├── .gitignore
├── README.md
├── bfi-dataset
├── README.md
├── analysis
│ └── codebook.Rmd
├── data
│ ├── processed_data
│ │ ├── README.md
│ │ └── bfi-codebook_data.tsv
│ └── raw_data
│ │ └── study-bfi_data.csv
├── dataset_description.json
└── results
│ └── codebook.html
├── complex-metadata-dataset
├── README.md
├── data
│ └── study-template_data.csv
└── dataset_description.json
├── example_files
└── dataset_description.json
├── face-body
├── README.md
├── data
│ ├── gender-female_type-bodies_data.csv
│ ├── gender-female_type-faces_data.csv
│ ├── gender-female_type-ratings_data.csv
│ ├── gender-female_type-stimuli_data.csv
│ ├── gender-male_type-bodies_data.csv
│ ├── gender-male_type-faces_data.csv
│ ├── gender-male_type-ratings_data.csv
│ └── gender-male_type-stimuli_data.csv
└── dataset_description.json
├── img
├── commit-changes.png
├── create-branch.png
├── pull-request-form.png
├── pull-request-prompt.png
├── pull-request-result.png
└── upload-files.png
├── informative-mistakes-dataset
├── data
│ ├── non_csv_file.txt
│ ├── study-validname_type-pdf_data.csv
│ ├── study-yarncolor_data.csv
│ ├── study-yarncolor_type-badnames_data.csv
│ ├── subdir
│ │ └── subdir
│ │ │ └── study-yarn_location-subdir_data.csv
│ └── wrong-name-structure.csv
└── dataset_description.json
├── macrophage-conditioning
├── README.md
├── data
│ ├── primary_data
│ │ ├── IL-6 ELISA 090603.pzf
│ │ ├── IL-6 ELISA 090603.pzfx
│ │ ├── figures
│ │ │ ├── fig 1 il6_log.eps
│ │ │ ├── fig 1 il6_log.jpg
│ │ │ ├── fig 2 il6 log.eps
│ │ │ └── fig 2 il6 log.jpg
│ │ └── makrofag_parings_n_evocation_raw.txt
│ └── study-1_data.csv
└── dataset_description.json
├── mistakes-corrected-dataset
├── data
│ ├── study-yarncolor_data.csv
│ ├── study-yarncolor_file-badnames_data.csv
│ ├── study-yarncolor_file-noncsvfile_data.csv
│ ├── study-yarncolor_file-wrongname_data.csv
│ └── subdir
│ │ └── subdir
│ │ └── study-yarn_location-subdir_data.csv
└── dataset_description.json
├── nih-reviews
├── Codebook.xlsx
├── README.md
├── data
│ └── study-nih_data.csv
├── dataset_description.json
├── nih_data.csv
└── raw_data
│ └── nih_data.tsv
├── object-orientation
├── LAB_processing.R
├── OrientationCrossLanguages_2018PSA_PP_1.2.0.osexp
├── OrientationCrossLanguages_2018PSA_SP_1.2.0.osexp
├── README.md
├── STI_LISTS.xls
├── data
│ ├── PP
│ │ ├── subject-1_data.csv
│ │ ├── subject-2_data.csv
│ │ ├── subject-3_data.csv
│ │ └── subject-4_data.csv
│ ├── SP
│ │ ├── subject-1_data.csv
│ │ ├── subject-2_data.csv
│ │ ├── subject-3_data.csv
│ │ └── subject-4_data.csv
│ ├── num-100_conda-PP_data.csv
│ ├── num-100_conda-SP_condb-M_data.csv
│ └── num-100_conda-SP_condb-V_data.csv
└── dataset_description.json
├── safi-survey
├── README.md
├── data
│ └── study-safisurvey_data.csv
└── dataset_description.json
└── template-dataset
├── README.md
├── data
└── study-yarncolor_data.csv
└── dataset_description.json
/.gitignore:
--------------------------------------------------------------------------------
1 | # History files
2 | .Rhistory
3 | .Rapp.history
4 |
5 | # Session Data files
6 | .RData
7 | .RDataTmp
8 |
9 | # User-specific files
10 | .Ruserdata
11 |
12 | # Example code in package build process
13 | *-Ex.R
14 |
15 | # Output files from R CMD build
16 | /*.tar.gz
17 |
18 | # Output files from R CMD check
19 | /*.Rcheck/
20 |
21 | # RStudio files
22 | .Rproj.user/
23 |
24 | # produced vignettes
25 | vignettes/*.html
26 | vignettes/*.pdf
27 |
28 | # OAuth2 token, see https://github.com/hadley/httr/releases/tag/v0.3
29 | .httr-oauth
30 |
31 | # knitr and R markdown default cache directories
32 | *_cache/
33 | /cache/
34 |
35 | # Temporary files created by R markdown
36 | *.utf8.md
37 | *.knit.md
38 |
39 | # R Environment Variables
40 | .Renviron
41 |
42 | # pkgdown site
43 | docs/
44 |
45 | # translation temp files
46 | po/*~
47 |
48 | # RStudio Connect folder
49 | rsconnect/
50 |
51 | # Mac OS
52 |
53 | # MacOS
54 | .DS_Store
55 | */.DS_Store
56 | */*/.DS_Store
57 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Example Datasets for Psych-DS
2 |
3 | This is a gallery of public datasets which have been formatted* according to the [Psych-DS data standard](https://psychds-docs.readthedocs.io/en/latest/guides/1_getting_started/). They primarily come from various subfields of psychology, and at the moment (early 2025) are primarily either versions of datasets that are freely available elsewhere online, or templates designed to help people create new Psych-DS datasets.
4 |
5 | You can browse these datasets to learn more about how Psych-DS works, download one to try out the [Psych-DS in-browser validator](https://psych-ds.github.io/validator/), or use them as test cases to develop tools that are designed to work with Psych-DS data.
6 |
7 | Anyone can contribute to this project! Please have a look at the [Psych-DS code of conduct](https://github.com/psych-ds/psych-DS/blob/master/CODE_OF_CONDUCT.md) for our community guidelines, and feel free to email Melissa Kline Struhl (mekline@mit.edu) with any questions about these datasets or Psych-DS more generally.
8 |
9 | **Status update**: Updated 2025-04-10 in preparation for wider Psych-DS release.
10 |
11 | **Note that there is one dataset in this repository that will *not* successfully validate: `informative-mistakes-dataset/`. That one is a small example designed to show various kinds of mistakes that will cause a dataset to fail validation. Check out its companion `mistakes-corrected-dataset/` for a version that passes validation!*
12 |
13 | [List of datasets](#anchor-1)
14 |
15 | [How to contribute a dataset](#anchor-2)
16 |
17 | [More about Psych-DS and additional resources](#anchor-3)
18 |
19 | ## List of datasets
20 |
21 | #### Datasets designed for testing the specification
22 |
23 | * Template, Complex-Metadata, Informative-Mistakes and Mistakes-Corrected datasets - Melissa Kline Struhl, updated by Brian Leonard
24 |
25 | #### Real datasets contributed by researchers
26 |
27 | * NIH reviews - Patrick S. Forscher
28 | * Faces and Bodies - Lisa DeBruine
29 | * BFI - Ioanna Iro Eleftheriadou
30 | * Object Orientation - Sau-Chin Chen
31 | * Macrophage Conditioning - Love Ahnström
32 | * Safi Survey - Eduard Klapwijk
33 |
34 | ## How to contribute a dataset
35 |
36 | ### Step 1: Prepare Your Dataset
37 |
38 | First, you'll need to create a properly structured dataset following the Psych-DS format. You can find detailed instructions for how to do this in the [Getting Started guide](https://psychds-docs.readthedocs.io/en/latest/guides/1_getting_started/) from the Psych-DS docs.
39 |
40 | Within the metadata file for your dataset, make sure to include a note in the description field with the date that you'll be uploading this dataset to our repository. It is also best to fill the Author field with information about yourself and your fellow authors. If you are not the author of the dataset, you can include your identity in the metadata by adding yourself in the "sdPublisher" field.
41 |
42 | Here's a simplified example metadata file:
43 |
44 | ```
45 | {
46 | "@context": "https://schema.org/",
47 | "@type": "Dataset",
48 | "name": "Visual Perception Study 2023",
49 | "description": "This dataset contains results from a visual perception experiment conducted in 2023.
50 | Uploaded to the Psych-DS example repository on date XYZ",
51 | "author": {
52 | "@type": "Person",
53 | "givenName": "John",
54 | "familyName: "Doe",
55 | "id": "0000-0002-1825-0097" // this is an ORCID ID, e.g.
56 | },
57 | "sdPublisher": {
58 | "@type": "Person",
59 | "givenName": "Jane",
60 | "familyName: "Doe",
61 | "id": "0000-0002-3245-1127" // this is an ORCID ID, e.g.
62 | },
63 | "variableMeasured": [
64 | "participant_id",
65 | "trial_number",
66 | "stimulus_type",
67 | "response_time_ms",
68 | "accuracy"
69 | ]
70 | }
71 | ```
72 |
73 | ### Step 2: Validate Your Dataset
74 |
75 | Before submitting, you must validate your dataset using the official Psych-DS validator:
76 |
77 | 1. Visit the [Psych-DS Validator](https://psych-ds.github.io/validator/)
78 | 2. Select your dataset directory
79 | 3. Ensure that your dataset passes all validation checks
80 | 4. If there are any errors, fix them and re-validate until your dataset passes all checks
81 |
82 | ### Step 3: Submit Your Dataset via Pull Request
83 |
84 | Once your dataset is validated, you can submit it to our repository yourself by following the instructions below.
85 |
86 | If you run into trouble, *please* feel free to open an issue on this repository (see the "Issues" tab at the top of this page) and we can help you out!!
87 |
88 | #### Option A: Using GitHub in the Browser
89 |
90 | 1. Fork the Psych-DS example datasets repository
91 |
92 |
93 |
94 |
95 |
96 | 2. Navigate to your forked repository (it should send you there automatically, but otherwise it can be found under your account's repository list with the name "example-datasets"
97 |
98 |
99 |
100 | 3. Click "Add file" → "Upload files"
101 |
102 |
103 |
104 | 4. Drag and drop your entire dataset directory or use the file selector
105 | 5. Add a commit message explaining what dataset you're adding
106 | 6. Click "Commit changes"
107 | 7. Edit the Readme file to include yourself in the contributors section and click "Commit changes"
108 |
109 |
110 |
111 |
112 |
113 | 8. Navigate to the "Pull requests" tab and click "New pull request"
114 |
115 |
116 |
117 | Then:
118 |
119 |
120 |
121 | 9. Select "base repository: psych-ds/example-datasets" and "head repository: your-username/example-datasets"
122 |
123 |
124 |
125 | 10. Click "Create pull request"
126 | 11. Add a title and description for your PR
127 | 12. Click "Create pull request"
128 |
129 | #### Option B: Using Git on the Command Line
130 |
131 | 1. Fork the repository on GitHub
132 | 2. Clone your forked repository:
133 | ```
134 | git clone https://github.com/your-username/example-datasets.git
135 | ```
136 | 3. Copy your dataset directory into the repository
137 | 4. Add your name and the name of your dataset the contributors list of the README file
138 | 5. Add your changes:
139 | ```
140 | git add .
141 | ```
142 | 6. Commit your changes:
143 | ```
144 | git commit -m "Add dataset: Visual Perception Study 2023"
145 | ```
146 | 7. Push to your fork:
147 | ```
148 | git push origin main
149 | ```
150 | 8. Go to GitHub and create a pull request from your new branch
151 |
152 | ### What Happens After Submission?
153 |
154 | After submitting your PR:
155 | 1. Our team will review your dataset
156 | 2. We may request changes if needed
157 | 3. Once approved, your dataset will be merged into the main repository
158 | 4. Your name will appear in the contributors list
159 |
160 | ## More about Psych-DS/additional resources
161 |
162 | Psych-DS is a community data standard for research in psychology and other behavioral sciences, which provides a flexible set of conventions for formatting and documenting scientific datasets. It is heavily inspired by the [Brain Image Data Structure (BIDS)](https://bids.neuroimaging.io/) standard for fMRI data.
163 |
164 | Psych-DS provides a simple and easy-to-adopt standard for organizing data in the psychological and behavioral sciences, which aims to help researchers satisfy [FAIR](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792175/) principles for data sharing.
165 |
166 | * Return to the [Psych-DS homepage](https://psych-ds.github.io/).
167 |
168 | * Browser-based [Psych-DS Validator](https://psych-ds.github.io/validator/)(!)
169 |
170 | * [Psych-DS Documentation](https://psychds-docs.readthedocs.io/en/latest/guides/1_getting_started/)
171 |
172 | * [Article on the Schema.org Dataset structure](https://developers.google.com/search/docs/data-types/dataset). Click 'See Markup' under Examples for a pre-populated set of dataset JSON you can play with and validate against!
173 |
174 |
175 |
176 |
177 |
178 |
--------------------------------------------------------------------------------
/bfi-dataset/README.md:
--------------------------------------------------------------------------------
1 | # README - Bfi dataset
2 |
3 | Bfi data in Psych-DS compliant dataset form
4 |
5 |
6 | - A list of what files can be found in this folder and what they are
7 | - raw data
8 | - processed data
9 | - analysis
10 | - results
11 | - json sidecar
12 |
13 |
--------------------------------------------------------------------------------
/bfi-dataset/analysis/codebook.Rmd:
--------------------------------------------------------------------------------
1 | ---
2 | title: "Codebook"
3 | output:
4 | html_document:
5 | toc: true
6 | toc_depth: 4
7 | toc_float: true
8 | code_folding: 'hide'
9 | self_contained: true
10 | pdf_document:
11 | toc: yes
12 | toc_depth: 4
13 | latex_engine: xelatex
14 | ---
15 |
16 | Here, we're just setting a few options.
17 |
18 | ```{r setup}
19 | knitr::opts_chunk$set(
20 | warning = TRUE, # show warnings during codebook generation
21 | message = TRUE, # show messages during codebook generation
22 | error = TRUE, # do not interrupt codebook generation in case of errors,
23 | # usually better for debugging
24 | echo = TRUE # show R code
25 | )
26 | ggplot2::theme_set(ggplot2::theme_bw())
27 | pander::panderOptions("table.split.table", Inf)
28 | ```
29 |
30 | Now, we're preparing our data for the codebook.
31 |
32 | ```{r prepare_codebook}
33 | library(codebook)
34 | library(dplyr)
35 | library(tidyverse)
36 | library(labelled)
37 | library(jsonlite)
38 | codebook_data <- rio::import("https://osf.io/s87kd/download", "csv")
39 | bfi_data <- rio::import("https://osf.io/s87kd/download", "csv")
40 | dict <- rio::import("https://osf.io/cs678/download", "csv")
41 |
42 | var_label(codebook_data) <- dict %>% dplyr::select(variable, label) %>% dict_to_list()
43 |
44 | val_labels(codebook_data$gender) <- c("male" = 1, "female" = 2)
45 | val_labels(codebook_data$education) <- c("in high school" = 1,
46 | "finished high school" = 2,
47 | "some college" = 3,
48 | "college graduate" = 4,
49 | "graduate degree" = 5)
50 |
51 | add_likert_labels <- function(x) {
52 | val_labels(x) <- c("Very Inaccurate" = 1,
53 | "Moderately Inaccurate" = 2,
54 | "Slightly Inaccurate" = 3,
55 | "Slightly Accurate" = 4,
56 | "Moderately Accurate" = 5,
57 | "Very Accurate" = 6)
58 | x
59 | }
60 |
61 | likert_items <- dict %>% filter(Big6 != "") %>% pull(variable)
62 |
63 | codebook_data <- codebook_data %>% mutate_at(likert_items, add_likert_labels)
64 |
65 | codebook_data$extraversion <- codebook_data %>% dplyr::select(E1:E5) %>% aggregate_and_document_scale()
66 |
67 | reversed_items <- dict %>% filter(Keying == -1) %>% pull(variable)
68 |
69 | codebook_data <- codebook_data %>%
70 | rename_at(reversed_items, add_R)
71 |
72 | codebook_data <- codebook_data %>%
73 | mutate_at(vars(matches("\\dR$")), reverse_labelled_values)
74 |
75 | codebook_data$extraversion <- codebook_data %>% dplyr::select(E1R:E5) %>% aggregate_and_document_scale()
76 |
77 | codebook_data$plasticity <- codebook_data %>% dplyr::select(E1R:E5, O1:O5R) %>% aggregate_and_document_scale()
78 |
79 |
80 |
81 |
82 | # omit the following lines, if your missing values are already properly labelled
83 | codebook_data <- detect_missing(codebook_data,
84 | only_labelled = TRUE, # only labelled values are autodetected as
85 | # missing
86 | negative_values_are_missing = FALSE, # negative values are missing values
87 | ninety_nine_problems = TRUE, # 99/999 are missing values, if they
88 | # are more than 5 MAD from the median
89 | )
90 |
91 | # If you are not using formr, the codebook package needs to guess which items
92 | # form a scale. The following line finds item aggregates with names like this:
93 | # scale = scale_1 + scale_2R + scale_3R
94 | # identifying these aggregates allows the codebook function to
95 | # automatically compute reliabilities.
