├── LD.py ├── LD_bora_ung_code_comparision ├── LD.m ├── eps_Au_ld_bora.dat └── eps_au_generator.m ├── LD_compare_python_matlab.py ├── LD_python_matlab_comp.png └── Readme.md /LD.py: -------------------------------------------------------------------------------- 1 | """ 2 | This module calculates the real and imaginary part of the dielectric function, 3 | real and imaginary part of the refractive index for different metals using either 4 | Drude model (D) and Lorentz-Drude model (LD). The parameters are obtained from 5 | Rakic et al. This module is inspired by LD.m 6 | http://www.mathworks.com/matlabcentral/fileexchange/18040-drude-lorentz-and-debye-lorentz-models-for-the-dielectric-constant-of-metals-and-water 7 | 8 | Example: 9 | To use in other python files 10 | 11 | from LD import LD # Make sure the file is accessible to PYTHONPATH or in the same directory of file which is trying to import 12 | import numpy as np 13 | lamda = np.linspace(300E-9,1000E-9,100) # Creates a wavelength vector from 300 nm to 1000 nm of length 100 14 | gold = LD(lamda, material = 'Au',model = 'LD') # Creates gold object with dielectric function of LD model 15 | print gold.epsilon_real 16 | print gold.epsilon_imag 17 | print gold.n 18 | print gold.k 19 | gold.plot_epsilon() 20 | gold.plot_n_k() 21 | 22 | % INPUT PARAMETERS: 23 | % 24 | % lambda ==> wavelength (meters) of light excitation on material. Numpy array 25 | % 26 | % material ==> 'Ag' = silver 27 | % 'Al' = aluminum 28 | % 'Au' = gold 29 | % 'Cu' = copper 30 | % 'Cr' = chromium 31 | % 'Ni' = nickel 32 | % 'W' = tungsten 33 | % 'Ti' = titanium 34 | % 'Be' = beryllium 35 | % 'Pd' = palladium 36 | % 'Pt' = platinum 37 | % 38 | % model ==> Choose 'LD' or 'D' for Lorentz-Drude or Drude model. 39 | % 40 | % Reference: 41 | % Rakic et al., Optical properties of metallic films for vertical- 42 | % cavity optoelectronic devices, Applied Optics (1998) 43 | 44 | """ 45 | 46 | import numpy as np 47 | 48 | 49 | class LD(): 50 | def __init__(self, lamda, material, model='LD'): 51 | 52 | 53 | self.lamda = lamda 54 | self.material = material 55 | self.model = model 56 | 57 | # *********************************************************************** 58 | # Physical constants 59 | #*********************************************************************** 60 | twopic = 1.883651567308853e+09 # twopic=2*pi*c where c is speed of light 61 | omega_light = twopic / self.lamda; # angular frequency of light (rad/s) 62 | invsqrt2 = 0.707106781186547 # 1/sqrt(2) 63 | ehbar = 1.519250349719305e+15 # e/hbar where hbar=h/(2*pi) and e=1.6e-19 64 | 65 | if self.material == 'Ag': 66 | # Plasma frequency 67 | omega_p = 9.01 * ehbar 68 | # Oscillators' strengh 69 | f = [0.845, 0.065, 0.124, 0.011, 0.840, 5.646] 70 | # Damping frequency of each oscillator 71 | Gamma = [0.048, 3.886, 0.452, 0.065, 0.916, 2.419] 72 | # Resonant frequency of each oscillator 73 | omega = [0.000, 0.816, 4.481, 8.185, 9.083, 20.29] 74 | # Number of resonances 75 | elif self.material == 'Al': 76 | omega_p = 14.98 * ehbar 77 | f = [0.523, 0.227, 0.050, 0.166, 0.030] 78 | Gamma = [0.047, 0.333, 0.312, 1.351, 3.382] 79 | omega = [0.000, 0.162, 1.544, 1.808, 3.473] 80 | elif self.material == 'Au': 81 | omega_p = 9.03 * ehbar 82 | f = [0.760, 0.024, 0.010, 0.071, 0.601, 4.384] 83 | Gamma = [0.053, 0.241, 0.345, 0.870, 2.494, 2.214] 84 | omega = [0.000, 0.415, 0.830, 2.969, 4.304, 13.32] 85 | elif self.material == 'Cu': 86 | omega_p = 10.83 * ehbar 87 | f = [0.575, 0.061, 0.104, 0.723, 0.638] 88 | Gamma = [0.030, 0.378, 1.056, 3.213, 4.305] 89 | omega = [0.000, 0.291, 2.957, 5.300, 11.18] 90 | elif self.material == 'Cr': 91 | omega_p = 10.75 * ehbar 92 | f = [0.168, 0.151, 0.150, 1.149, 0.825] 93 | Gamma = [0.047, 3.175, 1.305, 2.676, 1.335] 94 | omega = [0.000, 0.121, 0.543, 1.970, 8.775] 95 | elif self.material == 'Ni': 96 | omega_p = 15.92 * ehbar 97 | f = [0.096, 0.100, 0.135, 0.106, 0.729] 98 | Gamma = [0.048, 4.511, 1.334, 2.178, 6.292] 99 | omega = [0.000, 0.174, 0.582, 1.597, 6.089] 100 | elif self.material == 'W': 101 | omega_p = 13.22 * ehbar 102 | f = [0.206, 0.054, 0.166, 0.706, 2.590] 103 | Gamma = [0.064, 0.530, 1.281, 3.332, 5.836] 104 | omega = [0.000, 1.004, 1.917, 3.580, 7.498] 105 | elif self.material == 'Ti': 106 | omega_p = 7.29 * ehbar 107 | f = [0.148, 0.899, 0.393, 0.187, 0.001] 108 | Gamma = [0.082, 2.276, 2.518, 1.663, 1.762] 109 | omega = [0.000, 0.777, 1.545, 2.509, 1.943] 110 | elif self.material == 'Be': 111 | omega_p = 18.51 * ehbar 112 | f = [0.084, 0.031, 0.140, 0.530, 0.130] 113 | Gamma = [0.035, 1.664, 3.395, 4.454, 1.802] 114 | omega = [0.000, 0.100, 1.032, 3.183, 4.604] 115 | elif self.material == 'Pd': 116 | omega_p = 9.72 * ehbar 117 | f = [0.330, 0.649, 0.121, 0.638, 0.453] 118 | Gamma = [0.008, 2.950, 0.555, 4.621, 3.236] 119 | omega = [0.000, 0.336, 0.501, 1.659, 5.715] 120 | elif self.material == 'Pt': 121 | omega_p = 9.59 * ehbar 122 | f = [0.333, 0.191, 0.659, 0.547, 3.576] 123 | Gamma = [0.080, 0.517, 1.838, 3.668, 8.517] 124 | omega = [0.000, 0.780, 1.314, 3.141, 9.249] 125 | else: 126 | print('Not