├── blitz
├── __init__.py
├── losses
│ ├── tests
│ │ ├── __init__.py
│ │ └── kl_divergence_test.py
│ ├── __init__.py
│ └── kl_divergence.py
├── modules
│ ├── tests
│ │ ├── __init__.py
│ │ ├── base_bayesian_module_test.py
│ │ ├── gru_bayesian_layer_test.py
│ │ ├── weight_sampler_test.py
│ │ ├── lstm_bayesian_layer_test.py
│ │ ├── embadding_bayesian_test.py
│ │ ├── linear_bayesian_layer_test.py
│ │ └── conv_bayesian_layer_test.py
│ ├── __init__.py
│ ├── weight_sampler.py
│ ├── linear_bayesian_layer.py
│ ├── base_bayesian_module.py
│ ├── embedding_bayesian_layer.py
│ ├── gru_bayesian_layer.py
│ ├── lstm_bayesian_layer.py
│ └── conv_bayesian_layer.py
├── utils
│ ├── tests
│ │ ├── __init__.py
│ │ ├── layer_wrappers_test.py
│ │ └── variational_estimator_test.py
│ ├── __init__.py
│ ├── minibatch_weighting.py
│ ├── layer_wrappers.py
│ └── variational_estimator.py
├── models
│ ├── __init__.py
│ └── b_vgg.py
├── examples
│ ├── requirements_stocks_example.txt
│ ├── bayesian_LeNet_mnist.py
│ ├── bayesian_regression_boston.py
│ └── cifar10_bvgg.py
└── run_tests.sh
├── requirements.txt
├── doc
├── losses.md
├── samplers.md
├── utils.md
└── layers.md
├── .github
├── FUNDING.yml
└── workflows
│ ├── pythonapp.yml
│ └── pythonpublish.yml
├── setup.py
├── .gitignore
├── README.md
└── LICENSE
/blitz/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/blitz/losses/tests/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/blitz/modules/tests/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/blitz/utils/tests/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/blitz/models/__init__.py:
--------------------------------------------------------------------------------
1 | from .b_vgg import *
--------------------------------------------------------------------------------
/blitz/losses/__init__.py:
--------------------------------------------------------------------------------
1 | from .kl_divergence import *
--------------------------------------------------------------------------------
/blitz/examples/requirements_stocks_example.txt:
--------------------------------------------------------------------------------
1 | pandas
2 | numpy
3 | sklearn
4 | matplotlib
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | torch>=1.7.0
2 | torchvision>=0.5.0
3 | numpy
4 | scikit-learn>=0.22.2
5 | pillow>=7.1
6 |
--------------------------------------------------------------------------------
/blitz/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .variational_estimator import variational_estimator
2 | from .layer_wrappers import Flipout, Radial
3 |
--------------------------------------------------------------------------------
/blitz/run_tests.sh:
--------------------------------------------------------------------------------
1 | eval "$(conda shell.bash hook)"
2 | conda activate blitz;
3 | pip install ../.;
4 | python -m unittest discover -p '*_test.py' -s '.'
5 |
--------------------------------------------------------------------------------
/blitz/modules/__init__.py:
--------------------------------------------------------------------------------
1 | from .linear_bayesian_layer import *
2 | from .conv_bayesian_layer import *
3 | from .lstm_bayesian_layer import *
4 | from .gru_bayesian_layer import *
5 | from .embedding_bayesian_layer import *
6 | from .weight_sampler import *
--------------------------------------------------------------------------------
/doc/losses.md:
--------------------------------------------------------------------------------
1 | # Losses
2 |
3 | # Index:
4 | * [KL Divergence from nn](#KL-Divergence-from-nn)
5 |
6 | ---
7 |
8 | ## KL Divergence from nn
9 | ### blitz.losses.kl_divergence_from_nn(model)
10 | Returns the summed KL Divergence of each of the models bayesian layers.
11 | #### Parameters:
12 | * model - torch.nn.Module
13 | ---
14 |
--------------------------------------------------------------------------------
/blitz/losses/kl_divergence.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn
3 | import torch.nn.functional as F
4 |
5 | from blitz.modules.base_bayesian_module import BayesianModule
6 |
7 | def kl_divergence_from_nn(model):
8 |
9 | """
10 | Gathers the KL Divergence from a nn.Module object
11 | Works by gathering each Bayesian layer kl divergence and summing it, doing nothing with the non Bayesian ones
12 | """
13 | kl_divergence = 0
14 | for module in model.modules():
15 | if isinstance(module, (BayesianModule)):
16 | kl_divergence += module.log_variational_posterior - module.log_prior
17 | return kl_divergence
18 |
19 |
--------------------------------------------------------------------------------
/blitz/utils/minibatch_weighting.py:
--------------------------------------------------------------------------------
1 | def minibatch_weight(batch_idx, num_batches):
2 |
3 | """Calculates the minibatch weight.
4 |
5 | A formula for calculating the minibatch weight is described in
6 | section 3.4 of the 'Weight Uncertainty in Neural Networks' paper.
7 | The weighting decreases as the batch index increases, this is
8 | because the the first few batches are influenced heavily by
9 | the complexity cost.
10 |
11 | Parameters:
12 | batch_idx: int -> the current batch index (from 0 to num_batches-1)
13 | num_batches: int -> the total number of batches
14 | """
15 |
16 | return 2 ** (num_batches - batch_idx - 1) / (2 ** num_batches - 1)
17 |
--------------------------------------------------------------------------------
/.github/FUNDING.yml:
--------------------------------------------------------------------------------
1 | # These are supported funding model platforms
2 |
3 | github: # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2]
4 | patreon: # Replace with a single Patreon username
5 | open_collective: # Replace with a single Open Collective username
6 | ko_fi: # Replace with a single Ko-fi username
7 | tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel
8 | community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry
9 | liberapay: # Replace with a single Liberapay username
10 | issuehunt: # Replace with a single IssueHunt username
11 | otechie: # Replace with a single Otechie username
12 | custom: 'https://www.buymeacoffee.com/piEsposito'
13 |
--------------------------------------------------------------------------------
/.github/workflows/pythonapp.yml:
--------------------------------------------------------------------------------
1 | # This workflow will install Python dependencies, run tests and lint with a single version of Python
2 | # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
3 |
4 | name: Run tests
5 |
6 | on:
7 | push:
8 | branches: [ master ]
9 | pull_request:
10 | branches: [ master ]
11 |
12 | jobs:
13 | build:
14 |
15 | runs-on: ubuntu-latest
16 |
17 | steps:
18 | - uses: actions/checkout@v2
19 | - name: Set up Python 3.8
20 | uses: actions/setup-python@v2
21 | with:
22 | python-version: 3.8
23 | - name: Install dependencies
24 | run: |
25 | python -m pip install --upgrade pip
26 | if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
27 | - name: Test with unittest
28 | run: |
29 | python -m unittest discover -p '*_test.py' -s '.'
30 |
--------------------------------------------------------------------------------
/.github/workflows/pythonpublish.yml:
--------------------------------------------------------------------------------
1 | # This workflows will upload a Python Package using Twine when a release is created
2 | # For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
3 |
4 | name: Upload Python Package
5 |
6 | on:
7 | release:
8 | types: [created]
9 |
10 | jobs:
11 | deploy:
12 |
13 | runs-on: ubuntu-latest
14 |
15 | steps:
16 | - uses: actions/checkout@v2
17 | - name: Set up Python
18 | uses: actions/setup-python@v2
19 | with:
20 | python-version: '3.x'
21 | - name: Install dependencies
22 | run: |
23 | python -m pip install --upgrade pip
24 | pip install setuptools wheel twine
25 | - name: Build and publish
26 | env:
27 | TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
28 | TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
29 | run: |
30 | python setup.py sdist bdist_wheel
31 | twine upload dist/*
32 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup, find_packages
2 | from os import path
3 |
4 | this_directory = path.abspath(path.dirname(__file__))
5 | with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f:
6 | long_desc = f.read()
7 |
8 | with open(path.join(this_directory, 'requirements.txt'), encoding='utf-8') as f:
9 | install_requires = f.read()
10 |
11 | setup(
12 | name = "blitz-bayesian-pytorch",
13 | packages = find_packages(),
14 | version = "0.2.8",
15 | description = "A simple and extensible library to create Bayesian Neural Network Layers on PyTorch without trouble and with full integration with nn.Module and nn.Sequential.",
16 | author = "Pi Esposito",
17 | url = "https://github.com/piEsposito/blitz-bayesian-deep-learning",
18 | long_description = long_desc,
19 | long_description_content_type = "text/markdown",
20 | install_requires = install_requires,
21 | classifiers = [
22 | "Development Status :: 3 - Alpha",
23 | "Intended Audience :: Developers",
24 | "Programming Language :: Python :: 3.7"
25 | ]
26 | )
27 |
--------------------------------------------------------------------------------
/blitz/losses/tests/kl_divergence_test.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | import torch
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 |
6 | from blitz.losses import kl_divergence_from_nn
7 | from blitz.modules import BayesianLinear, BayesianConv2d
8 |
9 | class TestKLDivergence(unittest.TestCase):
10 |
11 | def test_kl_divergence_bayesian_linear_module(self):
12 | blinear = BayesianLinear(10, 10)
13 | to_feed = torch.ones((1, 10))
14 | predicted = blinear(to_feed)
15 |
16 | complexity_cost = blinear.log_variational_posterior - blinear.log_prior
17 | kl_complexity_cost = kl_divergence_from_nn(blinear)
18 |
19 | self.assertEqual((complexity_cost == kl_complexity_cost).all(), torch.tensor(True))
20 | pass
21 |
22 | def test_kl_divergence_bayesian_conv2d_module(self):
23 | bconv = BayesianConv2d(in_channels=3,
24 | out_channels=3,
25 | kernel_size=(3,3))
26 |
27 | to_feed = torch.ones((1, 3, 25, 25))
28 | predicted = bconv(to_feed)
29 |
30 | complexity_cost = bconv.log_variational_posterior - bconv.log_prior
31 | kl_complexity_cost = kl_divergence_from_nn(bconv)
32 |
33 | self.assertEqual((complexity_cost == kl_complexity_cost).all(), torch.tensor(True))
34 | pass
35 |
36 | def test_kl_divergence_non_bayesian_module(self):
37 | linear = nn.Linear(10, 10)
38 | to_feed = torch.ones((1, 10))
39 | predicted = linear(to_feed)
40 |
41 | kl_complexity_cost = kl_divergence_from_nn(linear)
42 | self.assertEqual((torch.tensor(0) == kl_complexity_cost).all(), torch.tensor(True))
43 | pass
44 |
45 | if __name__ == "__main__":
46 | unittest.main()
--------------------------------------------------------------------------------
/blitz/utils/tests/layer_wrappers_test.py:
--------------------------------------------------------------------------------
1 | import unittest
2 |
3 | import torch
4 |
5 | from blitz.modules import BayesianLinear, BayesianLSTM
6 | from blitz.utils import Flipout, Radial
7 |
8 |
9 | class TestFlipout(unittest.TestCase):
10 |
11 | def test_linear(self):
12 | layer = Flipout(BayesianLinear)(10, 10)
13 | in_ = torch.ones(2, 10)
14 | out_ = layer(in_)
15 | # print(out_)
16 | self.assertEqual((out_[0, :] != out_[1, :]).any(), torch.tensor(True))
17 |
18 | def test_RNN(self):
19 | layer = Flipout(BayesianLSTM)(10, 10)
20 | in_ = torch.ones(2, 3, 10)
21 | out_, _ = layer(in_)
22 | # print(out_)
23 | self.assertEqual((out_[0, :, :] != out_[1, :, :]).any(), torch.tensor(True))
24 |
25 |
26 | class TestRadial(unittest.TestCase):
27 |
28 | def test_linear(self):
29 | layer = Radial(BayesianLinear)(10, 10)
30 | in_ = torch.ones(2, 10)
31 | out_ = layer(in_)
32 | # print(out_)
33 |
34 | def test_RNN(self):
35 | layer = Radial(BayesianLSTM)(10, 10)
36 | in_ = torch.ones(2, 3, 10)
37 | out_, _ = layer(in_)
38 | # print(out_)
39 |
40 |
41 | class TestNested(unittest.TestCase):
42 |
43 | def test_linear(self):
44 | layer = Radial(Flipout(BayesianLinear)(10, 10))
45 | in_ = torch.ones(2, 10)
46 | out_ = layer(in_)
47 | # print(out_)
48 | self.assertEqual((out_[0, :] != out_[1, :]).any(), torch.tensor(True))
49 |
50 | def test_RNN(self):
51 | layer = Radial(Flipout(BayesianLSTM)(10, 10))
52 | in_ = torch.ones(2, 3, 10)
53 | out_, _ = layer(in_)
54 | # print(out_)
55 | self.assertEqual((out_[0, :, :] != out_[1, :, :]).any(), torch.tensor(True))
56 |
57 |
58 | if __name__ == "__main__":
59 | unittest.main()
60 |
--------------------------------------------------------------------------------
/blitz/modules/tests/base_bayesian_module_test.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | import torch
3 | from torch import nn
4 |
5 | from blitz.modules.base_bayesian_module import BayesianModule, BayesianRNN
6 | from blitz.modules import BayesianLSTM, BayesianGRU
7 |
8 | class TestLinearBayesian(unittest.TestCase):
9 |
10 | def test_init_bayesian_layer(self):
11 | b_module = BayesianModule()
12 | self.assertEqual(isinstance(b_module, (nn.Module)), True)
13 |
14 | def test_init_brnn(self):
15 | b_module = BayesianRNN()
16 | self.assertEqual(isinstance(b_module, (nn.Module)), True)
17 |
18 | def test_brnn_sharpen_posterior_lstm(self):
19 | b_module = BayesianLSTM(3, 5, sharpen=True)
20 | in_tensor = torch.ones(5, 4, 3)
21 | out_tensor = b_module(in_tensor)[0][:, -1, :]
22 |
23 | loss = nn.MSELoss()(out_tensor.clone().detach().normal_(), out_tensor)
24 | b_module.sharpen_posterior(loss, in_tensor.shape)
25 |
26 | def test_brnn_sharpen_posterior_on_forward_lstm(self):
27 | b_module = BayesianLSTM(3, 5, sharpen=True)
28 | in_tensor = torch.ones(5, 4, 3)
29 | out_tensor = b_module(in_tensor)[0][:, -1, :]
30 |
31 | loss = nn.MSELoss()(out_tensor.clone().detach().normal_(), out_tensor)
32 | b_module.forward(in_tensor, sharpen_loss=loss)
33 |
34 | def test_brnn_sharpen_posterior_gru(self):
35 | b_module = BayesianGRU(3, 5, sharpen=True)
36 | in_tensor = torch.ones(5, 4, 3)
37 | out_tensor = b_module(in_tensor)[0][:, -1, :]
38 |
39 | loss = nn.MSELoss()(out_tensor.clone().detach().normal_(), out_tensor)
40 | b_module.sharpen_posterior(loss, in_tensor.shape)
41 |
42 | def test_brnn_sharpen_posterior_on_forward_gru(self):
43 | b_module = BayesianGRU(3, 5, sharpen=True)
44 | in_tensor = torch.ones(5, 4, 3)
45 | out_tensor = b_module(in_tensor)[0][:, -1, :]
46 |
47 | loss = nn.MSELoss()(out_tensor.clone().detach().normal_(), out_tensor)
48 | b_module.forward(in_tensor, sharpen_loss=loss)
49 |
50 | if __name__ == "__main__":
51 | unittest.main()
--------------------------------------------------------------------------------
/doc/samplers.md:
--------------------------------------------------------------------------------
1 | # Weight a priori and a posteriori sampler
2 |
3 | # Index:
4 | * [TrainableRandomDistribution](#class-TrainableRandomDistribution)
5 | * [PriorWeightDistribution](#class-PriorWeightDistribution)
6 |
7 | ---
8 | ## class TrainableRandomDistribution
9 | ### blitz.modules.weight_sampler.TrainableRandomDistribution(mu, rho)
10 | Creates a weight sampler in order to introduce uncertainity on the layers weights.
11 | #### Parameters:
12 | * mu - torch.tensor with two or more dimensions: mu parameter of the Gaussian weight sampler proposed on Bayes by Backprop paper
13 | * rho - torch.tensor with two or more dimensions: rho parameter of the Gaussian weight sampler proposed on Bayes by Backprop paper
14 |
15 | #### Methods:
16 | * sample():
17 |
18 | Returns a torch.tensor corresponding to the sampled weights of the layer. Also stores the current distribution sigma and weights internally for further use.
19 | * log_posterior():
20 |
21 | Returns the torch.tensor corresponding to the summed log-likelihood of the sampled weights given its mu and sigma parameters, considering it follows a Gaussian distribution.
22 |
23 | ---
24 |
25 | ## class PriorWeightDistribution
26 | ### blitz.modules.weight_sampler.PriorWeightDistribution(pi, sigma1, sigma2)
27 | Creates a log-likelihood calculator for any matrix w passed on the log_prior method, considering a Scaled Gaussian Mixture model of N(0, sigma1) with weight pi (parameter) and N(0, sigma2) with weight (1-pi) parameter, for each distribution, following the idea on Bayes by Backprop paper.
28 | #### Parameters:
29 | * pi - float corresponding to a factor for scaling the mixture models; AND
30 | * sigma1 - float corresponding to the standard deviation for the first Gaussian Model of the mixture; AND
31 | * sigma2 - float corresponding to the standard deviation for the second Gaussian Model of the mixture; OR
32 |
33 | * dist - torch.distributions.distribution.Distribution corresponding to a prior distribution different than a normal / scale mixture normal; if you pass that, the prior distribution will be that one and sigma1 and sigma2 and pi can be dismissed. - Note that there is a torch issue that may output you logprob as NaN, so beware of the prior dist you are using.
34 |
35 | #### Methods:
36 | * log_prior(w):
37 |
38 | Returns the torch.tensor corresponding to the summed log-likelihood of the matrix of weights "w" given PriorWeightDistribution object scaled Gaussian Mixture model parameters.
39 | ##### Parameters:
40 | * w - torch.tensor
41 | ---
42 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Jetbrains project settings
118 | .idea/
119 |
120 | # Rope project settings
121 | .ropeproject
122 |
123 | # mkdocs documentation
124 | /site
125 |
126 | # mypy
127 | .mypy_cache/
128 | .dmypy.json
129 | dmypy.json
130 |
131 | # Pyre type checker
132 | .pyre/
133 |
134 | #vscode
135 | .vscode/
136 |
137 | #example data
138 | example/data/
139 | utils/data/
140 | *data/
141 | /data/
--------------------------------------------------------------------------------
/doc/utils.md:
--------------------------------------------------------------------------------
1 | # Utils and decorators to enable easy basyesian training and inference
2 |
3 | # Index:
4 | * [Decorator variational_estimator](#Variational-Estimator)
5 | ---
6 | ## Variational Estimator
7 |
8 | Dynamically adds some util methods to object that inherits from torch.nn.Module in order to facilitate bayesian training and inference.
9 |
10 | ### @variational_estimator(model)
11 | #### Parameters:
12 | * model: -> torch.nn.Module to have introduced the Bayesian DL methods
13 |
14 | ### Methods introduced:
15 | * #### nn_kl_divergence()
16 |
17 | Returns torch.tensor corresponding to the summed KL divergence (relative to the curren weight sampling) of all of its BayesianModule layers.
18 |
19 | * #### freeze_model()
20 |
21 | Freezes the model weights by making its BayesianModule layers forward operation use, while not unfrozen, only its weight distribution mean tensor.
22 |
23 | * #### unfreeze_model()
24 |
25 | Unfreezes the model by letting it sample its weights using the Bayes By Backprop paper proposed algorithm rather than using only its expected value.
26 |
27 | * #### sample_elbo(inputs, labels, criterion, sample_nbr)
28 |
29 | Samples the ELBO loss of the model sample_nbr times by doing feedforward operations and summing its model kl divergence with the loss the criterion outputs.
30 |
31 | ##### Parameters:
32 | * inputs: torch.tensor -> the input data to the model
33 | * labels: torch.tensor -> label data for the performance-part of the loss calculation
34 |
35 | The shape of the labels must match the label-parameter shape of the criterion (one hot encoded or as index, if needed)
36 |
37 | * criterion: torch.nn.Module, custom criterion (loss) function, torch.nn.functional function -> criterion to gather the performance cost for the model
38 | * sample_nbr: int -> The number of times of the weight-sampling and predictions done in our Monte-Carlo approach to gather the loss to be .backwarded in the optimization of the model.
