├── .gitignore
├── .python-version
├── LICENSE
├── README.md
├── config.yaml
├── config_24GB.yaml
├── countdown_task.py
├── data_types.py
├── grpo.py
├── optimizer.py
├── pyproject.toml
├── qwen2_model.py
├── tokenizer.py
├── train.py
└── uv.lock
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | share/python-wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 | MANIFEST
28 |
29 | # PyInstaller
30 | # Usually these files are written by a python script from a template
31 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
32 | *.manifest
33 | *.spec
34 |
35 | # Installer logs
36 | pip-log.txt
37 | pip-delete-this-directory.txt
38 |
39 | # Unit test / coverage reports
40 | htmlcov/
41 | .tox/
42 | .nox/
43 | .coverage
44 | .coverage.*
45 | .cache
46 | nosetests.xml
47 | coverage.xml
48 | *.cover
49 | *.py,cover
50 | .hypothesis/
51 | .pytest_cache/
52 | cover/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | .pybuilder/
76 | target/
77 |
78 | # Jupyter Notebook
79 | .ipynb_checkpoints
80 |
81 | # IPython
82 | profile_default/
83 | ipython_config.py
84 |
85 | # pyenv
86 | # For a library or package, you might want to ignore these files since the code is
87 | # intended to run in multiple environments; otherwise, check them in:
88 | # .python-version
89 |
90 | # pipenv
91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
94 | # install all needed dependencies.
95 | #Pipfile.lock
96 |
97 | # UV
98 | # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
99 | # This is especially recommended for binary packages to ensure reproducibility, and is more
100 | # commonly ignored for libraries.
101 | #uv.lock
102 |
103 | # poetry
104 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
105 | # This is especially recommended for binary packages to ensure reproducibility, and is more
106 | # commonly ignored for libraries.
107 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
108 | #poetry.lock
109 |
110 | # pdm
111 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
112 | #pdm.lock
113 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
114 | # in version control.
115 | # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
116 | .pdm.toml
117 | .pdm-python
118 | .pdm-build/
119 |
120 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
121 | __pypackages__/
122 |
123 | # Celery stuff
124 | celerybeat-schedule
125 | celerybeat.pid
126 |
127 | # SageMath parsed files
128 | *.sage.py
129 |
130 | # Environments
131 | .env
132 | .venv
133 | env/
134 | venv/
135 | ENV/
136 | env.bak/
137 | venv.bak/
138 |
139 | # Spyder project settings
140 | .spyderproject
141 | .spyproject
142 |
143 | # Rope project settings
144 | .ropeproject
145 |
146 | # mkdocs documentation
147 | /site
148 |
149 | # mypy
150 | .mypy_cache/
151 | .dmypy.json
152 | dmypy.json
153 |
154 | # Pyre type checker
155 | .pyre/
156 |
157 | # pytype static type analyzer
158 | .pytype/
159 |
160 | # Cython debug symbols
161 | cython_debug/
162 |
163 | # PyCharm
164 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
165 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
166 | # and can be added to the global gitignore or merged into this file. For a more nuclear
167 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
168 | #.idea/
169 |
170 | # Ruff stuff:
171 | .ruff_cache/
172 |
173 | # PyPI configuration file
174 | .pypirc
175 |
--------------------------------------------------------------------------------
/.python-version:
--------------------------------------------------------------------------------
1 | 3.11
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # GRPO:Zero
2 |
3 | GRPO training with minimal dependencies (and low GPU memory usage!). We implement almost everything from scratch and only depend on `tokenizers` for tokenization and `pytorch` for training.
4 | - No `transformers` and `vLLM` dependencies!
5 | - The default config is set to run on a single A40 GPU (48GB VRAM) for a few hours to get good results. (An A40 costs `$0.44` per hour if you rent it from RunPod.)
6 | - We also support training with a 24GB VRAM GPU (e.g., an RTX 4090 GPU) by offloading the optimizer to CPU. Fortunately, this only adds a small overhead to the training because we only update the policy network a few hundred times during the entire training process.
7 | - We support several improvements over the original GRPO algorithm from the [DAPO project](https://arxiv.org/abs/2503.14476), including:
8 | - **Token-level policy gradient loss**: every token is equally weighted in the policy gradient loss.
9 | - **Removing KL Divergence**: the KL divergence is not used in the policy gradient loss. This reduces GPU memory usage as we no longer need the reference policy network.
10 | - **Overlong episode filtering**: skips unfinished episodes that exceed context length limits. This stabilizes training. Though we disabled it by default to observe model learning under limited context length. Set `skip_unfinished_episodes` to `true` to enable it.
11 |
12 | ## Algorithm
13 |
14 | Group Relative Policy Optimization (GRPO) is an algorithm proposed by Deepseek for training large language models with reinforcement learning. The idea is simple: for each question, we randomly sample multiple answers. The advantage of an answer is then defined as the normalized reward. This gets rid of the value estimation network. In particular, we implement the following algorithm:
15 |
16 | 1. For each training step, randomly sample $N$ questions $q_1, q_2, \cdots, q_N$.
17 | 2. For each question $q_i$, sample $M$ answers $a_{i,1}, a_{i,2}, \cdots, a_{i,M}$.
18 | 3. Compute the reward $r_{i,j}$ for each answer $a_{i,j}$.
19 | 4. Compute the mean and std of the rewards for each question $q_i$.
20 |
21 | $$
22 | \begin{aligned}
23 | \mu_i &\leftarrow \text{mean}(r_{i,1}, r_{i,2}, \cdots, r_{i,M}) \\
24 | \sigma_i &\leftarrow \text{std}(r_{i,1}, r_{i,2}, \cdots, r_{i,M})
25 | \end{aligned}
26 | $$
27 |
28 | 5. For each token $t$ in the answer $a_{i,j}$, compute the advantage as
29 |
30 | $$A_{i,j}[t] \leftarrow \frac{r_{i,j} - \mu_i}{\sigma_i}$$
31 |
32 | 6. Compute policy gradient using PPO surrogate objective. For simplicity, we will only do one policy update per iteration, in which the gradient of the PPO objective is equivalent to following vanilla policy gradient estimation (per token).
33 |
34 | $$
35 | \nabla_\theta \log \pi_\theta(a_{i,j}[t]) \cdot A_{i,j}[t]
36 | $$
37 |
38 | 7. Update the policy network $\pi(\theta)$ using the gradient. Go back to step 1.
39 |
40 | ## CountDown Task
41 |
42 | We are going to train the Qwen2.5 models on the [CountDown task](https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4). Given a list of 3 or 4 numbers and a target number, the model needs to generate a mathematical expression using simple arithmetic operations (+, -, *, /) that evaluates to the target number. For example:
43 |
44 | ```
45 | Question: Given 1 2 3 4 and a target number 11. Show an expression that evaluates to 11.
46 | Answer: 1 + (2 * 3) + 4
47 | ```
48 |
49 | ## Reward Function
50 |
51 | To solve the CountDown task, we will use the GRPO algorithm to train the model to generate the chain of thought reasoning before generating the final expression. Specifically, the model is trained to follow the format:
52 |
53 | ```
54 | Model step by step reasoning
55 | Final answer
56 | ```
57 |
58 | The reward is the sum of two components:
59 |
60 | 1. **Format Reward**: The model earns a reward of `0.1` when it correctly follows the specified format with thinking and answer tags, and `0` otherwise.
61 | 2. **Answer Reward**: The model receives a reward of `1` if its final answer uses each provided number exactly once and correctly evaluates to the target value, otherwise it receives `0`.
62 |
63 |
64 | ## Training
65 |
66 | We use the `Qwen2.5-3B-Instruct` model for training. To train the model, run the following commands:
67 |
68 | ```bash
69 | # initialize the environment
70 | pip install uv
71 | uv sync
72 |
73 | # install git-lfs
74 | apt update; apt install git-lfs -y; git lfs install
75 |
76 | # download the dataset
77 | git clone https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
78 |
79 | # download the pretrained model
80 | git clone https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
81 | # train the model
82 | uv run train.py
83 | # train the model with a 24GB VRAM GPU (e.g., an RTX 4090 GPU)
84 | uv run train.py --config config_24GB.yaml
85 | ```
86 | ## Acknowledgements
87 |
88 | This project builds upon the work of several outstanding projects:
89 |
90 | - [DeepSeekMath](https://arxiv.org/abs/2402.03300) for pioneering the GRPO algorithm.
91 | - [DAPO](https://arxiv.org/abs/2503.14476) for their enhancements to the original GRPO algorithm.
92 | - [TinyZero](https://github.com/Jiayi-Pan/TinyZero) for their implementation of GRPO and creation of the [CountDown-Tasks-3to4](https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4) dataset.
93 | - [nano-aha-moment](https://github.com/McGill-NLP/nano-aha-moment/tree/main) for their clear implementation and tutorial on the GRPO algorithm.
94 | - [Qwen2.5](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) for developing the high-quality pretrained model used in this project.
--------------------------------------------------------------------------------
/config.yaml:
--------------------------------------------------------------------------------
1 | model:
2 | pretrained_model_path: "Qwen2.5-3B-Instruct"
3 | device: "cuda"
4 | dtype: "bfloat16"
5 | data:
6 | path: "Countdown-Tasks-3to4"
7 | test_size: 128
8 | training:
9 | random_seed: 1337
10 | max_prompt_len: 256
11 | max_gen_len: 1024
12 | batch_size: 256
13 | num_questions_per_batch: 32
14 | # Number of examples per gradient accumulation step
15 | micro_batch_size: 2
16 | max_grad_norm: 1.0
17 | learning_rate: 1.0e-5
18 | weight_decay: 0.0
19 | betas: [0.9, 0.999]
20 | ckpt_dir: "ckpt"
21 | log_dir: "logs"
22 | skip_unfinished_episodes: false
23 | ckpt_save_interval: 100
24 | eval_interval: 10
25 | memory_efficient_adamw: false
--------------------------------------------------------------------------------
/config_24GB.yaml:
--------------------------------------------------------------------------------
1 | model:
2 | pretrained_model_path: "Qwen2.5-3B-Instruct"
3 | device: "cuda"
4 | dtype: "bfloat16"
5 | data:
6 | path: "Countdown-Tasks-3to4"
7 | test_size: 128
8 | training:
9 | random_seed: 1337
10 | max_prompt_len: 256
11 | max_gen_len: 1024
12 | batch_size: 256
13 | num_questions_per_batch: 32
14 | # Number of examples per gradient accumulation step
15 | micro_batch_size: 2
16 | max_grad_norm: 1.0
17 | learning_rate: 1.0e-5
18 | weight_decay: 0.0
19 | betas: [0.9, 0.999]
20 | ckpt_dir: "ckpt"
21 | log_dir: "logs"
22 | skip_unfinished_episodes: false
23 | ckpt_save_interval: 100
24 | eval_interval: 10
25 | # save GPU memory by offloading the optimizer states to CPU
26 | memory_efficient_adamw: true
--------------------------------------------------------------------------------
/countdown_task.py:
--------------------------------------------------------------------------------
1 | import re
2 | from pathlib import Path
3 | from typing import Any, Dict, List, Optional
4 |
5 | import pandas as pd
6 | from torch.utils.data import Dataset
7 |
8 | from data_types import MiniBatch
9 | from tokenizer import Tokenizer
10 |
11 | SYSTEM_MESSAGE = (
12 | "You are a helpful assistant. You first think about the reasoning process "
13 | "in your mind and then provide the user with the answer."
14 | )
15 | USER_TEMPLATE = (
16 | "Using the numbers {numbers}, create an equation that equals {target}. "
17 | "You can use basic arithmetic operations (+, -, *, /) and each number can only be used once. "
18 | "Show your work in tags. "
19 | "And return the final answer in tags, for example (1 + 2) / 3 ."
20 | )
21 | RESPONSE_PROMPT = "Let me solve this step by step.\n"
22 |
23 |
24 | class CountdownTasksDataset(Dataset):
25 | """Prepare Countdown Tasks for training"""
26 |
27 | def __init__(
28 | self,
29 | tokenizer: Tokenizer,
30 | data_path: str,
31 | split: str = "train",
32 | test_size: int = 100,
33 | ):
34 | data = pd.read_parquet(Path(data_path) / "data")
35 | # use the last `test_size` examples for testing
36 | self.data = (
37 | data.iloc[:-test_size] if split == "train" else data.iloc[-test_size:]
38 | )
39 | self.tokenizer = tokenizer
40 |
41 | def __len__(self):
42 | return len(self.data)
43 |
44 | def __getitem__(self, idx):
45 | item = self.data.iloc[idx].to_dict()
46 | item.update(self.encode_prefix(item["nums"], item["target"]))
47 | return item
48 |
49 | def encode_prefix(self, numbers: List[int], target: int):
50 | """Prefix is the *actual* input to the model."""
51 | user_message = USER_TEMPLATE.format(numbers=numbers, target=target)
52 | prefix = self.tokenizer.encode_chat_with_response_prompt(
53 | [
54 | {"role": "system", "content": SYSTEM_MESSAGE},
55 | {"role": "user", "content": user_message},
56 | ],
57 | RESPONSE_PROMPT,
58 | )
59 | tokens = self.tokenizer.tokenize(prefix)
60 | return {
61 | "prefix": prefix,
62 | "prefix_tokens": tokens.tokens,
63 | "prefix_token_ids": tokens.ids,
64 | }
65 |
66 | @staticmethod
67 | def collate_fn(batch: List[Dict[str, Any]]) -> MiniBatch:
68 | """Collate examples into a batch."""
69 | numbers = [item["nums"] for item in batch]
70 | target = [item["target"] for item in batch]
71 | prefix = [item["prefix"] for item in batch]
72 | prefix_tokens = [item["prefix_tokens"] for item in batch]
73 | prefix_token_ids = [item["prefix_token_ids"] for item in batch]
74 | return MiniBatch(
75 | numbers=numbers,
76 | target=target,
77 | prefix=prefix,
78 | prefix_tokens=prefix_tokens,
79 | prefix_token_ids=prefix_token_ids,
80 | )
81 |
82 |
83 | def format_reward_function(response: str, end_token: Optional[str] = None) -> float:
84 | """
85 | Checks if the response follows the format ......
86 | """
87 | # Strip end token if present
88 | if end_token and response.endswith(end_token):
89 | response = response[: -len(end_token)]
90 |
91 | think_regex = r".*?<\/think>"
92 | answer_regex = r".*?<\/answer>"
93 | full_format_regex = r"^.*?<\/think>\n.*?<\/answer>$"
94 |
95 | think_match = re.search(think_regex, response, re.DOTALL)
96 | answer_match = re.search(answer_regex, response, re.DOTALL)
97 | full_format_match = re.match(full_format_regex, response, re.DOTALL)
98 |
99 | if full_format_match:
100 | return 1.0
101 |
102 | reward = 0.0
103 |
104 | if think_match:
105 | reward += 0.1
106 |
107 | if answer_match:
108 | reward += 0.5
109 |
110 | return reward
111 |
112 |
113 | def answer_reward_function(
114 | response: str, numbers: List[int] = None, target: int = None
115 | ) -> float:
116 | """
117 | Checks if the answer uses all numbers exactly once and evaluates to the target
118 | """
119 | answer_regex = r"(.*?)<\/answer>"
120 | answer_match = re.search(answer_regex, response, re.DOTALL)
121 | if not answer_match:
122 | return 0.0
123 |
124 | answer_content = answer_match.group(1)
125 | if not answer_content:
126 | return 0.0
127 |
128 | allowed_chars = r"^[0-9+\-*/() ]+$"
129 | if not re.match(allowed_chars, answer_content):
130 | return 0.0
131 |
132 | # Check if the answer uses all numbers exactly once
133 | used_numbers = [int(n) for n in re.findall(r"\d+", answer_content)]
134 | if sorted(used_numbers) != sorted(numbers):
135 | return 0.0
136 |
137 | # Check if the answer evaluates to the target
138 | try:
139 | result = eval(answer_content, {"__builtins__": None}, {})
140 | if abs(float(result) - float(target)) < 1e-5:
141 | return 1.0
142 | except:
143 | pass
144 |
145 | return 0.0
146 |
147 |
148 | def reward_function(
149 | response: str,
150 | numbers: List[int] = None,
151 | target: int = None,
152 | end_token: str = None,
153 | ) -> Dict[str, Any]:
154 | """Reward function for Countdown Tasks.
155 |
156 | Total reward = 0.1 * format_reward + answer_reward
157 | """
158 | format_reward = format_reward_function("" + response, end_token)
159 | answer_reward = answer_reward_function(response, numbers, target)
160 | return {
161 | "reward": format_reward * 0.1 + answer_reward,
162 | "reward_info": {
163 | "format_reward": format_reward,
164 | "answer_reward": answer_reward,
165 | },
166 | }
167 |
--------------------------------------------------------------------------------
/data_types.py:
--------------------------------------------------------------------------------
1 | from dataclasses import dataclass
2 | from typing import Dict, List
3 |
4 |
5 | @dataclass
6 | class Episode:
7 | """Store all relevant information of an episode."""
8 |
9 | prefix: str
10 | text: str
11 | prefix_token_ids: List[int]
12 | prefix_tokens: List[str]
13 | generated_token_ids: List[int]
14 | is_finished: bool
15 | reward: float
16 | reward_info: Dict[str, float]
17 |
18 |
19 | @dataclass
20 | class MiniBatch:
21 | """Batch of data for each training step."""
22 |
23 | prefix: List[str]
24 | prefix_tokens: List[List[str]]
25 | prefix_token_ids: List[List[int]]
26 | numbers: List[List[int]]
27 | target: List[int]
28 |
--------------------------------------------------------------------------------
/grpo.py:
--------------------------------------------------------------------------------
1 | import dataclasses
2 | import gc
3 | import math
4 | from collections import defaultdict
5 | from typing import Callable, List
6 |
7 | import numpy as np
8 | import torch
9 |
10 | from data_types import Episode, MiniBatch
11 | from qwen2_model import Transformer
12 | from tokenizer import Tokenizer
13 |
14 |
15 | @torch.no_grad()
16 | def rollout(
17 | model: Transformer,
18 | batch: MiniBatch,
19 | tokenizer: Tokenizer,
20 | max_gen_len: int,
21 | num_answer_per_question: int,
22 | reward_function: Callable,
23 | device: torch.device,
24 | dtype: torch.dtype,
25 | ) -> List[Episode]:
26 | end_token = tokenizer.eos_token
27 | end_token_id = tokenizer.eos_token_id
28 | pad_token_id = tokenizer.pad_token_id
29 | prefix_token_ids = batch.prefix_token_ids
30 | bsz = len(batch.prefix) * num_answer_per_question
31 | min_prompt_len = min(len(t) for t in prefix_token_ids)
32 | max_prompt_len = max(len(t) for t in prefix_token_ids)
33 | total_len = max_gen_len + max_prompt_len
34 | model.init_kv_cache(
35 | max_batch_size=bsz,
36 | max_seq_len=total_len,
37 | device=device,
38 | dtype=dtype,
39 | )
40 | tokens = torch.full((bsz, total_len), pad_token_id, dtype=torch.long, device=device)
41 | for k, t in enumerate(prefix_token_ids):
42 | offset = k * num_answer_per_question
43 | for i in range(num_answer_per_question):
44 | tokens[offset + i, : len(t)] = torch.tensor(
45 | t, dtype=torch.long, device=device
46 | )
47 |
48 | prev_pos = 0
49 | input_text_mask = tokens != pad_token_id
50 | assert min_prompt_len < total_len
51 | is_finished = torch.zeros((bsz,), dtype=torch.bool, device=device)
52 |
53 | for cur_pos in range(min_prompt_len, total_len):
54 | print(
55 | f"\r* Generating trajectories: {cur_pos-min_prompt_len:>4d}/{total_len-min_prompt_len:>4d}",
56 | flush=True,
57 | end="",
58 | )
59 | with torch.autocast(device_type=device.type, dtype=dtype):
60 | logits = model.inference(tokens[:, prev_pos:cur_pos], prev_pos)
61 | probs = torch.softmax(logits[:, -1], dim=-1)
62 | next_token = torch.multinomial(probs, num_samples=1)
63 | next_token = next_token.reshape(-1)
64 | next_token = torch.where(
65 | input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
66 | )
67 | # if an rollout is finished, we fill the rest of the tokens with pad_token_id
68 | next_token = torch.where(is_finished, pad_token_id, next_token)
69 | tokens[:, cur_pos] = next_token
70 | if end_token_id is not None:
71 | is_end_token = next_token == end_token_id
72 | is_generated_token = ~input_text_mask[:, cur_pos]
73 | is_finished = is_finished | (is_end_token & is_generated_token)
74 | prev_pos = cur_pos
75 | if is_finished.all():
76 | break
77 | model.del_kv_cache()
78 | gc.collect()
79 | torch.cuda.empty_cache()
80 | is_finished_list = is_finished.tolist()
81 | tokens_list = tokens.tolist()
82 |
83 | # prepare the output episodes
84 | episodes = []
85 | for i in range(bsz // num_answer_per_question):
86 | for j in range(num_answer_per_question):
87 | idx = i * num_answer_per_question + j
88 | generated_token_ids = tokens_list[idx][len(batch.prefix_token_ids[i]) :]
89 | # remove padding tokens
90 | if pad_token_id in generated_token_ids:
91 | generated_token_ids = generated_token_ids[
92 | : generated_token_ids.index(pad_token_id)
93 | ]
94 | generated_text = tokenizer.detokenize(generated_token_ids)
95 | rewards = reward_function(
96 | response=generated_text,
97 | numbers=batch.numbers[i],
98 | target=batch.target[i],
99 | end_token=end_token,
100 | )
101 | episode = Episode(
102 | prefix=batch.prefix[i],
103 | text=batch.prefix[i] + generated_text,
104 | prefix_token_ids=batch.prefix_token_ids[i],
105 | prefix_tokens=batch.prefix_tokens[i],
106 | generated_token_ids=generated_token_ids,
107 | is_finished=is_finished_list[idx],
108 | reward=rewards["reward"],
109 | reward_info=rewards["reward_info"],
110 | )
111 | episodes.append(episode)
112 | # clear the output line
113 | print("\r", end=" " * 100, flush=True)
114 | return episodes
115 |
116 |
117 | def normalize_rewards_per_group(episodes: List[Episode]) -> List[Episode]:
118 | """Normalize rewards per group. A group is defined by the prefix."""
119 | groups = defaultdict(list)
120 | for episode in episodes:
121 | groups[tuple(episode.prefix)].append(episode)
122 | output = []
123 | for group in groups.values():
124 | group_rewards = [item.reward for item in group]
125 | mean_reward = np.mean(group_rewards)
126 | std_reward = np.std(group_rewards)
127 | for episode in group:
128 | normalized_reward = (episode.reward - mean_reward) / (std_reward + 1e-4)
129 | episode = dataclasses.replace(episode, reward=normalized_reward)
130 | output.append(episode)
131 | return output
132 |
133 |
134 | def compute_entropy(logits: torch.Tensor) -> torch.Tensor:
135 | probs = torch.nn.functional.softmax(logits, dim=-1)
136 | entropy = torch.logsumexp(logits, dim=-1) - torch.sum(probs * logits, dim=-1)
137 | return entropy
138 |
139 |
140 | def update_policy(
141 | model,
142 | optimizer,
143 | episodes: List[Episode],
144 | micro_batch_size: int,
145 | pad_token_id: int,
146 | max_grad_norm: float,
147 | device: torch.device,
148 | dtype: torch.dtype,
149 | ):
150 | """Update the policy using the GRPO algorithm."""
