content:"\f097"}.fa-phone-square:before{content:"\f098"}.fa-twitter:before{content:"\f099"}.fa-facebook-f:before,.fa-facebook:before{content:"\f09a"}.fa-github:before{content:"\f09b"}.fa-unlock:before{content:"\f09c"}.fa-credit-card:before{content:"\f09d"}.fa-feed:before,.fa-rss:before{content:"\f09e"}.fa-hdd-o:before{content:"\f0a0"}.fa-bullhorn:before{content:"\f0a1"}.fa-bell:before{content:"\f0f3"}.fa-certificate:before{content:"\f0a3"}.fa-hand-o-right:before{content:"\f0a4"}.fa-hand-o-left:before{content:"\f0a5"}.fa-hand-o-up:before{content:"\f0a6"}.fa-hand-o-down:before{content:"\f0a7"}.fa-arrow-circle-left:before{content:"\f0a8"}.fa-arrow-circle-right:before{content:"\f0a9"}.fa-arrow-circle-up:before{content:"\f0aa"}.fa-arrow-circle-down:before{content:"\f0ab"}.fa-globe:before{content:"\f0ac"}.fa-wrench:before{content:"\f0ad"}.fa-tasks:before{content:"\f0ae"}.fa-filter:before{content:"\f0b0"}.fa-briefcase:before{content:"\f0b1"}.fa-arrows-alt:before{content:"\f0b2"}.fa-group:before,.fa-users:before{content:"\f0c0"}.fa-chain:before,.fa-link:before{content:"\f0c1"}.fa-cloud:before{content:"\f0c2"}.fa-flask:before{content:"\f0c3"}.fa-cut:before,.fa-scissors:before{content:"\f0c4"}.fa-copy:before,.fa-files-o:before{content:"\f0c5"}.fa-paperclip:before{content:"\f0c6"}.fa-save:before,.fa-floppy-o:before{content:"\f0c7"}.fa-square:before{content:"\f0c8"}.fa-navicon:before,.fa-reorder:before,.fa-bars:before{content:"\f0c9"}.fa-list-ul:before{content:"\f0ca"}.fa-list-ol:before{content:"\f0cb"}.fa-strikethrough:before{content:"\f0cc"}.fa-underline:before{content:"\f0cd"}.fa-table:before{content:"\f0ce"}.fa-magic:before{content:"\f0d0"}.fa-truck:before{content:"\f0d1"}.fa-pinterest:before{content:"\f0d2"}.fa-pinterest-square:before{content:"\f0d3"}.fa-google-plus-square:before{content:"\f0d4"}.fa-google-plus:before{content:"\f0d5"}.fa-money:before{content:"\f0d6"}.fa-caret-down:before{content:"\f0d7"}.fa-caret-up:before{content:"\f0d8"}.fa-caret-left:before{content:"\f0d9"}.fa-caret-right:before{content:"\f0da"}.fa-columns:before{content:"\f0db"}.fa-unsorted:before,.fa-sort:before{content:"\f0dc"}.fa-sort-down:before,.fa-sort-desc:before{content:"\f0dd"}.fa-sort-up:before,.fa-sort-asc:before{content:"\f0de"}.fa-envelope:before{content:"\f0e0"}.fa-linkedin:before{content:"\f0e1"}.fa-rotate-left:before,.fa-undo:before{content:"\f0e2"}.fa-legal:before,.fa-gavel:before{content:"\f0e3"}.fa-dashboard:before,.fa-tachometer:before{content:"\f0e4"}.fa-comment-o:before{content:"\f0e5"}.fa-comments-o:before{content:"\f0e6"}.fa-flash:before,.fa-bolt:before{content:"\f0e7"}.fa-sitemap:before{content:"\f0e8"}.fa-umbrella:before{content:"\f0e9"}.fa-paste:before,.fa-clipboard:before{content:"\f0ea"}.fa-lightbulb-o:before{content:"\f0eb"}.fa-exchange:before{content:"\f0ec"}.fa-cloud-download:before{content:"\f0ed"}.fa-cloud-upload:before{content:"\f0ee"}.fa-user-md:before{content:"\f0f0"}.fa-stethoscope:before{content:"\f0f1"}.fa-suitcase:before{content:"\f0f2"}.fa-bell-o:before{content:"\f0a2"}.fa-coffee:before{content:"\f0f4"}.fa-cutlery:before{content:"\f0f5"}.fa-file-text-o:before{content:"\f0f6"}.fa-building-o:before{content:"\f0f7"}.fa-hospital-o:before{content:"\f0f8"}.fa-ambulance:before{content:"\f0f9"}.fa-medkit:before{content:"\f0fa"}.fa-fighter-jet:before{content:"\f0fb"}.fa-beer:before{content:"\f0fc"}.fa-h-square:before{content:"\f0fd"}.fa-plus-square:before{content:"\f0fe"}.fa-angle-double-left:before{content:"\f100"}.fa-angle-double-right:before{content:"\f101"}.fa-angle-double-up:before{content:"\f102"}.fa-angle-double-down:before{content:"\f103"}.fa-angle-left:before{content:"\f104"}.fa-angle-right:before{content:"\f105"}.fa-angle-up:before{content:"\f106"}.fa-angle-down:before{content:"\f107"}.fa-desktop:before{content:"\f108"}.fa-laptop:before{content:"\f109"}.fa-tablet:before{content:"\f10a"}.fa-mobile-phone:before,.fa-mobile:before{content:"\f10b"}.fa-circle-o:before{content:"\f10c"}.fa-quote-left:before{content:"\f10d"}.fa-quote-right:before{content:"\f10e"}.fa-spinner:before{content:"\f110"}.fa-circle:before{content:"\f111"}.fa-mail-reply:before,.fa-reply:before{content:"\f112"}.fa-github-alt:before{content:"\f113"}.fa-folder-o:before{content:"\f114"}.fa-folder-open-o:before{content:"\f115"}.fa-smile-o:before{content:"\f118"}.fa-frown-o:before{content:"\f119"}.fa-meh-o:before{content:"\f11a"}.fa-gamepad:before{content:"\f11b"}.fa-keyboard-o:before{content:"\f11c"}.fa-flag-o:before{content:"\f11d"}.fa-flag-checkered:before{content:"\f11e"}.fa-terminal:before{content:"\f120"}.fa-code:before{content:"\f121"}.fa-mail-reply-all:before,.fa-reply-all:before{content:"\f122"}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:"\f123"}.fa-location-arrow:before{content:"\f124"}.fa-crop:before{content:"\f125"}.fa-code-fork:before{content:"\f126"}.fa-unlink:before,.fa-chain-broken:before{content:"\f127"}.fa-question:before{content:"\f128"}.fa-info:before{content:"\f129"}.fa-exclamation:before{content:"\f12a"}.fa-superscript:before{content:"\f12b"}.fa-subscript:before{content:"\f12c"}.fa-eraser:before{content:"\f12d"}.fa-puzzle-piece:before{content:"\f12e"}.fa-microphone:before{content:"\f130"}.fa-microphone-slash:before{content:"\f131"}.fa-shield:before{content:"\f132"}.fa-calendar-o:before{content:"\f133"}.fa-fire-extinguisher:before{content:"\f134"}.fa-rocket:before{content:"\f135"}.fa-maxcdn:before{content:"\f136"}.fa-chevron-circle-left:before{content:"\f137"}.fa-chevron-circle-right:before{content:"\f138"}.fa-chevron-circle-up:before{content:"\f139"}.fa-chevron-circle-down:before{content:"\f13a"}.fa-html5:before{content:"\f13b"}.fa-css3:before{content:"\f13c"}.fa-anchor:before{content:"\f13d"}.fa-unlock-alt:before{content:"\f13e"}.fa-bullseye:before{content:"\f140"}.fa-ellipsis-h:before{content:"\f141"}.fa-ellipsis-v:before{content:"\f142"}.fa-rss-square:before{content:"\f143"}.fa-play-circle:before{content:"\f144"}.fa-ticket:before{content:"\f145"}.fa-minus-square:before{content:"\f146"}.fa-minus-square-o:before{content:"\f147"}.fa-level-up:before{content:"\f148"}.fa-level-down:before{content:"\f149"}.fa-check-square:before{content:"\f14a"}.fa-pencil-square:before{content:"\f14b"}.fa-external-link-square:before{content:"\f14c"}.fa-share-square:before{content:"\f14d"}.fa-compass:before{content:"\f14e"}.fa-toggle-down:before,.fa-caret-square-o-down:before{content:"\f150"}.fa-toggle-up:before,.fa-caret-square-o-up:before{content:"\f151"}.fa-toggle-right:before,.fa-caret-square-o-right:before{content:"\f152"}.fa-euro:before,.fa-eur:before{content:"\f153"}.fa-gbp:before{content:"\f154"}.fa-dollar:before,.fa-usd:before{content:"\f155"}.fa-rupee:before,.fa-inr:before{content:"\f156"}.fa-cny:before,.fa-rmb:before,.fa-yen:before,.fa-jpy:before{content:"\f157"}.fa-ruble:before,.fa-rouble:before,.fa-rub:before{content:"\f158"}.fa-won:before,.fa-krw:before{content:"\f159"}.fa-bitcoin:before,.fa-btc:before{content:"\f15a"}.fa-file:before{content:"\f15b"}.fa-file-text:before{content:"\f15c"}.fa-sort-alpha-asc:before{content:"\f15d"}.fa-sort-alpha-desc:before{content:"\f15e"}.fa-sort-amount-asc:before{content:"\f160"}.fa-sort-amount-desc:before{content:"\f161"}.fa-sort-numeric-asc:before{content:"\f162"}.fa-sort-numeric-desc:before{content:"\f163"}.fa-thumbs-up:before{content:"\f164"}.fa-thumbs-down:before{content:"\f165"}.fa-youtube-square:before{content:"\f166"}.fa-youtube:before{content:"\f167"}.fa-xing:before{content:"\f168"}.fa-xing-square:before{content:"\f169"}.fa-youtube-play:before{content:"\f16a"}.fa-dropbox:before{content:"\f16b"}.fa-stack-overflow:before{content:"\f16c"}.fa-instagram:before{content:"\f16d"}.fa-flickr:before{content:"\f16e"}.fa-adn:before{content:"\f170"}.fa-bitbucket:before{content:"\f171"}.fa-bitbucket-square:before{content:"\f172"}.fa-tumblr:before{content:"\f173"}.fa-tumblr-square:before{content:"\f174"}.fa-long-arrow-down:before{content:"\f175"}.fa-long-arrow-up:before{content:"\f176"}.fa-long-arrow-left:before{content:"\f177"}.fa-long-arrow-right:before{content:"\f178"}.fa-apple:before{content:"\f179"}.fa-windows:before{content:"\f17a"}.fa-android:before{content:"\f17b"}.fa-linux:before{content:"\f17c"}.fa-dribbble:before{content:"\f17d"}.fa-skype:before{content:"\f17e"}.fa-foursquare:before{content:"\f180"}.fa-trello:before{content:"\f181"}.fa-female:before{content:"\f182"}.fa-male:before{content:"\f183"}.fa-gittip:before,.fa-gratipay:before{content:"\f184"}.fa-sun-o:before{content:"\f185"}.fa-moon-o:before{content:"\f186"}.fa-archive:before{content:"\f187"}.fa-bug:before{content:"\f188"}.fa-vk:before{content:"\f189"}.fa-weibo:before{content:"\f18a"}.fa-renren:before{content:"\f18b"}.fa-pagelines:before{content:"\f18c"}.fa-stack-exchange:before{content:"\f18d"}.fa-arrow-circle-o-right:before{content:"\f18e"}.fa-arrow-circle-o-left:before{content:"\f190"}.fa-toggle-left:before,.fa-caret-square-o-left:before{content:"\f191"}.fa-dot-circle-o:before{content:"\f192"}.fa-wheelchair:before{content:"\f193"}.fa-vimeo-square:before{content:"\f194"}.fa-turkish-lira:before,.fa-try:before{content:"\f195"}.fa-plus-square-o:before{content:"\f196"}.fa-space-shuttle:before{content:"\f197"}.fa-slack:before{content:"\f198"}.fa-envelope-square:before{content:"\f199"}.fa-wordpress:before{content:"\f19a"}.fa-openid:before{content:"\f19b"}.fa-institution:before,.fa-bank:before,.fa-university:before{content:"\f19c"}.fa-mortar-board:before,.fa-graduation-cap:before{content:"\f19d"}.fa-yahoo:before{content:"\f19e"}.fa-google:before{content:"\f1a0"}.fa-reddit:before{content:"\f1a1"}.fa-reddit-square:before{content:"\f1a2"}.fa-stumbleupon-circle:before{content:"\f1a3"}.fa-stumbleupon:before{content:"\f1a4"}.fa-delicious:before{content:"\f1a5"}.fa-digg:before{content:"\f1a6"}.fa-pied-piper-pp:before{content:"\f1a7"}.fa-pied-piper-alt:before{content:"\f1a8"}.fa-drupal:before{content:"\f1a9"}.fa-joomla:before{content:"\f1aa"}.fa-language:before{content:"\f1ab"}.fa-fax:before{content:"\f1ac"}.fa-building:before{content:"\f1ad"}.fa-child:before{content:"\f1ae"}.fa-paw:before{content:"\f1b0"}.fa-spoon:before{content:"\f1b1"}.fa-cube:before{content:"\f1b2"}.fa-cubes:before{content:"\f1b3"}.fa-behance:before{content:"\f1b4"}.fa-behance-square:before{content:"\f1b5"}.fa-steam:before{content:"\f1b6"}.fa-steam-square:before{content:"\f1b7"}.fa-recycle:before{content:"\f1b8"}.fa-automobile:before,.fa-car:before{content:"\f1b9"}.fa-cab:before,.fa-taxi:before{content:"\f1ba"}.fa-tree:before{content:"\f1bb"}.fa-spotify:before{content:"\f1bc"}.fa-deviantart:before{content:"\f1bd"}.fa-soundcloud:before{content:"\f1be"}.fa-database:before{content:"\f1c0"}.fa-file-pdf-o:before{content:"\f1c1"}.fa-file-word-o:before{content:"\f1c2"}.fa-file-excel-o:before{content:"\f1c3"}.fa-file-powerpoint-o:before{content:"\f1c4"}.fa-file-photo-o:before,.fa-file-picture-o:before,.fa-file-image-o:before{content:"\f1c5"}.fa-file-zip-o:before,.fa-file-archive-o:before{content:"\f1c6"}.fa-file-sound-o:before,.fa-file