96 | # However, it will not reverse items automatically.
97 | codebook_data <- detect_scales(codebook_data)
98 | ```
99 |
100 |
101 | Create codebook
102 |
103 | ```{r codebook}
104 | metadata(codebook_data)$name <- "25 Personality items representing 5 factors"
105 | metadata(codebook_data)$description <- "25 personality self report items taken from the International Personality Item Pool (ipip.ori.org)[...]"
106 | metadata(codebook_data)$identifier <- "https://dx.doi.org/10.17605/OSF.IO/K39BG"
107 | metadata(codebook_data)$creator <- "William Revelle"
108 | metadata(codebook_data)$citation <- "Revelle, W., Wilt, J., and Rosenthal, A. (2010) Individual Differences in Cognition: New Methods for examining the Personality-Cognition Link In Gruszka, A. and Matthews, G. and Szymura, B. (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer."
109 | metadata(codebook_data)$url <- "https://cran.r-project.org/web/packages/psych/index.html"
110 | metadata(codebook_data)$datePublished <- "2010-01-01"
111 | metadata(codebook_data)$temporalCoverage <- "Spring 2010"
112 | metadata(codebook_data)$spatialCoverage <- "Online"
113 |
114 | codebook(codebook_data)
115 | ```
116 |
117 | ```{r export}
118 | bfi_meta <- metadata_list(codebook_data)
119 | write_json(bfi_meta, "/home/eleftheriadou/Users/EleftheriadouIoannaIro/bfi-dataset/dataset_description.json", pretty = TRUE)
120 | rio::export(codebook_data, "/home/eleftheriadou/Users/EleftheriadouIoannaIro/bfi-dataset/processed_data/bfi-codebook_data.tsv")
121 | ```
122 |
123 |
--------------------------------------------------------------------------------
/bfi-dataset/data/processed_data/README.md:
--------------------------------------------------------------------------------
1 | # README - Bfi dataset
2 |
3 | used codebook package on data
4 |
5 | - labelled variables
6 | - labelled values
7 | - created 2 new variables: extraversion, plasticity
8 |
--------------------------------------------------------------------------------
/bfi-dataset/dataset_description.json:
--------------------------------------------------------------------------------
1 | {
2 | "@context": "https://schema.org/",
3 | "@type": "Dataset",
4 | "schemaVersion": "Psych-DS 0.1.0",
5 | "name": "25 Personality items representing 5 factors",
6 | "identifier": "https://dx.doi.org/10.17605/OSF.IO/K39BG",
7 | "creator": [
8 | {
9 | "@type": "Person",
10 | "name": "William Revelle"
11 | }
12 | ],
13 | "citation": "Revelle, W., Wilt, J., and Rosenthal, A. (2010) Individual Differences in Cognition: New Methods for examining the Personality-Cognition Link In Gruszka, A. and Matthews, G. and Szymura, B. (Eds.) Handbook of Individual Differences in Cognition: Attention, Memory and Executive Control, Springer.",
14 | "url": ["https://cran.r-project.org/web/packages/psych/index.html"],
15 | "datePublished": "2010-01-01",
16 | "temporalCoverage": "Spring 2010",
17 | "spatialCoverage": "Online",
18 | "description": "25 personality self report items taken from the International Personality Item Pool (ipip.ori.org)[...]\n\n\n## Table of variables\nThis table contains variable names, labels, their central tendencies and other attributes.\n\n|name |label |data_type |value_labels |scale_item_names |missing |complete |n |mean |sd |p0 |p25 |p50 |p75 |p100 |hist |\n|:------------|:-----------------------------------------|:---------|:------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------|:-------|:--------|:----|:-----|:-----|:---|:---|:---|:---|:----|:--------|\n|A1R |Am indifferent to the feelings of others. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |16 |2784 |2800 |4.59 |1.41 |1 |4 |5 |6 |6 |▁▂▁▃▃▁▇▇ |\n|A2 |Inquire about others' well-being. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |27 |2773 |2800 |4.8 |1.17 |1 |4 |5 |6 |6 |▁▁▁▁▅▁▇▇ |\n|A3 |Know how to comfort others. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |26 |2774 |2800 |4.6 |1.3 |1 |4 |5 |6 |6 |▁▂▁▂▅▁▇▆ |\n|A4 |Love children. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |19 |2781 |2800 |4.7 |1.48 |1 |4 |5 |6 |6 |▁▂▁▁▃▁▅▇ |\n|A5 |Make people feel at ease. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |16 |2784 |2800 |4.56 |1.26 |1 |4 |5 |5 |6 |▁▂▁▂▅▁▇▆ |\n|C1 |Am exacting in my work. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |21 |2779 |2800 |4.5 |1.24 |1 |4 |5 |5 |6 |▁▁▁▂▅▁▇▅ |\n|C2 |Continue until everything is perfect. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |24 |2776 |2800 |4.37 |1.32 |1 |4 |5 |5 |6 |▁▂▁▂▆▁▇▅ |\n|C3 |Do things according to a plan. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |20 |2780 |2800 |4.3 |1.29 |1 |4 |5 |5 |6 |▁▂▁▂▆▁▇▅ |\n|C4R |Do things in a half-way manner. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |26 |2774 |2800 |4.45 |1.38 |1 |3 |5 |6 |6 |▁▂▁▅▅▁▇▇ |\n|C5R |Waste my time. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |16 |2784 |2800 |3.7 |1.63 |1 |2 |4 |5 |6 |▃▆▁▇▅▁▇▆ |\n|E1R |Don't talk a lot. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |23 |2777 |2800 |4.03 |1.63 |1 |3 |4 |5 |6 |▃▅▁▆▅▁▇▇ |\n|E2R |Find it difficult to approach others. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |16 |2784 |2800 |3.86 |1.61 |1 |3 |4 |5 |6 |▃▅▁▇▅▁▇▆ |\n|E3 |Know how to captivate people. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |25 |2775 |2800 |4 |1.35 |1 |3 |4 |5 |6 |▂▃▁▃▇▁▇▃ |\n|E4 |Make friends easily. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |9 |2791 |2800 |4.42 |1.46 |1 |4 |5 |6 |6 |▁▂▁▂▃▁▇▆ |\n|E5 |Take charge. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |21 |2779 |2800 |4.42 |1.33 |1 |4 |5 |5 |6 |▁▂▁▂▅▁▇▅ |\n|N1R |Get angry easily. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |22 |2778 |2800 |4.07 |1.57 |1 |3 |4 |5 |6 |▂▅▁▆▅▁▇▇ |\n|N2R |Get irritated easily. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |21 |2779 |2800 |3.49 |1.53 |1 |2 |3 |5 |6 |▃▆▁▇▅▁▆▃ |\n|N3R |Have frequent mood swings. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |11 |2789 |2800 |3.78 |1.6 |1 |3 |4 |5 |6 |▃▆▁▇▅▁▇▆ |\n|N4R |Often feel blue. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |36 |2764 |2800 |3.81 |1.57 |1 |3 |4 |5 |6 |▃▅▁▇▅▁▇▆ |\n|N5R |Panic easily. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |29 |2771 |2800 |4.03 |1.62 |1 |3 |4 |5 |6 |▃▃▁▆▅▁▇▇ |\n|O1 |Am full of ideas. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |22 |2778 |2800 |4.82 |1.13 |1 |4 |5 |6 |6 |▁▁▁▂▅▁▇▇ |\n|O2R |Avoid difficult reading material. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |0 |2800 |2800 |4.29 |1.57 |1 |3 |5 |6 |6 |▂▃▁▅▃▁▇▇ |\n|O3 |Carry the conversation to a higher level. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |28 |2772 |2800 |4.44 |1.22 |1 |4 |5 |5 |6 |▁▁▁▂▆▁▇▅ |\n|O4 |Spend time reflecting on things. |integer |1. Very Inaccurate, - 2. Moderately Inaccurate, - 3. Slightly Inaccurate, - 4. Slightly Accurate, - 5. Moderately Accurate, - 6. Very Accurate |NA |14 |2786 |2800 |4.89 |1.22 |1 |4 |5 |6 |6 |▁▁▁▁▃▁▆▇ |\n|O5R |Will not probe deeply into a subject. |numeric |6. Very Inaccurate, - 5. Moderately Inaccurate, - 4. Slightly Inaccurate, - 3. Slightly Accurate, - 2. Moderately Accurate, - 1. Very Accurate |NA |20 |2780 |2800 |4.51 |1.33 |1 |4 |5 |6 |6 |▁▂▁▃▅▁▇▇ |\n|gender |gender |integer |1. male, - 2. female |NA |0 |2800 |2800 |1.67 |0.47 |1 |1 |2 |2 |2 |▃▁▁▁▁▁▁▇ |\n|education |education |integer |1. in high school, - 2. finished high school, - 3. some college, - 4. college graduate, - 5. graduate degree |NA |223 |2577 |2800 |3.19 |1.11 |1 |3 |3 |4 |5 |▂▂▁▇▁▂▁▃ |\n|age |age |integer |NA |NA |0 |2800 |2800 |28.78 |11.13 |3 |20 |26 |35 |86 |▁▇▆▃▂▁▁▁ |\n|extraversion |5 E items aggregated by rowMeans |numeric |NA |E1R, E2R, E3, E4, E5 |87 |2713 |2800 |4.14 |1.06 |1 |3.4 |4.2 |5 |6 |▁▁▃▅▇▇▇▆ |\n|plasticity |10 items aggregated by rowMeans |numeric |NA |E1R, E2R, E3, E4, E5, O1, O2R, O3, O4, O5R |149 |2651 |2800 |4.37 |0.73 |1.7 |3.9 |4.4 |4.9 |6 |▁▁▂▃▆▇▅▂ |\n\n### Note\nThis dataset was automatically described using the [codebook R package](https://rubenarslan.github.io/codebook/).",
19 | "variableMeasured": [
20 | {
21 | "name": "A1R",
22 | "description": "Am indifferent to the feelings of others.",
23 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
24 | "maxValue": 6,
25 | "minValue": 1,
26 | "@type": "PropertyValue"
27 | },
28 | {
29 | "name": "A2",
30 | "description": "Inquire about others' well-being.",
31 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
32 | "maxValue": 6,
33 | "minValue": 1,
34 | "@type": "PropertyValue"
35 | },
36 | {
37 | "name": "A3",
38 | "description": "Know how to comfort others.",
39 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
40 | "maxValue": 6,
41 | "minValue": 1,
42 | "@type": "PropertyValue"
43 | },
44 | {
45 | "name": "A4",
46 | "description": "Love children.",
47 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
48 | "maxValue": 6,
49 | "minValue": 1,
50 | "@type": "PropertyValue"
51 | },
52 | {
53 | "name": "A5",
54 | "description": "Make people feel at ease.",
55 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
56 | "maxValue": 6,
57 | "minValue": 1,
58 | "@type": "PropertyValue"
59 | },
60 | {
61 | "name": "C1",
62 | "description": "Am exacting in my work.",
63 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
64 | "maxValue": 6,
65 | "minValue": 1,
66 | "@type": "PropertyValue"
67 | },
68 | {
69 | "name": "C2",
70 | "description": "Continue until everything is perfect.",
71 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
72 | "maxValue": 6,
73 | "minValue": 1,
74 | "@type": "PropertyValue"
75 | },
76 | {
77 | "name": "C3",
78 | "description": "Do things according to a plan.",
79 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
80 | "maxValue": 6,
81 | "minValue": 1,
82 | "@type": "PropertyValue"
83 | },
84 | {
85 | "name": "C4R",
86 | "description": "Do things in a half-way manner.",
87 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
88 | "maxValue": 6,
89 | "minValue": 1,
90 | "@type": "PropertyValue"
91 | },
92 | {
93 | "name": "C5R",
94 | "description": "Waste my time.",
95 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
96 | "maxValue": 6,
97 | "minValue": 1,
98 | "@type": "PropertyValue"
99 | },
100 | {
101 | "name": "E1R",
102 | "description": "Don't talk a lot.",
103 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
104 | "maxValue": 6,
105 | "minValue": 1,
106 | "@type": "PropertyValue"
107 | },
108 | {
109 | "name": "E2R",
110 | "description": "Find it difficult to approach others.",
111 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
112 | "maxValue": 6,
113 | "minValue": 1,
114 | "@type": "PropertyValue"
115 | },
116 | {
117 | "name": "E3",
118 | "description": "Know how to captivate people.",
119 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
120 | "maxValue": 6,
121 | "minValue": 1,
122 | "@type": "PropertyValue"
123 | },
124 | {
125 | "name": "E4",
126 | "description": "Make friends easily.",
127 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
128 | "maxValue": 6,
129 | "minValue": 1,
130 | "@type": "PropertyValue"
131 | },
132 | {
133 | "name": "E5",
134 | "description": "Take charge.",
135 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
136 | "maxValue": 6,
137 | "minValue": 1,
138 | "@type": "PropertyValue"
139 | },
140 | {
141 | "name": "N1R",
142 | "description": "Get angry easily.",
143 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
144 | "maxValue": 6,
145 | "minValue": 1,
146 | "@type": "PropertyValue"
147 | },
148 | {
149 | "name": "N2R",
150 | "description": "Get irritated easily.",
151 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
152 | "maxValue": 6,
153 | "minValue": 1,
154 | "@type": "PropertyValue"
155 | },
156 | {
157 | "name": "N3R",
158 | "description": "Have frequent mood swings.",
159 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
160 | "maxValue": 6,
161 | "minValue": 1,
162 | "@type": "PropertyValue"
163 | },
164 | {
165 | "name": "N4R",
166 | "description": "Often feel blue.",
167 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
168 | "maxValue": 6,
169 | "minValue": 1,
170 | "@type": "PropertyValue"
171 | },
172 | {
173 | "name": "N5R",
174 | "description": "Panic easily.",
175 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
176 | "maxValue": 6,
177 | "minValue": 1,
178 | "@type": "PropertyValue"
179 | },
180 | {
181 | "name": "O1",
182 | "description": "Am full of ideas.",
183 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
184 | "maxValue": 6,
185 | "minValue": 1,
186 | "@type": "PropertyValue"
187 | },
188 | {
189 | "name": "O2R",
190 | "description": "Avoid difficult reading material.",
191 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
192 | "maxValue": 6,
193 | "minValue": 1,
194 | "@type": "PropertyValue"
195 | },
196 | {
197 | "name": "O3",
198 | "description": "Carry the conversation to a higher level.",
199 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
200 | "maxValue": 6,
201 | "minValue": 1,
202 | "@type": "PropertyValue"
203 | },
204 | {
205 | "name": "O4",
206 | "description": "Spend time reflecting on things.",
207 | "value": "1. Very Inaccurate,\n2. Moderately Inaccurate,\n3. Slightly Inaccurate,\n4. Slightly Accurate,\n5. Moderately Accurate,\n6. Very Accurate",
208 | "maxValue": 6,
209 | "minValue": 1,
210 | "@type": "PropertyValue"
211 | },
212 | {
213 | "name": "O5R",
214 | "description": "Will not probe deeply into a subject.",
215 | "value": "6. Very Inaccurate,\n5. Moderately Inaccurate,\n4. Slightly Inaccurate,\n3. Slightly Accurate,\n2. Moderately Accurate,\n1. Very Accurate",
216 | "maxValue": 6,
217 | "minValue": 1,
218 | "@type": "PropertyValue"
219 | },
220 | {
221 | "name": "gender",
222 | "description": "gender",
223 | "value": "1. male,\n2. female",
224 | "maxValue": 2,
225 | "minValue": 1,
226 | "@type": "PropertyValue"
227 | },
228 | {
229 | "name": "education",
230 | "description": "education",
231 | "value": "1. in high school,\n2. finished high school,\n3. some college,\n4. college graduate,\n5. graduate degree",
232 | "maxValue": 5,
233 | "minValue": 1,
234 | "@type": "PropertyValue"
235 | },
236 | {
237 | "name": "age",
238 | "description": "age",
239 | "@type": "PropertyValue"
240 | },
241 | {
242 | "name": "extraversion",
243 | "description": "5 E items aggregated by rowMeans",
244 | "@type": "PropertyValue"
245 | },
246 | {
247 | "name": "plasticity",
248 | "description": "10 items aggregated by rowMeans",
249 | "@type": "PropertyValue"
250 | },
251 | {
252 | "name": "A1",
253 | "description": "n/a",
254 | "@type": "PropertyValue"
255 | },
256 | {
257 | "name": "C4",
258 | "description": "n/a",
259 | "@type": "PropertyValue"
260 | },{
261 | "name": "C5",
262 | "description": "n/a",
263 | "@type": "PropertyValue"
264 | },{
265 | "name": "E1",
266 | "description": "n/a",
267 | "@type": "PropertyValue"
268 | },
269 | {
270 | "name": "E2",
271 | "description": "n/a",
272 | "@type": "PropertyValue"
273 | },
274 | {
275 | "name": "N1",
276 | "description": "n/a",
277 | "@type": "PropertyValue"
278 | },
279 | {
280 | "name": "N2",
281 | "description": "n/a",
282 | "@type": "PropertyValue"
283 | },
284 | {
285 | "name": "N3",
286 | "description": "n/a",
287 | "@type": "PropertyValue"
288 | },
289 | {
290 | "name": "N4",
291 | "description": "n/a",
292 | "@type": "PropertyValue"
293 | },
294 | {
295 | "name": "N5",
296 | "description": "n/a",
297 | "@type": "PropertyValue"
298 | },
299 | {
300 | "name": "O2",
301 | "description": "n/a",
302 | "@type": "PropertyValue"
303 | },
304 | {
305 | "name": "O5",
306 | "description": "n/a",
307 | "@type": "PropertyValue"
308 | }
309 | ]
310 | }
311 |
--------------------------------------------------------------------------------
/complex-metadata-dataset/README.md:
--------------------------------------------------------------------------------
1 | # README - Template project
2 |
3 | This is a README file. It is a [Markdown file](https://en.wikipedia.org/wiki/Markdown), which means it's a simple text document, but you can use simple syntax like you see here and many programs will display it more nicely - for instance, the words 'Markdown file' will appear as a link that goes to `https://en.wikipedia.org/wiki/Markdown`.