39 |
40 | #### Returns:
41 | * loss: torch.tensor -> elbo loss for the data given
42 |
43 | * #### mfvi_forward(inputs, sample_nbr)
44 |
45 | Performs mean-field variational inference for the variational estimator model on the inputs
46 |
47 | #### Parameters:
48 | * inputs: torch.tensor -> the input data to the model
49 | * sample_nbr: int -> number of forward passes to be done on the data
50 | #### Returns:
51 | * mean_: torch.tensor -> mean of the perdictions along each of the features of each datapoint on the batch axis, for each feature of ea
52 | * std_: torch.tensor -> std of the predictions along each of the features of each datapoint on the batch axis
53 |
54 |
--------------------------------------------------------------------------------
/blitz/modules/tests/gru_bayesian_layer_test.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | import torch
3 | from torch import nn
4 |
5 | from blitz.modules import BayesianGRU
6 | from blitz.modules.base_bayesian_module import BayesianModule
7 |
8 | class TestLinearBayesian(unittest.TestCase):
9 | def test_init_bayesian_GRU(self):
10 | b_GRU = BayesianGRU(10, 10)
11 | self.assertEqual(isinstance(b_GRU, (nn.Module)), True)
12 | self.assertEqual(isinstance(b_GRU, (BayesianModule)), True)
13 | pass
14 |
15 | def test_infer_shape_1_sample(self):
16 | deterministic_GRU = nn.GRU(1, 10, 1, batch_first=True)
17 | in_data = torch.ones((10, 10, 1))
18 | det_inference = deterministic_GRU(in_data)
19 |
20 | b_GRU = BayesianGRU(1, 10)
21 | b_inference = b_GRU(in_data, hidden_states=None)
22 |
23 | self.assertEqual(det_inference[0].shape, b_inference[0].shape)
24 | pass
25 |
26 | def test_variational_inference(self):
27 | #create module, check if inference is variating
28 | deterministic_GRU = nn.GRU(1, 10, 1, batch_first=True)
29 | in_data = torch.ones((10, 10, 1))
30 | det_inference = deterministic_GRU(in_data)
31 |
32 | b_GRU = BayesianGRU(1, 10)
33 | b_inference_1 = b_GRU(in_data, hidden_states=None)
34 | b_inference_2 = b_GRU(in_data, hidden_states=None)
35 |
36 | self.assertEqual((b_inference_1[0] != b_inference_2[0]).any(), torch.tensor(True))
37 | self.assertEqual((det_inference[0] == det_inference[0]).all(), torch.tensor(True))
38 | pass
39 |
40 | def test_frozen_inference(self):
41 | b_GRU = BayesianGRU(1, 10)
42 | b_GRU.freeze = True
43 |
44 | in_data = torch.ones((10, 10, 1))
45 | b_inference_1 = b_GRU(in_data, hidden_states=None)
46 | b_inference_2 = b_GRU(in_data, hidden_states=None)
47 |
48 | self.assertEqual((b_inference_1[0] == b_inference_2[0]).all(), torch.tensor(True))
49 |
50 | def test_kl_divergence(self):
51 | #create model, sample weights
52 | #check if kl divergence between apriori and a posteriori is working
53 | b_GRU = BayesianGRU(1, 10)
54 | to_feed = torch.ones((10, 10, 1))
55 |
56 | predicted = b_GRU(to_feed)
57 | complexity_cost = b_GRU.log_variational_posterior - b_GRU.log_prior
58 |
59 | self.assertEqual((complexity_cost == complexity_cost).all(), torch.tensor(True))
60 |
61 | def test_sequential_cuda(self):
62 | #check if we can create sequential models chaning our Bayesian Linear layers
63 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
64 | b_GRU = BayesianGRU(1, 10)
65 | to_feed = torch.ones((10, 10, 1))
66 |
67 | predicted = b_GRU(to_feed)
68 |
69 |
70 |
71 | if __name__ == "__main__":
72 | unittest.main()
--------------------------------------------------------------------------------
/blitz/modules/tests/weight_sampler_test.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | import torch
3 | from blitz.modules.weight_sampler import TrainableRandomDistribution, PriorWeightDistribution
4 | from blitz.modules import BayesianLinear
5 |
6 | class TestWeightSampler(unittest.TestCase):
7 |
8 | def test_gaussian_sample(self):
9 | #checks if sample works
10 |
11 | mu = torch.Tensor(10, 10).uniform_(-1, 1)
12 | rho = torch.Tensor(10, 10).uniform_(-1, 1)
13 |
14 | dist = TrainableRandomDistribution(mu, rho)
15 | s1 = dist.sample()
16 | s2 = dist.sample()
17 |
18 | self.assertEqual((s1 != s2).any(), torch.tensor(True))
19 | self.assertEqual(mu.shape, s1.shape)
20 | self.assertEqual(rho.shape, s1.shape)
21 | pass
22 |
23 | def test_gaussian_log_posterior(self):
24 | #checks if it the log_posterior calculator is working
25 |
26 | mu = torch.Tensor(10, 10).uniform_(-1, 1)
27 | rho = torch.Tensor(10, 10).uniform_(-1, 1)
28 |
29 | dist = TrainableRandomDistribution(mu, rho)
30 | s1 = dist.sample()
31 |
32 | log_posterior = dist.log_posterior()
33 | #check if it is not none
34 | self.assertEqual(log_posterior == log_posterior, torch.tensor(True))
35 |
36 | def test_scale_mixture_prior(self):
37 | mu = torch.Tensor(10, 10).uniform_(-1, 1)
38 | rho = torch.Tensor(10, 10).uniform_(-1, 1)
39 |
40 | dist = TrainableRandomDistribution(mu, rho)
41 | s1 = dist.sample()
42 |
43 | log_posterior = dist.log_posterior()
44 |
45 | prior_dist = PriorWeightDistribution(0.5, 1, .002)
46 | log_prior = prior_dist.log_prior(s1)
47 |
48 | #print(log_prior)
49 | #print(log_posterior)
50 | self.assertEqual(log_prior == log_prior, torch.tensor(True))
51 | self.assertEqual(log_posterior <= log_posterior - log_prior, torch.tensor(True))
52 | pass
53 |
54 | def test_scale_mixture_any_prior(self):
55 | mu = torch.Tensor(10, 10).uniform_(-1, 1)
56 | rho = torch.Tensor(10, 10).uniform_(-1, 1)
57 |
58 | dist = TrainableRandomDistribution(mu, rho)
59 | s1 = dist.sample()
60 |
61 | log_posterior = dist.log_posterior()
62 |
63 | prior_dist = PriorWeightDistribution(dist=torch.distributions.studentT.StudentT(1, 1))
64 | log_prior = prior_dist.log_prior(s1)
65 |
66 | #print(log_prior)
67 | #print(log_posterior)
68 | self.assertEqual(log_prior == log_prior, torch.tensor(True))
69 | self.assertEqual(log_posterior <= log_posterior - log_prior, torch.tensor(True))
70 | pass
71 |
72 | def test_any_prior_on_layer(self):
73 | l = BayesianLinear(7, 5, prior_dist=torch.distributions.studentT.StudentT(1, 1))
74 | t = torch.ones(3, 7)
75 | _ = l(t)
76 |
77 | self.assertEqual(l.log_prior, l.log_prior)
78 | pass
79 |
80 | if __name__ == "__main__":
81 | unittest.main()
--------------------------------------------------------------------------------
/blitz/modules/tests/lstm_bayesian_layer_test.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | import torch
3 | from torch import nn
4 |
5 | from blitz.modules import BayesianLSTM
6 | from blitz.modules.base_bayesian_module import BayesianModule
7 |
8 | class TestLinearBayesian(unittest.TestCase):
9 | def test_init_bayesian_lstm(self):
10 | b_lstm = BayesianLSTM(10, 10)
11 | self.assertEqual(isinstance(b_lstm, (nn.Module)), True)
12 | self.assertEqual(isinstance(b_lstm, (BayesianModule)), True)
13 | pass
14 |
15 | def test_infer_shape_1_sample(self):
16 | deterministic_lstm = nn.LSTM(1, 10, 1, batch_first=True)
17 | in_data = torch.ones((10, 10, 1))
18 | det_inference = deterministic_lstm(in_data)
19 |
20 | b_lstm = BayesianLSTM(1, 10)
21 | b_inference = b_lstm(in_data, hidden_states=None)
22 |
23 | self.assertEqual(det_inference[0].shape, b_inference[0].shape)
24 | pass
25 |
26 | def test_variational_inference(self):
27 | #create module, check if inference is variating
28 | deterministic_lstm = nn.LSTM(1, 10, 1, batch_first=True)
29 | in_data = torch.ones((10, 10, 1))
30 | det_inference = deterministic_lstm(in_data)
31 |
32 | b_lstm = BayesianLSTM(1, 10)
33 | b_inference_1 = b_lstm(in_data, hidden_states=None)
34 | b_inference_2 = b_lstm(in_data, hidden_states=None)
35 |
36 | self.assertEqual((b_inference_1[0] != b_inference_2[0]).any(), torch.tensor(True))
37 | self.assertEqual((det_inference[0] == det_inference[0]).all(), torch.tensor(True))
38 | pass
39 |
40 | def test_frozen_inference(self):
41 | b_lstm = BayesianLSTM(1, 10)
42 | b_lstm.freeze = True
43 |
44 | in_data = torch.ones((10, 10, 1))
45 | b_inference_1 = b_lstm(in_data, hidden_states=None)
46 | b_inference_2 = b_lstm(in_data, hidden_states=None)
47 |
48 | self.assertEqual((b_inference_1[0] == b_inference_2[0]).all(), torch.tensor(True))
49 |
50 | def test_peephole_inference(self):
51 | b_lstm = BayesianLSTM(1, 10, peephole=True)
52 | in_data = torch.ones((10, 10, 1))
53 | b_lstm(in_data)
54 | b_lstm.freeze = True
55 | b_lstm(in_data)
56 |
57 | def test_kl_divergence(self):
58 | #create model, sample weights
59 | #check if kl divergence between apriori and a posteriori is working
60 | b_lstm = BayesianLSTM(1, 10)
61 | to_feed = torch.ones((10, 10, 1))
62 |
63 | predicted = b_lstm(to_feed)
64 | complexity_cost = b_lstm.log_variational_posterior - b_lstm.log_prior
65 |
66 | self.assertEqual((complexity_cost == complexity_cost).all(), torch.tensor(True))
67 |
68 | def test_sequential_cuda(self):
69 | #check if we can create sequential models chaning our Bayesian Linear layers
70 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
71 | b_lstm = BayesianLSTM(1, 10)
72 | to_feed = torch.ones((10, 10, 1))
73 |
74 | predicted = b_lstm(to_feed)
75 |
76 |
77 |
78 | if __name__ == "__main__":
79 | unittest.main()
--------------------------------------------------------------------------------
/blitz/examples/bayesian_LeNet_mnist.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | import torch.optim as optim
5 | import torchvision.datasets as dsets
6 | import torchvision.transforms as transforms
7 |
8 | from blitz.modules import BayesianLinear, BayesianConv2d
9 | from blitz.losses import kl_divergence_from_nn
10 | from blitz.utils import variational_estimator
11 |
12 | train_dataset = dsets.MNIST(root="./data",
13 | train=True,
14 | transform=transforms.ToTensor(),
15 | download=True
16 | )
17 | train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
18 | batch_size=64,
19 | shuffle=True)
20 |
21 | test_dataset = dsets.MNIST(root="./data",
22 | train=False,
23 | transform=transforms.ToTensor(),
24 | download=True
25 | )
26 | test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
27 | batch_size=64,
28 | shuffle=True)
29 |
30 | @variational_estimator
31 | class BayesianCNN(nn.Module):
32 | def __init__(self):
33 | super().__init__()
34 | self.conv1 = BayesianConv2d(1, 6, (5,5))
35 | self.conv2 = BayesianConv2d(6, 16, (5,5))
36 | self.fc1 = BayesianLinear(256, 120)
37 | self.fc2 = BayesianLinear(120, 84)
38 | self.fc3 = BayesianLinear(84, 10)
39 |
40 | def forward(self, x):
41 | out = F.relu(self.conv1(x))
42 | out = F.max_pool2d(out, 2)
43 | out = F.relu(self.conv2(out))
44 | out = F.max_pool2d(out, 2)
45 | out = out.view(out.size(0), -1)
46 | out = F.relu(self.fc1(out))
47 | out = F.relu(self.fc2(out))
48 | out = self.fc3(out)
49 | return out
50 |
51 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
52 | classifier = BayesianCNN().to(device)
53 | optimizer = optim.Adam(classifier.parameters(), lr=0.001)
54 | criterion = torch.nn.CrossEntropyLoss()
55 |
56 | iteration = 0
57 | for epoch in range(100):
58 | for i, (datapoints, labels) in enumerate(train_loader):
59 | optimizer.zero_grad()
60 | loss = classifier.sample_elbo(inputs=datapoints.to(device),
61 | labels=labels.to(device),
62 | criterion=criterion,
63 | sample_nbr=3,
64 | complexity_cost_weight=1/50000)
65 | #print(loss)
66 | loss.backward()
67 | optimizer.step()
68 |
69 | iteration += 1
70 | if iteration%250==0:
71 | print(loss)
72 | correct = 0
73 | total = 0
74 | with torch.no_grad():
75 | for data in test_loader:
76 | images, labels = data
77 | outputs = classifier(images.to(device))
78 | _, predicted = torch.max(outputs.data, 1)
79 | total += labels.size(0)
80 | correct += (predicted == labels.to(device)).sum().item()
81 | print('Iteration: {} | Accuracy of the network on the 10000 test images: {} %'.format(str(iteration) ,str(100 * correct / total)))
--------------------------------------------------------------------------------
/blitz/modules/weight_sampler.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | import torch.nn as nn
4 | import torch.functional as F
5 |
6 | class TrainableRandomDistribution(nn.Module):
7 | #Samples weights for variational inference as in Weights Uncertainity on Neural Networks (Bayes by backprop paper)
8 | #Calculates the variational posterior part of the complexity part of the loss
9 | def __init__(self, mu, rho):
10 | super().__init__()
11 |
12 | self.mu = nn.Parameter(mu)
13 | self.rho = nn.Parameter(rho)
14 | self.register_buffer('eps_w', torch.Tensor(self.mu.shape))
15 | self.sigma = None
16 | self.w = None
17 | self.pi = np.pi
18 | #self.normal = torch.distributions.Normal(0, 1)
19 |
20 | def sample(self):
21 | """
22 | Samples weights by sampling form a Normal distribution, multiplying by a sigma, which is
23 | a function from a trainable parameter, and adding a mean
24 |
25 | sets those weights as the current ones
26 |
27 | returns:
28 | torch.tensor with same shape as self.mu and self.rho
29 | """
30 |
31 | self.eps_w.data.normal_()
32 | self.sigma = torch.log1p(torch.exp(self.rho))
33 | self.w = self.mu + self.sigma * self.eps_w
34 | return self.w
35 |
36 | def log_posterior(self, w=None):
37 |
38 | """
39 | Calculates the log_likelihood for each of the weights sampled as a part of the complexity cost
40 |
41 | returns:
42 | torch.tensor with shape []
43 | """
44 |
45 | assert (self.w is not None), "You can only have a log posterior for W if you've already sampled it"
46 | if w is None:
47 | w = self.w
48 |
49 | log_sqrt2pi = np.log(np.sqrt(2*self.pi))
50 | log_posteriors = -log_sqrt2pi - torch.log(self.sigma) - (((w - self.mu) ** 2)/(2 * self.sigma ** 2)) - 0.5
51 | return log_posteriors.sum()
52 |
53 | class PriorWeightDistribution(nn.Module):
54 | #Calculates a Scale Mixture Prior distribution for the prior part of the complexity cost on Bayes by Backprop paper
55 | def __init__(self,
56 | pi=1,
57 | sigma1=0.1,
58 | sigma2=0.001,
59 | dist=None):
60 | super().__init__()
61 |
62 |
63 | if (dist is None):
64 | self.pi = pi
65 | self.sigma1 = sigma1
66 | self.sigma2 = sigma2
67 | self.dist1 = torch.distributions.Normal(0, sigma1)
68 | self.dist2 = torch.distributions.Normal(0, sigma2)
69 |
70 | if (dist is not None):
71 | self.pi = 1
72 | self.dist1 = dist
73 | self.dist2 = None
74 |
75 |
76 |
77 | def log_prior(self, w):
78 | """
79 | Calculates the log_likelihood for each of the weights sampled relative to a prior distribution as a part of the complexity cost
80 |
81 | returns:
82 | torch.tensor with shape []
83 | """
84 | prob_n1 = torch.exp(self.dist1.log_prob(w))
85 |
86 | if self.dist2 is not None:
87 | prob_n2 = torch.exp(self.dist2.log_prob(w))
88 | if self.dist2 is None:
89 | prob_n2 = 0
90 |
91 | # Prior of the mixture distribution, adding 1e-6 prevents numeric problems with log(p) for small p
92 | prior_pdf = (self.pi * prob_n1 + (1 - self.pi) * prob_n2) + 1e-6
93 |
94 | return (torch.log(prior_pdf) - 0.5).sum()
95 |
--------------------------------------------------------------------------------
/blitz/models/b_vgg.py:
--------------------------------------------------------------------------------
1 |
2 | import math
3 |
4 | import torch.nn as nn
5 | import torch.nn.init as init
6 | from blitz.modules import BayesianLinear, BayesianConv2d
7 | from blitz.utils import variational_estimator
8 |
9 | __all__ = [
10 | 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
11 | 'vgg19_bn', 'vgg19',
12 | ]
13 |
14 | @variational_estimator
15 | class VGG(nn.Module):
16 | '''
17 | VGG model
18 | '''
19 | def __init__(self, features, out_nodes=10):
20 | super(VGG, self).__init__()
21 | self.features = features
22 | self.classifier = nn.Sequential(
23 | #nn.Dropout(),
24 | BayesianLinear(512, 512),
25 | nn.ReLU(True),
26 | #nn.Dropout(),
27 | BayesianLinear(512, 512),
28 | nn.ReLU(True),
29 | BayesianLinear(512, out_nodes),
30 | )
31 |
32 | for m in self.modules():
33 | if isinstance(m, BayesianConv2d):
34 | n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
35 | m.weight_mu.data.normal_(0, math.sqrt(2. / n))
36 | m.bias_mu.data.zero_()
37 |
38 |
39 | def forward(self, x):
40 | x = self.features(x)
41 | x = x.view(x.size(0), -1)
42 | x = self.classifier(x)
43 | return x
44 |
45 |
46 | def make_layers(cfg, batch_norm=False):
47 | layers = []
48 | in_channels = 3
49 | for v in cfg:
50 | if v == 'M':
51 | layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
52 | else:
53 | conv2d = BayesianConv2d(in_channels, v, kernel_size=(3, 3), padding=1, bias=True)
54 | if batch_norm:
55 | layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
56 | else:
57 | layers += [conv2d, nn.ReLU(inplace=True)]
58 | in_channels = v
59 | return nn.Sequential(*layers)
60 |
61 |
62 | cfg = {
63 | 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
64 | 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
65 | 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
66 | 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M',
67 | 512, 512, 512, 512, 'M'],
68 | }
69 |
70 |
71 | def vgg11():
72 | """VGG 11-layer model (configuration "A")"""
73 | return VGG(make_layers(cfg['A']))
74 |
75 |
76 | def vgg11_bn():
77 | """VGG 11-layer model (configuration "A") with batch normalization"""
78 | return VGG(make_layers(cfg['A'], batch_norm=True))
79 |
80 |
81 | def vgg13():
82 | """VGG 13-layer model (configuration "B")"""
83 | return VGG(make_layers(cfg['B']))
84 |
85 |
86 | def vgg13_bn():
87 | """VGG 13-layer model (configuration "B") with batch normalization"""
88 | return VGG(make_layers(cfg['B'], batch_norm=True))
89 |
90 |
91 | def vgg16():
92 | """VGG 16-layer model (configuration "D")"""
93 | return VGG(make_layers(cfg['D']))
94 |
95 |
96 | def vgg16_bn():
97 | """VGG 16-layer model (configuration "D") with batch normalization"""
98 | return VGG(make_layers(cfg['D'], batch_norm=True))
99 |
100 |
101 | def vgg19():
102 | """VGG 19-layer model (configuration "E")"""
103 | return VGG(make_layers(cfg['E']))
104 |
105 |
106 | def vgg19_bn():
107 | """VGG 19-layer model (configuration 'E') with batch normalization"""
108 | return VGG(make_layers(cfg['E'], batch_norm=True))
--------------------------------------------------------------------------------
/blitz/modules/tests/embadding_bayesian_test.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | import torch
3 | from torch import nn
4 |
5 | from blitz.modules import BayesianEmbedding
6 | from blitz.modules.base_bayesian_module import BayesianModule
7 |
8 | class TestLinearBayesian(unittest.TestCase):
9 |
10 | def test_init_bayesian_layer(self):
11 | module = BayesianEmbedding(10, 10)
12 | pass
13 |
14 | def test_infer_shape_1_sample(self):
15 | blinear = BayesianEmbedding(10, 10)
16 | linear = nn.Embedding(10, 10)
17 |
18 | to_feed = torch.Tensor([i for i in range(9)]).unsqueeze(0).long()
19 |
20 | b_infer = linear(to_feed)
21 | l_infer = blinear(to_feed)
22 |
23 | self.assertEqual(b_infer.shape, l_infer.shape)
24 | self.assertEqual((b_infer == b_infer).all(), torch.tensor(True))
25 | pass
26 |
27 | def test_variational_inference(self):
28 | #create module, check if inference is variating
29 | blinear = BayesianEmbedding(10, 10)
30 | linear = nn.Embedding(10, 10)
31 |
32 | to_feed = torch.Tensor([i for i in range(9)]).unsqueeze(0).long()
33 |
34 | self.assertEqual((blinear(to_feed) != blinear(to_feed)).any(), torch.tensor(True))
35 | self.assertEqual((linear(to_feed) == linear(to_feed)).all(), torch.tensor(True))
36 | pass
37 |
38 | def test_freeze_module(self):
39 | #create module, freeze
40 | #check if two inferences keep equal
41 | blinear = BayesianEmbedding(10, 10)
42 | to_feed = torch.Tensor([i for i in range(9)]).unsqueeze(0).long()
43 |
44 | self.assertEqual((blinear(to_feed) != blinear(to_feed)).any(), torch.tensor(True))
45 |
46 | frozen_feedforward = blinear.forward_frozen(to_feed)
47 | blinear.freeze = True
48 | self.assertEqual((blinear.forward(to_feed) == frozen_feedforward).all(), torch.tensor(True))
49 |
50 | def test_kl_divergence(self):
51 | #create model, sample weights
52 | #check if kl divergence between apriori and a posteriori is working
53 | blinear = BayesianEmbedding(10, 10)
54 | to_feed = torch.Tensor([i for i in range(9)]).unsqueeze(0).long()
55 |
56 | predicted = blinear(to_feed)
57 | complexity_cost = blinear.log_variational_posterior - blinear.log_prior
58 |
59 | self.assertEqual((complexity_cost == complexity_cost).all(), torch.tensor(True))
60 | pass
61 |
62 | def test_inheritance(self):
63 |
64 | #check if bayesian linear has nn.Module and BayesianModule classes
65 | blinear = BayesianEmbedding(10, 10)
66 | self.assertEqual(isinstance(blinear, (nn.Module)), True)
67 | self.assertEqual(isinstance(blinear, (BayesianModule)), True)
68 |
69 | def test_sequential_cpu(self):
70 | #check if we can create sequential models chaning our Bayesian Linear layers
71 | model = nn.Sequential(BayesianEmbedding(10, 10),
72 | nn.LSTM(10, 15),)
73 |