-audio-o:before{content:"\f1c7"}.fa-file-movie-o:before,.fa-file-video-o:before{content:"\f1c8"}.fa-file-code-o:before{content:"\f1c9"}.fa-vine:before{content:"\f1ca"}.fa-codepen:before{content:"\f1cb"}.fa-jsfiddle:before{content:"\f1cc"}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-saver:before,.fa-support:before,.fa-life-ring:before{content:"\f1cd"}.fa-circle-o-notch:before{content:"\f1ce"}.fa-ra:before,.fa-resistance:before,.fa-rebel:before{content:"\f1d0"}.fa-ge:before,.fa-empire:before{content:"\f1d1"}.fa-git-square:before{content:"\f1d2"}.fa-git:before{content:"\f1d3"}.fa-y-combinator-square:before,.fa-yc-square:before,.fa-hacker-news:before{content:"\f1d4"}.fa-tencent-weibo:before{content:"\f1d5"}.fa-qq:before{content:"\f1d6"}.fa-wechat:before,.fa-weixin:before{content:"\f1d7"}.fa-send:before,.fa-paper-plane:before{content:"\f1d8"}.fa-send-o:before,.fa-paper-plane-o:before{content:"\f1d9"}.fa-history:before{content:"\f1da"}.fa-circle-thin:before{content:"\f1db"}.fa-header:before{content:"\f1dc"}.fa-paragraph:before{content:"\f1dd"}.fa-sliders:before{content:"\f1de"}.fa-share-alt:before{content:"\f1e0"}.fa-share-alt-square:before{content:"\f1e1"}.fa-bomb:before{content:"\f1e2"}.fa-soccer-ball-o:before,.fa-futbol-o:before{content:"\f1e3"}.fa-tty:before{content:"\f1e4"}.fa-binoculars:before{content:"\f1e5"}.fa-plug:before{content:"\f1e6"}.fa-slideshare:before{content:"\f1e7"}.fa-twitch:before{content:"\f1e8"}.fa-yelp:before{content:"\f1e9"}.fa-newspaper-o:before{content:"\f1ea"}.fa-wifi:before{content:"\f1eb"}.fa-calculator:before{content:"\f1ec"}.fa-paypal:before{content:"\f1ed"}.fa-google-wallet:before{content:"\f1ee"}.fa-cc-visa:before{content:"\f1f0"}.fa-cc-mastercard:before{content:"\f1f1"}.fa-cc-discover:before{content:"\f1f2"}.fa-cc-amex:before{content:"\f1f3"}.fa-cc-paypal:before{content:"\f1f4"}.fa-cc-stripe:before{content:"\f1f5"}.fa-bell-slash:before{content:"\f1f6"}.fa-bell-slash-o:before{content:"\f1f7"}.fa-trash:before{content:"\f1f8"}.fa-copyright:before{content:"\f1f9"}.fa-at:before{content:"\f1fa"}.fa-eyedropper:before{content:"\f1fb"}.fa-paint-brush:before{content:"\f1fc"}.fa-birthday-cake:before{content:"\f1fd"}.fa-area-chart:before{content:"\f1fe"}.fa-pie-chart:before{content:"\f200"}.fa-line-chart:before{content:"\f201"}.fa-lastfm:before{content:"\f202"}.fa-lastfm-square:before{content:"\f203"}.fa-toggle-off:before{content:"\f204"}.fa-toggle-on:before{content:"\f205"}.fa-bicycle:before{content:"\f206"}.fa-bus:before{content:"\f207"}.fa-ioxhost:before{content:"\f208"}.fa-angellist:before{content:"\f209"}.fa-cc:before{content:"\f20a"}.fa-shekel:before,.fa-sheqel:before,.fa-ils:before{content:"\f20b"}.fa-meanpath:before{content:"\f20c"}.fa-buysellads:before{content:"\f20d"}.fa-connectdevelop:before{content:"\f20e"}.fa-dashcube:before{content:"\f210"}.fa-forumbee:before{content:"\f211"}.fa-leanpub:before{content:"\f212"}.fa-sellsy:before{content:"\f213"}.fa-shirtsinbulk:before{content:"\f214"}.fa-simplybuilt:before{content:"\f215"}.fa-skyatlas:before{content:"\f216"}.fa-cart-plus:before{content:"\f217"}.fa-cart-arrow-down:before{content:"\f218"}.fa-diamond:before{content:"\f219"}.fa-ship:before{content:"\f21a"}.fa-user-secret:before{content:"\f21b"}.fa-motorcycle:before{content:"\f21c"}.fa-street-view:before{content:"\f21d"}.fa-heartbeat:before{content:"\f21e"}.fa-venus:before{content:"\f221"}.fa-mars:before{content:"\f222"}.fa-mercury:before{content:"\f223"}.fa-intersex:before,.fa-transgender:before{content:"\f224"}.fa-transgender-alt:before{content:"\f225"}.fa-venus-double:before{content:"\f226"}.fa-mars-double:before{content:"\f227"}.fa-venus-mars:before{content:"\f228"}.fa-mars-stroke:before{content:"\f229"}.fa-mars-stroke-v:before{content:"\f22a"}.fa-mars-stroke-h:before{content:"\f22b"}.fa-neuter:before{content:"\f22c"}.fa-genderless:before{content:"\f22d"}.fa-facebook-official:before{content:"\f230"}.fa-pinterest-p:before{content:"\f231"}.fa-whatsapp:before{content:"\f232"}.fa-server:before{content:"\f233"}.fa-user-plus:before{content:"\f234"}.fa-user-times:before{content:"\f235"}.fa-hotel:before,.fa-bed:before{content:"\f236"}.fa-viacoin:before{content:"\f237"}.fa-train:before{content:"\f238"}.fa-subway:before{content:"\f239"}.fa-medium:before{content:"\f23a"}.fa-yc:before,.fa-y-combinator:before{content:"\f23b"}.fa-optin-monster:before{content:"\f23c"}.fa-opencart:before{content:"\f23d"}.fa-expeditedssl:before{content:"\f23e"}.fa-battery-4:before,.fa-battery:before,.fa-battery-full:before{content:"\f240"}.fa-battery-3:before,.fa-battery-three-quarters:before{content:"\f241"}.fa-battery-2:before,.fa-battery-half:before{content:"\f242"}.fa-battery-1:before,.fa-battery-quarter:before{content:"\f243"}.fa-battery-0:before,.fa-battery-empty:before{content:"\f244"}.fa-mouse-pointer:before{content:"\f245"}.fa-i-cursor:before{content:"\f246"}.fa-object-group:before{content:"\f247"}.fa-object-ungroup:before{content:"\f248"}.fa-sticky-note:before{content:"\f249"}.fa-sticky-note-o:before{content:"\f24a"}.fa-cc-jcb:before{content:"\f24b"}.fa-cc-diners-club:before{content:"\f24c"}.fa-clone:before{content:"\f24d"}.fa-balance-scale:before{content:"\f24e"}.fa-hourglass-o:before{content:"\f250"}.fa-hourglass-1:before,.fa-hourglass-start:before{content:"\f251"}.fa-hourglass-2:before,.fa-hourglass-half:before{content:"\f252"}.fa-hourglass-3:before,.fa-hourglass-end:before{content:"\f253"}.fa-hourglass:before{content:"\f254"}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:"\f255"}.fa-hand-stop-o:before,.fa-hand-paper-o:before{content:"\f256"}.fa-hand-scissors-o:before{content:"\f257"}.fa-hand-lizard-o:before{content:"\f258"}.fa-hand-spock-o:before{content:"\f259"}.fa-hand-pointer-o:before{content:"\f25a"}.fa-hand-peace-o:before{content:"\f25b"}.fa-trademark:before{content:"\f25c"}.fa-registered:before{content:"\f25d"}.fa-creative-commons:before{content:"\f25e"}.fa-gg:before{content:"\f260"}.fa-gg-circle:before{content:"\f261"}.fa-tripadvisor:before{content:"\f262"}.fa-odnoklassniki:before{content:"\f263"}.fa-odnoklassniki-square:before{content:"\f264"}.fa-get-pocket:before{content:"\f265"}.fa-wikipedia-w:before{content:"\f266"}.fa-safari:before{content:"\f267"}.fa-chrome:before{content:"\f268"}.fa-firefox:before{content:"\f269"}.fa-opera:before{content:"\f26a"}.fa-internet-explorer:before{content:"\f26b"}.fa-tv:before,.fa-television:before{content:"\f26c"}.fa-contao:before{content:"\f26d"}.fa-500px:before{content:"\f26e"}.fa-amazon:before{content:"\f270"}.fa-calendar-plus-o:before{content:"\f271"}.fa-calendar-minus-o:before{content:"\f272"}.fa-calendar-times-o:before{content:"\f273"}.fa-calendar-check-o:before{content:"\f274"}.fa-industry:before{content:"\f275"}.fa-map-pin:before{content:"\f276"}.fa-map-signs:before{content:"\f277"}.fa-map-o:before{content:"\f278"}.fa-map:before{content:"\f279"}.fa-commenting:before{content:"\f27a"}.fa-commenting-o:before{content:"\f27b"}.fa-houzz:before{content:"\f27c"}.fa-vimeo:before{content:"\f27d"}.fa-black-tie:before{content:"\f27e"}.fa-fonticons:before{content:"\f280"}.fa-reddit-alien:before{content:"\f281"}.fa-edge:before{content:"\f282"}.fa-credit-card-alt:before{content:"\f283"}.fa-codiepie:before{content:"\f284"}.fa-modx:before{content:"\f285"}.fa-fort-awesome:before{content:"\f286"}.fa-usb:before{content:"\f287"}.fa-product-hunt:before{content:"\f288"}.fa-mixcloud:before{content:"\f289"}.fa-scribd:before{content:"\f28a"}.fa-pause-circle:before{content:"\f28b"}.fa-pause-circle-o:before{content:"\f28c"}.fa-stop-circle:before{content:"\f28d"}.fa-stop-circle-o:before{content:"\f28e"}.fa-shopping-bag:before{content:"\f290"}.fa-shopping-basket:before{content:"\f291"}.fa-hashtag:before{content:"\f292"}.fa-bluetooth:before{content:"\f293"}.fa-bluetooth-b:before{content:"\f294"}.fa-percent:before{content:"\f295"}.fa-gitlab:before{content:"\f296"}.fa-wpbeginner:before{content:"\f297"}.fa-wpforms:before{content:"\f298"}.fa-envira:before{content:"\f299"}.fa-universal-access:before{content:"\f29a"}.fa-wheelchair-alt:before{content:"\f29b"}.fa-question-circle-o:before{content:"\f29c"}.fa-blind:before{content:"\f29d"}.fa-audio-description:before{content:"\f29e"}.fa-volume-control-phone:before{content:"\f2a0"}.fa-braille:before{content:"\f2a1"}.fa-assistive-listening-systems:before{content:"\f2a2"}.fa-asl-interpreting:before,.fa-american-sign-language-interpreting:before{content:"\f2a3"}.fa-deafness:before,.fa-hard-of-hearing:before,.fa-deaf:before{content:"\f2a4"}.fa-glide:before{content:"\f2a5"}.fa-glide-g:before{content:"\f2a6"}.fa-signing:before,.fa-sign-language:before{content:"\f2a7"}.fa-low-vision:before{content:"\f2a8"}.fa-viadeo:before{content:"\f2a9"}.fa-viadeo-square:before{content:"\f2aa"}.fa-snapchat:before{content:"\f2ab"}.fa-snapchat-ghost:before{content:"\f2ac"}.fa-snapchat-square:before{content:"\f2ad"}.fa-pied-piper:before{content:"\f2ae"}.fa-first-order:before{content:"\f2b0"}.fa-yoast:before{content:"\f2b1"}.fa-themeisle:before{content:"\f2b2"}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:"\f2b3"}.fa-fa:before,.fa-font-awesome:before{content:"\f2b4"}.fa-handshake-o:before{content:"\f2b5"}.fa-envelope-open:before{content:"\f2b6"}.fa-envelope-open-o:before{content:"\f2b7"}.fa-linode:before{content:"\f2b8"}.fa-address-book:before{content:"\f2b9"}.fa-address-book-o:before{content:"\f2ba"}.fa-vcard:before,.fa-address-card:before{content:"\f2bb"}.fa-vcard-o:before,.fa-address-card-o:before{content:"\f2bc"}.fa-user-circle:before{content:"\f2bd"}.fa-user-circle-o:before{content:"\f2be"}.fa-user-o:before{content:"\f2c0"}.fa-id-badge:before{content:"\f2c1"}.fa-drivers-license:before,.fa-id-card:before{content:"\f2c2"}.fa-drivers-license-o:before,.fa-id-card-o:before{content:"\f2c3"}.fa-quora:before{content:"\f2c4"}.fa-free-code-camp:before{content:"\f2c5"}.fa-telegram:before{content:"\f2c6"}.fa-thermometer-4:before,.fa-thermometer:before,.fa-thermometer-full:before{content:"\f2c7"}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:"\f2c8"}.fa-thermometer-2:before,.fa-thermometer-half:before{content:"\f2c9"}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:"\f2ca"}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:"\f2cb"}.fa-shower:before{content:"\f2cc"}.fa-bathtub:before,.fa-s15:before,.fa-bath:before{content:"\f2cd"}.fa-podcast:before{content:"\f2ce"}.fa-window-maximize:before{content:"\f2d0"}.fa-window-minimize:before{content:"\f2d1"}.fa-window-restore:before{content:"\f2d2"}.fa-times-rectangle:before,.fa-window-close:before{content:"\f2d3"}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:"\f2d4"}.fa-bandcamp:before{content:"\f2d5"}.fa-grav:before{content:"\f2d6"}.fa-etsy:before{content:"\f2d7"}.fa-imdb:before{content:"\f2d8"}.fa-ravelry:before{content:"\f2d9"}.fa-eercast:before{content:"\f2da"}.fa-microchip:before{content:"\f2db"}.fa-snowflake-o:before{content:"\f2dc"}.fa-superpowers:before{content:"\f2dd"}.fa-wpexplorer:before{content:"\f2de"}.fa-meetup:before{content:"\f2e0"}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0, 