├── .github ├── ISSUE_TEMPLATE │ ├── bug-report-or-feature-request.md │ └── config.yml └── workflows │ └── ci.yaml ├── .gitignore ├── .gitlab-ci.yml ├── LICENSE.txt ├── README.md ├── VL53L0X.cpp ├── VL53L0X.h ├── examples ├── Continuous │ └── Continuous.ino └── Single │ └── Single.ino ├── keywords.txt └── library.properties /.github/ISSUE_TEMPLATE/bug-report-or-feature-request.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: Bug report or feature request 3 | about: Did you find a specific bug in the code for this project? Do you want to request 4 | a new feature? Please open an issue! 5 | title: '' 6 | labels: '' 7 | assignees: '' 8 | 9 | --- 10 | 11 | 12 | -------------------------------------------------------------------------------- /.github/ISSUE_TEMPLATE/config.yml: -------------------------------------------------------------------------------- 1 | blank_issues_enabled: false 2 | contact_links: 3 | - name: Pololu Forum 4 | url: https://forum.pololu.com/ 5 | about: Do you need help getting started? Can't get this code to work at all? Having problems with electronics? Please post on our forum! 6 | -------------------------------------------------------------------------------- /.github/workflows/ci.yaml: -------------------------------------------------------------------------------- 1 | name: "CI" 2 | on: 3 | pull_request: 4 | push: 5 | jobs: 6 | ci: 7 | runs-on: ubuntu-20.04 8 | steps: 9 | - name: Checkout this repository 10 | uses: actions/checkout@v2.3.4 11 | - name: Cache for arduino-ci 12 | uses: actions/cache@v2.1.3 13 | with: 14 | path: | 15 | ~/.arduino15 16 | key: ${{ runner.os }}-arduino 17 | - name: Install nix 18 | uses: cachix/install-nix-action@v12 19 | - run: nix-shell -I nixpkgs=channel:nixpkgs-unstable -p arduino-ci --run "arduino-ci" 20 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | /docs/ 2 | /out/ 3 | -------------------------------------------------------------------------------- /.gitlab-ci.yml: -------------------------------------------------------------------------------- 1 | image: $CI_REGISTRY_IMAGE/nixos/nix:2.3.6 2 | 3 | stages: 4 | - ci 5 | 6 | ci: 7 | stage: ci 8 | tags: 9 | - nix 10 | script: 11 | - nix-shell -I nixpkgs=channel:nixpkgs-unstable -p arduino-ci --run "arduino-ci" 12 | -------------------------------------------------------------------------------- /LICENSE.txt: -------------------------------------------------------------------------------- 1 | Copyright (c) 2017-2022 Pololu Corporation. For more information, see 2 | 3 | https://www.pololu.com/ 4 | https://forum.pololu.com/ 5 | 6 | Permission is hereby granted, free of charge, to any person 7 | obtaining a copy of this software and associated documentation 8 | files (the "Software"), to deal in the Software without 9 | restriction, including without limitation the rights to use, 10 | copy, modify, merge, publish, distribute, sublicense, and/or sell 11 | copies of the Software, and to permit persons to whom the 12 | Software is furnished to do so, subject to the following 13 | conditions: 14 | 15 | The above copyright notice and this permission notice shall be 16 | included in all copies or substantial portions of the Software. 17 | 18 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 19 | EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 20 | OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 21 | NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 22 | HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 23 | WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 24 | FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 25 | OTHER DEALINGS IN THE SOFTWARE. 26 | 27 | ================================================================= 28 | 29 | Most of the functionality of this library is based on the VL53L0X 30 | API provided by ST (STSW-IMG005), and some of the explanatory 31 | comments are quoted or paraphrased from the API source code, API 32 | user manual (UM2039), and the VL53L0X datasheet. 33 | 34 | The following applies to source code reproduced or derived from 35 | the API: 36 | 37 | ----------------------------------------------------------------- 38 | 39 | Copyright © 2016, STMicroelectronics International N.V. All 40 | rights reserved. 41 | 42 | Redistribution and use in source and binary forms, with or 43 | without modification, are permitted provided that the following 44 | conditions are met: 45 | * Redistributions of source code must retain the above copyright 46 | notice, this list of conditions and the following disclaimer. 47 | * Redistributions in binary form must reproduce the above 48 | copyright notice, this list of conditions and the following 49 | disclaimer in the documentation and/or other materials provided 50 | with the distribution. 51 | * Neither the name of STMicroelectronics nor the 52 | names of its contributors may be used to endorse or promote 53 | products derived from this software without specific prior 54 | written permission. 55 | 56 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 57 | CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 58 | INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 59 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND 60 | NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS ARE DISCLAIMED. 61 | IN NO EVENT SHALL STMICROELECTRONICS INTERNATIONAL N.V. BE LIABLE 62 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 64 | OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 65 | OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 66 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 67 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 68 | USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 69 | DAMAGE. 70 | 71 | ----------------------------------------------------------------- 72 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # VL53L0X library for Arduino 2 | [www.pololu.com](https://www.pololu.com/) 3 | 4 | ## Summary 5 | 6 | This is a library for the Arduino IDE that helps interface with ST's [VL53L0X time-of-flight distance sensor](https://www.pololu.com/product/2490). The library makes it simple to configure the sensor and read range data from it via I²C. 7 | 8 | ## Supported platforms 9 | 10 | This library is designed to work with the Arduino IDE versions 1.6.x or later; we have not tested it with earlier versions. This library should support any Arduino-compatible board, including the [Pololu A-Star 32U4 controllers](https://www.pololu.com/category/149/a-star-programmable-controllers). 11 | 12 | ## Getting started 13 | 14 | ### Hardware 15 | 16 | A [VL53L0X carrier](https://www.pololu.com/product/2490) can be purchased from Pololu's website. Before continuing, careful reading of the [product page](https://www.pololu.com/product/2490) as well as the VL53L0X datasheet is recommended. 17 | 18 | Make the following connections between the Arduino and the VL53L0X board: 19 | 20 | #### 5V Arduino boards 21 | 22 | (including Arduino Uno, Leonardo, Mega; Pololu A-Star 32U4) 23 | 24 | Arduino VL53L0X board 25 | ------- ------------- 26 | 5V - VIN 27 | GND - GND 28 | SDA - SDA 29 | SCL - SCL 30 | 31 | #### 3.3V Arduino boards 32 | 33 | (including Arduino Due) 34 | 35 | Arduino VL53L0X board 36 | ------- ------------- 37 | 3V3 - VIN 38 | GND - GND 39 | SDA - SDA 40 | SCL - SCL 41 | 42 | ### Software 43 | 44 | If you are using version 1.6.2 or later of the [Arduino software (IDE)](http://www.arduino.cc/en/Main/Software), you can use the Library Manager to install this library: 45 | 46 | 1. In the Arduino IDE, open the "Sketch" menu, select "Include Library", then "Manage Libraries...". 47 | 2. Search for "VL53L0X". 48 | 3. Click the VL53L0X entry in the list. 49 | 4. Click "Install". 50 | 51 | If this does not work, you can manually install the library: 52 | 53 | 1. Download the [latest release archive from GitHub](https://github.com/pololu/vl53l0x-arduino/releases) and decompress it. 54 | 2. Rename the folder "vl53l0x-arduino-master" to "VL53L0X". 55 | 3. Move the "VL53L0X" folder into the "libraries" directory inside your Arduino sketchbook directory. You can view your sketchbook location by opening the "File" menu and selecting "Preferences" in the Arduino IDE. If there is not already a "libraries" folder in that location, you should make the folder yourself. 56 | 4. After installing the library, restart the Arduino IDE. 57 | 58 | ## Examples 59 | 60 | Several example sketches are available that show how to use the library. You can access them from the Arduino IDE by opening the "File" menu, selecting "Examples", and then selecting "VL53L0X". If you cannot find these examples, the library was probably installed incorrectly and you should retry the installation instructions above. 61 | 62 | ## ST's VL53L0X API and this library 63 | 64 | Most of the functionality of this library is based on the [VL53L0X API](http://www.st.com/content/st_com/en/products/embedded-software/proximity-sensors-software/stsw-img005.html) provided by ST (STSW-IMG005), and some of the explanatory comments in the code are quoted or paraphrased from the API source code, API user manual (UM2039), and the VL53L0X datasheet. For more explanation about the library code and how it was derived from the API, see the comments in VL53L0X.cpp. 65 | 66 | This library is intended to provide a quicker and easier way to get started using the VL53L0X with an Arduino-compatible controller, in contrast to customizing and compiling ST's API for the Arduino. The library has a more streamlined interface, as well as smaller storage and memory footprints. However, it does not implement some of the more advanced functionality available in the API (for example, calibrating the sensor to work well under a cover glass), and it has less robust error checking. For advanced applications, especially when storage and memory are less of an issue, consider using the VL53L0X API directly. 67 | 68 | ## Library reference 69 | 70 | * `uint8_t last_status`
71 | The status of the last I²C write transmission. See the [`Wire.endTransmission()` documentation](http://arduino.cc/en/Reference/WireEndTransmission) for return values. 72 | 73 | * `VL53L0X()`
74 | Constructor. 75 | 76 | * `void setBus(TwoWire * bus)`
77 | Configures this object to use the specified I²C bus. `bus` should be a pointer to a `TwoWire` object; the default bus is `Wire`, which is typically the first or only I²C bus on an Arduino. If your Arduino has more than one I²C bus and you have the VL53L0X connected to the second bus, which is typically called `Wire1`, you can call `sensor.setBus(&Wire1);`. 78 | 79 | * `TwoWire * getBus()`
80 | Returns a pointer to the I²C bus this object is using. 81 | 82 | * `void setAddress(uint8_t new_addr)`
83 | Changes the I²C slave device address of the VL53L0X to the given value (7-bit). 84 | 85 | * `uint8_t getAddress()`
86 | Returns the I²C address this object is using. 87 | 88 | * `bool init(bool io_2v8 = true)`
89 | Iniitializes and configures the sensor. If the optional argument `io_2v8` is true (the default if not specified), the sensor is configured for 2V8 mode (2.8 V I/O); if false, the sensor is left in 1V8 mode. The return value is a boolean indicating whether the initialization completed successfully. 90 | 91 | * `void writeReg(uint8_t reg, uint8_t value)`
92 | Writes an 8-bit sensor register with the given value. 93 | 94 | Register address constants are defined by the regAddr enumeration type in VL53L0X.h.