151 | episodes = normalize_rewards_per_group(episodes)
152 | # sort episodes by token length for efficient (micro-)batching
153 | episodes.sort(key=lambda x: len(x.prefix_token_ids) + len(x.generated_token_ids))
154 | num_micro_batches = math.ceil(len(episodes) / micro_batch_size)
155 | num_target_tokens = sum(len(episode.generated_token_ids) for episode in episodes)
156 | entropy = 0.0
157 |
158 | for i in range(0, len(episodes), micro_batch_size):
159 | print(
160 | f"\r* Computing policy gradient: {i:>2d}/{len(episodes):>2d}",
161 | flush=True,
162 | end="",
163 | )
164 | j = min(i + micro_batch_size, len(episodes))
165 | batch_episodes = episodes[i:j]
166 | batch_lengths = [
167 | len(episode.prefix_token_ids) + len(episode.generated_token_ids)
168 | for episode in batch_episodes
169 | ]
170 | batch_max_length = max(batch_lengths)
171 | batch_token_ids = [
172 | episode.prefix_token_ids
173 | + episode.generated_token_ids
174 | + [pad_token_id] * (batch_max_length - batch_lengths[i])
175 | for i, episode in enumerate(batch_episodes)
176 | ]
177 | batch_masks = [
178 | [0] * len(episode.prefix_token_ids)
179 | + [1] * len(episode.generated_token_ids)
180 | + [0] * (batch_max_length - batch_lengths[i])
181 | for i, episode in enumerate(batch_episodes)
182 | ]
183 | batch_advantages = [episode.reward for episode in batch_episodes]
184 | batch_token_ids = torch.tensor(batch_token_ids, device=device, dtype=torch.long)
185 | batch_masks = torch.tensor(batch_masks, device=device, dtype=torch.bool)
186 | batch_advantages = torch.tensor(
187 | batch_advantages, device=device, dtype=torch.float32
188 | )
189 |
190 | with torch.autocast(device_type=device.type, dtype=dtype):
191 | input_token_ids = batch_token_ids[:, :-1]
192 | target_token_ids = batch_token_ids[:, 1:]
193 | target_masks = batch_masks[:, 1:]
194 | logits = model.forward(input_token_ids).float()
195 |
196 | log_probs = -torch.nn.functional.cross_entropy(
197 | logits.reshape(-1, logits.size(-1)),
198 | target_token_ids.reshape(-1),
199 | ignore_index=pad_token_id,
200 | reduction="none",
201 | ).reshape(input_token_ids.shape[0], -1)
202 |
203 | with torch.no_grad():
204 | token_entropy = compute_entropy(logits)
205 | entropy = entropy + (token_entropy * target_masks).sum() / num_target_tokens
206 |
207 | obj = log_probs * batch_advantages[:, None]
208 | # per-token objective
209 | obj = (obj * target_masks).sum() / num_target_tokens
210 | loss = -obj
211 | loss.backward()
212 |
213 | # update the policy
214 | grad_norm = torch.nn.utils.clip_grad_norm_(
215 | model.parameters(), max_norm=max_grad_norm
216 | )
217 | optimizer.step()
218 | optimizer.zero_grad(set_to_none=True)
219 | return {
220 | "loss": loss.item(),
221 | "grad_norm": grad_norm.item(),
222 | "entropy": entropy.item(),
223 | }
224 |
--------------------------------------------------------------------------------
/optimizer.py:
--------------------------------------------------------------------------------
1 | import math
2 |
3 | import torch
4 | from torch.optim import AdamW
5 |
6 |
7 | class MemoryEfficientAdamW(AdamW):
8 | """
9 | Memory Efficient AdamW optimizer that keeps parameters and gradients on GPU
10 | but optimizer states on CPU when enabled.
11 | When disabled, behaves exactly like standard AdamW.
12 | """
13 |
14 | def __init__(
15 | self,
16 | params,
17 | lr=1e-3,
18 | betas=(0.9, 0.999),
19 | eps=1e-8,
20 | weight_decay=1e-2,
21 | amsgrad=False,
22 | pin_memory=True,
23 | enabled=True,
24 | ):
25 | super(MemoryEfficientAdamW, self).__init__(
26 | params,
27 | lr=lr,
28 | betas=betas,
29 | eps=eps,
30 | weight_decay=weight_decay,
31 | amsgrad=amsgrad,
32 | )
33 | self.pin_memory = pin_memory
34 | self.enabled = enabled
35 |
36 | @torch.no_grad()
37 | def step(self, closure=None):
38 | """Performs a single optimization step."""
39 | if not self.enabled:
40 | # Use the parent AdamW implementation when disabled
41 | return super(MemoryEfficientAdamW, self).step(closure)
42 |
43 | loss = None
44 | if closure is not None:
45 | with torch.enable_grad():
46 | loss = closure()
47 |
48 | for group in self.param_groups:
49 | params_with_grad = []
50 | grads = []
51 | exp_avgs = []
52 | exp_avg_sqs = []
53 | max_exp_avg_sqs = []
54 | state_steps = []
55 | beta1, beta2 = group["betas"]
56 |
57 | for p in group["params"]:
58 | if p.grad is None:
59 | continue
60 |
61 | params_with_grad.append(p)
62 | grads.append(p.grad)
63 |
64 | # Initialize state if needed
65 | state = self.state[p]
66 | if len(state) == 0:
67 | state["step"] = 0
68 | # Store optimizer states on CPU with pinned memory
69 | device = "cpu"
70 | pin_memory = self.pin_memory
71 | dtype = torch.float32
72 |
73 | state["exp_avg"] = torch.zeros_like(
74 | p.data, device=device, pin_memory=pin_memory, dtype=dtype
75 | )
76 | state["exp_avg_sq"] = torch.zeros_like(
77 | p.data, device=device, pin_memory=pin_memory, dtype=dtype
78 | )
79 | if group["amsgrad"]:
80 | state["max_exp_avg_sq"] = torch.zeros_like(
81 | p.data, device=device, pin_memory=pin_memory, dtype=dtype
82 | )
83 |
84 | # Get state values
85 | exp_avgs.append(state["exp_avg"])
86 | exp_avg_sqs.append(state["exp_avg_sq"])
87 |
88 | if group["amsgrad"]:
89 | max_exp_avg_sqs.append(state["max_exp_avg_sq"])
90 |
91 | state["step"] += 1
92 | state_steps.append(state["step"])
93 |
94 | # Process all parameters in the group
95 | self._memory_efficient_update(
96 | params_with_grad,
97 | grads,
98 | exp_avgs,
99 | exp_avg_sqs,
100 | max_exp_avg_sqs,
101 | state_steps,
102 | amsgrad=group["amsgrad"],
103 | beta1=beta1,
104 | beta2=beta2,
105 | lr=group["lr"],
106 | weight_decay=group["weight_decay"],
107 | eps=group["eps"],
108 | )
109 |
110 | return loss
111 |
112 | def _memory_efficient_update(
113 | self,
114 | params,
115 | grads,
116 | exp_avgs,
117 | exp_avg_sqs,
118 | max_exp_avg_sqs,
119 | state_steps,
120 | amsgrad,
121 | beta1,
122 | beta2,
123 | lr,
124 | weight_decay,
125 | eps,
126 | ):
127 | """
128 | Performs the AdamW parameter update on GPU with CPU-stored optimizer states.
129 | Uses pinned memory for efficient CPU-to-GPU transfer of optimizer states.
130 | """
131 | for i, param in enumerate(params):
132 | grad = grads[i]
133 | param_device = param.device
134 |
135 | # Access optimizer states - they'll transfer efficiently due to pin_memory
136 | exp_avg = exp_avgs[i].to(param_device, non_blocking=True)
137 | exp_avg_sq = exp_avg_sqs[i].to(param_device, non_blocking=True)
138 |
139 | step = state_steps[i]
140 |
141 | # Decay the first and second moment running averages
142 | exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
143 | exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
144 |
145 | if amsgrad:
146 | # Access max_exp_avg_sq - transfers efficiently with pin_memory
147 | max_exp_avg_sq = max_exp_avg_sqs[i].to(param_device, non_blocking=True)
148 | # Maintains the maximum of all 2nd moment running avg. till now
149 | torch.maximum(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
150 | # Use the max for normalizing running avg of gradient
151 | denom = max_exp_avg_sq.sqrt().add_(eps)
152 | # Store back to CPU
153 | max_exp_avg_sqs[i].copy_(max_exp_avg_sq, non_blocking=True)
154 | else:
155 | denom = exp_avg_sq.sqrt().add_(eps)
156 |
157 | bias_correction1 = 1 - beta1**step
158 | bias_correction2 = 1 - beta2**step
159 | step_size = lr * math.sqrt(bias_correction2) / bias_correction1
160 |
161 | # Apply weight decay directly to the parameter (AdamW)
162 | if weight_decay != 0:
163 | param.mul_(1 - lr * weight_decay)
164 |
165 | # Update parameters (directly on GPU)
166 | param.addcdiv_(exp_avg, denom, value=-step_size)
167 |
168 | # Store optimizer states back to CPU
169 | exp_avgs[i].copy_(exp_avg, non_blocking=True)
170 | exp_avg_sqs[i].copy_(exp_avg_sq, non_blocking=True)
171 |
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [project]
2 | name = "GRPO-Zero"
3 | version = "0.2.0"
4 | description = "GRPO from scratch."
5 | readme = "README.md"
6 | requires-python = ">=3.11"
7 | dependencies = [
8 | "jinja2>=3.1.6",
9 | "pandas>=2.2.3",
10 | "pyarrow>=19.0.1",
11 | "pyyaml>=6.0.2",
12 | "safetensors>=0.5.3",
13 | "tensorboard>=2.19.0",
14 | "tokenizers>=0.21.1",
15 | "torch>=2.6.0",
16 | ]
17 |
18 | [dependency-groups]
19 | dev = [
20 | "pytype>=2024.10.11",
21 | ]
22 |
--------------------------------------------------------------------------------
/qwen2_model.py:
--------------------------------------------------------------------------------
1 | import json
2 | from dataclasses import dataclass
3 | from pathlib import Path
4 | from typing import Optional, Tuple, Union
5 |
6 | import torch
7 | import torch.nn.functional as F
8 | from torch import nn
9 |
10 |
11 | @dataclass
12 | class Qwen2Config:
13 | attention_dropout: float = 0.0
14 | bos_token_id: int = 151643
15 | eos_token_id: int = 151645
16 | hidden_act: str = "silu"
17 | hidden_size: int = 2048
18 | initializer_range: float = 0.02
19 | intermediate_size: int = 11008
20 | max_position_embeddings: int = 32768
21 | max_window_layers: int = 70
22 | model_type: str = "qwen2"
23 | num_attention_heads: int = 16
24 | num_hidden_layers: int = 36
25 | num_key_value_heads: int = 2
26 | rms_norm_eps: float = 1e-06
27 | rope_theta: float = 1000000.0
28 | sliding_window: int = 32768
29 | tie_word_embeddings: bool = True
30 | torch_dtype: str = "bfloat16"
31 | use_cache: bool = True
32 | use_sliding_window: bool = False
33 | vocab_size: int = 151936
34 |
35 |
36 | class RMSNorm(torch.nn.Module):
37 | def __init__(self, dim: int, eps: float = 1e-6):
38 | super().__init__()
39 | self.eps = eps
40 | self.weight = nn.Parameter(torch.ones(dim))
41 |
42 | def _norm(self, x):
43 | return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
44 |
45 | def forward(self, x):
46 | input_dtype = x.dtype
47 | x = x.to(torch.float32)
48 | x = self._norm(x).type_as(x)
49 | x = self.weight * x.to(input_dtype)
50 | return x
51 |
52 |
53 | def rotate_half(x):
54 | """Rotates half the hidden dims of the input."""
55 | x1 = x[..., : x.shape[-1] // 2]
56 | x2 = x[..., x.shape[-1] // 2 :]
57 | return torch.cat((-x2, x1), dim=-1)
58 |
59 |
60 | def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=2):
61 | cos = cos.unsqueeze(unsqueeze_dim)
62 | sin = sin.unsqueeze(unsqueeze_dim)
63 | q_embed = (q * cos) + (rotate_half(q) * sin)
64 | k_embed = (k * cos) + (rotate_half(k) * sin)
65 | return q_embed, k_embed
66 |
67 |
68 | class Attention(nn.Module):
69 | def __init__(self, args: Qwen2Config):
70 | super().__init__()
71 | self.n_kv_heads = (
72 | args.num_attention_heads
73 | if args.num_key_value_heads is None
74 | else args.num_key_value_heads
75 | )
76 | self.n_heads = args.num_attention_heads
77 | self.n_kv_heads = self.n_kv_heads
78 | self.n_rep = self.n_heads // self.n_kv_heads
79 | self.head_dim = args.hidden_size // args.num_attention_heads
80 |
81 | self.q_proj = nn.Linear(
82 | args.hidden_size,
83 | args.num_attention_heads * self.head_dim,
84 | bias=True,
85 | )
86 | self.k_proj = nn.Linear(
87 | args.hidden_size,
88 | args.num_key_value_heads * self.head_dim,
89 | bias=True,
90 | )
91 | self.v_proj = nn.Linear(
92 | args.hidden_size,
93 | args.num_key_value_heads * self.head_dim,
94 | bias=True,
95 | )
96 | self.o_proj = nn.Linear(
97 | args.num_attention_heads * self.head_dim,
98 | args.hidden_size,
99 | bias=False,
100 | )
101 | self.args = args
102 |
103 | def init_kv_cache(
104 | self,
105 | max_batch_size: int,
106 | max_seq_len: int,
107 | dtype: torch.dtype,
108 | device: torch.device,
109 | ):
110 | cache_shape = (max_batch_size, max_seq_len, self.n_kv_heads, self.head_dim)
111 | cache_k = torch.zeros(cache_shape, dtype=dtype, device=device)
112 | cache_v = torch.zeros(cache_shape, dtype=dtype, device=device)
113 | self.register_buffer("cache_k", cache_k, persistent=False)
114 | self.register_buffer("cache_v", cache_v, persistent=False)
115 |
116 | def del_kv_cache(self):
117 | self.cache_k = None
118 | self.cache_v = None
119 |
120 | def forward(
121 | self,
122 | x: torch.Tensor,
123 | pos_embed: Tuple[torch.Tensor, torch.Tensor],
124 | start_pos: Optional[Union[int, torch.Tensor]] = None,
125 | ):
126 | bsz, seqlen, _ = x.shape
127 | xq, xk, xv = self.q_proj(x), self.k_proj(x), self.v_proj(x)
128 | xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
129 | xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
130 | xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
131 |
132 | cos, sin = pos_embed
133 | xq, xk = apply_rotary_pos_emb(xq, xk, cos, sin, unsqueeze_dim=2)
134 | if start_pos is not None:
135 | # inference mode
136 | end_pos = start_pos + seqlen
137 | self.cache_k[:bsz, start_pos:end_pos, :, :] = xk
138 | self.cache_v[:bsz, start_pos:end_pos, :, :] = xv
139 | output = torch.nn.functional.scaled_dot_product_attention(
140 | query=xq.transpose(1, 2),
141 | key=self.cache_k[:bsz, :end_pos].transpose(1, 2),
142 | value=self.cache_v[:bsz, :end_pos].transpose(1, 2),
143 | is_causal=True if seqlen > 1 else False,
144 | enable_gqa=True,
145 | ).transpose(1, 2)
146 | else:
147 | # training mode
148 | output = torch.nn.functional.scaled_dot_product_attention(
149 | query=xq.transpose(1, 2),
150 | key=xk.transpose(1, 2),
151 | value=xv.transpose(1, 2),
152 | is_causal=True,
153 | enable_gqa=True,
154 | ).transpose(1, 2)
155 | output = output.reshape(bsz, seqlen, -1)
156 | return self.o_proj(output)
157 |
158 |
159 | class FeedForward(nn.Module):
160 | def __init__(
161 | self,
162 | dim: int,
163 | intermediate_size: int,
164 | ):
165 | super().__init__()
166 | self.up_proj = nn.Linear(dim, intermediate_size, bias=False)
167 | self.down_proj = nn.Linear(intermediate_size, dim, bias=False)
168 | self.gate_proj = nn.Linear(dim, intermediate_size, bias=False)
169 |
170 | def forward(self, x):
171 | x = self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x))
172 | return x
173 |
174 |
175 | class TransformerBlock(nn.Module):
176 | def __init__(self, layer_id: int, args: Qwen2Config):
177 | super().__init__()
178 | self.n_heads = args.num_attention_heads
179 | self.dim = args.hidden_size
180 | self.head_dim = args.hidden_size // args.num_attention_heads
181 | self.self_attn = Attention(args)
182 | self.mlp = FeedForward(
183 | dim=args.hidden_size,
184 | intermediate_size=args.intermediate_size,
185 | )
186 | self.layer_id = layer_id
187 | self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
188 | self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
189 |
190 | def forward(
191 | self,
192 | x: torch.Tensor,
193 | pos_embed: Tuple[torch.Tensor, torch.Tensor],
194 | start_pos: Optional[Union[int, torch.Tensor]] = None,
195 | ):
196 | h = x + self.self_attn(self.input_layernorm(x), pos_embed, start_pos=start_pos)
197 | out = h + self.mlp(self.post_attention_layernorm(h))
198 | return out
199 |
200 |
201 | class Qwen2RotaryEmbedding(nn.Module):
202 | def __init__(self, config: Qwen2Config, device: torch.device):
203 | super().__init__()
204 | self.config = config
205 | base = config.rope_theta
206 | dim = config.hidden_size // config.num_attention_heads
207 | with torch.autocast(device_type=device.type, dtype=torch.float32):
208 | inv_freq = 1.0 / (
209 | base
210 | ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim)
211 | )
212 | self.register_buffer("inv_freq", inv_freq, persistent=False)
213 |
214 | @torch.no_grad()
215 | def forward(self, x, pos):
216 | inv_freq = self.inv_freq[None, :, None].float().expand(pos.shape[0], -1, 1)
217 | pos = pos[:, None, :].float()
218 | device_type = x.device.type
219 | with torch.autocast(device_type=device_type, enabled=False):
220 | freqs = (inv_freq.float().to(x.device) @ pos.float()).transpose(1, 2)
221 | emb = torch.cat((freqs, freqs), dim=-1)
222 | cos = emb.cos()
223 | sin = emb.sin()
224 | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
225 |
226 |
227 | class Transformer(nn.Module):
228 | def __init__(self, params: Qwen2Config, device: torch.device):
229 | super().__init__()
230 | self.params = params
231 | self.vocab_size = params.vocab_size
232 | self.n_layers = params.num_hidden_layers
233 |
234 | self.embed_tokens = torch.nn.Embedding(params.vocab_size, params.hidden_size)
235 | with torch.device(device):
236 | self.rotary_emb = Qwen2RotaryEmbedding(config=params, device=device)
237 |
238 | self.layers = torch.nn.ModuleList()
239 | for layer_id in range(params.num_hidden_layers):
240 | self.layers.append(TransformerBlock(layer_id, params))
241 |
242 | self.norm = RMSNorm(params.hidden_size, eps=params.rms_norm_eps)
243 | if not params.tie_word_embeddings:
244 | self.lm_head = nn.Linear(params.hidden_size, params.vocab_size, bias=False)
245 |
246 | def output_proj(self, x):
247 | if self.params.tie_word_embeddings:
248 | return x @ self.embed_tokens.weight.T
249 | else:
250 | return self.lm_head(x)
251 |
252 | def forward(self, tokens: torch.Tensor):
253 | _bsz, seqlen = tokens.shape
254 | h = self.embed_tokens(tokens)
255 | pos = torch.arange(0, seqlen, device=tokens.device, dtype=torch.int32)
256 | pos_emb = self.rotary_emb(h, pos[None, :])
257 |
258 | pipe = []
259 | for layer in self.layers:
260 | pipe.append(lambda x, layer=layer: layer(x, pos_emb))
261 | pipe.append(self.norm.forward)
262 | pipe.append(self.output_proj)
263 | return torch.utils.checkpoint.checkpoint_sequential(
264 | pipe, len(pipe), h, use_reentrant=False
265 | )
266 |
267 | def inference(self, tokens: torch.Tensor, start_pos: Union[int, torch.Tensor]):
268 | _bsz, seqlen = tokens.shape
269 | del _bsz
270 | h = self.embed_tokens(tokens)
271 |
272 | pos = torch.arange(0, seqlen, device=tokens.device, dtype=torch.int32)[None, :]
273 | if isinstance(start_pos, torch.Tensor):
274 | pos = pos + start_pos[:, None]
275 | else: # int
276 | pos.add_(start_pos)
277 | pos_emb = self.rotary_emb(h, pos)
278 |
279 | for layer in self.layers:
280 | h = layer(h, pos_emb, start_pos=start_pos)
281 |
282 | # only need the hidden state of the last token
283 | # to predict the next token
284 | h = h[:, -1:, :]
285 | h = self.norm(h)
286 |
287 | output = self.output_proj(h)
288 | return output
289 |
290 | def init_kv_cache(
291 | self,
292 | max_batch_size: int,
293 | max_seq_len: int,
294 | device: torch.device,
295 | dtype: torch.dtype,
296 | ):
297 | for layer in self.layers:
298 | layer.self_attn.init_kv_cache(
299 | max_batch_size, max_seq_len, dtype=dtype, device=device
300 | )
301 |
302 | def del_kv_cache(self):
303 | for layer in self.layers:
304 | layer.self_attn.del_kv_cache()
305 |
306 | @classmethod
307 | def from_pretrained(cls, ckpt_path, device: torch.device):
308 | config_file = Path(ckpt_path) / "config.json"
309 | with open(config_file, "r") as f:
310 | config = json.load(f)
311 | args = Qwen2Config(
312 | attention_dropout=config["attention_dropout"],
313 | bos_token_id=config["bos_token_id"],
314 | eos_token_id=config["eos_token_id"],
315 | hidden_act=config["hidden_act"],
316 | hidden_size=config["hidden_size"],
317 | initializer_range=config["initializer_range"],
318 | intermediate_size=config["intermediate_size"],
319 | max_position_embeddings=config["max_position_embeddings"],
320 | max_window_layers=config["max_window_layers"],
321 | model_type=config["model_type"],
322 | num_hidden_layers=config["num_hidden_layers"],
323 | num_attention_heads=config["num_attention_heads"],
324 | num_key_value_heads=config["num_key_value_heads"],
325 | vocab_size=config["vocab_size"],
326 | rms_norm_eps=config["rms_norm_eps"],
327 | rope_theta=config["rope_theta"],
328 | sliding_window=config["sliding_window"],
329 | use_sliding_window=config["use_sliding_window"],
330 | use_cache=config["use_cache"],
331 | tie_word_embeddings=config["tie_word_embeddings"],
332 | torch_dtype=config["torch_dtype"],
333 | )
334 | with torch.device("meta"):
335 | model = cls(params=args, device=device)
336 |
337 | import safetensors.torch
338 |
339 | model_weight_files = sorted(Path(ckpt_path).glob("model*.safetensors"))
340 | weights = {}
341 | for file in model_weight_files:
342 | weights.update(safetensors.torch.load_file(file, device="cpu"))
343 | # remove "model." prefix from keys
344 | weights = {k.replace("model.", ""): v for k, v in weights.items()}
345 | model.load_state_dict(weights, strict=True, assign=True)
346 | return model.to(device)
347 |
--------------------------------------------------------------------------------
/tokenizer.py:
--------------------------------------------------------------------------------
1 | import json
2 | from pathlib import Path
3 | from typing import Dict, List
4 |
5 | from jinja2 import Environment
6 | from tokenizers import Encoding
7 | from tokenizers import Tokenizer as TokenizerBase
8 |
9 |
10 | class Tokenizer:
11 | """Tokenizer with chat template supported using jinja2 engine"""
12 |
13 | def __init__(self, tokenizer_path: str):
14 | super().__init__()
15 | tokenizer_config_path = Path(tokenizer_path).parent / "tokenizer_config.json"
16 | self.tokenizer_config = json.load(open(tokenizer_config_path))
17 | self.tokenizer = TokenizerBase.from_file(tokenizer_path)
18 | self.chat_template = Environment().from_string(
19 | self.tokenizer_config["chat_template"]
20 | )
21 | self.eos_token = self.tokenizer_config["eos_token"]
22 | self.eos_token_id = self.tokenizer.token_to_id(self.eos_token)
23 | self.pad_token = self.tokenizer_config["pad_token"]
24 | self.pad_token_id = self.tokenizer.token_to_id(self.pad_token)
25 |
26 | def encode_chat(self, messages: List[Dict[str, str]]) -> str:
27 | return self.chat_template.render(messages=messages, add_generation_prompt=True)
28 |
29 | def encode_chat_with_response_prompt(
30 | self, messages: List[Dict[str, str]], prompt: str
31 | ) -> str:
32 | return self.encode_chat(messages) + prompt
33 |
34 | def tokenize(self, text: str) -> Encoding:
35 | return self.tokenizer.encode(text)
36 |
37 | def detokenize(self, token_ids: List[int]) -> str:
38 | return self.tokenizer.decode(token_ids, skip_special_tokens=False)
39 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | import html
2 | import time
3 | from argparse import ArgumentParser
4 | from datetime import datetime
5 | from pathlib import Path
6 |
7 | import numpy as np
8 | import torch
9 | import yaml
10 | from torch.utils.data import DataLoader
11 | from torch.utils.tensorboard.writer import SummaryWriter
12 |
13 | from countdown_task import CountdownTasksDataset, reward_function
14 | from grpo import rollout, update_policy
15 | from optimizer import MemoryEfficientAdamW
16 | from qwen2_model import Transformer
17 | from tokenizer import Tokenizer
18 |
19 |
20 | def evaluate(model, tokenizer, device, dtype, config):
21 | test_dataset = CountdownTasksDataset(
22 | data_path=config["data"]["path"],
23 | tokenizer=tokenizer,
24 | split="test",
25 | test_size=config["data"]["test_size"],
26 | )
27 | generator = torch.Generator(device=device)
28 | # We reduce the batch size by half as we want to
29 | # generate twice as long trajectories.