74 | to_feed = torch.Tensor([i for i in range(9)]).unsqueeze(0).long()
75 | #if this works, the test will pass
76 | result = model(to_feed)
77 | pass
78 |
79 | def test_sequential_cuda(self):
80 | #check if we can create sequential models chaning our Bayesian Linear layers
81 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
82 |
83 | model = nn.Sequential(BayesianEmbedding(10, 10),
84 | nn.LSTM(10, 15),).to(device)
85 |
86 | to_feed = torch.Tensor([i for i in range(9)]).unsqueeze(0).long().to(device)
87 | #if this works, the test will pass
88 | result = model(to_feed)
89 | pass
90 |
91 | if __name__ == "__main__":
92 | unittest.main()
--------------------------------------------------------------------------------
/blitz/modules/tests/linear_bayesian_layer_test.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | import torch
3 | from torch import nn
4 |
5 | from blitz.modules import BayesianLinear
6 | from blitz.modules.base_bayesian_module import BayesianModule
7 |
8 | class TestLinearBayesian(unittest.TestCase):
9 |
10 | def test_init_bayesian_layer(self):
11 | module = BayesianLinear(10, 10)
12 | pass
13 |
14 | def test_infer_shape_1_sample(self):
15 | blinear = BayesianLinear(10, 10)
16 | linear = nn.Linear(10, 10)
17 | to_feed = torch.ones((1, 10))
18 |
19 | b_infer = linear(to_feed)
20 | l_infer = blinear(to_feed)
21 |
22 | self.assertEqual(b_infer.shape, l_infer.shape)
23 | self.assertEqual((b_infer == b_infer).all(), torch.tensor(True))
24 | pass
25 |
26 | def test_variational_inference(self):
27 | #create module, check if inference is variating
28 | blinear = BayesianLinear(10, 10)
29 | linear = nn.Linear(10, 10)
30 |
31 | to_feed = torch.ones((1, 10))
32 | self.assertEqual((blinear(to_feed) != blinear(to_feed)).any(), torch.tensor(True))
33 | self.assertEqual((linear(to_feed) == linear(to_feed)).all(), torch.tensor(True))
34 | pass
35 |
36 | def test_freeze_module(self):
37 | #create module, freeze
38 | #check if two inferences keep equal
39 | blinear = BayesianLinear(10, 10)
40 | to_feed = torch.ones((1, 10))
41 | self.assertEqual((blinear(to_feed) != blinear(to_feed)).any(), torch.tensor(True))
42 |
43 | frozen_feedforward = blinear.forward_frozen(to_feed)
44 | blinear.freeze = True
45 | self.assertEqual((blinear.forward(to_feed) == frozen_feedforward).all(), torch.tensor(True))
46 |
47 | def test_no_bias(self):
48 | blinear = BayesianLinear(10, 10, bias=False)
49 | to_feed = torch.ones((1, 10))
50 | self.assertEqual((blinear(to_feed) != blinear(to_feed)).any(), torch.tensor(True))
51 | pass
52 |
53 | def test_kl_divergence(self):
54 | #create model, sample weights
55 | #check if kl divergence between apriori and a posteriori is working
56 | blinear = BayesianLinear(10, 10)
57 | to_feed = torch.ones((1, 10))
58 |
59 | predicted = blinear(to_feed)
60 | complexity_cost = blinear.log_variational_posterior - blinear.log_prior
61 |
62 | self.assertEqual((complexity_cost == complexity_cost).all(), torch.tensor(True))
63 | pass
64 |
65 | def test_inheritance(self):
66 |
67 | #check if bayesian linear has nn.Module and BayesianModule classes
68 | blinear = BayesianLinear(10, 10)
69 | self.assertEqual(isinstance(blinear, (nn.Module)), True)
70 | self.assertEqual(isinstance(blinear, (BayesianModule)), True)
71 |
72 | def test_sequential_cpu(self):
73 | #check if we can create sequential models chaning our Bayesian Linear layers
74 | model = nn.Sequential(BayesianLinear(10, 10),
75 | nn.Linear(10, 15),
76 | BayesianLinear(15,10))
77 |
78 | to_feed = torch.ones((1, 10))
79 | #if this works, the test will pass
80 | result = model(to_feed)
81 | pass
82 |
83 | def test_sequential_cuda(self):
84 | #check if we can create sequential models chaning our Bayesian Linear layers
85 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
86 |
87 | model = nn.Sequential(BayesianLinear(10, 10),
88 | nn.Linear(10, 15),
89 | BayesianLinear(15,10)).to(device)
90 |
91 | to_feed = torch.ones((1, 10)).to(device)
92 | #if this works, the test will pass
93 | result = model(to_feed)
94 | pass
95 |
96 | if __name__ == "__main__":
97 | unittest.main()
--------------------------------------------------------------------------------
/blitz/examples/bayesian_regression_boston.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | import torch.optim as optim
5 | import numpy as np
6 |
7 | from blitz.modules import BayesianLinear
8 | from blitz.utils import variational_estimator
9 |
10 | from sklearn.datasets import load_boston
11 | from sklearn.preprocessing import StandardScaler
12 | from sklearn.model_selection import train_test_split
13 |
14 | X, y = load_boston(return_X_y=True)
15 | X = StandardScaler().fit_transform(X)
16 | y = StandardScaler().fit_transform(np.expand_dims(y, -1))
17 |
18 | X_train, X_test, y_train, y_test = train_test_split(X,
19 | y,
20 | test_size=.25,
21 | random_state=42)
22 |
23 |
24 | X_train, y_train = torch.tensor(X_train).float(), torch.tensor(y_train).float()
25 | X_test, y_test = torch.tensor(X_test).float(), torch.tensor(y_test).float()
26 |
27 |
28 | @variational_estimator
29 | class BayesianRegressor(nn.Module):
30 | def __init__(self, input_dim, output_dim):
31 | super().__init__()
32 | #self.linear = nn.Linear(input_dim, output_dim)
33 | self.blinear1 = BayesianLinear(input_dim, 512)
34 | self.blinear2 = BayesianLinear(512, output_dim)
35 |
36 | def forward(self, x):
37 | x_ = self.blinear1(x)
38 | x_ = F.relu(x_)
39 | return self.blinear2(x_)
40 |
41 |
42 | def evaluate_regression(regressor,
43 | X,
44 | y,
45 | samples = 100,
46 | std_multiplier = 2):
47 | preds = [regressor(X) for i in range(samples)]
48 | preds = torch.stack(preds)
49 | means = preds.mean(axis=0)
50 | stds = preds.std(axis=0)
51 | ci_upper = means + (std_multiplier * stds)
52 | ci_lower = means - (std_multiplier * stds)
53 | ic_acc = (ci_lower <= y) * (ci_upper >= y)
54 | ic_acc = ic_acc.float().mean()
55 | return ic_acc, (ci_upper >= y).float().mean(), (ci_lower <= y).float().mean()
56 |
57 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
58 | regressor = BayesianRegressor(13, 1).to(device)
59 | optimizer = optim.Adam(regressor.parameters(), lr=0.01)
60 | criterion = torch.nn.MSELoss()
61 |
62 | ds_train = torch.utils.data.TensorDataset(X_train, y_train)
63 | dataloader_train = torch.utils.data.DataLoader(ds_train, batch_size=16, shuffle=True)
64 |
65 | ds_test = torch.utils.data.TensorDataset(X_test, y_test)
66 | dataloader_test = torch.utils.data.DataLoader(ds_test, batch_size=16, shuffle=True)
67 |
68 |
69 | iteration = 0
70 | for epoch in range(1000):
71 | for i, (datapoints, labels) in enumerate(dataloader_train):
72 | optimizer.zero_grad()
73 |
74 | loss = regressor.sample_elbo(inputs=datapoints.to(device),
75 | labels=labels.to(device),
76 | criterion=criterion,
77 | sample_nbr=3,
78 | complexity_cost_weight=1/X_train.shape[0])
79 | loss.backward()
80 | optimizer.step()
81 |
82 | iteration += 1
83 | if iteration%100==0:
84 | ic_acc, under_ci_upper, over_ci_lower = evaluate_regression(regressor,
85 | X_test.to(device),
86 | y_test.to(device),
87 | samples=25,
88 | std_multiplier=3)
89 |
90 | print("CI acc: {:.2f}, CI upper acc: {:.2f}, CI lower acc: {:.2f}".format(ic_acc, under_ci_upper, over_ci_lower))
91 | print("Loss: {:.4f}".format(loss))
92 |
--------------------------------------------------------------------------------
/blitz/utils/layer_wrappers.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import types
3 |
4 | from blitz.modules.weight_sampler import TrainableRandomDistribution
5 | from blitz.losses import kl_divergence_from_nn
6 | from blitz.modules.base_bayesian_module import BayesianModule
7 | from blitz.modules import BayesianLSTM
8 |
9 |
10 | def copy_func(f, name=None):
11 | '''
12 | return a function with same code, globals, defaults, closure, and
13 | name (or provide a new name)
14 | '''
15 | fn = types.FunctionType(f.__code__, f.__globals__, name or f.__name__,
16 | f.__defaults__, f.__closure__)
17 | # in case f was given attrs (note this dict is a shallow copy):
18 | fn.__dict__.update(f.__dict__)
19 | return fn
20 |
21 |
22 | def Flipout(nn_module):
23 | """
24 | Wrapper tha introduces flipout on the feedforwad operation of a BayesianModule layer in an non-intrusive way as in
25 | @misc{wen2018flipout,
26 | title={Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches},
27 | author={Yeming Wen and Paul Vicol and Jimmy Ba and Dustin Tran and Roger Grosse},
28 | year={2018},
29 | eprint={1803.04386},
30 | archivePrefix={arXiv},
31 | primaryClass={cs.LG}
32 | }
33 | Parameters:
34 | nn_module: torch.nn.Module, BayesianModule -> Torch neural network module
35 | """
36 |
37 | class Flipout(nn_module):
38 | def __init__(self, *args, **kwargs):
39 | super().__init__(*args, **kwargs)
40 |
41 | if nn_module not in [BayesianLSTM, ]:
42 | def forward(self, x):
43 | outputs = super().forward_frozen(x)
44 | # getting the sign matrixes
45 | sign_input = x.clone().uniform_(-1, 1).sign()
46 | sign_output = outputs.clone().uniform_(-1, 1).sign()
47 |
48 | perturbed_outputs = super().forward(x * sign_input) * sign_output
49 |
50 | return outputs + perturbed_outputs
51 | else:
52 | def forward(self, x, states=None):
53 | outputs, states = super().forward_frozen(x, states)
54 |
55 | # getting the sign matrixes
56 | sign_input = x.clone().uniform_(-1, 1).sign()
57 | sign_output = outputs.clone().uniform_(-1, 1).sign()
58 |
59 | perturbed_outputs, perturbed_states = super().forward((x * sign_input), states) # * sign_output
60 |
61 | if not (type(states) == tuple):
62 | return (perturbed_outputs + outputs, states + perturbed_states)
63 |
64 | return (perturbed_outputs + outputs, (states[i] + perturbed_states[i] for i in range(len(states))))
65 |
66 | return Flipout
67 |
68 |
69 | def Radial(nn_module):
70 | """
71 | Wrapper tha introduces the Radial feature on the feedforwad operation of a BayesianModule layer in an non-intrusive way as in
72 | @misc{farquhar2019radial,
73 | title={Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning},
74 | author={Sebastian Farquhar and Michael Osborne and Yarin Gal},
75 | year={2019},
76 | eprint={1907.00865},
77 | archivePrefix={arXiv},
78 | primaryClass={stat.ML}
79 | }
80 | Parameters:
81 | nn_module: torch.nn.Module, BayesianModule -> Torch neural network module
82 | """
83 |
84 | def sample_radial(self):
85 | """
86 | Samples weights by sampling form a Normal distribution, multiplying by a sigma, which is
87 | a function from a trainable parameter, and adding a mean sets those weights as the current ones
88 | We divide the random parameter per its norm to perform radial bnn inference
89 | returns:
90 | torch.tensor with same shape as self.mu and self.rho
91 | """
92 |
93 | self.eps_w.data.normal_()
94 | self.sigma = torch.log1p(torch.exp(self.rho))
95 | self.w = self.mu + self.sigma * (self.eps_weight / torch.norm(self.eps_weight))
96 | return self.w
97 |
98 | setattr(nn_module, "sample", sample_radial)
99 | return nn_module
--------------------------------------------------------------------------------
/blitz/modules/linear_bayesian_layer.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 | from torch.nn import functional as F
4 | from blitz.modules.base_bayesian_module import BayesianModule
5 | from blitz.modules.weight_sampler import TrainableRandomDistribution, PriorWeightDistribution
6 |
7 |
8 | class BayesianLinear(BayesianModule):
9 | """
10 | Bayesian Linear layer, implements the linear layer proposed on Weight Uncertainity on Neural Networks
11 | (Bayes by Backprop paper).
12 |
13 | Its objective is be interactable with torch nn.Module API, being able even to be chained in nn.Sequential models with other non-this-lib layers
14 |
15 | parameters:
16 | in_fetaures: int -> incoming features for the layer
17 | out_features: int -> output features for the layer
18 | bias: bool -> whether the bias will exist (True) or set to zero (False)
19 | prior_sigma_1: float -> prior sigma on the mixture prior distribution 1
20 | prior_sigma_2: float -> prior sigma on the mixture prior distribution 2
21 | prior_pi: float -> pi on the scaled mixture prior
22 | posterior_mu_init float -> posterior mean for the weight mu init
23 | posterior_rho_init float -> posterior mean for the weight rho init
24 | freeze: bool -> wheter the model will start with frozen(deterministic) weights, or not
25 |
26 | """
27 | def __init__(self,
28 | in_features,
29 | out_features,
30 | bias=True,
31 | prior_sigma_1 = 0.1,
32 | prior_sigma_2 = 0.4,
33 | prior_pi = 1,
34 | posterior_mu_init = 0,
35 | posterior_rho_init = -7.0,
36 | freeze = False,
37 | prior_dist = None):
38 | super().__init__()
39 |
40 | #our main parameters
41 | self.in_features = in_features
42 | self.out_features = out_features
43 | self.bias = bias
44 | self.freeze = freeze
45 |
46 |
47 | self.posterior_mu_init = posterior_mu_init
48 | self.posterior_rho_init = posterior_rho_init
49 |
50 | #parameters for the scale mixture prior
51 | self.prior_sigma_1 = prior_sigma_1
52 | self.prior_sigma_2 = prior_sigma_2
53 | self.prior_pi = prior_pi
54 | self.prior_dist = prior_dist
55 |
56 | # Variational weight parameters and sample
57 | self.weight_mu = nn.Parameter(torch.Tensor(out_features, in_features).normal_(posterior_mu_init, 0.1))
58 | self.weight_rho = nn.Parameter(torch.Tensor(out_features, in_features).normal_(posterior_rho_init, 0.1))
59 | self.weight_sampler = TrainableRandomDistribution(self.weight_mu, self.weight_rho)
60 |
61 | # Variational bias parameters and sample
62 | self.bias_mu = nn.Parameter(torch.Tensor(out_features).normal_(posterior_mu_init, 0.1))
63 | self.bias_rho = nn.Parameter(torch.Tensor(out_features).normal_(posterior_rho_init, 0.1))
64 | self.bias_sampler = TrainableRandomDistribution(self.bias_mu, self.bias_rho)
65 |
66 | # Priors (as BBP paper)
67 | self.weight_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
68 | self.bias_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
69 | self.log_prior = 0
70 | self.log_variational_posterior = 0
71 |
72 | def forward(self, x):
73 | # Sample the weights and forward it
74 |
75 | #if the model is frozen, return frozen
76 | if self.freeze:
77 | return self.forward_frozen(x)
78 |
79 | w = self.weight_sampler.sample()
80 |
81 | if self.bias:
82 | b = self.bias_sampler.sample()
83 | b_log_posterior = self.bias_sampler.log_posterior()
84 | b_log_prior = self.bias_prior_dist.log_prior(b)
85 |
86 | else:
87 | b = torch.zeros((self.out_features), device=x.device)
88 | b_log_posterior = 0
89 | b_log_prior = 0
90 |
91 | # Get the complexity cost
92 | self.log_variational_posterior = self.weight_sampler.log_posterior() + b_log_posterior
93 | self.log_prior = self.weight_prior_dist.log_prior(w) + b_log_prior
94 |
95 | return F.linear(x, w, b)
96 |
97 | def forward_frozen(self, x):
98 | """
99 | Computes the feedforward operation with the expected value for weight and biases
100 | """
101 | if self.bias:
102 | return F.linear(x, self.weight_mu, self.bias_mu)
103 | else:
104 | return F.linear(x, self.weight_mu, torch.zeros(self.out_features))
105 |
--------------------------------------------------------------------------------
/blitz/modules/base_bayesian_module.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 | import math
4 |
5 | class BayesianModule(nn.Module):
6 | """
7 | creates base class for BNN, in order to enable specific behavior
8 | """
9 | def init(self):
10 | super().__init__()
11 |
12 |
13 | class BayesianRNN(BayesianModule):
14 | """
15 | implements base class for B-RNN to enable posterior sharpening
16 | """
17 | def __init__(self,
18 | sharpen=False):
19 | super().__init__()
20 |
21 | self.weight_ih_mu = None
22 | self.weight_hh_mu = None
23 | self.bias = None
24 |
25 | self.weight_ih_sampler = None
26 | self.weight_hh_sampler = None
27 | self.bias_sampler = None
28 |
29 | self.weight_ih = None
30 | self.weight_hh = None
31 | self.bias = None
32 |
33 | self.sharpen = sharpen
34 |
35 | self.weight_ih_eta = None
36 | self.weight_hh_eta = None
37 | self.bias_eta = None
38 | self.ff_parameters = None
39 | self.loss_to_sharpen = None
40 |
41 |
42 | def sample_weights(self):
43 | pass
44 |
45 | def init_sharpen_parameters(self):
46 | if self.sharpen:
47 | self.weight_ih_eta = nn.Parameter(torch.Tensor(self.weight_ih_mu.size()))
48 | self.weight_hh_eta = nn.Parameter(torch.Tensor(self.weight_hh_mu.size()))
49 | self.bias_eta = nn.Parameter(torch.Tensor(self.bias_mu.size()))
50 |
51 | self.ff_parameters = []
52 |
53 | self.init_eta()
54 |
55 | def init_eta(self):
56 | stdv = 1.0 / math.sqrt(self.weight_hh_eta.shape[0]) #correspond to hidden_units parameter
57 | self.weight_ih_eta.data.uniform_(-stdv, stdv)
58 | self.weight_hh_eta.data.uniform_(-stdv, stdv)
59 | self.bias_eta.data.uniform_(-stdv, stdv)
60 |
61 | def set_loss_to_sharpen(self, loss):
62 | self.loss_to_sharpen = loss
63 |
64 | def sharpen_posterior(self, loss, input_shape):
65 | """
66 | sharpens the posterior distribution by using the algorithm proposed in
67 | @article{DBLP:journals/corr/FortunatoBV17,
68 | author = {Meire Fortunato and
69 | Charles Blundell and
70 | Oriol Vinyals},
71 | title = {Bayesian Recurrent Neural Networks},
72 | journal = {CoRR},
73 | volume = {abs/1704.02798},
74 | year = {2017},
75 | url = {http://arxiv.org/abs/1704.02798},
76 | archivePrefix = {arXiv},
77 | eprint = {1704.02798},
78 | timestamp = {Mon, 13 Aug 2018 16:48:21 +0200},
79 | biburl = {https://dblp.org/rec/journals/corr/FortunatoBV17.bib},
80 | bibsource = {dblp computer science bibliography, https://dblp.org}
81 | }
82 | """
83 | bs, seq_len, in_size = input_shape
84 | gradients = torch.autograd.grad(outputs=loss,
85 | inputs=self.ff_parameters,
86 | grad_outputs=torch.ones(loss.size()).to(loss.device),
87 | create_graph=True,
88 | retain_graph=True,
89 | only_inputs=True)
90 |
91 | grad_weight_ih, grad_weight_hh, grad_bias = gradients
92 |
93 | #to generate sigmas on the weight sampler
94 | _ = self.sample_weights()
95 |
96 | weight_ih_sharpened = self.weight_ih_mu - self.weight_ih_eta * grad_weight_ih + self.weight_ih_sampler.sigma
97 | weight_hh_sharpened = self.weight_hh_mu - self.weight_hh_eta * grad_weight_hh + self.weight_hh_sampler.sigma
98 | bias_sharpened = self.bias_mu - self.bias_eta * grad_bias + self.bias_sampler.sigma
99 |
100 | if self.bias is not None:
101 | b_log_posterior = self.bias_sampler.log_posterior(w=bias_sharpened)
102 | b_log_prior_ = self.bias_prior_dist.log_prior(bias_sharpened)
103 |
104 | else:
105 | b_log_posterior = b_log_prior = 0
106 |
107 |
108 | self.log_variational_posterior += (self.weight_ih_sampler.log_posterior(w=weight_ih_sharpened) + b_log_posterior + self.weight_hh_sampler.log_posterior(w=weight_hh_sharpened)) / seq_len
109 |
110 | self.log_prior += self.weight_ih_prior_dist.log_prior(weight_ih_sharpened) + b_log_prior + self.weight_hh_prior_dist.log_prior(weight_hh_sharpened) / seq_len
111 |
112 | return weight_ih_sharpened, weight_hh_sharpened, bias_sharpened
113 |
114 |
--------------------------------------------------------------------------------
/blitz/modules/embedding_bayesian_layer.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 | from torch.nn import functional as F
4 | from blitz.modules.base_bayesian_module import BayesianModule
5 | from blitz.modules.weight_sampler import TrainableRandomDistribution, PriorWeightDistribution
6 |
7 | class BayesianEmbedding(BayesianModule):
8 | """
9 | Bayesian Embedding layer, implements the embedding layer proposed on Weight Uncertainity on Neural Networks
10 | (Bayes by Backprop paper).
11 |
12 | Its objective is be interactable with torch nn.Module API, being able even to be chained in nn.Sequential models with other non-this-lib layers
13 |
14 | parameters:
15 | num_embedding int -> Size of the vocabulary
16 | embedding_dim int -> Dimension of the embedding
17 | prior_sigma_1 float -> sigma of one of the prior w distributions to mixture
18 | prior_sigma_2 float -> sigma of one of the prior w distributions to mixture
19 | prior_pi float -> factor to scale the gaussian mixture of the model prior distribution
20 | freeze -> wheter the model is instaced as frozen (will use deterministic weights on the feedforward op)
21 | padding_idx int -> If given, pads the output with the embedding vector at padding_idx (initialized to zeros) whenever it encounters the index
22 | max_norm float -> If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm.
23 | norm_type float -> The p of the p-norm to compute for the max_norm option. Default 2.
24 | scale_grad_by_freq -> If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False.
25 | sparse bool -> If True, gradient w.r.t. weight matrix will be a sparse tensor. See Notes for more details regarding sparse gradients.