95 | Example use: `sensor.writeReg(VL53L0X::SYSRANGE_START, 0x01);` 96 | 97 | * `void writeReg16Bit(uint8_t reg, uint16_t value)`
98 | Writes a 16-bit sensor register with the given value. 99 | 100 | * `void writeReg32Bit(uint8_t reg, uint32_t value)`
101 | Writes a 32-bit sensor register with the given value. 102 | 103 | * `uint8_t readReg(uint8_t reg)`
104 | Reads an 8-bit sensor register and returns the value read. 105 | 106 | * `uint16_t readReg16Bit(uint8_t reg)`
107 | Reads a 16-bit sensor register and returns the value read. 108 | 109 | * `uint32_t readReg32Bit(uint8_t reg)`
110 | Reads a 32-bit sensor register and returns the value read. 111 | 112 | * `void writeMulti(uint8_t reg, uint8_t const * src, uint8_t count)`
113 | Writes an arbitrary number of bytes from the given array to the sensor, starting at the given register. 114 | 115 | * `void readMulti(uint8_t reg, uint8_t * dst, uint8_t count)`
116 | Reads an arbitrary number of bytes from the sensor, starting at the given register, into the given array. 117 | 118 | * `bool setSignalRateLimit(float limit_Mcps)`
119 | Sets the return signal rate limit to the given value in units of MCPS (mega counts per second). This is the minimum amplitude of the signal reflected from the target and received by the sensor necessary for it to report a valid reading. Setting a lower limit increases the potential range of the sensor but also increases the likelihood of getting an inaccurate reading because of reflections from objects other than the intended target. This limit is initialized to 0.25 MCPS by default. The return value is a boolean indicating whether the requested limit was valid. 120 | 121 | * `float getSignalRateLimit()`
122 | Returns the current return signal rate limit in MCPS. 123 | 124 | * `bool setMeasurementTimingBudget(uint32_t budget_us)`
125 | Sets the measurement timing budget to the given value in microseconds. This is the time allowed for one range measurement; a longer timing budget allows for more accurate measurements. The default budget is about 33000 microseconds, or 33 ms; the minimum is 20 ms. The return value is a boolean indicating whether the requested budget was valid. 126 | 127 | * `uint32_t getMeasurementTimingBudget()`
128 | Returns the current measurement timing budget in microseconds. 129 | 130 | * `bool setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks)` 131 | Sets the VCSEL (vertical cavity surface emitting laser) pulse period for the given period type (`VL53L0X::VcselPeriodPreRange` or `VL53L0X::VcselPeriodFinalRange`) to the given value (in PCLKs). Longer periods increase the potential range of the sensor. Valid values are (even numbers only): 132 | 133 | Pre: 12 to 18 (initialized to 14 by default)
134 | Final: 8 to 14 (initialized to 10 by default) 135 | 136 | The return value is a boolean indicating whether the requested period was valid. 137 | 138 | * `uint8_t getVcselPulsePeriod(vcselPeriodType type)`
139 | Returns the current VCSEL pulse period for the given period type. 140 | 141 | * `void startContinuous(uint32_t period_ms = 0)`
142 | Starts continuous ranging measurements. If the optional argument `period_ms` is 0 (the default if not specified), continuous back-to-back mode is used (the sensor takes measurements as often as possible); if it is nonzero, continuous timed mode is used, with the specified inter-measurement period in milliseconds determining how often the sensor takes a measurement. 143 | 144 | * `void stopContinuous()`
145 | Stops continuous mode. 146 | 147 | * `uint16_t readRangeContinuousMillimeters()`
148 | Returns a range reading in millimeters when continuous mode is active. 149 | 150 | * `uint16_t readRangeSingleMillimeters()`
151 | Performs a single-shot ranging measurement and returns the reading in millimeters. 152 | 153 | * `void setTimeout(uint16_t timeout)`
154 | Sets a timeout period in milliseconds after which read operations will abort if the sensor is not ready. A value of 0 disables the timeout. 155 | 156 | * `uint16_t getTimeout()`
157 | Returns the current timeout period setting. 158 | 159 | * `bool timeoutOccurred()`
160 | Indicates whether a read timeout has occurred since the last call to `timeoutOccurred()`. 161 | 162 | ## Version history 163 | 164 | * 1.3.1 (2022-04-05): Explicitly cast `Wire.write()` arguments to `uint8_t`. Removed 20ms hard limit for timing budget to match API 1.0.4. 165 | * 1.3.0 (2020-09-24): Added support for alternative I²C buses (thanks KurtE). 166 | * 1.2.0 (2019-10-31): Incorporated some updates from ST's VL53L0X API version 1.0.2 (this library was originally based on API version 1.0.0). 167 | * 1.1.0 (2019-10-29): Improved `init()` and added a check for its return value in examples; fixed a few other issues. 168 | * 1.0.2 (2017-06-27): Fixed a typo in a register modification in `getSpadInfo()` (thanks @tridge). 169 | * 1.0.1 (2016-12-08): Fixed type error in `readReg32Bit()`. 170 | * 1.0.0 (2016-08-12): Original release. 171 | -------------------------------------------------------------------------------- /VL53L0X.cpp: -------------------------------------------------------------------------------- 1 | // Most of the functionality of this library is based on the VL53L0X API 2 | // provided by ST (STSW-IMG005), and some of the explanatory comments are quoted 3 | // or paraphrased from the API source code, API user manual (UM2039), and the 4 | // VL53L0X datasheet. 5 | 6 | #include "VL53L0X.h" 7 | #include 8 | 9 | // Defines ///////////////////////////////////////////////////////////////////// 10 | 11 | // The Arduino two-wire interface uses a 7-bit number for the address, 12 | // and sets the last bit correctly based on reads and writes 13 | #define ADDRESS_DEFAULT 0b0101001 14 | 15 | // Record the current time to check an upcoming timeout against 16 | #define startTimeout() (timeout_start_ms = millis()) 17 | 18 | // Check if timeout is enabled (set to nonzero value) and has expired 19 | #define checkTimeoutExpired() (io_timeout > 0 && ((uint16_t)(millis() - timeout_start_ms) > io_timeout)) 20 | 21 | // Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs 22 | // from register value 23 | // based on VL53L0X_decode_vcsel_period() 24 | #define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1) 25 | 26 | // Encode VCSEL pulse period register value from period in PCLKs 27 | // based on VL53L0X_encode_vcsel_period() 28 | #define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1) 29 | 30 | // Calculate macro period in *nanoseconds* from VCSEL period in PCLKs 31 | // based on VL53L0X_calc_macro_period_ps() 32 | // PLL_period_ps = 1655; macro_period_vclks = 2304 33 | #define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000) 34 | 35 | // Constructors //////////////////////////////////////////////////////////////// 36 | 37 | VL53L0X::VL53L0X() 38 | : bus(&Wire) 39 | , address(ADDRESS_DEFAULT) 40 | , io_timeout(0) // no timeout 41 | , did_timeout(false) 42 | { 43 | } 44 | 45 | // Public Methods ////////////////////////////////////////////////////////////// 46 | 47 | void VL53L0X::setAddress(uint8_t new_addr) 48 | { 49 | writeReg(I2C_SLAVE_DEVICE_ADDRESS, new_addr & 0x7F); 50 | address = new_addr; 51 | } 52 | 53 | // Initialize sensor using sequence based on VL53L0X_DataInit(), 54 | // VL53L0X_StaticInit(), and VL53L0X_PerformRefCalibration(). 55 | // This function does not perform reference SPAD calibration 56 | // (VL53L0X_PerformRefSpadManagement()), since the API user manual says that it 57 | // is performed by ST on the bare modules; it seems like that should work well 58 | // enough unless a cover glass is added. 