30 | dataloader = DataLoader(
31 | test_dataset,
32 | shuffle=False,
33 | collate_fn=CountdownTasksDataset.collate_fn,
34 | generator=generator,
35 | batch_size=config["training"]["batch_size"] // 2,
36 | drop_last=False,
37 | )
38 | success = []
39 | for batch in dataloader:
40 | episodes = rollout(
41 | model=model,
42 | tokenizer=tokenizer,
43 | batch=batch,
44 | max_gen_len=config["training"]["max_gen_len"] * 2,
45 | num_answer_per_question=1,
46 | reward_function=reward_function,
47 | device=device,
48 | dtype=dtype,
49 | )
50 | success.extend([episode.reward_info["answer_reward"] for episode in episodes])
51 | return np.mean(success)
52 |
53 |
54 | def main(config_path: str):
55 | with open(config_path, "r") as f:
56 | config = yaml.safe_load(f)
57 |
58 | pretrained_model_path = Path(config["model"]["pretrained_model_path"])
59 | device = torch.device(config["model"]["device"])
60 | dtype_map = {
61 | "bfloat16": torch.bfloat16,
62 | "float16": torch.float16,
63 | "float32": torch.float32,
64 | }
65 | dtype = dtype_map.get(config["model"]["dtype"], torch.bfloat16)
66 | torch.set_default_device(device)
67 | torch.random.manual_seed(config["training"]["random_seed"])
68 | BATCH_SIZE = config["training"]["batch_size"]
69 | NUM_QUESTIONS_PER_BATCH = config["training"]["num_questions_per_batch"]
70 | NUM_ANSWERS_PER_QUESTION = BATCH_SIZE // NUM_QUESTIONS_PER_BATCH
71 |
72 | current_time = datetime.now().strftime(r"%Y%m%d-%H%M%S")
73 | tb_writer = SummaryWriter(log_dir=f"{config['training']['log_dir']}/{current_time}")
74 | tokenizer = Tokenizer(str(pretrained_model_path / "tokenizer.json"))
75 |
76 | train_dataset = CountdownTasksDataset(
77 | data_path=config["data"]["path"],
78 | tokenizer=tokenizer,
79 | split="train",
80 | test_size=config["data"]["test_size"],
81 | )
82 | generator = torch.Generator(device=device)
83 | train_dataloader = DataLoader(
84 | train_dataset,
85 | shuffle=True,
86 | collate_fn=CountdownTasksDataset.collate_fn,
87 | generator=generator,
88 | batch_size=NUM_QUESTIONS_PER_BATCH,
89 | )
90 |
91 | model = Transformer.from_pretrained(pretrained_model_path, device=device).train()
92 |
93 | optimizer = MemoryEfficientAdamW(
94 | model.parameters(),
95 | lr=config["training"]["learning_rate"],
96 | weight_decay=config["training"]["weight_decay"],
97 | betas=config["training"]["betas"],
98 | enabled=config["training"]["memory_efficient_adamw"],
99 | )
100 |
101 | start_time = time.time()
102 | ckpt_dir = Path(config["training"]["ckpt_dir"])
103 | ckpt_dir.mkdir(parents=True, exist_ok=True)
104 |
105 | for step, batch in enumerate(train_dataloader, start=1):
106 | episodes = rollout(
107 | model=model,
108 | tokenizer=tokenizer,
109 | batch=batch,
110 | max_gen_len=config["training"]["max_gen_len"],
111 | num_answer_per_question=NUM_ANSWERS_PER_QUESTION,
112 | reward_function=reward_function,
113 | device=device,
114 | dtype=dtype,
115 | )
116 | if config["training"]["skip_unfinished_episodes"]:
117 | episodes = [episode for episode in episodes if episode.is_finished]
118 | results = update_policy(
119 | model=model,
120 | optimizer=optimizer,
121 | episodes=episodes,
122 | micro_batch_size=config["training"]["micro_batch_size"],
123 | pad_token_id=tokenizer.pad_token_id,
124 | max_grad_norm=config["training"]["max_grad_norm"],
125 | device=device,
126 | dtype=dtype,
127 | )
128 | torch.cuda.synchronize()
129 | end_time = time.time()
130 | duration = end_time - start_time
131 | start_time = end_time
132 |
133 | # compute and log important metrics
134 | reward = [episode.reward for episode in episodes]
135 | formatted_reward = [
136 | episode.reward_info["format_reward"] for episode in episodes
137 | ]
138 | answer_reward = [episode.reward_info["answer_reward"] for episode in episodes]
139 | num_finished_episodes = sum(episode.is_finished for episode in episodes)
140 | mean_reward = np.mean(reward)
141 | std_reward = np.std(reward)
142 | success_rate = np.mean(answer_reward)
143 | format_reward = np.mean(formatted_reward)
144 | grad_norm = results["grad_norm"]
145 | entropy = results["entropy"]
146 | lr = optimizer.param_groups[0]["lr"]
147 | loss = results["loss"]
148 | mean_response_len = np.mean(
149 | [len(episode.generated_token_ids) for episode in episodes]
150 | )
151 | print(
152 | f"\rStep {step}, mean_reward: {mean_reward:.2f}, "
153 | f"train success_rate: {success_rate:.2f}, "
154 | f"grad_norm: {grad_norm:.2f}, duration: {duration:.2f}, "
155 | f"num_finished_episodes: {num_finished_episodes}, "
156 | f"mean_response_len: {mean_response_len:.2f}, "
157 | f"entropy: {entropy:.2f}"
158 | )
159 | if step % config["training"]["eval_interval"] == 0:
160 | eval_success_rate = evaluate(model, tokenizer, device, dtype, config)
161 | print(f"\rEval success rate: {eval_success_rate:.2f}" + " " * 100)
162 | tb_writer.add_scalar("success_rate/eval", eval_success_rate, step)
163 |
164 | tb_writer.add_scalar("loss", loss, step)
165 | tb_writer.add_scalar("mean_reward", mean_reward, step)
166 | tb_writer.add_scalar("std_reward", std_reward, step)
167 | tb_writer.add_scalar("success_rate/train", success_rate, step)
168 | tb_writer.add_scalar("format_reward", format_reward, step)
169 | tb_writer.add_scalar("grad_norm", grad_norm, step)
170 | tb_writer.add_scalar("duration", duration, step)
171 | tb_writer.add_scalar("num_finished_episodes", num_finished_episodes, step)
172 | tb_writer.add_scalar("learning_rate", lr, step)
173 | tb_writer.add_scalar("mean_response_len", mean_response_len, step)
174 | tb_writer.add_scalar("entropy", entropy, step)
175 | for i, episode in enumerate(episodes):
176 | # TensorBoard treats text as markdown.
177 | text = html.escape(episode.text)
178 | tb_writer.add_text(f"text_{i}", f"{text}
", step)
179 |
180 | # save checkpoint
181 | if step % config["training"]["ckpt_save_interval"] == 0:
182 | output_file = ckpt_dir / f"ckpt_{step:06d}.pt"
183 | torch.save(model.state_dict(), output_file)
184 | print(f"Saved checkpoint to {output_file}")
185 |
186 |
187 | if __name__ == "__main__":
188 | parser = ArgumentParser()
189 | parser.add_argument("--config", type=str, default="config.yaml")
190 | args = parser.parse_args()
191 | main(args.config)
192 |
--------------------------------------------------------------------------------
/uv.lock:
--------------------------------------------------------------------------------
1 | version = 1
2 | revision = 1
3 | requires-python = ">=3.11"
4 | resolution-markers = [
5 | "python_full_version >= '3.12'",
6 | "python_full_version < '3.12'",
7 | ]
8 |
9 | [[package]]
10 | name = "absl-py"
11 | version = "2.2.2"
12 | source = { registry = "https://pypi.org/simple" }
13 | sdist = { url = "https://files.pythonhosted.org/packages/b5/f0/e6342091061ed3a46aadc116b13edd7bb5249c3ab1b3ef07f24b0c248fc3/absl_py-2.2.2.tar.gz", hash = "sha256:bf25b2c2eed013ca456918c453d687eab4e8309fba81ee2f4c1a6aa2494175eb", size = 119982 }
14 | wheels = [
15 | { url = "https://files.pythonhosted.org/packages/f6/d4/349f7f4bd5ea92dab34f5bb0fe31775ef6c311427a14d5a5b31ecb442341/absl_py-2.2.2-py3-none-any.whl", hash = "sha256:e5797bc6abe45f64fd95dc06394ca3f2bedf3b5d895e9da691c9ee3397d70092", size = 135565 },
16 | ]
17 |
18 | [[package]]
19 | name = "attrs"
20 | version = "25.3.0"
21 | source = { registry = "https://pypi.org/simple" }
22 | sdist = { url = "https://files.pythonhosted.org/packages/5a/b0/1367933a8532ee6ff8d63537de4f1177af4bff9f3e829baf7331f595bb24/attrs-25.3.0.tar.gz", hash = "sha256:75d7cefc7fb576747b2c81b4442d4d4a1ce0900973527c011d1030fd3bf4af1b", size = 812032 }
23 | wheels = [
24 | { url = "https://files.pythonhosted.org/packages/77/06/bb80f5f86020c4551da315d78b3ab75e8228f89f0162f2c3a819e407941a/attrs-25.3.0-py3-none-any.whl", hash = "sha256:427318ce031701fea540783410126f03899a97ffc6f61596ad581ac2e40e3bc3", size = 63815 },
25 | ]
26 |
27 | [[package]]
28 | name = "certifi"
29 | version = "2025.1.31"
30 | source = { registry = "https://pypi.org/simple" }
31 | sdist = { url = "https://files.pythonhosted.org/packages/1c/ab/c9f1e32b7b1bf505bf26f0ef697775960db7932abeb7b516de930ba2705f/certifi-2025.1.31.tar.gz", hash = "sha256:3d5da6925056f6f18f119200434a4780a94263f10d1c21d032a6f6b2baa20651", size = 167577 }
32 | wheels = [
33 | { url = "https://files.pythonhosted.org/packages/38/fc/bce832fd4fd99766c04d1ee0eead6b0ec6486fb100ae5e74c1d91292b982/certifi-2025.1.31-py3-none-any.whl", hash = "sha256:ca78db4565a652026a4db2bcdf68f2fb589ea80d0be70e03929ed730746b84fe", size = 166393 },
34 | ]
35 |
36 | [[package]]
37 | name = "charset-normalizer"
38 | version = "3.4.1"
39 | source = { registry = "https://pypi.org/simple" }
40 | sdist = { url = "https://files.pythonhosted.org/packages/16/b0/572805e227f01586461c80e0fd25d65a2115599cc9dad142fee4b747c357/charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3", size = 123188 }
41 | wheels = [
42 | { url = "https://files.pythonhosted.org/packages/72/80/41ef5d5a7935d2d3a773e3eaebf0a9350542f2cab4eac59a7a4741fbbbbe/charset_normalizer-3.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8bfa33f4f2672964266e940dd22a195989ba31669bd84629f05fab3ef4e2d125", size = 194995 },
43 | { url = "https://files.pythonhosted.org/packages/7a/28/0b9fefa7b8b080ec492110af6d88aa3dea91c464b17d53474b6e9ba5d2c5/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28bf57629c75e810b6ae989f03c0828d64d6b26a5e205535585f96093e405ed1", size = 139471 },
44 | { url = "https://files.pythonhosted.org/packages/71/64/d24ab1a997efb06402e3fc07317e94da358e2585165930d9d59ad45fcae2/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f08ff5e948271dc7e18a35641d2f11a4cd8dfd5634f55228b691e62b37125eb3", size = 149831 },
45 | { url = "https://files.pythonhosted.org/packages/37/ed/be39e5258e198655240db5e19e0b11379163ad7070962d6b0c87ed2c4d39/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:234ac59ea147c59ee4da87a0c0f098e9c8d169f4dc2a159ef720f1a61bbe27cd", size = 142335 },
46 | { url = "https://files.pythonhosted.org/packages/88/83/489e9504711fa05d8dde1574996408026bdbdbd938f23be67deebb5eca92/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd4ec41f914fa74ad1b8304bbc634b3de73d2a0889bd32076342a573e0779e00", size = 143862 },
47 | { url = "https://files.pythonhosted.org/packages/c6/c7/32da20821cf387b759ad24627a9aca289d2822de929b8a41b6241767b461/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eea6ee1db730b3483adf394ea72f808b6e18cf3cb6454b4d86e04fa8c4327a12", size = 145673 },
48 | { url = "https://files.pythonhosted.org/packages/68/85/f4288e96039abdd5aeb5c546fa20a37b50da71b5cf01e75e87f16cd43304/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c96836c97b1238e9c9e3fe90844c947d5afbf4f4c92762679acfe19927d81d77", size = 140211 },
49 | { url = "https://files.pythonhosted.org/packages/28/a3/a42e70d03cbdabc18997baf4f0227c73591a08041c149e710045c281f97b/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d86f7aff21ee58f26dcf5ae81a9addbd914115cdebcbb2217e4f0ed8982e146", size = 148039 },
50 | { url = "https://files.pythonhosted.org/packages/85/e4/65699e8ab3014ecbe6f5c71d1a55d810fb716bbfd74f6283d5c2aa87febf/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:09b5e6733cbd160dcc09589227187e242a30a49ca5cefa5a7edd3f9d19ed53fd", size = 151939 },
51 | { url = "https://files.pythonhosted.org/packages/b1/82/8e9fe624cc5374193de6860aba3ea8070f584c8565ee77c168ec13274bd2/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:5777ee0881f9499ed0f71cc82cf873d9a0ca8af166dfa0af8ec4e675b7df48e6", size = 149075 },
52 | { url = "https://files.pythonhosted.org/packages/3d/7b/82865ba54c765560c8433f65e8acb9217cb839a9e32b42af4aa8e945870f/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:237bdbe6159cff53b4f24f397d43c6336c6b0b42affbe857970cefbb620911c8", size = 144340 },
53 | { url = "https://files.pythonhosted.org/packages/b5/b6/9674a4b7d4d99a0d2df9b215da766ee682718f88055751e1e5e753c82db0/charset_normalizer-3.4.1-cp311-cp311-win32.whl", hash = "sha256:8417cb1f36cc0bc7eaba8ccb0e04d55f0ee52df06df3ad55259b9a323555fc8b", size = 95205 },
54 | { url = "https://files.pythonhosted.org/packages/1e/ab/45b180e175de4402dcf7547e4fb617283bae54ce35c27930a6f35b6bef15/charset_normalizer-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:d7f50a1f8c450f3925cb367d011448c39239bb3eb4117c36a6d354794de4ce76", size = 102441 },
55 | { url = "https://files.pythonhosted.org/packages/0a/9a/dd1e1cdceb841925b7798369a09279bd1cf183cef0f9ddf15a3a6502ee45/charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545", size = 196105 },
56 | { url = "https://files.pythonhosted.org/packages/d3/8c/90bfabf8c4809ecb648f39794cf2a84ff2e7d2a6cf159fe68d9a26160467/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7", size = 140404 },
57 | { url = "https://files.pythonhosted.org/packages/ad/8f/e410d57c721945ea3b4f1a04b74f70ce8fa800d393d72899f0a40526401f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757", size = 150423 },
58 | { url = "https://files.pythonhosted.org/packages/f0/b8/e6825e25deb691ff98cf5c9072ee0605dc2acfca98af70c2d1b1bc75190d/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa", size = 143184 },
59 | { url = "https://files.pythonhosted.org/packages/3e/a2/513f6cbe752421f16d969e32f3583762bfd583848b763913ddab8d9bfd4f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d", size = 145268 },
60 | { url = "https://files.pythonhosted.org/packages/74/94/8a5277664f27c3c438546f3eb53b33f5b19568eb7424736bdc440a88a31f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616", size = 147601 },
61 | { url = "https://files.pythonhosted.org/packages/7c/5f/6d352c51ee763623a98e31194823518e09bfa48be2a7e8383cf691bbb3d0/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b", size = 141098 },
62 | { url = "https://files.pythonhosted.org/packages/78/d4/f5704cb629ba5ab16d1d3d741396aec6dc3ca2b67757c45b0599bb010478/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d", size = 149520 },
63 | { url = "https://files.pythonhosted.org/packages/c5/96/64120b1d02b81785f222b976c0fb79a35875457fa9bb40827678e54d1bc8/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a", size = 152852 },
64 | { url = "https://files.pythonhosted.org/packages/84/c9/98e3732278a99f47d487fd3468bc60b882920cef29d1fa6ca460a1fdf4e6/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9", size = 150488 },
65 | { url = "https://files.pythonhosted.org/packages/13/0e/9c8d4cb99c98c1007cc11eda969ebfe837bbbd0acdb4736d228ccaabcd22/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1", size = 146192 },
66 | { url = "https://files.pythonhosted.org/packages/b2/21/2b6b5b860781a0b49427309cb8670785aa543fb2178de875b87b9cc97746/charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35", size = 95550 },
67 | { url = "https://files.pythonhosted.org/packages/21/5b/1b390b03b1d16c7e382b561c5329f83cc06623916aab983e8ab9239c7d5c/charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f", size = 102785 },
68 | { url = "https://files.pythonhosted.org/packages/38/94/ce8e6f63d18049672c76d07d119304e1e2d7c6098f0841b51c666e9f44a0/charset_normalizer-3.4.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aabfa34badd18f1da5ec1bc2715cadc8dca465868a4e73a0173466b688f29dda", size = 195698 },
69 | { url = "https://files.pythonhosted.org/packages/24/2e/dfdd9770664aae179a96561cc6952ff08f9a8cd09a908f259a9dfa063568/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e14b5d70560b8dd51ec22863f370d1e595ac3d024cb8ad7d308b4cd95f8313", size = 140162 },
70 | { url = "https://files.pythonhosted.org/packages/24/4e/f646b9093cff8fc86f2d60af2de4dc17c759de9d554f130b140ea4738ca6/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8436c508b408b82d87dc5f62496973a1805cd46727c34440b0d29d8a2f50a6c9", size = 150263 },
71 | { url = "https://files.pythonhosted.org/packages/5e/67/2937f8d548c3ef6e2f9aab0f6e21001056f692d43282b165e7c56023e6dd/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d074908e1aecee37a7635990b2c6d504cd4766c7bc9fc86d63f9c09af3fa11b", size = 142966 },
72 | { url = "https://files.pythonhosted.org/packages/52/ed/b7f4f07de100bdb95c1756d3a4d17b90c1a3c53715c1a476f8738058e0fa/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11", size = 144992 },
73 | { url = "https://files.pythonhosted.org/packages/96/2c/d49710a6dbcd3776265f4c923bb73ebe83933dfbaa841c5da850fe0fd20b/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44ecbf16649486d4aebafeaa7ec4c9fed8b88101f4dd612dcaf65d5e815f837f", size = 147162 },
74 | { url = "https://files.pythonhosted.org/packages/b4/41/35ff1f9a6bd380303dea55e44c4933b4cc3c4850988927d4082ada230273/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0924e81d3d5e70f8126529951dac65c1010cdf117bb75eb02dd12339b57749dd", size = 140972 },
75 | { url = "https://files.pythonhosted.org/packages/fb/43/c6a0b685fe6910d08ba971f62cd9c3e862a85770395ba5d9cad4fede33ab/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2967f74ad52c3b98de4c3b32e1a44e32975e008a9cd2a8cc8966d6a5218c5cb2", size = 149095 },
76 | { url = "https://files.pythonhosted.org/packages/4c/ff/a9a504662452e2d2878512115638966e75633519ec11f25fca3d2049a94a/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c75cb2a3e389853835e84a2d8fb2b81a10645b503eca9bcb98df6b5a43eb8886", size = 152668 },
77 | { url = "https://files.pythonhosted.org/packages/6c/71/189996b6d9a4b932564701628af5cee6716733e9165af1d5e1b285c530ed/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09b26ae6b1abf0d27570633b2b078a2a20419c99d66fb2823173d73f188ce601", size = 150073 },
78 | { url = "https://files.pythonhosted.org/packages/e4/93/946a86ce20790e11312c87c75ba68d5f6ad2208cfb52b2d6a2c32840d922/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa88b843d6e211393a37219e6a1c1df99d35e8fd90446f1118f4216e307e48cd", size = 145732 },
79 | { url = "https://files.pythonhosted.org/packages/cd/e5/131d2fb1b0dddafc37be4f3a2fa79aa4c037368be9423061dccadfd90091/charset_normalizer-3.4.1-cp313-cp313-win32.whl", hash = "sha256:eb8178fe3dba6450a3e024e95ac49ed3400e506fd4e9e5c32d30adda88cbd407", size = 95391 },
80 | { url = "https://files.pythonhosted.org/packages/27/f2/4f9a69cc7712b9b5ad8fdb87039fd89abba997ad5cbe690d1835d40405b0/charset_normalizer-3.4.1-cp313-cp313-win_amd64.whl", hash = "sha256:b1ac5992a838106edb89654e0aebfc24f5848ae2547d22c2c3f66454daa11971", size = 102702 },
81 | { url = "https://files.pythonhosted.org/packages/0e/f6/65ecc6878a89bb1c23a086ea335ad4bf21a588990c3f535a227b9eea9108/charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85", size = 49767 },
82 | ]
83 |
84 | [[package]]
85 | name = "colorama"
86 | version = "0.4.6"
87 | source = { registry = "https://pypi.org/simple" }
88 | sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697 }
89 | wheels = [
90 | { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335 },
91 | ]
92 |
93 | [[package]]
94 | name = "filelock"
95 | version = "3.18.0"
96 | source = { registry = "https://pypi.org/simple" }
97 | sdist = { url = "https://files.pythonhosted.org/packages/0a/10/c23352565a6544bdc5353e0b15fc1c563352101f30e24bf500207a54df9a/filelock-3.18.0.tar.gz", hash = "sha256:adbc88eabb99d2fec8c9c1b229b171f18afa655400173ddc653d5d01501fb9f2", size = 18075 }
98 | wheels = [
99 | { url = "https://files.pythonhosted.org/packages/4d/36/2a115987e2d8c300a974597416d9de88f2444426de9571f4b59b2cca3acc/filelock-3.18.0-py3-none-any.whl", hash = "sha256:c401f4f8377c4464e6db25fff06205fd89bdd83b65eb0488ed1b160f780e21de", size = 16215 },
100 | ]
101 |
102 | [[package]]
103 | name = "fsspec"
104 | version = "2025.3.2"
105 | source = { registry = "https://pypi.org/simple" }
106 | sdist = { url = "https://files.pythonhosted.org/packages/45/d8/8425e6ba5fcec61a1d16e41b1b71d2bf9344f1fe48012c2b48b9620feae5/fsspec-2025.3.2.tar.gz", hash = "sha256:e52c77ef398680bbd6a98c0e628fbc469491282981209907bbc8aea76a04fdc6", size = 299281 }
107 | wheels = [
108 | { url = "https://files.pythonhosted.org/packages/44/4b/e0cfc1a6f17e990f3e64b7d941ddc4acdc7b19d6edd51abf495f32b1a9e4/fsspec-2025.3.2-py3-none-any.whl", hash = "sha256:2daf8dc3d1dfa65b6aa37748d112773a7a08416f6c70d96b264c96476ecaf711", size = 194435 },
109 | ]
110 |
111 | [[package]]
112 | name = "grpcio"
113 | version = "1.71.0"
114 | source = { registry = "https://pypi.org/simple" }
115 | sdist = { url = "https://files.pythonhosted.org/packages/1c/95/aa11fc09a85d91fbc7dd405dcb2a1e0256989d67bf89fa65ae24b3ba105a/grpcio-1.71.0.tar.gz", hash = "sha256:2b85f7820475ad3edec209d3d89a7909ada16caab05d3f2e08a7e8ae3200a55c", size = 12549828 }
116 | wheels = [
117 | { url = "https://files.pythonhosted.org/packages/63/04/a085f3ad4133426f6da8c1becf0749872a49feb625a407a2e864ded3fb12/grpcio-1.71.0-cp311-cp311-linux_armv7l.whl", hash = "sha256:d6aa986318c36508dc1d5001a3ff169a15b99b9f96ef5e98e13522c506b37eef", size = 5210453 },