0, 0, 0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto} 5 | -------------------------------------------------------------------------------- /static/css/style.css: -------------------------------------------------------------------------------- 1 | /* 2 | Theme Name: Medilab 3 | Theme URL: https://bootstrapmade.com/medilab-free-medical-bootstrap-theme/ 4 | Author: BootstrapMade.com 5 | Author URL: https://bootstrapmade.com 6 | */ 7 | 8 | body { 9 | font-family: 'Open Sans', sans-serif; 10 | line-height: 20px; 11 | color: #999999; 12 | font-size: 300; 13 | font-size: 16px; 14 | } 15 | ol, ul { 16 | list-style: none; 17 | } 18 | blockquote, q { 19 | quotes: none; 20 | } 21 | blockquote:before, blockquote:after, 22 | q:before, q:after { 23 | content: ''; 24 | content: none; 25 | } 26 | table { 27 | border-collapse: collapse; 28 | border-spacing: 0; 29 | } 30 | h1, h2, h3, h4, h5, h6 31 | { 32 | font-family: 'Raleway', sans-serif; 33 | font-weight: 600; 34 | color: #222222; 35 | } 36 | a, a:hover, a:focus, a:active{ 37 | outline: none; 38 | } 39 | 40 | .section-padding{ 41 | padding: 60px 0px; 42 | 43 | } 44 | h2 { 45 | line-height: 20px; 46 | margin: 0; 47 | font-size: 28px; 48 | font-weight: 700; 49 | text-transform: uppercase; 50 | } 51 | hr.botm-line { 52 | height: 3px; 53 | width: 60px; 54 | background: #ffb737; 55 | position: relative; 56 | border: 0; 57 | margin: 20px 0 20px 0; 58 | } 59 | 60 | /*************************************** 61 | banner 62 | ***************************************/ 63 | .navbar { 64 | margin-bottom: 0px; 65 | border: 0px; 66 | } 67 | .navbar { 68 | border-radius: 0px; 69 | } 70 | .navbar-default { 71 | background-color: #fff; 72 | padding: 20px 0; 73 | transition: all 0.3s; 74 | } 75 | .navbar-default { 76 | background-color: transparent; 77 | border: 0px; 78 | } 79 | .navbar { 80 | border-radius: 0px; 81 | } 82 | 83 | .navbar-brand 84 | { 85 | font-family: 'Chewy', cursive; 86 | font-size: 32px; 87 | } 88 | 89 | .navbar-brand img { 90 | padding-top: 2px; 91 | width: 120px !important; 92 | } 93 | 94 | .navbar-default .navbar-brand, .navbar-default .navbar-brand:hover, .navbar-default .navbar-brand:focus { 95 | color: #EA6045; 96 | } 97 | 98 | @media (max-width: 768px) { 99 | .navbar-collapse { 100 | background: rgba(28,74,90, 0.9); 101 | } 102 | } 103 | 104 | .top-nav-collapse { 105 | padding: 0; 106 | background: rgba(28,74,90, 0.9); 107 | } 108 | 109 | .white, .white:hover, .white:focus 110 | { 111 | color: #fff; 112 | width: 100% !important; 113 | } 114 | .block 115 | { 116 | display: block; 117 | } 118 | .navbar-default .navbar-nav > .active > a, .navbar-default .navbar-nav > .active > a:focus, .navbar-default .navbar-nav > .active > a:hover { 119 | color: #fff; 120 | text-transform: uppercase; 121 | background-color: rgba(12, 184, 182, 0.21); 122 | } 123 | .navbar-default .navbar-nav > li > a 124 | { 125 | color: #fff; 126 | text-transform: uppercase; 127 | font-size: 14px; 128 | font-weight: 300; 129 | } 130 | .navbar-default .navbar-nav > li > a:hover, .navbar-default .navbar-nav > li > a:focus 131 | { 132 | color: #fff; 133 | text-transform: uppercase; 134 | background-color: rgba(12, 184, 182, 0.21); 135 | } 136 | .affix { 137 | background-color: #ffffff !important; 138 | } 139 | .affix .navbar-nav > li > a:hover, .affix .navbar-nav > li > a:focus 140 | { 141 | background-color: rgba(12, 184, 182) !important; 142 | } 143 | #banner{ 144 | background: url('../img/bg-banner.jpg') no-repeat fixed; 145 | background-size: cover; 146 | min-height: 650px; 147 | position: relative; 148 | } 149 | @media (max-width: 1024px){ 150 | #banner{ 151 | background-attachment: scroll; 152 | } 153 | } 154 | .bg-color{ 155 | background-color: RGBA(13, 70, 83, 0.78); 156 | min-height: 650px; 157 | } 158 | .banner-info{ 159 | padding-top: 190px; 160 | } 161 | .banner-logo img{ 162 | display: inline-block; 163 | } 164 | .banner-text{ 165 | color: #fff; 166 | } 167 | .banner-text h1{ 168 | font-family: 'Candal', sans-serif; 169 | font-size: 35px; 170 | text-transform: uppercase; 171 | padding-bottom:15px; 172 | } 173 | .btn-appoint, .btn-appoint:hover, .btn-appoint:focus{ 174 | margin-top: 30px; 175 | padding: 10px 20px; 176 | font-size: 12px; 177 | background-color: rgba(12, 184, 182, 0.91); 178 | border-radius: 3px; 179 | color: #fff; 180 | } 181 | .overlay-detail a i { 182 | text-align: center; 183 | position: absolute; 184 | bottom: 25px; 185 | font-size: 38px; 186 | color: #fff; 187 | margin: 0 auto; 188 | } 189 | .text-primary i{ 190 | padding-top: 8px; 191 | display: inline-block; 192 | } 193 | /*************************************** 194 | services 195 | ***************************************/ 196 | .icon i{ 197 | color: #0cb8b6; 198 | font-size: 45px; 199 | margin-bottom: 25px; 200 | } 201 | .service-info{ 202 | margin-bottom: 20px; 203 | } 204 | .icon-info h4{ 205 | padding-bottom: 15px; 206 | } 207 | .icon-info p{ 208 | font-size: 15px !important; 209 | } 210 | /*************************************** 211 | cta-1 212 | ***************************************/ 213 | .schedule-tab { 214 | background-color: #0CB8B6; 215 | float: left; 216 | } 217 | .medi-info{ 218 | border-right: 1px solid #fff; 219 | } 220 | .medi-info, .time-info{ 221 | padding: 20px; 222 | color: #fff; 223 | } 224 | .medi-info h3, .time-info h3{ 225 | padding-bottom: 16px; 226 | color: #fff; 227 | font-weight: 600; 228 | } 229 | .medi-info-btn, .medi-info-btn:hover, .medi-info-btn:focus { 230 | margin: 15px 0px 5px; 231 | display: inline-block; 232 | border: solid white 2px; 233 | padding: 3px 8px; 234 | font-size: 12px; 235 | color: #fff; 236 | font-weight: 400 !important; 237 | cursor: pointer; 238 | } 239 | td { 240 | border: 0px solid #ededed; 241 | border-top: 1px solid rgba(216, 216, 216, 0.5); 242 | padding: 6px 10px 6px 0; 243 | } 244 | .medi-info, .time-info{ 245 | font-size: 14px; 246 | } 247 | /*************************************** 248 | about 249 | ***************************************/ 250 | #about{ 251 | background-color: rgba(238, 238, 238, 0.15); 252 | } 253 | .lg-line{ 254 | line-height: 1.4; 255 | font-size: 28px; 256 | } 257 | .more-features-box-text-icon { 258 | float: left; 259 | width: 40px; 260 | height: 40px; 261 | padding-top: 6px; 262 | background: #0cb8b6; 263 | -moz-border-radius: 50%; 264 | -webkit-border-radius: 50%; 265 | border-radius: 50%; 266 | color: #fff; 267 | text-align: center; 268 | } 269 | .more-features-box-text-description h3{ 270 | padding-bottom: 15px; 271 | } 272 | .more-features-box-text-icon i { 273 | font-size: 18px; 274 | line-height: 26px; 275 | } 276 | .more-features-box-text-description{ 277 | margin-left: 80px; 278 | margin-bottom: 35px; 279 | } 280 | .sec-para{ 281 | padding-bottom: 10px; 282 | } 283 | /*************************************** 284 | doctor team 285 | ***************************************/ 286 | .thumbnail { 287 | border-radius: 0px; 288 | } 289 | .caption h3{ 290 | padding-bottom: 5px; 291 | } 292 | .caption p{ 293 | padding-bottom: 10px; 294 | } 295 | /*************************************** 296 | testimonial 297 | ***************************************/ 298 | #testimonial{ 299 | background-color: #eee; 300 | } 301 | .testi-details { 302 | background: #fff; 303 | padding: 14px 24px; 304 | margin-bottom: 20px; 305 | box-shadow: 3px 3px 2px 0px rgba(0,0,0,0.18); 306 | position: relative; 307 | } 308 | .testi-info a { 309 | display: block; 310 | width: 50px; 311 | height: 50px; 312 | background-color: #fff; 313 | border-radius: 50%; 314 | float: left; 315 | margin-right: 10px; 316 | } 317 | .testi-info a img{ 318 | border-radius: 50%; 319 | } 320 | .testi-info h3 { 321 | display: inline-block; 322 | line-height: 22px; 323 | font-weight: 600; 324 | color: #000; 325 | margin-top: 8px; 326 | } 327 | .testi-info h3 > span { 328 | display: block; 329 | line-height: 16px; 330 | font-weight: 400; 331 | } 332 | .testi-details::after { 333 | content: ""; 334 | position: absolute; 335 | width: 0; 336 | height: 0; 337 | border-style: solid; 338 | border-color: transparent; 339 | border-left: 0; 340 | bottom: -40px; 341 | left: 56px; 342 | border-top-color: #fff; 343 | border-width: 20px; 344 | } 345 | .testi-details::before { 346 | content: ''; 347 | position: absolute; 348 | transform: rotate(45deg); 349 | width: 0px; 350 | height: 0px; 351 | bottom: -30px; 352 | left: 45px; 353 | border-style: solid; 354 | border-width: 15px; 355 | border-color: transparent; 356 | z-index: -1; 357 | box-shadow: 3px -13px 5px 0px rgba(0, 0, 0, 0.18); 358 | border-left: 0; 359 | } 360 | /*************************************** 361 | cta -2 362 | ***************************************/ 363 | #cta-2{ 364 | background-color: rgb(41, 48, 46); 365 | } 366 | .white{ 367 | color: #fff; 368 | } 369 | .icon-play, .icon-play:hover, .icon-play:focus{ 370 | background-color: #0CB8B6; 371 | padding: 5px 10px; 372 | color: #fff; 373 | text-decoration: none; 374 | padding: 5px 17px; 375 | margin-top: 26px; 376 | display: block; 377 | } 378 | .text-primary { 379 | color: #0cb8b6; 380 | } 381 | .icon-mar 382 | { 383 | margin-right: 7px; 384 | } 385 | /*************************************** 386 | contact us 387 | ***************************************/ 388 | .space { 389 | margin-top: 40px; 390 | } 391 | .btn-form, .btn-form:hover, .btn-form:focus { 392 | background-color: #0cb8b6; 393 | color: #fff; 394 | border-radius: 0px; 395 | padding: 10px 20px; 396 | } 397 | .br-radius-zero { 398 | border-radius: 0px; 399 | } 400 | .form-control{ 401 | height: 40px; 402 | } 403 | 404 | .validation { 405 | color: red; 406 | display:none; 407 | margin: 0 0 20px; 408 | font-weight:400; 409 | font-size:13px; 410 | } 411 | 412 | #sendmessage { 413 | color: green; 414 | border:1px solid green; 415 | display:none; 416 | text-align:center; 417 | padding:15px; 418 | font-weight:600; 419 | margin-bottom:15px; 420 | } 421 | 422 | #errormessage { 423 | color: red; 424 | display:none; 425 | border:1px solid red; 426 | text-align:center; 427 | padding:15px; 428 | font-weight:600; 429 | margin-bottom:15px; 430 | } 431 | 432 | #sendmessage.show, #errormessage.show, .show { 433 | display:block; 434 | } 435 | 436 | 437 | /*************************************** 438 | footer 439 | ***************************************/ 440 | #footer{ 441 | background-color: #325C6A; 442 | } 443 | .ftr-tle { 444 | height: 50px; 445 | } 446 | .info-sec { 447 | color: #fff; 448 | } 449 | .quick-info li i { 450 | font-size: 8px; 451 | width: 15px; 452 | height: 15px; 453 | line-height: 15px; 454 | text-align: left; 455 | } 456 | .social-icon li { 457 | float: left; 458 | width: 50px; 459 | height: 50px; 460 | line-height: 50px; 461 | text-align: center; 462 | margin-right: 5px; 463 | } 464 | .bglight-blue { 465 | background-color: #3498DB; 466 | } 467 | .bgred { 468 | background-color: #E74C3C; 469 | } 470 | .bgdark-blue { 471 | background-color: #2C3E50; 472 | } 473 | .bglight-blue { 474 | background-color: #3498DB; 475 | } 476 | .top-footer { 477 | padding: 40px 0px; 478 | border-bottom: 1px solid rgba(255, 255, 255, 0.12); 479 | } 480 | .footer-line { 481 | padding: 30px 0px; 482 | color: #fff; 483 | } 484 | 485 | .footer-line a { 486 | color: #0CB8B6; 487 | } 488 | 489 | .quick-info li a{ 490 | color: #fff; 491 | } 492 | .site-link, .site-link:hover, .site-link:focus 493 | { 494 | color: #0cb8b6; 495 | text-transform: none; 496 | } 497 | @media (min-width: 551px) and (max-width: 980px){ 498 | 499 | } 500 | @media (min-width: 220px) and (max-width: 551px){ 501 | .testi-info{ 502 | margin-bottom: 20px; 503 | } 504 | .marb20{ 505 | margin-top: 30px; 506 | } 507 | h2{ 508 | font-size: 24px; 509 | line-height: 1.2; 510 | } 511 | .section-title{ 512 | margin-bottom: 30px; 513 | } 514 | .medi-info { 515 | border: 0px; 516 | border-bottom: 1px solid #fff; 517 | } 518 | .service-info{ 519 | margin-top: 20px; 520 | margin-bottom: 0px; 521 | } 522 | .caption h3 { 523 | font-size: 14px; 524 | } 525 | .caption p{ 526 | font-size: 12px; 527 | padding-bottom: 5px; 528 | } 529 | .caption ul li a i{ 530 | font-size: 14px; 531 | } 532 | .banner-text h1{ 533 | font-size: 24px; 534 | } 535 | } 536 | -------------------------------------------------------------------------------- /static/fonts/FontAwesome.otf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/static/fonts/FontAwesome.otf -------------------------------------------------------------------------------- /static/fonts/fontawesome-webfont.eot: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/static/fonts/fontawesome-webfont.eot -------------------------------------------------------------------------------- /static/fonts/fontawesome-webfont.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/static/fonts/fontawesome-webfont.ttf -------------------------------------------------------------------------------- /static/fonts/fontawesome-webfont.woff: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/static/fonts/fontawesome-webfont.woff -------------------------------------------------------------------------------- /static/fonts/fontawesome-webfont.woff2: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/static/fonts/fontawesome-webfont.woff2 -------------------------------------------------------------------------------- /static/img/bg-banner.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/static/img/bg-banner.jpg -------------------------------------------------------------------------------- /static/img/logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/pg815/Depression_Detection_Using_Machine_Learning/82af333fe79ec2b8597f39855efa7392f1d384e2/static/img/logo.png -------------------------------------------------------------------------------- /static/js/bootstrap.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Bootstrap v3.3.7 (http://getbootstrap.com) 3 | * Copyright 2011-2016 Twitter, Inc. 4 | * Licensed under the MIT license 5 | */ 6 | if("undefined"==typeof jQuery)throw new Error("Bootstrap's JavaScript requires jQuery");+function(a){"use strict";var b=a.fn.jquery.split(" ")[0].split(".");if(b[0]<2&&b[1]<9||1==b[0]&&9==b[1]&&b[2]<1||b[0]>3)throw new Error("Bootstrap's JavaScript requires jQuery version 1.9.1 or higher, but lower than version 4")}(jQuery),+function(a){"use strict";function b(){var a=document.createElement("bootstrap"),b={WebkitTransition:"webkitTransitionEnd",MozTransition:"transitionend",OTransition:"oTransitionEnd otransitionend",transition:"transitionend"};for(var c in b)if(void 0!==a.style[c])return{end:b[c]};return!1}a.fn.emulateTransitionEnd=function(b){var c=!1,d=this;a(this).one("bsTransitionEnd",function(){c=!0});var e=function(){c||a(d).trigger(a.support.transition.end)};return setTimeout(e,b),this},a(function(){a.support.transition=b(),a.support.transition&&(a.event.special.bsTransitionEnd={bindType:a.support.transition.end,delegateType:a.support.transition.end,handle:function(b){if(a(b.target).is(this))return b.handleObj.handler.apply(this,arguments)}})})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var c=a(this),e=c.data("bs.alert");e||c.data("bs.alert",e=new d(this)),"string"==typeof b&&e[b].call(c)})}var c='[data-dismiss="alert"]',d=function(b){a(b).on("click",c,this.close)};d.VERSION="3.3.7",d.TRANSITION_DURATION=150,d.prototype.close=function(b){function c(){g.detach().trigger("closed.bs.alert").remove()}var e=a(this),f=e.attr("data-target");f||(f=e.attr("href"),f=f&&f.replace(/.*(?=#[^\s]*$)/,""));var g=a("#"===f?[]:f);b&&b.preventDefault(),g.length||(g=e.closest(".alert")),g.trigger(b=a.Event("close.bs.alert")),b.isDefaultPrevented()||(g.removeClass("in"),a.support.transition&&g.hasClass("fade")?g.one("bsTransitionEnd",c).emulateTransitionEnd(d.TRANSITION_DURATION):c())};var e=a.fn.alert;a.fn.alert=b,a.fn.alert.Constructor=d,a.fn.alert.noConflict=function(){return a.fn.alert=e,this},a(document).on("click.bs.alert.data-api",c,d.prototype.close)}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.button"),f="object"==typeof b&&b;e||d.data("bs.button",e=new c(this,f)),"toggle"==b?e.toggle():b&&e.setState(b)})}var c=function(b,d){this.$element=a(b),this.options=a.extend({},c.DEFAULTS,d),this.isLoading=!1};c.VERSION="3.3.7",c.DEFAULTS={loadingText:"loading..."},c.prototype.setState=function(b){var c="disabled",d=this.$element,e=d.is("input")?"val":"html",f=d.data();b+="Text",null==f.resetText&&d.data("resetText",d[e]()),setTimeout(a.proxy(function(){d[e](null==f[b]?this.options[b]:f[b]),"loadingText"==b?(this.isLoading=!0,d.addClass(c).attr(c,c).prop(c,!0)):this.isLoading&&(this.isLoading=!1,d.removeClass(c).removeAttr(c).prop(c,!1))},this),0)},c.prototype.toggle=function(){var a=!0,b=this.$element.closest('[data-toggle="buttons"]');if(b.length){var c=this.$element.find("input");"radio"==c.prop("type")?(c.prop("checked")&&(a=!1),b.find(".active").removeClass("active"),this.$element.addClass("active")):"checkbox"==c.prop("type")&&(c.prop("checked")!==this.$element.hasClass("active")&&(a=!1),this.$element.toggleClass("active")),c.prop("checked",this.$element.hasClass("active")),a&&c.trigger("change")}else this.$element.attr("aria-pressed",!this.$element.hasClass("active")),this.$element.toggleClass("active")};var d=a.fn.button;a.fn.button=b,a.fn.button.Constructor=c,a.fn.button.noConflict=function(){return a.fn.button=d,this},a(document).on("click.bs.button.data-api",'[data-toggle^="button"]',function(c){var d=a(c.target).closest(".btn");b.call(d,"toggle"),a(c.target).is('input[type="radio"], input[type="checkbox"]')||(c.preventDefault(),d.is("input,button")?d.trigger("focus"):d.find("input:visible,button:visible").first().trigger("focus"))}).on("focus.bs.button.data-api blur.bs.button.data-api",'[data-toggle^="button"]',function(b){a(b.target).closest(".btn").toggleClass("focus",/^focus(in)?$/.test(b.type))})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.carousel"),f=a.extend({},c.DEFAULTS,d.data(),"object"==typeof b&&b),g="string"==typeof b?b:f.slide;e||d.data("bs.carousel",e=new c(this,f)),"number"==typeof b?e.to(b):g?e[g]():f.interval&&e.pause().cycle()})}var c=function(b,c){this.$element=a(b),this.$indicators=this.$element.find(".carousel-indicators"),this.options=c,this.paused=null,this.sliding=null,this.interval=null,this.$active=null,this.$items=null,this.options.keyboard&&this.$element.on("keydown.bs.carousel",a.proxy(this.keydown,this)),"hover"==this.options.pause&&!("ontouchstart"in document.documentElement)&&this.$element.on("mouseenter.bs.carousel",a.proxy(this.pause,this)).on("mouseleave.bs.carousel",a.proxy(this.cycle,this))};c.VERSION="3.3.7",c.TRANSITION_DURATION=600,c.DEFAULTS={interval:5e3,pause:"hover",wrap:!0,keyboard:!0},c.prototype.keydown=function(a){if(!/input|textarea/i.test(a.target.tagName)){switch(a.which){case 37:this.prev();break;case 39:this.next();break;default:return}a.preventDefault()}},c.prototype.cycle=function(b){return b||(this.paused=!1),this.interval&&clearInterval(this.interval),this.options.interval&&!this.paused&&(this.interval=setInterval(a.proxy(this.next,this),this.options.interval)),this},c.prototype.getItemIndex=function(a){return this.$items=a.parent().children(".item"),this.$items.index(a||this.$active)},c.prototype.getItemForDirection=function(a,b){var c=this.getItemIndex(b),d="prev"==a&&0===c||"next"==a&&c==this.$items.length-1;if(d&&!this.options.wrap)return b;var e="prev"==a?-1:1,f=(c+e)%this.$items.length;return this.$items.eq(f)},c.prototype.to=function(a){var b=this,c=this.getItemIndex(this.$active=this.$element.find(".item.active"));if(!(a>this.$items.length-1||a<0))return this.sliding?this.$element.one("slid.bs.carousel",function(){b.to(a)}):c==a?this.pause().cycle():this.slide(a>c?"next":"prev",this.$items.eq(a))},c.prototype.pause=function(b){return b||(this.paused=!0),this.$element.find(".next, .prev").length&&a.support.transition&&(this.$element.trigger(a.support.transition.end),this.cycle(!0)),this.interval=clearInterval(this.interval),this},c.prototype.next=function(){if(!this.sliding)return this.slide("next")},c.prototype.prev=function(){if(!this.sliding)return this.slide("prev")},c.prototype.slide=function(b,d){var e=this.$element.find(".item.active"),f=d||this.getItemForDirection(b,e),g=this.interval,h="next"==b?"left":"right",i=this;if(f.hasClass("active"))return this.sliding=!1;var j=f[0],k=a.Event("slide.bs.carousel",{relatedTarget:j,direction:h});if(this.$element.trigger(k),!k.isDefaultPrevented()){if(this.sliding=!0,g&&this.pause(),this.$indicators.length){this.$indicators.find(".active").removeClass("active");var l=a(this.$indicators.children()[this.getItemIndex(f)]);l&&l.addClass("active")}var m=a.Event("slid.bs.carousel",{relatedTarget:j,direction:h});return a.support.transition&&this.$element.hasClass("slide")?(f.addClass(b),f[0].offsetWidth,e.addClass(h),f.addClass(h),e.one("bsTransitionEnd",function(){f.removeClass([b,h].join(" ")).addClass("active"),e.removeClass(["active",h].join(" ")),i.sliding=!1,setTimeout(function(){i.$element.trigger(m)},0)}).emulateTransitionEnd(c.TRANSITION_DURATION)):(e.removeClass("active"),f.addClass("active"),this.sliding=!1,this.$element.trigger(m)),g&&this.cycle(),this}};var d=a.fn.carousel;a.fn.carousel=b,a.fn.carousel.Constructor=c,a.fn.carousel.noConflict=function(){return a.fn.carousel=d,this};var e=function(c){var d,e=a(this),f=a(e.attr("data-target")||(d=e.attr("href"))&&d.replace(/.*(?=#[^\s]+$)/,""));if(f.hasClass("carousel")){var g=a.extend({},f.data(),e.data()),h=e.attr("data-slide-to");h&&(g.interval=!1),b.call(f,g),h&&f.data("bs.carousel").to(h),c.preventDefault()}};a(document).on("click.bs.carousel.data-api","[data-slide]",e).on("click.bs.carousel.data-api","[data-slide-to]",e),a(window).on("load",function(){a('[data-ride="carousel"]').each(function(){var c=a(this);b.call(c,c.data())})})}(jQuery),+function(a){"use strict";function b(b){var c,d=b.attr("data-target")||(c=b.attr("href"))&&c.replace(/.