26 | posterior_mu_init float -> posterior mean for the weight mu init
27 | posterior_rho_init float -> posterior mean for the weight rho init
28 |
29 |
30 | """
31 | def __init__(self,
32 | num_embeddings,
33 | embedding_dim,
34 | padding_idx=None,
35 | max_norm=None,
36 | norm_type=2.,
37 | scale_grad_by_freq=False,
38 | sparse=False,
39 | prior_sigma_1 = 0.1,
40 | prior_sigma_2 = 0.002,
41 | prior_pi = 1,
42 | posterior_mu_init = 0,
43 | posterior_rho_init = -6.0,
44 | freeze = False,
45 | prior_dist = None):
46 | super().__init__()
47 |
48 | self.freeze = freeze
49 |
50 | #parameters for the scale mixture prior
51 | self.prior_sigma_1 = prior_sigma_1
52 | self.prior_sigma_2 = prior_sigma_2
53 | self.posterior_mu_init = posterior_mu_init
54 | self.posterior_rho_init = posterior_rho_init
55 |
56 | self.prior_pi = prior_pi
57 | self.prior_dist = prior_dist
58 |
59 | self.num_embeddings = num_embeddings
60 | self.embedding_dim = embedding_dim
61 | self.padding_idx = padding_idx
62 | self.max_norm = max_norm
63 | self.norm_type = norm_type
64 | self.scale_grad_by_freq = scale_grad_by_freq
65 | self.sparse = sparse
66 |
67 | # Variational weight parameters and sample
68 | self.weight_mu = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim).normal_(posterior_mu_init, 0.1))
69 | self.weight_rho = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim).normal_(posterior_rho_init, 0.1))
70 | self.weight_sampler = TrainableRandomDistribution(self.weight_mu, self.weight_rho)
71 |
72 | # Priors (as BBP paper)
73 | self.weight_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
74 | self.log_prior = 0
75 | self.log_variational_posterior = 0
76 |
77 | def forward(self, x):
78 | # Sample the weights and forward it
79 |
80 | #if the model is frozen, return frozen
81 | if self.freeze:
82 | return self.forward_frozen(x)
83 |
84 | w = self.weight_sampler.sample()
85 |
86 | # Get the complexity cost
87 | self.log_variational_posterior = self.weight_sampler.log_posterior()
88 | self.log_prior = self.weight_prior_dist.log_prior(w)
89 |
90 | return F.embedding(x,
91 | w,
92 | self.padding_idx,
93 | self.max_norm,
94 | self.norm_type,
95 | self.scale_grad_by_freq,
96 | self.sparse)
97 |
98 | def forward_frozen(self, x):
99 | return F.embedding(x,
100 | self.weight_mu,
101 | self.padding_idx,
102 | self.max_norm,
103 | self.norm_type,
104 | self.scale_grad_by_freq,
105 | self.sparse)
--------------------------------------------------------------------------------
/blitz/utils/variational_estimator.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 |
4 | from blitz.modules.weight_sampler import TrainableRandomDistribution
5 | from blitz.losses import kl_divergence_from_nn
6 | from blitz.modules.base_bayesian_module import BayesianModule, BayesianRNN
7 |
8 | def variational_estimator(nn_class):
9 | """
10 | This decorator adds some util methods to a nn.Module, in order to facilitate the handling of Bayesian Deep Learning features
11 |
12 | Parameters:
13 | nn_class: torch.nn.Module -> Torch neural network module
14 |
15 | Returns a nn.Module with methods for:
16 | (1) Gathering the KL Divergence along its BayesianModules;
17 | (2) Sample the Elbo Loss along its variational inferences (helps training)
18 | (3) Freeze the model, in order to predict using only their weight distribution means
19 | (4) Specifying the variational parameters by using some prior weights after training the NN as a deterministic model
20 | """
21 |
22 | def nn_kl_divergence(self):
23 | """Returns the sum of the KL divergence of each of the BayesianModules of the model, which are from
24 | their posterior current distribution of weights relative to a scale-mixtured prior (and simpler) distribution of weights
25 |
26 | Parameters:
27 | N/a
28 |
29 | Returns torch.tensor with 0 dim.
30 |
31 | """
32 | return kl_divergence_from_nn(self)
33 |
34 | setattr(nn_class, "nn_kl_divergence", nn_kl_divergence)
35 |
36 | def sample_elbo(self,
37 | inputs,
38 | labels,
39 | criterion,
40 | sample_nbr,
41 | complexity_cost_weight=1):
42 |
43 | """ Samples the ELBO Loss for a batch of data, consisting of inputs and corresponding-by-index labels
44 | The ELBO Loss consists of the sum of the KL Divergence of the model
45 | (explained above, interpreted as a "complexity part" of the loss)
46 | with the actual criterion - (loss function) of optimization of our model
47 | (the performance part of the loss).
48 | As we are using variational inference, it takes several (quantified by the parameter sample_nbr) Monte-Carlo
49 | samples of the weights in order to gather a better approximation for the loss.
50 | Parameters:
51 | inputs: torch.tensor -> the input data to the model
52 | labels: torch.tensor -> label data for the performance-part of the loss calculation
53 | The shape of the labels must match the label-parameter shape of the criterion (one hot encoded or as index, if needed)
54 | criterion: torch.nn.Module, custom criterion (loss) function, torch.nn.functional function -> criterion to gather
55 | the performance cost for the model
56 | sample_nbr: int -> The number of times of the weight-sampling and predictions done in our Monte-Carlo approach to
57 | gather the loss to be .backwarded in the optimization of the model.
58 |
59 | """
60 |
61 | loss = 0
62 | for _ in range(sample_nbr):
63 | outputs = self(inputs)
64 | loss += criterion(outputs, labels)
65 | loss += self.nn_kl_divergence() * complexity_cost_weight
66 | return loss / sample_nbr
67 |
68 | setattr(nn_class, "sample_elbo", sample_elbo)
69 |
70 | def sample_elbo_detailed_loss(self,
71 | inputs,
72 | labels,
73 | criterion,
74 | sample_nbr,
75 | complexity_cost_weight=1):
76 |
77 | """ Samples the ELBO Loss for a batch of data, consisting of inputs and corresponding-by-index labels.
78 | This version of the function returns the performance part and complexity part of the loss individually
79 | as well as an array of predictions
80 |
81 | The ELBO Loss consists of the sum of the KL Divergence of the model
82 | (explained above, interpreted as a "complexity part" of the loss)
83 | with the actual criterion - (loss function) of optimization of our model
84 | (the performance part of the loss).
85 |
86 | As we are using variational inference, it takes several (quantified by the parameter sample_nbr) Monte-Carlo
87 | samples of the weights in order to gather a better approximation for the loss.
88 |
89 | Parameters:
90 | inputs: torch.tensor -> the input data to the model
91 | labels: torch.tensor -> label data for the performance-part of the loss calculation
92 | The shape of the labels must match the label-parameter shape of the criterion (one hot encoded or as index, if needed)
93 | criterion: torch.nn.Module, custom criterion (loss) function, torch.nn.functional function -> criterion to gather
94 | the performance cost for the model
95 | sample_nbr: int -> The number of times of the weight-sampling and predictions done in our Monte-Carlo approach to
96 | gather the loss to be .backwarded in the optimization of the model.
97 | Returns:
98 | array of predictions
99 | ELBO Loss
100 | performance part
101 | complexity part
102 |
103 | """
104 |
105 | loss = 0
106 | likelihood_cost = 0
107 | complexity_cost = 0
108 | # Array to collect the outputs
109 | y_hat = []
110 | for _ in range(sample_nbr):
111 | outputs = self(inputs)
112 | y_hat.append(outputs.cpu().detach().numpy())
113 | likelihood_cost += criterion(outputs, labels)
114 | complexity_cost += self.nn_kl_divergence() * complexity_cost_weight
115 | return np.array(y_hat), (likelihood_cost + complexity_cost) / sample_nbr,\
116 | likelihood_cost / sample_nbr,\
117 | complexity_cost / sample_nbr
118 |
119 | setattr(nn_class, "sample_elbo_detailed_loss", sample_elbo_detailed_loss)
120 |
121 | def freeze_model(self):
122 | """
123 | Freezes the model by making it predict using only the expected value to their BayesianModules' weights distributions
124 | """
125 | for module in self.modules():
126 | if isinstance(module, (BayesianModule)):
127 | module.freeze = True
128 |
129 | setattr(nn_class, "freeze_", freeze_model)
130 |
131 | def unfreeze_model(self):
132 | """
133 | Unfreezes the model by letting it draw its weights with uncertanity from their correspondent distributions
134 | """
135 |
136 | for module in self.modules():
137 | if isinstance(module, (BayesianModule)):
138 | module.freeze = False
139 |
140 | setattr(nn_class, "unfreeze_", unfreeze_model)
141 |
142 | def moped(self, delta=0.1):
143 | """
144 | Sets the sigma for the posterior distribution to delta * mu as proposed in
145 |
146 | @misc{krishnan2019specifying,
147 | title={Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical Bayes},
148 | author={Ranganath Krishnan and Mahesh Subedar and Omesh Tickoo},
149 | year={2019},
150 | eprint={1906.05323},
151 | archivePrefix={arXiv},
152 | primaryClass={cs.NE}
153 | }
154 |
155 |
156 | """
157 | for module in self.modules():
158 | if isinstance(module, (BayesianModule)):
159 |
160 | for attr in module.modules():
161 | if isinstance(attr, (TrainableRandomDistribution)):
162 | attr.rho.data = torch.log(torch.expm1(delta * torch.abs(attr.mu.data) ) + 1e-10)
163 | self.unfreeze_()
164 |
165 | setattr(nn_class, 'MOPED_', moped)
166 |
167 | def mfvi_forward(self, inputs, sample_nbr=10):
168 | """
169 | Performs mean-field variational inference for the variational estimator model:
170 | Performs sample_nbr forward passes with uncertainty on the weights, returning its mean and standard deviation
171 |
172 | Parameters:
173 | inputs: torch.tensor -> the input data to the model
174 | sample_nbr: int -> number of forward passes to be done on the data
175 | Returns:
176 | mean_: torch.tensor -> mean of the perdictions along each of the features of each datapoint on the batch axis
177 | std_: torch.tensor -> std of the predictions along each of the features of each datapoint on the batch axis
178 |
179 |
180 | """
181 | result = torch.stack([self(inputs) for _ in range(sample_nbr)])
182 | return result.mean(dim=0), result.std(dim=0)
183 |
184 | setattr(nn_class, 'mfvi_forward', mfvi_forward)
185 |
186 | def forward_with_sharpening(self, x, labels, criterion):
187 | preds = self(x)
188 | loss = criterion(preds, labels)
189 |
190 | for module in self.modules():
191 | if isinstance(module, (BayesianRNN)):
192 | module.loss_to_sharpen = loss
193 |
194 | y_hat: self(x)
195 |
196 | for module in self.modules():
197 | if isinstance(module, (BayesianRNN)):
198 | module.loss_to_sharpen = None
199 |
200 | return self(x,)
201 |
202 | setattr(nn_class, 'forward_with_sharpening', forward_with_sharpening)
203 |
204 |
205 |
206 |
207 | return nn_class
208 |
--------------------------------------------------------------------------------
/blitz/utils/tests/variational_estimator_test.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | import torch
3 | from torch import nn
4 | import torchvision.datasets as dsets
5 | import torchvision.transforms as transforms
6 |
7 | from blitz.modules import BayesianConv2d, BayesianLinear, BayesianLSTM, BayesianEmbedding, TrainableRandomDistribution, BayesianGRU
8 | from blitz.losses import kl_divergence_from_nn
9 | from blitz.utils import variational_estimator
10 |
11 | class TestVariationalInference(unittest.TestCase):
12 |
13 | def test_kl_divergence(self):
14 | #create model
15 | #do two inferences over same datapoint, check if different
16 |
17 | to_feed = torch.ones((1, 10))
18 |
19 | @variational_estimator
20 | class VariationalEstimator(nn.Module):
21 | def __init__(self):
22 | super().__init__()
23 | self.blinear = BayesianLinear(10, 10)
24 |
25 | def forward(self, x):
26 | return self.blinear(x)
27 |
28 | model = VariationalEstimator()
29 | predicted = model(to_feed)
30 |
31 | complexity_cost = model.nn_kl_divergence()
32 | kl_complexity_cost = kl_divergence_from_nn(model)
33 |
34 | self.assertEqual((complexity_cost == kl_complexity_cost).all(), torch.tensor(True))
35 |
36 | def test_elbo_sampler(self):
37 | dataset = dsets.MNIST(root="./data",
38 | train=True,
39 | transform=transforms.ToTensor(),
40 | download=True
41 | )
42 |
43 | dataloader = torch.utils.data.DataLoader(dataset=dataset,
44 | batch_size=16,
45 | shuffle=True)
46 |
47 | batch = next(iter(dataloader))
48 |
49 | @variational_estimator
50 | class BayesianMLP(nn.Module):
51 | def __init__(self, input_dim, output_dim):
52 | super().__init__()
53 | #self.linear = nn.Linear(input_dim, output_dim)
54 | self.blinear1 = BayesianLinear(input_dim, 512)
55 | self.blinear2 = BayesianLinear(512, output_dim)
56 |
57 | def forward(self, x):
58 | x_ = x.view(-1, 28 * 28)
59 | x_ = self.blinear1(x_)
60 | return self.blinear2(x_)
61 |
62 | net = BayesianMLP(28*28, 10)
63 | elbo = net.sample_elbo(inputs=batch[0],
64 | labels=batch[1],
65 | criterion=torch.nn.CrossEntropyLoss(),
66 | sample_nbr=5,
67 | complexity_cost_weight=1)
68 |
69 |
70 | elbo = net.sample_elbo(inputs=batch[0],
71 | labels=batch[1],
72 | criterion=torch.nn.CrossEntropyLoss(),
73 | sample_nbr=5,
74 | complexity_cost_weight=0)
75 |
76 | self.assertEqual((elbo==elbo).all(), torch.tensor(True))
77 |
78 | pass
79 |
80 | def test_elbo_detailed_loss_sampler(self):
81 | dataset = dsets.MNIST(root="./data",
82 | train=True,
83 | transform=transforms.ToTensor(),
84 | download=True
85 | )
86 |
87 | dataloader = torch.utils.data.DataLoader(dataset=dataset,
88 | batch_size=16,
89 | shuffle=True)
90 |
91 | batch = next(iter(dataloader))
92 |
93 | @variational_estimator
94 | class BayesianMLP(nn.Module):
95 | def __init__(self, input_dim, output_dim):
96 | super().__init__()
97 | # self.linear = nn.Linear(input_dim, output_dim)
98 | self.blinear1 = BayesianLinear(input_dim, 512)
99 | self.blinear2 = BayesianLinear(512, output_dim)
100 |
101 | def forward(self, x):
102 | x_ = x.view(-1, 28 * 28)
103 | x_ = self.blinear1(x_)
104 | return self.blinear2(x_)
105 |
106 | net = BayesianMLP(28 * 28, 10)
107 | elbo = net.sample_elbo_detailed_loss(inputs=batch[0],
108 | labels=batch[1],
109 | criterion=torch.nn.CrossEntropyLoss(),
110 | sample_nbr=5,
111 | complexity_cost_weight=1)
112 |
113 | elbo = net.sample_elbo_detailed_loss(inputs=batch[0],
114 | labels=batch[1],
115 | criterion=torch.nn.CrossEntropyLoss(),
116 | sample_nbr=5,
117 | complexity_cost_weight=0)
118 |
119 | self.assertEqual((elbo == elbo), True)
120 | self.assertEqual(elbo[3], torch.tensor(0))
121 | self.assertEqual(len(elbo), 4) # There are 4 return values
122 | self.assertEqual(len(elbo[0]), 5) # Matches the number of samples for Monte-Carlo-sampling
123 | self.assertEqual(len(elbo[0][0]), 16) # Matches the batch size
124 | self.assertEqual(len(elbo[0][0][0]), 10) # Matches the output size of the neural network
125 |
126 | pass
127 |
128 | def test_freeze_estimator(self):
129 | #create model, freeze it
130 | #infer two times on same datapoint, check if all equal
131 | dataset = dsets.MNIST(root="./data",
132 | train=True,
133 | transform=transforms.ToTensor(),
134 | download=True
135 | )
136 |
137 | dataloader = torch.utils.data.DataLoader(dataset=dataset,
138 | batch_size=16,
139 | shuffle=True)
140 |
141 | batch = next(iter(dataloader))
142 |
143 | @variational_estimator
144 | class BayesianMLP(nn.Module):
145 | def __init__(self, input_dim, output_dim):
146 | super().__init__()
147 | #self.linear = nn.Linear(input_dim, output_dim)
148 | self.blinear1 = BayesianLinear(input_dim, 512)
149 | self.blinear2 = BayesianLinear(512, output_dim)
150 |
151 | def forward(self, x):
152 | x_ = x.view(-1, 28 * 28)
153 | x_ = self.blinear1(x_)
154 | return self.blinear2(x_)
155 |
156 | net = BayesianMLP(28*28, 10)
157 | self.assertEqual((net(batch[0])!=net(batch[0])).any(), torch.tensor(True))
158 |
159 | net.freeze_()
160 | self.assertEqual((net(batch[0])==net(batch[0])).all(), torch.tensor(True))
161 |
162 | net.unfreeze_()
163 | self.assertEqual((net(batch[0])!=net(batch[0])).any(), torch.tensor(True))
164 | pass
165 |
166 | def test_moped(self):
167 |
168 | @variational_estimator
169 | class BayesianMLP(nn.Module):
170 | def __init__(self):
171 | super().__init__()
172 | self.blinear1 = BayesianLinear(10, 512)
173 | self.bconv = BayesianConv2d(3, 3, kernel_size=(3, 3), padding=1, bias=True)
174 | self.blstm = BayesianLSTM(10, 2)
175 | def forward(self, x):
176 | return x
177 | model = BayesianMLP()
178 | model.MOPED_()
179 |
180 | def test_mfvi(self):
181 |
182 | @variational_estimator
183 | class BayesianMLP(nn.Module):
184 | def __init__(self):
185 | super().__init__()
186 | self.nn = nn.Sequential(BayesianLinear(10, 7),
187 | BayesianLinear(7, 5))
188 | def forward(self, x):
189 | return self.nn(x)
190 |
191 | net = BayesianMLP()
192 | t = torch.ones(3, 10)
193 | out_ = net(t)
194 |
195 | mean_, std_ = net.mfvi_forward(t, sample_nbr=5)
196 | self.assertEqual(out_.shape, mean_.shape)
197 | self.assertEqual(out_.shape, std_.shape)
198 |
199 | self.assertEqual((out_!=mean_).any(), torch.tensor(True))
200 | self.assertEqual((std_!=0).any(), torch.tensor(True))
201 |
202 | #we also check if, for the frozen model, the std is 0 and the mean is equal to any output
203 | net.freeze_()
204 | out__ = net(t)
205 |
206 | mean__, std__ = net.mfvi_forward(t, sample_nbr=5)
207 |
208 | self.assertEqual(out__.shape, mean__.shape)
209 | self.assertEqual(out__.shape, std__.shape)
210 |
211 | self.assertEqual((std__==0).all(), torch.tensor(True))
212 |
213 | def test_sharpen_forward(self):
214 |
215 | @variational_estimator
216 | class BayesianMLP(nn.Module):
217 | def __init__(self):
218 | super().__init__()
219 | self.lstm1 = BayesianLSTM(3, 5, sharpen=True)
220 | self.gru1 = BayesianGRU(5, 3, sharpen=True)
221 |
222 | def forward(self, x):
223 | a1, _ = self.lstm1(x)
224 | a2, _ = self.gru1(a1)
225 | return a2
226 |
227 | net = BayesianMLP()
228 | criterion = nn.MSELoss()
229 | in_tensor = torch.ones(4, 5, 3)
230 | label = in_tensor.clone().detach().normal_()
231 |
232 | y_hat = net.forward_with_sharpening(in_tensor, labels=label, criterion=criterion)
233 |
234 | criterion(y_hat, label).backward()
235 | pass
236 |
237 |
238 | if __name__ == "__main__":
239 | unittest.main()
--------------------------------------------------------------------------------
/blitz/modules/gru_bayesian_layer.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 | from torch.nn import functional as F
4 | from blitz.modules.base_bayesian_module import BayesianModule, BayesianRNN
5 | from blitz.modules.weight_sampler import TrainableRandomDistribution, PriorWeightDistribution
6 |
7 |
8 | class BayesianGRU(BayesianRNN):
9 | """
10 | Bayesian GRU layer, implements the linear layer proposed on Weight Uncertainity on Neural Networks
11 | (Bayes by Backprop paper).