4 |
5 | This is the first document someone will read when they access your project! Write something informative in here, such as:
6 |
7 | * A quick summary of what the project is
8 |
9 | * A list of what files can be found in this folder and what they are
10 |
11 | * Instructions for how to cite this datset/project. You can also put your citation information in `dataset_description.JSON`!
12 |
--------------------------------------------------------------------------------
/complex-metadata-dataset/data/study-template_data.csv:
--------------------------------------------------------------------------------
1 | participant_id,length_in_smoots,milliseconds,team
2 | 001-bluebell,12.1,4023,Red
3 | 002-sandra,2.3,12909,Blue
4 | 003-stripey,21,12332,NA
5 | 004-heehaw,2000,3904,Red
6 |
--------------------------------------------------------------------------------
/complex-metadata-dataset/dataset_description.json:
--------------------------------------------------------------------------------
1 | {"@context":"http://schema.org/",
2 | "@type":"Dataset",
3 | "name":"Psych-DS Example Dataset",
4 | "description":"This is a 'skeleton' dataset for Psych-DS",
5 | "schemaVersion":"Psych-DS 0.1.0",
6 | "creator":[
7 | {"@type":"Person",
8 | "name":"Melissa Kline"},
9 | {"@type":"Person",
10 | "name":"Schmelissa Schmine",
11 | "birthDate":"1950-01-01"}],
12 | "citation":"Kline (2018). Not a real paper, No Journal, p. 1-24.",
13 | "sameAs": "https://doi.org/doi-goes-here",
14 | "temporalCoverage":"1950-01-01/2013-12-18",
15 | "keywords":["foo","bar"],
16 | "variableMeasured":[
17 | {"type": "PropertyValue",
18 | "unitText": "Participant",
19 | "name": "participant_id",
20 | "description": "Identity of each zebra. Provides a unique rowid in this dataset."
21 | },
22 | {"type": "PropertyValue",
23 | "unitText": "Smoots",
24 | "name": "length_in_smoots",
25 | "description": "The length of a zebra, in smoots",
26 | "minValue":"0"
27 | },
28 | {"type": "PropertyValue",
29 | "unitCode": "C26",
30 | "name": "milliseconds",
31 | "description": "Time the zebra started running before/after the starting gun goes off"
32 | },
33 | {"type": "PropertyValue",
34 | "unitText": null,
35 | "name": "team",
36 | "description": "Which team the zebra is on"
37 | }]
38 | }
39 |
--------------------------------------------------------------------------------
/example_files/dataset_description.json:
--------------------------------------------------------------------------------
1 | {
2 | "@type":"Dataset",
3 | "@context":"https://schema.org/",
4 | "name":"Example Dataset",
5 | "description":"This is an example",
6 | "variableMeasured":["a","b","c"]
7 | }
--------------------------------------------------------------------------------
/face-body/README.md:
--------------------------------------------------------------------------------
1 | # README - Faces and Bodies
2 |
3 | This project examines the social perception of bodies, in comparison to faces, focusing on the dimension structure from Oosterhof & Todorov (2008, PNAS).
4 |
5 | Data originally at https://osf.io/ztwce/
6 |
7 | ## Files
8 |
9 | * female_bodies.csv - Reward value data for female bodies
10 | * female_faces.csv - Reward value data for female faces
11 | * female_ratings.csv - Ratings on the 13 Oosterhof & Todorov social perception traits for female faces and bodies
12 | * female_stimuli.csv - Information about the female stimuli: name, sex, age, height(cm), weight(kg), BMI, chest(cm), waist(cm), hips(cm)
13 | * male_bodies.csv - Reward value data for male bodies
14 | * male_faces.csv - Reward value data for male faces
15 | * male_ratings.csv - Ratings on the 13 Oosterhof & Todorov social perception traits for male faces and bodies
16 | * male_stimuli.csv - Information about the male stimuli: name, sex, age, height(cm), weight(kg), BMI, chest(cm), waist(cm), hips(cm)
17 |
18 | ## Citation
19 |
20 | Morrison D, Wang H, Hahn AC, Jones BC, DeBruine LM (2017) Predicting the reward value of faces and bodies from social perception. PLoS ONE 12(9): e0185093. https://doi.org/10.1371/journal.pone.0185093
--------------------------------------------------------------------------------
/face-body/data/gender-female_type-bodies_data.csv:
--------------------------------------------------------------------------------
1 | user_id,sex,sexpref,age,alexandra,anastazie,anezka,bera,bohdana,brenda,carol,christianne,dagmar,debra,dobromila,dusana,edita,eleanora,elena,eugenia,evzenie,gabriela,gejza,ida,ingrid,irena,jindriska,jitka,karina,kordula,lea,linda,livia,lujza,margita,marika,matylda,miloslava,milota,miriama,peggy,perla,radmila,sarlota,saskie,sidonia,stela,tamara,ursula,viktoria,viola,vladena,zelmira,zlata
2 | 477033,female,,30.9,-18,-14,-17,-18,-18,-16,-16,-4,-15,-10,-18,-16,-18,-18,-14,-17,-10,-18,-17,-18,-14,-17,-16,-17,-17,-16,-18,-18,-17,-18,-17,-16,-18,-17,-17,-10,-16,-16,-6,-18,-16,-18,-18,-16,-18,-18,-18,-18,-18,-18
3 | 478230,male,women,25.8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,15,0,0,0,0,0,2,15,9,31,0,9,0,0,29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4 | 478291,female,women,23.5,-8,-5,10,-7,26,0,20,12,42,1,15,20,13,6,66,16,10,0,-11,0,27,66,5,-4,12,6,-18,-7,8,21,23,-1,-2,15,-7,17,10,15,-3,10,6,30,-9,37,17,60,0,15,55,0
5 | 479035,female,men,22.6,17,-9,-7,-9,14,-8,10,-9,38,24,2,-10,-11,32,-10,-13,-12,-10,12,-11,0,-11,-7,-8,-8,32,24,-10,21,19,0,31,25,-6,44,27,-6,67,19,-10,-8,-12,29,11,-12,28,31,48,-11,29
6 | 489018,male,men,26.8,-3,9,0,-12,-12,19,-9,-3,0,18,22,43,-1,7,0,-10,0,-6,-8,10,0,-4,0,-10,-5,-13,0,0,24,-4,11,0,42,-2,2,26,0,0,-6,-4,10,-10,-5,0,-4,-18,-2,35,-1,0
7 | 501705,female,either,21.3,21,-4,-4,39,27,11,21,30,43,28,21,-8,31,8,28,-7,11,13,30,43,21,-1,30,23,-8,-8,18,43,49,0,32,19,32,32,32,0,-5,37,37,26,1,35,14,29,-6,28,28,30,31,33
8 | 514003,male,women,30.1,-9,-11,2,-10,-10,-11,-10,-12,3,-10,-10,-12,-10,-12,3,4,-9,-10,-9,-12,-8,-8,-9,4,-8,-10,-9,-10,-10,2,-8,-11,-10,-9,-9,-4,-11,-9,5,1,-12,0,-11,-12,-10,-10,-12,-10,-10,-12
9 | 518109,female,men,20.1,-3,-9,31,-8,-8,-9,-11,-9,11,-4,0,-13,0,-9,0,52,1,-9,9,-1,-7,-12,15,16,-10,-11,-3,79,-10,30,-6,-7,-11,73,0,-11,-11,57,46,24,-9,-2,-9,3,-5,0,-6,13,-9,21
10 | 531458,male,women,19.8,0,-14,0,0,-14,-3,-9,-18,135,-12,-12,0,-13,-11,19,189,-15,2,-12,-6,51,-11,-15,9,-13,-12,-11,-6,-15,-9,-15,-22,-11,-16,-12,-12,-9,0,-16,-9,-7,8,-12,-14,-11,-13,0,0,-11,49
11 | 531826,male,women,27.2,5,-11,-11,-7,-6,-10,-11,-11,49,-11,-14,-13,-6,-1,44,50,9,-8,-11,17,-10,-13,-10,18,-15,-12,-11,-3,10,-5,-11,-12,-6,-6,-10,-14,-7,-13,29,1,-13,60,-12,-4,-11,-11,-11,0,-12,34
12 | 531966,female,men,20.7,3,-6,-4,-3,-8,-6,0,-10,12,3,-7,-9,0,-5,0,0,-4,-6,0,17,0,-3,-5,3,0,-3,5,0,-4,1,-10,0,0,0,6,6,-6,0,-3,-5,2,-2,2,0,-3,-3,0,3,0,0
13 | 531967,female,men,23.1,-10,6,-11,-12,-7,12,8,-6,7,13,-5,8,-3,-2,-7,-4,-6,-11,-2,9,-2,-10,-8,-5,-3,-11,-7,-12,6,-5,-9,-13,6,5,10,6,-11,11,-5,12,-9,-8,5,-6,-10,2,-8,10,-7,-10
14 | 531968,female,either,22.8,29,-10,12,15,19,0,0,-10,21,21,35,-9,13,6,3,10,0,0,16,13,24,5,22,5,4,-10,22,22,-9,33,9,22,-3,26,-9,12,-10,59,22,0,0,21,19,18,11,12,24,21,-2,37
15 | 531969,male,women,28.1,9,-15,-17,-16,-17,-15,-9,-16,-18,-16,-16,-14,-17,-16,-17,-16,-17,-16,-16,28,-18,-16,-16,-17,-17,-15,-16,-16,-17,-18,-14,-18,-16,-13,-16,-15,-17,-16,-15,-16,-18,-17,-16,-16,-16,-17,-15,6,-15,-16
16 | 531970,female,men,21.5,-3,1,-6,-2,-5,-2,7,8,-11,0,-3,-3,-10,-10,-9,-13,4,-10,-11,-4,8,-13,-7,-7,-9,6,5,2,-2,4,-4,-12,2,6,-3,4,-8,-3,-6,-7,-2,-15,8,-1,7,4,2,6,1,6
17 | 531973,female,men,23.7,-9,-9,-7,-10,-13,10,-5,-11,-13,-12,5,-13,-8,-6,-10,-10,-13,-10,-13,0,-12,-13,-10,-10,-8,-11,-6,0,-6,-11,1,-11,-11,-8,-12,-12,-12,5,0,-12,-11,-7,-8,-6,-12,-12,-6,-13,-12,9
18 | 531974,female,men,24.3,14,-4,-8,62,16,18,7,20,88,32,38,11,-9,19,-2,44,21,6,7,17,-8,13,20,40,11,12,-8,58,43,16,-9,-2,32,20,34,52,18,98,66,29,-5,-4,-6,53,-9,17,14,11,30,87
19 | 531975,female,women,34.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
20 | 531976,female,men,50.8,0,0,0,0,-5,-3,-4,-2,-1,-4,-1,-4,-2,-3,-3,-5,0,-5,0,0,1,0,-1,0,0,0,0,0,-3,2,0,6,0,0,-5,-3,0,-1,-2,0,-2,-6,2,0,-5,-2,0,0,0,0
21 | 531977,male,men,21.7,0,-10,-17,-9,-12,-16,-4,-13,-5,-15,-3,-17,9,-16,0,22,-16,-14,-9,0,0,-8,-11,1,-6,-7,-10,0,0,0,0,-15,-11,-14,0,0,-19,1,0,-7,-10,0,0,0,-10,0,0,-3,0,-14
22 | 531978,male,women,22.3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
23 | 531980,female,either,18.9,-7,-11,-10,-2,-6,-10,-13,-6,-12,-12,0,-10,-10,6,5,-9,4,-7,-6,-9,1,-10,-12,10,-10,-9,3,-10,35,-10,10,-4,3,22,-8,9,-6,26,-10,2,-8,-12,-10,15,12,23,8,-11,15,16
24 | 531981,male,women,28.3,-16,-8,85,53,23,-14,-10,-4,27,-4,-11,-5,-12,-5,32,24,-16,-9,4,27,-5,3,45,50,-6,-10,43,15,-12,73,-14,-9,-4,16,25,29,-9,-7,37,39,-12,46,-15,-6,-7,-4,-16,-15,25,26
25 | 531982,male,neither,21.4,-2,-4,-5,-4,-6,0,-5,-6,0,-3,0,-2,0,-1,-5,0,0,-1,-9,-9,-6,-1,-6,-6,-5,-6,-2,-4,0,0,-4,0,-7,0,0,-4,-5,-4,-5,-3,0,-1,-6,-1,-7,-5,-4,-6,-5,-5
26 | 531983,female,men,44.6,-3,-10,0,2,0,0,0,0,10,-5,0,-7,-9,0,0,8,6,-10,-10,16,0,4,7,4,0,-7,-8,0,-8,0,-6,-10,0,0,-7,-5,-8,0,0,-7,0,9,-7,0,0,0,-11,6,0,12
27 | 531984,male,,22.7,164,1,0,19,-12,0,8,0,-8,-1,1,-2,-10,1,-2,-2,-2,0,73,7,99,-2,-1,-4,4,-15,-1,-2,0,-1,0,0,233,0,2,3,6,6,-3,-12,81,-2,59,-2,0,0,0,-8,2,-2