a Valid Material') 127 | 128 | order = len(omega) 129 | Gamma = [_ * ehbar for _ in Gamma] 130 | omega = [_ * ehbar for _ in omega] 131 | 132 | if self.model == 'D': 133 | 134 | epsilon_D = np.zeros(len(omega_light), dtype=complex) 135 | for i, w in enumerate(omega_light): 136 | epsilon_D[i] = 1 - (f[0] * omega_p ** 2 / (w ** 2 + 1j * (Gamma[0]) * w)) 137 | self.epsilon = epsilon_D 138 | 139 | elif self.model == 'LD': 140 | 141 | epsilon_D = np.zeros(len(omega_light), dtype=complex) 142 | for i, w in enumerate(omega_light): 143 | epsilon_D[i] = 1 - (f[0] * omega_p ** 2 / (w ** 2 + 1j * (Gamma[0]) * w)) 144 | epsilon_L = np.zeros(len(omega_light), dtype=complex) 145 | 146 | for i, w in enumerate(omega_light): 147 | for k in xrange(1, order): 148 | epsilon_L[i] += (f[k] * omega_p ** 2) / (omega[k] ** 2 - w ** 2 - 1j * Gamma[k] * w) 149 | self.epsilon = epsilon_D + epsilon_L 150 | 151 | self.refractive_index = np.sqrt(self.epsilon) 152 | self.epsilon_real = self.epsilon.real 153 | self.epsilon_imag = self.epsilon.imag 154 | self.n = self.refractive_index.real 155 | self.k = self.refractive_index.imag 156 | 157 | def plot_epsilon(self): 158 | import matplotlib.pyplot as plt 159 | 160 | self.fig_eps, self.ax_eps = plt.subplots(1, 2, figsize=(15, 6)) 161 | self.ax_eps[0].plot(1E9 * self.lamda, self.epsilon_real, '-o') 162 | self.ax_eps[0].set_xlabel('Wavelength(nm)') 163 | self.ax_eps[0].set_ylabel('Real (Epsilon)') 164 | 165 | self.ax_eps[1].plot(1E9 * self.lamda, self.epsilon_imag, '-s') 166 | self.ax_eps[1].set_xlabel('Wavelength(nm)') 167 | self.ax_eps[1].set_ylabel('Imag (Epsilon)') 168 | self.fig_eps.suptitle('Epsilon of {0}: {1} model'.format(self.material, self.model)) 169 | 170 | plt.show() 171 | 172 | def plot_n_k(self): 173 | import matplotlib.pyplot as plt 174 | 175 | self.fig_nk, self.ax_nk = plt.subplots(1, 2, figsize=(15, 6)) 176 | self.ax_nk[0].plot(1E9 * self.lamda, self.n, '-o') 177 | self.ax_nk[0].set_xlabel('Wavelength(nm)') 178 | self.ax_nk[0].set_ylabel('n') 179 | 180 | self.ax_nk[1].plot(1E9 * self.lamda, self.k, '-s') 181 | self.ax_nk[1].set_xlabel('Wavelength(nm)') 182 | self.ax_nk[1].set_ylabel('k') 183 | self.fig_nk.suptitle('n+ik of {0}: {1} model'.format(self.material, self.model)) 184 | 185 | plt.show() 186 | 187 | 188 | if __name__ == '__main__': 189 | import numpy as np 190 | 191 | lamda = np.linspace(200E-9, 2000E-9, 300) # Creates a wavelength vector from 300 nm to 1000 nm of length 100 192 | silver = LD(lamda, material='Ag', model='LD') 193 | print silver.epsilon_real 194 | print silver.epsilon_imag 195 | print silver.n 196 | print silver.k 197 | silver.plot_epsilon() 198 | silver.plot_n_k() -------------------------------------------------------------------------------- /LD_bora_ung_code_comparision/LD.m: -------------------------------------------------------------------------------- 1 | function varargout = LD(lambda,material,model) 2 | 3 | % LD : Drude-Lorentz model for the dielectric constant of metals and 4 | % Debye-Lorentz model for the dielectric constant of pure water 5 | %*********************************************************************** 6 | % 7 | % Program author: Bora Ung 8 | % Ecole Polytechnique de Montreal 9 | % Dept. Engineering physics 10 | % 2500 Chemin de Polytechnique 11 | % Montreal, Canada 12 | % H3T 1J4 13 | % boraung@gmail.com 14 | % 15 | % Date: November 26, 2008 16 | %*********************************************************************** 17 | % DESCRIPTION: 18 | % This function computes the complex dielectric constant (i.e. relative 19 | % permittivity) of various metals using either the Lorentz-Drude (LD) or 20 | % the Drude model (D). The LD model is the default choice since it 21 | % provides a better fit with the exact values. The dielectric function of 22 | % pure water is calculated with a 2-pole Debye model valid for microwave 23 | % frequencies and a 5-pole Lorentz model valid for higher frequencies. 24 | % 25 | % Reference [1] should be used to cite this Matlab code. 26 | % 27 | % The Drude-Lorentz parameters for metals are taken from [2] while the 28 | % Debye-Lorentz parameters for pure water are from [3]. 29 | % 30 | %*********************************************************************** 31 | % 32 | % USAGE: epsilon = LD(lambda,material,model) 33 | % 34 | % OR: [epsilon_Re epsilon_Im] = LD(lambda,material,model) 35 | % 36 | % OR: [epsilon_Re epsilon_Im N] = LD(lambda,material,model) 37 | % 38 | % 39 | % WHERE: "epsilon_Re" and "epsilon_Im" are respectively the real and 40 | % imaginary parts of the dielectric constant "epsilon", and "N" 41 | % is the complex refractive index. 42 | % 43 | % 44 | % INPUT PARAMETERS: 45 | % 46 | % lambda ==> wavelength (meters) of light excitation on material. 47 | % Accepts either vector or matrix inputs. 48 | % 49 | % material ==> 'Ag' = silver 50 | % 'Al' = aluminum 51 | % 'Au' = gold 52 | % 'Cu' = copper 53 | % 'Cr' = chromium 54 | % 'Ni' = nickel 55 | % 'W' = tungsten 56 | % 'Ti' = titanium 57 | % 'Be' = beryllium 58 | % 'Pd' = palladium 59 | % 'Pt' = platinum 60 | % 'H2O' = pure water (triply distilled) 61 | % 62 | % model ==> Choose 'LD' or 'D' for Lorentz-Drude or Drude model. 