12 |
13 | Its objective is be interactable with torch nn.Module API, being able even to be chained in nn.Sequential models with other non-this-lib layers
14 |
15 | parameters:
16 | in_fetaures: int -> incoming features for the layer
17 | out_features: int -> output features for the layer
18 | bias: bool -> whether the bias will exist (True) or set to zero (False)
19 | prior_sigma_1: float -> prior sigma on the mixture prior distribution 1
20 | prior_sigma_2: float -> prior sigma on the mixture prior distribution 2
21 | prior_pi: float -> pi on the scaled mixture prior
22 | posterior_mu_init float -> posterior mean for the weight mu init
23 | posterior_rho_init float -> posterior mean for the weight rho init
24 | freeze: bool -> wheter the model will start with frozen(deterministic) weights, or not
25 |
26 | """
27 | def __init__(self,
28 | in_features,
29 | out_features,
30 | bias = True,
31 | prior_sigma_1 = 0.1,
32 | prior_sigma_2 = 0.002,
33 | prior_pi = 1,
34 | posterior_mu_init = 0,
35 | posterior_rho_init = -6.0,
36 | freeze = False,
37 | prior_dist = None,
38 | **kwargs):
39 |
40 | super().__init__(**kwargs)
41 | self.in_features = in_features
42 | self.out_features = out_features
43 | self.use_bias = bias
44 | self.freeze = freeze
45 |
46 | self.posterior_mu_init = posterior_mu_init
47 | self.posterior_rho_init = posterior_rho_init
48 |
49 | self.prior_sigma_1 = prior_sigma_1
50 | self.prior_sigma_2 = prior_sigma_2
51 | self.prior_pi = prior_pi
52 | self.prior_dist = prior_dist
53 |
54 | # Variational weight parameters and sample for weight ih
55 | self.weight_ih_mu = nn.Parameter(torch.Tensor(in_features, out_features * 4).normal_(posterior_mu_init, 0.1))
56 | self.weight_ih_rho = nn.Parameter(torch.Tensor(in_features, out_features * 4).normal_(posterior_rho_init, 0.1))
57 | self.weight_ih_sampler = TrainableRandomDistribution(self.weight_ih_mu, self.weight_ih_rho)
58 | self.weight_ih = None
59 |
60 | # Variational weight parameters and sample for weight hh
61 | self.weight_hh_mu = nn.Parameter(torch.Tensor(out_features, out_features * 4).normal_(posterior_mu_init, 0.1))
62 | self.weight_hh_rho = nn.Parameter(torch.Tensor(out_features, out_features * 4).normal_(posterior_rho_init, 0.1))
63 | self.weight_hh_sampler = TrainableRandomDistribution(self.weight_hh_mu, self.weight_hh_rho)
64 | self.weight_hh = None
65 |
66 | # Variational weight parameters and sample for bias
67 | self.bias_mu = nn.Parameter(torch.Tensor(out_features * 4).normal_(posterior_mu_init, 0.1))
68 | self.bias_rho = nn.Parameter(torch.Tensor(out_features * 4).normal_(posterior_rho_init, 0.1))
69 | self.bias_sampler = TrainableRandomDistribution(self.bias_mu, self.bias_rho)
70 | self.bias=None
71 |
72 | #our prior distributions
73 | self.weight_ih_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
74 | self.weight_hh_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
75 | self.bias_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
76 |
77 | self.init_sharpen_parameters()
78 |
79 | self.log_prior = 0
80 | self.log_variational_posterior = 0
81 |
82 | def sample_weights(self):
83 | #sample weights
84 | weight_ih = self.weight_ih_sampler.sample()
85 | weight_hh = self.weight_hh_sampler.sample()
86 |
87 | #if use bias, we sample it, otherwise, we are using zeros
88 | if self.use_bias:
89 | b = self.bias_sampler.sample()
90 | b_log_posterior = self.bias_sampler.log_posterior()
91 | b_log_prior = self.bias_prior_dist.log_prior(b)
92 |
93 | else:
94 | b = 0
95 | b_log_posterior = 0
96 | b_log_prior = 0
97 |
98 | bias = b
99 |
100 | #gather weights variational posterior and prior likelihoods
101 | self.log_variational_posterior = self.weight_hh_sampler.log_posterior() + b_log_posterior + self.weight_ih_sampler.log_posterior()
102 |
103 | self.log_prior = self.weight_ih_prior_dist.log_prior(weight_ih) + b_log_prior + self.weight_hh_prior_dist.log_prior(weight_hh)
104 |
105 | self.ff_parameters = [weight_ih, weight_hh, bias]
106 | return weight_ih, weight_hh, bias
107 |
108 | def get_frozen_weights(self):
109 |
110 | #get all deterministic weights
111 | weight_ih = self.weight_ih_mu
112 | weight_hh = self.weight_hh_mu
113 | if self.use_bias:
114 | bias = self.bias_mu
115 | else:
116 | bias = 0
117 |
118 | return weight_ih, weight_hh, bias
119 |
120 |
121 | def forward_(self,
122 | x,
123 | hidden_states,
124 | sharpen_loss):
125 |
126 | if self.loss_to_sharpen is not None:
127 | sharpen_loss = self.loss_to_sharpen
128 | weight_ih, weight_hh, bias = self.sharpen_posterior(loss=sharpen_loss, input_shape=x.shape)
129 | elif (sharpen_loss is not None):
130 | sharpen_loss = sharpen_loss
131 | weight_ih, weight_hh, bias = self.sharpen_posterior(loss=sharpen_loss, input_shape=x.shape)
132 |
133 | else:
134 | weight_ih, weight_hh, bias = self.sample_weights()
135 |
136 | #Assumes x is of shape (batch, sequence, feature)
137 | bs, seq_sz, _ = x.size()
138 | hidden_seq = []
139 |
140 | #if no hidden state, we are using zeros
141 | if hidden_states is None:
142 | h_t = torch.zeros(bs, self.out_features).to(x.device)
143 | else:
144 | h_t = hidden_states
145 |
146 | #simplifying our out features, and hidden seq list
147 | HS = self.out_features
148 | hidden_seq = []
149 |
150 | for t in range(seq_sz):
151 | x_t = x[:, t, :]
152 | # batch the computations into a single matrix multiplication
153 | A_t = x_t @ weight_ih[:, :HS*2] + h_t @ weight_hh[:, :HS*2] + bias[:HS*2]
154 |
155 | r_t, z_t = (
156 | torch.sigmoid(A_t[:, :HS]),
157 | torch.sigmoid(A_t[:, HS:HS*2])
158 | )
159 |
160 | n_t = torch.tanh(x_t @ weight_ih[:, HS*2:HS*3] + bias[HS*2:HS*3] + r_t * (h_t @ weight_hh[:, HS*3:HS*4] + bias[HS*3:HS*4]))
161 | h_t = (1 - z_t) * n_t + z_t * h_t
162 |
163 | hidden_seq.append(h_t.unsqueeze(0))
164 |
165 | hidden_seq = torch.cat(hidden_seq, dim=0)
166 | # reshape from shape (sequence, batch, feature) to (batch, sequence, feature)
167 | hidden_seq = hidden_seq.transpose(0, 1).contiguous()
168 |
169 | return hidden_seq, h_t
170 |
171 | def forward_frozen(self,
172 | x,
173 | hidden_states):
174 |
175 | weight_ih, weight_hh, bias = self.get_frozen_weights()
176 |
177 | #Assumes x is of shape (batch, sequence, feature)
178 | bs, seq_sz, _ = x.size()
179 | hidden_seq = []
180 |
181 | #if no hidden state, we are using zeros
182 | if hidden_states is None:
183 | h_t = torch.zeros(bs, self.out_features).to(x.device)
184 | else:
185 | h_t = hidden_states
186 |
187 | #simplifying our out features, and hidden seq list
188 | HS = self.out_features
189 | hidden_seq = []
190 |
191 | for t in range(seq_sz):
192 | x_t = x[:, t, :]
193 | # batch the computations into a single matrix multiplication
194 | A_t = x_t @ weight_ih[:, :HS*2] + h_t @ weight_hh[:, :HS*2] + bias[:HS*2]
195 |
196 | r_t, z_t = (
197 | torch.sigmoid(A_t[:, :HS]),
198 | torch.sigmoid(A_t[:, HS:HS*2])
199 | )
200 |
201 | n_t = torch.tanh(x_t @ weight_ih[:, HS*2:HS*3] + bias[HS*2:HS*3] + r_t * (h_t @ weight_hh[:, HS*3:HS*4] + bias[HS*3:HS*4]))
202 | h_t = (1 - z_t) * n_t + z_t * h_t
203 |
204 | hidden_seq.append(h_t.unsqueeze(0))
205 |
206 | hidden_seq = torch.cat(hidden_seq, dim=0)
207 | # reshape from shape (sequence, batch, feature) to (batch, sequence, feature)
208 | hidden_seq = hidden_seq.transpose(0, 1).contiguous()
209 |
210 | return hidden_seq, h_t
211 |
212 | def forward(self,
213 | x,
214 | hidden_states=None,
215 | sharpen_loss=None):
216 |
217 | if self.freeze:
218 | return self.forward_frozen(x, hidden_states)
219 |
220 | if not self.sharpen:
221 | sharpen_loss = None
222 |
223 | return self.forward_(x, hidden_states, sharpen_loss)
224 |
225 |
--------------------------------------------------------------------------------
/blitz/modules/lstm_bayesian_layer.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 | from torch.nn import functional as F
4 | from blitz.modules.base_bayesian_module import BayesianModule, BayesianRNN
5 | from blitz.modules.weight_sampler import TrainableRandomDistribution, PriorWeightDistribution
6 |
7 |
8 | class BayesianLSTM(BayesianRNN):
9 | """
10 | Bayesian LSTM layer, implements the linear layer proposed on Weight Uncertainity on Neural Networks
11 | (Bayes by Backprop paper).
12 |
13 | Its objective is be interactable with torch nn.Module API, being able even to be chained in nn.Sequential models with other non-this-lib layers
14 |
15 | parameters:
16 | in_fetaures: int -> incoming features for the layer
17 | out_features: int -> output features for the layer
18 | bias: bool -> whether the bias will exist (True) or set to zero (False)
19 | prior_sigma_1: float -> prior sigma on the mixture prior distribution 1
20 | prior_sigma_2: float -> prior sigma on the mixture prior distribution 2
21 | prior_pi: float -> pi on the scaled mixture prior
22 | posterior_mu_init float -> posterior mean for the weight mu init
23 | posterior_rho_init float -> posterior mean for the weight rho init
24 | freeze: bool -> wheter the model will start with frozen(deterministic) weights, or not
25 |
26 | """
27 | def __init__(self,
28 | in_features,
29 | out_features,
30 | bias = True,
31 | prior_sigma_1 = 0.1,
32 | prior_sigma_2 = 0.002,
33 | prior_pi = 1,
34 | posterior_mu_init = 0,
35 | posterior_rho_init = -6.0,
36 | freeze = False,
37 | prior_dist = None,
38 | peephole = False,
39 | **kwargs):
40 |
41 | super().__init__(**kwargs)
42 | self.in_features = in_features
43 | self.out_features = out_features
44 | self.use_bias = bias
45 | self.freeze = freeze
46 | self.peephole = peephole
47 |
48 | self.posterior_mu_init = posterior_mu_init
49 | self.posterior_rho_init = posterior_rho_init
50 |
51 | self.prior_sigma_1 = prior_sigma_1
52 | self.prior_sigma_2 = prior_sigma_2
53 | self.prior_pi = prior_pi
54 | self.prior_dist = prior_dist
55 |
56 | # Variational weight parameters and sample for weight ih
57 | self.weight_ih_mu = nn.Parameter(torch.Tensor(in_features, out_features * 4).normal_(posterior_mu_init, 0.1))
58 | self.weight_ih_rho = nn.Parameter(torch.Tensor(in_features, out_features * 4).normal_(posterior_rho_init, 0.1))
59 | self.weight_ih_sampler = TrainableRandomDistribution(self.weight_ih_mu, self.weight_ih_rho)
60 | self.weight_ih = None
61 |
62 | # Variational weight parameters and sample for weight hh
63 | self.weight_hh_mu = nn.Parameter(torch.Tensor(out_features, out_features * 4).normal_(posterior_mu_init, 0.1))
64 | self.weight_hh_rho = nn.Parameter(torch.Tensor(out_features, out_features * 4).normal_(posterior_rho_init, 0.1))
65 | self.weight_hh_sampler = TrainableRandomDistribution(self.weight_hh_mu, self.weight_hh_rho)
66 | self.weight_hh = None
67 |
68 | # Variational weight parameters and sample for bias
69 | self.bias_mu = nn.Parameter(torch.Tensor(out_features * 4).normal_(posterior_mu_init, 0.1))
70 | self.bias_rho = nn.Parameter(torch.Tensor(out_features * 4).normal_(posterior_rho_init, 0.1))
71 | self.bias_sampler = TrainableRandomDistribution(self.bias_mu, self.bias_rho)
72 | self.bias=None
73 |
74 | #our prior distributions
75 | self.weight_ih_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
76 | self.weight_hh_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
77 | self.bias_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
78 |
79 | self.init_sharpen_parameters()
80 |
81 | self.log_prior = 0
82 | self.log_variational_posterior = 0
83 |
84 |
85 | def sample_weights(self):
86 | #sample weights
87 | weight_ih = self.weight_ih_sampler.sample()
88 | weight_hh = self.weight_hh_sampler.sample()
89 |
90 | #if use bias, we sample it, otherwise, we are using zeros
91 | if self.use_bias:
92 | b = self.bias_sampler.sample()
93 | b_log_posterior = self.bias_sampler.log_posterior()
94 | b_log_prior = self.bias_prior_dist.log_prior(b)
95 |
96 | else:
97 | b = None
98 | b_log_posterior = 0
99 | b_log_prior = 0
100 |
101 | bias = b
102 |
103 | #gather weights variational posterior and prior likelihoods
104 | self.log_variational_posterior = self.weight_hh_sampler.log_posterior() + b_log_posterior + self.weight_ih_sampler.log_posterior()
105 |
106 | self.log_prior = self.weight_ih_prior_dist.log_prior(weight_ih) + b_log_prior + self.weight_hh_prior_dist.log_prior(weight_hh)
107 |
108 |
109 | self.ff_parameters = [weight_ih, weight_hh, bias]
110 | return weight_ih, weight_hh, bias
111 |
112 | def get_frozen_weights(self):
113 |
114 | #get all deterministic weights
115 | weight_ih = self.weight_ih_mu
116 | weight_hh = self.weight_hh_mu
117 | if self.use_bias:
118 | bias = self.bias_mu
119 | else:
120 | bias = 0
121 |
122 | return weight_ih, weight_hh, bias
123 |
124 |
125 | def forward_(self,
126 | x,
127 | hidden_states,
128 | sharpen_loss):
129 |
130 | if self.loss_to_sharpen is not None:
131 | sharpen_loss = self.loss_to_sharpen
132 | weight_ih, weight_hh, bias = self.sharpen_posterior(loss=sharpen_loss, input_shape=x.shape)
133 | elif (sharpen_loss is not None):
134 | sharpen_loss = sharpen_loss
135 | weight_ih, weight_hh, bias = self.sharpen_posterior(loss=sharpen_loss, input_shape=x.shape)
136 |
137 | else:
138 | weight_ih, weight_hh, bias = self.sample_weights()
139 |
140 | #Assumes x is of shape (batch, sequence, feature)
141 | bs, seq_sz, _ = x.size()
142 | hidden_seq = []
143 |
144 | #if no hidden state, we are using zeros
145 | if hidden_states is None:
146 | h_t, c_t = (torch.zeros(bs, self.out_features).to(x.device),
147 | torch.zeros(bs, self.out_features).to(x.device))
148 | else:
149 | h_t, c_t = hidden_states
150 |
151 | #simplifying our out features, and hidden seq list
152 | HS = self.out_features
153 | hidden_seq = []
154 |
155 | for t in range(seq_sz):
156 | x_t = x[:, t, :]
157 | # batch the computations into a single matrix multiplication
158 |
159 | if self.peephole:
160 | gates = x_t @ weight_ih + c_t @ weight_hh + bias
161 | else:
162 | gates = x_t @ weight_ih + h_t @ weight_hh + bias
163 | g_t = torch.tanh(gates[:, HS*2:HS*3])
164 |
165 | i_t, f_t, o_t = (
166 | torch.sigmoid(gates[:, :HS]), # input
167 | torch.sigmoid(gates[:, HS:HS*2]), # forget
168 | torch.sigmoid(gates[:, HS*3:]), # output
169 | )
170 |
171 | if self.peephole:
172 | c_t = f_t * c_t + i_t * torch.sigmoid(x_t @ weight_ih + bias)[:, HS*2:HS*3]
173 | h_t = torch.tanh(o_t * c_t)
174 | else:
175 | c_t = f_t * c_t + i_t * g_t
176 | h_t = o_t * torch.tanh(c_t)
177 |
178 | hidden_seq.append(h_t.unsqueeze(0))
179 |
180 | hidden_seq = torch.cat(hidden_seq, dim=0)
181 | # reshape from shape (sequence, batch, feature) to (batch, sequence, feature)
182 | hidden_seq = hidden_seq.transpose(0, 1).contiguous()
183 |
184 | return hidden_seq, (h_t, c_t)
185 |
186 | def forward_frozen(self,
187 | x,
188 | hidden_states):
189 |
190 | weight_ih, weight_hh, bias = self.get_frozen_weights()
191 |
192 | #Assumes x is of shape (batch, sequence, feature)
193 | bs, seq_sz, _ = x.size()
194 | hidden_seq = []
195 |
196 | #if no hidden state, we are using zeros
197 | if hidden_states is None:
198 | h_t, c_t = (torch.zeros(bs, self.out_features).to(x.device),
199 | torch.zeros(bs, self.out_features).to(x.device))
200 | else:
201 | h_t, c_t = hidden_states
202 |
203 | #simplifying our out features, and hidden seq list
204 | HS = self.out_features
205 | hidden_seq = []
206 |
207 | for t in range(seq_sz):
208 | x_t = x[:, t, :]
209 | # batch the computations into a single matrix multiplication
210 |
211 | if self.peephole:
212 | gates = x_t @ weight_ih + c_t @ weight_hh + bias
213 | else:
214 | gates = x_t @ weight_ih + h_t @ weight_hh + bias
215 | g_t = torch.tanh(gates[:, HS*2:HS*3])
216 |
217 | i_t, f_t, o_t = (
218 | torch.sigmoid(gates[:, :HS]), # input
219 | torch.sigmoid(gates[:, HS:HS*2]), # forget
220 | torch.sigmoid(gates[:, HS*3:]), # output
221 | )
222 |
223 | if self.peephole:
224 | c_t = f_t * c_t + i_t * torch.sigmoid(x_t @ weight_ih + bias)[:, HS*2:HS*3]
225 | h_t = torch.sigmoid(o_t * c_t)
226 | else:
227 | c_t = f_t * c_t + i_t * g_t
228 | h_t = o_t * torch.tanh(c_t)
229 |
230 | hidden_seq.append(h_t.unsqueeze(0))
231 |
232 | hidden_seq = torch.cat(hidden_seq, dim=0)
233 | # reshape from shape (sequence, batch, feature) to (batch, sequence, feature)
234 | hidden_seq = hidden_seq.transpose(0, 1).contiguous()
235 |
236 | return hidden_seq, (h_t, c_t)
237 |
238 | def forward(self,
239 | x,
240 | hidden_states=None,
241 | sharpen_loss=None):
242 |
243 | if self.freeze:
244 | return self.forward_frozen(x, hidden_states)
245 |
246 | if not self.sharpen:
247 | sharpen_posterior = False
248 |
249 | return self.forward_(x, hidden_states, sharpen_loss)
250 |
251 |
--------------------------------------------------------------------------------
/blitz/examples/cifar10_bvgg.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os
3 | import shutil
4 | import time
5 |
6 | import torch
7 | import torch.nn as nn
8 | import torch.nn.parallel
9 | import torch.backends.cudnn as cudnn
10 | import torch.optim
11 | import torch.utils.data
12 | import torchvision.transforms as transforms
13 | import torchvision.datasets as datasets
14 | import blitz.models.b_vgg as vgg
15 |
16 | #adapted from https://github.com/chengyangfu/pytorch-vgg-cifar10/blob/master/main.py
17 |
18 | model_names = sorted(name for name in vgg.__dict__
19 | if name.islower() and not name.startswith("__")
20 | and name.startswith("vgg")
21 | and callable(vgg.__dict__[name]))
22 |
23 |
24 | parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
25 | parser.add_argument('--arch', '-a', metavar='ARCH', default='vgg11_bn',
26 | choices=model_names,
27 | help='model architecture: ' + ' | '.join(model_names) +
28 | ' (default: vgg19)')
29 | parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
30 | help='number of data loading workers (default: 4)')
31 | parser.add_argument('--epochs', default=300, type=int, metavar='N',
32 | help='number of total epochs to run')
33 | parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
34 | help='manual epoch number (useful on restarts)')
35 | parser.add_argument('-b', '--batch-size', default=128, type=int,
36 | metavar='N', help='mini-batch size (default: 128)')
37 | parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
38 | metavar='LR', help='initial learning rate')
39 | parser.add_argument('--print-freq', '-p', default=20, type=int,
40 | metavar='N', help='print frequency (default: 20)')
41 | parser.add_argument('--resume', default='', type=str, metavar='PATH',
42 | help='path to latest checkpoint (default: none)')
43 | parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
44 | help='evaluate model on validation set')
45 | parser.add_argument('--pretrained', dest='pretrained', action='store_true',
46 | help='use pre-trained model')
47 | parser.add_argument('--half', dest='half', action='store_true',
48 | help='use half-precision(16-bit) ')
49 | parser.add_argument('--cpu', dest='cpu', action='store_true',
50 | help='use cpu')
51 | parser.add_argument('--save-dir', dest='save_dir',
52 | help='The directory used to save the trained models',
53 | default='save_temp', type=str)
54 |
55 |
56 | best_prec1 = 0
57 |
58 |
59 | def main():
60 | global args, best_prec1, freeze
61 | args = parser.parse_args()
62 |
63 |
64 | # Check the save_dir exists or not
65 | if not os.path.exists(args.save_dir):
66 | os.makedirs(args.save_dir)
67 |
68 | model = vgg.__dict__[args.arch]()
69 |
70 | model.features = torch.nn.DataParallel(model.features)
71 | if args.cpu:
72 | model.cpu()
73 | else:
74 | model.cuda()
75 |
76 | #model.freeze_()
77 | #freeze = True
78 |
79 | # optionally resume from a checkpoint
80 | if args.resume:
81 | if os.path.isfile(args.resume):
82 | print("=> loading checkpoint '{}'".format(args.resume))
83 | checkpoint = torch.load(args.resume)
84 | args.start_epoch = checkpoint['epoch']
85 | best_prec1 = checkpoint['best_prec1']
86 | model.load_state_dict(checkpoint['state_dict'])
87 | print("=> loaded checkpoint '{}' (epoch {})"
88 | .format(args.evaluate, checkpoint['epoch']))
89 | else:
90 | print("=> no checkpoint found at '{}'".format(args.resume))
91 |
92 | cudnn.benchmark = True
93 |
94 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
95 | std=[0.229, 0.224, 0.225])
96 |
97 | train_loader = torch.utils.data.DataLoader(
98 | datasets.CIFAR10(root='./data', train=True, transform=transforms.Compose([
99 | transforms.RandomHorizontalFlip(),
100 | transforms.RandomCrop(32, 4),
101 | transforms.ToTensor(),
102 | normalize,
103 | ]), download=True),
104 | batch_size=args.batch_size, shuffle=True,
105 | num_workers=args.workers, pin_memory=True)
106 |
107 | val_loader = torch.utils.data.DataLoader(
108 | datasets.CIFAR10(root='./data', train=False, transform=transforms.Compose([
109 | transforms.ToTensor(),
110 | normalize,
111 | ])),
112 | batch_size=args.batch_size, shuffle=False,
113 | num_workers=args.workers, pin_memory=True)
114 |
115 | # define loss function (criterion) and pptimizer
116 | criterion = nn.CrossEntropyLoss()
117 | if args.cpu:
118 | criterion = criterion.cpu()
119 | else:
120 | criterion = criterion.cuda()
121 |
122 | if args.half:
123 | model.half()
124 | criterion.half()
125 |
126 | optimizer = torch.optim.Adam(model.parameters(), args.lr)
127 |
128 | if args.evaluate:
129 | validate(val_loader, model, criterion)
130 | return
131 |
132 | for epoch in range(args.start_epoch, args.epochs):
133 | adjust_learning_rate(optimizer, epoch)
134 |
135 | # train for one epoch
136 | train(train_loader, model, criterion, optimizer, epoch)
137 |
138 | # evaluate on validation set
139 | prec1 = validate(val_loader, model, criterion)
140 |
141 | # remember best prec@1 and save checkpoint
142 | is_best = prec1 > best_prec1
143 | best_prec1 = max(prec1, best_prec1)
144 | save_checkpoint({
145 | 'epoch': epoch + 1,
146 | 'state_dict': model.state_dict(),
147 | 'best_prec1': best_prec1,
148 | }, is_best, filename=os.path.join(args.save_dir, 'checkpoint_{}.tar'.format(epoch)))
149 |
150 |
151 | def train(train_loader, model, criterion, optimizer, epoch):
152 | """
153 | Run one train epoch
154 | """
155 | global freeze
156 |
157 | batch_time = AverageMeter()
158 | data_time = AverageMeter()
159 | losses = AverageMeter()
160 | top1 = AverageMeter()
161 |
162 | # switch to train mode
163 | model.train()
164 |
165 | end = time.time()
166 |
167 | #if epoch == 3:
168 | # model.MOPED_()
169 | # freeze = False
170 |
171 | for i, (input, target) in enumerate(train_loader):
172 |
173 | # measure data loading time
174 | data_time.update(time.time() - end)
175 |
176 | if args.cpu == False:
177 | input = input.cuda()
178 | target = target.cuda()
179 |
180 | # compute output
181 | if not freeze:
182 | loss = model.sample_elbo(inputs=input,
183 | labels=target,
184 | criterion=criterion,
185 | sample_nbr=3,
186 | complexity_cost_weight=1/50000)
187 | else:
188 | output = model(input)
189 | loss = criterion(output, target)
190 |
191 | # compute gradient and do SGD step
192 | optimizer.zero_grad()
193 | loss.backward()
194 | optimizer.step()
195 |
196 | output = model(input)
197 | output = output.float()
198 | loss = loss.float()
199 | # measure accuracy and record loss
200 | prec1 = accuracy(output.data, target)[0]
201 | losses.update(loss.item(), input.size(0))
202 | top1.update(prec1.item(), input.size(0))
203 |
204 | # measure elapsed time
205 | batch_time.update(time.time() - end)
206 | end = time.time()
207 |
208 | if i % args.print_freq == 0:
209 | print('Epoch: [{0}][{1}/{2}]\t'
210 | 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
211 | 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
212 | 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
213 | 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
214 | epoch, i, len(train_loader), batch_time=batch_time,
215 | data_time=data_time, loss=losses, top1=top1))
216 |
217 |
218 | def validate(val_loader, model, criterion):
219 | """
220 | Run evaluation
221 | """
222 | batch_time = AverageMeter()
223 | losses = AverageMeter()
224 | top1 = AverageMeter()
225 |
226 | # switch to evaluate mode
227 | model.eval()
228 |
229 | end = time.time()
230 | for i, (input, target) in enumerate(val_loader):
231 | if args.cpu == False:
232 | input = input.cuda()
233 | target = target.cuda()
234 |
235 | if args.half:
236 | input = input.half()
237 |
238 | # compute output
239 | with torch.no_grad():
240 | output = model(input)
241 | loss = criterion(output, target)
242 |
243 | output = output.float()
244 | loss = loss.float()
245 |
246 | # measure accuracy and record loss
247 | prec1 = accuracy(output.data, target)[0]
248 | losses.update(loss.item(), input.size(0))
249 | top1.update(prec1.item(), input.size(0))
250 |
251 | # measure elapsed time
252 | batch_time.update(time.time() - end)
253 | end = time.time()
254 |
255 | if i % args.print_freq == 0:
256 | print('Test: [{0}/{1}]\t'
257 | 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
258 | 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
259 | 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
260 | i, len(val_loader), batch_time=batch_time, loss=losses,
261 | top1=top1))
262 |
263 | print(' * Prec@1 {top1.avg:.3f}'
264 | .format(top1=top1))
265 |
266 | return top1.avg
267 |
268 | def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
269 | """
270 | Save the training model
271 | """
272 | torch.save(state, filename)
273 |
274 | class AverageMeter(object):
275 | """Computes and stores the average and current value"""
276 | def __init__(self):
277 | self.reset()
278 |
279 | def reset(self):
280 | self.val = 0
281 | self.avg = 0
282 | self.sum = 0
283 | self.count = 0
284 |
285 | def update(self, val, n=1):
286 | self.val = val
287 | self.sum += val * n
288 | self.count += n
289 | self.avg = self.sum / self.count
290 |
291 |
292 | def adjust_learning_rate(optimizer, epoch):
293 | """Sets the learning rate to the initial LR decayed by 2 every 30 epochs"""
294 | lr = args.lr * (0.5 ** (epoch // 30))
295 | for param_group in optimizer.param_groups:
296 | param_group['lr'] = lr
297 |
298 |
299 | def accuracy(output, target, topk=(1,)):
300 | """Computes the precision@k for the specified values of k"""
301 | maxk = max(topk)
302 | batch_size = target.size(0)
303 |
304 | _, pred = output.topk(maxk, 1, True, True)
305 | pred = pred.t()
306 | correct = pred.eq(target.view(1, -1).expand_as(pred))
307 |
308 | res = []
309 | for k in topk:
310 | correct_k = correct[:k].view(-1).float().sum(0)
311 | res.append(correct_k.mul_(100.0 / batch_size))
312 | return res
313 |
314 |
315 | if __name__ == '__main__':
316 | freeze = False
317 | main()
318 |
--------------------------------------------------------------------------------
/blitz/modules/tests/conv_bayesian_layer_test.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | from blitz.modules import BayesianConv2d, BayesianConv1d, BayesianConv3d
3 | from blitz.modules.base_bayesian_module import BayesianModule
4 |
5 | import torch
6 | from torch import nn
7 |
8 | class TestConv1DBayesian(unittest.TestCase):
9 |
10 | def test_init_bayesian_layer(self):
11 | #create bayesian layer
12 |
13 | module = BayesianConv1d(3, 10, 3)
14 | pass
15 |
16 | def test_weights_shape(self):
17 | #check if weights shape is the expected
18 | bconv = BayesianConv1d(in_channels=3,
19 | out_channels=3,
20 | kernel_size=3)
21 |
22 | conv = nn.Conv1d(in_channels=3,
23 | out_channels=3,
24 | kernel_size=3)
25 |
26 | to_feed = torch.ones((1, 3, 25))
27 |
28 | infer1 = bconv(to_feed)
29 | infer2 = conv(to_feed)
30 |
31 | self.assertEqual(infer1.shape, infer2.shape)
32 | pass
33 |
34 | def test_weights_shape_cuda(self):
35 | #check if weights shape is the expected
36 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
37 | bconv = BayesianConv1d(in_channels=3,
38 | out_channels=3,
39 | kernel_size=3).to(device)
40 |
41 | conv = nn.Conv1d(in_channels=3,
42 | out_channels=3,
43 | kernel_size=3).to(device)
44 |
45 | to_feed = torch.ones((1, 3, 25)).to(device)
46 |
47 | infer1 = bconv(to_feed)
48 | infer2 = conv(to_feed)
49 |
50 | self.assertEqual(infer1.shape, infer2.shape)
51 | pass
52 |
53 | def test_variational_inference(self):
54 | #create module, check if inference is variating
55 | bconv = BayesianConv1d(in_channels=3,
56 | out_channels=3,
57 | kernel_size=1)
58 |
59 | conv = nn.Conv1d(in_channels=3,
60 | out_channels=3,
61 | kernel_size=3)
62 |
63 | to_feed = torch.ones((1, 3, 25))
64 |
65 | self.assertEqual((bconv(to_feed) != bconv(to_feed)).any(), torch.tensor(True))
66 | self.assertEqual((conv(to_feed) == conv(to_feed)).all(), torch.tensor(True))
67 | pass
68 |
69 |
70 | def test_freeze_module(self):
71 | #create module, freeze
72 | #check if two inferences keep equal
73 | bconv = BayesianConv1d(in_channels=3,
74 | out_channels=3,
75 | kernel_size=3,
76 | bias=False)
77 |
78 | to_feed = torch.ones((1, 3, 25))
79 |
80 | self.assertEqual((bconv(to_feed) != bconv(to_feed)).any(), torch.tensor(True))
81 |
82 | frozen_feedforward = bconv.forward_frozen(to_feed)
83 | bconv.freeze = True
84 | self.assertEqual((bconv.forward(to_feed) == frozen_feedforward).all(), torch.tensor(True))
85 | pass
86 |
87 | def test_inheritance(self):
88 |
89 | #check if bayesian linear has nn.Module and BayesianModule classes
90 | bconv = BayesianConv1d(in_channels=3,
91 | out_channels=3,
92 | kernel_size=3,
93 | bias=False)
94 |
95 | self.assertEqual(isinstance(bconv, (nn.Module)), True)
96 | self.assertEqual(isinstance(bconv, (BayesianModule)), True)
97 |
98 | def test_kl_divergence(self):
99 | #create model, sample weights
100 | #check if kl divergence between apriori and a posteriori is working
101 | bconv = BayesianConv1d(in_channels=3,
102 | out_channels=3,
103 | kernel_size=3)
104 |
105 | to_feed = torch.ones((1, 3, 25))
106 | predicted = bconv(to_feed)
107 |
108 | complexity_cost = bconv.log_variational_posterior - bconv.log_prior
109 | self.assertEqual((complexity_cost == complexity_cost).all(), torch.tensor(True))
110 | pass
111 |
112 | class TestConv2DBayesian(unittest.TestCase):
113 |
114 | def test_init_bayesian_layer(self):
115 | #create bayesian layer
116 |
117 | module = BayesianConv2d(3, 10, (3,3))
118 | pass
119 |
120 | def test_weights_shape(self):
121 | #check if weights shape is the expected
122 | bconv = BayesianConv2d(in_channels=3,
123 | out_channels=3,
124 | kernel_size=(3,3))
125 |
126 | conv = nn.Conv2d(in_channels=3,
127 | out_channels=3,
128 | kernel_size=(3,3))
129 |
130 | to_feed = torch.ones((1, 3, 25, 25))
131 |
132 | infer1 = bconv(to_feed)
133 | infer2 = conv(to_feed)
134 |
135 | self.assertEqual(infer1.shape, infer2.shape)
136 | pass
137 |
138 | def test_weights_shape_cuda(self):
139 | #check if weights shape is the expected
140 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
141 | bconv = BayesianConv2d(in_channels=3,
142 | out_channels=3,
143 | kernel_size=(3,3)).to(device)
144 |
145 | conv = nn.Conv2d(in_channels=3,
146 | out_channels=3,
147 | kernel_size=(3,3)).to(device)
148 |
149 | to_feed = torch.ones((1, 3, 25, 25)).to(device)
150 |
151 | infer1 = bconv(to_feed)
152 | infer2 = conv(to_feed)
153 |
154 | self.assertEqual(infer1.shape, infer2.shape)
155 | pass
156 |
157 | def test_variational_inference(self):
158 | #create module, check if inference is variating
159 | bconv = BayesianConv2d(in_channels=3,
160 | out_channels=3,
161 | kernel_size=(3,3))
162 |
163 | conv = nn.Conv2d(in_channels=3,
164 | out_channels=3,
165 | kernel_size=(3,3))
166 |
167 | to_feed = torch.ones((1, 3, 25, 25))
168 |
169 | self.assertEqual((bconv(to_feed) != bconv(to_feed)).any(), torch.tensor(True))
170 | self.assertEqual((conv(to_feed) == conv(to_feed)).all(), torch.tensor(True))
171 | pass
172 |
173 |
174 | def test_freeze_module(self):
175 | #create module, freeze
176 | #check if two inferences keep equal
177 | bconv = BayesianConv2d(in_channels=3,
178 | out_channels=3,
179 | kernel_size=(3,3),
180 | bias=False)
181 |
182 | to_feed = torch.ones((1, 3, 25, 25))
183 |
184 | self.assertEqual((bconv(to_feed) != bconv(to_feed)).any(), torch.tensor(True))
185 |
186 | frozen_feedforward = bconv.forward_frozen(to_feed)
187 | bconv.freeze = True
188 | self.assertEqual((bconv.forward(to_feed) == frozen_feedforward).all(), torch.tensor(True))
189 | pass
190 |
191 | def test_inheritance(self):
192 |
193 | #check if bayesian linear has nn.Module and BayesianModule classes
194 | bconv = BayesianConv2d(in_channels=3,
195 | out_channels=3,
196 | kernel_size=(3,3),
197 | bias=False)
198 |
199 | self.assertEqual(isinstance(bconv, (nn.Module)), True)
200 | self.assertEqual(isinstance(bconv, (BayesianModule)), True)
201 |
202 | def test_kl_divergence(self):
203 | #create model, sample weights
204 | #check if kl divergence between apriori and a posteriori is working
205 | bconv = BayesianConv2d(in_channels=3,
206 | out_channels=3,
207 | kernel_size=(3,3))
208 |
209 | to_feed = torch.ones((1, 3, 25, 25))
210 | predicted = bconv(to_feed)
211 |
212 | complexity_cost = bconv.log_variational_posterior - bconv.log_prior
213 | self.assertEqual((complexity_cost == complexity_cost).all(), torch.tensor(True))
214 | pass
215 | class TestConv3DBayesian(unittest.TestCase):
216 |
217 | def test_init_bayesian_layer(self):
218 | #create bayesian layer
219 |
220 | module = BayesianConv3d(3, 10, (3,3, 3))
221 | pass
222 |
223 | def test_weights_shape(self):
224 | #check if weights shape is the expected
225 | bconv = BayesianConv3d(in_channels=3,
226 | out_channels=3,
227 | kernel_size=(3,3,3))
228 |
229 | conv = nn.Conv3d(in_channels=3,
230 | out_channels=3,
231 | kernel_size=(3,3,3))
232 |
233 | to_feed = torch.ones((1, 3, 25, 25, 25))
234 |
235 | infer1 = bconv(to_feed)
236 | infer2 = conv(to_feed)
237 |
238 | self.assertEqual(infer1.shape, infer2.shape)
239 | pass
240 |
241 | def test_weights_shape_cuda(self):
242 | #check if weights shape is the expected
243 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
244 | bconv = BayesianConv3d(in_channels=3,
245 | out_channels=3,
246 | kernel_size=(3,3,3)).to(device)
247 |
248 | conv = nn.Conv3d(in_channels=3,
249 | out_channels=3,
250 | kernel_size=(3,3,3)).to(device)
251 |
252 | to_feed = torch.ones((1, 3, 25, 25, 25)).to(device)
253 |
254 | infer1 = bconv(to_feed)
255 | infer2 = conv(to_feed)
256 |
257 | self.assertEqual(infer1.shape, infer2.shape)
258 | pass
259 |
260 | def test_variational_inference(self):
261 | #create module, check if inference is variating
262 | bconv = BayesianConv3d(in_channels=3,
263 | out_channels=3,
264 | kernel_size=(3,3,3))
265 |
266 | conv = nn.Conv3d(in_channels=3,
267 | out_channels=3,
268 | kernel_size=(3,3,3))
269 |
270 | to_feed = torch.ones((1, 3, 25, 25,25))
271 |
272 | self.assertEqual((bconv(to_feed) != bconv(to_feed)).any(), torch.tensor(True))
273 | self.assertEqual((conv(to_feed) == conv(to_feed)).all(), torch.tensor(True))
274 | pass
275 |
276 |
277 | def test_freeze_module(self):
278 | #create module, freeze
279 | #check if two inferences keep equal
280 | bconv = BayesianConv3d(in_channels=3,
281 | out_channels=3,
282 | kernel_size=(3,3,3),
283 | bias=False)
284 |
285 | to_feed = torch.ones((1, 3, 25, 25,25))
286 |
287 | self.assertEqual((bconv(to_feed) != bconv(to_feed)).any(), torch.tensor(True))
288 |
289 | frozen_feedforward = bconv.forward_frozen(to_feed)
290 | bconv.freeze = True
291 | self.assertEqual((bconv.forward(to_feed) == frozen_feedforward).all(), torch.tensor(True))
292 | pass
293 |
294 | def test_inheritance(self):
295 |
296 | #check if bayesian linear has nn.Module and BayesianModule classes
297 | bconv = BayesianConv3d(in_channels=3,
298 | out_channels=3,
299 | kernel_size=(3,3,3),
300 | bias=False)
301 |
302 | self.assertEqual(isinstance(bconv, (nn.Module)), True)
303 | self.assertEqual(isinstance(bconv, (BayesianModule)), True)
304 |
305 | def test_kl_divergence(self):
306 | #create model, sample weights
307 | #check if kl divergence between apriori and a posteriori is working
308 | bconv = BayesianConv3d(in_channels=3,
309 | out_channels=3,
310 | kernel_size=(3,3,3))
311 |
312 | to_feed = torch.ones((1, 3, 25, 25,25))
313 | predicted = bconv(to_feed)
314 |
315 | complexity_cost = bconv.log_variational_posterior - bconv.log_prior
316 | self.assertEqual((complexity_cost == complexity_cost).all(), torch.tensor(True))
317 | pass
318 |
319 | if __name__ == "__main__":
320 | unittest.main()
--------------------------------------------------------------------------------
/blitz/modules/conv_bayesian_layer.py:
--------------------------------------------------------------------------------
1 | import unittest
2 | import torch
3 | from torch import nn
4 | from torch.nn import functional as F
5 |
6 | from blitz.modules.base_bayesian_module import BayesianModule
7 | from blitz.modules.weight_sampler import TrainableRandomDistribution, PriorWeightDistribution
8 |
9 | class BayesianConv1d(BayesianModule):
10 |
11 | # Implements Bayesian Conv2d layer, by drawing them using Weight Uncertanity on Neural Networks algorithm
12 | """
13 | Bayesian Linear layer, implements a Convolution 1D layer as proposed on Weight Uncertainity on Neural Networks
14 | (Bayes by Backprop paper).
15 |
16 | Its objective is be interactable with torch nn.Module API, being able even to be chained in nn.Sequential models with other non-this-lib layers
17 |
18 | parameters:
19 | in_channels: int -> incoming channels for the layer
20 | out_channels: int -> output channels for the layer
21 | kernel_size : tuple (int, int) -> size of the kernels for this convolution layer
22 | groups : int -> number of groups on which the convolutions will happend
23 | padding : int -> size of padding (0 if no padding)
24 | dilation int -> dilation of the weights applied on the input tensor
25 |
26 |
27 | bias: bool -> whether the bias will exist (True) or set to zero (False)
28 | prior_sigma_1: float -> prior sigma on the mixture prior distribution 1
29 | prior_sigma_2: float -> prior sigma on the mixture prior distribution 2
30 | prior_pi: float -> pi on the scaled mixture prior
31 | posterior_mu_init float -> posterior mean for the weight mu init
32 | posterior_rho_init float -> posterior mean for the weight rho init
33 | freeze: bool -> wheter the model will start with frozen(deterministic) weights, or not
34 |
35 | """
36 | def __init__(self,
37 | in_channels,
38 | out_channels,
39 | kernel_size,
40 | groups = 1,
41 | stride = 1,
42 | padding = 0,
43 | dilation = 1,
44 | bias=True,
45 | prior_sigma_1 = 0.1,
46 | prior_sigma_2 = 0.002,
47 | prior_pi = 1,
48 | posterior_mu_init = 0,
49 | posterior_rho_init = -7.0,
50 | freeze = False,
51 | prior_dist = None):
52 | super().__init__()
53 |
54 | #our main parameters
55 | self.in_channels = in_channels
56 | self.out_channels = out_channels
57 | self.freeze = freeze
58 | self.kernel_size = kernel_size
59 | self.groups = groups
60 | self.stride = stride
61 | self.padding = padding
62 | self.dilation = dilation
63 | self.bias = bias
64 |
65 |
66 | self.posterior_mu_init = posterior_mu_init
67 | self.posterior_rho_init = posterior_rho_init
68 |
69 | #parameters for the scale mixture prior
70 | self.prior_sigma_1 = prior_sigma_1
71 | self.prior_sigma_2 = prior_sigma_2
72 | self.prior_pi = prior_pi
73 | self.prior_dist = prior_dist
74 |
75 | #our weights
76 | self.weight_mu = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size).normal_(posterior_mu_init, 0.1))
77 | self.weight_rho = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size).normal_(posterior_rho_init, 0.1))
78 | self.weight_sampler = TrainableRandomDistribution(self.weight_mu, self.weight_rho)
79 |
80 | #our biases
81 | if self.bias:
82 | self.bias_mu = nn.Parameter(torch.Tensor(out_channels).normal_(posterior_mu_init, 0.1))
83 | self.bias_rho = nn.Parameter(torch.Tensor(out_channels).normal_(posterior_rho_init, 0.1))
84 | self.bias_sampler = TrainableRandomDistribution(self.bias_mu, self.bias_rho)
85 | self.bias_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
86 | else:
87 | self.register_buffer('bias_zero', torch.zeros((self.out_channels)) )
88 |
89 | # Priors (as BBP paper)
90 | self.weight_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
91 | self.bias_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
92 | self.log_prior = 0
93 | self.log_variational_posterior = 0
94 |
95 | def forward(self, x):
96 | #Forward with uncertain weights, fills bias with zeros if layer has no bias
97 | #Also calculates the complecity cost for this sampling
98 | if self.freeze:
99 | return self.forward_frozen(x)
100 |
101 | w = self.weight_sampler.sample()
102 |
103 | if self.bias:
104 | b = self.bias_sampler.sample()
105 | b_log_posterior = self.bias_sampler.log_posterior()
106 | b_log_prior = self.bias_prior_dist.log_prior(b)
107 |
108 | else:
109 | b = self.bias_zero
110 | b_log_posterior = 0
111 | b_log_prior = 0
112 |
113 | self.log_variational_posterior = self.weight_sampler.log_posterior() + b_log_posterior
114 | self.log_prior = self.weight_prior_dist.log_prior(w) + b_log_prior
115 |
116 | return F.conv1d(input=x,
117 | weight=w,
118 | bias=b,
119 | stride=self.stride,
120 | padding=self.padding,
121 | dilation=self.dilation,
122 | groups=self.groups)
123 |
124 | def forward_frozen(self, x):
125 | # Computes the feedforward operation with the expected value for weight and biases (frozen-like)
126 |
127 | if self.bias:
128 | bias = self.bias_mu
129 | assert bias is self.bias_mu, "The bias inputed should be this layer parameter, not a clone."
130 | else:
131 | bias = self.bias_zero
132 |
133 | return F.conv1d(input=x,
134 | weight=self.weight_mu,
135 | bias=bias,
136 | stride=self.stride,
137 | padding=self.padding,
138 | dilation=self.dilation,
139 | groups=self.groups)
140 |
141 | class BayesianConv2d(BayesianModule):
142 |
143 | # Implements Bayesian Conv2d layer, by drawing them using Weight Uncertanity on Neural Networks algorithm
144 | """
145 | Bayesian Linear layer, implements a Convolution 2D layer as proposed on Weight Uncertainity on Neural Networks
146 | (Bayes by Backprop paper).