28 | 531985,female,men,20.2,-14,-13,-14,-15,-11,-14,-14,-17,-13,-10,-13,-12,-13,-13,-13,0,-11,-14,-14,-15,-15,-13,-13,-15,-15,-16,-15,-12,-14,-10,-13,-15,-16,-14,-11,-14,-10,-13,-15,-12,-14,-15,-15,-15,-14,-14,-15,-15,-14,-14
29 | 531986,female,men,22.2,-14,-14,-15,-15,-15,-16,-15,-15,-14,-16,-15,-11,-13,-15,-14,-11,-10,-14,-14,-15,-15,-15,-10,-15,-11,-14,-10,-10,-16,-1,-15,-15,-14,-15,-15,-16,-15,-16,-15,-15,-12,-15,-14,-13,-15,-16,-13,-16,-15,-14
30 | 531987,female,men,20.3,2,-14,-14,-14,-13,-12,-14,-14,-14,6,-14,-14,-14,-12,-12,-12,-13,-15,-13,-14,-14,-12,-15,-13,-15,-13,-12,-15,18,-14,-14,-13,12,-14,-11,-14,-14,9,-13,-13,20,-12,-12,-14,-14,-14,-12,-9,-14,-14
31 | 531988,male,women,20.4,-9,20,7,-6,11,16,0,28,31,14,22,7,2,2,18,13,11,12,-5,7,2,4,10,6,14,2,12,-3,-4,4,-8,13,36,-6,-6,-9,-5,6,30,16,-3,24,-10,-7,0,26,-8,8,22,7
32 | 531989,female,men,22.2,0,-13,-12,-11,-11,0,-9,-3,0,-4,-10,-8,0,0,-4,0,-5,-13,-10,-8,-5,0,0,-11,-12,-12,0,-4,-5,-2,-5,-8,-14,0,-11,-5,-11,0,0,-8,0,0,2,0,-4,-9,0,-6,-10,0
33 | 531990,male,women,18.2,33,28,-14,32,-8,34,42,-9,-12,17,-12,-10,-9,30,-13,-11,24,-9,6,40,69,-14,-15,-14,-12,19,32,36,24,29,-10,31,-7,40,42,1,-12,-6,-11,34,-10,-10,-10,21,29,-9,32,39,9,54
34 | 531991,female,men,22.6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
35 | 531993,male,men,24.0,10,-11,-2,5,8,70,0,8,0,-19,-18,13,2,12,1,-14,-22,6,-9,-12,10,32,0,-15,-10,-16,-22,22,22,-14,-14,5,18,-2,21,11,-8,-12,-16,-15,-1,-20,30,4,0,-12,8,22,-9,-12
36 | 531995,female,neither,21.7,-13,-14,-15,-16,-15,-14,-11,-12,-14,-14,-14,-14,-15,-15,-14,-14,-14,-13,-14,-12,-14,-14,-13,-14,-9,-14,-14,-14,-14,-15,-15,-12,-14,-14,-15,-12,-14,-15,-14,-14,-15,-15,-14,-15,-15,-13,-15,-14,-13,-15
37 | 531996,female,men,24.9,-12,-12,-12,-13,-12,-10,-12,-12,-12,-13,-14,-12,-13,-10,-12,-12,-13,-12,-12,-12,-11,-13,-13,-11,-12,-13,-12,-11,-12,-12,-12,-12,-12,-12,-12,-11,-12,-12,-12,-13,-12,-13,-12,-12,-12,-12,-12,-13,-13,-14
38 | 531998,female,men,41.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
39 | 531999,male,women,29.5,-5,-9,-10,-12,-11,6,0,-6,-11,-13,-13,-14,-13,-12,-12,-12,-9,-9,-13,-7,-5,-12,-8,-11,-11,-11,2,-10,-9,-4,-10,-14,-13,-1,-8,-12,-10,-5,-7,-3,8,-13,-13,-12,-5,-14,-13,2,-13,6
40 | 532000,female,men,19.5,4,-7,-9,-8,-9,-8,6,-8,19,-10,30,-10,-10,26,-9,-8,16,-9,-11,13,6,-9,6,-4,-10,-11,-8,-9,26,41,-8,-8,-9,25,28,-6,-10,24,17,-10,-7,-11,-5,-6,-8,10,0,-9,-7,30
41 | 532182,female,women,21.1,0,-6,17,24,5,-2,5,0,0,-6,18,0,18,3,0,8,16,0,0,21,0,0,-7,8,-9,18,0,26,28,32,24,40,25,-7,-3,-9,-8,12,5,19,39,-3,12,32,-5,52,0,34,0,36
42 | 532183,female,men,43.4,-6,-9,-4,-7,-5,-8,-6,-7,-4,1,-6,-10,-3,-6,-6,-1,-3,-6,-6,-5,-6,-4,-4,-5,-4,-8,-7,-4,-4,-5,-6,-7,-6,-7,-6,-4,-5,-7,-5,-6,-4,-3,-2,-5,-8,-5,-2,-4,-4,-4
43 | 532184,female,men,52.2,-4,-2,-4,4,-4,-5,-4,-4,-4,-2,-4,-6,4,-4,-4,2,-2,-4,2,-4,-4,-2,-4,2,-4,-6,-4,-4,-6,2,-4,-4,-6,-2,-6,-5,-6,-4,4,-2,-2,-2,-6,-2,-4,-4,-4,-4,-4,4
44 | 532185,female,men,24.4,0,0,-4,0,1,-3,1,0,0,0,0,-1,0,0,0,0,0,7,-1,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,3,2,0,0,2,0,0,0,3,2,0,0,3,0,0,0,0
45 | 532192,female,men,21.0,-9,-4,-8,-6,-10,-8,-13,-9,-8,-3,-14,-10,-12,-10,-10,-11,-12,-8,-8,-10,-6,-10,-7,-11,-12,-14,-7,-10,-4,-6,-12,-8,-7,-11,0,-4,-12,-4,-10,-11,-10,-12,-8,-11,-12,-9,-9,-11,-10,-6
46 | 532213,male,women,19.9,-9,-10,-7,-10,-9,0,-11,-11,0,-1,-8,-12,-10,-8,0,0,-6,-12,0,-1,-11,-10,0,0,0,-8,-5,0,-5,0,-3,0,0,-9,-10,0,-10,0,-10,-8,-11,-9,-11,0,-2,-3,-11,0,0,0
47 | 532214,male,women,18.6,-11,-10,-10,-9,0,-9,-9,-20,-9,-7,-10,-10,-10,-10,0,-9,-9,-11,-11,-11,-11,-11,-11,-11,-12,-12,-12,-21,-17,-10,-11,-4,-12,-12,-8,-8,-8,-7,-8,-8,-10,0,-11,-11,-10,-12,-11,-11,-7,-8
48 | 532215,male,women,20.3,13,-1,-5,-12,-9,0,-7,13,13,34,0,-9,0,-14,-12,36,1,-13,-9,-13,8,-13,-10,-9,-14,-9,-8,-12,-4,-10,3,-10,26,-14,37,-6,15,10,-2,-11,-12,-13,6,-8,-8,-11,-14,12,-11,10
49 | 532216,male,women,21.9,0,0,-8,0,-8,-6,14,0,16,0,4,0,0,-3,0,0,1,0,0,6,15,0,0,0,0,0,0,-8,1,-1,0,-10,-12,-8,8,0,-10,0,3,0,0,0,0,0,0,0,0,0,0,22
50 | 532217,male,women,18.3,32,-13,-8,-11,-12,21,19,27,10,-10,-12,-10,37,-5,21,22,-8,-8,7,27,-10,-9,-9,-7,-7,-9,-10,8,0,11,-12,-10,32,-10,-4,26,-12,-11,22,-12,-12,31,-8,-9,-10,-3,-10,20,21,-9
51 | 532218,female,women,19.8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
52 | 532219,female,men,19.7,-10,-10,0,-6,-10,-11,-11,0,0,-8,10,-11,-11,-11,-7,-11,-10,0,-7,-13,4,-12,-11,-7,-7,-10,-10,-11,0,-8,7,-7,-10,0,3,-10,0,-7,31,2,-6,-9,-8,0,-6,2,-11,-9,-12,11
53 | 532220,female,men,36.9,0,-10,-4,-9,-11,0,0,0,-8,0,0,-9,0,-11,1,-9,-10,-10,-10,-10,6,-11,0,-11,-7,-10,0,-3,6,-11,0,-10,-7,0,-7,4,-6,-6,-6,-6,-12,-11,-11,-6,-11,0,0,0,-10,-3
54 | 532221,female,men,25.0,-11,-11,63,-9,-10,-10,-11,-14,57,87,-16,-16,-15,-12,137,32,16,-5,-14,-14,-12,-15,59,-13,-13,-15,71,-12,-15,-16,-15,-15,-16,53,-14,-12,-15,25,-13,-16,-15,40,-16,-15,-15,-16,-17,-14,-17,36
55 | 532222,male,women,21.7,0,-15,-18,-1,-17,21,13,-9,12,0,8,-13,-13,0,-14,-11,30,-15,-2,0,-8,-14,-12,0,-16,62,-16,18,0,0,-15,-11,-8,0,51,0,-15,34,111,0,-15,-11,-14,3,-5,-1,-2,25,23,111
56 | 532243,male,women,19.7,14,2,0,4,-2,14,3,-2,0,13,4,-4,-8,0,-6,0,0,-1,0,-6,4,-3,-4,-1,-2,0,0,0,9,11,3,0,0,2,0,18,-4,3,1,0,10,-5,-4,-4,3,-4,0,0,4,2
57 | 532244,female,men,18.5,6,-11,-11,-11,-10,-1,-11,-10,-11,7,9,-9,18,-11,-7,4,-11,-7,9,-10,14,-10,7,-10,-7,12,11,18,16,15,2,0,-10,-10,5,-10,-11,12,11,-8,-8,-9,-9,-6,-10,14,-12,-6,-8,24
58 | 532245,female,either,18.1,8,7,9,6,-5,-5,5,16,-1,10,4,7,5,-3,4,26,4,-6,14,4,7,-6,0,7,8,16,1,13,14,23,2,8,9,6,17,3,6,0,15,13,1,22,-5,7,-6,5,1,4,4,3
59 | 532246,male,women,19.2,3,13,46,87,25,71,-11,17,-5,47,-6,83,-7,110,-6,-14,8,66,36,59,-9,-8,12,-10,29,45,40,9,124,25,6,32,90,68,-10,121,-11,10,16,6,28,9,40,-10,66,12,69,24,-5,18
60 | 532247,male,women,18.2,14,-13,-11,-11,-13,-13,-12,-14,-14,75,-12,-12,-11,-10,-12,-13,-13,-14,-14,-9,-11,-13,13,-12,-14,-15,-12,-14,-12,13,-13,-11,-15,-13,-11,-14,-14,-14,45,-11,-14,1,-14,-10,-13,35,-14,3,-13,56
61 | 532249,male,women,25.3,-3,-15,-14,-4,-13,0,-12,-15,3,-11,-11,-12,-5,-9,0,-7,-14,-14,-2,12,-8,-15,-14,13,-10,-14,-1,0,-7,-3,-15,-14,-9,-10,-12,0,-15,-7,14,-4,-15,-10,-14,0,-15,0,0,2,-14,1
62 | 532250,female,men,19.0,9,-4,4,2,-3,-5,0,-4,11,1,6,-4,3,5,-2,2,5,-3,-2,5,5,-4,9,2,-6,3,2,8,-3,7,6,1,-3,5,-3,-2,-3,9,4,9,-2,-3,-1,11,-4,8,5,3,-3,8
63 | 532251,female,men,20.9,1,-11,-4,9,-4,-8,-11,-5,12,-4,9,-8,-6,-10,-3,-2,-6,-12,2,-1,-6,-8,-5,13,-9,-6,-7,-2,-9,-4,-4,-9,-11,-5,8,23,-3,32,23,-4,-8,5,-9,-1,-10,15,3,9,0,19
64 | 532252,male,women,23.2,-9,0,-19,0,-6,3,0,-14,-10,-8,2,-2,-2,0,4,0,-7,-10,-1,-1,1,-16,0,0,-10,-1,-18,-13,0,0,-7,-2,-13,-12,-1,-16,-15,1,-1,0,0,0,0,0,0,-6,0,0,0,-8
65 | 532253,female,either,28.8,-10,-8,-11,-12,-11,-10,-8,-8,-9,-10,-14,-13,-14,-7,-12,-11,-9,-11,-14,-8,-11,-11,-11,-15,-16,-9,-11,-15,-11,-4,-13,-15,-14,-15,-11,-9,-15,-12,-12,-6,-10,-10,-10,-12,-13,-11,-10,-11,-15,-7
66 | 532254,female,either,19.6,-6,-5,-3,3,-6,-7,0,-5,5,-6,2,-5,-13,0,2,0,-5,-8,-10,-11,-11,-8,0,0,-11,-8,-10,-6,0,-12,-12,-11,-9,0,-2,-10,-11,-4,6,-8,-7,3,0,0,-12,0,-5,-6,-9,6
67 | 532255,male,women,21.5,20,-15,-12,-10,-14,-12,21,-11,24,7,-13,-9,8,7,16,-8,-8,-11,-10,24,-10,-11,17,22,-15,-11,-7,-12,5,23,-13,-10,-10,-6,-1,14,-13,19,19,26,-15,-9,-12,9,17,27,-12,20,1,17
68 | 532256,female,neither,18.6,15,-6,2,7,3,9,5,7,8,6,14,1,10,0,-3,0,8,-2,-4,10,8,3,11,12,-8,-1,-2,10,12,7,-2,11,-4,6,6,2,1,11,8,14,10,8,15,4,0,8,-2,-2,0,8
69 | 532257,female,men,19.3,0,-10,-12,-2,-14,0,-5,-9,-10,-11,-13,-12,-8,-13,0,-10,-9,-10,-7,-13,-10,-18,-11,-4,-10,-13,-9,-3,-12,-16,-3,-14,-6,-3,-6,-16,-9,-14,0,-11,-10,-12,-9,-7,-10,-7,-9,-15,-4,-6
70 | 532492,male,men,25.1,0,-8,-10,15,-9,-4,24,11,-9,14,11,22,32,25,-6,-4,-8,22,14,10,0,-9,18,-6,-7,0,18,19,-6,25,-5,-9,-6,16,9,28,-8,-6,-4,15,15,-10,21,-4,-7,29,-9,-6,7,21
71 | 532493,male,women,18.5,-4,-11,6,26,4,-9,-16,-14,32,5,-11,-11,1,9,-3,-5,-6,-7,11,-9,-16,-8,13,38,4,-8,-4,6,-4,22,-3,-7,-7,1,-6,-8,-14,10,34,9,-6,-6,-7,62,-6,57,-6,4,-5,41
72 | 532495,male,women,19.4,-6,-14,-9,-5,-14,-15,-9,-12,-9,-11,-6,-14,0,-12,0,-5,-13,-11,-2,0,-8,-2,4,8,-3,-6,1,0,0,0,-12,-10,-11,0,-6,0,-13,-2,54,0,-12,5,-12,0,-14,14,0,0,0,70
73 | 532496,male,,18.9,44,-12,-13,32,54,10,-10,-12,30,24,-9,-7,30,30,-11,4,-5,-10,29,42,-12,-12,7,66,-12,-11,-12,42,2,38,0,-9,-4,43,-12,-10,-13,17,34,37,-11,27,18,45,-13,35,-10,34,34,51
74 | 532497,male,women,21.8,4,14,14,5,11,12,13,-2,17,14,13,18,11,4,17,17,10,8,11,4,13,15,22,13,14,20,18,3,2,9,19,16,23,11,11,14,14,3,8,11,12,4,15,12,14,13,15,7,12,26
75 | 532500,male,women,37.1,0,-10,-13,-10,-10,-12,-2,-11,-12,6,-7,-12,-10,0,0,-12,-6,-12,-11,-12,-13,-13,0,-12,-13,0,-14,0,0,-1,0,-11,-6,-4,0,-11,-13,-13,-12,-9,-11,-14,-9,-12,-13,-11,-10,0,-10,-13
76 | 532501,male,either,19.7,2,-2,-1,-1,-1,-2,-2,-2,4,1,4,0,-2,-1,4,2,-2,-2,-2,-2,2,-2,2,-2,2,2,0,-1,2,2,2,-2,-1,-2,1,-2,-2,2,1,-2,-2,2,-1,-2,-2,2,-2,3,1,4
77 | 532503,male,women,18.8,-5,-4,0,-7,0,1,17,-7,-2,4,-4,16,-7,19,-4,-6,0,0,-6,-6,20,-1,7,-7,-6,-4,-2,0,23,2,18,-8,8,0,-4,-5,-5,0,5,-6,-7,-2,-5,-5,-7,-2,-5,19,9,19
78 | 532925,male,women,29.1,0,0,10,10,8,0,0,5,15,0,0,0,0,0,0,14,0,0,0,0,0,11,0,30,10,0,12,0,0,0,7,10,0,11,0,4,0,0,0,0,0,27,0,8,0,0,0,0,0,1
79 | 532926,male,men,20.2,-6,-8,-8,-6,-5,0,-11,-4,0,0,-9,-6,-8,-4,-6,-9,-2,-2,-2,-6,-6,-10,-8,-11,-12,-6,-4,-4,4,-7,-6,-8,14,-10,21,8,-2,-10,0,-12,8,-6,-5,-10,4,-6,0,21,-2,22
80 | 532928,male,men,21.2,0,0,0,0,1,2,-2,0,0,0,0,2,0,0,-2,0,0,-2,0,0,-2,-2,0,0,0,-4,0,1,1,0,2,0,0,0,0,0,0,0,-2,-3,0,-4,0,0,-1,-3,1,0,0,0