63 | % 64 | % REFERENCES: 65 | % 66 | % [1] B. Ung and Y. Sheng, Interference of surface waves in a metallic 67 | % nanoslit, Optics Express (2007) 68 | % [2] Rakic et al., Optical properties of metallic films for vertical- 69 | % cavity optoelectronic devices, Applied Optics (1998) 70 | % [3] J. E. K. Laurens and K. E. Oughstun, Electromagnetic impulse, 71 | % response of triply distilled water, Ultra-Wideband / 72 | % Short-Pulse Electromagnetics (1999) 73 | % 74 | %*********************************************************************** 75 | 76 | if nargin < 3, model = 'LD'; end % Lorentz contributions used by default 77 | if nargin < 2, return; end 78 | 79 | %*********************************************************************** 80 | % Physical constants 81 | %*********************************************************************** 82 | twopic = 1.883651567308853e+09; % twopic=2*pi*c where c is speed of light 83 | omegalight = twopic*(lambda.^(-1)); % angular frequency of light (rad/s) 84 | invsqrt2 = 0.707106781186547; % 1/sqrt(2) 85 | ehbar = 1.519250349719305e+15; % e/hbar where hbar=h/(2*pi) and e=1.6e-19 86 | 87 | %*********************************************************************** 88 | % Drude-Lorentz and Debye-Lorentz parameters for dispersive medium [2,3] 89 | %*********************************************************************** 90 | % N.B. Gamma and omega values are in eV, while f is adimensional. 91 | 92 | switch material 93 | case 'Ag' 94 | % Plasma frequency 95 | omegap = 9.01*ehbar; 96 | % Oscillators' strenght 97 | f = [0.845 0.065 0.124 0.011 0.840 5.646]; 98 | % Damping frequency of each oscillator 99 | Gamma = [0.048 3.886 0.452 0.065 0.916 2.419]*ehbar; 100 | % Resonant frequency of each oscillator 101 | omega = [0.000 0.816 4.481 8.185 9.083 20.29]*ehbar; 102 | % Number of resonances 103 | order = length(omega); 104 | 105 | case 'Al' 106 | omegap = 14.98*ehbar; 107 | f = [0.523 0.227 0.050 0.166 0.030]; 108 | Gamma = [0.047 0.333 0.312 1.351 3.382]*ehbar; 109 | omega = [0.000 0.162 1.544 1.808 3.473]*ehbar; 110 | order = length(omega); 111 | 112 | case 'Au' 113 | omegap = 9.03*ehbar; 114 | f = [0.760 0.024 0.010 0.071 0.601 4.384]; 115 | Gamma = [0.053 0.241 0.345 0.870 2.494 2.214]*ehbar; 116 | omega = [0.000 0.415 0.830 2.969 4.304 13.32]*ehbar; 117 | order = length(omega); 118 | 119 | case 'Cu' 120 | omegap = 10.83*ehbar; 121 | f = [0.575 0.061 0.104 0.723 0.638]; 122 | Gamma = [0.030 0.378 1.056 3.213 4.305]*ehbar; 123 | omega = [0.000 0.291 2.957 5.300 11.18]*ehbar; 124 | order = length(omega); 125 | 126 | case 'Cr' 127 | omegap = 10.75*ehbar; 128 | f = [0.168 0.151 0.150 1.149 0.825]; 129 | Gamma = [0.047 3.175 1.305 2.676 1.335]*ehbar; 130 | omega = [0.000 0.121 0.543 1.970 8.775]*ehbar; 131 | order = length(omega); 132 | 133 | case 'Ni' 134 | omegap = 15.92*ehbar; 135 | f = [0.096 0.100 0.135 0.106 0.729]; 136 | Gamma = [0.048 4.511 1.334 2.178 6.292]*ehbar; 137 | omega = [0.000 0.174 0.582 1.597 6.089]*ehbar; 138 | order = length(omega); 139 | 140 | case 'W' 141 | omegap = 13.22*ehbar; 142 | f = [0.206 0.054 0.166 0.706 2.590]; 143 | Gamma = [0.064 0.530 1.281 3.332 5.836]*ehbar; 144 | omega = [0.000 1.004 1.917 3.580 7.498]*ehbar; 145 | order = length(omega); 146 | 147 | case 'Ti' 148 | omegap = 7.29*ehbar; 149 | f = [0.148 0.899 0.393 0.187 0.001]; 150 | Gamma = [0.082 2.276 2.518 1.663 1.762]*ehbar; 151 | omega = [0.000 0.777 1.545 2.509 1.943]*ehbar; 152 | order = length(omega); 153 | 154 | case 'Be' 155 | omegap = 18.51*ehbar; 156 | f = [0.084 0.031 0.140 0.530 0.130]; 157 | Gamma = [0.035 1.664 3.395 4.454 1.802]*ehbar; 158 | omega = [0.000 0.100 1.032 3.183 4.604]*ehbar; 159 | order = length(omega); 160 | 161 | case 'Pd' 162 | omegap = 9.72*ehbar; 163 | f = [0.330 0.649 0.121 0.638 0.453]; 164 | Gamma = [0.008 2.950 0.555 4.621 3.236]*ehbar; 165 | omega = [0.000 0.336 0.501 1.659 5.715]*ehbar; 166 | order = length(omega); 167 | 168 | case 'Pt' 169 | omegap = 9.59*ehbar; 170 | f = [0.333 0.191 0.659 0.547 3.576]; 171 | Gamma = [0.080 0.517 1.838 3.668 8.517]*ehbar; 172 | omega = [0.000 0.780 1.314 3.141 9.249]*ehbar; 173 | order = length(omega); 174 | 175 | case 'H2O' 176 | % Debye parameters (microwave frequencies) 177 | a = [74.65 2.988]; 178 | tauj = [8.30e-12 5.91e-14]; % [sec] 179 | tauf = [1.09e-13 8.34e-15]; % [sec] 180 | nu = [0 -0.5]; 181 | debye_order = length(a); 182 | 183 | % Lorentz parameters (infrared and optical frequencies) 184 | omegap = ehbar; % "virtual" plasma frequency 185 | f = [0 1.0745e-05 3.1155e-03 1.6985e-04 1.1795e-02 1.7504e+02]; 186 | Gamma = [0 0.0046865 0.059371 0.0040546 0.037650 7.66167]*ehbar; 187 | omega = [0 0.013691 0.069113 0.21523 0.40743 15.1390]*ehbar; 188 | order = length(omega); 189 | 190 | otherwise 191 | error('ERROR! Not a valid choice of material in input argument.') 