118 | { url = "https://files.pythonhosted.org/packages/b4/d5/0bc53ed33ba458de95020970e2c22aa8027b26cc84f98bea7fcad5d695d1/grpcio-1.71.0-cp311-cp311-macosx_10_14_universal2.whl", hash = "sha256:d2c170247315f2d7e5798a22358e982ad6eeb68fa20cf7a820bb74c11f0736e7", size = 11347567 },
119 | { url = "https://files.pythonhosted.org/packages/e3/6d/ce334f7e7a58572335ccd61154d808fe681a4c5e951f8a1ff68f5a6e47ce/grpcio-1.71.0-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:e6f83a583ed0a5b08c5bc7a3fe860bb3c2eac1f03f1f63e0bc2091325605d2b7", size = 5696067 },
120 | { url = "https://files.pythonhosted.org/packages/05/4a/80befd0b8b1dc2b9ac5337e57473354d81be938f87132e147c4a24a581bd/grpcio-1.71.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4be74ddeeb92cc87190e0e376dbc8fc7736dbb6d3d454f2fa1f5be1dee26b9d7", size = 6348377 },
121 | { url = "https://files.pythonhosted.org/packages/c7/67/cbd63c485051eb78663355d9efd1b896cfb50d4a220581ec2cb9a15cd750/grpcio-1.71.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4dd0dfbe4d5eb1fcfec9490ca13f82b089a309dc3678e2edabc144051270a66e", size = 5940407 },
122 | { url = "https://files.pythonhosted.org/packages/98/4b/7a11aa4326d7faa499f764eaf8a9b5a0eb054ce0988ee7ca34897c2b02ae/grpcio-1.71.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a2242d6950dc892afdf9e951ed7ff89473aaf744b7d5727ad56bdaace363722b", size = 6030915 },
123 | { url = "https://files.pythonhosted.org/packages/eb/a2/cdae2d0e458b475213a011078b0090f7a1d87f9a68c678b76f6af7c6ac8c/grpcio-1.71.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:0fa05ee31a20456b13ae49ad2e5d585265f71dd19fbd9ef983c28f926d45d0a7", size = 6648324 },
124 | { url = "https://files.pythonhosted.org/packages/27/df/f345c8daaa8d8574ce9869f9b36ca220c8845923eb3087e8f317eabfc2a8/grpcio-1.71.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3d081e859fb1ebe176de33fc3adb26c7d46b8812f906042705346b314bde32c3", size = 6197839 },
125 | { url = "https://files.pythonhosted.org/packages/f2/2c/cd488dc52a1d0ae1bad88b0d203bc302efbb88b82691039a6d85241c5781/grpcio-1.71.0-cp311-cp311-win32.whl", hash = "sha256:d6de81c9c00c8a23047136b11794b3584cdc1460ed7cbc10eada50614baa1444", size = 3619978 },
126 | { url = "https://files.pythonhosted.org/packages/ee/3f/cf92e7e62ccb8dbdf977499547dfc27133124d6467d3a7d23775bcecb0f9/grpcio-1.71.0-cp311-cp311-win_amd64.whl", hash = "sha256:24e867651fc67717b6f896d5f0cac0ec863a8b5fb7d6441c2ab428f52c651c6b", size = 4282279 },
127 | { url = "https://files.pythonhosted.org/packages/4c/83/bd4b6a9ba07825bd19c711d8b25874cd5de72c2a3fbf635c3c344ae65bd2/grpcio-1.71.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:0ff35c8d807c1c7531d3002be03221ff9ae15712b53ab46e2a0b4bb271f38537", size = 5184101 },
128 | { url = "https://files.pythonhosted.org/packages/31/ea/2e0d90c0853568bf714693447f5c73272ea95ee8dad107807fde740e595d/grpcio-1.71.0-cp312-cp312-macosx_10_14_universal2.whl", hash = "sha256:b78a99cd1ece4be92ab7c07765a0b038194ded2e0a26fd654591ee136088d8d7", size = 11310927 },
129 | { url = "https://files.pythonhosted.org/packages/ac/bc/07a3fd8af80467390af491d7dc66882db43884128cdb3cc8524915e0023c/grpcio-1.71.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:dc1a1231ed23caac1de9f943d031f1bc38d0f69d2a3b243ea0d664fc1fbd7fec", size = 5654280 },
130 | { url = "https://files.pythonhosted.org/packages/16/af/21f22ea3eed3d0538b6ef7889fce1878a8ba4164497f9e07385733391e2b/grpcio-1.71.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e6beeea5566092c5e3c4896c6d1d307fb46b1d4bdf3e70c8340b190a69198594", size = 6312051 },
131 | { url = "https://files.pythonhosted.org/packages/49/9d/e12ddc726dc8bd1aa6cba67c85ce42a12ba5b9dd75d5042214a59ccf28ce/grpcio-1.71.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5170929109450a2c031cfe87d6716f2fae39695ad5335d9106ae88cc32dc84c", size = 5910666 },
132 | { url = "https://files.pythonhosted.org/packages/d9/e9/38713d6d67aedef738b815763c25f092e0454dc58e77b1d2a51c9d5b3325/grpcio-1.71.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5b08d03ace7aca7b2fadd4baf291139b4a5f058805a8327bfe9aece7253b6d67", size = 6012019 },
133 | { url = "https://files.pythonhosted.org/packages/80/da/4813cd7adbae6467724fa46c952d7aeac5e82e550b1c62ed2aeb78d444ae/grpcio-1.71.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:f903017db76bf9cc2b2d8bdd37bf04b505bbccad6be8a81e1542206875d0e9db", size = 6637043 },
134 | { url = "https://files.pythonhosted.org/packages/52/ca/c0d767082e39dccb7985c73ab4cf1d23ce8613387149e9978c70c3bf3b07/grpcio-1.71.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:469f42a0b410883185eab4689060a20488a1a0a00f8bbb3cbc1061197b4c5a79", size = 6186143 },
135 | { url = "https://files.pythonhosted.org/packages/00/61/7b2c8ec13303f8fe36832c13d91ad4d4ba57204b1c723ada709c346b2271/grpcio-1.71.0-cp312-cp312-win32.whl", hash = "sha256:ad9f30838550695b5eb302add33f21f7301b882937460dd24f24b3cc5a95067a", size = 3604083 },
136 | { url = "https://files.pythonhosted.org/packages/fd/7c/1e429c5fb26122055d10ff9a1d754790fb067d83c633ff69eddcf8e3614b/grpcio-1.71.0-cp312-cp312-win_amd64.whl", hash = "sha256:652350609332de6dac4ece254e5d7e1ff834e203d6afb769601f286886f6f3a8", size = 4272191 },
137 | { url = "https://files.pythonhosted.org/packages/04/dd/b00cbb45400d06b26126dcfdbdb34bb6c4f28c3ebbd7aea8228679103ef6/grpcio-1.71.0-cp313-cp313-linux_armv7l.whl", hash = "sha256:cebc1b34ba40a312ab480ccdb396ff3c529377a2fce72c45a741f7215bfe8379", size = 5184138 },
138 | { url = "https://files.pythonhosted.org/packages/ed/0a/4651215983d590ef53aac40ba0e29dda941a02b097892c44fa3357e706e5/grpcio-1.71.0-cp313-cp313-macosx_10_14_universal2.whl", hash = "sha256:85da336e3649a3d2171e82f696b5cad2c6231fdd5bad52616476235681bee5b3", size = 11310747 },
139 | { url = "https://files.pythonhosted.org/packages/57/a3/149615b247f321e13f60aa512d3509d4215173bdb982c9098d78484de216/grpcio-1.71.0-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:f9a412f55bb6e8f3bb000e020dbc1e709627dcb3a56f6431fa7076b4c1aab0db", size = 5653991 },
140 | { url = "https://files.pythonhosted.org/packages/ca/56/29432a3e8d951b5e4e520a40cd93bebaa824a14033ea8e65b0ece1da6167/grpcio-1.71.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:47be9584729534660416f6d2a3108aaeac1122f6b5bdbf9fd823e11fe6fbaa29", size = 6312781 },
141 | { url = "https://files.pythonhosted.org/packages/a3/f8/286e81a62964ceb6ac10b10925261d4871a762d2a763fbf354115f9afc98/grpcio-1.71.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c9c80ac6091c916db81131d50926a93ab162a7e97e4428ffc186b6e80d6dda4", size = 5910479 },
142 | { url = "https://files.pythonhosted.org/packages/35/67/d1febb49ec0f599b9e6d4d0d44c2d4afdbed9c3e80deb7587ec788fcf252/grpcio-1.71.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:789d5e2a3a15419374b7b45cd680b1e83bbc1e52b9086e49308e2c0b5bbae6e3", size = 6013262 },
143 | { url = "https://files.pythonhosted.org/packages/a1/04/f9ceda11755f0104a075ad7163fc0d96e2e3a9fe25ef38adfc74c5790daf/grpcio-1.71.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:1be857615e26a86d7363e8a163fade914595c81fec962b3d514a4b1e8760467b", size = 6643356 },
144 | { url = "https://files.pythonhosted.org/packages/fb/ce/236dbc3dc77cf9a9242adcf1f62538734ad64727fabf39e1346ad4bd5c75/grpcio-1.71.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:a76d39b5fafd79ed604c4be0a869ec3581a172a707e2a8d7a4858cb05a5a7637", size = 6186564 },
145 | { url = "https://files.pythonhosted.org/packages/10/fd/b3348fce9dd4280e221f513dd54024e765b21c348bc475516672da4218e9/grpcio-1.71.0-cp313-cp313-win32.whl", hash = "sha256:74258dce215cb1995083daa17b379a1a5a87d275387b7ffe137f1d5131e2cfbb", size = 3601890 },
146 | { url = "https://files.pythonhosted.org/packages/be/f8/db5d5f3fc7e296166286c2a397836b8b042f7ad1e11028d82b061701f0f7/grpcio-1.71.0-cp313-cp313-win_amd64.whl", hash = "sha256:22c3bc8d488c039a199f7a003a38cb7635db6656fa96437a8accde8322ce2366", size = 4273308 },
147 | ]
148 |
149 | [[package]]
150 | name = "grpo-zero"
151 | version = "0.1.0"
152 | source = { virtual = "." }
153 | dependencies = [
154 | { name = "jinja2" },
155 | { name = "pandas" },
156 | { name = "pyarrow" },
157 | { name = "pyyaml" },
158 | { name = "safetensors" },
159 | { name = "tensorboard" },
160 | { name = "tokenizers" },
161 | { name = "torch" },
162 | ]
163 |
164 | [package.dev-dependencies]
165 | dev = [
166 | { name = "pytype" },
167 | ]
168 |
169 | [package.metadata]
170 | requires-dist = [
171 | { name = "jinja2", specifier = ">=3.1.6" },
172 | { name = "pandas", specifier = ">=2.2.3" },
173 | { name = "pyarrow", specifier = ">=19.0.1" },
174 | { name = "pyyaml", specifier = ">=6.0.2" },
175 | { name = "safetensors", specifier = ">=0.5.3" },
176 | { name = "tensorboard", specifier = ">=2.19.0" },
177 | { name = "tokenizers", specifier = ">=0.21.1" },
178 | { name = "torch", specifier = ">=2.6.0" },
179 | ]
180 |
181 | [package.metadata.requires-dev]
182 | dev = [{ name = "pytype", specifier = ">=2024.10.11" }]
183 |
184 | [[package]]
185 | name = "huggingface-hub"
186 | version = "0.30.2"
187 | source = { registry = "https://pypi.org/simple" }
188 | dependencies = [
189 | { name = "filelock" },
190 | { name = "fsspec" },
191 | { name = "packaging" },
192 | { name = "pyyaml" },
193 | { name = "requests" },
194 | { name = "tqdm" },
195 | { name = "typing-extensions" },
196 | ]
197 | sdist = { url = "https://files.pythonhosted.org/packages/df/22/8eb91736b1dcb83d879bd49050a09df29a57cc5cd9f38e48a4b1c45ee890/huggingface_hub-0.30.2.tar.gz", hash = "sha256:9a7897c5b6fd9dad3168a794a8998d6378210f5b9688d0dfc180b1a228dc2466", size = 400868 }
198 | wheels = [
199 | { url = "https://files.pythonhosted.org/packages/93/27/1fb384a841e9661faad1c31cbfa62864f59632e876df5d795234da51c395/huggingface_hub-0.30.2-py3-none-any.whl", hash = "sha256:68ff05969927058cfa41df4f2155d4bb48f5f54f719dd0390103eefa9b191e28", size = 481433 },
200 | ]
201 |
202 | [[package]]
203 | name = "idna"
204 | version = "3.10"
205 | source = { registry = "https://pypi.org/simple" }
206 | sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490 }
207 | wheels = [
208 | { url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442 },
209 | ]
210 |
211 | [[package]]
212 | name = "immutabledict"
213 | version = "4.2.1"
214 | source = { registry = "https://pypi.org/simple" }
215 | sdist = { url = "https://files.pythonhosted.org/packages/e0/c5/4240186fbabc58fba41bbe17c5f0cd37ffd4c0b85a5029ab104f946df175/immutabledict-4.2.1.tar.gz", hash = "sha256:d91017248981c72eb66c8ff9834e99c2f53562346f23e7f51e7a5ebcf66a3bcc", size = 6228 }
216 | wheels = [
217 | { url = "https://files.pythonhosted.org/packages/59/56/25ca7b848164b7d93dbd5fc97dd7751700c93e324fe854afbeb562ee2f98/immutabledict-4.2.1-py3-none-any.whl", hash = "sha256:c56a26ced38c236f79e74af3ccce53772827cef5c3bce7cab33ff2060f756373", size = 4700 },
218 | ]
219 |
220 | [[package]]
221 | name = "importlab"
222 | version = "0.8.1"
223 | source = { registry = "https://pypi.org/simple" }
224 | dependencies = [
225 | { name = "networkx" },
226 | ]
227 | sdist = { url = "https://files.pythonhosted.org/packages/f5/22/ab9494dccf1e237276f98364d53673bc0ab97ebe5cb671e960f18710457d/importlab-0.8.1.tar.gz", hash = "sha256:b3893853b1f6eb027da509c3b40e6787e95dd66b4b66f1b3613aad77556e1465", size = 28856 }
228 | wheels = [
229 | { url = "https://files.pythonhosted.org/packages/da/1e/cc7360b4259f283b1a2de153335ce15ac9e710d66145aa471cffefe4b394/importlab-0.8.1-py2.py3-none-any.whl", hash = "sha256:124cfa00e8a34fefe8aac1a5e94f56c781b178c9eb61a1d3f60f7e03b77338d3", size = 21671 },
230 | ]
231 |
232 | [[package]]
233 | name = "jinja2"
234 | version = "3.1.6"
235 | source = { registry = "https://pypi.org/simple" }
236 | dependencies = [
237 | { name = "markupsafe" },
238 | ]
239 | sdist = { url = "https://files.pythonhosted.org/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115 }
240 | wheels = [
241 | { url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899 },
242 | ]
243 |
244 | [[package]]
245 | name = "libcst"
246 | version = "1.7.0"
247 | source = { registry = "https://pypi.org/simple" }
248 | dependencies = [
249 | { name = "pyyaml" },
250 | ]
251 | sdist = { url = "https://files.pythonhosted.org/packages/b1/de/df97a73343469c0b92ad0784248bdde79e417bb9540c229216bd81d0b086/libcst-1.7.0.tar.gz", hash = "sha256:a63f44ffa81292f183656234c7f2848653ff45c17d867db83c9335119e28aafa", size = 776707 }
252 | wheels = [
253 | { url = "https://files.pythonhosted.org/packages/e8/42/5f21d245f0f2e4a4a47c977f6da4e46dca0ef0307f8a8cd4d0d85b0e08c8/libcst-1.7.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8f6e693281d6e9a62414205fb300ec228ddc902ca9cb965a09f11561dc10aa94", size = 2078827 },
254 | { url = "https://files.pythonhosted.org/packages/ac/62/ce81795b18bcc5bd77d32f53d56a79545cc3efe27acdd2ed107775c3fd18/libcst-1.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e635eadb6043d5f967450af27125811c6ccc7eeb4d8c5fd4f1bece9d96418781", size = 2215601 },
255 | { url = "https://files.pythonhosted.org/packages/e3/89/c40a3cacf89b7dfd1f7c46abbec4cae00b85bd8968b1770c49e829a0dd23/libcst-1.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c568e14d29489f09faf4915af18235f805d5aa60fa194023b4fadf3209f0c94", size = 2316834 },
256 | { url = "https://files.pythonhosted.org/packages/fb/ff/9cef48453900919ce149906ef5532205d03ae7a3c5600ec10d621c656387/libcst-1.7.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9add619a825d6f176774110d79dc3137f353a236c1e3bcd6e063ca6d93d6e0ae", size = 2405859 },
257 | { url = "https://files.pythonhosted.org/packages/7f/7c/7159dac46efd48370c3c707144b1a451aec6317e71f989b3d6208c862f4e/libcst-1.7.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:57a6bcfc8ca8a0bb9e89a2dbf63ee8f0c7e8353a130528dcb47c9e59c2dc8c94", size = 2277105 },
258 | { url = "https://files.pythonhosted.org/packages/f3/0b/7363d238a67d4623b01e3b61884db5883e71864ec7421bfc7bcb27efd662/libcst-1.7.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:5e22738ec2855803f8242e6bf78057389d10f8954db34bf7079c82abab1b8b95", size = 2397105 },
259 | { url = "https://files.pythonhosted.org/packages/ea/6d/fde43c36ad65f5c997be7fe7c32c1951c6e881aee071a531c50f369e4f53/libcst-1.7.0-cp311-cp311-win_amd64.whl", hash = "sha256:fa519d4391326329f37860c2f2aaf80cb11a6122d14afa2f4f00dde6fcfa7ae4", size = 2096252 },
260 | { url = "https://files.pythonhosted.org/packages/c2/ef/0e71046efefe6a68857645f1ff70e89e0d3c5a138c7bc8d766d3e10127af/libcst-1.7.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b52692a28d0d958ebfabcf8bfce5fcf2c8582967310d35e6111a6e2d4db96659", size = 2071234 },
261 | { url = "https://files.pythonhosted.org/packages/fa/99/61380320d7f6ff9bf142ff195c0a6586152bf5ebd016bdf2a32063c602d5/libcst-1.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:61bfc90c8a4594296f8b68702f494dfdfec6e745a4abc0cfa8069d7f22061424", size = 2210153 },
262 | { url = "https://files.pythonhosted.org/packages/a6/58/1b4ebd4e8af3aaf460287ba5afc3e95fb5fc7ca2bdde1857373183a08516/libcst-1.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9370c23a3f609280c3f2296d61d34dd32afd7a1c9b19e4e29cc35cb2e2544363", size = 2312359 },
263 | { url = "https://files.pythonhosted.org/packages/75/a4/8f182a64757ea6a2398e166b058d91002724feb340e7ec67119f2b2a43ca/libcst-1.7.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5e50e6960ecc3ed67f39fec63aa329e772d5d27f8e2334e30f19a94aa14489f1", size = 2401963 },
264 | { url = "https://files.pythonhosted.org/packages/07/48/0b5e5b0d43093859b97504f3f7a61cf4dc8a56e0997e62a573bdd2b4e2a2/libcst-1.7.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ca4e91aa854758040fa6fe7036fbe7f90a36a7d283fa1df8587b6f73084fc997", size = 2272088 },
265 | { url = "https://files.pythonhosted.org/packages/11/e2/2a5497cde7ad82ef41277cadd560ec1726e00d317dad85704327071d2b67/libcst-1.7.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d894c48f682b0061fdb2c983d5e64c30334db6ce0783560dbbb9df0163179c0c", size = 2392441 },
266 | { url = "https://files.pythonhosted.org/packages/a6/16/dba943bc53bd688895dbc81918fc93ada02b4c3e5755faeecf4333878dd0/libcst-1.7.0-cp312-cp312-win_amd64.whl", hash = "sha256:14e5c1d427c33d50df75be6bc999a7b2d7c6b7840e2361a18a6f354db50cb18e", size = 2094954 },
267 | { url = "https://files.pythonhosted.org/packages/63/43/bd2b3b404219be09a791fc0d98910d09c36662f805d23e3b81600b80de0c/libcst-1.7.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:93417d36c2a1b70d651d0e970ff73339e8dcd64d341672b68823fa0039665022", size = 2071262 },
268 | { url = "https://files.pythonhosted.org/packages/05/27/428da06f863ebdca7f3908190e2a70c5cb5830c9efd5e1ea9b8c18c807bf/libcst-1.7.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6523731bfbdbc045ff8649130fe14a46b31ad6925f67acdc0e0d80a0c61719fd", size = 2210117 },
269 | { url = "https://files.pythonhosted.org/packages/45/ff/24a82c2795fe846d07a43cda77e51acb5c9e6f57191b9f8607b5557234b0/libcst-1.7.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a252fa03ea00986f03100379f11e15d381103a09667900fb0fa2076cec19081a", size = 2312240 },
270 | { url = "https://files.pythonhosted.org/packages/64/fd/97c695b706a6bc10e54b52eb8735cc9c7573afafdd15014dd1508885652d/libcst-1.7.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09a5530b40a15dbe6fac842ef2ad87ad561760779380ccf3ade6850854d81406", size = 2402028 },
271 | { url = "https://files.pythonhosted.org/packages/b0/72/eebf3bf6b47d2252eb9de4f1ec64706dcc90a4c12336b415c9a4f29cf54d/libcst-1.7.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0456381c939169c4f11caecdb30f7aca6f234640731f8f965849c1631930536b", size = 2272115 },
272 | { url = "https://files.pythonhosted.org/packages/56/b3/5b76bfe1e02490a0c71b2ac05e236f1455192e1782e5f06bab4dca3501ea/libcst-1.7.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c8d6176a667d2db0132d133dad6bbf965f915f3071559342ca2cdbbec537ed12", size = 2392216 },
273 | { url = "https://files.pythonhosted.org/packages/57/9a/535a81bade997f98bc17c151b524c00eb12a6738e9cbaecea00fbcccb6b9/libcst-1.7.0-cp313-cp313-win_amd64.whl", hash = "sha256:6137fe549bfbb017283c3cf85419eb0dfaa20a211ad6d525538a2494e248a84b", size = 2094937 },
274 | ]
275 |
276 | [[package]]
277 | name = "markdown"
278 | version = "3.7"
279 | source = { registry = "https://pypi.org/simple" }
280 | sdist = { url = "https://files.pythonhosted.org/packages/54/28/3af612670f82f4c056911fbbbb42760255801b3068c48de792d354ff4472/markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2", size = 357086 }
281 | wheels = [
282 | { url = "https://files.pythonhosted.org/packages/3f/08/83871f3c50fc983b88547c196d11cf8c3340e37c32d2e9d6152abe2c61f7/Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803", size = 106349 },
283 | ]
284 |
285 | [[package]]
286 | name = "markupsafe"
287 | version = "3.0.2"
288 | source = { registry = "https://pypi.org/simple" }
289 | sdist = { url = "https://files.pythonhosted.org/packages/b2/97/5d42485e71dfc078108a86d6de8fa46db44a1a9295e89c5d6d4a06e23a62/markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0", size = 20537 }
290 | wheels = [
291 | { url = "https://files.pythonhosted.org/packages/6b/28/bbf83e3f76936960b850435576dd5e67034e200469571be53f69174a2dfd/MarkupSafe-3.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9025b4018f3a1314059769c7bf15441064b2207cb3f065e6ea1e7359cb46db9d", size = 14353 },
292 | { url = "https://files.pythonhosted.org/packages/6c/30/316d194b093cde57d448a4c3209f22e3046c5bb2fb0820b118292b334be7/MarkupSafe-3.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:93335ca3812df2f366e80509ae119189886b0f3c2b81325d39efdb84a1e2ae93", size = 12392 },
293 | { url = "https://files.pythonhosted.org/packages/f2/96/9cdafba8445d3a53cae530aaf83c38ec64c4d5427d975c974084af5bc5d2/MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cb8438c3cbb25e220c2ab33bb226559e7afb3baec11c4f218ffa7308603c832", size = 23984 },
294 | { url = "https://files.pythonhosted.org/packages/f1/a4/aefb044a2cd8d7334c8a47d3fb2c9f328ac48cb349468cc31c20b539305f/MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84", size = 23120 },
295 | { url = "https://files.pythonhosted.org/packages/8d/21/5e4851379f88f3fad1de30361db501300d4f07bcad047d3cb0449fc51f8c/MarkupSafe-3.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e084f686b92e5b83186b07e8a17fc09e38fff551f3602b249881fec658d3eca", size = 23032 },
296 | { url = "https://files.pythonhosted.org/packages/00/7b/e92c64e079b2d0d7ddf69899c98842f3f9a60a1ae72657c89ce2655c999d/MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d8213e09c917a951de9d09ecee036d5c7d36cb6cb7dbaece4c71a60d79fb9798", size = 24057 },
297 | { url = "https://files.pythonhosted.org/packages/f9/ac/46f960ca323037caa0a10662ef97d0a4728e890334fc156b9f9e52bcc4ca/MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5b02fb34468b6aaa40dfc198d813a641e3a63b98c2b05a16b9f80b7ec314185e", size = 23359 },
298 | { url = "https://files.pythonhosted.org/packages/69/84/83439e16197337b8b14b6a5b9c2105fff81d42c2a7c5b58ac7b62ee2c3b1/MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0bff5e0ae4ef2e1ae4fdf2dfd5b76c75e5c2fa4132d05fc1b0dabcd20c7e28c4", size = 23306 },