81 | 532930,female,men,18.5,-10,21,0,-7,-9,-9,16,-10,23,31,27,-11,18,-6,-10,-7,-10,-10,17,-9,-10,-11,29,22,13,24,23,25,-8,11,-5,-9,-10,-9,-7,-9,-2,23,23,-7,-8,-8,-6,-6,-6,-7,17,23,-5,20
82 | 532931,male,men,23.8,0,0,0,-2,0,0,-2,0,2,2,-2,-6,-2,0,2,0,-4,0,2,0,0,-6,0,0,0,0,0,-2,0,2,-4,-6,0,3,0,0,0,0,0,2,0,-4,-5,-4,2,0,0,0,0,-4
83 | 533255,male,women,26.5,-1,-5,-8,0,-9,-11,8,-5,-6,25,-2,-9,-2,-3,-12,-12,1,-9,-10,0,35,-10,-2,-10,-6,0,0,9,-5,-1,-8,-8,-2,-5,-7,0,-9,-6,-7,-2,-2,-10,-8,-6,-8,-1,-8,0,-4,0
84 |
--------------------------------------------------------------------------------
/face-body/data/gender-female_type-faces_data.csv:
--------------------------------------------------------------------------------
1 | user_id,sex,sexpref,age,alexandra,anastazie,anezka,bera,bohdana,brenda,carol,christianne,dagmar,debra,dobromila,dusana,edita,eleanora,elena,eugenia,evzenie,gabriela,gejza,ida,ingrid,irena,jindriska,jitka,karina,kordula,lea,linda,livia,lujza,margita,marika,matylda,miloslava,milota,miriama,peggy,perla,radmila,sarlota,saskie,sidonia,stela,tamara,ursula,viktoria,viola,vladena,zelmira,zlata
2 | 477033,female,,30.9,-18,-19,-18,-16,-20,-18,-19,-18,-18,-18,-2,0,-18,-14,-18,-18,0,-15,-16,-12,-19,-18,-18,-10,-18,-8,-19,-9,-18,-18,-1,-16,-19,-17,-18,-18,-18,-18,-18,-18,-16,-19,-18,-18,-18,-17,-19,-18,-13,-18
3 | 478230,male,women,25.8,0,-11,0,26,0,-4,0,-10,0,0,-9,-8,-6,-3,-6,0,-8,0,-14,0,0,-10,0,-11,-3,0,-13,-14,0,-16,0,0,-13,-10,0,0,-9,0,0,-10,-3,-16,-12,-12,-11,0,0,0,0,0
4 | 478291,female,women,23.5,-11,-14,0,0,7,-16,0,-15,0,0,0,11,-9,6,-13,-14,21,0,0,0,-11,3,-14,-16,-12,0,-12,0,-11,-12,-12,-12,0,-13,-15,-15,-16,-15,-14,0,0,-14,-12,0,-15,-11,-10,-15,-8,-14
5 | 479035,female,men,22.6,-13,-12,-10,-7,0,0,-9,-14,27,-14,9,-11,-14,-13,-10,-7,-10,17,-2,-13,-11,29,-12,0,3,22,41,-12,-12,-9,30,38,-11,-12,0,19,20,-2,-10,3,-11,-11,-11,-14,-14,21,-13,-13,17,10
6 | 489018,male,men,26.8,-11,-9,-12,-11,0,-10,-11,-12,-3,-10,-6,-12,-6,-12,-9,-13,-8,-11,-5,-10,-7,-12,0,-10,-9,-11,-12,-10,-7,-10,-10,-11,-10,-10,-12,-5,-9,-6,-8,-3,-11,-11,-8,0,-8,-13,-11,-9,-11,11
7 | 501705,female,either,21.3,-12,-8,-5,53,31,-12,-10,-8,-10,-11,-4,-4,-12,0,-10,-10,-12,-12,-11,60,-10,-10,-5,-9,61,0,-10,-3,-10,-6,-9,-6,-10,-9,-7,50,40,-3,-12,-8,-10,-12,32,-11,40,35,30,47,103,-7
8 | 514003,male,women,30.1,-9,4,-10,-10,3,-12,-6,-9,-13,-11,-13,-13,-10,-12,-11,-10,-8,-12,-11,-11,-10,-11,-11,4,-9,-10,-15,-10,-12,-13,4,3,-11,-10,-13,6,-10,-9,-10,-9,-12,-11,-9,-11,-10,-12,-11,-11,-10,-9
9 | 518109,female,men,20.1,7,-5,-2,-10,19,4,2,-6,-3,-7,-3,-13,-5,-2,-2,12,-1,14,-7,16,42,10,13,-7,23,-2,15,16,-10,-8,25,-12,-3,-7,-6,-8,3,6,4,10,-12,0,-2,2,-6,-2,35,1,12,4
10 | 531458,male,women,19.8,-17,0,-13,179,-11,-17,-17,-15,-5,-17,-19,-13,-18,-8,-15,0,-13,-18,0,-16,-5,-22,-13,-19,-18,-15,-19,-9,-15,-18,-17,0,-4,-9,-12,-19,35,-19,0,-14,-9,-13,0,-21,-11,-20,-12,-23,-19,0
11 | 531826,male,women,27.2,-7,-6,4,16,0,-10,-7,-1,12,-4,-6,-4,-8,-7,0,0,-5,-10,-7,0,-3,-4,-7,-8,-3,-10,-4,-7,-8,-6,7,-5,-14,-7,-5,-7,11,0,-12,-9,0,-8,-9,-6,50,-8,-10,-4,21,-7
12 | 531966,female,men,20.7,-9,0,15,9,28,-1,-1,0,1,-8,23,4,0,-6,0,-5,-3,0,-3,-6,0,7,11,-2,-2,1,8,-10,6,-4,18,27,4,-5,6,17,6,-7,10,21,-3,-4,0,7,-2,-3,0,-5,-2,-4
13 | 531967,female,men,23.1,-2,14,6,12,24,-10,-7,-3,-11,11,11,4,11,11,-10,-3,-11,1,12,-11,-6,-1,22,10,4,17,-11,-3,-12,13,15,19,23,-9,10,6,8,14,8,20,17,-9,-11,-6,-9,-9,15,-9,14,-11
14 | 531968,female,either,22.8,-8,-8,12,-3,29,41,0,4,6,0,4,0,-5,34,8,63,2,2,14,43,4,41,75,0,17,32,22,12,13,-9,-8,13,0,6,6,37,26,48,9,0,-1,0,14,24,0,41,43,13,24,-8
15 | 531969,male,women,28.1,-17,-20,-15,-15,-20,-18,-20,-18,-11,-16,-18,-19,-19,-19,-18,-19,-18,-18,-19,-19,-18,-17,-18,-19,48,-17,-20,-19,-20,-18,-18,-18,-19,-19,-17,-19,-19,-20,-19,-20,-19,-16,-18,-20,-20,-16,-17,-18,-20,-18
16 | 531970,female,men,21.5,-5,-7,-12,-5,8,-9,0,-10,-9,-10,4,-4,-7,-7,-7,-5,-10,4,-6,-8,-6,-6,-3,2,2,-10,-3,-9,-9,-2,6,-8,6,-9,-7,4,8,-7,-5,-4,-6,-7,2,5,7,15,2,5,-10,-3
17 | 531973,female,men,23.7,-12,-14,-14,-17,-13,-17,-13,-12,-14,-11,-19,-14,-13,-13,-12,-13,-14,-16,-18,-14,-15,-13,-19,-9,-18,-14,-15,-7,-12,-17,-12,-7,0,-12,-10,-20,-11,-15,-16,-20,-14,-19,-11,-20,-11,-16,-15,-20,-13,-18
18 | 531974,female,men,24.3,-10,47,-10,4,6,-11,0,-4,50,-10,12,36,-7,8,-3,-8,6,49,-6,13,-10,-9,-10,23,-8,22,30,-11,-7,-6,55,-6,42,-10,6,-10,42,15,4,-7,21,-11,-3,18,-6,27,-6,-8,-8,30
19 | 531975,female,women,34.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
20 | 531976,female,men,50.8,-3,-6,-1,-2,-1,-6,-6,-2,-1,6,11,-6,10,-6,-5,-3,-2,1,-2,5,0,7,10,12,3,0,-5,-5,-2,-1,2,13,-7,-6,10,4,-1,-1,-6,7,8,-4,-1,5,-4,-2,-1,-3,-5,4
21 | 531977,male,men,21.7,-13,0,-14,-16,-5,-13,0,-4,7,-6,0,-4,-4,-2,0,-18,-11,0,-7,-15,-18,6,-17,-5,2,-8,-2,-9,0,0,0,1,0,-8,-3,6,0,21,-18,0,-2,0,-2,0,4,-10,-9,-3,-9,0
22 | 531978,male,women,22.3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
23 | 531980,female,either,18.9,-10,4,-13,-1,13,-11,-5,-10,-11,-10,-10,-9,-8,-12,-12,-11,-12,-9,-11,-11,-12,-9,3,-9,-10,-11,-12,-6,-10,-8,10,-7,-7,-10,-8,4,11,-11,-10,3,-11,-6,-10,-12,-9,-4,1,-7,-10,2
24 | 531981,male,women,28.3,39,1,0,67,40,14,-5,30,60,48,24,42,17,16,1,2,-12,50,1,6,-8,18,44,46,13,18,0,14,76,3,0,18,-6,11,1,28,18,52,25,25,82,42,-4,2,18,48,40,14,2,54
25 | 531982,male,neither,21.4,-3,-7,-4,0,-9,-5,0,-7,-9,-6,14,-1,-2,-10,-7,-12,-3,-5,-2,0,-13,0,-7,-5,-6,-4,0,-9,0,-3,-7,0,-3,-4,-10,-10,-6,0,-6,-4,-6,-7,-8,-3,-4,-4,0,-3,-3,0
26 | 531983,female,men,44.6,6,0,-2,0,0,-12,-7,-7,11,-9,-9,-6,-8,0,-10,-8,-5,-7,-9,-8,15,-4,-6,0,8,-4,-5,-5,-8,0,13,-9,0,-10,-4,-6,0,0,-5,7,-9,-8,-2,0,-5,-5,-3,-8,0,3
27 | 531984,male,,22.7,-16,-19,-18,-18,-18,-17,-17,-18,-17,-17,-17,-19,-15,-19,-12,-17,-20,-9,0,-19,-15,-16,8,-18,-18,-14,-18,-15,-19,-16,-18,-11,-16,-16,21,-17,-6,-17,-16,-9,0,-11,-14,-16,-11,-9,-16,-15,-18,49
28 | 531985,female,men,20.2,-12,-15,-12,-13,-14,-11,-16,-12,-13,-13,-16,-11,-14,-14,-14,-16,-14,-12,-16,-13,-13,-15,-15,-13,-14,-13,-14,-10,-13,-14,-11,-10,-11,-15,-16,-13,-13,-12,-15,-10,-15,-15,-16,-15,-15,-13,-13,-10,-12,-15
29 | 531986,female,men,22.2,-15,-14,-12,-8,-17,-15,-15,-15,-15,-15,-15,-14,-15,-16,-17,-15,-14,-14,-14,-16,-13,-16,-9,-15,-16,-11,-17,-16,-17,-15,-16,-14,-16,-15,-16,-16,-16,-12,-16,-16,-3,-15,-17,-14,-16,-12,-16,-16,-15,-14
30 | 531987,female,men,20.3,-14,-12,-14,-16,-14,-14,-11,-13,-16,-16,-14,-18,-14,-15,-15,-15,-14,-15,-16,-15,-15,-15,-14,-14,-15,-15,-16,-15,-14,-15,-14,-14,-13,-11,-9,-14,-16,-17,-14,-15,-16,-15,-15,-16,-17,-13,-14,-15,-14,-16
31 | 531988,male,women,20.4,-8,4,-7,6,-7,0,5,-6,-5,-7,-9,-4,-8,-10,3,-2,1,13,-10,6,-9,0,-8,19,2,4,-7,2,0,2,-7,-7,-7,-9,5,7,6,-4,-8,-4,13,5,-9,-8,2,-5,0,-6,-9,-6
32 | 531989,female,men,22.2,-14,-15,-16,30,-14,-17,-16,-14,-18,-11,-14,-14,-15,-16,-14,-16,-16,-14,-15,-13,-15,-12,-13,-14,-18,16,-15,-17,-14,14,-13,-17,18,-16,-16,-15,18,-15,-17,-14,-16,-16,-12,-17,-13,-14,-16,-13,2,30
33 | 531990,male,women,18.2,-13,-12,-13,-14,-8,-11,13,23,21,-13,-5,11,-11,-13,-12,-11,-13,-9,-13,-10,16,-10,32,-13,-8,-10,-4,27,-14,-11,-6,21,-16,-10,17,42,46,36,-10,13,-13,-7,-11,-12,11,40,23,-13,-14,-9
34 | 531991,female,men,22.6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
35 | 531993,male,men,24.0,-15,3,-16,0,-5,-16,-20,-11,0,-13,-16,-12,0,6,-12,-19,-15,-17,0,0,-17,0,10,-18,-17,2,-15,-17,-13,-10,-14,-12,-17,-14,17,5,6,-16,-17,5,6,-13,-16,-17,-15,-15,-10,4,-12,-13
36 | 531995,female,neither,21.7,-15,-16,-14,-16,-17,-16,-15,-16,-14,-14,-16,-15,-15,-14,-15,-15,-16,-15,-16,-16,-16,-16,-15,-16,-16,-13,-16,-16,-15,-15,-14,-12,-14,-18,-16,-15,-15,-16,-14,-14,-15,-15,-15,-17,-15,-14,-15,-16,-16,-13
37 | 531996,female,men,24.9,-13,-13,-13,-11,-12,-13,-12,-13,-12,-10,-10,-13,-13,-12,-12,-12,-12,-13,-12,-12,-11,-11,-10,-12,-12,-12,-13,-12,-12,-12,-4,-12,-13,-11,-12,-10,-13,-10,-13,-12,-13,-11,-11,-12,-12,-12,-8,-13,-12,-12
38 | 531998,female,men,41.0,62,65,70,70,62,52,69,75,60,46,60,66,62,63,60,60,60,40,58,60,36,66,60,44,56,68,74,73,62,45,61,59,59,75,63,53,62,65,33,49,46,73,60,68,46,46,60,74,14,61
39 | 531999,male,women,29.5,-14,-12,-3,5,-2,-10,-12,-13,-10,-6,-13,-13,-9,-12,-9,-16,-13,-13,-16,-8,-3,-10,0,-4,-4,0,-12,-18,-20,-9,-13,-15,-11,-12,-4,-20,6,-5,-15,0,-12,-17,-15,-18,-17,-2,2,-3,-16,-11
40 | 532000,female,men,19.5,-10,47,-6,36,13,-9,-10,-9,0,-5,-8,-9,-7,-6,-6,-8,-5,-9,-9,-10,-7,-4,-8,-9,-9,-6,-6,-9,-10,-7,18,23,-8,-9,28,-5,0,-7,-2,-8,-7,-8,-10,-10,-8,-11,-8,-9,-7,-6
41 | 532182,female,women,21.1,-6,32,0,-1,36,0,-7,0,0,0,1,-4,-4,-10,-10,-8,-12,0,14,-2,-8,30,41,0,40,0,0,20,0,1,0,0,0,0,0,0,42,-7,-6,0,38,0,0,-8,0,0,0,0,32,-10
42 | 532183,female,men,43.4,-3,-4,-7,8,5,-1,-9,-4,-2,-7,-4,-6,-2,5,-8,-4,-5,-4,-4,-5,2,-6,6,6,5,-6,-6,-7,-4,-4,-3,4,-1,-5,3,-2,-4,-4,-8,-4,2,-6,2,-3,-4,2,-6,-4,-6,1
43 | 532184,female,men,52.2,-2,2,-2,2,2,2,-2,-2,-1,-2,-2,-2,-2,-2,-2,2,-2,-3,-2,-2,2,-2,2,2,2,2,-2,-2,-2,-2,2,-2,-2,2,2,-2,2,2,-2,2,2,-2,-2,-2,-2,-2,2,-2,2,2
44 | 532185,female,men,24.4,-2,0,-2,-1,-3,0,-2,-2,-2,-1,-2,-2,-2,-2,-2,-1,-1,-2,-2,-2,-1,-1,-1,-2,-1,-1,0,-2,-2,-2,-2,0,-2,-2,-2,-2,-3,-1,-3,-1,-2,-2,0,0,-2,-1,-1,-1,0,0
45 | 532192,female,men,21.0,-9,-8,0,-11,0,-10,0,-11,0,-11,-5,0,-11,-10,-12,0,-13,0,-11,-9,-11,-9,0,-12,0,-11,-11,0,-13,-10,0,-9,-11,-12,0,0,0,0,0,-11,-12,-9,-10,0,-11,-10,0,-10,-10,-12