59 | // If io_2v8 (optional) is true or not given, the sensor is configured for 2V8 60 | // mode. 61 | bool VL53L0X::init(bool io_2v8) 62 | { 63 | // check model ID register (value specified in datasheet) 64 | if (readReg(IDENTIFICATION_MODEL_ID) != 0xEE) { return false; } 65 | 66 | // VL53L0X_DataInit() begin 67 | 68 | // sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary 69 | if (io_2v8) 70 | { 71 | writeReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, 72 | readReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01); // set bit 0 73 | } 74 | 75 | // "Set I2C standard mode" 76 | writeReg(0x88, 0x00); 77 | 78 | writeReg(0x80, 0x01); 79 | writeReg(0xFF, 0x01); 80 | writeReg(0x00, 0x00); 81 | stop_variable = readReg(0x91); 82 | writeReg(0x00, 0x01); 83 | writeReg(0xFF, 0x00); 84 | writeReg(0x80, 0x00); 85 | 86 | // disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks 87 | writeReg(MSRC_CONFIG_CONTROL, readReg(MSRC_CONFIG_CONTROL) | 0x12); 88 | 89 | // set final range signal rate limit to 0.25 MCPS (million counts per second) 90 | setSignalRateLimit(0.25); 91 | 92 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0xFF); 93 | 94 | // VL53L0X_DataInit() end 95 | 96 | // VL53L0X_StaticInit() begin 97 | 98 | uint8_t spad_count; 99 | bool spad_type_is_aperture; 100 | if (!getSpadInfo(&spad_count, &spad_type_is_aperture)) { return false; } 101 | 102 | // The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in 103 | // the API, but the same data seems to be more easily readable from 104 | // GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there 105 | uint8_t ref_spad_map[6]; 106 | readMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6); 107 | 108 | // -- VL53L0X_set_reference_spads() begin (assume NVM values are valid) 109 | 110 | writeReg(0xFF, 0x01); 111 | writeReg(DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00); 112 | writeReg(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C); 113 | writeReg(0xFF, 0x00); 114 | writeReg(GLOBAL_CONFIG_REF_EN_START_SELECT, 0xB4); 115 | 116 | uint8_t first_spad_to_enable = spad_type_is_aperture ? 12 : 0; // 12 is the first aperture spad 117 | uint8_t spads_enabled = 0; 118 | 119 | for (uint8_t i = 0; i < 48; i++) 120 | { 121 | if (i < first_spad_to_enable || spads_enabled == spad_count) 122 | { 123 | // This bit is lower than the first one that should be enabled, or 124 | // (reference_spad_count) bits have already been enabled, so zero this bit 125 | ref_spad_map[i / 8] &= ~(1 << (i % 8)); 126 | } 127 | else if ((ref_spad_map[i / 8] >> (i % 8)) & 0x1) 128 | { 129 | spads_enabled++; 130 | } 131 | } 132 | 133 | writeMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6); 134 | 135 | // -- VL53L0X_set_reference_spads() end 136 | 137 | // -- VL53L0X_load_tuning_settings() begin 138 | // DefaultTuningSettings from vl53l0x_tuning.h 139 | 140 | writeReg(0xFF, 0x01); 141 | writeReg(0x00, 0x00); 142 | 143 | writeReg(0xFF, 0x00); 144 | writeReg(0x09, 0x00); 145 | writeReg(0x10, 0x00); 146 | writeReg(0x11, 0x00); 147 | 148 | writeReg(0x24, 0x01); 149 | writeReg(0x25, 0xFF); 150 | writeReg(0x75, 0x00); 151 | 152 | writeReg(0xFF, 0x01); 153 | writeReg(0x4E, 0x2C); 154 | writeReg(0x48, 0x00); 155 | writeReg(0x30, 0x20); 156 | 157 | writeReg(0xFF, 0x00); 158 | writeReg(0x30, 0x09); 159 | writeReg(0x54, 0x00); 160 | writeReg(0x31, 0x04); 161 | writeReg(0x32, 0x03); 162 | writeReg(0x40, 0x83); 163 | writeReg(0x46, 0x25); 164 | writeReg(0x60, 0x00); 165 | writeReg(0x27, 0x00); 166 | writeReg(0x50, 0x06); 167 | writeReg(0x51, 0x00); 168 | writeReg(0x52, 0x96); 169 | writeReg(0x56, 0x08); 170 | writeReg(0x57, 0x30); 171 | writeReg(0x61, 0x00); 172 | writeReg(0x62, 0x00); 173 | writeReg(0x64, 0x00); 174 | writeReg(0x65, 0x00); 175 | writeReg(0x66, 0xA0); 176 | 177 | writeReg(0xFF, 0x01); 178 | writeReg(0x22, 0x32); 179 | writeReg(0x47, 0x14); 180 | writeReg(0x49, 0xFF); 181 | writeReg(0x4A, 0x00); 182 | 183 | writeReg(0xFF, 0x00); 184 | writeReg(0x7A, 0x0A); 185 | writeReg(0x7B, 0x00); 186 | writeReg(0x78, 0x21); 187 | 188 | writeReg(0xFF, 0x01); 189 | writeReg(0x23, 0x34); 190 | writeReg(0x42, 0x00); 191 | writeReg(0x44, 0xFF); 192 | writeReg(0x45, 0x26); 193 | writeReg(0x46, 0x05); 194 | writeReg(0x40, 0x40); 195 | writeReg(0x0E, 0x06); 196 | writeReg(0x20, 0x1A); 197 | writeReg(0x43, 0x40); 198 | 199 | writeReg(0xFF, 0x00); 200 | writeReg(0x34, 0x03); 201 | writeReg(0x35, 0x44); 202 | 203 | writeReg(0xFF, 0x01); 204 | writeReg(0x31, 0x04); 205 | writeReg(0x4B, 0x09); 206 | writeReg(0x4C, 0x05); 207 | writeReg(0x4D, 0x04); 208 | 209 | writeReg(0xFF, 0x00); 210 | writeReg(0x44, 0x00); 211 | writeReg(0x45, 0x20); 212 | writeReg(0x47, 0x08); 213 | writeReg(0x48, 0x28); 214 | writeReg(0x67, 0x00); 215 | writeReg(0x70, 0x04); 216 | writeReg(0x71, 0x01); 217 | writeReg(0x72, 0xFE); 218 | writeReg(0x76, 0x00); 219 | writeReg(0x77, 0x00); 220 | 221 | writeReg(0xFF, 0x01); 222 | writeReg(0x0D, 0x01); 223 | 224 | writeReg(0xFF, 0x00); 225 | writeReg(0x80, 0x01); 226 | writeReg(0x01, 0xF8); 227 | 228 | writeReg(0xFF, 0x01); 229 | writeReg(0x8E, 0x01); 230 | writeReg(0x00, 0x01); 231 | writeReg(0xFF, 0x00); 232 | writeReg(0x80, 0x00); 233 | 234 | // -- VL53L0X_load_tuning_settings() end 235 | 236 | // "Set interrupt config to new sample ready" 237 | // -- VL53L0X_SetGpioConfig() begin 238 | 239 | writeReg(SYSTEM_INTERRUPT_CONFIG_GPIO, 0x04); 240 | writeReg(GPIO_HV_MUX_ACTIVE_HIGH, readReg(GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10); // active low 241 | writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01); 242 | 243 | // -- VL53L0X_SetGpioConfig() end 244 | 245 | measurement_timing_budget_us = getMeasurementTimingBudget(); 246 | 247 | // "Disable MSRC and TCC by default" 248 | // MSRC = Minimum Signal Rate Check 249 | // TCC = Target CentreCheck 250 | // -- VL53L0X_SetSequenceStepEnable() begin 251 | 252 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8); 253 | 254 | // -- VL53L0X_SetSequenceStepEnable() end 255 | 256 | // "Recalculate timing budget" 257 | setMeasurementTimingBudget(measurement_timing_budget_us); 258 | 259 | // VL53L0X_StaticInit() end 260 | 261 | // VL53L0X_PerformRefCalibration() begin (VL53L0X_perform_ref_calibration()) 262 | 263 | // -- VL53L0X_perform_vhv_calibration() begin 264 | 265 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0x01); 266 | if (!performSingleRefCalibration(0x40)) { return false; } 267 | 268 | // -- VL53L0X_perform_vhv_calibration() end 269 | 270 | // -- VL53L0X_perform_phase_calibration() begin 271 | 272 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02); 273 | if (!performSingleRefCalibration(0x00)) { return false; } 274 | 275 | // -- VL53L0X_perform_phase_calibration() end 276 | 277 | // "restore the previous Sequence Config" 278 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8); 279 | 280 | // VL53L0X_PerformRefCalibration() end 281 | 282 | return true; 283 | } 284 | 285 | // Write an 8-bit register 286 | void VL53L0X::writeReg(uint8_t reg, uint8_t value) 287 | { 288 | bus->beginTransmission(address); 289 | bus->write(reg); 290 | bus->write(value); 291 | last_status = bus->endTransmission(); 292 | } 293 | 294 | // Write a 16-bit register 295 | void VL53L0X::writeReg16Bit(uint8_t reg, uint16_t value) 296 | { 297 | bus->beginTransmission(address); 298 | bus->write(reg); 299 | bus->write((uint8_t)(value >> 8)); // value high byte 300 | bus->write((uint8_t)(value)); // value low byte 301 | last_status = bus->endTransmission(); 302 | } 303 | 304 | // Write a 32-bit register 305 | void VL53L0X::writeReg32Bit(uint8_t reg, uint32_t value) 306 | { 307 | bus->beginTransmission(address); 308 | bus->write(reg); 309 | bus->write((uint8_t)(value >> 24)); // value highest byte 310 | bus->write((uint8_t)(value >> 16)); 311 | bus->write((uint8_t)(value >> 8)); 312 | bus->write((uint8_t)(value)); // value lowest byte 313 | last_status = bus->endTransmission(); 314 | } 315 | 316 | // Read an 8-bit register 317 | uint8_t VL53L0X::readReg(uint8_t reg) 318 | { 319 | uint8_t value; 320 | 321 | bus->beginTransmission(address); 322 | bus->write(reg); 323 | last_status = bus->endTransmission(); 324 | 325 | bus->requestFrom(address, (uint8_t)1); 326 | value = bus->read(); 327 | 328 | return value; 329 | } 330 | 331 | // Read a 16-bit register 332 | uint16_t VL53L0X::readReg16Bit(uint8_t reg) 333 | { 334 | uint16_t value; 335 | 336 | bus->beginTransmission(address); 337 | bus->write(reg); 338 | last_status = bus->endTransmission(); 339 | 340 | bus->requestFrom(address, (uint8_t)2); 341 | value = (uint16_t)bus->read() << 8; // value high byte 342 | value |= bus->read(); // value low byte 343 | 344 | return value; 345 | } 346 | 347 | // Read a 32-bit register 348 | uint32_t VL53L0X::readReg32Bit(uint8_t reg) 349 | { 350 | uint32_t value; 351 | 352 | bus->beginTransmission(address); 353 | bus->write(reg); 354 | last_status = bus->endTransmission(); 355 | 356 | bus->requestFrom(address, (uint8_t)4); 357 | value = (uint32_t)bus->read() << 24; // value highest byte 358 | value |= (uint32_t)bus->read() << 16; 359 | value |= (uint16_t)bus->read() << 8; 360 | value |= bus->read(); // value lowest byte 361 | 362 | return value; 363 | } 364 | 365 | // Write an arbitrary number of bytes from the given array to the sensor, 366 | // starting at the given register 367 | void VL53L0X::writeMulti(uint8_t reg, uint8_t const * src, uint8_t count) 368 | { 369 | bus->beginTransmission(address); 370 | bus->write(reg); 371 | 372 | while (count-- > 0) 373 | { 374 | bus->write(*(src++)); 375 | } 376 | 377 | last_status = bus->endTransmission(); 378 | } 379 | 380 | // Read an arbitrary number of bytes from the sensor, starting at the given 381 | // register, into the given array 382 | void VL53L0X::readMulti(uint8_t reg, uint8_t * dst, uint8_t count) 383 | { 384 | bus->beginTransmission(address); 385 | bus->write(reg); 386 | last_status = bus->endTransmission(); 387 | 388 | bus->requestFrom(address, count); 389 | 390 | while (count-- > 0) 391 | { 392 | *(dst++) = bus->read(); 393 | } 394 | } 395 | 396 | // Set the return signal rate limit check value in units of MCPS (mega counts 397 | // per second). "This represents the amplitude of the signal reflected from the 398 | // target and detected by the device"; setting this limit presumably determines 399 | // the minimum measurement necessary for the sensor to report a valid reading. 400 | // Setting a lower limit increases the potential range of the sensor but also 401 | // seems to increase the likelihood of getting an inaccurate reading because of 402 | // unwanted reflections from objects other than the intended target. 403 | // Defaults to 0.25 MCPS as initialized by the ST API and this library. 404 | bool VL53L0X::setSignalRateLimit(float limit_Mcps) 405 | { 406 | if (limit_Mcps < 0 || limit_Mcps > 511.99) { return false; } 407 | 408 | // Q9.7 fixed point format (9 integer bits, 7 fractional bits) 409 | writeReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, limit_Mcps * (1 << 7)); 410 | return true; 411 | } 412 | 413 | // Get the return signal rate limit check value in MCPS 414 | float VL53L0X::getSignalRateLimit() 415 | { 416 | return (float)readReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT) / (1 << 7); 417 | } 418 | 419 | // Set the measurement timing budget in microseconds, which is the time allowed 420 | // for one measurement; the ST API and this library take care of splitting the 421 | // timing budget among the sub-steps in the ranging sequence. A longer timing 422 | // budget allows for more accurate measurements. Increasing the budget by a 423 | // factor of N decreases the range measurement standard deviation by a factor of 424 | // sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms. 425 | // based on VL53L0X_set_measurement_timing_budget_micro_seconds() 426 | bool VL53L0X::setMeasurementTimingBudget(uint32_t budget_us) 427 | { 428 | SequenceStepEnables enables; 429 | SequenceStepTimeouts timeouts; 430 | 431 | uint16_t const StartOverhead = 1910; 432 | uint16_t const EndOverhead = 960; 433 | uint16_t const MsrcOverhead = 660; 434 | uint16_t const TccOverhead = 590; 435 | uint16_t const DssOverhead = 690; 436 | uint16_t const PreRangeOverhead = 660; 437 | uint16_t const FinalRangeOverhead = 550; 438 | 439 | uint32_t used_budget_us = StartOverhead + EndOverhead; 440 | 441 | getSequenceStepEnables(&enables); 442 | getSequenceStepTimeouts(&enables, &timeouts); 443 | 444 | if (enables.tcc) 445 | { 446 | used_budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead); 447 | } 448 | 449 | if (enables.dss) 450 | { 451 | used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead); 452 | } 453 | else if (enables.msrc) 454 | { 455 | used_budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead); 456 | } 457 | 458 | if (enables.pre_range) 459 | { 460 | used_budget_us += (timeouts.pre_range_us + PreRangeOverhead); 461 | } 462 | 463 | if (enables.final_range) 464 | { 465 | used_budget_us += FinalRangeOverhead; 466 | 467 | // "Note that the final range timeout is determined by the timing 468 | // budget and the sum of all other timeouts within the sequence. 469 | // If there is no room for the final range timeout, then an error 470 | // will be set. Otherwise the remaining time will be applied to 471 | // the final range." 472 | 473 | if (used_budget_us > budget_us) 474 | { 475 | // "Requested timeout too big." 476 | return false; 477 | } 478 | 479 | uint32_t final_range_timeout_us = budget_us - used_budget_us; 480 | 481 | // set_sequence_step_timeout() begin 482 | // (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) 483 | 484 | // "For the final range timeout, the pre-range timeout 485 | // must be added. To do this both final and pre-range 486 | // timeouts must be expressed in macro periods MClks 487 | // because they have different vcsel periods." 488 | 489 | uint32_t final_range_timeout_mclks = 490 | timeoutMicrosecondsToMclks(final_range_timeout_us, 491 | timeouts.final_range_vcsel_period_pclks); 492 | 493 | if (enables.pre_range) 494 | { 495 | final_range_timeout_mclks += timeouts.pre_range_mclks; 496 | } 497 | 498 | writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, 499 | encodeTimeout(final_range_timeout_mclks)); 500 | 501 | // set_sequence_step_timeout() end 502 | 503 | measurement_timing_budget_us = budget_us; // store for internal reuse 504 | } 505 | return true; 506 | } 507 | 508 | // Get the measurement timing budget in microseconds 509 | // based on VL53L0X_get_measurement_timing_budget_micro_seconds() 510 | // in us 511 | uint32_t VL53L0X::getMeasurementTimingBudget() 512 | { 513 | SequenceStepEnables enables; 514 | SequenceStepTimeouts timeouts; 515 | 516 | uint16_t const StartOverhead = 1910; 517 | uint16_t const EndOverhead = 960; 518 | uint16_t const MsrcOverhead = 660; 519 | uint16_t const TccOverhead = 590; 520 | uint16_t const DssOverhead = 690; 521 | uint16_t const PreRangeOverhead = 660; 522 | uint16_t const FinalRangeOverhead = 550; 523 | 524 | // "Start and end overhead times always present" 525 | uint32_t budget_us = StartOverhead + EndOverhead; 526 | 527 | getSequenceStepEnables(&enables); 528 | getSequenceStepTimeouts(&enables, &timeouts); 529 | 530 | if (enables.tcc) 531 | { 532 | budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead); 533 | } 534 | 535 | if (enables.dss) 536 | { 537 | budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead); 538 | } 539 | else if (enables.msrc) 540 | { 541 | budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead); 542 | } 543 | 544 | if (enables.pre_range) 545 | { 546 | budget_us += (timeouts.pre_range_us + PreRangeOverhead); 547 | } 548 | 549 | if (enables.final_range) 550 | { 551 | budget_us += (timeouts.final_range_us + FinalRangeOverhead); 552 | } 553 | 554 | measurement_timing_budget_us = budget_us; // store for internal reuse 555 | return budget_us; 556 | } 557 | 558 | // Set the VCSEL (vertical cavity surface emitting laser) pulse period for the 559 | // given period type (pre-range or final range) to the given value in PCLKs. 