*(?=#[^\s]+$)/,"");return a(d)}function c(b){return this.each(function(){var c=a(this),e=c.data("bs.collapse"),f=a.extend({},d.DEFAULTS,c.data(),"object"==typeof b&&b);!e&&f.toggle&&/show|hide/.test(b)&&(f.toggle=!1),e||c.data("bs.collapse",e=new d(this,f)),"string"==typeof b&&e[b]()})}var d=function(b,c){this.$element=a(b),this.options=a.extend({},d.DEFAULTS,c),this.$trigger=a('[data-toggle="collapse"][href="#'+b.id+'"],[data-toggle="collapse"][data-target="#'+b.id+'"]'),this.transitioning=null,this.options.parent?this.$parent=this.getParent():this.addAriaAndCollapsedClass(this.$element,this.$trigger),this.options.toggle&&this.toggle()};d.VERSION="3.3.7",d.TRANSITION_DURATION=350,d.DEFAULTS={toggle:!0},d.prototype.dimension=function(){var a=this.$element.hasClass("width");return a?"width":"height"},d.prototype.show=function(){if(!this.transitioning&&!this.$element.hasClass("in")){var b,e=this.$parent&&this.$parent.children(".panel").children(".in, .collapsing");if(!(e&&e.length&&(b=e.data("bs.collapse"),b&&b.transitioning))){var f=a.Event("show.bs.collapse");if(this.$element.trigger(f),!f.isDefaultPrevented()){e&&e.length&&(c.call(e,"hide"),b||e.data("bs.collapse",null));var g=this.dimension();this.$element.removeClass("collapse").addClass("collapsing")[g](0).attr("aria-expanded",!0),this.$trigger.removeClass("collapsed").attr("aria-expanded",!0),this.transitioning=1;var h=function(){this.$element.removeClass("collapsing").addClass("collapse in")[g](""),this.transitioning=0,this.$element.trigger("shown.bs.collapse")};if(!a.support.transition)return h.call(this);var i=a.camelCase(["scroll",g].join("-"));this.$element.one("bsTransitionEnd",a.proxy(h,this)).emulateTransitionEnd(d.TRANSITION_DURATION)[g](this.$element[0][i])}}}},d.prototype.hide=function(){if(!this.transitioning&&this.$element.hasClass("in")){var b=a.Event("hide.bs.collapse");if(this.$element.trigger(b),!b.isDefaultPrevented()){var c=this.dimension();this.$element[c](this.$element[c]())[0].offsetHeight,this.$element.addClass("collapsing").removeClass("collapse in").attr("aria-expanded",!1),this.$trigger.addClass("collapsed").attr("aria-expanded",!1),this.transitioning=1;var e=function(){this.transitioning=0,this.$element.removeClass("collapsing").addClass("collapse").trigger("hidden.bs.collapse")};return a.support.transition?void this.$element[c](0).one("bsTransitionEnd",a.proxy(e,this)).emulateTransitionEnd(d.TRANSITION_DURATION):e.call(this)}}},d.prototype.toggle=function(){this[this.$element.hasClass("in")?"hide":"show"]()},d.prototype.getParent=function(){return a(this.options.parent).find('[data-toggle="collapse"][data-parent="'+this.options.parent+'"]').each(a.proxy(function(c,d){var e=a(d);this.addAriaAndCollapsedClass(b(e),e)},this)).end()},d.prototype.addAriaAndCollapsedClass=function(a,b){var c=a.hasClass("in");a.attr("aria-expanded",c),b.toggleClass("collapsed",!c).attr("aria-expanded",c)};var e=a.fn.collapse;a.fn.collapse=c,a.fn.collapse.Constructor=d,a.fn.collapse.noConflict=function(){return a.fn.collapse=e,this},a(document).on("click.bs.collapse.data-api",'[data-toggle="collapse"]',function(d){var e=a(this);e.attr("data-target")||d.preventDefault();var f=b(e),g=f.data("bs.collapse"),h=g?"toggle":e.data();c.call(f,h)})}(jQuery),+function(a){"use strict";function b(b){var c=b.attr("data-target");c||(c=b.attr("href"),c=c&&/#[A-Za-z]/.test(c)&&c.replace(/.*(?=#[^\s]*$)/,""));var d=c&&a(c);return d&&d.length?d:b.parent()}function c(c){c&&3===c.which||(a(e).remove(),a(f).each(function(){var d=a(this),e=b(d),f={relatedTarget:this};e.hasClass("open")&&(c&&"click"==c.type&&/input|textarea/i.test(c.target.tagName)&&a.contains(e[0],c.target)||(e.trigger(c=a.Event("hide.bs.dropdown",f)),c.isDefaultPrevented()||(d.attr("aria-expanded","false"),e.removeClass("open").trigger(a.Event("hidden.bs.dropdown",f)))))}))}function d(b){return this.each(function(){var c=a(this),d=c.data("bs.dropdown");d||c.data("bs.dropdown",d=new g(this)),"string"==typeof b&&d[b].call(c)})}var e=".dropdown-backdrop",f='[data-toggle="dropdown"]',g=function(b){a(b).on("click.bs.dropdown",this.toggle)};g.VERSION="3.3.7",g.prototype.toggle=function(d){var e=a(this);if(!e.is(".disabled, :disabled")){var f=b(e),g=f.hasClass("open");if(c(),!g){"ontouchstart"in document.documentElement&&!f.closest(".navbar-nav").length&&a(document.createElement("div")).addClass("dropdown-backdrop").insertAfter(a(this)).on("click",c);var h={relatedTarget:this};if(f.trigger(d=a.Event("show.bs.dropdown",h)),d.isDefaultPrevented())return;e.trigger("focus").attr("aria-expanded","true"),f.toggleClass("open").trigger(a.Event("shown.bs.dropdown",h))}return!1}},g.prototype.keydown=function(c){if(/(38|40|27|32)/.test(c.which)&&!/input|textarea/i.test(c.target.tagName)){var d=a(this);if(c.preventDefault(),c.stopPropagation(),!d.is(".disabled, :disabled")){var e=b(d),g=e.hasClass("open");if(!g&&27!=c.which||g&&27==c.which)return 27==c.which&&e.find(f).trigger("focus"),d.trigger("click");var h=" li:not(.disabled):visible a",i=e.find(".dropdown-menu"+h);if(i.length){var j=i.index(c.target);38==c.which&&j>0&&j--,40==c.which&&jdocument.documentElement.clientHeight;this.$element.css({paddingLeft:!this.bodyIsOverflowing&&a?this.scrollbarWidth:"",paddingRight:this.bodyIsOverflowing&&!a?this.scrollbarWidth:""})},c.prototype.resetAdjustments=function(){this.$element.css({paddingLeft:"",paddingRight:""})},c.prototype.checkScrollbar=function(){var a=window.innerWidth;if(!a){var b=document.documentElement.getBoundingClientRect();a=b.right-Math.abs(b.left)}this.bodyIsOverflowing=document.body.clientWidth
',trigger:"hover focus",title:"",delay:0,html:!1,container:!1,viewport:{selector:"body",padding:0}},c.prototype.init=function(b,c,d){if(this.enabled=!0,this.type=b,this.$element=a(c),this.options=this.getOptions(d),this.$viewport=this.options.viewport&&a(a.isFunction(this.options.viewport)?this.options.viewport.call(this,this.$element):this.options.viewport.selector||this.options.viewport),this.inState={click:!1,hover:!1,focus:!1},this.$element[0]instanceof document.constructor&&!this.options.selector)throw new Error("`selector` option must be specified when initializing "+this.type+" on the window.document object!");for(var e=this.options.trigger.split(" "),f=e.length;f--;){var g=e[f];if("click"==g)this.$element.on("click."+this.type,this.options.selector,a.proxy(this.toggle,this));else if("manual"!=g){var h="hover"==g?"mouseenter":"focusin",i="hover"==g?"mouseleave":"focusout";this.$element.on(h+"."+this.type,this.options.selector,a.proxy(this.enter,this)),this.$element.on(i+"."+this.type,this.options.selector,a.proxy(this.leave,this))}}this.options.selector?this._options=a.extend({},this.options,{trigger:"manual",selector:""}):this.fixTitle()},c.prototype.getDefaults=function(){return c.DEFAULTS},c.prototype.getOptions=function(b){return b=a.extend({},this.getDefaults(),this.$element.data(),b),b.delay&&"number"==typeof b.delay&&(b.delay={show:b.delay,hide:b.delay}),b},c.prototype.getDelegateOptions=function(){var b={},c=this.getDefaults();return this._options&&a.each(this._options,function(a,d){c[a]!=d&&(b[a]=d)}),b},c.prototype.enter=function(b){var c=b instanceof this.constructor?b:a(b.currentTarget).data("bs."+this.type);return c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c)),b instanceof a.Event&&(c.inState["focusin"==b.type?"focus":"hover"]=!0),c.tip().hasClass("in")||"in"==c.hoverState?void(c.hoverState="in"):(clearTimeout(c.timeout),c.hoverState="in",c.options.delay&&c.options.delay.show?void(c.timeout=setTimeout(function(){"in"==c.hoverState&&c.show()},c.options.delay.show)):c.show())},c.prototype.isInStateTrue=function(){for(var a in this.inState)if(this.inState[a])return!0;return!1},c.prototype.leave=function(b){var c=b instanceof this.constructor?b:a(b.currentTarget).data("bs."+this.type);if(c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c)),b instanceof a.Event&&(c.inState["focusout"==b.type?"focus":"hover"]=!1),!c.isInStateTrue())return clearTimeout(c.timeout),c.hoverState="out",c.options.delay&&c.options.delay.hide?void(c.timeout=setTimeout(function(){"out"==c.hoverState&&c.hide()},c.options.delay.hide)):c.hide()},c.prototype.show=function(){var b=a.Event("show.bs."+this.type);if(this.hasContent()&&this.enabled){this.$element.trigger(b);var d=a.contains(this.$element[0].ownerDocument.documentElement,this.$element[0]);if(b.isDefaultPrevented()||!d)return;var e=this,f=this.tip(),g=this.getUID(this.type);this.setContent(),f.attr("id",g),this.$element.attr("aria-describedby",g),this.options.animation&&f.addClass("fade");var h="function"==typeof this.options.placement?this.options.placement.call(this,f[0],this.$element[0]):this.options.placement,i=/\s?auto?\s?/i,j=i.test(h);j&&(h=h.replace(i,"")||"top"),f.detach().css({top:0,left:0,display:"block"}).addClass(h).data("bs."+this.type,this),this.options.container?f.appendTo(this.options.container):f.insertAfter(this.$element),this.$element.trigger("inserted.bs."+this.type);var k=this.getPosition(),l=f[0].offsetWidth,m=f[0].offsetHeight;if(j){var n=h,o=this.getPosition(this.$viewport);h="bottom"==h&&k.bottom+m>o.bottom?"top":"top"==h&&k.top-mo.width?"left":"left"==h&&k.left-lg.top+g.height&&(e.top=g.top+g.height-i)}else{var j=b.left-f,k=b.left+f+c;jg.right&&(e.left=g.left+g.width-k)}return e},c.prototype.getTitle=function(){var a,b=this.$element,c=this.options;return a=b.attr("data-original-title")||("function"==typeof c.title?c.title.call(b[0]):c.title)},c.prototype.getUID=function(a){do a+=~~(1e6*Math.random());while(document.getElementById(a));return a},c.prototype.tip=function(){if(!this.$tip&&(this.$tip=a(this.options.template),1!=this.$tip.length))throw new Error(this.type+" `template` option must consist of exactly 1 top-level element!");return this.$tip},c.prototype.arrow=function(){return this.$arrow=this.$arrow||this.tip().find(".tooltip-arrow")},c.prototype.enable=function(){this.enabled=!0},c.prototype.disable=function(){this.enabled=!1},c.prototype.toggleEnabled=function(){this.enabled=!this.enabled},c.prototype.toggle=function(b){var c=this;b&&(c=a(b.currentTarget).data("bs."+this.type),c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c))),b?(c.inState.click=!c.inState.click,c.isInStateTrue()?c.enter(c):c.leave(c)):c.tip().hasClass("in")?c.leave(c):c.enter(c)},c.prototype.destroy=function(){var a=this;clearTimeout(this.timeout),this.hide(function(){a.$element.off("."+a.type).removeData("bs."+a.type),a.$tip&&a.$tip.detach(),a.$tip=null,a.$arrow=null,a.$viewport=null,a.