299 | { url = "https://files.pythonhosted.org/packages/9a/34/a15aa69f01e2181ed8d2b685c0d2f6655d5cca2c4db0ddea775e631918cd/MarkupSafe-3.0.2-cp311-cp311-win32.whl", hash = "sha256:6c89876f41da747c8d3677a2b540fb32ef5715f97b66eeb0c6b66f5e3ef6f59d", size = 15094 },
300 | { url = "https://files.pythonhosted.org/packages/da/b8/3a3bd761922d416f3dc5d00bfbed11f66b1ab89a0c2b6e887240a30b0f6b/MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:70a87b411535ccad5ef2f1df5136506a10775d267e197e4cf531ced10537bd6b", size = 15521 },
301 | { url = "https://files.pythonhosted.org/packages/22/09/d1f21434c97fc42f09d290cbb6350d44eb12f09cc62c9476effdb33a18aa/MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf", size = 14274 },
302 | { url = "https://files.pythonhosted.org/packages/6b/b0/18f76bba336fa5aecf79d45dcd6c806c280ec44538b3c13671d49099fdd0/MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225", size = 12348 },
303 | { url = "https://files.pythonhosted.org/packages/e0/25/dd5c0f6ac1311e9b40f4af06c78efde0f3b5cbf02502f8ef9501294c425b/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028", size = 24149 },
304 | { url = "https://files.pythonhosted.org/packages/f3/f0/89e7aadfb3749d0f52234a0c8c7867877876e0a20b60e2188e9850794c17/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8", size = 23118 },
305 | { url = "https://files.pythonhosted.org/packages/d5/da/f2eeb64c723f5e3777bc081da884b414671982008c47dcc1873d81f625b6/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c", size = 22993 },
306 | { url = "https://files.pythonhosted.org/packages/da/0e/1f32af846df486dce7c227fe0f2398dc7e2e51d4a370508281f3c1c5cddc/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557", size = 24178 },
307 | { url = "https://files.pythonhosted.org/packages/c4/f6/bb3ca0532de8086cbff5f06d137064c8410d10779c4c127e0e47d17c0b71/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22", size = 23319 },
308 | { url = "https://files.pythonhosted.org/packages/a2/82/8be4c96ffee03c5b4a034e60a31294daf481e12c7c43ab8e34a1453ee48b/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48", size = 23352 },
309 | { url = "https://files.pythonhosted.org/packages/51/ae/97827349d3fcffee7e184bdf7f41cd6b88d9919c80f0263ba7acd1bbcb18/MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30", size = 15097 },
310 | { url = "https://files.pythonhosted.org/packages/c1/80/a61f99dc3a936413c3ee4e1eecac96c0da5ed07ad56fd975f1a9da5bc630/MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87", size = 15601 },
311 | { url = "https://files.pythonhosted.org/packages/83/0e/67eb10a7ecc77a0c2bbe2b0235765b98d164d81600746914bebada795e97/MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd", size = 14274 },
312 | { url = "https://files.pythonhosted.org/packages/2b/6d/9409f3684d3335375d04e5f05744dfe7e9f120062c9857df4ab490a1031a/MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430", size = 12352 },
313 | { url = "https://files.pythonhosted.org/packages/d2/f5/6eadfcd3885ea85fe2a7c128315cc1bb7241e1987443d78c8fe712d03091/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094", size = 24122 },
314 | { url = "https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396", size = 23085 },
315 | { url = "https://files.pythonhosted.org/packages/c2/cf/c9d56af24d56ea04daae7ac0940232d31d5a8354f2b457c6d856b2057d69/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79", size = 22978 },
316 | { url = "https://files.pythonhosted.org/packages/2a/9f/8619835cd6a711d6272d62abb78c033bda638fdc54c4e7f4272cf1c0962b/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a", size = 24208 },
317 | { url = "https://files.pythonhosted.org/packages/f9/bf/176950a1792b2cd2102b8ffeb5133e1ed984547b75db47c25a67d3359f77/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca", size = 23357 },
318 | { url = "https://files.pythonhosted.org/packages/ce/4f/9a02c1d335caabe5c4efb90e1b6e8ee944aa245c1aaaab8e8a618987d816/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c", size = 23344 },
319 | { url = "https://files.pythonhosted.org/packages/ee/55/c271b57db36f748f0e04a759ace9f8f759ccf22b4960c270c78a394f58be/MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1", size = 15101 },
320 | { url = "https://files.pythonhosted.org/packages/29/88/07df22d2dd4df40aba9f3e402e6dc1b8ee86297dddbad4872bd5e7b0094f/MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f", size = 15603 },
321 | { url = "https://files.pythonhosted.org/packages/62/6a/8b89d24db2d32d433dffcd6a8779159da109842434f1dd2f6e71f32f738c/MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c", size = 14510 },
322 | { url = "https://files.pythonhosted.org/packages/7a/06/a10f955f70a2e5a9bf78d11a161029d278eeacbd35ef806c3fd17b13060d/MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb", size = 12486 },
323 | { url = "https://files.pythonhosted.org/packages/34/cf/65d4a571869a1a9078198ca28f39fba5fbb910f952f9dbc5220afff9f5e6/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c", size = 25480 },
324 | { url = "https://files.pythonhosted.org/packages/0c/e3/90e9651924c430b885468b56b3d597cabf6d72be4b24a0acd1fa0e12af67/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d", size = 23914 },
325 | { url = "https://files.pythonhosted.org/packages/66/8c/6c7cf61f95d63bb866db39085150df1f2a5bd3335298f14a66b48e92659c/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe", size = 23796 },
326 | { url = "https://files.pythonhosted.org/packages/bb/35/cbe9238ec3f47ac9a7c8b3df7a808e7cb50fe149dc7039f5f454b3fba218/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5", size = 25473 },
327 | { url = "https://files.pythonhosted.org/packages/e6/32/7621a4382488aa283cc05e8984a9c219abad3bca087be9ec77e89939ded9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a", size = 24114 },
328 | { url = "https://files.pythonhosted.org/packages/0d/80/0985960e4b89922cb5a0bac0ed39c5b96cbc1a536a99f30e8c220a996ed9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9", size = 24098 },
329 | { url = "https://files.pythonhosted.org/packages/82/78/fedb03c7d5380df2427038ec8d973587e90561b2d90cd472ce9254cf348b/MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6", size = 15208 },
330 | { url = "https://files.pythonhosted.org/packages/4f/65/6079a46068dfceaeabb5dcad6d674f5f5c61a6fa5673746f42a9f4c233b3/MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f", size = 15739 },
331 | ]
332 |
333 | [[package]]
334 | name = "mpmath"
335 | version = "1.3.0"
336 | source = { registry = "https://pypi.org/simple" }
337 | sdist = { url = "https://files.pythonhosted.org/packages/e0/47/dd32fa426cc72114383ac549964eecb20ecfd886d1e5ccf5340b55b02f57/mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f", size = 508106 }
338 | wheels = [
339 | { url = "https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c", size = 536198 },
340 | ]
341 |
342 | [[package]]
343 | name = "msgspec"
344 | version = "0.19.0"
345 | source = { registry = "https://pypi.org/simple" }
346 | sdist = { url = "https://files.pythonhosted.org/packages/cf/9b/95d8ce458462b8b71b8a70fa94563b2498b89933689f3a7b8911edfae3d7/msgspec-0.19.0.tar.gz", hash = "sha256:604037e7cd475345848116e89c553aa9a233259733ab51986ac924ab1b976f8e", size = 216934 }
347 | wheels = [
348 | { url = "https://files.pythonhosted.org/packages/24/d4/2ec2567ac30dab072cce3e91fb17803c52f0a37aab6b0c24375d2b20a581/msgspec-0.19.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:aa77046904db764b0462036bc63ef71f02b75b8f72e9c9dd4c447d6da1ed8f8e", size = 187939 },
349 | { url = "https://files.pythonhosted.org/packages/2b/c0/18226e4328897f4f19875cb62bb9259fe47e901eade9d9376ab5f251a929/msgspec-0.19.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:047cfa8675eb3bad68722cfe95c60e7afabf84d1bd8938979dd2b92e9e4a9551", size = 182202 },
350 | { url = "https://files.pythonhosted.org/packages/81/25/3a4b24d468203d8af90d1d351b77ea3cffb96b29492855cf83078f16bfe4/msgspec-0.19.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e78f46ff39a427e10b4a61614a2777ad69559cc8d603a7c05681f5a595ea98f7", size = 209029 },
351 | { url = "https://files.pythonhosted.org/packages/85/2e/db7e189b57901955239f7689b5dcd6ae9458637a9c66747326726c650523/msgspec-0.19.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c7adf191e4bd3be0e9231c3b6dc20cf1199ada2af523885efc2ed218eafd011", size = 210682 },
352 | { url = "https://files.pythonhosted.org/packages/03/97/7c8895c9074a97052d7e4a1cc1230b7b6e2ca2486714eb12c3f08bb9d284/msgspec-0.19.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:f04cad4385e20be7c7176bb8ae3dca54a08e9756cfc97bcdb4f18560c3042063", size = 214003 },
353 | { url = "https://files.pythonhosted.org/packages/61/61/e892997bcaa289559b4d5869f066a8021b79f4bf8e955f831b095f47a4cd/msgspec-0.19.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:45c8fb410670b3b7eb884d44a75589377c341ec1392b778311acdbfa55187716", size = 216833 },
354 | { url = "https://files.pythonhosted.org/packages/ce/3d/71b2dffd3a1c743ffe13296ff701ee503feaebc3f04d0e75613b6563c374/msgspec-0.19.0-cp311-cp311-win_amd64.whl", hash = "sha256:70eaef4934b87193a27d802534dc466778ad8d536e296ae2f9334e182ac27b6c", size = 186184 },
355 | { url = "https://files.pythonhosted.org/packages/b2/5f/a70c24f075e3e7af2fae5414c7048b0e11389685b7f717bb55ba282a34a7/msgspec-0.19.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f98bd8962ad549c27d63845b50af3f53ec468b6318400c9f1adfe8b092d7b62f", size = 190485 },
356 | { url = "https://files.pythonhosted.org/packages/89/b0/1b9763938cfae12acf14b682fcf05c92855974d921a5a985ecc197d1c672/msgspec-0.19.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:43bbb237feab761b815ed9df43b266114203f53596f9b6e6f00ebd79d178cdf2", size = 183910 },
357 | { url = "https://files.pythonhosted.org/packages/87/81/0c8c93f0b92c97e326b279795f9c5b956c5a97af28ca0fbb9fd86c83737a/msgspec-0.19.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4cfc033c02c3e0aec52b71710d7f84cb3ca5eb407ab2ad23d75631153fdb1f12", size = 210633 },
358 | { url = "https://files.pythonhosted.org/packages/d0/ef/c5422ce8af73928d194a6606f8ae36e93a52fd5e8df5abd366903a5ca8da/msgspec-0.19.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d911c442571605e17658ca2b416fd8579c5050ac9adc5e00c2cb3126c97f73bc", size = 213594 },
359 | { url = "https://files.pythonhosted.org/packages/19/2b/4137bc2ed45660444842d042be2cf5b18aa06efd2cda107cff18253b9653/msgspec-0.19.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:757b501fa57e24896cf40a831442b19a864f56d253679f34f260dcb002524a6c", size = 214053 },
360 | { url = "https://files.pythonhosted.org/packages/9d/e6/8ad51bdc806aac1dc501e8fe43f759f9ed7284043d722b53323ea421c360/msgspec-0.19.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:5f0f65f29b45e2816d8bded36e6b837a4bf5fb60ec4bc3c625fa2c6da4124537", size = 219081 },
361 | { url = "https://files.pythonhosted.org/packages/b1/ef/27dd35a7049c9a4f4211c6cd6a8c9db0a50647546f003a5867827ec45391/msgspec-0.19.0-cp312-cp312-win_amd64.whl", hash = "sha256:067f0de1c33cfa0b6a8206562efdf6be5985b988b53dd244a8e06f993f27c8c0", size = 187467 },
362 | { url = "https://files.pythonhosted.org/packages/3c/cb/2842c312bbe618d8fefc8b9cedce37f773cdc8fa453306546dba2c21fd98/msgspec-0.19.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f12d30dd6266557aaaf0aa0f9580a9a8fbeadfa83699c487713e355ec5f0bd86", size = 190498 },
363 | { url = "https://files.pythonhosted.org/packages/58/95/c40b01b93465e1a5f3b6c7d91b10fb574818163740cc3acbe722d1e0e7e4/msgspec-0.19.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:82b2c42c1b9ebc89e822e7e13bbe9d17ede0c23c187469fdd9505afd5a481314", size = 183950 },
364 | { url = "https://files.pythonhosted.org/packages/e8/f0/5b764e066ce9aba4b70d1db8b087ea66098c7c27d59b9dd8a3532774d48f/msgspec-0.19.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19746b50be214a54239aab822964f2ac81e38b0055cca94808359d779338c10e", size = 210647 },
365 | { url = "https://files.pythonhosted.org/packages/9d/87/bc14f49bc95c4cb0dd0a8c56028a67c014ee7e6818ccdce74a4862af259b/msgspec-0.19.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60ef4bdb0ec8e4ad62e5a1f95230c08efb1f64f32e6e8dd2ced685bcc73858b5", size = 213563 },
366 | { url = "https://files.pythonhosted.org/packages/53/2f/2b1c2b056894fbaa975f68f81e3014bb447516a8b010f1bed3fb0e016ed7/msgspec-0.19.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ac7f7c377c122b649f7545810c6cd1b47586e3aa3059126ce3516ac7ccc6a6a9", size = 213996 },
367 | { url = "https://files.pythonhosted.org/packages/aa/5a/4cd408d90d1417e8d2ce6a22b98a6853c1b4d7cb7669153e4424d60087f6/msgspec-0.19.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a5bc1472223a643f5ffb5bf46ccdede7f9795078194f14edd69e3aab7020d327", size = 219087 },
368 | { url = "https://files.pythonhosted.org/packages/23/d8/f15b40611c2d5753d1abb0ca0da0c75348daf1252220e5dda2867bd81062/msgspec-0.19.0-cp313-cp313-win_amd64.whl", hash = "sha256:317050bc0f7739cb30d257ff09152ca309bf5a369854bbf1e57dffc310c1f20f", size = 187432 },
369 | ]
370 |
371 | [[package]]
372 | name = "networkx"
373 | version = "3.4.2"
374 | source = { registry = "https://pypi.org/simple" }
375 | sdist = { url = "https://files.pythonhosted.org/packages/fd/1d/06475e1cd5264c0b870ea2cc6fdb3e37177c1e565c43f56ff17a10e3937f/networkx-3.4.2.tar.gz", hash = "sha256:307c3669428c5362aab27c8a1260aa8f47c4e91d3891f48be0141738d8d053e1", size = 2151368 }
376 | wheels = [
377 | { url = "https://files.pythonhosted.org/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl", hash = "sha256:df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f", size = 1723263 },
378 | ]
379 |
380 | [[package]]
381 | name = "ninja"
382 | version = "1.11.1.4"
383 | source = { registry = "https://pypi.org/simple" }
384 | sdist = { url = "https://files.pythonhosted.org/packages/95/d4/6b0324541018561c5e73e617bd16f20a4fc17d1179bb3b3520b6ca8beb7b/ninja-1.11.1.4.tar.gz", hash = "sha256:6aa39f6e894e0452e5b297327db00019383ae55d5d9c57c73b04f13bf79d438a", size = 201256 }
385 | wheels = [
386 | { url = "https://files.pythonhosted.org/packages/4f/b1/3a61b348936b62a386465b1937cd778fa3a5748582e26d832dbab844ff27/ninja-1.11.1.4-py3-none-macosx_10_9_universal2.whl", hash = "sha256:b33923c8da88e8da20b6053e38deb433f53656441614207e01d283ad02c5e8e7", size = 279071 },
387 | { url = "https://files.pythonhosted.org/packages/12/42/4c94fdad51fcf1f039a156e97de9e4d564c2a8cc0303782d36f9bd893a4b/ninja-1.11.1.4-py3-none-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cede0af00b58e27b31f2482ba83292a8e9171cdb9acc2c867a3b6e40b3353e43", size = 472026 },
388 | { url = "https://files.pythonhosted.org/packages/eb/7a/455d2877fe6cf99886849c7f9755d897df32eaf3a0fba47b56e615f880f7/ninja-1.11.1.4-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:096487995473320de7f65d622c3f1d16c3ad174797602218ca8c967f51ec38a0", size = 422814 },
389 | { url = "https://files.pythonhosted.org/packages/e3/ad/fb6cca942528e25e8e0ab0f0cf98fe007319bf05cf69d726c564b815c4af/ninja-1.11.1.4-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3090d4488fadf6047d0d7a1db0c9643a8d391f0d94729554dbb89b5bdc769d7", size = 156965 },
390 | { url = "https://files.pythonhosted.org/packages/a8/e7/d94a1b60031b115dd88526834b3da69eaacdc3c1a6769773ca8e2b1386b5/ninja-1.11.1.4-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ecce44a00325a93631792974659cf253a815cc6da4ec96f89742925dfc295a0d", size = 179937 },
391 | { url = "https://files.pythonhosted.org/packages/08/cc/e9316a28235409e9363794fc3d0b3083e48dd80d441006de66421e55f364/ninja-1.11.1.4-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c29bb66d2aa46a2409ab369ea804c730faec7652e8c22c1e428cc09216543e5", size = 157020 },
392 | { url = "https://files.pythonhosted.org/packages/e3/30/389b22300541aa5f2e9dad322c4de2f84be4e32aa4e8babd9160d620b5f1/ninja-1.11.1.4-py3-none-manylinux_2_28_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:055f386fb550c2c9d6157e45e20a84d29c47968876b9c5794ae2aec46f952306", size = 130389 },
393 | { url = "https://files.pythonhosted.org/packages/a9/10/e27f35cb92813aabbb7ae771b1685b45be1cc8a0798ce7d4bfd08d142b93/ninja-1.11.1.4-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:f6186d7607bb090c3be1e10c8a56b690be238f953616626f5032238c66e56867", size = 372435 },
394 | { url = "https://files.pythonhosted.org/packages/c2/26/e3559619756739aae124c6abf7fe41f7e546ab1209cfbffb13137bff2d2e/ninja-1.11.1.4-py3-none-musllinux_1_1_i686.whl", hash = "sha256:cf4453679d15babc04ba023d68d091bb613091b67101c88f85d2171c6621c6eb", size = 419300 },
395 | { url = "https://files.pythonhosted.org/packages/35/46/809e4e9572570991b8e6f88f3583807d017371ab4cb09171cbc72a7eb3e4/ninja-1.11.1.4-py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:d4a6f159b08b0ac4aca5ee1572e3e402f969139e71d85d37c0e2872129098749", size = 420239 },
396 | { url = "https://files.pythonhosted.org/packages/e6/64/5cb5710d15f844edf02ada577f8eddfdcd116f47eec15850f3371a3a4b33/ninja-1.11.1.4-py3-none-musllinux_1_1_s390x.whl", hash = "sha256:c3b96bd875f3ef1db782470e9e41d7508905a0986571f219d20ffed238befa15", size = 415986 },
397 | { url = "https://files.pythonhosted.org/packages/95/b2/0e9ab1d926f423b12b09925f78afcc5e48b3c22e7121be3ddf6c35bf06a3/ninja-1.11.1.4-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:cf554e73f72c04deb04d0cf51f5fdb1903d9c9ca3d2344249c8ce3bd616ebc02", size = 379657 },
398 | { url = "https://files.pythonhosted.org/packages/c8/3e/fd6d330d0434168e7fe070d414b57dd99c4c133faa69c05b42a3cbdc6c13/ninja-1.11.1.4-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:cfdd09776436a1ff3c4a2558d3fc50a689fb9d7f1bdbc3e6f7b8c2991341ddb3", size = 454466 },
399 | { url = "https://files.pythonhosted.org/packages/e6/df/a25f3ad0b1c59d1b90564096e4fd89a6ca30d562b1e942f23880c3000b89/ninja-1.11.1.4-py3-none-win32.whl", hash = "sha256:2ab67a41c90bea5ec4b795bab084bc0b3b3bb69d3cd21ca0294fc0fc15a111eb", size = 255931 },
400 | { url = "https://files.pythonhosted.org/packages/5b/10/9b8fe9ac004847490cc7b54896124c01ce2d87d95dc60aabd0b8591addff/ninja-1.11.1.4-py3-none-win_amd64.whl", hash = "sha256:4617b3c12ff64b611a7d93fd9e378275512bb36eff8babff7c83f5116b4f8d66", size = 296461 },
401 | { url = "https://files.pythonhosted.org/packages/b9/58/612a17593c2d117f96c7f6b7f1e6570246bddc4b1e808519403a1417f217/ninja-1.11.1.4-py3-none-win_arm64.whl", hash = "sha256:5713cf50c5be50084a8693308a63ecf9e55c3132a78a41ab1363a28b6caaaee1", size = 271441 },
402 | ]
403 |
404 | [[package]]
405 | name = "numpy"
406 | version = "2.2.4"
407 | source = { registry = "https://pypi.org/simple" }
408 | sdist = { url = "https://files.pythonhosted.org/packages/e1/78/31103410a57bc2c2b93a3597340a8119588571f6a4539067546cb9a0bfac/numpy-2.2.4.tar.gz", hash = "sha256:9ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f", size = 20270701 }
409 | wheels = [
410 | { url = "https://files.pythonhosted.org/packages/16/fb/09e778ee3a8ea0d4dc8329cca0a9c9e65fed847d08e37eba74cb7ed4b252/numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4", size = 21254989 },
411 | { url = "https://files.pythonhosted.org/packages/a2/0a/1212befdbecab5d80eca3cde47d304cad986ad4eec7d85a42e0b6d2cc2ef/numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4", size = 14425910 },
412 | { url = "https://files.pythonhosted.org/packages/2b/3e/e7247c1d4f15086bb106c8d43c925b0b2ea20270224f5186fa48d4fb5cbd/numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f", size = 5426490 },
413 | { url = "https://files.pythonhosted.org/packages/5d/fa/aa7cd6be51419b894c5787a8a93c3302a1ed4f82d35beb0613ec15bdd0e2/numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880", size = 6967754 },
414 | { url = "https://files.pythonhosted.org/packages/d5/ee/96457c943265de9fadeb3d2ffdbab003f7fba13d971084a9876affcda095/numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1", size = 14373079 },
415 | { url = "https://files.pythonhosted.org/packages/c5/5c/ceefca458559f0ccc7a982319f37ed07b0d7b526964ae6cc61f8ad1b6119/numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5", size = 16428819 },
416 | { url = "https://files.pythonhosted.org/packages/22/31/9b2ac8eee99e001eb6add9fa27514ef5e9faf176169057a12860af52704c/numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687", size = 15881470 },
417 | { url = "https://files.pythonhosted.org/packages/f0/dc/8569b5f25ff30484b555ad8a3f537e0225d091abec386c9420cf5f7a2976/numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6", size = 18218144 },
418 | { url = "https://files.pythonhosted.org/packages/5e/05/463c023a39bdeb9bb43a99e7dee2c664cb68d5bb87d14f92482b9f6011cc/numpy-2.2.4-cp311-cp311-win32.whl", hash = "sha256:ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09", size = 6606368 },
419 | { url = "https://files.pythonhosted.org/packages/8b/72/10c1d2d82101c468a28adc35de6c77b308f288cfd0b88e1070f15b98e00c/numpy-2.2.4-cp311-cp311-win_amd64.whl", hash = "sha256:f7de08cbe5551911886d1ab60de58448c6df0f67d9feb7d1fb21e9875ef95e91", size = 12947526 },