560 | // Longer periods seem to increase the potential range of the sensor. 561 | // Valid values are (even numbers only): 562 | // pre: 12 to 18 (initialized default: 14) 563 | // final: 8 to 14 (initialized default: 10) 564 | // based on VL53L0X_set_vcsel_pulse_period() 565 | bool VL53L0X::setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks) 566 | { 567 | uint8_t vcsel_period_reg = encodeVcselPeriod(period_pclks); 568 | 569 | SequenceStepEnables enables; 570 | SequenceStepTimeouts timeouts; 571 | 572 | getSequenceStepEnables(&enables); 573 | getSequenceStepTimeouts(&enables, &timeouts); 574 | 575 | // "Apply specific settings for the requested clock period" 576 | // "Re-calculate and apply timeouts, in macro periods" 577 | 578 | // "When the VCSEL period for the pre or final range is changed, 579 | // the corresponding timeout must be read from the device using 580 | // the current VCSEL period, then the new VCSEL period can be 581 | // applied. The timeout then must be written back to the device 582 | // using the new VCSEL period. 583 | // 584 | // For the MSRC timeout, the same applies - this timeout being 585 | // dependant on the pre-range vcsel period." 586 | 587 | 588 | if (type == VcselPeriodPreRange) 589 | { 590 | // "Set phase check limits" 591 | switch (period_pclks) 592 | { 593 | case 12: 594 | writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18); 595 | break; 596 | 597 | case 14: 598 | writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30); 599 | break; 600 | 601 | case 16: 602 | writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40); 603 | break; 604 | 605 | case 18: 606 | writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50); 607 | break; 608 | 609 | default: 610 | // invalid period 611 | return false; 612 | } 613 | writeReg(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); 614 | 615 | // apply new VCSEL period 616 | writeReg(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg); 617 | 618 | // update timeouts 619 | 620 | // set_sequence_step_timeout() begin 621 | // (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) 622 | 623 | uint16_t new_pre_range_timeout_mclks = 624 | timeoutMicrosecondsToMclks(timeouts.pre_range_us, period_pclks); 625 | 626 | writeReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI, 627 | encodeTimeout(new_pre_range_timeout_mclks)); 628 | 629 | // set_sequence_step_timeout() end 630 | 631 | // set_sequence_step_timeout() begin 632 | // (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC) 633 | 634 | uint16_t new_msrc_timeout_mclks = 635 | timeoutMicrosecondsToMclks(timeouts.msrc_dss_tcc_us, period_pclks); 636 | 637 | writeReg(MSRC_CONFIG_TIMEOUT_MACROP, 638 | (new_msrc_timeout_mclks > 256) ? 255 : (new_msrc_timeout_mclks - 1)); 639 | 640 | // set_sequence_step_timeout() end 641 | } 642 | else if (type == VcselPeriodFinalRange) 643 | { 644 | switch (period_pclks) 645 | { 646 | case 8: 647 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10); 648 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); 649 | writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02); 650 | writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C); 651 | writeReg(0xFF, 0x01); 652 | writeReg(ALGO_PHASECAL_LIM, 0x30); 653 | writeReg(0xFF, 0x00); 654 | break; 655 | 656 | case 10: 657 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28); 658 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); 659 | writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03); 660 | writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09); 661 | writeReg(0xFF, 0x01); 662 | writeReg(ALGO_PHASECAL_LIM, 0x20); 663 | writeReg(0xFF, 0x00); 664 | break; 665 | 666 | case 12: 667 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38); 668 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); 669 | writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03); 670 | writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08); 671 | writeReg(0xFF, 0x01); 672 | writeReg(ALGO_PHASECAL_LIM, 0x20); 673 | writeReg(0xFF, 0x00); 674 | break; 675 | 676 | case 14: 677 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48); 678 | writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08); 679 | writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03); 680 | writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07); 681 | writeReg(0xFF, 0x01); 682 | writeReg(ALGO_PHASECAL_LIM, 0x20); 683 | writeReg(0xFF, 0x00); 684 | break; 685 | 686 | default: 687 | // invalid period 688 | return false; 689 | } 690 | 691 | // apply new VCSEL period 692 | writeReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg); 693 | 694 | // update timeouts 695 | 696 | // set_sequence_step_timeout() begin 697 | // (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) 698 | 699 | // "For the final range timeout, the pre-range timeout 700 | // must be added. To do this both final and pre-range 701 | // timeouts must be expressed in macro periods MClks 702 | // because they have different vcsel periods." 703 | 704 | uint16_t new_final_range_timeout_mclks = 705 | timeoutMicrosecondsToMclks(timeouts.final_range_us, period_pclks); 706 | 707 | if (enables.pre_range) 708 | { 709 | new_final_range_timeout_mclks += timeouts.pre_range_mclks; 710 | } 711 | 712 | writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, 713 | encodeTimeout(new_final_range_timeout_mclks)); 714 | 715 | // set_sequence_step_timeout end 716 | } 717 | else 718 | { 719 | // invalid type 720 | return false; 721 | } 722 | 723 | // "Finally, the timing budget must be re-applied" 724 | 725 | setMeasurementTimingBudget(measurement_timing_budget_us); 726 | 727 | // "Perform the phase calibration. This is needed after changing on vcsel period." 728 | // VL53L0X_perform_phase_calibration() begin 729 | 730 | uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG); 731 | writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02); 732 | performSingleRefCalibration(0x0); 733 | writeReg(SYSTEM_SEQUENCE_CONFIG, sequence_config); 734 | 735 | // VL53L0X_perform_phase_calibration() end 736 | 737 | return true; 738 | } 739 | 740 | // Get the VCSEL pulse period in PCLKs for the given period type. 741 | // based on VL53L0X_get_vcsel_pulse_period() 742 | uint8_t VL53L0X::getVcselPulsePeriod(vcselPeriodType type) 743 | { 744 | if (type == VcselPeriodPreRange) 745 | { 746 | return decodeVcselPeriod(readReg(PRE_RANGE_CONFIG_VCSEL_PERIOD)); 747 | } 748 | else if (type == VcselPeriodFinalRange) 749 | { 750 | return decodeVcselPeriod(readReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD)); 751 | } 752 | else { return 255; } 753 | } 754 | 755 | // Start continuous ranging measurements. If period_ms (optional) is 0 or not 756 | // given, continuous back-to-back mode is used (the sensor takes measurements as 757 | // often as possible); otherwise, continuous timed mode is used, with the given 758 | // inter-measurement period in milliseconds determining how often the sensor 759 | // takes a measurement. 