147 |
148 | Its objective is be interactable with torch nn.Module API, being able even to be chained in nn.Sequential models with other non-this-lib layers
149 |
150 | parameters:
151 | in_channels: int -> incoming channels for the layer
152 | out_channels: int -> output channels for the layer
153 | kernel_size : tuple (int, int) -> size of the kernels for this convolution layer
154 | groups : int -> number of groups on which the convolutions will happend
155 | padding : int -> size of padding (0 if no padding)
156 | dilation int -> dilation of the weights applied on the input tensor
157 |
158 |
159 | bias: bool -> whether the bias will exist (True) or set to zero (False)
160 | prior_sigma_1: float -> prior sigma on the mixture prior distribution 1
161 | prior_sigma_2: float -> prior sigma on the mixture prior distribution 2
162 | prior_pi: float -> pi on the scaled mixture prior
163 | posterior_mu_init float -> posterior mean for the weight mu init
164 | posterior_rho_init float -> posterior mean for the weight rho init
165 | freeze: bool -> wheter the model will start with frozen(deterministic) weights, or not
166 |
167 | """
168 | def __init__(self,
169 | in_channels,
170 | out_channels,
171 | kernel_size,
172 | groups = 1,
173 | stride = 1,
174 | padding = 0,
175 | dilation = 1,
176 | bias=True,
177 | prior_sigma_1 = 0.1,
178 | prior_sigma_2 = 0.002,
179 | prior_pi = 1,
180 | posterior_mu_init = 0,
181 | posterior_rho_init = -6.0,
182 | freeze = False,
183 | prior_dist = None):
184 | super().__init__()
185 |
186 | #our main parameters
187 | self.in_channels = in_channels
188 | self.out_channels = out_channels
189 | self.freeze = freeze
190 | self.kernel_size = kernel_size
191 | self.groups = groups
192 | self.stride = stride
193 | self.padding = padding
194 | self.dilation = dilation
195 | self.bias = bias
196 |
197 |
198 | self.posterior_mu_init = posterior_mu_init
199 | self.posterior_rho_init = posterior_rho_init
200 |
201 | #parameters for the scale mixture prior
202 | self.prior_sigma_1 = prior_sigma_1
203 | self.prior_sigma_2 = prior_sigma_2
204 | self.prior_pi = prior_pi
205 | self.prior_dist = prior_dist
206 |
207 | #our weights
208 | self.weight_mu = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *kernel_size).normal_(posterior_mu_init, 0.1))
209 | self.weight_rho = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *kernel_size).normal_(posterior_rho_init, 0.1))
210 | self.weight_sampler = TrainableRandomDistribution(self.weight_mu, self.weight_rho)
211 |
212 | #our biases
213 | if self.bias:
214 | self.bias_mu = nn.Parameter(torch.Tensor(out_channels).normal_(posterior_mu_init, 0.1))
215 | self.bias_rho = nn.Parameter(torch.Tensor(out_channels).normal_(posterior_rho_init, 0.1))
216 | self.bias_sampler = TrainableRandomDistribution(self.bias_mu, self.bias_rho)
217 | self.bias_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
218 | else:
219 | self.register_buffer('bias_zero', torch.zeros((self.out_channels)) )
220 |
221 | # Priors (as BBP paper)
222 | self.weight_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
223 | self.log_prior = 0
224 | self.log_variational_posterior = 0
225 |
226 | def forward(self, x):
227 | #Forward with uncertain weights, fills bias with zeros if layer has no bias
228 | #Also calculates the complecity cost for this sampling
229 | if self.freeze:
230 | return self.forward_frozen(x)
231 |
232 | w = self.weight_sampler.sample()
233 |
234 | if self.bias:
235 | b = self.bias_sampler.sample()
236 | b_log_posterior = self.bias_sampler.log_posterior()
237 | b_log_prior = self.bias_prior_dist.log_prior(b)
238 |
239 | else:
240 | b = self.bias_zero
241 | b_log_posterior = 0
242 | b_log_prior = 0
243 |
244 | self.log_variational_posterior = self.weight_sampler.log_posterior() + b_log_posterior
245 | self.log_prior = self.weight_prior_dist.log_prior(w) + b_log_prior
246 |
247 | return F.conv2d(input=x,
248 | weight=w,
249 | bias=b,
250 | stride=self.stride,
251 | padding=self.padding,
252 | dilation=self.dilation,
253 | groups=self.groups)
254 |
255 | def forward_frozen(self, x):
256 | # Computes the feedforward operation with the expected value for weight and biases (frozen-like)
257 |
258 | if self.bias:
259 | bias = self.bias_mu
260 | assert bias is self.bias_mu, "The bias inputed should be this layer parameter, not a clone."
261 | else:
262 | bias = self.bias_zero
263 |
264 | return F.conv2d(input=x,
265 | weight=self.weight_mu,
266 | bias=bias,
267 | stride=self.stride,
268 | padding=self.padding,
269 | dilation=self.dilation,
270 | groups=self.groups)
271 |
272 | class BayesianConv3d(BayesianModule):
273 |
274 | # Implements Bayesian Conv2d layer, by drawing them using Weight Uncertanity on Neural Networks algorithm
275 | """
276 | Bayesian Linear layer, implements a Convolution 3D layer as proposed on Weight Uncertainity on Neural Networks
277 | (Bayes by Backprop paper).
278 |
279 | Its objective is be interactable with torch nn.Module API, being able even to be chained in nn.Sequential models with other non-this-lib layers
280 |
281 | parameters:
282 | in_channels: int -> incoming channels for the layer
283 | out_channels: int -> output channels for the layer
284 | kernel_size : tuple (int, int) -> size of the kernels for this convolution layer
285 | groups : int -> number of groups on which the convolutions will happend
286 | padding : int -> size of padding (0 if no padding)
287 | dilation int -> dilation of the weights applied on the input tensor
288 |
289 |
290 | bias: bool -> whether the bias will exist (True) or set to zero (False)
291 | prior_sigma_1: float -> prior sigma on the mixture prior distribution 1
292 | prior_sigma_2: float -> prior sigma on the mixture prior distribution 2
293 | prior_pi: float -> pi on the scaled mixture prior
294 | posterior_mu_init float -> posterior mean for the weight mu init
295 | posterior_rho_init float -> posterior mean for the weight rho init
296 | freeze: bool -> wheter the model will start with frozen(deterministic) weights, or not
297 |
298 | """
299 | def __init__(self,
300 | in_channels,
301 | out_channels,
302 | kernel_size,
303 | groups = 1,
304 | stride = 1,
305 | padding = 0,
306 | dilation = 1,
307 | bias=True,
308 | prior_sigma_1 = 0.1,
309 | prior_sigma_2 = 0.002,
310 | prior_pi = 1,
311 | posterior_mu_init = 0,
312 | posterior_rho_init = -6.0,
313 | freeze = False,
314 | prior_dist = None):
315 | super().__init__()
316 |
317 | #our main parameters
318 | self.in_channels = in_channels
319 | self.out_channels = out_channels
320 | self.freeze = freeze
321 | self.kernel_size = kernel_size
322 | self.groups = groups
323 | self.stride = stride
324 | self.padding = padding
325 | self.dilation = dilation
326 | self.bias = bias
327 |
328 |
329 | self.posterior_mu_init = posterior_mu_init
330 | self.posterior_rho_init = posterior_rho_init
331 |
332 | #parameters for the scale mixture prior
333 | self.prior_sigma_1 = prior_sigma_1
334 | self.prior_sigma_2 = prior_sigma_2
335 | self.prior_pi = prior_pi
336 | self.prior_dist = prior_dist
337 |
338 | #our weights
339 | self.weight_mu = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *kernel_size).normal_(posterior_mu_init, 0.1))
340 | self.weight_rho = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, *kernel_size).normal_(posterior_rho_init, 0.1))
341 | self.weight_sampler = TrainableRandomDistribution(self.weight_mu, self.weight_rho)
342 |
343 | #our biases
344 | if self.bias:
345 | self.bias_mu = nn.Parameter(torch.Tensor(out_channels).normal_(posterior_mu_init, 0.1))
346 | self.bias_rho = nn.Parameter(torch.Tensor(out_channels).normal_(posterior_rho_init, 0.1))
347 | self.bias_sampler = TrainableRandomDistribution(self.bias_mu, self.bias_rho)
348 | self.bias_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
349 | else:
350 | self.register_buffer('bias_zero', torch.zeros((self.out_channels)) )
351 |
352 | # Priors (as BBP paper)
353 | self.weight_prior_dist = PriorWeightDistribution(self.prior_pi, self.prior_sigma_1, self.prior_sigma_2, dist = self.prior_dist)
354 | self.log_prior = 0
355 | self.log_variational_posterior = 0
356 |
357 | def forward(self, x):
358 | #Forward with uncertain weights, fills bias with zeros if layer has no bias
359 | #Also calculates the complecity cost for this sampling
360 | if self.freeze:
361 | return self.forward_frozen(x)
362 |
363 | w = self.weight_sampler.sample()
364 |
365 | if self.bias:
366 | b = self.bias_sampler.sample()
367 | b_log_posterior = self.bias_sampler.log_posterior()
368 | b_log_prior = self.bias_prior_dist.log_prior(b)
369 |
370 | else:
371 | b = self.bias_zero
372 | b_log_posterior = 0
373 | b_log_prior = 0
374 |
375 | self.log_variational_posterior = self.weight_sampler.log_posterior() + b_log_posterior
376 | self.log_prior = self.weight_prior_dist.log_prior(w) + b_log_prior
377 |
378 | return F.conv3d(input=x,
379 | weight=w,
380 | bias=b,
381 | stride=self.stride,
382 | padding=self.padding,
383 | dilation=self.dilation,
384 | groups=self.groups)
385 |
386 | def forward_frozen(self, x):
387 | # Computes the feedforward operation with the expected value for weight and biases (frozen-like)
388 |
389 | if self.bias:
390 | bias = self.bias_mu
391 | assert bias is self.bias_mu, "The bias inputed should be this layer parameter, not a clone."
392 | else:
393 | bias = self.bias_zero
394 |
395 | return F.conv3d(input=x,
396 | weight=self.weight_mu,
397 | bias=bias,
398 | stride=self.stride,
399 | padding=self.padding,
400 | dilation=self.dilation,
401 | groups=self.groups)
402 |
--------------------------------------------------------------------------------
/doc/layers.md:
--------------------------------------------------------------------------------
1 | # Bayesian Neural Network layers
2 | They all inherit from torch.nn.Module
3 | # Index:
4 | * [BayesianModule](#class-BayesianModule)
5 | * [BayesianLinear](#class-BayesianLinear)
6 | * [BayesianConv1d](#class-BayesianConv1d)
7 | * [BayesianConv2d](#class-BayesianConv2d)
8 | * [BayesianConv3d](#class-BayesianConv3d)
9 | * [BayesianLSTM](#class-BayesianLSTM)
10 | * [BayesianGRU](#class-BayesianGRU)
11 | * [BayesianEmbedding](#class-BayesianEmbedding)
12 |
13 | ---
14 | ## class BayesianModule(torch.nn.Module)
15 | ### blitz.modules.base_bayesian_module.BayesianModule()
16 | Implements a as-interface used BayesianModule to enable further specific behavior
17 | Inherits from torch.nn.Module
18 |
19 | ---
20 |
21 | ## class BayesianLinear
22 | ### blitz.modules.BayesianLinear(in_features, out_features, bias=True, prior_sigma_1 = 1, prior_sigma_2 = 0.002, prior_pi = 0.5, freeze = False)
23 |
24 | Bayesian Linear layer, implements the linear layer proposed on Weight Uncertainity on Neural Networks (Bayes by Backprop paper).
25 |
26 | Creates weight samplers of the class TrainableRandomDistribution for the weights and biases to be used on its feedforward ops.
27 |
28 | Inherits from BayesianModule
29 |
30 | #### Parameters:
31 | * in_features int -> Number nodes of the information to be feedforwarded
32 | * out_features int -> Number of out nodes of the layer
33 | * bias bool -> wheter the model will have biases
34 | * prior_sigma_1 float -> sigma of one of the prior w distributions to mixture
35 | * prior_sigma_2 float -> sigma of one of the prior w distributions to mixture
36 | * prior_pi float -> factor to scale the gaussian mixture of the model prior distribution
37 | * freeze -> wheter the model is instaced as frozen (will use deterministic weights on the feedforward op)
38 | * posterior_mu_init float -> posterior mean for the weight mu init
39 | * posterior_rho_init float -> posterior mean for the weight rho init
40 | * prior_dist -> torch.distributions.distribution.Distribution corresponding to a prior distribution different than a normal / scale mixture normal; if you pass that, the prior distribution will be that one and prior_sigma1 and prior_sigma2 and prior_pi can be dismissed. - Note that there is a torch issue that may output you logprob as NaN, so beware of the prior dist you are using.
41 |
42 | #### Methods:
43 | * forward():
44 |
45 | Performs a feedforward operation with sampled weights. If the model is frozen uses only the expected values.
46 |
47 | Returns torch.tensor
48 |
49 | Description
50 | ##### Parameters
51 | * x - torch.tensor corresponding to the datapoints tensor to be feedforwarded
52 |
53 | * forward_frozen(x):
54 |
55 | Performs a feedforward operation using onle the mu tensor as weights.
56 |
57 | Returns torch.tensor
58 |
59 | Description
60 | ##### Parameters
61 | * x = torch.tensor corresponding to the datapoints tensor to be feedforwarded
62 |
63 | ---
64 | ## class BayesianConv1d
65 | ### blitz.modules.BayesianConv1d(in_channels, out_channels, kernel_size, groups = 1, stride = 1, padding = 0, dilation = 1, bias=True, prior_sigma_1 = 1, prior_sigma_2 = 0.002, prior_pi = 0.5, freeze = False)
66 | DESCRIPTION
67 |
68 | #### Parameters:
69 | * in_channels int -> incoming channels for the layer
70 | * out_channels int -> output channels for the layer
71 | * kernel_size int -> size of the kernels for this convolution layer
72 | * groups int -> number of groups on which the convolutions will happend
73 | * padding int -> size of padding (0 if no padding)
74 | * dilation int -> dilation of the weights applied on the input tensor
75 | * bias bool -> whether the bias will exist (True) or set to zero (False)
76 | * prior_sigma_1 float -> prior sigma on the mixture prior distribution 1
77 | * prior_sigma_2 float -> prior sigma on the mixture prior distribution 2
78 | * prior_pi float -> pi on the scaled mixture prior
79 | * posterior_mu_init float -> posterior mean for the weight mu init
80 | * posterior_rho_init float -> posterior mean for the weight rho init
81 | * freeze bool -> wheter the model will start with frozen(deterministic) weights, or not
82 | * prior_dist -> torch.distributions.distribution.Distribution corresponding to a prior distribution different than a normal / scale mixture normal; if you pass that, the prior distribution will be that one and prior_sigma1 and prior_sigma2 and prior_pi can be dismissed. - Note that there is a torch issue that may output you logprob as NaN, so beware of the prior dist you are using.
83 |
84 | #### Methods:
85 | * forward():
86 |
87 | Performs a feedforward Conv3d operation with sampled weights. If the model is frozen uses only the expected values.
88 |
89 | Returns torch.tensor
90 |
91 | Description
92 | ##### Parameters
93 | * x - torch.tensor corresponding to the datapoints tensor to be feedforwarded
94 |
95 | * forward_frozen(x):
96 |
97 | Performs a feedforward Conv2d operation using onle the mu tensor as weights.
98 |
99 | Returns torch.tensor
100 |
101 | Description
102 | ##### Parameters
103 | * x = torch.tensor corresponding to the datapoints tensor to be feedforwarded
104 |
105 |
106 | ---
107 |
108 | ## class BayesianConv2d
109 | ### blitz.modules.BayesianConv2d(in_channels, out_channels, kernel_size, groups = 1, stride = 1, padding = 0, dilation = 1, bias=True, prior_sigma_1 = 1, prior_sigma_2 = 0.002, prior_pi = 0.5, freeze = False)
110 | DESCRIPTION
111 |
112 | #### Parameters:
113 | * in_channels int -> incoming channels for the layer
114 | * out_channels int -> output channels for the layer
115 | * kernel_size tuple (int, int) -> size of the kernels for this convolution layer
116 | * groups int -> number of groups on which the convolutions will happend
117 | * padding int -> size of padding (0 if no padding)
118 | * dilation int -> dilation of the weights applied on the input tensor
119 | * bias bool -> whether the bias will exist (True) or set to zero (False)
120 | * prior_sigma_1 float -> prior sigma on the mixture prior distribution 1
121 | * prior_sigma_2 float -> prior sigma on the mixture prior distribution 2
122 | * prior_pi float -> pi on the scaled mixture prior
123 | * posterior_mu_init float -> posterior mean for the weight mu init
124 | * posterior_rho_init float -> posterior mean for the weight rho init
125 | * freeze bool -> wheter the model will start with frozen(deterministic) weights, or not
126 | * prior_dist -> torch.distributions.distribution.Distribution corresponding to a prior distribution different than a normal / scale mixture normal; if you pass that, the prior distribution will be that one and prior_sigma1 and prior_sigma2 and prior_pi can be dismissed. - Note that there is a torch issue that may output you logprob as NaN, so beware of the prior dist you are using.
127 |
128 | #### Methods:
129 | * forward():
130 |
131 | Performs a feedforward Conv2d operation with sampled weights. If the model is frozen uses only the expected values.
132 |
133 | Returns torch.tensor
134 |
135 | Description
136 | ##### Parameters
137 | * x - torch.tensor corresponding to the datapoints tensor to be feedforwarded
138 |
139 | * forward_frozen(x):
140 |
141 | Performs a feedforward Conv2d operation using onle the mu tensor as weights.
142 |
143 | Returns torch.tensor
144 |
145 | Description
146 | ##### Parameters
147 | * x = torch.tensor corresponding to the datapoints tensor to be feedforwarded
148 |
149 | ---
150 |
151 | ## class BayesianConv3d
152 | ### blitz.modules.BayesianConv2d(in_channels, out_channels, kernel_size, groups = 1, stride = 1, padding = 0, dilation = 1, bias=True, prior_sigma_1 = 1, prior_sigma_2 = 0.002, prior_pi = 0.5, freeze = False)
153 | DESCRIPTION
154 |
155 | #### Parameters:
156 | * in_channels int -> incoming channels for the layer
157 | * out_channels int -> output channels for the layer
158 | * kernel_size tuple (int, int, int) -> size of the kernels for this convolution layer
159 | * groups int -> number of groups on which the convolutions will happend
160 | * padding int -> size of padding (0 if no padding)
161 | * dilation int -> dilation of the weights applied on the input tensor
162 | * bias bool -> whether the bias will exist (True) or set to zero (False)
163 | * prior_sigma_1 float -> prior sigma on the mixture prior distribution 1
164 | * prior_sigma_2 float -> prior sigma on the mixture prior distribution 2
165 | * prior_pi float -> pi on the scaled mixture prior
166 | * posterior_mu_init float -> posterior mean for the weight mu init
167 | * posterior_rho_init float -> posterior mean for the weight rho init
168 | * freeze bool -> wheter the model will start with frozen(deterministic) weights, or not
169 | * prior_dist -> torch.distributions.distribution.Distribution corresponding to a prior distribution different than a normal / scale mixture normal; if you pass that, the prior distribution will be that one and prior_sigma1 and prior_sigma2 and prior_pi can be dismissed. - Note that there is a torch issue that may output you logprob as NaN, so beware of the prior dist you are using.
170 |
171 | #### Methods:
172 | * forward():
173 |
174 | Performs a feedforward Conv3d operation with sampled weights. If the model is frozen uses only the expected values.
175 |
176 | Returns torch.tensor
177 |
178 | Description
179 | ##### Parameters
180 | * x - torch.tensor corresponding to the datapoints tensor to be feedforwarded
181 |
182 | * forward_frozen(x):
183 |
184 | Performs a feedforward Conv2d operation using onle the mu tensor as weights.
185 |
186 | Returns torch.tensor
187 |
188 | Description
189 | ##### Parameters
190 | * x = torch.tensor corresponding to the datapoints tensor to be feedforwarded
191 |
192 | ---
193 |
194 | ## class BayesianLSTM
195 | ### blitz.modules.BayesianLSTM(in_features, out_features, bias=True, prior_sigma_1 = 1, prior_sigma_2 = 0.002, prior_pi = 0.5, freeze = False, peephole = False)
196 |
197 | Bayesian LSTM layer, implements the LSTM layer using the weight uncertainty tools proposed on Weight Uncertainity on Neural Networks (Bayes by Backprop paper).
198 |
199 | Creates weight samplers of the class TrainableRandomDistribution for the weights and biases to be used on its feedforward ops.
200 |
201 | Inherits from BayesianModule
202 |
203 | #### Parameters:
204 | * in_features int -> Number nodes of the information to be feedforwarded
205 | * out_features int -> Number of out nodes of the layer
206 | * bias bool -> wheter the model will have biases
207 | * prior_sigma_1 float -> sigma of one of the prior w distributions to mixture
208 | * prior_sigma_2 float -> sigma of one of the prior w distributions to mixture
209 | * prior_pi float -> factor to scale the gaussian mixture of the model prior distribution
210 | * posterior_mu_init float -> posterior mean for the weight mu init
211 | * posterior_rho_init float -> posterior mean for the weight rho init
212 | * freeze -> wheter the model is instaced as frozen (will use deterministic weights on the feedforward op)
213 | * peephole bool -> if the lstm shoudl use peephole connections rather than default ones
214 | * prior_dist -> torch.distributions.distribution.Distribution corresponding to a prior distribution different than a normal / scale mixture normal; if you pass that, the prior distribution will be that one and prior_sigma1 and prior_sigma2 and prior_pi can be dismissed. - Note that there is a torch issue that may output you logprob as NaN, so beware of the prior dist you are using.
215 |
216 | #### Methods:
217 | * forward(x, ):
218 |
219 | Performs a feedforward operation with sampled weights. If the model is frozen uses only the expected values.
220 |
221 | Returns tuple of format (torch.tensor, (torch.tensor, torch.tensor)), representing the output and hidden state of the LSTM layer
222 |
223 | Description
224 | ##### Parameters
225 | * x - torch.tensor corresponding to the datapoints tensor to be feedforwarded
226 | * hidden_states - None or tupl of the format (torch.tensor, torch.tensor), representing the hidden states of the network. Internally, if None, consider zeros of the proper format).
227 |
228 | * sample_weights():
229 |
230 | Assings internally its weights to be used on feedforward operations by sampling it from its TrainableRandomDistribution
231 |
232 | * get_frozen_weights():
233 |
234 | Assings internally for its weights deterministaclly the mean of its TrainableRandomDistribution sampler.
235 |
236 | ---
237 |
238 | ## class BayesianGRU
239 | ### blitz.modules.BayesianGRU(in_features, out_features, bias=True, prior_sigma_1 = 1, prior_sigma_2 = 0.002, prior_pi = 0.5, freeze = False)
240 |
241 | Bayesian GRU layer, implements the GRU layer using the weight uncertainty tools proposed on Weight Uncertainity on Neural Networks (Bayes by Backprop paper).