192 | end 193 | 194 | %*********************************************************************** 195 | % Debye model (pure water only) 196 | %*********************************************************************** 197 | switch material 198 | case 'H2O' 199 | epsilon_D = ones(size(lambda)); 200 | 201 | for kk = 1:debye_order 202 | epsilon_D = epsilon_D + a(kk)*... 203 | (((ones(size(lambda)) - i*tauj(kk)*omegalight).^(1-nu(kk))) .*... 204 | (ones(size(lambda)) - i*tauf(kk)*omegalight) ).^(-1); 205 | end 206 | otherwise 207 | 208 | %*********************************************************************** 209 | % Drude model (intraband effects in metals) 210 | %*********************************************************************** 211 | epsilon_D = ones(size(lambda)) - ((f(1)*omegap^2) *... 212 | (omegalight.^2 + i*Gamma(1)*omegalight).^(-1)); 213 | end 214 | 215 | %*********************************************************************** 216 | % Lorentz model (interband effects) 217 | %*********************************************************************** 218 | 219 | switch model 220 | case 'D' % Drude model 221 | epsilon = epsilon_D; 222 | 223 | case 'LD' % Lorentz-Drude model 224 | epsilon_L = zeros(size(lambda)); 225 | % Lorentzian contributions 226 | for k = 2:order 227 | epsilon_L = epsilon_L + (f(k)*omegap^2)*... 228 | (((omega(k)^2)*ones(size(lambda)) - omegalight.^2) -... 229 | i*Gamma(k)*omegalight).^(-1); 230 | end 231 | 232 | % Drude and Lorentz contributions combined 233 | epsilon = epsilon_D + epsilon_L; 234 | 235 | otherwise 236 | error('ERROR! Invalid option. Choose ''LD'' or ''D''') 237 | end 238 | 239 | %*********************************************************************** 240 | % Output variables 241 | %*********************************************************************** 242 | 243 | switch nargout 244 | case 1 % one output variable assigned 245 | varargout{1} = epsilon; 246 | 247 | case 2 % two output variables assigned 248 | 249 | % Real part of dielectric constant 250 | varargout{1} = real(epsilon); 251 | 252 | % Imaginary part of dielectric constant 253 | varargout{2} = imag(epsilon); 254 | 255 | case 3 % three output variables assigned 256 | 257 | % Real part of dielectric constant 258 | varargout{1} = real(epsilon); 259 | 260 | % Imaginary part of dielectric constant 261 | varargout{2} = imag(epsilon); 262 | 263 | % Complex refractive index [2]: N = n + i*k 264 | varargout{3} = invsqrt2*(sqrt(sqrt((varargout{1}).^2 +... 265 | (varargout{2}).^2) + varargout{1}) +... 266 | i*sqrt(sqrt((varargout{1}).^2 +... 267 | (varargout{2}).^2) - varargout{1})); 268 | 269 | otherwise 270 | error('Invalid number of output variables; 1,2 or 3 output variables.') 271 | end 272 | -------------------------------------------------------------------------------- /LD_bora_ung_code_comparision/eps_Au_ld_bora.dat: -------------------------------------------------------------------------------- 1 | 2.0000000e-007 1.3733755e-001 1.4955834e+000 2 | 2.0500000e-007 -5.4801807e-002 1.6311077e+000 3 | 2.1000000e-007 -2.4034714e-001 1.7820031e+000 4 | 2.1500000e-007 -4.1751063e-001 1.9485370e+000 5 | 2.2000000e-007 -5.8414458e-001 2.1306953e+000 6 | 2.2500000e-007 -7.3777996e-001 2.3280682e+000 7 | 2.3000000e-007 -8.7569721e-001 2.5397278e+000 8 | 2.3500000e-007 -9.9503860e-001 2.7641093e+000 9 | 2.4000000e-007 -1.0929682e+000 2.9989098e+000 10 | 2.4500000e-007 -1.1668802e+000 3.2410257e+000 11 | 2.5000000e-007 -1.2146479e+000 3.4865507e+000 12 | 2.5500000e-007 -1.2348915e+000 3.7308590e+000 13 | 2.6000000e-007 -1.2272359e+000 3.9687852e+000 14 | 2.6500000e-007 -1.1925142e+000 4.1949037e+000 15 | 2.7000000e-007 -1.1328771e+000 4.4038883e+000 16 | 2.7500000e-007 -1.0517728e+000 4.5909117e+000 17 | 2.8000000e-007 -9.5378440e-001 4.7520312e+000 18 | 2.8500000e-007 -8.4433642e-001 4.8845025e+000 19 | 2.9000000e-007 -7.2930985e-001 4.9869731e+000 20 | 2.9500000e-007 -6.1462096e-001 5.0595307e+000 21 | 3.0000000e-007 -5.0582448e-001 5.1036092e+000 22 | 3.0500000e-007 -4.0779042e-001 5.1217809e+000 23 | 3.1000000e-007 -3.2448406e-001 5.1174781e+000 24 | 3.1500000e-007 -2.5885582e-001 5.0946916e+000 25 | 3.2000000e-007 -2.1282820e-001 5.0576869e+000 26 | 3.2500000e-007 -1.8735498e-001 5.0107643e+000 27 | 3.3000000e-007 -1.8252373e-001 4.9580763e+000 28 | 3.3500000e-007 -1.9767457e-001 4.9035013e+000 29 | 3.4000000e-007 -2.3151402e-001 4.8505655e+000 30 | 3.4500000e-007 -2.8221000e-001 4.8023971e+000 31 | 3.5000000e-007 -3.4746168e-001 4.7616968e+000 32 | 3.5500000e-007 -4.2454430e-001 4.7307074e+000 33 | 3.6000000e-007 -5.1033639e-001 4.7111654e+000 34 | 3.6500000e-007 -6.0134297e-001 4.7042236e+000 35 | 3.7000000e-007 -6.9373580e-001 4.7103349e+000 36 | 3.7500000e-007 -7.8343859e-001 4.7290987e+000 37 | 3.8000000e-007 -8.6628944e-001 4.7590869e+000 38 | 3.8500000e-007 -9.3831003e-001 4.7976852e+000 39 | 3.9000000e-007 -9.9609500e-001 4.8410116e+000 40 | 3.9500000e-007 -1.0372993e+000 4.8839909e+000 41 | 4.0000000e-007 -1.0611495e+000 4.9206591e+000 42 | 4.0500000e-007 -1.0688484e+000 4.9447325e+000 43 | 4.1000000e-007 -1.0637201e+000 4.9503868e+000 44 | 4.1500000e-007 -1.0509760e+000 4.9330978e+000 45 | 4.2000000e-007 -1.0370921e+000 4.8903235e+000 46 | 4.2500000e-007 -1.0289240e+000 4.8218319e+000 47 | 4.3000000e-007 -1.0327869e+000 4.7295872e+000 48 | 4.3500000e-007 -1.0537294e+000 4.6172550e+000 49 | 4.4000000e-007 -1.0951432e+000 4.4895016e+000 50 | 4.4500000e-007 -1.1587212e+000 4.3512844e+000 51 | 4.5000000e-007 -1.2446807e+000 4.2072833e+000 52 | 4.5500000e-007 -1.3521250e+000 4.0615374e+000 53 | 4.6000000e-007 -1.4794314e+000 3.9172802e+000 54 | 4.6500000e-007 -1.6245922e+000 3.7769263e+000 55 | 4.7000000e-007 -1.7854755e+000 3.6421517e+000 56 | 4.7500000e-007 -1.9600024e+000 3.5140173e+000 57 | 4.8000000e-007 -2.1462534e+000 3.3931031e+000 58 | 4.8500000e-007 -2.3425203e+000 3.2796316e+000 59 | 4.9000000e-007 -2.5473233e+000 3.1735716e+000 60 | 4.9500000e-007 -2.7594045e+000 3.0747212e+000 61 | 5.0000000e-007 -2.9777098e+000 2.9827706e+000 62 | 5.0500000e-007 -3.2013655e+000 2.8973475e+000 63 | 5.1000000e-007 -3.4296529e+000 2.8180500e+000 64 | 5.1500000e-007 -3.6619848e+000 2.7444688e+000 65 | 5.2000000e-007 -3.8978838e+000 2.6762016e+000 66 | 5.2500000e-007 -4.1369631e+000 2.6128626e+000 67 | 5.3000000e-007 -4.3789107e+000 2.5540877e+000 68 | 5.3500000e-007 -4.6234755e+000 2.4995373e+000 69 | 5.4000000e-007 -4.8704567e+000 2.4488970e+000 70 | 5.4500000e-007 -5.1196936e+000 2.4018781e+000 71 | 5.5000000e-007 -5.3710589e+000 2.3582157e+000 72 | 5.5500000e-007 -5.6244517e+000 2.3176680e+000 73 | 5.6000000e-007 -5.8797932e+000 2.2800147e+000 74 | 5.6500000e-007 -6.1370218e+000 2.2450550e+000 75 | 5.7000000e-007 -6.3960906e+000 2.2126063e+000 76 | 5.7500000e-007 -6.6569640e+000 2.1825023e+000 77 | 5.8000000e-007 -6.9196158e+000 2.1545916e+000 78 | 5.8500000e-007 -7.1840274e+000 2.1287364e+000 79 | 5.9000000e-007 -7.4501862e+000 2.1048113e+000 80 | 5.9500000e-007 -7.7180846e+000 2.0827016e+000 81 | 6.0000000e-007 -7.9877190e+000 2.0623029e+000 82 | 6.0500000e-007 -8.2590889e+000 2.0435197e+000 83 | 6.1000000e-007 -8.5321963e+000 2.0262645e+000 84 | 6.1500000e-007 -8.8070451e+000 2.0104576e+000 85 | 6.2000000e-007 -9.0836410e+000 1.9960255e+000 86 | 6.2500000e-007 -9.3619908e+000 1.9829010e+000 87 | 6.3000000e-007 -9.6421021e+000 1.9710224e+000 88 | 6.3500000e-007 -9.9239834e+000 1.9603329e+000 89 | 6.4000000e-007 -1.0207644e+001 1.9507802e+000 90 | 6.4500000e-007 -1.0493092e+001 1.9423162e+000 91 | 6.5000000e-007 -1.0780338e+001 1.9348965e+000 92 | 6.5500000e-007 -1.1069392e+001 1.9284801e+000 93 | 6.6000000e-007 -1.1360262e+001 1.9230292e+000 94 | 6.6500000e-007 -1.1652960e+001 1.9185088e+000 95 | 6.7000000e-007 -1.1947493e+001 1.9148866e+000 96 | 6.7500000e-007 -1.2243873e+001 1.9121326e+000 97 | 6.8000000e-007 -1.2542108e+001 1.9102191e+000 98 | 6.8500000e-007 -1.2842207e+001 1.9091204e+000 99 | 6.9000000e-007 -1.3144180e+001 1.9088128e+000 100 | 6.9500000e-007 -1.3448034e+001 1.9092741e+000 101 | 7.0000000e-007 -1.3753780e+001 1.9104838e+000 102 | 7.0500000e-007 -1.4061425e+001 1.9124230e+000 103 | 7.1000000e-007 -1.4370978e+001 1.9150740e+000 104 | 7.1500000e-007 -1.4682446e+001 1.9184205e+000 105 | 7.2000000e-007 -1.4995836e+001 1.9224473e+000 106 | 7.2500000e-007 -1.5311158e+001 1.9271404e+000 107 | 7.3000000e-007 -1.5628417e+001 1.9324868e+000 108 | 7.3500000e-007 -1.5947621e+001 1.9384744e+000 109 | 7.4000000e-007 -1.6268777e+001 1.9450919e+000 110 | 7.4500000e-007 -1.6591892e+001 1.9523292e+000 111 | 7.5000000e-007 -1.6916971e+001 1.9601766e+000 112 | 7.5500000e-007 -1.7244021e+001 1.9686254e+000 113 | 7.6000000e-007 -1.7573048e+001 1.9776674e+000 114 | 7.6500000e-007 -1.7904059e+001 1.9872953e+000 115 | 7.7000000e-007 -1.8237057e+001 1.9975021e+000 116 | 7.7500000e-007 -1.8572050e+001 2.0082817e+000 117 | 7.8000000e-007 -1.8909043e+001 2.0196283e+000 118 | 7.8500000e-007 -1.9248040e+001 2.0315367e+000 119 | 7.9000000e-007 -1.9589046e+001 2.0440024e+000 120 | 7.9500000e-007 -1.9932067e+001 2.0570211e+000 121 | 8.0000000e-007 -2.0277107e+001 2.0705890e+000 122 | 8.0500000e-007 -2.0624171e+001 2.0847028e+000 123 | 8.1000000e-007 -2.0973263e+001 2.0993597e+000 124 | 8.1500000e-007 -2.1324386e+001 2.1145570e+000 125 | 8.2000000e-007 -2.1677546e+001 2.1302927e+000 126 | 8.2500000e-007 -2.2032747e+001 2.1465649e+000 127 | 8.3000000e-007 -2.2389991e+001 2.1633722e+000 128 | 8.3500000e-007 -2.2749283e+001 2.1807136e+000 129 | 8.4000000e-007 -2.3110626e+001 2.1985881e+000 130 | 8.4500000e-007 -2.3474024e+001 2.2169953e+000 131 | 8.5000000e-007 -2.3839480e+001 2.2359351e+000 132 | 8.5500000e-007 -2.4206997e+001 2.2554076e+000 133 | 8.6000000e-007 -2.4576579e+001 2.2754131e+000 134 | 8.6500000e-007 -2.4948227e+001 2.2959523e+000 135 | 8.7000000e-007 -2.5321946e+001 2.3170262e+000 136 | 8.7500000e-007 -2.5697737e+001 2.3386359e+000 137 | 8.8000000e-007 -2.6075603e+001 2.3607829e+000 138 | 8.8500000e-007 -2.6455547e+001 2.3834690e+000 139 | 8.9000000e-007 -2.6837571e+001 2.4066960e+000 140 | 8.9500000e-007 -2.7221678e+001 2.4304662e+000 141 | 9.0000000e-007 -2.7607868e+001 2.4547819e+000 142 | 9.0500000e-007 -2.7996145e+001 2.4796459e+000 143 | 9.1000000e-007 -2.8386509e+001 2.5050611e+000 144 | 9.1500000e-007 -2.8778964e+001 2.5310304e+000 145 | 9.2000000e-007 -2.9173509e+001 2.5575574e+000 146 | 9.2500000e-007 -2.9570148e+001 2.5846455e+000 147 | 9.3000000e-007 -2.9968880e+001 2.6122985e+000 148 | 9.3500000e-007 -3.0369708e+001 2.6405205e+000 149 | 9.4000000e-007 -3.0772632e+001 2.6693157e+000 150 | 9.4500000e-007 -3.1177653e+001 2.6986884e+000 151 | 9.5000000e-007 -3.1584771e+001 2.7286433e+000 152 | 9.5500000e-007 -3.1993988e+001 2.7591854e+000 153 | 9.6000000e-007 -3.2405304e+001 2.7903196e+000 154 | 9.6500000e-007 -3.2818718e+001 2.8220512e+000 155 | 9.7000000e-007 -3.3234232e+001 2.8543857e+000 156 | 9.7500000e-007 -3.3651844e+001 2.8873289e+000 157 | 9.8000000e-007 -3.4071554e+001 2.9208866e+000 158 | 9.8500000e-007 -3.4493363e+001 2.9550650e+000 159 | 9.9000000e-007 -3.4917269e+001 2.9898703e+000 160 | 9.9500000e-007 -3.5343271e+001 3.0253090e+000 161 | 1.0000000e-006 -3.5771368e+001 3.0613880e+000 162 | 1.0050000e-006 -3.6201559e+001 3.0981140e+000 163 | 1.0100000e-006 -3.6633842e+001 3.1354943e+000 164 | 1.0150000e-006 -3.7068215e+001 3.1735362e+000 165 | 1.0200000e-006 -3.7504676e+001 3.2122471e+000 166 | 1.0250000e-006 -3.7943222e+001 3.2516348e+000 167 | 1.0300000e-006 -3.8383852e+001 3.2917072e+000 168 | 1.0350000e-006 -3.8826561e+001 3.3324723e+000 169 | 1.0400000e-006 -3.9271346e+001 3.3739384e+000 170 | 1.0450000e-006 -3.9718204e+001 3.4161140e+000 171 | 1.0500000e-006 -4.0167131e+001 3.4590077e+000 172 | 1.0550000e-006 -4.0618123e+001 3.5026282e+000 173 | 1.0600000e-006 -4.1071174e+001 3.5469846e+000 174 | 1.0650000e-006 -4.1526279e+001 3.5920858e+000 175 | 1.0700000e-006 -4.1983433e+001 3.6379412e+000 176 | 1.0750000e-006 -4.2442630e+001 3.6845601e+000 177 | 1.0800000e-006 -4.2903863e+001 3.7319520e+000 178 | 1.0850000e-006 -4.3367126e+001 3.7801266e+000 179 | 1.0900000e-006 -4.3832411e+001 3.8290935e+000 180 | 1.0950000e-006 -4.4299710e+001 3.8788627e+000 181 | 1.1000000e-006 -4.4769015e+001 3.9294438e+000 182 | 1.1050000e-006 -4.5240317e+001 3.9808470e+000 183 | 1.1100000e-006 -4.5713606e+001 4.0330821e+000 184 | 1.1150000e-006 -4.6188872e+001 4.0861592e+000 185 | 1.1200000e-006 -4.6666104e+001 4.1400883e+000 186 | 1.1250000e-006 -4.7145291e+001 4.1948792e+000 187 | 1.1300000e-006 -4.7626421e+001 4.2505420e+000 188 | 1.1350000e-006 -4.8109481e+001 4.3070864e+000 189 | 1.1400000e-006 -4.8594457e+001 4.3645221e+000 190 | 1.1450000e-006 -4.9081336e+001 4.4228587e+000 191 | 1.1500000e-006 -4.9570103e+001 4.4821055e+000 192 | 1.1550000e-006 -5.0060741e+001 4.5422718e+000 193 | 1.1600000e-006 -5.0553235e+001 4.6033663e+000 194 | 1.1650000e-006 -5.1047566e+001 4.6653976e+000 195 | 1.1700000e-006 -5.1543718e+001 4.7283740e+000 196 | 1.1750000e-006 -5.2041670e+001 4.7923032e+000 197 | 1.1800000e-006 -5.2541404e+001 4.8571927e+000 198 | 1.1850000e-006 -5.3042898e+001 4.9230491e+000 199 | 1.1900000e-006 -5.3546132e+001 4.9898787e+000 200 | 1.1950000e-006 -5.4051082e+001 5.0576872e+000 201 | 1.2000000e-006 -5.4557725e+001 5.1264794e+000 202 | 1.2050000e-006 -5.5066037e+001 5.1962593e+000 203 | 1.2100000e-006 -5.5575993e+001 5.2670303e+000 204 | 1.2150000e-006 -5.6087567e+001 5.3387946e+000 205 | 1.2200000e-006 -5.6600733e+001 5.4115534e+000 206 | 1.2250000e-006 -5.7115463e+001 5.4853070e+000 207 | 1.2300000e-006 -5.7631728e+001 5.5600543e+000 208 | 1.2350000e-006 -5.8149499e+001 5.6357931e+000 209 | 1.2400000e-006 -5.8668746e+001 5.7125197e+000 210 | 1.2450000e-006 -5.9189439e+001 5.7902290e+000 211 | 1.2500000e-006 -5.9711547e+001 5.8689143e+000 212 | 1.2550000e-006 -6.0235038e+001 5.9485674e+000 213 | 1.2600000e-006 -6.0759879e+001 6.0291782e+000 214 | 1.2650000e-006 -6.1286038e+001 6.1107349e+000 215 | 1.2700000e-006 -6.1813482e+001 6.1932237e+000 216 | 1.2750000e-006 -6.2342178e+001 6.2766289e+000 217 | 1.2800000e-006 -6.2872093e+001 6.3609326e+000 218 | 1.2850000e-006 -6.3403193e+001 6.4461148e+000 219 | 1.2900000e-006 -6.3935446e+001 6.5321533e+000 220 | 1.2950000e-006 -6.4468818e+001 6.6190236e+000 221 | 1.3000000e-006 -6.5003278e+001 6.7066988e+000 222 | 1.3050000e-006 -6.5538794e+001 6.7951496e+000 223 | 1.3100000e-006 -6.6075335e+001 6.8843443e+000 224 | 1.3150000e-006 -6.6612871e+001 6.9742488e+000 225 | 1.3200000e-006 -6.7151375e+001 7.0648266e+000 226 | 1.3250000e-006 -6.7690818e+001 7.1560385e+000 227 | 1.3300000e-006 -6.8231175e+001 7.2478431e+000 228 | 1.3350000e-006 -6.8772424e+001 7.3401965e+000 229 | 1.3400000e-006 -6.9314541e+001 7.4330527e+000 230 | 1.3450000e-006 -6.9857508e+001 7.5263632e+000 231 | 1.3500000e-006 -7.0401308e+001 7.6200776e+000 232 | 1.3550000e-006 -7.0945927e+001 7.7141432e+000 233 | 1.3600000e-006 -7.1491353e+001 7.8085059e+000 234 | 1.3650000e-006 -7.2037579e+001 7.9031096e+000 235 | 1.3700000e-006 -7.2584599e+001 7.9978967e+000 236 | 1.3750000e-006 -7.3132413e+001 8.0928086e+000 237 | 1.3800000e-006 -7.3681023e+001 8.1877856e+000 238 | 1.3850000e-006 -7.4230434e+001 8.2827669e+000 239 | 1.3900000e-006 -7.4780658e+001 8.3776918e+000 240 | 1.3950000e-006 -7.5331707e+001 8.4724988e+000 241 | 1.4000000e-006 -7.5883602e+001 8.5671272e+000 242 | 1.4050000e-006 -7.6436363e+001 8.6615160e+000 243 | 1.4100000e-006 -7.6990018e+001 8.7556057e+000 244 | 1.4150000e-006 -7.7544597e+001 8.8493374e+000 245 | 1.4200000e-006 -7.8100135e+001 8.9426539e+000 246 | 1.4250000e-006 -7.8656672e+001 9.0354998e+000 247 | 1.4300000e-006 -7.9214250e+001 9.1278217e+000 248 | 1.4350000e-006 -7.9772916e+001 9.2195690e+000 249 | 1.4400000e-006 -8.0332721e+001 9.3106935e+000 250 | 1.4450000e-006 -8.0893717e+001 9.4011503e+000 251 | 1.4500000e-006 -8.1455962e+001 9.4908980e+000 252 | 1.4550000e-006 -8.2019517e+001 9.5798986e+000 253 | 1.4600000e-006 -8.2584443e+001 9.6681182e+000 254 | 1.4650000e-006 -8.3150805e+001 9.7555268e+000 255 | 1.4700000e-006 -8.3718670e+001 9.8420989e+000 256 | 1.4750000e-006 -8.4288106e+001 9.9278133e+000 257 | 1.4800000e-006 -8.4859184e+001 1.0012653e+001 258 | 1.4850000e-006 -8.5431973e+001 1.0096607e+001 259 | 1.4900000e-006 -8.6006544e+001 1.0179666e+001 260 | 1.4950000e-006 -8.6582970e+001 1.0261829e+001 261 | 1.5000000e-006 -8.7161321e+001 1.0343097e+001 262 | 1.5050000e-006 -8.7741667e+001 1.0423476e+001 263 | 1.5100000e-006 -8.8324077e+001 1.0502977e+001 264 | 1.5150000e-006 -8.8908621e+001 1.0581616e+001 265 | 1.5200000e-006 -8.9495365e+001 1.0659412e+001 266 | 1.5250000e-006 -9.0084373e+001 1.0736387e+001 267 | 1.5300000e-006 -9.0675708e+001 1.0812570e+001 268 | 1.5350000e-006 -9.1269431e+001 1.0887990e+001 269 | 1.5400000e-006 -9.1865599e+001 1.0962681e+001 270 | 1.5450000e-006 -9.2464267e+001 1.1036680e+001 271 | 1.5500000e-006 -9.3065486e+001 1.1110027e+001 272 | 1.5550000e-006 -9.3669307e+001 1.1182764e+001 273 | 1.5600000e-006 -9.4275773e+001 1.1254934e+001 274 | 1.5650000e-006 -9.4884927e+001 1.1326585e+001 275 | 1.5700000e-006 -9.5496809e+001 1.1397764e+001 276 | 1.5750000e-006 -9.6111454e+001 1.1468520e+001 277 | 1.5800000e-006 -9.6728893e+001 1.1538903e+001 278 | 1.5850000e-006 -9.7349157e+001 1.1608965e+001 279 | 1.5900000e-006 -9.7972270e+001 1.1678756e+001 280 | 1.5950000e-006 -9.8598254e+001 1.1748330e+001 281 | 1.6000000e-006 -9.9227129e+001 1.1817737e+001 282 | 1.6050000e-006 -9.9858910e+001 1.1887029e+001 283 | 1.6100000e-006 -1.0049361e+002 1.1956259e+001 284 | 1.6150000e-006 -1.0113124e+002 1.2025478e+001 285 | 1.6200000e-006 -1.0177181e+002 1.2094735e+001 286 | 1.6250000e-006 -1.0241532e+002 1.2164081e+001 287 | 1.6300000e-006 -1.0306177e+002 1.2233563e+001 288 | 1.6350000e-006 -1.0371117e+002 1.2303231e+001 289 | 1.6400000e-006 -1.0436351e+002 1.2373129e+001 290 | 1.6450000e-006 -1.0501878e+002 1.2443305e+001 291 | 1.6500000e-006 -1.0567699e+002 1.2513800e+001 292 | 1.6550000e-006 -1.0633812e+002 1.2584659e+001 293 | 1.6600000e-006 -1.0700216e+002 1.2655921e+001 294 | 1.6650000e-006 -1.0766911e+002 1.2727627e+001 295 | 1.6700000e-006 -1.0833895e+002 1.2799816e+001 296 | 1.6750000e-006 -1.0901166e+002 1.2872522e+001 297 | 1.6800000e-006 -1.0968724e+002 1.2945783e+001 298 | 1.6850000e-006 -1.1036566e+002 1.3019631e+001 299 | 1.6900000e-006 -1.1104691e+002 1.3094098e+001 300 | 1.6950000e-006 -1.1173098e+002 1.3169216e+001 301 | 1.7000000e-006 -1.1241784e+002 1.3245014e+001 302 | 1.7050000e-006 -1.1310748e+002 1.3321519e+001 303 | 1.7100000e-006 -1.1379987e+002 1.3398758e+001 304 | 1.7150000e-006 -1.1449501e+002 1.3476755e+001 305 | 1.7200000e-006 -1.1519286e+002 1.3555536e+001 306 | 1.7250000e-006 -1.1589342e+002 1.3635122e+001 307 | 1.7300000e-006 -1.1659665e+002 1.3715535e+001 308 | 1.7350000e-006 -1.1730255e+002 1.3796794e+001 309 | 1.7400000e-006 -1.1801108e+002 1.3878919e+001 310 | 1.7450000e-006 -1.1872223e+002 1.3961927e+001 311 | 1.7500000e-006 -1.1943599e+002 1.4045836e+001 312 | 1.7550000e-006 -1.2015232e+002 1.4130661e+001 313 | 1.7600000e-006 -1.2087122e+002 1.4216416e+001 314 | 1.7650000e-006 -1.2159266e+002 1.4303117e+001 315 | 1.7700000e-006 -1.2231662e+002 1.4390776e+001 316 | 1.7750000e-006 -1.2304308e+002 1.4479405e+001 317 | 1.7800000e-006 -1.2377203e+002 1.4569015e+001 318 | 1.7850000e-006 -1.2450344e+002 1.4659619e+001 319 | 1.7900000e-006 -1.2523730e+002 1.4751225e+001 320 | 1.7950000e-006 -1.2597360e+002 1.4843843e+001 321 | 1.8000000e-006 -1.2671230e+002 1.4937483e+001 322 | 1.8050000e-006 -1.2745340e+002 1.5032151e+001 323 | 1.8100000e-006 -1.2819687e+002 1.5127856e+001 324 | 1.8150000e-006 -1.2894271e+002 1.5224606e+001 325 | 1.8200000e-006 -1.2969089e+002 1.5322407e+001 326 | 1.8250000e-006 -1.3044140e+002 1.5421265e+001 327 | 1.8300000e-006 -1.3119422e+002 1.5521186e+001 328 | 1.8350000e-006 -1.3194934e+002 1.5622176e+001 329 | 1.8400000e-006 -1.3270674e+002 1.5724240e+001 330 | 1.8450000e-006 -1.3346641e+002 1.5827382e+001 331 | 1.8500000e-006 -1.3422833e+002 1.5931608e+001 332 | 1.8550000e-006 -1.3499248e+002 1.6036922e+001 333 | 1.8600000e-006 -1.3575887e+002 1.6143328e+001 334 | 1.8650000e-006 -1.3652746e+002 1.6250829e+001 335 | 1.8700000e-006 -1.3729825e+002 1.6359429e+001 336 | 1.8750000e-006 -1.3807122e+002 1.6469131e+001 337 | 1.8800000e-006 -1.3884637e+002 1.6579940e+001 338 | 1.8850000e-006 -1.3962367e+002 1.6691856e+001 339 | 1.8900000e-006 -1.4040312e+002 1.6804885e+001 340 | 1.8950000e-006 -1.4118471e+002 1.6919028e+001 341 | 1.9000000e-006 -1.4196841e+002 1.7034288e+001 342 | 1.9050000e-006 -1.4275423e+002 