46 | 532213,male,women,19.9,-9,-12,-12,0,-10,-11,-12,-10,-10,-11,-14,-13,-11,-14,-13,-13,-12,-12,-12,-14,-12,-2,-8,-12,-14,-13,-14,-12,-13,-13,3,-14,-8,-11,-4,-13,-5,-9,-13,-14,0,-12,-8,-12,0,-12,-12,-12,-10,-13
47 | 532214,male,women,18.6,-14,-10,-12,-6,-12,-10,-10,-12,-5,-11,-9,-7,-10,-14,-11,-8,-10,-11,-4,-6,-13,-10,-12,0,-12,-14,-13,-2,-10,-13,-10,-12,-12,-9,-7,-10,-12,-11,-10,-11,-11,-11,-10,-10,-11,0,0,-11,-10,-11
48 | 532215,male,women,20.3,-11,4,-6,7,0,-11,-1,-14,-4,-12,-2,-8,-6,7,-12,-13,-14,-5,-10,-9,-10,-17,-11,-10,-16,-8,-7,-10,-8,-14,-10,-12,-8,-12,-8,5,3,-10,-12,-6,-12,-12,-12,-7,-6,-12,-3,0,-10,-8
49 | 532216,male,women,21.9,-13,0,-14,-11,-14,-16,0,-14,-14,-12,-3,-12,-14,-16,-13,0,-12,-8,0,-15,-13,-15,-14,0,-13,-10,-16,-17,-14,0,-12,-15,-14,-15,-5,-16,-11,-12,-13,-15,-11,-16,-17,-13,-12,-2,-17,-7,-14,-15
50 | 532217,male,women,18.3,-10,17,-9,-9,-9,12,-10,-10,-1,-8,-8,30,3,-8,-7,-6,-10,-9,2,0,-6,-7,-9,-9,-7,-8,-11,-8,-8,-8,25,-9,-7,-10,-8,23,24,-7,-10,-8,-3,-7,13,-10,16,-10,-9,-10,-10,24
51 | 532218,female,women,19.8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
52 | 532219,female,men,19.7,-10,-7,0,17,-7,-10,-12,-2,-2,-9,0,-11,-11,-8,-9,9,-12,0,-10,-10,4,-12,-13,2,-10,-10,7,-9,-8,-8,24,-4,-11,3,-11,12,2,4,6,0,-9,-8,-12,-11,-10,-11,-10,-11,15,5
53 | 532220,female,men,36.9,-10,0,-11,0,0,2,-13,-12,0,-11,-6,-11,-11,-12,0,0,-13,0,-8,-9,0,-9,-7,0,0,-12,-9,-9,0,-11,0,-11,0,0,-2,-9,0,5,-3,0,0,-11,-12,-8,0,-8,-9,0,-12,0
54 | 532221,female,men,25.0,-14,59,-18,-14,-18,-15,-17,-17,-13,-18,-16,-16,-18,-13,-15,-17,-17,-17,-14,-17,-17,-16,24,15,-16,45,-14,-18,-18,-8,-16,-11,-16,-16,81,-15,-18,-18,-16,-15,-3,-18,-16,-16,-17,-17,-15,-13,-14,-16
55 | 532222,male,women,21.7,-14,-9,-13,-9,-9,-10,-12,-12,-17,-15,-12,-19,-10,-14,-17,-8,-10,-10,-12,-14,-10,-14,-8,-6,-14,-11,-8,-17,-10,-18,5,0,-13,-16,0,-9,-2,-10,-11,-4,-13,-11,-17,-15,-12,-6,-12,-13,-15,-15
56 | 532243,male,women,19.7,-4,0,-5,10,0,-3,-3,0,6,-2,-3,-8,0,-5,-8,-2,-6,-2,0,-6,0,-3,-5,16,0,-4,0,-6,-2,-5,4,-2,0,-5,0,0,6,-2,0,0,-2,-6,0,-5,-4,0,0,-5,-2,7
57 | 532244,female,men,18.5,-9,-8,-9,19,16,-7,-10,-8,-8,-11,-9,-8,11,-10,-9,-4,-11,-11,20,-12,-10,-11,32,16,-8,26,-8,-10,-9,-8,0,-11,-11,26,-7,15,-9,1,22,17,-10,-9,-11,-8,-13,-10,-7,-9,-6,21
58 | 532245,female,either,18.1,-10,11,-10,4,21,1,-6,6,15,-2,6,-9,-4,4,5,1,-10,11,5,4,15,0,10,19,0,7,8,9,5,0,21,19,13,-4,15,7,4,25,0,7,6,-3,-6,-2,4,8,9,6,32,9
59 | 532246,male,women,19.2,-3,-4,-14,-11,4,-14,-10,-6,7,-9,-14,-13,8,0,-9,-5,-12,-10,-16,-13,-14,9,10,-13,-8,-13,-12,-9,-12,-11,13,-14,-13,-5,23,8,9,2,1,9,-8,-12,-16,-4,-10,-5,6,1,2,-12
60 | 532247,male,women,18.2,-13,-15,-11,-13,-10,-13,-15,-14,-14,-14,-14,-13,-10,-13,-14,-14,-13,-15,-14,-10,-10,-13,18,-14,-8,4,-6,-10,-10,-11,27,30,-8,-14,-9,-14,-14,-7,-13,-14,-14,-14,-14,-14,-11,-14,-14,-14,-12,-14
61 | 532249,male,women,25.3,-7,-3,-14,-14,-4,-11,-13,-12,-3,-5,-9,-10,-14,-12,-14,-14,-13,-7,-7,-12,-4,-10,-3,-3,-9,-14,-7,-11,-13,-10,-1,-11,-12,-6,-5,-4,-5,-5,-4,-5,-12,-13,-10,-10,-8,-6,-13,-14,-12,-3
62 | 532250,female,men,19.0,-6,-4,-2,16,10,-1,-1,-1,0,-5,1,-6,-1,-5,-2,0,-1,3,4,-2,-4,-5,4,-4,-5,5,5,-2,-1,0,7,3,9,-7,14,3,-5,1,-7,-4,-5,-5,-4,-3,-8,20,2,8,-4,-5
63 | 532251,female,men,20.9,-10,-5,-13,-2,4,-4,-11,7,-1,-7,-3,-14,-11,-12,-4,-7,-12,1,-12,-14,-5,-12,4,4,11,-4,-6,-5,-11,-11,-5,-5,-6,-5,-2,0,0,-3,-13,0,-10,-13,-10,-6,-4,16,-1,-5,-13,-8
64 | 532252,male,women,23.2,-20,-21,-21,-17,-18,-15,-20,-13,-19,-17,-19,-21,-20,-7,-13,-21,-10,-19,-18,-17,-16,-8,-17,-19,-16,-18,-13,-15,-20,-19,-16,-13,-17,-17,-20,-19,-16,-5,-18,-16,-12,-18,-19,-18,-17,-19,-18,-18,-17,-20
65 | 532253,female,either,28.8,-13,-13,-13,-11,0,-14,-9,-13,-12,-15,-12,-7,-12,-15,-14,-13,-10,-14,-15,-13,-15,-13,-13,-14,-13,-15,-12,-9,-12,-14,-10,-10,-14,-10,-12,-15,-8,-13,-11,-16,-12,-16,-14,-13,-7,-11,-11,-12,-11,-13
66 | 532254,female,either,19.6,-5,-3,-9,0,9,-11,0,-12,3,-6,-2,-12,-11,7,-12,-6,-11,-1,-10,-6,-8,9,0,-9,0,-1,-14,-6,0,-12,-8,5,-11,-7,0,0,-7,-9,0,-8,3,-11,-10,10,-11,-2,-5,-6,-9,-5
67 | 532255,male,women,21.5,-10,57,-13,32,35,35,-14,-11,22,-8,26,-14,6,-14,-13,44,-11,23,-14,-15,56,-10,33,40,-2,33,34,-10,-14,-9,25,11,-13,43,-9,45,10,53,-14,53,25,-12,15,9,-11,29,11,-10,13,59
68 | 532256,female,neither,18.6,-2,-2,-4,-10,16,7,10,6,-6,-2,9,5,3,8,-3,-3,-5,-2,-7,0,-7,11,8,11,10,-5,8,1,4,9,10,3,11,-2,-7,12,10,6,0,8,-5,-7,-6,-4,10,8,-6,-2,-3,-9
69 | 532257,female,men,19.3,0,12,16,3,-2,-4,-10,-10,-6,-10,0,-8,-8,-6,-8,-12,-10,0,4,-10,0,-4,-6,0,0,-8,-6,-3,0,9,15,-3,-8,7,-4,13,3,0,-9,-9,-5,0,7,-11,0,-6,-8,6,-10,2
70 | 532492,male,men,25.1,-13,-12,-13,-13,35,-13,13,-14,35,-11,-10,-12,-11,-13,14,19,-11,-12,-11,-9,31,10,14,-12,-11,-10,-4,-9,-9,-11,0,20,-14,16,-12,0,-12,21,-12,-13,-12,-11,-10,-10,17,-9,35,-12,-12,32
71 | 532493,male,women,18.5,-13,38,-13,28,-7,-12,-11,-12,22,-9,-11,-11,-9,-11,-6,-17,-9,-10,-9,-16,12,9,-4,25,-11,9,-2,-11,-9,-15,12,17,-11,-5,9,-9,15,9,40,-12,-10,-11,-6,-11,-11,-14,-15,-12,-15,22
72 | 532495,male,women,19.4,-3,-12,0,-9,0,-12,-8,-13,0,0,-9,-13,0,-7,-13,0,-9,-6,-13,-9,-7,0,-8,-6,-10,-10,-12,-9,-13,-10,0,-8,-13,-11,0,10,0,-11,-9,0,0,-11,-9,-12,-9,-4,0,-10,-12,-3
73 | 532496,male,,18.9,3,-12,0,66,0,-6,-13,-12,-8,-12,0,-13,0,0,-13,-12,-12,30,-11,0,-11,-12,-10,58,0,-10,-12,-12,-11,0,27,-11,-8,-10,38,0,0,65,-9,38,-13,-12,-12,0,-12,-11,0,-14,-12,60
74 | 532497,male,women,21.8,41,30,21,26,18,31,13,25,21,14,19,20,42,48,29,10,27,35,19,13,25,19,16,23,17,0,27,31,32,17,37,24,25,16,18,19,17,22,10,28,24,26,34,37,27,29,22,24,33,32
75 | 532500,male,women,37.1,-8,1,-11,-7,-9,-11,-12,-9,-11,-10,-8,-11,-13,-10,-17,-4,-10,-10,-11,-11,-5,-6,-2,-7,-10,-13,-10,-12,-11,-14,-10,-11,-7,-11,-12,-9,0,3,-3,-4,-5,-13,-14,-11,-8,-13,-2,-13,-2,-5
76 | 532501,male,either,19.7,2,-2,-3,6,5,4,-2,-4,2,-3,4,0,2,-2,-1,-3,4,2,-2,-2,1,0,-2,2,-2,4,1,4,1,-2,6,5,-4,-1,1,2,6,-2,0,-2,5,-2,-2,-1,4,0,2,2,2,2
77 | 532503,male,women,18.8,-10,-11,-8,-6,22,-8,-8,-9,-6,-6,-11,-6,-5,-8,-8,-6,-8,-7,22,-9,-8,-6,-8,-8,20,-6,-5,9,-7,-8,-4,-11,22,-6,-8,36,1,14,-7,-6,16,-8,-8,-7,-6,21,-6,-5,-8,-9
78 | 532925,male,women,29.1,0,0,0,18,12,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-9,0,0,0,15,0,0,0,0,0,0,0
79 | 532926,male,men,20.2,-8,0,-8,-4,12,-10,-4,-4,-9,-4,-8,16,-3,-4,-6,0,-8,-6,-6,-2,-4,-4,-2,-4,-2,-10,12,-1,-9,-8,12,10,-6,-8,-4,-6,0,-6,-2,-6,8,-2,-10,-7,-4,0,-4,-8,-4,-8
80 | 532928,male,men,21.2,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
81 | 532930,female,men,18.5,-6,15,-8,-11,22,-10,-3,0,-4,-8,-10,-11,-8,-9,-9,19,-7,-5,-11,-9,27,-10,-8,10,-3,-7,18,-10,-8,31,32,-10,-12,-9,-7,18,17,-11,-9,-3,-5,-10,-10,-8,7,0,17,-5,-12,-10
82 | 532931,male,men,23.8,-2,1,-1,4,4,0,-1,0,0,-2,2,0,2,2,-2,5,0,2,-2,0,0,2,2,4,0,0,-2,-6,2,0,2,4,0,-2,3,2,4,4,-1,0,0,-3,0,0,2,-3,-2,-2,2,4
83 | 533255,male,women,26.5,0,-4,-12,-6,-11,-5,-13,0,-10,-7,7,-5,-8,-7,-10,-2,-10,-4,-1,-5,-3,-8,-2,-6,-7,-1,-12,-4,-10,-7,3,-6,-8,-8,-7,-4,0,-12,-11,17,-6,-10,-5,-8,-4,-4,-4,-7,-5,-8
84 |
--------------------------------------------------------------------------------
/face-body/data/gender-female_type-stimuli_data.csv:
--------------------------------------------------------------------------------
1 | stimulus name,stimulus sex,age,height(cm),weight(kg),BMI,chest(cm),waist(cm),hips(cm)
alexandra,female,22,178,55,17.35891933,86,61,92
anastazie,female,22,184,60,17.7221172,86,60,90
anezka,female,26,166,54,19.59645812,86,71,93
bera,female,22,162,46,17.52781588,83,60,83
bohdana,female,22,158,53,21.23057202,83,65,90
brenda,female,25,170,52,17.99307958,83,68,96
carol,female,24,165,44,16.16161616,82,61,86
christianne,female,29,166,56,20.32225287,83,67,94
dagmar,female,27,166,54,19.59645812,87,63,91
debra,female,30,164,55,20.44913742,83,64,91
dobromila,female,23,173,56,18.71094925,89,64,99
dusana,female,28,175,53,17.30612245,80,63,89
edita,female,19,169,58,20.30741221,92,80,100
eleanora,female,22,170,52,17.99307958,80,65,90
elena,female,23,167,58,20.79672989,87,79,95
eugenia,female,28,178,75,23.67125363,105,88,105
evzenie,female,22,180,60,18.51851852,91,75,99
gabriela,female,24,176,68,21.95247934,101,97,107
gejza,female,25,161,57,21.98989237,93,72,97
ida,female,21,158,49,19.6282647,87,70,87
ingrid,female,24,174,53,17.50561501,92,62,88
irena,female,23,163,63,23.71184463,96,81,106
jindriska,female,20,174,59,19.48738275,85,62,91
jitka,female,30,166,54,19.59645812,91,65,95
karina,female,30,155,48,19.97918835,88,64,89
kordula,female,25,165,48,17.63085399,84,72,85
lea,female,24,176,63,20.33832645,89,63,89
linda,female,25,165,58,21.30394858,90,64,94
livia,female,19,172,48,16.22498648,83,64,89
lujza,female,27,170,55,19.03114187,83,66,92
margita,female,23,172,57,19.26717144,88,64,93
marika,female,20,174,60,19.81767737,90,73,102
matylda,female,20,168,48,17.00680272,80,63,88
miloslava,female,23,175,59,19.26530612,90,70,95
milota,female,25,170,50,17.30103806,86,62,90
miriama,female,24,162,46,17.52781588,83,63,89
peggy,female,21,169,48,16.80613424,84,64,87
perla,female,25,166,49,17.78197126,88,60,88
radmila,female,28,166,55,19.95935549,86,68,86
sarlota,female,21,165,55,20.2020202,86,69,97
saskie,female,20,158,42,16.82422689,86,62,84
sidonia,female,29,170,64,22.14532872,104,69,93
stela,female,23,178,56,17.67453604,85,62,94
tamara,female,25,178,63,19.88385305,87,66,93
ursula,female,24,173,61,20.38156971,96,71,97
viktoria,female,20,170,60,20.76124567,92,70,92