$element=null})};var d=a.fn.tooltip;a.fn.tooltip=b,a.fn.tooltip.Constructor=c,a.fn.tooltip.noConflict=function(){return a.fn.tooltip=d,this}}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.popover"),f="object"==typeof b&&b;!e&&/destroy|hide/.test(b)||(e||d.data("bs.popover",e=new c(this,f)),"string"==typeof b&&e[b]())})}var c=function(a,b){this.init("popover",a,b)};if(!a.fn.tooltip)throw new Error("Popover requires tooltip.js");c.VERSION="3.3.7",c.DEFAULTS=a.extend({},a.fn.tooltip.Constructor.DEFAULTS,{placement:"right",trigger:"click",content:"",template:''}),c.prototype=a.extend({},a.fn.tooltip.Constructor.prototype),c.prototype.constructor=c,c.prototype.getDefaults=function(){return c.DEFAULTS},c.prototype.setContent=function(){var a=this.tip(),b=this.getTitle(),c=this.getContent();a.find(".popover-title")[this.options.html?"html":"text"](b),a.find(".popover-content").children().detach().end()[this.options.html?"string"==typeof c?"html":"append":"text"](c),a.removeClass("fade top bottom left right in"),a.find(".popover-title").html()||a.find(".popover-title").hide()},c.prototype.hasContent=function(){return this.getTitle()||this.getContent()},c.prototype.getContent=function(){var a=this.$element,b=this.options;return a.attr("data-content")||("function"==typeof b.content?b.content.call(a[0]):b.content)},c.prototype.arrow=function(){return this.$arrow=this.$arrow||this.tip().find(".arrow")};var d=a.fn.popover;a.fn.popover=b,a.fn.popover.Constructor=c,a.fn.popover.noConflict=function(){return a.fn.popover=d,this}}(jQuery),+function(a){"use strict";function b(c,d){this.$body=a(document.body),this.$scrollElement=a(a(c).is(document.body)?window:c),this.options=a.extend({},b.DEFAULTS,d),this.selector=(this.options.target||"")+" .nav li > a",this.offsets=[],this.targets=[],this.activeTarget=null,this.scrollHeight=0,this.$scrollElement.on("scroll.bs.scrollspy",a.proxy(this.process,this)),this.refresh(),this.process()}function c(c){return this.each(function(){var d=a(this),e=d.data("bs.scrollspy"),f="object"==typeof c&&c;e||d.data("bs.scrollspy",e=new b(this,f)),"string"==typeof c&&e[c]()})}b.VERSION="3.3.7",b.DEFAULTS={offset:10},b.prototype.getScrollHeight=function(){return this.$scrollElement[0].scrollHeight||Math.max(this.$body[0].scrollHeight,document.documentElement.scrollHeight)},b.prototype.refresh=function(){var b=this,c="offset",d=0;this.offsets=[],this.targets=[],this.scrollHeight=this.getScrollHeight(),a.isWindow(this.$scrollElement[0])||(c="position",d=this.$scrollElement.scrollTop()),this.$body.find(this.selector).map(function(){var b=a(this),e=b.data("target")||b.attr("href"),f=/^#./.test(e)&&a(e);return f&&f.length&&f.is(":visible")&&[[f[c]().top+d,e]]||null}).sort(function(a,b){return a[0]-b[0]}).each(function(){b.offsets.push(this[0]),b.targets.push(this[1])})},b.prototype.process=function(){var a,b=this.$scrollElement.scrollTop()+this.options.offset,c=this.getScrollHeight(),d=this.options.offset+c-this.$scrollElement.height(),e=this.offsets,f=this.targets,g=this.activeTarget;if(this.scrollHeight!=c&&this.refresh(),b>=d)return g!=(a=f[f.length-1])&&this.activate(a);if(g&&b=e[a]&&(void 0===e[a+1]||b .dropdown-menu > .active").removeClass("active").end().find('[data-toggle="tab"]').attr("aria-expanded",!1),b.addClass("active").find('[data-toggle="tab"]').attr("aria-expanded",!0),h?(b[0].offsetWidth,b.addClass("in")):b.removeClass("fade"),b.parent(".dropdown-menu").length&&b.closest("li.dropdown").addClass("active").end().find('[data-toggle="tab"]').attr("aria-expanded",!0),e&&e()}var g=d.find("> .active"),h=e&&a.support.transition&&(g.length&&g.hasClass("fade")||!!d.find("> .fade").length);g.length&&h?g.one("bsTransitionEnd",f).emulateTransitionEnd(c.TRANSITION_DURATION):f(),g.removeClass("in")};var d=a.fn.tab;a.fn.tab=b,a.fn.tab.Constructor=c,a.fn.tab.noConflict=function(){return a.fn.tab=d,this};var e=function(c){c.preventDefault(),b.call(a(this),"show")};a(document).on("click.bs.tab.data-api",'[data-toggle="tab"]',e).on("click.bs.tab.data-api",'[data-toggle="pill"]',e)}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.affix"),f="object"==typeof b&&b;e||d.data("bs.affix",e=new c(this,f)),"string"==typeof b&&e[b]()})}var c=function(b,d){this.options=a.extend({},c.DEFAULTS,d),this.$target=a(this.options.target).on("scroll.bs.affix.data-api",a.proxy(this.checkPosition,this)).on("click.bs.affix.data-api",a.proxy(this.checkPositionWithEventLoop,this)),this.$element=a(b),this.affixed=null,this.unpin=null,this.pinnedOffset=null,this.checkPosition()};c.VERSION="3.3.7",c.RESET="affix affix-top affix-bottom",c.DEFAULTS={offset:0,target:window},c.prototype.getState=function(a,b,c,d){var e=this.$target.scrollTop(),f=this.$element.offset(),g=this.$target.height();if(null!=c&&"top"==this.affixed)return e=a-d&&"bottom"},c.prototype.getPinnedOffset=function(){if(this.pinnedOffset)return this.pinnedOffset;this.$element.removeClass(c.RESET).addClass("affix");var a=this.$target.scrollTop(),b=this.$element.offset();return this.pinnedOffset=b.top-a},c.prototype.checkPositionWithEventLoop=function(){setTimeout(a.proxy(this.checkPosition,this),1)},c.prototype.checkPosition=function(){if(this.$element.is(":visible")){var b=this.$element.height(),d=this.options.offset,e=d.top,f=d.bottom,g=Math.max(a(document).height(),a(document.body).height());"object"!=typeof d&&(f=e=d),"function"==typeof e&&(e=d.top(this.$element)),"function"==typeof f&&(f=d.bottom(this.$element));var h=this.getState(g,b,e,f);if(this.affixed!=h){null!=this.unpin&&this.$element.css("top","");var i="affix"+(h?"-"+h:""),j=a.Event(i+".bs.affix");if(this.$element.trigger(j),j.isDefaultPrevented())return;this.affixed=h,this.unpin="bottom"==h?this.getPinnedOffset():null,this.$element.removeClass(c.RESET).addClass(i).trigger(i.replace("affix","affixed")+".bs.affix")}"bottom"==h&&this.$element.offset({top:g-b-f})}};var d=a.fn.affix;a.fn.affix=b,a.fn.affix.Constructor=c,a.fn.affix.noConflict=function(){return a.fn.affix=d,this},a(window).on("load",function(){a('[data-spy="affix"]').each(function(){var c=a(this),d=c.data();d.offset=d.offset||{},null!=d.offsetBottom&&(d.offset.bottom=d.offsetBottom),null!=d.offsetTop&&(d.offset.top=d.offsetTop),b.call(c,d)})})}(jQuery); -------------------------------------------------------------------------------- /static/js/custom.js: -------------------------------------------------------------------------------- 1 | (function($) { 2 | 3 | // Add smooth scrolling to all links in navbar 4 | $(".navbar a,a.btn-appoint, .quick-info li a, .overlay-detail a").on('click', function(event) { 5 | 6 | var hash = this.hash; 7 | if (hash) { 8 | event.preventDefault(); 9 | $('html, body').animate({ 10 | scrollTop: $(hash).offset().top 11 | }, 900, function() { 12 | window.location.hash = hash; 13 | }); 14 | } 15 | 16 | }); 17 | 18 | $(".navbar-collapse a").on('click', function() { 19 | $(".navbar-collapse.collapse").removeClass('in'); 20 | }); 21 | 22 | //jQuery to collapse the navbar on scroll 23 | $(window).scroll(function() { 24 | if ($(".navbar-default").offset().top > 50) { 25 | $(".navbar-fixed-top").addClass("top-nav-collapse"); 26 | } else { 27 | $(".navbar-fixed-top").removeClass("top-nav-collapse"); 28 | } 29 | }); 30 | 31 | })(jQuery); 32 | -------------------------------------------------------------------------------- /static/js/jquery.easing.min.js: -------------------------------------------------------------------------------- 1 | /* 2 | * jQuery Easing v1.3 - http://gsgd.co.uk/sandbox/jquery/easing/ 3 | * 4 | * Uses the built in easing capabilities added In jQuery 1.1 5 | * to offer multiple easing options 6 | * 7 | * TERMS OF USE - EASING EQUATIONS 8 | * 9 | * Open source under the BSD License. 10 | * 11 | * Copyright © 2001 Robert Penner 12 | * All rights reserved. 13 | * 14 | * TERMS OF USE - jQuery Easing 15 | * 16 | * Open source under the BSD License. 17 | * 18 | * Copyright © 2008 George McGinley Smith 19 | * All rights reserved. 20 | * 21 | * Redistribution and use in source and binary forms, with or without modification, 22 | * are permitted provided that the following conditions are met: 23 | * 24 | * Redistributions of source code must retain the above copyright notice, this list of 25 | * conditions and the following disclaimer. 26 | * Redistributions in binary form must reproduce the above copyright notice, this list 27 | * of conditions and the following disclaimer in the documentation and/or other materials 28 | * provided with the distribution. 29 | * 30 | * Neither the name of the author nor the names of contributors may be used to endorse 31 | * or promote products derived from this software without specific prior written permission. 32 | * 33 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY 34 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 35 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 36 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 37 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 38 | * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 39 | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 40 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 41 | * OF THE POSSIBILITY OF SUCH DAMAGE. 42 | * 43 | */ 44 | jQuery.easing.jswing=jQuery.easing.swing;jQuery.extend(jQuery.easing,{def:"easeOutQuad",swing:function(e,f,a,h,g){return jQuery.easing[jQuery.easing.def](e,f,a,h,g)},easeInQuad:function(e,f,a,h,g){return h*(f/=g)*f+a},easeOutQuad:function(e,f,a,h,g){return -h*(f/=g)*(f-2)+a},easeInOutQuad:function(e,f,a,h,g){if((f/=g/2)<1){return h/2*f*f+a}return -h/2*((--f)*(f-2)-1)+a},easeInCubic:function(e,f,a,h,g){return h*(f/=g)*f*f+a},easeOutCubic:function(e,f,a,h,g){return h*((f=f/g-1)*f*f+1)+a},easeInOutCubic:function(e,f,a,h,g){if((f/=g/2)<1){return h/2*f*f*f+a}return h/2*((f-=2)*f*f+2)+a},easeInQuart:function(e,f,a,h,g){return h*(f/=g)*f*f*f+a},easeOutQuart:function(e,f,a,h,g){return -h*((f=f/g-1)*f*f*f-1)+a},easeInOutQuart:function(e,f,a,h,g){if((f/=g/2)<1){return h/2*f*f*f*f+a}return -h/2*((f-=2)*f*f*f-2)+a},easeInQuint:function(e,f,a,h,g){return h*(f/=g)*f*f*f*f+a},easeOutQuint:function(e,f,a,h,g){return h*((f=f/g-1)*f*f*f*f+1)+a},easeInOutQuint:function(e,f,a,h,g){if((f/=g/2)<1){return h/2*f*f*f*f*f+a}return h/2*((f-=2)*f*f*f*f+2)+a},easeInSine:function(e,f,a,h,g){return -h*Math.cos(f/g*(Math.PI/2))+h+a},easeOutSine:function(e,f,a,h,g){return h*Math.sin(f/g*(Math.PI/2))+a},easeInOutSine:function(e,f,a,h,g){return -h/2*(Math.cos(Math.PI*f/g)-1)+a},easeInExpo:function(e,f,a,h,g){return(f==0)?a:h*Math.pow(2,10*(f/g-1))+a},easeOutExpo:function(e,f,a,h,g){return(f==g)?a+h:h*(-Math.pow(2,-10*f/g)+1)+a},easeInOutExpo:function(e,f,a,h,g){if(f==0){return a}if(f==g){return a+h}if((f/=g/2)<1){return h/2*Math.pow(2,10*(f-1))+a}return h/2*(-Math.pow(2,-10*--f)+2)+a},easeInCirc:function(e,f,a,h,g){return -h*(Math.sqrt(1-(f/=g)*f)-1)+a},easeOutCirc:function(e,f,a,h,g){return h*Math.sqrt(1-(f=f/g-1)*f)+a},easeInOutCirc:function(e,f,a,h,g){if((f/=g/2)<1){return -h/2*(Math.sqrt(1-f*f)-1)+a}return h/2*(Math.sqrt(1-(f-=2)*f)+1)+a},easeInElastic:function(f,h,e,l,k){var i=1.70158;var j=0;var g=l;if(h==0){return e}if((h/=k)==1){return e+l}if(!j){j=k*0.3}if(g 2 | 3 | 4 | 5 | 6 | 7 | Medilab 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 64 | 65 | 66 | 67 | 68 | 69 |
70 |
71 |
72 |
73 | 74 |
75 |