242 |
243 | Creates weight samplers of the class TrainableRandomDistribution for the weights and biases to be used on its feedforward ops.
244 |
245 | Inherits from BayesianModule
246 |
247 | #### Parameters:
248 | * in_features int -> Number nodes of the information to be feedforwarded
249 | * out_features int -> Number of out nodes of the layer
250 | * bias bool -> wheter the model will have biases
251 | * prior_sigma_1 float -> sigma of one of the prior w distributions to mixture
252 | * prior_sigma_2 float -> sigma of one of the prior w distributions to mixture
253 | * prior_pi float -> factor to scale the gaussian mixture of the model prior distribution
254 | * posterior_mu_init float -> posterior mean for the weight mu init
255 | * posterior_rho_init float -> posterior mean for the weight rho init
256 | * freeze -> wheter the model is instaced as frozen (will use deterministic weights on the feedforward op)
257 | * prior_dist -> torch.distributions.distribution.Distribution corresponding to a prior distribution different than a normal / scale mixture normal; if you pass that, the prior distribution will be that one and prior_sigma1 and prior_sigma2 and prior_pi can be dismissed. - Note that there is a torch issue that may output you logprob as NaN, so beware of the prior dist you are using.
258 |
259 | #### Methods:
260 | * forward(x, ):
261 |
262 | Performs a feedforward operation with sampled weights. If the model is frozen uses only the expected values.
263 |
264 | Returns tuple of format (torch.tensor, (torch.tensor, torch.tensor)), representing the output and hidden state of the GRU layer
265 |
266 | Description
267 | ##### Parameters
268 | * x - torch.tensor corresponding to the datapoints tensor to be feedforwarded
269 | * hidden_states - None or tupl of the format (torch.tensor, torch.tensor), representing the hidden states of the network. Internally, if None, consider zeros of the proper format).
270 |
271 | * sample_weights():
272 |
273 | Assings internally its weights to be used on feedforward operations by sampling it from its TrainableRandomDistribution
274 |
275 | * get_frozen_weights():
276 |
277 | Assings internally for its weights deterministaclly the mean of its TrainableRandomDistribution sampler.
278 |
279 | ---
280 |
281 | ## class BayesianEmbedding
282 | ### blitz.modules.BayesianEmbedding (num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, prior_sigma_1 = 1, prior_sigma_2 = 0.002, prior_pi = 0.5, freeze = False,)
283 |
284 | Bayesian Embedding layer, implements the Embedding layer using the weight uncertainty tools proposed on Weight Uncertainity on Neural Networks (Bayes by Backprop paper).
285 |
286 | Creates weight samplers of the class TrainableRandomDistribution for the weights and biases to be used on its feedforward ops.
287 |
288 | Inherits from BayesianModule
289 |
290 | #### Parameters:
291 | * num_embedding int -> Size of the vocabulary
292 | * embedding_dim int -> Dimension of the embedding
293 | * prior_sigma_1 float -> sigma of one of the prior w distributions to mixture
294 | * prior_sigma_2 float -> sigma of one of the prior w distributions to mixture
295 | * prior_pi float -> factor to scale the gaussian mixture of the model prior distribution
296 | * freeze -> wheter the model is instaced as frozen (will use deterministic weights on the feedforward op)
297 | * padding_idx int -> If given, pads the output with the embedding vector at padding_idx (initialized to zeros) whenever it encounters the index
298 | * max_norm float -> If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm.
299 | * norm_type float -> The p of the p-norm to compute for the max_norm option. Default 2.
300 | * scale_grad_by_freq -> If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False.
301 | * sparse bool -> If True, gradient w.r.t. weight matrix will be a sparse tensor. See Notes for more details regarding sparse gradients.
302 | * posterior_mu_init float -> posterior mean for the weight mu init
303 | * posterior_rho_init float -> posterior mean for the weight rho init
304 | * prior_dist -> torch.distributions.distribution.Distribution corresponding to a prior distribution different than a normal / scale mixture normal; if you pass that, the prior distribution will be that one and prior_sigma1 and prior_sigma2 and prior_pi can be dismissed. - Note that there is a torch issue that may output you logprob as NaN, so beware of the prior dist you are using.
305 |
306 |
307 |
308 | #### Methods:
309 | * forward(x, ):
310 |
311 | Performs a embedding operation with sampled weights. If the model is frozen uses only the expected values.
312 |
313 | Returns tuple of format (torch.tensor, (torch.tensor, torch.tensor)), representing the output and hidden state of the GRU layer
314 |
315 | Description
316 | ##### Parameters
317 | * x - torch.tensor corresponding to the datapoints tensor to be feedforwarded
318 | * hidden_states - None or tupl of the format (torch.tensor, torch.tensor), representing the hidden states of the network. Internally, if None, consider zeros of the proper format).
319 |
320 | * sample_weights():
321 |
322 | Assings internally its weights to be used on feedforward operations by sampling it from its TrainableRandomDistribution
323 |
324 |
325 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Blitz - Bayesian Layers in Torch Zoo
2 |
3 | [](https://pepy.tech/project/blitz-bayesian-pytorch)
4 |
5 | BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in [Weight Uncertainty in Neural Networks paper](https://arxiv.org/abs/1505.05424)) on PyTorch. By using BLiTZ layers and utils, you can add uncertanity and gather the complexity cost of your model in a simple way that does not affect the interaction between your layers, as if you were using standard PyTorch.
6 |
7 | By using our core weight sampler classes, you can extend and improve this library to add uncertanity to a bigger scope of layers as you will in a well-integrated to PyTorch way. Also pull requests are welcome.
8 |
9 |
10 | # Index
11 | * [Install](#Install)
12 | * [Documentation](#Documentation)
13 | * [A simple example for regression](#A-simple-example-for-regression)
14 | * [Importing the necessary modules](#Importing-the-necessary-modules)
15 | * [Loading and scaling data](#Loading-and-scaling-data)
16 | * [Creating our variational regressor class](#Creating-our-variational-regressor-class)
17 | * [Defining a confidence interval evaluating function](#Defining-a-confidence-interval-evaluating-function)
18 | * [Creating our regressor and loading data](#Creating-our-regressor-and-loading-data)
19 | * [Our main training and evaluating loop](#Our-main-training-and-evaluating-loop)
20 | * [Bayesian Deep Learning in a Nutshell](#Bayesian-Deep-Learning-in-a-Nutshell)
21 | * [First of all, a deterministic NN layer linear-transformation](#First-of-all,-a-deterministic-NN-layer-linear-transformation)
22 | * [The purpose of Bayesian Layers](#The-purpose-of-Bayesian-Layers)
23 | * [Weight sampling on Bayesian Layers](#Weight-sampling-on-Bayesian-Layers)
24 | * [It is possible to optimize our trainable weights](#It-is-possible-to-optimize-our-trainable-weights)
25 | * [It is also true that there is complexity cost function differentiable along its variables](#It-is-also-true-that-there-is-complexity-cost-function-differentiable-along-its-variables)
26 | * [To get the whole cost function at the nth sample](#To-get-the-whole-cost-function-at-the-nth-sample)
27 | * [Some notes and wrap up](#Some-notes-and-wrap-up)
28 | * [Citing](#Citing)
29 | * [References](#References)
30 |
31 |
32 | ## Install
33 |
34 | To install BLiTZ you can use pip command:
35 |
36 | ```
37 | pip install blitz-bayesian-pytorch
38 | ```
39 | Or, via conda:
40 |
41 | ```
42 | conda install -c conda-forge blitz-bayesian-pytorch
43 | ```
44 |
45 | You can also git-clone it and pip-install it locally:
46 |
47 | ```
48 | conda create -n blitz python=3.9
49 | conda activate blitz
50 | git clone https://github.com/piEsposito/blitz-bayesian-deep-learning.git
51 | cd blitz-bayesian-deep-learning
52 | pip install .
53 | ```
54 |
55 | ## Documentation
56 |
57 | Documentation for our layers, weight (and prior distribution) sampler and utils:
58 | * [Bayesian Layers](doc/layers.md)
59 | * [Weight and prior distribution samplers](doc/samplers.md)
60 | * [Utils (for easy integration with PyTorch)](doc/utils.md)
61 | * [Losses](doc/losses.md)
62 |
63 | ## A simple example for regression
64 |
65 | (You can see it for your self by running [this example](blitz/examples/bayesian_regression_boston.py) on your machine).
66 |
67 | We will now see how can Bayesian Deep Learning be used for regression in order to gather confidence interval over our datapoint rather than a pontual continuous value prediction. Gathering a confidence interval for your prediction may be even a more useful information than a low-error estimation.
68 |
69 | I sustain my argumentation on the fact that, with good/high prob a confidence interval, you can make a more reliable decision than with a very proximal estimation on some contexts: if you are trying to get profit from a trading operation, for example, having a good confidence interval may lead you to know if, at least, the value on which the operation wil procees will be lower (or higher) than some determinate X.
70 |
71 | Knowing if a value will be, surely (or with good probability) on a determinate interval can help people on sensible decision more than a very proximal estimation that, if lower or higher than some limit value, may cause loss on a transaction. The point is that, sometimes, knowing if there will be profit may be more useful than measuring it.
72 |
73 | In order to demonstrate that, we will create a Bayesian Neural Network Regressor for the Boston-house-data toy dataset, trying to create confidence interval (CI) for the houses of which the price we are trying to predict. We will perform some scaling and the CI will be about 75%. It will be interesting to see that about 90% of the CIs predicted are lower than the high limit OR (inclusive) higher than the lower one.
74 |
75 | ## Importing the necessary modules
76 | Despite from the known modules, we will bring from BLiTZ athe `variational_estimator`decorator, which helps us to handle the BayesianLinear layers on the module keeping it fully integrated with the rest of Torch, and, of course, `BayesianLinear`, which is our layer that features weight uncertanity.
77 |
78 | ```python
79 | import torch
80 | import torch.nn as nn
81 | import torch.nn.functional as F
82 | import torch.optim as optim
83 | import numpy as np
84 |
85 | from blitz.modules import BayesianLinear
86 | from blitz.utils import variational_estimator
87 |
88 | from sklearn.datasets import load_boston
89 | from sklearn.preprocessing import StandardScaler
90 | from sklearn.model_selection import train_test_split
91 | ```
92 |
93 | ## Loading and scaling data
94 |
95 | Nothing new under the sun here, we are importing and standard-scaling the data to help with the training.
96 |
97 | ```python
98 | X, y = load_boston(return_X_y=True)
99 | X = StandardScaler().fit_transform(X)
100 | y = StandardScaler().fit_transform(np.expand_dims(y, -1))
101 |
102 | X_train, X_test, y_train, y_test = train_test_split(X,
103 | y,
104 | test_size=.25,
105 | random_state=42)
106 |
107 |
108 | X_train, y_train = torch.tensor(X_train).float(), torch.tensor(y_train).float()
109 | X_test, y_test = torch.tensor(X_test).float(), torch.tensor(y_test).float()
110 | ```
111 |
112 | # Creating our variational regressor class
113 |
114 | We can create our class with inhreiting from nn.Module, as we would do with any Torch network. Our decorator introduces the methods to handle the bayesian features, as calculating the complexity cost of the Bayesian Layers and doing many feedforwards (sampling different weights on each one) in order to sample our loss.
115 |
116 | ```python
117 | @variational_estimator
118 | class BayesianRegressor(nn.Module):
119 | def __init__(self, input_dim, output_dim):
120 | super().__init__()
121 | #self.linear = nn.Linear(input_dim, output_dim)
122 | self.blinear1 = BayesianLinear(input_dim, 512)
123 | self.blinear2 = BayesianLinear(512, output_dim)
124 |
125 | def forward(self, x):
126 | x_ = self.blinear1(x)
127 | x_ = F.relu(x_)
128 | return self.blinear2(x_)
129 | ```
130 |
131 | # Defining a confidence interval evaluating function
132 |
133 | This function does create a confidence interval for each prediction on the batch on which we are trying to sample the label value. We then can measure the accuracy of our predictions by seeking how much of the prediciton distributions did actually include the correct label for the datapoint.
134 |
135 |
136 | ```python
137 | def evaluate_regression(regressor,
138 | X,
139 | y,
140 | samples = 100,
141 | std_multiplier = 2):
142 | preds = [regressor(X) for i in range(samples)]
143 | preds = torch.stack(preds)
144 | means = preds.mean(axis=0)
145 | stds = preds.std(axis=0)
146 | ci_upper = means + (std_multiplier * stds)
147 | ci_lower = means - (std_multiplier * stds)
148 | ic_acc = (ci_lower <= y) * (ci_upper >= y)
149 | ic_acc = ic_acc.float().mean()
150 | return ic_acc, (ci_upper >= y).float().mean(), (ci_lower <= y).float().mean()
151 | ```
152 |
153 | # Creating our regressor and loading data
154 |
155 | Notice here that we create our `BayesianRegressor` as we would do with other neural networks.
156 |
157 | ```python
158 | regressor = BayesianRegressor(13, 1)
159 | optimizer = optim.Adam(regressor.parameters(), lr=0.01)
160 | criterion = torch.nn.MSELoss()
161 |
162 | ds_train = torch.utils.data.TensorDataset(X_train, y_train)
163 | dataloader_train = torch.utils.data.DataLoader(ds_train, batch_size=16, shuffle=True)
164 |
165 | ds_test = torch.utils.data.TensorDataset(X_test, y_test)
166 | dataloader_test = torch.utils.data.DataLoader(ds_test, batch_size=16, shuffle=True)
167 | ```
168 |
169 | ## Our main training and evaluating loop
170 |
171 | We do a training loop that only differs from a common torch training by having its loss sampled by its sample_elbo method. All the other stuff can be done normally, as our purpose with BLiTZ is to ease your life on iterating on your data with different Bayesian NNs without trouble.
172 |
173 | Here is our very simple training loop:
174 |
175 | ```python
176 | iteration = 0
177 | for epoch in range(100):
178 | for i, (datapoints, labels) in enumerate(dataloader_train):
179 | optimizer.zero_grad()
180 |
181 | loss = regressor.sample_elbo(inputs=datapoints,
182 | labels=labels,
183 | criterion=criterion,
184 | sample_nbr=3)
185 | loss.backward()
186 | optimizer.step()
187 |
188 | iteration += 1
189 | if iteration%100==0:
190 | ic_acc, under_ci_upper, over_ci_lower = evaluate_regression(regressor,
191 | X_test,
192 | y_test,
193 | samples=25,
194 | std_multiplier=3)
195 |
196 | print("CI acc: {:.2f}, CI upper acc: {:.2f}, CI lower acc: {:.2f}".format(ic_acc, under_ci_upper, over_ci_lower))
197 | print("Loss: {:.4f}".format(loss))
198 | ```
199 |
200 | ## Bayesian Deep Learning in a Nutshell
201 | A very fast explanation of how is uncertainity introduced in Bayesian Neural Networks and how we model its loss in order to objectively improve the confidence over its prediction and reduce the variance without dropout.
202 |
203 | ## First of all, a deterministic NN layer linear transformation
204 |
205 | As we know, on deterministic (non bayesian) neural network layers, the trainable parameters correspond directly to the weights used on its linear transformation of the previous one (or the input, if it is the case). It corresponds to the following equation:
206 |
207 |
208 | }&space;=&space;W^{(i+1)}\cdot&space;z^{(i)}&space;+&space;b^{(i+1)})
209 |
210 | *(Z correspond to the activated-output of the layer i)*
211 |
212 | ## The purpose of Bayesian Layers
213 |
214 | Bayesian layers seek to introduce uncertainity on its weights by sampling them from a distribution parametrized by trainable variables on each feedforward operation.
215 |
216 | This allows we not just to optimize the performance metrics of the model, but also gather the uncertainity of the network predictions over a specific datapoint (by sampling it much times and measuring the dispersion) and aimingly reduce as much as possible the variance of the network over the prediction, making possible to know how much of incertainity we still have over the label if we try to model it in function of our specific datapoint.
217 |
218 | ## Weight sampling on Bayesian Layers
219 | To do so, on each feedforward operation we sample the parameters of the linear transformation with the following equations (where **ρ** parametrizes the standard deviation and **μ** parametrizes the mean for the samples linear transformation parameters) :
220 |
221 | For the weights:
222 |
223 | }_{(n)}&space;=&space;\mathcal{N}(0,1)&space;*&space;log(1&space;+&space;\rho^{(i)}&space;)&space;+&space;\mu^{(i)})
224 |
225 | *Where the sampled W corresponds to the weights used on the linear transformation for the ith layer on the nth sample.*
226 |
227 | For the biases:
228 |
229 | }_{(n)}&space;=&space;\mathcal{N}(0,1)&space;*&space;log(1&space;+&space;\rho^{(i)}&space;)&space;+&space;\mu^{(i)})
230 |
231 | *Where the sampled b corresponds to the biases used on the linear transformation for the ith layer on the nth sample.*
232 |
233 | ## It is possible to optimize our trainable weights
234 |
235 | Even tough we have a random multiplier for our weights and biases, it is possible to optimize them by, given some differentiable function of the weights sampled and trainable parameters (in our case, the loss), summing the derivative of the function relative to both of them:
236 |
237 | 1. Let )
238 | 2. Let )
239 | 3. Let &space;*&space;\epsilon)
240 | 4. Let ) be differentiable relative to its variables
241 |
242 | Therefore:
243 |
244 | 5. }{\delta&space;w}&space;+&space;\frac{\delta&space;f(w,&space;\theta)}{\delta&space;\mu})
245 |
246 | and
247 |
248 |
249 | 6. }{\delta&space;w}&space;\frac{\epsilon}{1&space;+&space;e^\rho&space;}&space;+&space;\frac{\delta&space;f(w,&space;\theta)}{\delta&space;\rho})
250 |
251 | ## It is also true that there is complexity cost function differentiable along its variables
252 |
253 | It is known that the crossentropy loss (and MSE) are differentiable. Therefore if we prove that there is a complexity-cost function that is differentiable, we can leave it to our framework take the derivatives and compute the gradients on the optimization step.
254 |
255 | **The complexity cost is calculated, on the feedforward operation, by each of the Bayesian Layers, (with the layers pre-defined-simpler apriori distribution and its empirical distribution). The sum of the complexity cost of each layer is summed to the loss.**
256 |
257 | As proposed in [Weight Uncertainty in Neural Networks paper](https://arxiv.org/abs/1505.05424), we can gather the complexity cost of a distribution by taking the [Kullback-Leibler Divergence](https://jhui.github.io/2017/01/05/Deep-learning-Information-theory/) from it to a much simpler distribution, and by making some approximation, we will can differentiate this function relative to its variables (the distributions):
258 |
259 | 1. Let ) be a low-entropy distribution pdf set by hand, which will be assumed as an "a priori" distribution for the weights
260 |
261 | 2. Let ) be the a posteriori empirical distribution pdf for our sampled weights, given its parameters.
262 |
263 |
264 |
265 |
266 | Therefore, for each scalar on the W sampled matrix:
267 |
268 |
269 |
270 |
271 | 3. &space;\lVert&space;{P}(w)&space;)&space;=&space;\lim_{n\to\infty}1/n\sum_{i=0}^{n}&space;{Q}(w^{(i)}&space;|&space;\theta)*&space;(\log{{Q}(w^{(i)}&space;|&space;\theta)}&space;-&space;\log{{P}(w^{(i)})}&space;))
272 |
273 |
274 | By assuming a very large n, we could approximate:
275 |
276 | 4. &space;\lVert&space;{P}(w)&space;)&space;=&space;1/n\sum_{i=0}^{n}&space;{Q}(w^{(i)}&space;|&space;\theta)*&space;(\log{{Q}(w^{(i)}&space;|&space;\theta)}&space;-&space;\log{{P}(w^{(i)})}&space;))
277 |
278 |
279 | and therefore:
280 |
281 |
282 | 5. &space;\lVert&space;{P}(w)&space;)&space;=&space;\mu_Q&space;*\sum_{i=0}^{n}&space;(\log{{Q}(w^{(i)}&space;|&space;\theta)}&space;-&space;\log{{P}(w^{(i)})}&space;))
283 |
284 |
285 | As the expected (mean) of the Q distribution ends up by just scaling the values, we can take it out of the equation (as there will be no framework-tracing). Have a complexity cost of the nth sample as:
286 |
287 | 6. }&space;(w^{(n)},&space;\theta)&space;}&space;=&space;(\log{{Q}(w^{(n)}&space;|&space;\theta)}&space;-&space;\log{{P}(w^{(n)})}&space;))
288 |
289 | Which is differentiable relative to all of its parameters.
290 |
291 | ## To get the whole cost function at the nth sample:
292 |
293 | 1. Let a performance (fit to data) function be: }&space;(w^{(n)},&space;\theta)})
294 |
295 |
296 | Therefore the whole cost function on the nth sample of weights will be:
297 |
298 | 2. }&space;(w^{(n)},&space;\theta)&space;}&space;=&space;{C^{(n)}&space;(w^{(n)},&space;\theta)&space;}&space;+&space;{P^{(n)}&space;(w^{(n)},&space;\theta)&space;})
299 |
300 | We can estimate the true full Cost function by Monte Carlo sampling it (feedforwarding the netwok X times and taking the mean over full loss) and then backpropagate using our estimated value. It works for a low number of experiments per backprop and even for unitary experiments.
301 |
302 | ## Some notes and wrap up
303 | We came to the end of a Bayesian Deep Learning in a Nutshell tutorial. By knowing what is being done here, you can implement your bnn model as you wish.
304 |
305 | Maybe you can optimize by doing one optimize step per sample, or by using this Monte-Carlo-ish method to gather the loss some times, take its mean and then optimizer. Your move.
306 |
307 | FYI: **Our Bayesian Layers and utils help to calculate the complexity cost along the layers on each feedforward operation, so don't mind it to much.**
308 |
309 | ## References:
310 | * [Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural networks. arXiv preprint arXiv:1505.05424, 2015.](https://arxiv.org/abs/1505.05424)
311 |
312 |
313 | ## Citing
314 |
315 | If you use `BLiTZ` in your research, you can cite it as follows:
316 |
317 | ```bibtex
318 | @misc{esposito2020blitzbdl,
319 | author = {Piero Esposito},
320 | title = {BLiTZ - Bayesian Layers in Torch Zoo (a Bayesian Deep Learing library for Torch)},
321 | year = {2020},
322 | publisher = {GitHub},
323 | journal = {GitHub repository},
324 | howpublished = {\url{https://github.com/piEsposito/blitz-bayesian-deep-learning/}},
325 | }
326 | ```
327 |
328 | ###### Made by Pi Esposito
329 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------