1.7150667e+001 343 | 1.9100000e-006 -1.4354214e+002 1.7268168e+001 344 | 1.9150000e-006 -1.4433215e+002 1.7386793e+001 345 | 1.9200000e-006 -1.4512422e+002 1.7506545e+001 346 | 1.9250000e-006 -1.4591837e+002 1.7627425e+001 347 | 1.9300000e-006 -1.4671457e+002 1.7749436e+001 348 | 1.9350000e-006 -1.4751281e+002 1.7872580e+001 349 | 1.9400000e-006 -1.4831309e+002 1.7996858e+001 350 | 1.9450000e-006 -1.4911539e+002 1.8122273e+001 351 | 1.9500000e-006 -1.4991970e+002 1.8248827e+001 352 | 1.9550000e-006 -1.5072602e+002 1.8376521e+001 353 | 1.9600000e-006 -1.5153433e+002 1.8505357e+001 354 | 1.9650000e-006 -1.5234462e+002 1.8635337e+001 355 | 1.9700000e-006 -1.5315689e+002 1.8766464e+001 356 | 1.9750000e-006 -1.5397113e+002 1.8898738e+001 357 | 1.9800000e-006 -1.5478731e+002 1.9032161e+001 358 | 1.9850000e-006 -1.5560544e+002 1.9166736e+001 359 | 1.9900000e-006 -1.5642551e+002 1.9302463e+001 360 | 1.9950000e-006 -1.5724751e+002 1.9439345e+001 361 | 2.0000000e-006 -1.5807142e+002 1.9577384e+001 362 | -------------------------------------------------------------------------------- /LD_bora_ung_code_comparision/eps_au_generator.m: -------------------------------------------------------------------------------- 1 | clear all 2 | material='Au' 3 | lambda=[200:5:2000]*1e-9; 4 | [epsilon_Re epsilon_Im N] = LD(lambda,material,'LD'); % change material type here. 5 | data = [lambda; epsilon_Re; epsilon_Im]' 6 | save(strcat('eps_',material,'_ld_bora.dat'),'data','-ascii') 7 | 8 | -------------------------------------------------------------------------------- /LD_compare_python_matlab.py: -------------------------------------------------------------------------------- 1 | from LD import LD # Make sure this file is visible to PYTHONPATH or keep it in the same directory of file which is trying to call it. 2 | import numpy as np 3 | import matplotlib.pyplot as plt 4 | import os.path 5 | 6 | lamda = np.linspace(200E-9,2000E-9,200) # Creates a wavelength vector from 300 nm to 1000 nm of length 100 7 | gold = LD(lamda, material = 'Au',model = 'LD') 8 | 9 | print gold.epsilon_real 10 | print gold.epsilon_imag 11 | print gold.n 12 | print gold.k 13 | 14 | data = np.loadtxt(os.path.join(os.path.dirname(__file__), r'LD_bora_ung_code_comparision\eps_Au_ld_bora.dat')) 15 | f,ax = plt.subplots(nrows = 1, ncols = 2, figsize = (15,6)) 16 | 17 | ax[0].plot(1E9*lamda, gold.epsilon_real, 'bs', label = 'LD.py') 18 | ax[0].plot(1E9*data[:, 0], data[:, 1], '-r', label = 'LD.m') 19 | ax[0].set_xlabel('Wavelength (nm)') 20 | ax[0].set_ylabel('Real(epsilon)') 21 | 22 | ax[1].plot(1E9*lamda, gold.epsilon_imag, 'bs', label = 'LD.py') 23 | ax[1].plot(1E9*data[:, 0], data[:, 2], '-r', label = 'LD.m') 24 | ax[1].set_xlabel('Wavelength (nm)') 25 | ax[1].set_ylabel('Imag (epsilon)') 26 | f.suptitle('Epsilon of {0}: {1} model'.format(gold.material, gold.model)) 27 | 28 | plt.legend() 29 | plt.savefig('LD_python_matlab_comp.png') 30 | plt.show() 31 | -------------------------------------------------------------------------------- /LD_python_matlab_comp.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/plasmon360/LD_python/478bf8c34af6402099eae8f2299b23e0124a682b/LD_python_matlab_comp.png -------------------------------------------------------------------------------- /Readme.md: -------------------------------------------------------------------------------- 1 | ## Description: 2 | 3 | This module calculates the real and imaginary part of the dielectric function, 4 | real and imaginary part of the refractive index for different metals using either 5 | Drude model (D) and Lorentz-Drude model (LD). The parameters are obtained from 6 | Rakic et al. This module is inspired by LD.m 7 | http://www.mathworks.com/matlabcentral/fileexchange/18040-drude-lorentz-and-debye-lorentz-models-for-the-dielectric-constant-of-metals-and-water 8 | 9 | ##Reference: 10 | 11 | Rakic et al., Optical properties of metallic films for vertical- 12 | cavity optoelectronic devices, Applied Optics (1998) 13 | 14 | 15 | ##Example: 16 | To use in other python files 17 | 18 | from LD import LD # Make sure the file is accessible to PYTHONPATH or in the same directory of file which is trying to import 19 | import numpy as np 20 | lamda = np.linspace(300E-9,1000E-9,100) # Creates a wavelength vector from 300 nm to 1000 nm of length 100 21 | gold = LD(lamda, material = 'Au',model = 'LD') # Creates gold object with dielectric function of LD model 22 | print gold.epsilon_real 23 | print gold.epsilon_imag 24 | print gold.n 25 | print gold.k 26 | gold.plot_epsilon() 27 | gold.plot_n_k() 28 | 29 | ##INPUT PARAMETERS for LD: 30 | 31 | lambda ==> wavelength (meters) of light excitation on material. Numpy array 32 | 33 | material ==> 'Ag' = silver 34 | 'Al' = aluminum 35 | 'Au' = gold 36 | 'Cu' = copper 37 | 'Cr' = chromium 38 | 'Ni' = nickel 39 | 'W' = tungsten 40 | 'Ti' = titanium 41 | 'Be' = beryllium 42 | 'Pd' = palladium 43 | 'Pt' = platinum 44 | 45 | model ==> Choose 'LD' or 'D' for Lorentz-Drude or Drude model. 46 | --------------------------------------------------------------------------------