Take a Test

76 |
77 |

Instructions: Beside is a list of questions that relate to life experiences common among people who have been diagnosed with depression. Please read each question carefully, and indicate how often you have experienced the same or similar challenges in the past few months.

78 | 79 |
80 |
81 | 82 |

Little interest or pleasure in doing things

83 |
    84 |
  • 85 | 86 | 87 |
  • 88 |
  • 89 | 90 | 91 |
  • 92 | 93 |
  • 94 | 95 | 96 |
  • 97 |
  • 98 | 99 | 100 |
  • 101 |
102 | 103 |
104 |
105 | 106 |
107 |
108 | 109 |

Feeling down, depressed, or hopeless

110 |
    111 |
  • 112 | 113 | 114 |
  • 115 |
  • 116 | 117 | 118 |
  • 119 | 120 |
  • 121 | 122 | 123 |
  • 124 |
  • 125 | 126 | 127 |
  • 128 |
129 | 130 |
131 |
132 | 133 |
134 |
135 |

Trouble falling or staying asleep, or sleeping too much

136 | 137 |
    138 |
  • 139 | 140 | 141 |
  • 142 |
  • 143 | 144 | 145 |
  • 146 | 147 |
  • 148 | 149 | 150 |
  • 151 |
  • 152 | 153 | 154 |
  • 155 |
156 | 157 |
158 |
159 | 160 |
161 | 162 | 163 | 164 |
165 | 166 |
167 |
168 |

Feeling tired or having little energy

169 | 170 |
    171 |
  • 172 | 173 | 174 |
  • 175 |
  • 176 | 177 | 178 |
  • 179 | 180 |
  • 181 | 182 | 183 |
  • 184 |
  • 185 | 186 | 187 |
  • 188 |
189 | 190 |
191 |
192 | 193 |
194 |
195 |

Poor appetite or overeating

196 | 197 |
    198 |
  • 199 | 200 | 201 |
  • 202 |
  • 203 | 204 | 205 |
  • 206 | 207 |
  • 208 | 209 | 210 |
  • 211 |
  • 212 | 213 | 214 |
  • 215 |
216 | 217 |
218 |
219 | 220 |
221 |
222 |

Feeling bad about yourself - or that you are a failure or have let yourself or your family down

223 | 224 |
    225 |
  • 226 | 227 | 228 |
  • 229 |
  • 230 | 231 | 232 |
  • 233 | 234 |
  • 235 | 236 | 237 |
  • 238 |
  • 239 | 240 | 241 |
  • 242 |
243 | 244 |
245 |
246 | 247 |
248 |
249 |

Trouble concentrating on things, such as reading the newspaper or watching television

250 | 251 |
    252 |
  • 253 | 254 | 255 |
  • 256 |
  • 257 | 258 | 259 |
  • 260 | 261 |
  • 262 | 263 | 264 |
  • 265 |
  • 266 | 267 | 268 |
  • 269 |
270 | 271 |
272 |
273 | 274 |
275 | 276 |
277 | 278 | 279 | 280 |
281 |

Moving or speaking so slowly that other people could have noticed

282 |
    283 |
  • 284 | 285 | 286 |
  • 287 |
  • 288 | 289 | 290 |
  • 291 | 292 |
  • 293 | 294 | 295 |
  • 296 |
  • 297 | 298 | 299 |
  • 300 |
301 |
302 |
303 | 304 | 305 |
306 |
307 |

Thoughts that you would be better off dead, or of hurting yourself

308 |
    309 |
  • 310 | 311 | 312 |
  • 313 |
  • 314 | 315 | 316 |
  • 317 | 318 |
  • 319 | 320 | 321 |
  • 322 |
  • 323 | 324 | 325 |
  • 326 |
327 |
328 |
329 | 330 | 331 | 332 |
333 |
334 |

If you've had any days with issues above, how difficult have these problems made it for you at work, home, school, or with other people?

335 |
    336 |
  • 337 | 338 | 339 |
  • 340 |
  • 341 | 342 | 343 |
  • 344 | 345 |
  • 346 | 347 | 348 |
  • 349 |
  • 350 | 351 | 352 |
  • 353 |
354 |
355 |
356 | 357 | 358 |
359 |
360 |
361 |
362 | 363 | 364 | 365 | 366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |

Emergency Case

374 |

This information is not designed to replace a physician's independent judgment about the appropriateness or risks of a procedure for a given patient. Always consult your doctor about your medical conditions. Remedy Health Media & PsyCom do not provide medical advice, diagnosis or treatment. Use of this website is conditional upon your acceptance of our User Agreement.

375 | READ MORE 376 |
377 |
378 |
379 |
380 |
381 |
382 | 383 | 384 |
385 |
386 |
387 |
388 |
389 |

The Medilab
Ultimate Dream

390 |
391 |

Inspiring millions of patients and caregivers to live healthier, happier lives through our intensely personal, emotionally engaging health stories and our medically vetted content and tools.millions of patients and caregivers to live healthier, happier lives through our intensely personal, emotionally engaging health stories and our medically vetted content and tools.