viola,female,28,167,50,17.92821543,87,64,85
vladena,female,24,173,52,17.37445287,87,61,90
zelmira,female,26,157,52,21.09619051,86,63,89
zlata,female,25,172,56,18.92915089,88,67,95
--------------------------------------------------------------------------------
/face-body/data/gender-male_type-bodies_data.csv:
--------------------------------------------------------------------------------
1 | user_id,sex,sexpref,age,andrej,aurel,bernard,blazej,boris,bretislav,bystrik,cenek,cestmir,cornelius,cyril,dalimil,denis,dionyz,dominik,drahomir,elias,ferdinand,gabriel,hanus,henrich,hynek,josef,justin,kamil,kazimir,leonard,libor,lumir,maxim,mike,milos,mojmir,moric,oleg,oliver,patrik,prokop,ramiro,rehor,rudolf,sobeslav,stefan,svatopluk,tichomir,tomasi,valer,vasil,vendelin,vladislav
2 | 477033,female,,30.9,-4,-18,-10,-2,-16,-13,40,-16,-6,-18,-14,-18,-5,-18,-14,-18,-18,-15,-18,-16,-14,-17,-16,-15,-18,-13,-16,-13,-12,-16,-4,-18,-14,-16,-16,-17,-8,-18,-16,-18,-18,-18,-16,-16,-18,-16,-16,-18,-14,-16
3 | 478230,male,women,25.8,16,-10,-12,0,-10,-10,27,-8,0,-11,0,-10,13,-11,-13,0,0,0,-16,-15,-10,-7,-4,0,-10,-12,-10,0,0,0,-10,-10,-9,8,0,-11,-13,0,0,-12,-11,-10,0,-10,0,6,0,-15,0,0
4 | 478291,female,women,23.5,-2,-15,0,-16,-17,0,-14,-8,-8,-15,-17,-15,-18,-14,-16,-13,1,-16,-4,-2,-15,-15,-17,7,-15,-16,-16,-12,-14,-15,1,0,-10,-9,-15,4,-16,-12,-15,-15,-15,-15,-17,-15,-11,-14,-12,-17,-1,-11
5 | 479035,female,men,22.6,36,21,-11,40,-10,41,19,-14,-5,-4,28,16,21,9,-10,-11,20,-11,-12,-12,-8,-10,-8,-13,-8,-13,11,-13,21,-8,-10,-12,21,29,-13,-11,-11,-14,-7,-13,14,-12,-9,7,-14,26,18,14,30,-8
6 | 489018,male,men,26.8,85,21,-6,50,11,52,84,-1,7,28,75,34,92,-7,43,-12,51,-9,19,20,27,39,18,20,-11,29,38,18,20,42,40,32,53,31,-12,37,32,77,19,22,9,-9,22,37,-10,53,66,76,114,35
7 | 501705,female,either,21.3,45,33,0,18,0,-7,1,-9,6,-9,-5,-2,29,44,-7,-13,33,-11,-9,-11,-8,-4,24,1,-5,-11,-7,-1,12,-4,0,-12,31,0,0,-9,-10,1,-7,15,0,-12,-9,1,-11,37,4,33,6,40
8 | 514003,male,women,30.1,-10,-11,-10,-12,-3,-9,-9,-8,-13,-11,-10,-9,-11,-12,-12,-8,-10,-10,-10,-11,-10,-12,-11,-9,-9,-11,-9,-9,-10,-9,-11,-10,-6,-10,-11,-11,-6,-8,-10,-5,-5,-12,-10,-10,-10,-10,-11,-9,-10,-10
9 | 518109,female,men,20.1,22,3,4,1,2,3,17,-11,-6,-2,13,0,17,-7,0,-8,14,-8,25,15,-7,5,-8,-10,-8,-11,12,-2,-3,3,-2,-6,12,-1,0,-9,34,-1,19,-7,10,-5,-10,-6,-11,84,-6,0,19,-4
10 | 531458,male,women,19.8,-1,-9,-11,3,-13,-15,5,-12,6,-13,-13,-12,-16,3,2,-12,-14,-7,-14,-15,-10,-13,-14,-15,-16,-10,-14,-11,-17,-11,-2,-9,-16,-15,-15,-17,-18,-15,-13,-13,-10,-13,-15,-2,-18,-18,-14,6,-2,-13
11 | 531826,male,women,27.2,0,-12,-10,-15,-8,-4,2,-11,-13,-6,-12,-12,-14,-8,-10,-15,-13,-6,-14,-14,-14,-9,-12,-11,-14,-9,-12,-14,-11,-9,-6,-13,-12,-10,-11,-13,-8,-10,-13,-11,-11,-10,-6,-11,-13,-8,-6,-13,-15,-17
12 | 531966,female,men,20.7,10,4,-9,-6,-4,14,12,-5,-8,-8,-6,8,29,-7,-7,-7,-7,-11,-10,-10,-12,-5,-3,-8,-5,-8,0,-11,6,-7,11,-11,12,-2,-8,-7,-6,-4,7,-9,0,-9,-9,23,-9,10,0,-5,-6,-10
13 | 531967,female,men,23.1,10,6,-4,22,13,6,9,-11,7,2,-4,-5,8,-5,10,-10,12,4,9,8,8,14,4,-9,-7,-1,-5,-7,-4,12,14,-10,9,18,3,6,6,-10,8,-2,-10,-8,-7,0,-6,-6,6,12,7,-3
14 | 531968,female,either,22.8,29,15,0,12,-3,10,22,0,10,14,5,8,13,13,-10,0,32,31,24,6,-9,2,5,4,0,0,8,9,10,12,-2,13,8,32,0,5,7,0,10,14,9,0,-6,5,3,8,13,6,10,-6
15 | 531969,male,women,28.1,-20,-21,-13,-8,-22,-20,-13,-17,-19,-19,-20,-20,-20,-20,-16,-16,-20,-19,-15,-13,-19,-19,-20,-20,-20,-19,0,-20,-17,-20,-20,-18,-17,-17,-14,-18,-20,-20,-21,-18,-20,-20,-20,-19,-21,-18,-16,-20,-17,-20
16 | 531970,female,men,21.5,10,1,-6,19,-9,8,25,-12,2,-8,-5,4,0,4,-9,-11,7,-8,6,-1,-10,-7,-10,-11,-13,-12,-7,-9,2,0,3,-6,10,2,-8,-13,-2,-8,4,7,-11,-7,-2,3,-14,37,-9,4,-11,-14
17 | 531973,female,men,23.7,-7,-9,-13,-7,-13,-11,-5,-13,-10,-13,-12,-8,-14,-8,-12,-9,-7,-13,-9,-7,-9,-12,-13,-13,-9,-15,-12,-13,-11,-13,-6,-13,-14,-12,-11,-12,-10,-15,-13,-5,-14,-12,-6,-14,-8,-15,-9,-11,-11,-8
18 | 531974,female,men,24.3,-3,-7,-4,5,-8,1,-8,-2,0,3,8,-1,9,-6,-10,0,-8,6,-10,0,-5,-8,-4,-8,12,9,-11,-4,-5,-10,0,-4,-3,-12,10,-6,-6,-4,0,-3,7,4,0,-8,5,-9,-4,-9,-8,-8
19 | 531975,female,women,34.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
20 | 531976,female,men,50.8,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,1,0,0
21 | 531977,male,men,21.7,0,0,-6,0,18,0,6,0,0,-5,-17,0,0,-11,-14,-11,0,0,-3,0,-7,1,0,-15,-1,-1,0,15,-12,7,0,12,-1,0,0,-4,0,6,3,0,-4,-2,0,45,-5,5,1,-6,0,-2
22 | 531978,male,women,22.3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
23 | 531980,female,either,18.9,15,-10,-9,-11,-11,17,29,-13,5,-12,2,4,-8,-3,-10,-12,8,-9,-10,-6,-9,9,-10,-11,-11,-12,4,-12,-4,-7,-9,-9,10,-11,-9,-11,-10,-8,16,-10,-10,-12,-5,-11,-11,-5,-10,-6,-10,-10
24 | 531981,male,women,28.3,0,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0
25 | 531982,male,neither,21.4,0,2,0,-6,0,0,3,0,7,4,-5,-3,0,4,0,0,0,0,0,-6,0,0,0,-6,0,-8,-4,-5,0,0,0,-3,0,-4,0,0,-7,-4,8,-6,-6,-4,0,-1,0,0,0,0,0,-8
26 | 531983,female,men,44.6,0,-8,-12,0,14,6,0,-9,0,-4,0,0,0,0,0,0,13,9,0,0,0,0,2,-6,-9,0,0,0,4,0,-9,-7,23,5,0,-6,0,0,0,0,0,-9,3,0,0,0,0,0,0,0
27 | 531984,male,,22.7,82,-12,-16,16,-8,98,95,-19,-12,0,-14,-16,158,-9,0,-20,-8,-18,-13,189,-11,-15,-11,-18,-15,-16,-20,-16,-18,180,71,-17,-18,-19,-19,-14,-18,-10,-18,-17,-17,-18,-16,40,-6,136,169,-9,-16,14
28 | 531985,female,men,20.2,-14,-15,-15,-14,-14,-12,-8,-14,-15,-14,-15,-14,-15,-15,-16,-15,-16,-11,-15,-13,-13,-16,-15,-13,-14,-16,-14,-16,-15,-15,8,-15,-15,-15,-12,-16,-15,-15,-15,-15,-14,-16,-14,-16,-13,-14,-14,-9,-14,-15
29 | 531986,female,men,22.2,18,-16,-2,3,26,11,6,15,64,-14,-6,8,-9,-13,14,5,22,-14,-13,-13,16,23,31,6,-11,-15,-7,13,-8,-14,-12,-14,-16,22,-12,-8,5,34,6,13,59,-14,-4,2,-14,10,-11,13,1,9
30 | 531987,female,men,20.3,-11,-14,-15,-14,-17,-9,-5,-17,-11,-12,-14,-14,-13,-16,-13,-14,-12,-15,-17,-15,-15,-12,-14,-15,-17,-16,-10,-8,-17,-16,-5,-16,-11,-14,-11,-14,-14,-15,-15,-12,-16,-15,-14,-12,-13,-17,-11,-14,-13,-13
31 | 531988,male,women,20.4,-17,-16,-14,-14,-16,-13,-4,-14,-15,-13,-14,-9,-9,0,-11,-10,-12,-15,-12,-16,-11,-12,-11,-13,-14,-13,-15,-16,-9,-13,-15,-12,-16,-8,-15,-15,-14,-8,-16,-9,-15,-10,-14,-10,-9,-16,-13,0,-12,-13
32 | 531989,female,men,22.2,-17,-16,-16,-15,-15,-14,-16,-15,-14,-14,-17,-13,-16,-16,-16,-7,-16,-13,-15,-17,-14,-14,-15,-15,-14,-16,-14,-17,-14,-15,-16,-15,-16,-16,-7,-15,-16,-11,-14,-15,-16,-16,-16,-16,-5,7,-14,-13,-15,-17
33 | 531990,male,women,18.2,11,10,-12,11,30,11,35,-9,7,-14,-12,21,19,5,-13,-11,-8,-12,-10,-9,-11,-6,-10,-15,-2,21,0,-12,13,17,0,-11,18,15,9,-14,14,-11,30,14,20,-10,9,15,-7,41,-9,0,10,18
34 | 531991,female,men,22.6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
35 | 531993,male,men,24.0,9,-5,10,0,5,3,65,-18,-10,0,-17,-16,-17,-13,-14,-20,12,10,11,-19,-9,6,-3,-22,-17,-18,-17,13,6,10,-17,4,33,0,4,-10,0,-16,17,5,-16,-14,-19,2,10,-14,4,-14,-16,-13
36 | 531995,female,neither,21.7,-14,-11,-15,-10,-12,-14,-15,-16,-12,-2,-13,-12,-14,-14,-15,-11,-13,0,-13,-10,-11,-12,-14,-14,-14,-13,-13,-1,-14,-12,-14,-11,-13,4,-14,-14,-16,-13,-14,-12,-12,-13,-4,0,-11,-4,-12,-12,-12,-7
37 | 531996,female,men,24.9,-13,-13,-12,-12,-13,-12,-12,-3,-12,-12,-13,-12,-14,-12,-12,-13,-11,-12,-13,-12,-13,-13,-13,-11,-14,-13,-12,-13,-12,-12,-12,-13,-12,-12,-12,-13,-11,-12,-12,-13,-12,-14,-13,-12,-12,-13,-11,-13,-13,-11
38 | 531998,female,men,41.0,0,0,-14,0,2,0,36,-14,19,0,0,0,0,-13,0,7,41,0,0,6,0,0,0,0,-12,0,0,0,0,0,23,-11,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0
39 | 531999,male,women,29.5,-10,0,-14,-7,0,-6,-12,-2,-12,-12,-12,-13,-14,-10,-13,-12,-15,-12,-11,-11,-9,-10,-12,-13,-13,-13,-14,-13,-13,-13,-12,-14,-13,-13,-11,-14,-10,-2,-12,-11,-13,-12,-14,-11,-8,4,-12,-10,0,-11
40 | 532000,female,men,19.5,5,-12,-11,17,-10,37,28,-12,-6,-12,-10,-11,0,-6,-12,-10,-11,-8,-10,-9,-10,-9,-9,-10,-9,-12,-11,-7,-5,-12,-4,-11,-10,-10,-11,-12,-9,-9,23,-7,-10,-8,-11,0,-10,-10,-9,-10,-11,-8
41 | 532182,female,women,21.1,-7,-8,-6,0,-2,7,32,-8,-9,6,-10,6,-5,-8,1,-9,-4,-10,6,0,-6,-4,-4,-6,-2,-6,-4,-7,-9,-4,0,-7,-5,8,5,-7,0,-7,4,-8,-5,-2,-9,-9,-10,0,-2,-6,-5,7
42 | 532183,female,men,43.4,8,5,-3,13,3,9,11,-4,-4,3,6,7,-2,3,1,-2,7,-2,7,4,0,4,-4,0,-2,3,-2,2,-4,-3,-2,-1,12,11,-2,-5,8,-4,11,4,4,-2,4,17,-4,10,4,2,5,-6
43 | 532184,female,men,52.2,-4,-4,2,4,3,4,4,-4,4,-3,-4,4,-4,4,-4,-4,4,4,2,4,-4,2,-3,-5,-3,-4,2,4,-4,-4,4,-4,-4,-4,4,-6,-4,-4,-4,4,-3,2,-4,-4,4,-4,-4,-4,-4,-4
44 | 532185,female,men,24.4,0,0,0,0,0,0,0,0,0,0,0,2,0,4,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0
45 | 532192,female,men,21.0,0,0,-12,0,0,0,-12,-12,0,-11,-8,-4,0,0,0,-12,-12,-11,0,-11,0,0,0,0,-14,-10,-12,0,0,-11,0,-2,0,0,-14,0,0,0,-12,-2,-12,-8,-11,0,-12,0,0,0,-14,-11
46 | 532213,male,women,19.9,-10,-14,-14,-14,-13,-13,-9,-14,-13,-14,-14,-13,-14,-14,-14,-11,-14,-13,-13,-12,-14,-14,-12,-12,-14,-12,-15,-13,-14,-14,-14,-12,-14,-14,-13,-14,-14,-14,-14,-13,-15,-12,-14,-13,-14,-8,-14,-14,-14,-14
47 | 532214,male,women,18.6,-18,-22,-19,-21,-17,-18,-9,-20,-18,-12,-16,-20,-20,-17,-20,-20,-18,-14,-1,-20,-20,-16,-19,-20,-19,-18,-16,-16,-18,-19,-18,-15,-17,-21,-18,-19,-20,-15,-13,-18,0,-18,-19,-14,-20,-14,-18,-12,-16,-16
48 | 532215,male,women,20.3,17,-9,-12,-4,-13,8,2,22,-14,-2,-13,2,10,4,-13,-12,-10,-10,-7,-14,-11,0,-11,-10,-14,-9,-4,-7,-12,-3,-2,-12,4,-15,-10,-1,-7,0,-15,-7,-8,-5,-9,-4,-3,33,0,-10,6,-6
49 | 532216,male,women,21.9,-17,0,0,-16,0,0,0,0,-15,-16,-9,-14,-16,-16,-6,0,-17,-16,0,0,-15,0,0,-15,0,0,-16,0,-16,0,7,0,-15,0,-15,0,0,0,0,0,-14,-15,6,19,0,-16,-17,0,-15,0