760 | // based on VL53L0X_StartMeasurement() 761 | void VL53L0X::startContinuous(uint32_t period_ms) 762 | { 763 | writeReg(0x80, 0x01); 764 | writeReg(0xFF, 0x01); 765 | writeReg(0x00, 0x00); 766 | writeReg(0x91, stop_variable); 767 | writeReg(0x00, 0x01); 768 | writeReg(0xFF, 0x00); 769 | writeReg(0x80, 0x00); 770 | 771 | if (period_ms != 0) 772 | { 773 | // continuous timed mode 774 | 775 | // VL53L0X_SetInterMeasurementPeriodMilliSeconds() begin 776 | 777 | uint16_t osc_calibrate_val = readReg16Bit(OSC_CALIBRATE_VAL); 778 | 779 | if (osc_calibrate_val != 0) 780 | { 781 | period_ms *= osc_calibrate_val; 782 | } 783 | 784 | writeReg32Bit(SYSTEM_INTERMEASUREMENT_PERIOD, period_ms); 785 | 786 | // VL53L0X_SetInterMeasurementPeriodMilliSeconds() end 787 | 788 | writeReg(SYSRANGE_START, 0x04); // VL53L0X_REG_SYSRANGE_MODE_TIMED 789 | } 790 | else 791 | { 792 | // continuous back-to-back mode 793 | writeReg(SYSRANGE_START, 0x02); // VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK 794 | } 795 | } 796 | 797 | // Stop continuous measurements 798 | // based on VL53L0X_StopMeasurement() 799 | void VL53L0X::stopContinuous() 800 | { 801 | writeReg(SYSRANGE_START, 0x01); // VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT 802 | 803 | writeReg(0xFF, 0x01); 804 | writeReg(0x00, 0x00); 805 | writeReg(0x91, 0x00); 806 | writeReg(0x00, 0x01); 807 | writeReg(0xFF, 0x00); 808 | } 809 | 810 | // Returns a range reading in millimeters when continuous mode is active 811 | // (readRangeSingleMillimeters() also calls this function after starting a 812 | // single-shot range measurement) 813 | uint16_t VL53L0X::readRangeContinuousMillimeters() 814 | { 815 | startTimeout(); 816 | while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0) 817 | { 818 | if (checkTimeoutExpired()) 819 | { 820 | did_timeout = true; 821 | return 65535; 822 | } 823 | } 824 | 825 | // assumptions: Linearity Corrective Gain is 1000 (default); 826 | // fractional ranging is not enabled 827 | uint16_t range = readReg16Bit(RESULT_RANGE_STATUS + 10); 828 | 829 | writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01); 830 | 831 | return range; 832 | } 833 | 834 | // Performs a single-shot range measurement and returns the reading in 835 | // millimeters 836 | // based on VL53L0X_PerformSingleRangingMeasurement() 837 | uint16_t VL53L0X::readRangeSingleMillimeters() 838 | { 839 | writeReg(0x80, 0x01); 840 | writeReg(0xFF, 0x01); 841 | writeReg(0x00, 0x00); 842 | writeReg(0x91, stop_variable); 843 | writeReg(0x00, 0x01); 844 | writeReg(0xFF, 0x00); 845 | writeReg(0x80, 0x00); 846 | 847 | writeReg(SYSRANGE_START, 0x01); 848 | 849 | // "Wait until start bit has been cleared" 850 | startTimeout(); 851 | while (readReg(SYSRANGE_START) & 0x01) 852 | { 853 | if (checkTimeoutExpired()) 854 | { 855 | did_timeout = true; 856 | return 65535; 857 | } 858 | } 859 | 860 | return readRangeContinuousMillimeters(); 861 | } 862 | 863 | // Did a timeout occur in one of the read functions since the last call to 864 | // timeoutOccurred()? 865 | bool VL53L0X::timeoutOccurred() 866 | { 867 | bool tmp = did_timeout; 868 | did_timeout = false; 869 | return tmp; 870 | } 871 | 872 | // Private Methods ///////////////////////////////////////////////////////////// 873 | 874 | // Get reference SPAD (single photon avalanche diode) count and type 875 | // based on VL53L0X_get_info_from_device(), 876 | // but only gets reference SPAD count and type 877 | bool VL53L0X::getSpadInfo(uint8_t * count, bool * type_is_aperture) 878 | { 879 | uint8_t tmp; 880 | 881 | writeReg(0x80, 0x01); 882 | writeReg(0xFF, 0x01); 883 | writeReg(0x00, 0x00); 884 | 885 | writeReg(0xFF, 0x06); 886 | writeReg(0x83, readReg(0x83) | 0x04); 887 | writeReg(0xFF, 0x07); 888 | writeReg(0x81, 0x01); 889 | 890 | writeReg(0x80, 0x01); 891 | 892 | writeReg(0x94, 0x6b); 893 | writeReg(0x83, 0x00); 894 | startTimeout(); 895 | while (readReg(0x83) == 0x00) 896 | { 897 | if (checkTimeoutExpired()) { return false; } 898 | } 899 | writeReg(0x83, 0x01); 900 | tmp = readReg(0x92); 901 | 902 | *count = tmp & 0x7f; 903 | *type_is_aperture = (tmp >> 7) & 0x01; 904 | 905 | writeReg(0x81, 0x00); 906 | writeReg(0xFF, 0x06); 907 | writeReg(0x83, readReg(0x83) & ~0x04); 908 | writeReg(0xFF, 0x01); 909 | writeReg(0x00, 0x01); 910 | 911 | writeReg(0xFF, 0x00); 912 | writeReg(0x80, 0x00); 913 | 914 | return true; 915 | } 916 | 917 | // Get sequence step enables 918 | // based on VL53L0X_GetSequenceStepEnables() 919 | void VL53L0X::getSequenceStepEnables(SequenceStepEnables * enables) 920 | { 921 | uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG); 922 | 923 | enables->tcc = (sequence_config >> 4) & 0x1; 924 | enables->dss = (sequence_config >> 3) & 0x1; 925 | enables->msrc = (sequence_config >> 2) & 0x1; 926 | enables->pre_range = (sequence_config >> 6) & 0x1; 927 | enables->final_range = (sequence_config >> 7) & 0x1; 928 | } 929 | 930 | // Get sequence step timeouts 931 | // based on get_sequence_step_timeout(), 932 | // but gets all timeouts instead of just the requested one, and also stores 933 | // intermediate values 934 | void VL53L0X::getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts) 935 | { 936 | timeouts->pre_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodPreRange); 937 | 938 | timeouts->msrc_dss_tcc_mclks = readReg(MSRC_CONFIG_TIMEOUT_MACROP) + 1; 939 | timeouts->msrc_dss_tcc_us = 940 | timeoutMclksToMicroseconds(timeouts->msrc_dss_tcc_mclks, 941 | timeouts->pre_range_vcsel_period_pclks); 942 | 943 | timeouts->pre_range_mclks = 944 | decodeTimeout(readReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI)); 945 | timeouts->pre_range_us = 946 | timeoutMclksToMicroseconds(timeouts->pre_range_mclks, 947 | timeouts->pre_range_vcsel_period_pclks); 948 | 949 | timeouts->final_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodFinalRange); 950 | 951 | timeouts->final_range_mclks = 952 | decodeTimeout(readReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI)); 953 | 954 | if (enables->pre_range) 955 | { 956 | timeouts->final_range_mclks -= timeouts->pre_range_mclks; 957 | } 958 | 959 | timeouts->final_range_us = 960 | timeoutMclksToMicroseconds(timeouts->final_range_mclks, 961 | timeouts->final_range_vcsel_period_pclks); 962 | } 963 | 964 | // Decode sequence step timeout in MCLKs from register value 965 | // based on VL53L0X_decode_timeout() 966 | // Note: the original function returned a uint32_t, but the return value is 967 | // always stored in a uint16_t. 968 | uint16_t VL53L0X::decodeTimeout(uint16_t reg_val) 969 | { 970 | // format: "(LSByte * 2^MSByte) + 1" 971 | return (uint16_t)((reg_val & 0x00FF) << 972 | (uint16_t)((reg_val & 0xFF00) >> 8)) + 1; 973 | } 974 | 975 | // Encode sequence step timeout register value from timeout in MCLKs 976 | // based on VL53L0X_encode_timeout() 977 | uint16_t VL53L0X::encodeTimeout(uint32_t timeout_mclks) 978 | { 979 | // format: "(LSByte * 2^MSByte) + 1" 980 | 981 | uint32_t ls_byte = 0; 982 | uint16_t ms_byte = 0; 983 | 984 | if (timeout_mclks > 0) 985 | { 986 | ls_byte = timeout_mclks - 1; 987 | 988 | while ((ls_byte & 0xFFFFFF00) > 0) 989 | { 990 | ls_byte >>= 1; 991 | ms_byte++; 992 | } 993 | 994 | return (ms_byte << 8) | (ls_byte & 0xFF); 995 | } 996 | else { return 0; } 997 | } 998 | 999 | // Convert sequence step timeout from MCLKs to microseconds with given VCSEL period in PCLKs 1000 | // based on VL53L0X_calc_timeout_us() 1001 | uint32_t VL53L0X::timeoutMclksToMicroseconds(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks) 1002 | { 1003 | uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks); 1004 | 1005 | return ((timeout_period_mclks * macro_period_ns) + 500) / 1000; 1006 | } 1007 | 1008 | // Convert sequence step timeout from microseconds to MCLKs with given VCSEL period in PCLKs 1009 | // based on VL53L0X_calc_timeout_mclks() 1010 | uint32_t VL53L0X::timeoutMicrosecondsToMclks(uint32_t timeout_period_us, uint8_t vcsel_period_pclks) 1011 | { 1012 | uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks); 1013 | 1014 | return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns); 1015 | } 1016 | 1017 | 1018 | // based on VL53L0X_perform_single_ref_calibration() 1019 | bool VL53L0X::performSingleRefCalibration(uint8_t vhv_init_byte) 1020 | { 1021 | writeReg(SYSRANGE_START, 0x01 | vhv_init_byte); // VL53L0X_REG_SYSRANGE_MODE_START_STOP 1022 | 1023 | startTimeout(); 1024 | while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0) 1025 | { 1026 | if (checkTimeoutExpired()) { return false; } 1027 | } 1028 | 1029 | writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01); 1030 | 1031 | writeReg(SYSRANGE_START, 0x00); 1032 | 1033 | return true; 1034 | } 1035 | -------------------------------------------------------------------------------- /VL53L0X.h: -------------------------------------------------------------------------------- 1 | #ifndef VL53L0X_h 2 | #define VL53L0X_h 3 | 4 | #include 5 | #include 6 | 7 | class VL53L0X 8 | { 9 | public: 10 | // register addresses from API vl53l0x_device.h (ordered as listed there) 11 | enum regAddr 12 | { 13 | SYSRANGE_START = 0x00, 14 | 15 | SYSTEM_THRESH_HIGH = 0x0C, 16 | SYSTEM_THRESH_LOW = 0x0E, 17 | 18 | SYSTEM_SEQUENCE_CONFIG = 0x01, 19 | SYSTEM_RANGE_CONFIG = 0x09, 20 | SYSTEM_INTERMEASUREMENT_PERIOD = 0x04, 21 | 22 | SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A, 23 | 24 | GPIO_HV_MUX_ACTIVE_HIGH = 0x84, 25 | 26 | SYSTEM_INTERRUPT_CLEAR = 0x0B, 27 | 28 | RESULT_INTERRUPT_STATUS = 0x13, 29 | RESULT_RANGE_STATUS = 0x14, 30 | 31 | RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC, 32 | RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0, 33 | RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0, 34 | RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4, 35 | RESULT_PEAK_SIGNAL_RATE_REF = 0xB6, 36 | 37 | ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28, 38 | 39 | I2C_SLAVE_DEVICE_ADDRESS = 0x8A, 40 | 41 | MSRC_CONFIG_CONTROL = 0x60, 42 | 43 | PRE_RANGE_CONFIG_MIN_SNR = 0x27, 44 | PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56, 45 | PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57, 46 | PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64, 47 | 48 | FINAL_RANGE_CONFIG_MIN_SNR = 0x67, 49 | FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47, 50 | FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48, 51 | FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44, 52 | 53 | PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61, 54 | PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62, 55 | 56 | PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50, 57 | PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51, 58 | PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52, 59 | 60 | SYSTEM_HISTOGRAM_BIN = 0x81, 61 | HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33, 62 | HISTOGRAM_CONFIG_READOUT_CTRL = 0x55, 63 | 64 | FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70, 65 | FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71, 66 | FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72, 67 | CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20, 68 | 69 | MSRC_CONFIG_TIMEOUT_MACROP = 0x46, 70 | 71 | SOFT_RESET_GO2_SOFT_RESET_N = 0xBF, 72 | IDENTIFICATION_MODEL_ID = 0xC0, 73 | IDENTIFICATION_REVISION_ID = 0xC2, 74 | 75 | OSC_CALIBRATE_VAL = 0xF8, 76 | 77 | GLOBAL_CONFIG_VCSEL_WIDTH = 0x32, 78 | GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0, 79 | GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1, 80 | GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2, 81 | GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3, 82 | GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4, 83 | GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5, 84 | 85 | GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6, 86 | DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E, 87 | DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F, 88 | POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80, 89 | 90 | VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89, 91 | 92 | ALGO_PHASECAL_LIM = 0x30, 93 | ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30, 94 | }; 95 | 96 | enum vcselPeriodType { VcselPeriodPreRange, VcselPeriodFinalRange }; 97 | 98 | uint8_t last_status; // status of last I2C transmission 99 | 100 | VL53L0X(); 101 | 102 | void setBus(TwoWire * bus) { this->bus = bus; } 103 | TwoWire * getBus() { return bus; } 104 | 105 | void setAddress(uint8_t new_addr); 106 | inline uint8_t getAddress() { return address; } 107 | 108 | bool init(bool io_2v8 = true); 109 | 110 | void writeReg(uint8_t reg, uint8_t value); 111 | void writeReg16Bit(uint8_t reg, uint16_t value); 112 | void writeReg32Bit(uint8_t reg, uint32_t value); 113 | uint8_t readReg(uint8_t reg); 114 | uint16_t readReg16Bit(uint8_t reg); 115 | uint32_t readReg32Bit(uint8_t reg); 116 | 117 | void writeMulti(uint8_t reg, uint8_t const * src, uint8_t count); 118 | void readMulti(uint8_t reg, uint8_t * dst, uint8_t count); 119 | 120 | bool setSignalRateLimit(float limit_Mcps); 121 | float getSignalRateLimit(); 122 | 123 | bool setMeasurementTimingBudget(uint32_t budget_us); 124 | uint32_t getMeasurementTimingBudget(); 125 | 126 | bool setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks); 127 | uint8_t getVcselPulsePeriod(vcselPeriodType type); 128 | 129 | void startContinuous(uint32_t period_ms = 0); 130 | void stopContinuous(); 131 | uint16_t readRangeContinuousMillimeters(); 132 | uint16_t readRangeSingleMillimeters(); 133 | 134 | inline void setTimeout(uint16_t timeout) { io_timeout = timeout; } 135 | inline uint16_t getTimeout() { return io_timeout; } 136 | bool timeoutOccurred(); 137 | 138 | private: 139 | // TCC: Target CentreCheck 140 | // MSRC: Minimum Signal Rate Check 141 | // DSS: Dynamic Spad Selection 142 | 143 | struct SequenceStepEnables 144 | { 145 | boolean tcc, msrc, dss, pre_range, final_range; 146 | }; 147 | 148 | struct SequenceStepTimeouts 149 | { 150 | uint16_t pre_range_vcsel_period_pclks, final_range_vcsel_period_pclks; 151 | 152 | uint16_t msrc_dss_tcc_mclks, pre_range_mclks, final_range_mclks; 153 | uint32_t msrc_dss_tcc_us, pre_range_us, final_range_us; 154 | }; 155 | 156 | TwoWire * bus; 157 | uint8_t address; 158 | uint16_t io_timeout; 159 | bool did_timeout; 160 | uint16_t timeout_start_ms; 161 | 162 | uint8_t stop_variable; // read by init and used when starting measurement; is StopVariable field of VL53L0X_DevData_t structure in API 163 | uint32_t measurement_timing_budget_us; 164 | 165 | bool getSpadInfo(uint8_t * count, bool * type_is_aperture); 166 | 167 | void getSequenceStepEnables(SequenceStepEnables * enables); 168 | void getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts); 169 | 170 | bool performSingleRefCalibration(uint8_t vhv_init_byte); 171 | 172 | static uint16_t decodeTimeout(uint16_t value); 173 | static uint16_t encodeTimeout(uint32_t timeout_mclks); 174 | static uint32_t timeoutMclksToMicroseconds(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks); 175 | static uint32_t timeoutMicrosecondsToMclks(uint32_t timeout_period_us, uint8_t vcsel_period_pclks); 176 | }; 177 | 178 | #endif 179 | 180 | 181 | 182 | -------------------------------------------------------------------------------- /examples/Continuous/Continuous.ino: -------------------------------------------------------------------------------- 1 | /* This example shows how to use continuous mode to take 2 | range measurements with the VL53L0X. It is based on 3 | vl53l0x_ContinuousRanging_Example.c from the VL53L0X API. 4 | 5 | The range readings are in units of mm. */ 6 | 7 | #include 8 | #include 9 | 10 | VL53L0X sensor; 11 | 12 | void setup() 13 | { 14 | Serial.begin(9600); 15 | Wire.begin(); 16 | 17 | sensor.setTimeout(500); 18 | if (!sensor.init()) 19 | { 20 | Serial.println("Failed to detect and initialize sensor!"); 21 | while (1) {} 22 | } 23 | 24 | // Start continuous back-to-back mode (take readings as 25 | // fast as possible). To use continuous timed mode 26 | // instead, provide a desired inter-measurement period in 27 | // ms (e.g. sensor.startContinuous(100)). 