392 | Know more.. 393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |

It's something important you want to know.

401 |

We additionally suggest it would be prudent to start a conversation with your doctor.If you need help we strongly suggest that you reach out to to a qualified mental health professional listed in our directory of emergency mental health resources.

402 |
403 |
404 |
405 |
406 |

It's something important you want to know.

407 |

Medilab has been a leader in addressing mental health and helping break stigma. Now the third largest mental health site, it has grown into an essential resource on depression, anxiety disorders, bipolar disorder, schizophrenia, and many other conditions. Via patient stories, expert interviews, popular assessment tools, and engaging imagery, people with mental illness receive both crucial information—and hope.

408 |
409 |
410 | 411 |
412 |
413 |
414 | 415 |
416 | 417 | 418 | 419 | 420 |
421 |
422 |
423 |
424 |
425 |

« A few words
about us »

426 |
427 |
428 | Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a typek 429 |

— Medilap Healthcare

430 |
431 |
432 |
433 |
434 |
435 | 436 | 437 | 438 |
439 | 478 | 491 |
492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | -------------------------------------------------------------------------------- /templates/index.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | Medilab 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 64 | 65 | 66 | 67 | 68 | 69 |
70 |
71 |
72 |
73 | 74 |
75 |

Take a Test

76 |
77 |

Instructions: Beside is a list of questions that relate to life experiences common among people who have been diagnosed with depression. Please read each question carefully, and indicate how often you have experienced the same or similar challenges in the past few months.

78 | 79 |
80 |
81 | 82 |

Little interest or pleasure in doing things

83 |
    84 |
  • 85 | 86 | 87 |
  • 88 |
  • 89 | 90 | 91 |
  • 92 | 93 |
  • 94 | 95 | 96 |
  • 97 |
  • 98 | 99 | 100 |
  • 101 |
102 | 103 |
104 |
105 | 106 |
107 |
108 | 109 |

Feeling down, depressed, or hopeless

110 |
    111 |
  • 112 | 113 | 114 |
  • 115 |
  • 116 | 117 | 118 |
  • 119 | 120 |
  • 121 | 122 | 123 |
  • 124 |
  • 125 | 126 | 127 |
  • 128 |
129 | 130 |
131 |
132 | 133 |
134 |
135 |

Trouble falling or staying asleep, or sleeping too much

136 | 137 |
    138 |
  • 139 | 140 | 141 |
  • 142 |
  • 143 | 144 | 145 |
  • 146 | 147 |
  • 148 | 149 | 150 |
  • 151 |
  • 152 | 153 | 154 |
  • 155 |
156 | 157 |
158 |
159 | 160 |
161 | 162 | 163 | 164 |
165 | 166 |
167 |
168 |

Feeling tired or having little energy

169 | 170 |
    171 |
  • 172 | 173 | 174 |
  • 175 |
  • 176 | 177 | 178 |
  • 179 | 180 |
  • 181 | 182 | 183 |
  • 184 |
  • 185 | 186 | 187 |
  • 188 |
189 | 190 |
191 |
192 | 193 |
194 |
195 |

Poor appetite or overeating

196 | 197 |
    198 |
  • 199 | 200 | 201 |
  • 202 |
  • 203 | 204 | 205 |
  • 206 | 207 |
  • 208 | 209 | 210 |
  • 211 |
  • 212 | 213 | 214 |
  • 215 |
216 | 217 |
218 |
219 | 220 |
221 |
222 |

Feeling bad about yourself - or that you are a failure or have let yourself or your family down

223 | 224 |
    225 |
  • 226 | 227 | 228 |
  • 229 |
  • 230 | 231 | 232 |
  • 233 | 234 |
  • 235 | 236 | 237 |
  • 238 |
  • 239 | 240 | 241 |
  • 242 |
243 | 244 |
245 |
246 | 247 |
248 |
249 |

Trouble concentrating on things, such as reading the newspaper or watching television

250 | 251 |
    252 |
  • 253 | 254 | 255 |
  • 256 |
  • 257 | 258 | 259 |
  • 260 | 261 |
  • 262 | 263 | 264 |
  • 265 |
  • 266 | 267 | 268 |
  • 269 |
270 | 271 |
272 |
273 | 274 |
275 | 276 |
277 | 278 | 279 | 280 |
281 |

Moving or speaking so slowly that other people could have noticed

282 |
    283 |
  • 284 | 285 | 286 |
  • 287 |
  • 288 | 289 | 290 |
  • 291 | 292 |
  • 293 | 294 | 295 |
  • 296 |
  • 297 | 298 | 299 |
  • 300 |
301 |
302 |
303 | 304 | 305 |
306 |
307 |

Thoughts that you would be better off dead, or of hurting yourself

308 |
    309 |
  • 310 | 311 | 312 |
  • 313 |
  • 314 | 315 | 316 |
  • 317 | 318 |
  • 319 | 320 | 321 |
  • 322 |
  • 323 | 324 | 325 |
  • 326 |
327 |
328 |
329 | 330 | 331 | 332 |
333 |
334 |

If you've had any days with issues above, how difficult have these problems made it for you at work, home, school, or with other people?

335 |
    336 |
  • 337 | 338 | 339 |
  • 340 |
  • 341 | 342 | 343 |
  • 344 | 345 |
  • 346 | 347 | 348 |
  • 349 |
  • 350 | 351 | 352 |
  • 353 |
354 |
355 |
356 | 357 | 358 |
359 |
360 |
361 |
362 | 363 | 364 | 365 | 366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |

Emergency Case

374 |

This information is not designed to replace a physician's independent judgment about the appropriateness or risks of a procedure for a given patient. Always consult your doctor about your medical conditions. Remedy Health Media & PsyCom do not provide medical advice, diagnosis or treatment. Use of this website is conditional upon your acceptance of our User Agreement.

375 | READ MORE 376 |
377 |
378 |
379 |
380 |
381 |
382 | 383 | 384 |
385 |
386 |
387 |
388 |
389 |

The Medilab
Ultimate Dream

390 |
391 |

Inspiring millions of patients and caregivers to live healthier, happier lives through our intensely personal, emotionally engaging health stories and our medically vetted content and tools.millions of patients and caregivers to live healthier, happier lives through our intensely personal, emotionally engaging health stories and our medically vetted content and tools.

392 | Know more.. 393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |

It's something important you want to know.

401 |

We additionally suggest it would be prudent to start a conversation with your doctor.If you need help we strongly suggest that you reach out to to a qualified mental health professional listed in our directory of emergency mental health resources.

402 |
403 |
404 |
405 |
406 |

It's something important you want to know.

407 |

Medilab has been a leader in addressing mental health and helping break stigma. Now the third largest mental health site, it has grown into an essential resource on depression, anxiety disorders, bipolar disorder, schizophrenia, and many other conditions. Via patient stories, expert interviews, popular assessment tools, and engaging imagery, people with mental illness receive both crucial information—and hope.

408 |
409 |
410 | 411 |
412 |
413 |
414 | 415 |
416 | 417 | 418 | 419 | 420 |
421 |
422 |
423 |
424 |
425 |

« A few words
about us »

426 |
427 |
428 | Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a typek 429 |

— Medilab Healthcare

430 |
431 |
432 |
433 |
434 |
435 | 436 | 437 | 438 |
439 | 478 | 491 |
492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | -------------------------------------------------------------------------------- /templates/login.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | Medlabs 8 | 9 | 10 | 11 | 12 | 73 | 74 | 75 | 106 | 107 | -------------------------------------------------------------------------------- /templates/result.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | Medilab 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 64 | 65 | 66 | 67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |

It's something important you want to know.

76 |

If you have some symptoms of depression. Right now, these symptoms are likely causing problems in your daily life. These problems may be big, like making it hard for you to take care of everyday activities and enjoy the things you usually do. You should get help right away.

77 |
78 |
79 |
80 |
81 |

Find Help.

82 |

When you're feeling depressed, it can be hard to have energy to make a phone call. But having support from others can be helpful. Try talking to your doctor or a therapist. They can help you get treatment to deal with depression. You can also try telling family and friends how you’re feeling. 83 | How you’re feeling now isn't how you’ll always feel. People do get better. There are many good treatments for depression. 84 |

85 |
86 |
87 | 88 |
89 |
90 |
91 | 92 |
93 | 94 | 95 | 96 | 97 |
98 |
99 |
100 |
101 |
102 |

« A few words
about us »

103 |
104 |
105 | Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a typek 106 |

— Medilap Healthcare

107 |
108 |
109 |
110 |
111 |
112 | 113 | 114 | 115 |
116 | 155 | 168 |
169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | -------------------------------------------------------------------------------- /templates/sentiment.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | Medilab 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 64 | 65 | 66 | 67 | 68 | 69 |
70 |
71 |
72 | 73 |
74 |
75 |

Take a Test

76 |
77 |
78 |
79 | 80 | 81 |
82 |
83 |
84 |
Write something about how do you feel.
85 | 86 |
87 |
88 |
89 | 90 |
91 |
92 | 93 |
94 |
95 |
96 | 97 |
98 |
99 | 100 | 101 |
102 |
103 | 104 | 105 | 106 | 107 | 108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |

Emergency Case

116 |

This information is not designed to replace a physician's independent judgment about the appropriateness or risks of a procedure for a given patient. Always consult your doctor about your medical conditions. Remedy Health Media & PsyCom do not provide medical advice, diagnosis or treatment. Use of this website is conditional upon your acceptance of our User Agreement.

117 | READ MORE 118 |
119 |
120 |
121 |
122 |
123 |
124 | 125 | 126 |
127 |
128 |
129 |
130 |
131 |

The Medilab
Ultimate Dream

132 |
133 |

Inspiring millions of patients and caregivers to live healthier, happier lives through our intensely personal, emotionally engaging health stories and our medically vetted content and tools.millions of patients and caregivers to live healthier, happier lives through our intensely personal, emotionally engaging health stories and our medically vetted content and tools.

134 | Know more.. 135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |

It's something important you want to know.

143 |

We additionally suggest it would be prudent to start a conversation with your doctor.If you need help we strongly suggest that you reach out to to a qualified mental health professional listed in our directory of emergency mental health resources.

144 |
145 |
146 |
147 |
148 |

It's something important you want to know.

149 |

Medilab has been a leader in addressing mental health and helping break stigma. Now the third largest mental health site, it has grown into an essential resource on depression, anxiety disorders, bipolar disorder, schizophrenia, and many other conditions. Via patient stories, expert interviews, popular assessment tools, and engaging imagery, people with mental illness receive both crucial information—and hope.

150 |
151 |
152 | 153 |
154 |
155 |
156 | 157 |
158 | 159 | 160 | 161 | 162 |
163 |
164 |
165 |
166 |
167 |

« A few words
about us »

168 |
169 |
170 | Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a typek 171 |

— Medilab Healthcare

172 |
173 |
174 |
175 |
176 |
177 | 178 | 179 | 180 |
181 | 220 | 233 |
234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | -------------------------------------------------------------------------------- /templates/tweetresult.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | Medilab 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 70 | 71 | 72 | 73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |

It's something important you want to know.

82 |

If you have some symptoms of depression. Right now, these symptoms are likely causing problems in your daily life. These problems may be big, like making it hard for you to take care of everyday activities and enjoy the things you usually do. You should get help right away.

83 |
84 |
85 |
86 |
87 |

Find Help.

88 |

When you're feeling depressed, it can be hard to have energy to make a phone call. But having support from others can be helpful. Try talking to your doctor or a therapist. They can help you get treatment to deal with depression. You can also try telling family and friends how you’re feeling. 89 | How you’re feeling now isn't how you’ll always feel. People do get better. There are many good treatments for depression. 90 |

91 |
92 |
93 | 94 |
95 |
96 |
97 | 98 |
99 | 100 | 101 | 102 | 103 |
104 |
105 |
106 |
107 |
108 |

« A few words
about us »

109 |
110 |
111 | Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a typek 112 |

— Medilap Healthcare

113 |
114 |
115 |
116 |
117 |
118 | 119 | 120 | 121 |
122 | 161 | 174 |
175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | --------------------------------------------------------------------------------