420 | { url = "https://files.pythonhosted.org/packages/a2/30/182db21d4f2a95904cec1a6f779479ea1ac07c0647f064dea454ec650c42/numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4", size = 20947156 },
421 | { url = "https://files.pythonhosted.org/packages/24/6d/9483566acfbda6c62c6bc74b6e981c777229d2af93c8eb2469b26ac1b7bc/numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854", size = 14133092 },
422 | { url = "https://files.pythonhosted.org/packages/27/f6/dba8a258acbf9d2bed2525cdcbb9493ef9bae5199d7a9cb92ee7e9b2aea6/numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24", size = 5163515 },
423 | { url = "https://files.pythonhosted.org/packages/62/30/82116199d1c249446723c68f2c9da40d7f062551036f50b8c4caa42ae252/numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee", size = 6696558 },
424 | { url = "https://files.pythonhosted.org/packages/0e/b2/54122b3c6df5df3e87582b2e9430f1bdb63af4023c739ba300164c9ae503/numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba", size = 14084742 },
425 | { url = "https://files.pythonhosted.org/packages/02/e2/e2cbb8d634151aab9528ef7b8bab52ee4ab10e076509285602c2a3a686e0/numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592", size = 16134051 },
426 | { url = "https://files.pythonhosted.org/packages/8e/21/efd47800e4affc993e8be50c1b768de038363dd88865920439ef7b422c60/numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb", size = 15578972 },
427 | { url = "https://files.pythonhosted.org/packages/04/1e/f8bb88f6157045dd5d9b27ccf433d016981032690969aa5c19e332b138c0/numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:11c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f", size = 17898106 },
428 | { url = "https://files.pythonhosted.org/packages/2b/93/df59a5a3897c1f036ae8ff845e45f4081bb06943039ae28a3c1c7c780f22/numpy-2.2.4-cp312-cp312-win32.whl", hash = "sha256:65ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00", size = 6311190 },
429 | { url = "https://files.pythonhosted.org/packages/46/69/8c4f928741c2a8efa255fdc7e9097527c6dc4e4df147e3cadc5d9357ce85/numpy-2.2.4-cp312-cp312-win_amd64.whl", hash = "sha256:2aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146", size = 12644305 },
430 | { url = "https://files.pythonhosted.org/packages/2a/d0/bd5ad792e78017f5decfb2ecc947422a3669a34f775679a76317af671ffc/numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7", size = 20933623 },
431 | { url = "https://files.pythonhosted.org/packages/c3/bc/2b3545766337b95409868f8e62053135bdc7fa2ce630aba983a2aa60b559/numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0", size = 14148681 },
432 | { url = "https://files.pythonhosted.org/packages/6a/70/67b24d68a56551d43a6ec9fe8c5f91b526d4c1a46a6387b956bf2d64744e/numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:79bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392", size = 5148759 },
433 | { url = "https://files.pythonhosted.org/packages/1c/8b/e2fc8a75fcb7be12d90b31477c9356c0cbb44abce7ffb36be39a0017afad/numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:3387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc", size = 6683092 },
434 | { url = "https://files.pythonhosted.org/packages/13/73/41b7b27f169ecf368b52533edb72e56a133f9e86256e809e169362553b49/numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298", size = 14081422 },
435 | { url = "https://files.pythonhosted.org/packages/4b/04/e208ff3ae3ddfbafc05910f89546382f15a3f10186b1f56bd99f159689c2/numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7", size = 16132202 },
436 | { url = "https://files.pythonhosted.org/packages/fe/bc/2218160574d862d5e55f803d88ddcad88beff94791f9c5f86d67bd8fbf1c/numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:31504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6", size = 15573131 },
437 | { url = "https://files.pythonhosted.org/packages/a5/78/97c775bc4f05abc8a8426436b7cb1be806a02a2994b195945600855e3a25/numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:81413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd", size = 17894270 },
438 | { url = "https://files.pythonhosted.org/packages/b9/eb/38c06217a5f6de27dcb41524ca95a44e395e6a1decdc0c99fec0832ce6ae/numpy-2.2.4-cp313-cp313-win32.whl", hash = "sha256:f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c", size = 6308141 },
439 | { url = "https://files.pythonhosted.org/packages/52/17/d0dd10ab6d125c6d11ffb6dfa3423c3571befab8358d4f85cd4471964fcd/numpy-2.2.4-cp313-cp313-win_amd64.whl", hash = "sha256:207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3", size = 12636885 },
440 | { url = "https://files.pythonhosted.org/packages/fa/e2/793288ede17a0fdc921172916efb40f3cbc2aa97e76c5c84aba6dc7e8747/numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:8120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8", size = 20961829 },
441 | { url = "https://files.pythonhosted.org/packages/3a/75/bb4573f6c462afd1ea5cbedcc362fe3e9bdbcc57aefd37c681be1155fbaa/numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39", size = 14161419 },
442 | { url = "https://files.pythonhosted.org/packages/03/68/07b4cd01090ca46c7a336958b413cdbe75002286295f2addea767b7f16c9/numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd", size = 5196414 },
443 | { url = "https://files.pythonhosted.org/packages/a5/fd/d4a29478d622fedff5c4b4b4cedfc37a00691079623c0575978d2446db9e/numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0", size = 6709379 },
444 | { url = "https://files.pythonhosted.org/packages/41/78/96dddb75bb9be730b87c72f30ffdd62611aba234e4e460576a068c98eff6/numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960", size = 14051725 },
445 | { url = "https://files.pythonhosted.org/packages/00/06/5306b8199bffac2a29d9119c11f457f6c7d41115a335b78d3f86fad4dbe8/numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8", size = 16101638 },
446 | { url = "https://files.pythonhosted.org/packages/fa/03/74c5b631ee1ded596945c12027649e6344614144369fd3ec1aaced782882/numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:92bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc", size = 15571717 },
447 | { url = "https://files.pythonhosted.org/packages/cb/dc/4fc7c0283abe0981e3b89f9b332a134e237dd476b0c018e1e21083310c31/numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff", size = 17879998 },
448 | { url = "https://files.pythonhosted.org/packages/e5/2b/878576190c5cfa29ed896b518cc516aecc7c98a919e20706c12480465f43/numpy-2.2.4-cp313-cp313t-win32.whl", hash = "sha256:05c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286", size = 6366896 },
449 | { url = "https://files.pythonhosted.org/packages/3e/05/eb7eec66b95cf697f08c754ef26c3549d03ebd682819f794cb039574a0a6/numpy-2.2.4-cp313-cp313t-win_amd64.whl", hash = "sha256:188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d", size = 12739119 },
450 | ]
451 |
452 | [[package]]
453 | name = "nvidia-cublas-cu12"
454 | version = "12.4.5.8"
455 | source = { registry = "https://pypi.org/simple" }
456 | wheels = [
457 | { url = "https://files.pythonhosted.org/packages/ae/71/1c91302526c45ab494c23f61c7a84aa568b8c1f9d196efa5993957faf906/nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl", hash = "sha256:2fc8da60df463fdefa81e323eef2e36489e1c94335b5358bcb38360adf75ac9b", size = 363438805 },
458 | ]
459 |
460 | [[package]]
461 | name = "nvidia-cuda-cupti-cu12"
462 | version = "12.4.127"
463 | source = { registry = "https://pypi.org/simple" }
464 | wheels = [
465 | { url = "https://files.pythonhosted.org/packages/67/42/f4f60238e8194a3106d06a058d494b18e006c10bb2b915655bd9f6ea4cb1/nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9dec60f5ac126f7bb551c055072b69d85392b13311fcc1bcda2202d172df30fb", size = 13813957 },
466 | ]
467 |
468 | [[package]]
469 | name = "nvidia-cuda-nvrtc-cu12"
470 | version = "12.4.127"
471 | source = { registry = "https://pypi.org/simple" }
472 | wheels = [
473 | { url = "https://files.pythonhosted.org/packages/2c/14/91ae57cd4db3f9ef7aa99f4019cfa8d54cb4caa7e00975df6467e9725a9f/nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a178759ebb095827bd30ef56598ec182b85547f1508941a3d560eb7ea1fbf338", size = 24640306 },
474 | ]
475 |
476 | [[package]]
477 | name = "nvidia-cuda-runtime-cu12"
478 | version = "12.4.127"
479 | source = { registry = "https://pypi.org/simple" }
480 | wheels = [
481 | { url = "https://files.pythonhosted.org/packages/ea/27/1795d86fe88ef397885f2e580ac37628ed058a92ed2c39dc8eac3adf0619/nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:64403288fa2136ee8e467cdc9c9427e0434110899d07c779f25b5c068934faa5", size = 883737 },
482 | ]
483 |
484 | [[package]]
485 | name = "nvidia-cudnn-cu12"
486 | version = "9.1.0.70"
487 | source = { registry = "https://pypi.org/simple" }
488 | dependencies = [
489 | { name = "nvidia-cublas-cu12" },
490 | ]
491 | wheels = [
492 | { url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 },
493 | ]
494 |
495 | [[package]]
496 | name = "nvidia-cufft-cu12"
497 | version = "11.2.1.3"
498 | source = { registry = "https://pypi.org/simple" }
499 | dependencies = [
500 | { name = "nvidia-nvjitlink-cu12" },
501 | ]
502 | wheels = [
503 | { url = "https://files.pythonhosted.org/packages/27/94/3266821f65b92b3138631e9c8e7fe1fb513804ac934485a8d05776e1dd43/nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f083fc24912aa410be21fa16d157fed2055dab1cc4b6934a0e03cba69eb242b9", size = 211459117 },
504 | ]
505 |
506 | [[package]]
507 | name = "nvidia-curand-cu12"
508 | version = "10.3.5.147"
509 | source = { registry = "https://pypi.org/simple" }
510 | wheels = [
511 | { url = "https://files.pythonhosted.org/packages/8a/6d/44ad094874c6f1b9c654f8ed939590bdc408349f137f9b98a3a23ccec411/nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a88f583d4e0bb643c49743469964103aa59f7f708d862c3ddb0fc07f851e3b8b", size = 56305206 },
512 | ]
513 |
514 | [[package]]
515 | name = "nvidia-cusolver-cu12"
516 | version = "11.6.1.9"
517 | source = { registry = "https://pypi.org/simple" }
518 | dependencies = [
519 | { name = "nvidia-cublas-cu12" },
520 | { name = "nvidia-cusparse-cu12" },
521 | { name = "nvidia-nvjitlink-cu12" },
522 | ]
523 | wheels = [
524 | { url = "https://files.pythonhosted.org/packages/3a/e1/5b9089a4b2a4790dfdea8b3a006052cfecff58139d5a4e34cb1a51df8d6f/nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl", hash = "sha256:19e33fa442bcfd085b3086c4ebf7e8debc07cfe01e11513cc6d332fd918ac260", size = 127936057 },
525 | ]
526 |
527 | [[package]]
528 | name = "nvidia-cusparse-cu12"
529 | version = "12.3.1.170"
530 | source = { registry = "https://pypi.org/simple" }
531 | dependencies = [
532 | { name = "nvidia-nvjitlink-cu12" },
533 | ]
534 | wheels = [
535 | { url = "https://files.pythonhosted.org/packages/db/f7/97a9ea26ed4bbbfc2d470994b8b4f338ef663be97b8f677519ac195e113d/nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ea4f11a2904e2a8dc4b1833cc1b5181cde564edd0d5cd33e3c168eff2d1863f1", size = 207454763 },
536 | ]
537 |
538 | [[package]]
539 | name = "nvidia-cusparselt-cu12"
540 | version = "0.6.2"
541 | source = { registry = "https://pypi.org/simple" }
542 | wheels = [
543 | { url = "https://files.pythonhosted.org/packages/78/a8/bcbb63b53a4b1234feeafb65544ee55495e1bb37ec31b999b963cbccfd1d/nvidia_cusparselt_cu12-0.6.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:df2c24502fd76ebafe7457dbc4716b2fec071aabaed4fb7691a201cde03704d9", size = 150057751 },
544 | ]
545 |
546 | [[package]]
547 | name = "nvidia-nccl-cu12"
548 | version = "2.21.5"
549 | source = { registry = "https://pypi.org/simple" }
550 | wheels = [
551 | { url = "https://files.pythonhosted.org/packages/df/99/12cd266d6233f47d00daf3a72739872bdc10267d0383508b0b9c84a18bb6/nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:8579076d30a8c24988834445f8d633c697d42397e92ffc3f63fa26766d25e0a0", size = 188654414 },
552 | ]
553 |
554 | [[package]]
555 | name = "nvidia-nvjitlink-cu12"
556 | version = "12.4.127"
557 | source = { registry = "https://pypi.org/simple" }
558 | wheels = [
559 | { url = "https://files.pythonhosted.org/packages/ff/ff/847841bacfbefc97a00036e0fce5a0f086b640756dc38caea5e1bb002655/nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:06b3b9b25bf3f8af351d664978ca26a16d2c5127dbd53c0497e28d1fb9611d57", size = 21066810 },
560 | ]
561 |
562 | [[package]]
563 | name = "nvidia-nvtx-cu12"
564 | version = "12.4.127"
565 | source = { registry = "https://pypi.org/simple" }
566 | wheels = [
567 | { url = "https://files.pythonhosted.org/packages/87/20/199b8713428322a2f22b722c62b8cc278cc53dffa9705d744484b5035ee9/nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:781e950d9b9f60d8241ccea575b32f5105a5baf4c2351cab5256a24869f12a1a", size = 99144 },
568 | ]
569 |
570 | [[package]]
571 | name = "packaging"
572 | version = "24.2"
573 | source = { registry = "https://pypi.org/simple" }
574 | sdist = { url = "https://files.pythonhosted.org/packages/d0/63/68dbb6eb2de9cb10ee4c9c14a0148804425e13c4fb20d61cce69f53106da/packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f", size = 163950 }
575 | wheels = [
576 | { url = "https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759", size = 65451 },
577 | ]
578 |
579 | [[package]]
580 | name = "pandas"
581 | version = "2.2.3"
582 | source = { registry = "https://pypi.org/simple" }
583 | dependencies = [
584 | { name = "numpy" },
585 | { name = "python-dateutil" },
586 | { name = "pytz" },
587 | { name = "tzdata" },
588 | ]
589 | sdist = { url = "https://files.pythonhosted.org/packages/9c/d6/9f8431bacc2e19dca897724cd097b1bb224a6ad5433784a44b587c7c13af/pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667", size = 4399213 }
590 | wheels = [
591 | { url = "https://files.pythonhosted.org/packages/a8/44/d9502bf0ed197ba9bf1103c9867d5904ddcaf869e52329787fc54ed70cc8/pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039", size = 12602222 },
592 | { url = "https://files.pythonhosted.org/packages/52/11/9eac327a38834f162b8250aab32a6781339c69afe7574368fffe46387edf/pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd", size = 11321274 },
593 | { url = "https://files.pythonhosted.org/packages/45/fb/c4beeb084718598ba19aa9f5abbc8aed8b42f90930da861fcb1acdb54c3a/pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698", size = 15579836 },
594 | { url = "https://files.pythonhosted.org/packages/cd/5f/4dba1d39bb9c38d574a9a22548c540177f78ea47b32f99c0ff2ec499fac5/pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc", size = 13058505 },
595 | { url = "https://files.pythonhosted.org/packages/b9/57/708135b90391995361636634df1f1130d03ba456e95bcf576fada459115a/pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3", size = 16744420 },
596 | { url = "https://files.pythonhosted.org/packages/86/4a/03ed6b7ee323cf30404265c284cee9c65c56a212e0a08d9ee06984ba2240/pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32", size = 14440457 },
597 | { url = "https://files.pythonhosted.org/packages/ed/8c/87ddf1fcb55d11f9f847e3c69bb1c6f8e46e2f40ab1a2d2abadb2401b007/pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5", size = 11617166 },
598 | { url = "https://files.pythonhosted.org/packages/17/a3/fb2734118db0af37ea7433f57f722c0a56687e14b14690edff0cdb4b7e58/pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9", size = 12529893 },
599 | { url = "https://files.pythonhosted.org/packages/e1/0c/ad295fd74bfac85358fd579e271cded3ac969de81f62dd0142c426b9da91/pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4", size = 11363475 },
600 | { url = "https://files.pythonhosted.org/packages/c6/2a/4bba3f03f7d07207481fed47f5b35f556c7441acddc368ec43d6643c5777/pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3", size = 15188645 },
601 | { url = "https://files.pythonhosted.org/packages/38/f8/d8fddee9ed0d0c0f4a2132c1dfcf0e3e53265055da8df952a53e7eaf178c/pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319", size = 12739445 },
602 | { url = "https://files.pythonhosted.org/packages/20/e8/45a05d9c39d2cea61ab175dbe6a2de1d05b679e8de2011da4ee190d7e748/pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8", size = 16359235 },
603 | { url = "https://files.pythonhosted.org/packages/1d/99/617d07a6a5e429ff90c90da64d428516605a1ec7d7bea494235e1c3882de/pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a", size = 14056756 },
604 | { url = "https://files.pythonhosted.org/packages/29/d4/1244ab8edf173a10fd601f7e13b9566c1b525c4f365d6bee918e68381889/pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13", size = 11504248 },
605 | { url = "https://files.pythonhosted.org/packages/64/22/3b8f4e0ed70644e85cfdcd57454686b9057c6c38d2f74fe4b8bc2527214a/pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015", size = 12477643 },
606 | { url = "https://files.pythonhosted.org/packages/e4/93/b3f5d1838500e22c8d793625da672f3eec046b1a99257666c94446969282/pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28", size = 11281573 },
607 | { url = "https://files.pythonhosted.org/packages/f5/94/6c79b07f0e5aab1dcfa35a75f4817f5c4f677931d4234afcd75f0e6a66ca/pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0", size = 15196085 },
608 | { url = "https://files.pythonhosted.org/packages/e8/31/aa8da88ca0eadbabd0a639788a6da13bb2ff6edbbb9f29aa786450a30a91/pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24", size = 12711809 },
609 | { url = "https://files.pythonhosted.org/packages/ee/7c/c6dbdb0cb2a4344cacfb8de1c5808ca885b2e4dcfde8008266608f9372af/pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659", size = 16356316 },
610 | { url = "https://files.pythonhosted.org/packages/57/b7/8b757e7d92023b832869fa8881a992696a0bfe2e26f72c9ae9f255988d42/pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb", size = 14022055 },
611 | { url = "https://files.pythonhosted.org/packages/3b/bc/4b18e2b8c002572c5a441a64826252ce5da2aa738855747247a971988043/pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d", size = 11481175 },
612 | { url = "https://files.pythonhosted.org/packages/76/a3/a5d88146815e972d40d19247b2c162e88213ef51c7c25993942c39dbf41d/pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468", size = 12615650 },
613 | { url = "https://files.pythonhosted.org/packages/9c/8c/f0fd18f6140ddafc0c24122c8a964e48294acc579d47def376fef12bcb4a/pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18", size = 11290177 },
614 | { url = "https://files.pythonhosted.org/packages/ed/f9/e995754eab9c0f14c6777401f7eece0943840b7a9fc932221c19d1abee9f/pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2", size = 14651526 },
615 | { url = "https://files.pythonhosted.org/packages/25/b0/98d6ae2e1abac4f35230aa756005e8654649d305df9a28b16b9ae4353bff/pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4", size = 11871013 },
616 | { url = "https://files.pythonhosted.org/packages/cc/57/0f72a10f9db6a4628744c8e8f0df4e6e21de01212c7c981d31e50ffc8328/pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d", size = 15711620 },
617 | { url = "https://files.pythonhosted.org/packages/ab/5f/b38085618b950b79d2d9164a711c52b10aefc0ae6833b96f626b7021b2ed/pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a", size = 13098436 },
618 | ]
619 |
620 | [[package]]
621 | name = "protobuf"
622 | version = "6.30.2"
623 | source = { registry = "https://pypi.org/simple" }
624 | sdist = { url = "https://files.pythonhosted.org/packages/c8/8c/cf2ac658216eebe49eaedf1e06bc06cbf6a143469236294a1171a51357c3/protobuf-6.30.2.tar.gz", hash = "sha256:35c859ae076d8c56054c25b59e5e59638d86545ed6e2b6efac6be0b6ea3ba048", size = 429315 }
625 | wheels = [
626 | { url = "https://files.pythonhosted.org/packages/be/85/cd53abe6a6cbf2e0029243d6ae5fb4335da2996f6c177bb2ce685068e43d/protobuf-6.30.2-cp310-abi3-win32.whl", hash = "sha256:b12ef7df7b9329886e66404bef5e9ce6a26b54069d7f7436a0853ccdeb91c103", size = 419148 },
627 | { url = "https://files.pythonhosted.org/packages/97/e9/7b9f1b259d509aef2b833c29a1f3c39185e2bf21c9c1be1cd11c22cb2149/protobuf-6.30.2-cp310-abi3-win_amd64.whl", hash = "sha256:7653c99774f73fe6b9301b87da52af0e69783a2e371e8b599b3e9cb4da4b12b9", size = 431003 },
628 | { url = "https://files.pythonhosted.org/packages/8e/66/7f3b121f59097c93267e7f497f10e52ced7161b38295137a12a266b6c149/protobuf-6.30.2-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:0eb523c550a66a09a0c20f86dd554afbf4d32b02af34ae53d93268c1f73bc65b", size = 417579 },
629 | { url = "https://files.pythonhosted.org/packages/d0/89/bbb1bff09600e662ad5b384420ad92de61cab2ed0f12ace1fd081fd4c295/protobuf-6.30.2-cp39-abi3-manylinux2014_aarch64.whl", hash = "sha256:50f32cc9fd9cb09c783ebc275611b4f19dfdfb68d1ee55d2f0c7fa040df96815", size = 317319 },
630 | { url = "https://files.pythonhosted.org/packages/28/50/1925de813499546bc8ab3ae857e3ec84efe7d2f19b34529d0c7c3d02d11d/protobuf-6.30.2-cp39-abi3-manylinux2014_x86_64.whl", hash = "sha256:4f6c687ae8efae6cf6093389a596548214467778146b7245e886f35e1485315d", size = 316212 },