28 | sensor.startContinuous(); 29 | } 30 | 31 | void loop() 32 | { 33 | Serial.print(sensor.readRangeContinuousMillimeters()); 34 | if (sensor.timeoutOccurred()) { Serial.print(" TIMEOUT"); } 35 | 36 | Serial.println(); 37 | } 38 | -------------------------------------------------------------------------------- /examples/Single/Single.ino: -------------------------------------------------------------------------------- 1 | /* This example shows how to get single-shot range 2 | measurements from the VL53L0X. The sensor can optionally be 3 | configured with different ranging profiles, as described in 4 | the VL53L0X API user manual, to get better performance for 5 | a certain application. This code is based on the four 6 | "SingleRanging" examples in the VL53L0X API. 7 | 8 | The range readings are in units of mm. */ 9 | 10 | #include 11 | #include 12 | 13 | VL53L0X sensor; 14 | 15 | 16 | // Uncomment this line to use long range mode. This 17 | // increases the sensitivity of the sensor and extends its 18 | // potential range, but increases the likelihood of getting 19 | // an inaccurate reading because of reflections from objects 20 | // other than the intended target. It works best in dark 21 | // conditions. 22 | 23 | //#define LONG_RANGE 24 | 25 | 26 | // Uncomment ONE of these two lines to get 27 | // - higher speed at the cost of lower accuracy OR 28 | // - higher accuracy at the cost of lower speed 29 | 30 | //#define HIGH_SPEED 31 | //#define HIGH_ACCURACY 32 | 33 | 34 | void setup() 35 | { 36 | Serial.begin(9600); 37 | Wire.begin(); 38 | 39 | sensor.setTimeout(500); 40 | if (!sensor.init()) 41 | { 42 | Serial.println("Failed to detect and initialize sensor!"); 43 | while (1) {} 44 | } 45 | 46 | #if defined LONG_RANGE 47 | // lower the return signal rate limit (default is 0.25 MCPS) 48 | sensor.setSignalRateLimit(0.1); 49 | // increase laser pulse periods (defaults are 14 and 10 PCLKs) 50 | sensor.setVcselPulsePeriod(VL53L0X::VcselPeriodPreRange, 18); 51 | sensor.setVcselPulsePeriod(VL53L0X::VcselPeriodFinalRange, 14); 52 | #endif 53 | 54 | #if defined HIGH_SPEED 55 | // reduce timing budget to 20 ms (default is about 33 ms) 56 | sensor.setMeasurementTimingBudget(20000); 57 | #elif defined HIGH_ACCURACY 58 | // increase timing budget to 200 ms 59 | sensor.setMeasurementTimingBudget(200000); 60 | #endif 61 | } 62 | 63 | void loop() 64 | { 65 | Serial.print(sensor.readRangeSingleMillimeters()); 66 | if (sensor.timeoutOccurred()) { Serial.print(" TIMEOUT"); } 67 | 68 | Serial.println(); 69 | } 70 | -------------------------------------------------------------------------------- /keywords.txt: -------------------------------------------------------------------------------- 1 | VL53L0X KEYWORD1 2 | 3 | setAddress KEYWORD2 4 | getAddress KEYWORD2 5 | init KEYWORD2 6 | writeReg KEYWORD2 7 | writeReg16Bit KEYWORD2 8 | writeReg32Bit KEYWORD2 9 | readReg KEYWORD2 10 | readReg16Bit KEYWORD2 11 | readReg32Bit KEYWORD2 12 | writeMulti KEYWORD2 13 | readMulti KEYWORD2 14 | setSignalRateLimit KEYWORD2 15 | getSignalRateLimit KEYWORD2 16 | setMeasurementTimingBudget KEYWORD2 17 | getMeasurementTimingBudget KEYWORD2 18 | setVcselPulsePeriod KEYWORD2 19 | getVcselPulsePeriod KEYWORD2 20 | startContinuous KEYWORD2 21 | stopContinuous KEYWORD2 22 | readRangeContinuousMillimeters KEYWORD2 23 | readRangeSingleMillimeters KEYWORD2 24 | setTimeout KEYWORD2 25 | getTimeout KEYWORD2 26 | timeoutOccurred KEYWORD2 27 | 28 | SYSRANGE_START LITERAL1 29 | SYSTEM_THRESH_HIGH LITERAL1 30 | SYSTEM_THRESH_LOW LITERAL1 31 | SYSTEM_SEQUENCE_CONFIG LITERAL1 32 | SYSTEM_RANGE_CONFIG LITERAL1 33 | SYSTEM_INTERMEASUREMENT_PERIOD LITERAL1 34 | SYSTEM_INTERRUPT_CONFIG_GPIO LITERAL1 35 | GPIO_HV_MUX_ACTIVE_HIGH LITERAL1 36 | SYSTEM_INTERRUPT_CLEAR LITERAL1 37 | RESULT_INTERRUPT_STATUS LITERAL1 38 | RESULT_RANGE_STATUS LITERAL1 39 | RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN LITERAL1 40 | RESULT_CORE_RANGING_TOTAL_EVENTS_RTN LITERAL1 41 | RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF LITERAL1 42 | RESULT_CORE_RANGING_TOTAL_EVENTS_REF LITERAL1 43 | RESULT_PEAK_SIGNAL_RATE_REF LITERAL1 44 | ALGO_PART_TO_PART_RANGE_OFFSET_MM LITERAL1 45 | I2C_SLAVE_DEVICE_ADDRESS LITERAL1 46 | MSRC_CONFIG_CONTROL LITERAL1 47 | PRE_RANGE_CONFIG_MIN_SNR LITERAL1 48 | PRE_RANGE_CONFIG_VALID_PHASE_LOW LITERAL1 49 | PRE_RANGE_CONFIG_VALID_PHASE_HIGH LITERAL1 50 | PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT LITERAL1 51 | FINAL_RANGE_CONFIG_MIN_SNR LITERAL1 52 | FINAL_RANGE_CONFIG_VALID_PHASE_LOW LITERAL1 53 | FINAL_RANGE_CONFIG_VALID_PHASE_HIGH LITERAL1 54 | FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT LITERAL1 55 | PRE_RANGE_CONFIG_SIGMA_THRESH_HI LITERAL1 56 | PRE_RANGE_CONFIG_SIGMA_THRESH_LO LITERAL1 57 | PRE_RANGE_CONFIG_VCSEL_PERIOD LITERAL1 58 | PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI LITERAL1 59 | PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO LITERAL1 60 | SYSTEM_HISTOGRAM_BIN LITERAL1 61 | HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT LITERAL1 62 | HISTOGRAM_CONFIG_READOUT_CTRL LITERAL1 63 | FINAL_RANGE_CONFIG_VCSEL_PERIOD LITERAL1 64 | FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI LITERAL1 65 | FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO LITERAL1 66 | CROSSTALK_COMPENSATION_PEAK_RATE_MCPS LITERAL1 67 | MSRC_CONFIG_TIMEOUT_MACROP LITERAL1 68 | SOFT_RESET_GO2_SOFT_RESET_N LITERAL1 69 | IDENTIFICATION_MODEL_ID LITERAL1 70 | IDENTIFICATION_REVISION_ID LITERAL1 71 | OSC_CALIBRATE_VAL LITERAL1 72 | GLOBAL_CONFIG_VCSEL_WIDTH LITERAL1 73 | GLOBAL_CONFIG_SPAD_ENABLES_REF_0 LITERAL1 74 | GLOBAL_CONFIG_SPAD_ENABLES_REF_1 LITERAL1 75 | GLOBAL_CONFIG_SPAD_ENABLES_REF_2 LITERAL1 76 | GLOBAL_CONFIG_SPAD_ENABLES_REF_3 LITERAL1 77 | GLOBAL_CONFIG_SPAD_ENABLES_REF_4 LITERAL1 78 | GLOBAL_CONFIG_SPAD_ENABLES_REF_5 LITERAL1 79 | GLOBAL_CONFIG_REF_EN_START_SELECT LITERAL1 80 | DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD LITERAL1 81 | DYNAMIC_SPAD_REF_EN_START_OFFSET LITERAL1 82 | POWER_MANAGEMENT_GO1_POWER_FORCE LITERAL1 83 | VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV LITERAL1 84 | ALGO_PHASECAL_LIM LITERAL1 85 | ALGO_PHASECAL_CONFIG_TIMEOUT LITERAL1 86 | 87 | VcselPeriodPreRange LITERAL1 88 | VcselPeriodFinalRange LITERAL1 89 | 90 | 91 | -------------------------------------------------------------------------------- /library.properties: -------------------------------------------------------------------------------- 1 | name=VL53L0X 2 | version=1.3.1 3 | author=Pololu 4 | maintainer=Pololu 5 | sentence=VL53L0X distance sensor library 6 | paragraph=This is a library for the Arduino IDE that helps interface with ST's VL53L0X distance sensor. 7 | category=Sensors 8 | url=https://github.com/pololu/vl53l0x-arduino 9 | architectures=* 10 | --------------------------------------------------------------------------------