631 | { url = "https://files.pythonhosted.org/packages/e5/a1/93c2acf4ade3c5b557d02d500b06798f4ed2c176fa03e3c34973ca92df7f/protobuf-6.30.2-py3-none-any.whl", hash = "sha256:ae86b030e69a98e08c77beab574cbcb9fff6d031d57209f574a5aea1445f4b51", size = 167062 },
632 | ]
633 |
634 | [[package]]
635 | name = "pyarrow"
636 | version = "19.0.1"
637 | source = { registry = "https://pypi.org/simple" }
638 | sdist = { url = "https://files.pythonhosted.org/packages/7f/09/a9046344212690f0632b9c709f9bf18506522feb333c894d0de81d62341a/pyarrow-19.0.1.tar.gz", hash = "sha256:3bf266b485df66a400f282ac0b6d1b500b9d2ae73314a153dbe97d6d5cc8a99e", size = 1129437 }
639 | wheels = [
640 | { url = "https://files.pythonhosted.org/packages/a0/55/f1a8d838ec07fe3ca53edbe76f782df7b9aafd4417080eebf0b42aab0c52/pyarrow-19.0.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:cc55d71898ea30dc95900297d191377caba257612f384207fe9f8293b5850f90", size = 30713987 },
641 | { url = "https://files.pythonhosted.org/packages/13/12/428861540bb54c98a140ae858a11f71d041ef9e501e6b7eb965ca7909505/pyarrow-19.0.1-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:7a544ec12de66769612b2d6988c36adc96fb9767ecc8ee0a4d270b10b1c51e00", size = 32135613 },
642 | { url = "https://files.pythonhosted.org/packages/2f/8a/23d7cc5ae2066c6c736bce1db8ea7bc9ac3ef97ac7e1c1667706c764d2d9/pyarrow-19.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0148bb4fc158bfbc3d6dfe5001d93ebeed253793fff4435167f6ce1dc4bddeae", size = 41149147 },
643 | { url = "https://files.pythonhosted.org/packages/a2/7a/845d151bb81a892dfb368bf11db584cf8b216963ccce40a5cf50a2492a18/pyarrow-19.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f24faab6ed18f216a37870d8c5623f9c044566d75ec586ef884e13a02a9d62c5", size = 42178045 },
644 | { url = "https://files.pythonhosted.org/packages/a7/31/e7282d79a70816132cf6cae7e378adfccce9ae10352d21c2fecf9d9756dd/pyarrow-19.0.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:4982f8e2b7afd6dae8608d70ba5bd91699077323f812a0448d8b7abdff6cb5d3", size = 40532998 },
645 | { url = "https://files.pythonhosted.org/packages/b8/82/20f3c290d6e705e2ee9c1fa1d5a0869365ee477e1788073d8b548da8b64c/pyarrow-19.0.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:49a3aecb62c1be1d822f8bf629226d4a96418228a42f5b40835c1f10d42e4db6", size = 42084055 },
646 | { url = "https://files.pythonhosted.org/packages/ff/77/e62aebd343238863f2c9f080ad2ef6ace25c919c6ab383436b5b81cbeef7/pyarrow-19.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:008a4009efdb4ea3d2e18f05cd31f9d43c388aad29c636112c2966605ba33466", size = 25283133 },
647 | { url = "https://files.pythonhosted.org/packages/78/b4/94e828704b050e723f67d67c3535cf7076c7432cd4cf046e4bb3b96a9c9d/pyarrow-19.0.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:80b2ad2b193e7d19e81008a96e313fbd53157945c7be9ac65f44f8937a55427b", size = 30670749 },
648 | { url = "https://files.pythonhosted.org/packages/7e/3b/4692965e04bb1df55e2c314c4296f1eb12b4f3052d4cf43d29e076aedf66/pyarrow-19.0.1-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:ee8dec072569f43835932a3b10c55973593abc00936c202707a4ad06af7cb294", size = 32128007 },
649 | { url = "https://files.pythonhosted.org/packages/22/f7/2239af706252c6582a5635c35caa17cb4d401cd74a87821ef702e3888957/pyarrow-19.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d5d1ec7ec5324b98887bdc006f4d2ce534e10e60f7ad995e7875ffa0ff9cb14", size = 41144566 },
650 | { url = "https://files.pythonhosted.org/packages/fb/e3/c9661b2b2849cfefddd9fd65b64e093594b231b472de08ff658f76c732b2/pyarrow-19.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3ad4c0eb4e2a9aeb990af6c09e6fa0b195c8c0e7b272ecc8d4d2b6574809d34", size = 42202991 },
651 | { url = "https://files.pythonhosted.org/packages/fe/4f/a2c0ed309167ef436674782dfee4a124570ba64299c551e38d3fdaf0a17b/pyarrow-19.0.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:d383591f3dcbe545f6cc62daaef9c7cdfe0dff0fb9e1c8121101cabe9098cfa6", size = 40507986 },
652 | { url = "https://files.pythonhosted.org/packages/27/2e/29bb28a7102a6f71026a9d70d1d61df926887e36ec797f2e6acfd2dd3867/pyarrow-19.0.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b4c4156a625f1e35d6c0b2132635a237708944eb41df5fbe7d50f20d20c17832", size = 42087026 },
653 | { url = "https://files.pythonhosted.org/packages/16/33/2a67c0f783251106aeeee516f4806161e7b481f7d744d0d643d2f30230a5/pyarrow-19.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:5bd1618ae5e5476b7654c7b55a6364ae87686d4724538c24185bbb2952679960", size = 25250108 },
654 | { url = "https://files.pythonhosted.org/packages/2b/8d/275c58d4b00781bd36579501a259eacc5c6dfb369be4ddeb672ceb551d2d/pyarrow-19.0.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:e45274b20e524ae5c39d7fc1ca2aa923aab494776d2d4b316b49ec7572ca324c", size = 30653552 },
655 | { url = "https://files.pythonhosted.org/packages/a0/9e/e6aca5cc4ef0c7aec5f8db93feb0bde08dbad8c56b9014216205d271101b/pyarrow-19.0.1-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:d9dedeaf19097a143ed6da37f04f4051aba353c95ef507764d344229b2b740ae", size = 32103413 },
656 | { url = "https://files.pythonhosted.org/packages/6a/fa/a7033f66e5d4f1308c7eb0dfcd2ccd70f881724eb6fd1776657fdf65458f/pyarrow-19.0.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ebfb5171bb5f4a52319344ebbbecc731af3f021e49318c74f33d520d31ae0c4", size = 41134869 },
657 | { url = "https://files.pythonhosted.org/packages/2d/92/34d2569be8e7abdc9d145c98dc410db0071ac579b92ebc30da35f500d630/pyarrow-19.0.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2a21d39fbdb948857f67eacb5bbaaf36802de044ec36fbef7a1c8f0dd3a4ab2", size = 42192626 },
658 | { url = "https://files.pythonhosted.org/packages/0a/1f/80c617b1084fc833804dc3309aa9d8daacd46f9ec8d736df733f15aebe2c/pyarrow-19.0.1-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:99bc1bec6d234359743b01e70d4310d0ab240c3d6b0da7e2a93663b0158616f6", size = 40496708 },
659 | { url = "https://files.pythonhosted.org/packages/e6/90/83698fcecf939a611c8d9a78e38e7fed7792dcc4317e29e72cf8135526fb/pyarrow-19.0.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:1b93ef2c93e77c442c979b0d596af45e4665d8b96da598db145b0fec014b9136", size = 42075728 },
660 | { url = "https://files.pythonhosted.org/packages/40/49/2325f5c9e7a1c125c01ba0c509d400b152c972a47958768e4e35e04d13d8/pyarrow-19.0.1-cp313-cp313-win_amd64.whl", hash = "sha256:d9d46e06846a41ba906ab25302cf0fd522f81aa2a85a71021826f34639ad31ef", size = 25242568 },
661 | { url = "https://files.pythonhosted.org/packages/3f/72/135088d995a759d4d916ec4824cb19e066585b4909ebad4ab196177aa825/pyarrow-19.0.1-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:c0fe3dbbf054a00d1f162fda94ce236a899ca01123a798c561ba307ca38af5f0", size = 30702371 },
662 | { url = "https://files.pythonhosted.org/packages/2e/01/00beeebd33d6bac701f20816a29d2018eba463616bbc07397fdf99ac4ce3/pyarrow-19.0.1-cp313-cp313t-macosx_12_0_x86_64.whl", hash = "sha256:96606c3ba57944d128e8a8399da4812f56c7f61de8c647e3470b417f795d0ef9", size = 32116046 },
663 | { url = "https://files.pythonhosted.org/packages/1f/c9/23b1ea718dfe967cbd986d16cf2a31fe59d015874258baae16d7ea0ccabc/pyarrow-19.0.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f04d49a6b64cf24719c080b3c2029a3a5b16417fd5fd7c4041f94233af732f3", size = 41091183 },
664 | { url = "https://files.pythonhosted.org/packages/3a/d4/b4a3aa781a2c715520aa8ab4fe2e7fa49d33a1d4e71c8fc6ab7b5de7a3f8/pyarrow-19.0.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a9137cf7e1640dce4c190551ee69d478f7121b5c6f323553b319cac936395f6", size = 42171896 },
665 | { url = "https://files.pythonhosted.org/packages/23/1b/716d4cd5a3cbc387c6e6745d2704c4b46654ba2668260d25c402626c5ddb/pyarrow-19.0.1-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:7c1bca1897c28013db5e4c83944a2ab53231f541b9e0c3f4791206d0c0de389a", size = 40464851 },
666 | { url = "https://files.pythonhosted.org/packages/ed/bd/54907846383dcc7ee28772d7e646f6c34276a17da740002a5cefe90f04f7/pyarrow-19.0.1-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:58d9397b2e273ef76264b45531e9d552d8ec8a6688b7390b5be44c02a37aade8", size = 42085744 },
667 | ]
668 |
669 | [[package]]
670 | name = "pycnite"
671 | version = "2024.7.31"
672 | source = { registry = "https://pypi.org/simple" }
673 | sdist = { url = "https://files.pythonhosted.org/packages/26/55/7f412c01675a8c77a9ace64a37d557faebe6740cf7fd619c9bda82b33341/pycnite-2024.7.31.tar.gz", hash = "sha256:5125f1c95aef4a23b9bec3b32fae76873dcd46324fa68e39c10fa852ecdea340", size = 24189 }
674 | wheels = [
675 | { url = "https://files.pythonhosted.org/packages/20/af/7ba371f966657f6e7b1c9876cae7e9f1c5d3635c3df1329636b99e615494/pycnite-2024.7.31-py3-none-any.whl", hash = "sha256:9ff9c09d35056435b867e14ebf79626ca94b6017923a0bf9935377fa90d4cbb3", size = 22939 },
676 | ]
677 |
678 | [[package]]
679 | name = "pydot"
680 | version = "3.0.4"
681 | source = { registry = "https://pypi.org/simple" }
682 | dependencies = [
683 | { name = "pyparsing" },
684 | ]
685 | sdist = { url = "https://files.pythonhosted.org/packages/66/dd/e0e6a4fb84c22050f6a9701ad9fd6a67ef82faa7ba97b97eb6fdc6b49b34/pydot-3.0.4.tar.gz", hash = "sha256:3ce88b2558f3808b0376f22bfa6c263909e1c3981e2a7b629b65b451eee4a25d", size = 168167 }
686 | wheels = [
687 | { url = "https://files.pythonhosted.org/packages/b0/5f/1ebfd430df05c4f9e438dd3313c4456eab937d976f6ab8ce81a98f9fb381/pydot-3.0.4-py3-none-any.whl", hash = "sha256:bfa9c3fc0c44ba1d132adce131802d7df00429d1a79cc0346b0a5cd374dbe9c6", size = 35776 },
688 | ]
689 |
690 | [[package]]
691 | name = "pyparsing"
692 | version = "3.2.3"
693 | source = { registry = "https://pypi.org/simple" }
694 | sdist = { url = "https://files.pythonhosted.org/packages/bb/22/f1129e69d94ffff626bdb5c835506b3a5b4f3d070f17ea295e12c2c6f60f/pyparsing-3.2.3.tar.gz", hash = "sha256:b9c13f1ab8b3b542f72e28f634bad4de758ab3ce4546e4301970ad6fa77c38be", size = 1088608 }
695 | wheels = [
696 | { url = "https://files.pythonhosted.org/packages/05/e7/df2285f3d08fee213f2d041540fa4fc9ca6c2d44cf36d3a035bf2a8d2bcc/pyparsing-3.2.3-py3-none-any.whl", hash = "sha256:a749938e02d6fd0b59b356ca504a24982314bb090c383e3cf201c95ef7e2bfcf", size = 111120 },
697 | ]
698 |
699 | [[package]]
700 | name = "python-dateutil"
701 | version = "2.9.0.post0"
702 | source = { registry = "https://pypi.org/simple" }
703 | dependencies = [
704 | { name = "six" },
705 | ]
706 | sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432 }
707 | wheels = [
708 | { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892 },
709 | ]
710 |
711 | [[package]]
712 | name = "pytype"
713 | version = "2024.10.11"
714 | source = { registry = "https://pypi.org/simple" }
715 | dependencies = [
716 | { name = "attrs" },
717 | { name = "immutabledict" },
718 | { name = "importlab" },
719 | { name = "jinja2" },
720 | { name = "libcst" },
721 | { name = "msgspec" },
722 | { name = "networkx" },
723 | { name = "ninja" },
724 | { name = "pycnite" },
725 | { name = "pydot" },
726 | { name = "tabulate" },
727 | { name = "toml" },
728 | { name = "typing-extensions" },
729 | ]
730 | sdist = { url = "https://files.pythonhosted.org/packages/9c/7a/6fd33673f9c7b9e5f4f8107028c323b1c72acc0f909f1b9b3391a31ea604/pytype-2024.10.11.tar.gz", hash = "sha256:ae5ff82f0b07d5ad68d4ec32a3e8de44fad6ed565a821a76aca50a14df382274", size = 2789497 }
731 | wheels = [
732 | { url = "https://files.pythonhosted.org/packages/23/11/5e31c16d022b724798567e85e313563a78625d7c28247ba0c8ec2741d3e2/pytype-2024.10.11-cp311-cp311-macosx_10_14_universal2.whl", hash = "sha256:2e31a964aa82e1ac317adbe17b77010e4f362882df1ce7ad15ef0cf0bb97039f", size = 4710919 },
733 | { url = "https://files.pythonhosted.org/packages/ed/03/406255d17ba64acd8c48e8eeba95276084d70dd2e9b92a88bd6ebd013efe/pytype-2024.10.11-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:15e2f39590cc08ef8e6704cfa5c1db6fbbee2799891f9d8adbf821f883a54745", size = 4683824 },
734 | { url = "https://files.pythonhosted.org/packages/fa/a9/7e3776a0ae4fcdb988c013384c92a0e716f1e896c2c0012f446ba932093c/pytype-2024.10.11-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ead3408fc9622ba8a357c9a6b9b49059a9b8add0a3b8390a9ab490f62a984005", size = 4696333 },
735 | { url = "https://files.pythonhosted.org/packages/78/a2/cf47d02d846f6d837e1023b2c19588127c4d9dfc577b8eceb4870def32f4/pytype-2024.10.11-cp312-cp312-macosx_10_14_universal2.whl", hash = "sha256:cdc881cce9541a475ec48989a5ab889e6274a85afbf6da0e30266d0823f66d42", size = 4709678 },
736 | { url = "https://files.pythonhosted.org/packages/04/51/5925fe8992f02adab358ce9e8068defdae1e58393bfd767e035509da9872/pytype-2024.10.11-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:13327d0d17b981fe2660dd3a69f97bf09a526f93debc40bb44b240628e0b55c1", size = 4682184 },
737 | { url = "https://files.pythonhosted.org/packages/20/10/52422fdb5a6b4a04938f47a76c655325775b7dd8cc71bd3557aae87b40e1/pytype-2024.10.11-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fb98711679e631b01b09b09185504fbf38d60f119280918e244a602cf843b0fe", size = 4695132 },
738 | ]
739 |
740 | [[package]]
741 | name = "pytz"
742 | version = "2025.2"
743 | source = { registry = "https://pypi.org/simple" }
744 | sdist = { url = "https://files.pythonhosted.org/packages/f8/bf/abbd3cdfb8fbc7fb3d4d38d320f2441b1e7cbe29be4f23797b4a2b5d8aac/pytz-2025.2.tar.gz", hash = "sha256:360b9e3dbb49a209c21ad61809c7fb453643e048b38924c765813546746e81c3", size = 320884 }
745 | wheels = [
746 | { url = "https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl", hash = "sha256:5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00", size = 509225 },
747 | ]
748 |
749 | [[package]]
750 | name = "pyyaml"
751 | version = "6.0.2"
752 | source = { registry = "https://pypi.org/simple" }
753 | sdist = { url = "https://files.pythonhosted.org/packages/54/ed/79a089b6be93607fa5cdaedf301d7dfb23af5f25c398d5ead2525b063e17/pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e", size = 130631 }
754 | wheels = [
755 | { url = "https://files.pythonhosted.org/packages/f8/aa/7af4e81f7acba21a4c6be026da38fd2b872ca46226673c89a758ebdc4fd2/PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774", size = 184612 },
756 | { url = "https://files.pythonhosted.org/packages/8b/62/b9faa998fd185f65c1371643678e4d58254add437edb764a08c5a98fb986/PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee", size = 172040 },
757 | { url = "https://files.pythonhosted.org/packages/ad/0c/c804f5f922a9a6563bab712d8dcc70251e8af811fce4524d57c2c0fd49a4/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c", size = 736829 },
758 | { url = "https://files.pythonhosted.org/packages/51/16/6af8d6a6b210c8e54f1406a6b9481febf9c64a3109c541567e35a49aa2e7/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317", size = 764167 },
759 | { url = "https://files.pythonhosted.org/packages/75/e4/2c27590dfc9992f73aabbeb9241ae20220bd9452df27483b6e56d3975cc5/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85", size = 762952 },
760 | { url = "https://files.pythonhosted.org/packages/9b/97/ecc1abf4a823f5ac61941a9c00fe501b02ac3ab0e373c3857f7d4b83e2b6/PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4", size = 735301 },
761 | { url = "https://files.pythonhosted.org/packages/45/73/0f49dacd6e82c9430e46f4a027baa4ca205e8b0a9dce1397f44edc23559d/PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e", size = 756638 },
762 | { url = "https://files.pythonhosted.org/packages/22/5f/956f0f9fc65223a58fbc14459bf34b4cc48dec52e00535c79b8db361aabd/PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5", size = 143850 },
763 | { url = "https://files.pythonhosted.org/packages/ed/23/8da0bbe2ab9dcdd11f4f4557ccaf95c10b9811b13ecced089d43ce59c3c8/PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44", size = 161980 },
764 | { url = "https://files.pythonhosted.org/packages/86/0c/c581167fc46d6d6d7ddcfb8c843a4de25bdd27e4466938109ca68492292c/PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab", size = 183873 },
765 | { url = "https://files.pythonhosted.org/packages/a8/0c/38374f5bb272c051e2a69281d71cba6fdb983413e6758b84482905e29a5d/PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725", size = 173302 },
766 | { url = "https://files.pythonhosted.org/packages/c3/93/9916574aa8c00aa06bbac729972eb1071d002b8e158bd0e83a3b9a20a1f7/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5", size = 739154 },
767 | { url = "https://files.pythonhosted.org/packages/95/0f/b8938f1cbd09739c6da569d172531567dbcc9789e0029aa070856f123984/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425", size = 766223 },
768 | { url = "https://files.pythonhosted.org/packages/b9/2b/614b4752f2e127db5cc206abc23a8c19678e92b23c3db30fc86ab731d3bd/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476", size = 767542 },
769 | { url = "https://files.pythonhosted.org/packages/d4/00/dd137d5bcc7efea1836d6264f049359861cf548469d18da90cd8216cf05f/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48", size = 731164 },
770 | { url = "https://files.pythonhosted.org/packages/c9/1f/4f998c900485e5c0ef43838363ba4a9723ac0ad73a9dc42068b12aaba4e4/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b", size = 756611 },
771 | { url = "https://files.pythonhosted.org/packages/df/d1/f5a275fdb252768b7a11ec63585bc38d0e87c9e05668a139fea92b80634c/PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4", size = 140591 },
772 | { url = "https://files.pythonhosted.org/packages/0c/e8/4f648c598b17c3d06e8753d7d13d57542b30d56e6c2dedf9c331ae56312e/PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8", size = 156338 },
773 | { url = "https://files.pythonhosted.org/packages/ef/e3/3af305b830494fa85d95f6d95ef7fa73f2ee1cc8ef5b495c7c3269fb835f/PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba", size = 181309 },
774 | { url = "https://files.pythonhosted.org/packages/45/9f/3b1c20a0b7a3200524eb0076cc027a970d320bd3a6592873c85c92a08731/PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1", size = 171679 },
775 | { url = "https://files.pythonhosted.org/packages/7c/9a/337322f27005c33bcb656c655fa78325b730324c78620e8328ae28b64d0c/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133", size = 733428 },
776 | { url = "https://files.pythonhosted.org/packages/a3/69/864fbe19e6c18ea3cc196cbe5d392175b4cf3d5d0ac1403ec3f2d237ebb5/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484", size = 763361 },
777 | { url = "https://files.pythonhosted.org/packages/04/24/b7721e4845c2f162d26f50521b825fb061bc0a5afcf9a386840f23ea19fa/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5", size = 759523 },
778 | { url = "https://files.pythonhosted.org/packages/2b/b2/e3234f59ba06559c6ff63c4e10baea10e5e7df868092bf9ab40e5b9c56b6/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc", size = 726660 },
779 | { url = "https://files.pythonhosted.org/packages/fe/0f/25911a9f080464c59fab9027482f822b86bf0608957a5fcc6eaac85aa515/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652", size = 751597 },
780 | { url = "https://files.pythonhosted.org/packages/14/0d/e2c3b43bbce3cf6bd97c840b46088a3031085179e596d4929729d8d68270/PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183", size = 140527 },
781 | { url = "https://files.pythonhosted.org/packages/fa/de/02b54f42487e3d3c6efb3f89428677074ca7bf43aae402517bc7cca949f3/PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563", size = 156446 },
782 | ]
783 |
784 | [[package]]
785 | name = "requests"
786 | version = "2.32.3"
787 | source = { registry = "https://pypi.org/simple" }
788 | dependencies = [
789 | { name = "certifi" },
790 | { name = "charset-normalizer" },
791 | { name = "idna" },
792 | { name = "urllib3" },
793 | ]
794 | sdist = { url = "https://files.pythonhosted.org/packages/63/70/2bf7780ad2d390a8d301ad0b550f1581eadbd9a20f896afe06353c2a2913/requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760", size = 131218 }
795 | wheels = [
796 | { url = "https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6", size = 64928 },
797 | ]
798 |
799 | [[package]]
800 | name = "safetensors"
801 | version = "0.5.3"
802 | source = { registry = "https://pypi.org/simple" }
803 | sdist = { url = "https://files.pythonhosted.org/packages/71/7e/2d5d6ee7b40c0682315367ec7475693d110f512922d582fef1bd4a63adc3/safetensors-0.5.3.tar.gz", hash = "sha256:b6b0d6ecacec39a4fdd99cc19f4576f5219ce858e6fd8dbe7609df0b8dc56965", size = 67210 }
804 | wheels = [
805 | { url = "https://files.pythonhosted.org/packages/18/ae/88f6c49dbd0cc4da0e08610019a3c78a7d390879a919411a410a1876d03a/safetensors-0.5.3-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:bd20eb133db8ed15b40110b7c00c6df51655a2998132193de2f75f72d99c7073", size = 436917 },
806 | { url = "https://files.pythonhosted.org/packages/b8/3b/11f1b4a2f5d2ab7da34ecc062b0bc301f2be024d110a6466726bec8c055c/safetensors-0.5.3-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:21d01c14ff6c415c485616b8b0bf961c46b3b343ca59110d38d744e577f9cce7", size = 418419 },
807 | { url = "https://files.pythonhosted.org/packages/5d/9a/add3e6fef267658075c5a41573c26d42d80c935cdc992384dfae435feaef/safetensors-0.5.3-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:11bce6164887cd491ca75c2326a113ba934be596e22b28b1742ce27b1d076467", size = 459493 },
808 | { url = "https://files.pythonhosted.org/packages/df/5c/bf2cae92222513cc23b3ff85c4a1bb2811a2c3583ac0f8e8d502751de934/safetensors-0.5.3-cp38-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4a243be3590bc3301c821da7a18d87224ef35cbd3e5f5727e4e0728b8172411e", size = 472400 },
809 | { url = "https://files.pythonhosted.org/packages/58/11/7456afb740bd45782d0f4c8e8e1bb9e572f1bf82899fb6ace58af47b4282/safetensors-0.5.3-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8bd84b12b1670a6f8e50f01e28156422a2bc07fb16fc4e98bded13039d688a0d", size = 522891 },
810 | { url = "https://files.pythonhosted.org/packages/57/3d/fe73a9d2ace487e7285f6e157afee2383bd1ddb911b7cb44a55cf812eae3/safetensors-0.5.3-cp38-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:391ac8cab7c829452175f871fcaf414aa1e292b5448bd02620f675a7f3e7abb9", size = 537694 },
811 | { url = "https://files.pythonhosted.org/packages/a6/f8/dae3421624fcc87a89d42e1898a798bc7ff72c61f38973a65d60df8f124c/safetensors-0.5.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cead1fa41fc54b1e61089fa57452e8834f798cb1dc7a09ba3524f1eb08e0317a", size = 471642 },
812 | { url = "https://files.pythonhosted.org/packages/ce/20/1fbe16f9b815f6c5a672f5b760951e20e17e43f67f231428f871909a37f6/safetensors-0.5.3-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1077f3e94182d72618357b04b5ced540ceb71c8a813d3319f1aba448e68a770d", size = 502241 },
813 | { url = "https://files.pythonhosted.org/packages/5f/18/8e108846b506487aa4629fe4116b27db65c3dde922de2c8e0cc1133f3f29/safetensors-0.5.3-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:799021e78287bac619c7b3f3606730a22da4cda27759ddf55d37c8db7511c74b", size = 638001 },
814 | { url = "https://files.pythonhosted.org/packages/82/5a/c116111d8291af6c8c8a8b40628fe833b9db97d8141c2a82359d14d9e078/safetensors-0.5.3-cp38-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:df26da01aaac504334644e1b7642fa000bfec820e7cef83aeac4e355e03195ff", size = 734013 },
815 | { url = "https://files.pythonhosted.org/packages/7d/ff/41fcc4d3b7de837963622e8610d998710705bbde9a8a17221d85e5d0baad/safetensors-0.5.3-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:32c3ef2d7af8b9f52ff685ed0bc43913cdcde135089ae322ee576de93eae5135", size = 670687 },
816 | { url = "https://files.pythonhosted.org/packages/40/ad/2b113098e69c985a3d8fbda4b902778eae4a35b7d5188859b4a63d30c161/safetensors-0.5.3-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:37f1521be045e56fc2b54c606d4455573e717b2d887c579ee1dbba5f868ece04", size = 643147 },
817 | { url = "https://files.pythonhosted.org/packages/0a/0c/95aeb51d4246bd9a3242d3d8349c1112b4ee7611a4b40f0c5c93b05f001d/safetensors-0.5.3-cp38-abi3-win32.whl", hash = "sha256:cfc0ec0846dcf6763b0ed3d1846ff36008c6e7290683b61616c4b040f6a54ace", size = 296677 },
818 | { url = "https://files.pythonhosted.org/packages/69/e2/b011c38e5394c4c18fb5500778a55ec43ad6106126e74723ffaee246f56e/safetensors-0.5.3-cp38-abi3-win_amd64.whl", hash = "sha256:836cbbc320b47e80acd40e44c8682db0e8ad7123209f69b093def21ec7cafd11", size = 308878 },
819 | ]
820 |
821 | [[package]]
822 | name = "setuptools"
823 | version = "78.1.0"
824 | source = { registry = "https://pypi.org/simple" }
825 | sdist = { url = "https://files.pythonhosted.org/packages/a9/5a/0db4da3bc908df06e5efae42b44e75c81dd52716e10192ff36d0c1c8e379/setuptools-78.1.0.tar.gz", hash = "sha256:18fd474d4a82a5f83dac888df697af65afa82dec7323d09c3e37d1f14288da54", size = 1367827 }
826 | wheels = [
827 | { url = "https://files.pythonhosted.org/packages/54/21/f43f0a1fa8b06b32812e0975981f4677d28e0f3271601dc88ac5a5b83220/setuptools-78.1.0-py3-none-any.whl", hash = "sha256:3e386e96793c8702ae83d17b853fb93d3e09ef82ec62722e61da5cd22376dcd8", size = 1256108 },
828 | ]
829 |
830 | [[package]]
831 | name = "six"
832 | version = "1.17.0"
833 | source = { registry = "https://pypi.org/simple" }
834 | sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031 }
835 | wheels = [
836 | { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050 },
837 | ]
838 |
839 | [[package]]
840 | name = "sympy"
841 | version = "1.13.1"
842 | source = { registry = "https://pypi.org/simple" }
843 | dependencies = [
844 | { name = "mpmath" },
845 | ]
846 | sdist = { url = "https://files.pythonhosted.org/packages/ca/99/5a5b6f19ff9f083671ddf7b9632028436167cd3d33e11015754e41b249a4/sympy-1.13.1.tar.gz", hash = "sha256:9cebf7e04ff162015ce31c9c6c9144daa34a93bd082f54fd8f12deca4f47515f", size = 7533040 }
847 | wheels = [
848 | { url = "https://files.pythonhosted.org/packages/b2/fe/81695a1aa331a842b582453b605175f419fe8540355886031328089d840a/sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8", size = 6189177 },
849 | ]
850 |
851 | [[package]]
852 | name = "tabulate"
853 | version = "0.9.0"
854 | source = { registry = "https://pypi.org/simple" }
855 | sdist = { url = "https://files.pythonhosted.org/packages/ec/fe/802052aecb21e3797b8f7902564ab6ea0d60ff8ca23952079064155d1ae1/tabulate-0.9.0.tar.gz", hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c", size = 81090 }
856 | wheels = [
857 | { url = "https://files.pythonhosted.org/packages/40/44/4a5f08c96eb108af5cb50b41f76142f0afa346dfa99d5296fe7202a11854/tabulate-0.9.0-py3-none-any.whl", hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f", size = 35252 },
858 | ]
859 |
860 | [[package]]
861 | name = "tensorboard"
862 | version = "2.19.0"
863 | source = { registry = "https://pypi.org/simple" }
864 | dependencies = [
865 | { name = "absl-py" },
866 | { name = "grpcio" },
867 | { name = "markdown" },
868 | { name = "numpy" },
869 | { name = "packaging" },
870 | { name = "protobuf" },
871 | { name = "setuptools" },
872 | { name = "six" },
873 | { name = "tensorboard-data-server" },
874 | { name = "werkzeug" },
875 | ]
876 | wheels = [
877 | { url = "https://files.pythonhosted.org/packages/5d/12/4f70e8e2ba0dbe72ea978429d8530b0333f0ed2140cc571a48802878ef99/tensorboard-2.19.0-py3-none-any.whl", hash = "sha256:5e71b98663a641a7ce8a6e70b0be8e1a4c0c45d48760b076383ac4755c35b9a0", size = 5503412 },
878 | ]
879 |
880 | [[package]]
881 | name = "tensorboard-data-server"
882 | version = "0.7.2"
883 | source = { registry = "https://pypi.org/simple" }
884 | wheels = [
885 | { url = "https://files.pythonhosted.org/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb", size = 2356 },
886 | { url = "https://files.pythonhosted.org/packages/b7/85/dabeaf902892922777492e1d253bb7e1264cadce3cea932f7ff599e53fea/tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60", size = 4823598 },
887 | { url = "https://files.pythonhosted.org/packages/73/c6/825dab04195756cf8ff2e12698f22513b3db2f64925bdd41671bfb33aaa5/tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530", size = 6590363 },
888 | ]
889 |
890 | [[package]]
891 | name = "tokenizers"
892 | version = "0.21.1"
893 | source = { registry = "https://pypi.org/simple" }
894 | dependencies = [
895 | { name = "huggingface-hub" },
896 | ]
897 | sdist = { url = "https://files.pythonhosted.org/packages/92/76/5ac0c97f1117b91b7eb7323dcd61af80d72f790b4df71249a7850c195f30/tokenizers-0.21.1.tar.gz", hash = "sha256:a1bb04dc5b448985f86ecd4b05407f5a8d97cb2c0532199b2a302a604a0165ab", size = 343256 }
898 | wheels = [
899 | { url = "https://files.pythonhosted.org/packages/a5/1f/328aee25f9115bf04262e8b4e5a2050b7b7cf44b59c74e982db7270c7f30/tokenizers-0.21.1-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:e78e413e9e668ad790a29456e677d9d3aa50a9ad311a40905d6861ba7692cf41", size = 2780767 },
900 | { url = "https://files.pythonhosted.org/packages/ae/1a/4526797f3719b0287853f12c5ad563a9be09d446c44ac784cdd7c50f76ab/tokenizers-0.21.1-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:cd51cd0a91ecc801633829fcd1fda9cf8682ed3477c6243b9a095539de4aecf3", size = 2650555 },
901 | { url = "https://files.pythonhosted.org/packages/4d/7a/a209b29f971a9fdc1da86f917fe4524564924db50d13f0724feed37b2a4d/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28da6b72d4fb14ee200a1bd386ff74ade8992d7f725f2bde2c495a9a98cf4d9f", size = 2937541 },
902 | { url = "https://files.pythonhosted.org/packages/3c/1e/b788b50ffc6191e0b1fc2b0d49df8cff16fe415302e5ceb89f619d12c5bc/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:34d8cfde551c9916cb92014e040806122295a6800914bab5865deb85623931cf", size = 2819058 },
903 | { url = "https://files.pythonhosted.org/packages/36/aa/3626dfa09a0ecc5b57a8c58eeaeb7dd7ca9a37ad9dd681edab5acd55764c/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aaa852d23e125b73d283c98f007e06d4595732104b65402f46e8ef24b588d9f8", size = 3133278 },
904 | { url = "https://files.pythonhosted.org/packages/a4/4d/8fbc203838b3d26269f944a89459d94c858f5b3f9a9b6ee9728cdcf69161/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a21a15d5c8e603331b8a59548bbe113564136dc0f5ad8306dd5033459a226da0", size = 3144253 },
905 | { url = "https://files.pythonhosted.org/packages/d8/1b/2bd062adeb7c7511b847b32e356024980c0ffcf35f28947792c2d8ad2288/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2fdbd4c067c60a0ac7eca14b6bd18a5bebace54eb757c706b47ea93204f7a37c", size = 3398225 },
906 | { url = "https://files.pythonhosted.org/packages/8a/63/38be071b0c8e06840bc6046991636bcb30c27f6bb1e670f4f4bc87cf49cc/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dd9a0061e403546f7377df940e866c3e678d7d4e9643d0461ea442b4f89e61a", size = 3038874 },
907 | { url = "https://files.pythonhosted.org/packages/ec/83/afa94193c09246417c23a3c75a8a0a96bf44ab5630a3015538d0c316dd4b/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:db9484aeb2e200c43b915a1a0150ea885e35f357a5a8fabf7373af333dcc8dbf", size = 9014448 },
908 | { url = "https://files.pythonhosted.org/packages/ae/b3/0e1a37d4f84c0f014d43701c11eb8072704f6efe8d8fc2dcdb79c47d76de/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:ed248ab5279e601a30a4d67bdb897ecbe955a50f1e7bb62bd99f07dd11c2f5b6", size = 8937877 },
909 | { url = "https://files.pythonhosted.org/packages/ac/33/ff08f50e6d615eb180a4a328c65907feb6ded0b8f990ec923969759dc379/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:9ac78b12e541d4ce67b4dfd970e44c060a2147b9b2a21f509566d556a509c67d", size = 9186645 },
910 | { url = "https://files.pythonhosted.org/packages/5f/aa/8ae85f69a9f6012c6f8011c6f4aa1c96154c816e9eea2e1b758601157833/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:e5a69c1a4496b81a5ee5d2c1f3f7fbdf95e90a0196101b0ee89ed9956b8a168f", size = 9384380 },
911 | { url = "https://files.pythonhosted.org/packages/e8/5b/a5d98c89f747455e8b7a9504910c865d5e51da55e825a7ae641fb5ff0a58/tokenizers-0.21.1-cp39-abi3-win32.whl", hash = "sha256:1039a3a5734944e09de1d48761ade94e00d0fa760c0e0551151d4dd851ba63e3", size = 2239506 },
912 | { url = "https://files.pythonhosted.org/packages/e6/b6/072a8e053ae600dcc2ac0da81a23548e3b523301a442a6ca900e92ac35be/tokenizers-0.21.1-cp39-abi3-win_amd64.whl", hash = "sha256:0f0dcbcc9f6e13e675a66d7a5f2f225a736745ce484c1a4e07476a89ccdad382", size = 2435481 },
913 | ]
914 |
915 | [[package]]
916 | name = "toml"
917 | version = "0.10.2"
918 | source = { registry = "https://pypi.org/simple" }
919 | sdist = { url = "https://files.pythonhosted.org/packages/be/ba/1f744cdc819428fc6b5084ec34d9b30660f6f9daaf70eead706e3203ec3c/toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f", size = 22253 }
920 | wheels = [
921 | { url = "https://files.pythonhosted.org/packages/44/6f/7120676b6d73228c96e17f1f794d8ab046fc910d781c8d151120c3f1569e/toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b", size = 16588 },
922 | ]
923 |
924 | [[package]]
925 | name = "torch"
926 | version = "2.6.0"
927 | source = { registry = "https://pypi.org/simple" }
928 | dependencies = [
929 | { name = "filelock" },
930 | { name = "fsspec" },
931 | { name = "jinja2" },
932 | { name = "networkx" },
933 | { name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
934 | { name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
935 | { name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
936 | { name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
937 | { name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
938 | { name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
939 | { name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
940 | { name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
941 | { name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
942 | { name = "nvidia-cusparselt-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
943 | { name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
944 | { name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
945 | { name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
946 | { name = "setuptools", marker = "python_full_version >= '3.12'" },
947 | { name = "sympy" },
948 | { name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
949 | { name = "typing-extensions" },
950 | ]
951 | wheels = [
952 | { url = "https://files.pythonhosted.org/packages/78/a9/97cbbc97002fff0de394a2da2cdfa859481fdca36996d7bd845d50aa9d8d/torch-2.6.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:7979834102cd5b7a43cc64e87f2f3b14bd0e1458f06e9f88ffa386d07c7446e1", size = 766715424 },
953 | { url = "https://files.pythonhosted.org/packages/6d/fa/134ce8f8a7ea07f09588c9cc2cea0d69249efab977707cf67669431dcf5c/torch-2.6.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:ccbd0320411fe1a3b3fec7b4d3185aa7d0c52adac94480ab024b5c8f74a0bf1d", size = 95759416 },
954 | { url = "https://files.pythonhosted.org/packages/11/c5/2370d96b31eb1841c3a0883a492c15278a6718ccad61bb6a649c80d1d9eb/torch-2.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:46763dcb051180ce1ed23d1891d9b1598e07d051ce4c9d14307029809c4d64f7", size = 204164970 },
955 | { url = "https://files.pythonhosted.org/packages/0b/fa/f33a4148c6fb46ca2a3f8de39c24d473822d5774d652b66ed9b1214da5f7/torch-2.6.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:94fc63b3b4bedd327af588696559f68c264440e2503cc9e6954019473d74ae21", size = 66530713 },
956 | { url = "https://files.pythonhosted.org/packages/e5/35/0c52d708144c2deb595cd22819a609f78fdd699b95ff6f0ebcd456e3c7c1/torch-2.6.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:2bb8987f3bb1ef2675897034402373ddfc8f5ef0e156e2d8cfc47cacafdda4a9", size = 766624563 },
957 | { url = "https://files.pythonhosted.org/packages/01/d6/455ab3fbb2c61c71c8842753b566012e1ed111e7a4c82e0e1c20d0c76b62/torch-2.6.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:b789069020c5588c70d5c2158ac0aa23fd24a028f34a8b4fcb8fcb4d7efcf5fb", size = 95607867 },
958 | { url = "https://files.pythonhosted.org/packages/18/cf/ae99bd066571656185be0d88ee70abc58467b76f2f7c8bfeb48735a71fe6/torch-2.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:7e1448426d0ba3620408218b50aa6ada88aeae34f7a239ba5431f6c8774b1239", size = 204120469 },
959 | { url = "https://files.pythonhosted.org/packages/81/b4/605ae4173aa37fb5aa14605d100ff31f4f5d49f617928c9f486bb3aaec08/torch-2.6.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:9a610afe216a85a8b9bc9f8365ed561535c93e804c2a317ef7fabcc5deda0989", size = 66532538 },
960 | { url = "https://files.pythonhosted.org/packages/24/85/ead1349fc30fe5a32cadd947c91bda4a62fbfd7f8c34ee61f6398d38fb48/torch-2.6.0-cp313-cp313-manylinux1_x86_64.whl", hash = "sha256:4874a73507a300a5d089ceaff616a569e7bb7c613c56f37f63ec3ffac65259cf", size = 766626191 },
961 | { url = "https://files.pythonhosted.org/packages/dd/b0/26f06f9428b250d856f6d512413e9e800b78625f63801cbba13957432036/torch-2.6.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:a0d5e1b9874c1a6c25556840ab8920569a7a4137afa8a63a32cee0bc7d89bd4b", size = 95611439 },
962 | { url = "https://files.pythonhosted.org/packages/c2/9c/fc5224e9770c83faed3a087112d73147cd7c7bfb7557dcf9ad87e1dda163/torch-2.6.0-cp313-cp313-win_amd64.whl", hash = "sha256:510c73251bee9ba02ae1cb6c9d4ee0907b3ce6020e62784e2d7598e0cfa4d6cc", size = 204126475 },
963 | { url = "https://files.pythonhosted.org/packages/88/8b/d60c0491ab63634763be1537ad488694d316ddc4a20eaadd639cedc53971/torch-2.6.0-cp313-none-macosx_11_0_arm64.whl", hash = "sha256:ff96f4038f8af9f7ec4231710ed4549da1bdebad95923953a25045dcf6fd87e2", size = 66536783 },
964 | ]
965 |
966 | [[package]]
967 | name = "tqdm"
968 | version = "4.67.1"
969 | source = { registry = "https://pypi.org/simple" }
970 | dependencies = [
971 | { name = "colorama", marker = "sys_platform == 'win32'" },
972 | ]
973 | sdist = { url = "https://files.pythonhosted.org/packages/a8/4b/29b4ef32e036bb34e4ab51796dd745cdba7ed47ad142a9f4a1eb8e0c744d/tqdm-4.67.1.tar.gz", hash = "sha256:f8aef9c52c08c13a65f30ea34f4e5aac3fd1a34959879d7e59e63027286627f2", size = 169737 }
974 | wheels = [
975 | { url = "https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2", size = 78540 },
976 | ]
977 |
978 | [[package]]
979 | name = "triton"
980 | version = "3.2.0"
981 | source = { registry = "https://pypi.org/simple" }
982 | wheels = [
983 | { url = "https://files.pythonhosted.org/packages/a7/2e/757d2280d4fefe7d33af7615124e7e298ae7b8e3bc4446cdb8e88b0f9bab/triton-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8009a1fb093ee8546495e96731336a33fb8856a38e45bb4ab6affd6dbc3ba220", size = 253157636 },
984 | { url = "https://files.pythonhosted.org/packages/06/00/59500052cb1cf8cf5316be93598946bc451f14072c6ff256904428eaf03c/triton-3.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d9b215efc1c26fa7eefb9a157915c92d52e000d2bf83e5f69704047e63f125c", size = 253159365 },
985 | { url = "https://files.pythonhosted.org/packages/c7/30/37a3384d1e2e9320331baca41e835e90a3767303642c7a80d4510152cbcf/triton-3.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e5dfa23ba84541d7c0a531dfce76d8bcd19159d50a4a8b14ad01e91734a5c1b0", size = 253154278 },
986 | ]
987 |
988 | [[package]]
989 | name = "typing-extensions"
990 | version = "4.13.2"
991 | source = { registry = "https://pypi.org/simple" }
992 | sdist = { url = "https://files.pythonhosted.org/packages/f6/37/23083fcd6e35492953e8d2aaaa68b860eb422b34627b13f2ce3eb6106061/typing_extensions-4.13.2.tar.gz", hash = "sha256:e6c81219bd689f51865d9e372991c540bda33a0379d5573cddb9a3a23f7caaef", size = 106967 }
993 | wheels = [
994 | { url = "https://files.pythonhosted.org/packages/8b/54/b1ae86c0973cc6f0210b53d508ca3641fb6d0c56823f288d108bc7ab3cc8/typing_extensions-4.13.2-py3-none-any.whl", hash = "sha256:a439e7c04b49fec3e5d3e2beaa21755cadbbdc391694e28ccdd36ca4a1408f8c", size = 45806 },
995 | ]
996 |
997 | [[package]]
998 | name = "tzdata"
999 | version = "2025.2"
1000 | source = { registry = "https://pypi.org/simple" }
1001 | sdist = { url = "https://files.pythonhosted.org/packages/95/32/1a225d6164441be760d75c2c42e2780dc0873fe382da3e98a2e1e48361e5/tzdata-2025.2.tar.gz", hash = "sha256:b60a638fcc0daffadf82fe0f57e53d06bdec2f36c4df66280ae79bce6bd6f2b9", size = 196380 }
1002 | wheels = [
1003 | { url = "https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl", hash = "sha256:1a403fada01ff9221ca8044d701868fa132215d84beb92242d9acd2147f667a8", size = 347839 },
1004 | ]
1005 |
1006 | [[package]]
1007 | name = "urllib3"
1008 | version = "2.4.0"
1009 | source = { registry = "https://pypi.org/simple" }
1010 | sdist = { url = "https://files.pythonhosted.org/packages/8a/78/16493d9c386d8e60e442a35feac5e00f0913c0f4b7c217c11e8ec2ff53e0/urllib3-2.4.0.tar.gz", hash = "sha256:414bc6535b787febd7567804cc015fee39daab8ad86268f1310a9250697de466", size = 390672 }
1011 | wheels = [
1012 | { url = "https://files.pythonhosted.org/packages/6b/11/cc635220681e93a0183390e26485430ca2c7b5f9d33b15c74c2861cb8091/urllib3-2.4.0-py3-none-any.whl", hash = "sha256:4e16665048960a0900c702d4a66415956a584919c03361cac9f1df5c5dd7e813", size = 128680 },
1013 | ]
1014 |
1015 | [[package]]
1016 | name = "werkzeug"
1017 | version = "3.1.3"
1018 | source = { registry = "https://pypi.org/simple" }
1019 | dependencies = [
1020 | { name = "markupsafe" },
1021 | ]
1022 | sdist = { url = "https://files.pythonhosted.org/packages/9f/69/83029f1f6300c5fb2471d621ab06f6ec6b3324685a2ce0f9777fd4a8b71e/werkzeug-3.1.3.tar.gz", hash = "sha256:60723ce945c19328679790e3282cc758aa4a6040e4bb330f53d30fa546d44746", size = 806925 }
1023 | wheels = [
1024 | { url = "https://files.pythonhosted.org/packages/52/24/ab44c871b0f07f491e5d2ad12c9bd7358e527510618cb1b803a88e986db1/werkzeug-3.1.3-py3-none-any.whl", hash = "sha256:54b78bf3716d19a65be4fceccc0d1d7b89e608834989dfae50ea87564639213e", size = 224498 },
1025 | ]
1026 |
--------------------------------------------------------------------------------