50 | 532217,male,women,18.3,16,13,-12,-5,-9,15,38,-9,26,-12,12,1,25,-11,-8,-5,25,-12,21,-9,-7,-9,-10,-11,-9,-11,-6,-9,-10,-10,11,-10,-8,10,-12,-9,-10,13,-5,-10,-8,-12,12,-10,-9,11,-7,-8,-9,15
51 | 532218,female,women,19.8,-4,0,0,-9,0,0,-9,0,0,0,0,-7,0,-8,-7,-7,-5,-3,-2,0,-7,0,-7,0,0,-6,0,0,-8,-6,-8,-8,-7,-3,-6,-7,-4,-8,0,0,0,0,-8,0,-6,0,-7,-1,-3,0
52 | 532219,female,men,19.7,12,-10,-11,11,-1,30,30,-11,-11,-12,-2,-11,30,-7,-11,-11,24,-10,-8,-12,-11,-11,0,-10,-8,-13,-12,0,-10,-11,6,-12,18,-10,-12,-9,-9,-14,13,-12,-13,-10,-13,15,-8,19,-12,-12,16,2
53 | 532220,female,men,36.9,0,-11,-13,6,-5,4,2,-14,-6,-11,-3,0,0,-4,-12,-8,-9,-9,7,0,-11,-1,0,-9,-8,-10,-3,-8,-4,0,-3,-4,-8,0,-12,-11,-2,-3,-4,0,-7,-13,-6,-3,-6,12,0,-3,-4,-9
54 | 532221,female,men,25.0,-16,-16,-15,35,-16,-7,55,-8,-17,-3,65,61,24,-12,-14,-16,-8,-17,-16,-15,-15,37,-13,-16,-14,-13,52,-14,-16,-14,-6,-17,-15,-17,-17,-15,-17,-17,62,56,-15,-13,-16,61,-14,32,-17,-16,-17,-15
55 | 532222,male,women,21.7,-4,-16,-16,0,-17,28,42,-16,-16,-4,-9,8,0,-14,-18,-18,-2,-17,16,-16,-14,-19,-6,-19,-17,-14,-11,-16,0,-6,0,-16,-15,-8,-6,-14,-19,-13,-9,-15,-6,-8,-16,0,-18,-4,-4,-16,0,-12
56 | 532243,male,women,19.7,0,0,-3,0,0,0,3,-5,-6,0,0,0,0,-2,0,-4,0,-4,-1,-3,0,0,1,-2,-2,0,0,-2,0,0,3,0,0,-1,-2,0,0,0,-2,-6,-2,0,0,-2,-3,0,0,-1,0,0
57 | 532244,female,men,18.5,19,-10,-10,-2,6,-10,6,-10,-7,-9,0,3,-8,-8,-6,3,-8,-10,-2,-10,-9,-4,-10,-8,-4,0,-1,9,-4,2,-10,-8,-9,-6,0,0,-9,-10,10,-10,0,4,-10,0,-8,-7,0,8,0,-8
58 | 532245,female,either,18.1,10,-2,2,7,-2,20,12,-5,8,1,9,15,6,2,-4,-6,6,2,6,4,-2,-1,-2,0,0,0,-4,4,11,-1,22,8,8,13,7,4,2,-2,8,0,-2,-1,-3,1,13,7,4,-1,2,-5
59 | 532246,male,women,19.2,0,6,0,-2,-3,-4,0,-3,-2,-11,-6,-9,-5,-10,-15,-16,-2,-5,-7,0,-4,0,-12,-8,-14,-14,-4,0,-6,-6,-2,-4,5,-15,-5,-9,-8,-14,-1,-2,0,-12,-14,-7,-10,0,-9,1,-8,7
60 | 532247,male,women,18.2,-10,-8,-15,-4,-11,-14,46,31,-12,-9,-11,3,21,-12,-12,60,-14,-15,-5,-10,-7,-14,-9,-13,-16,-13,-7,-7,-8,-15,-6,-15,-9,-13,-12,-15,-14,-10,0,-8,-12,-13,-6,1,-8,8,-15,-11,-15,25
61 | 532249,male,women,25.3,-8,-14,-14,-13,-13,-3,-4,-12,-11,-14,-14,-14,-9,-16,-14,-13,-7,-14,-10,-14,-13,-14,-13,-12,-12,-15,-12,-14,-3,-13,-4,-9,-14,-12,-15,-13,-14,-12,-11,-14,-14,-14,-14,-8,-12,-6,-10,-14,-11,-15
62 | 532250,female,men,19.0,5,4,-5,7,-4,19,18,-6,-2,-5,6,3,10,-4,-6,-5,-3,-2,-4,-4,-5,3,8,-6,-6,0,-6,-6,-5,4,7,-5,9,-4,-4,-5,2,-5,-6,-2,-5,-4,-4,11,-4,12,5,-6,-4,1
63 | 532251,female,men,20.9,12,-10,-8,-5,0,-1,57,-12,-8,-6,-3,-5,5,-4,-9,-10,0,-8,5,-6,-3,-1,-2,-7,-12,-1,-13,-6,-4,-2,1,-6,-3,-11,-9,-11,-8,-3,3,-3,-7,-10,-1,0,-6,1,-3,-4,-3,-6
64 | 532252,male,women,23.2,-13,-12,-17,35,5,-18,46,-16,-17,-8,36,-2,57,-15,30,-8,-5,-18,-8,-15,8,37,-13,-11,-18,-9,-16,-17,-6,4,11,6,3,18,-19,-7,0,-6,2,-20,-7,-19,-10,-8,15,18,-12,-12,-13,0
65 | 532253,female,either,28.8,-11,-14,-10,-13,-15,-15,-15,-15,-8,-14,-14,-10,-10,-11,-14,-11,-13,-15,-9,-14,-14,-14,-13,-15,-9,-14,-14,-14,-13,-12,-15,-16,-13,-12,-14,-12,-14,-9,-14,-9,-14,-10,-11,-11,-8,-16,-16,-11,-15,-15
66 | 532254,female,either,19.6,-8,0,-10,-3,-11,0,-9,-11,-10,0,-3,0,-12,0,-8,-12,-1,-10,0,0,-10,0,-11,-5,-11,-10,0,-9,0,4,-11,0,0,0,-1,-9,-9,-10,0,0,0,-9,-8,-3,-10,0,-7,-2,-5,-9
67 | 532255,male,women,21.5,-2,-10,-14,-9,-10,39,20,-3,-2,10,-1,0,29,-2,-11,-8,23,-2,30,14,-12,0,-11,1,-10,-11,-10,15,0,-14,16,-10,0,-7,-3,-12,-3,-10,0,0,-12,-11,-10,0,-3,33,23,0,18,4
68 | 532256,female,neither,18.6,10,0,-1,-6,-1,11,6,-8,-2,4,0,6,8,-7,9,-4,-7,4,-5,8,5,6,0,6,-9,7,12,0,-4,-8,7,-6,0,2,-2,11,2,2,8,-6,4,-6,-3,12,5,4,13,9,-1,6
69 | 532257,female,men,19.3,0,0,-9,0,0,19,11,-12,-7,0,0,0,-3,-3,-11,-4,-3,0,0,-6,-10,-8,-8,-7,-8,-3,-6,0,-4,-4,0,-7,0,0,0,-11,-2,-11,-3,0,1,-6,-9,-1,-7,-3,-8,0,0,-9
70 | 532492,male,men,25.1,47,40,-9,34,54,23,145,-14,-8,-9,27,23,40,37,18,-11,174,-12,-13,-12,0,30,12,-9,-12,-7,-12,-11,40,43,43,-10,35,60,-5,-9,-6,-11,39,-9,24,-9,-10,28,-12,131,58,40,-11,-6
71 | 532493,male,women,18.5,3,7,-7,1,-9,10,11,-8,0,-14,0,-14,2,-11,-13,0,4,0,-8,-13,-8,11,-7,6,-15,-12,-10,4,-13,-1,-15,-9,-4,3,0,-12,-11,13,10,-14,0,-10,0,-12,-10,4,-8,5,3,-9
72 | 532495,male,women,19.4,-4,-13,-12,-12,-13,-1,6,-15,-15,-13,-16,-8,-3,-15,-14,-15,-14,-15,-14,-14,-15,-14,-13,-15,-15,-15,-15,-13,-14,-16,-15,-15,-15,-8,-16,-16,-11,-14,-7,-12,-14,-14,-12,-15,-13,-5,-5,-14,-12,-13
73 | 532496,male,,18.9,0,-10,-12,0,0,-9,0,-14,0,-8,0,0,-11,0,0,-10,0,-13,-8,-8,0,-8,-12,0,-8,-13,0,-12,0,0,-12,0,0,-10,0,0,0,0,-10,-12,0,-13,-13,0,-12,0,-9,0,0,0
74 | 532497,male,women,21.8,13,10,4,14,4,18,3,12,0,-3,10,4,7,7,14,9,5,2,6,11,17,5,5,8,6,2,7,13,9,16,11,9,7,16,7,6,4,5,8,11,12,11,3,0,10,12,12,4,3,8
75 | 532500,male,women,37.1,-10,-12,-12,-8,-12,-11,0,-12,-16,-12,-10,-7,-12,-12,-10,-1,-11,-11,-13,-9,-13,-13,0,-14,-13,-11,-14,-12,-13,-13,-12,-11,0,-11,0,-11,-12,0,-9,-14,-12,-9,-13,-9,-12,-11,-11,-10,-12,-10
76 | 532501,male,either,19.7,4,3,-2,2,0,2,4,-4,-2,-2,2,2,6,2,-2,-6,2,-1,4,-2,2,-2,-2,-2,-2,-2,-4,-2,4,-2,-4,-2,2,-2,-2,-2,-2,-2,4,0,0,0,-2,4,-2,6,2,-2,2,2
77 | 532503,male,women,18.8,0,0,0,0,0,0,0,0,0,0,0,0,10,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,-3,0
78 | 532925,male,women,29.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
79 | 532926,male,men,20.2,30,10,-8,22,0,40,-10,-6,9,-4,65,32,48,0,-4,-6,26,18,155,27,0,0,-6,-2,0,-2,-2,-2,57,18,43,-8,48,45,0,-10,0,-4,-4,0,-6,-6,52,125,12,73,22,33,-4,-6
80 | 532928,male,men,21.2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,2,0,0,0,0
81 | 532930,female,men,18.5,24,-9,-10,-10,26,18,36,-12,15,-11,15,28,-12,-10,-10,-9,0,-10,31,-9,-11,-10,27,-12,-12,-12,-10,-11,0,21,31,-13,-8,16,-12,-12,-11,-12,-12,-2,-7,-2,-10,-10,19,45,-9,-9,-10,-10
82 | 532931,male,men,23.8,6,4,2,6,0,4,12,4,6,2,8,6,6,4,6,0,6,4,4,6,2,2,2,4,6,0,2,2,4,8,4,4,2,4,2,2,2,0,0,4,2,2,2,6,4,2,4,2,10,2
83 | 533255,male,women,26.5,0,-7,-6,0,-4,-4,9,-4,-2,-4,-4,0,-2,-4,-6,-2,0,0,-3,-6,-11,0,-4,0,-6,-6,-5,0,-8,-6,-5,-2,0,-6,0,-9,-6,-6,-8,-3,0,-9,-3,-3,0,-6,-2,0,0,-6
84 |
--------------------------------------------------------------------------------
/face-body/data/gender-male_type-faces_data.csv:
--------------------------------------------------------------------------------
1 | user_id,sex,sexpref,age,andrej,aurel,bernard,blazej,boris,bretislav,bystrik,cenek,cestmir,cornelius,cyril,dalimil,denis,dionyz,dominik,drahomir,elias,ferdinand,gabriel,hanus,henrich,hynek,josef,justin,kamil,kazimir,leonard,libor,lumir,maxim,mike,milos,mojmir,moric,oleg,oliver,patrik,prokop,ramiro,rehor,rudolf,sobeslav,stefan,svatopluk,tichomir,tomasi,valer,vasil,vendelin,vladislav
2 | 477033,female,,30.9,-14,-15,-15,-20,-18,-9,-16,-17,0,-14,0,-14,-2,-15,-13,-18,-13,-14,-16,-18,-19,-15,-13,-16,-14,-14,-17,-15,-3,-18,-8,-12,-19,-14,-17,-14,-14,-16,-17,-12,-15,-12,-16,-11,-17,-17,-17,-12,-9,-16
3 | 478230,male,women,25.8,-6,-16,-13,-7,-5,-10,-12,-12,-7,-12,-7,-12,-15,-6,-11,-11,-2,-13,-11,-14,-15,0,-8,-13,0,-13,-8,-12,-11,-14,-10,-7,-12,-8,0,-8,-13,-17,-13,-11,-9,-2,-12,-6,-13,-12,-14,-8,-12,-14
4 | 478291,female,women,23.5,0,-11,-17,0,-18,0,0,0,0,-13,-17,-14,0,0,-13,0,0,-13,0,-16,-17,0,-16,-18,-14,-15,-17,0,0,0,-15,-14,-12,0,-13,-17,-16,-15,0,-17,0,0,0,-17,0,18,-16,0,-17,-16
5 | 479035,female,men,22.6,38,-12,-11,-7,-13,-12,-13,-14,-16,-15,-14,-9,-10,29,14,-11,-14,-15,3,-11,-16,-14,-16,33,-14,-13,-17,-14,5,-13,45,25,39,-14,-14,-12,-12,-16,-16,-12,-16,0,-15,-11,-17,-14,-12,-15,8,41
6 | 489018,male,men,26.8,30,-12,-12,-11,-11,-12,-13,-12,-9,-12,-13,-10,-12,-11,26,-8,-12,-10,-12,-13,-12,-12,-12,-9,-12,-13,-5,-12,-7,-12,-9,-10,24,29,-13,-12,-10,-11,-11,-10,-13,-12,-7,-14,-12,-11,-13,-10,-11,-13
7 | 501705,female,either,21.3,-12,27,-10,0,-4,49,-9,-10,-14,-13,-11,-13,32,54,-8,78,24,-12,-8,-13,33,-5,-2,-12,-14,-10,44,-2,-13,-2,-11,-6,-6,-6,-3,-14,-13,-3,-13,-12,-13,13,-14,0,6,28,-10,20,62,-6
8 | 514003,male,women,30.1,-10,-10,-8,2,-11,-10,-10,-10,-9,-11,-8,-10,-11,-13,-13,-13,-12,-9,0,-8,-11,-10,0,-13,-11,-14,-11,-11,-3,-10,-4,-5,-13,-11,-12,-12,-12,-10,-12,-10,-11,-12,-12,-9,-9,-11,-12,-12,-5,-10
9 | 518109,female,men,20.1,-6,0,-10,0,-5,8,3,8,-6,-9,1,-9,0,0,15,21,-7,-8,13,-9,9,8,22,0,-3,4,8,-9,-10,-3,3,4,11,10,3,-8,-9,-12,-6,-8,-3,-3,-8,3,-1,0,14,1,6,-5
10 | 531458,male,women,19.8,-6,-6,-5,5,-3,-4,0,0,-17,0,0,0,0,-12,0,0,-7,-3,0,0,-6,0,0,0,0,0,0,0,-11,0,0,0,0,-16,-8,-16,0,0,-14,0,-13,-13,-12,0,-11,0,0,0,-12,0
11 | 531826,male,women,27.2,0,-7,-10,-12,-6,-3,-12,-10,-11,-6,-14,-6,0,-10,-5,-9,-10,-8,-11,-11,-9,-10,-10,-12,-11,-10,0,-11,-6,-4,-10,-12,-4,-8,-8,-10,-11,-9,-7,-5,-11,-8,-10,0,-12,-12,-11,-12,-7,-12
12 | 531966,female,men,20.7,8,-5,-9,6,-8,-6,12,-7,-8,1,-12,-8,3,-6,-10,-11,-10,-6,0,-9,-9,-10,2,7,-7,-8,-11,-8,9,-5,0,4,-7,-7,-8,-8,-10,-8,2,-6,8,3,-5,2,0,13,-4,-3,3,12
13 | 531967,female,men,23.1,-8,-9,10,-6,18,-4,9,-3,-13,-11,-12,-10,16,7,19,12,13,-11,25,-12,14,5,-8,-11,-1,-5,5,1,-7,14,10,14,0,12,7,-12,-12,-10,7,0,-8,10,-9,9,-10,6,-5,24,14,-6
14 | 531968,female,either,22.8,48,0,-8,-11,36,-7,0,0,-7,-10,0,-9,56,9,30,8,0,0,82,0,4,4,10,-8,-1,3,28,33,40,18,19,-7,0,13,18,-8,-2,5,0,20,8,2,-6,8,8,-9,-8,16,2,10
15 | 531969,male,women,28.1,-17,-18,-15,-18,-20,-17,-16,-18,-18,-16,-18,-21,-18,-21,-17,-17,-17,-18,-17,-20,-19,-19,-17,-17,-20,-17,-20,-17,-21,-17,-17,-17,-18,-19,-20,-17,-21,-18,-18,-18,-16,-19,-16,-18,-21,-17,-20,-20,-9,-22
16 | 531970,female,men,21.5,4,-14,-4,-1,6,-3,-11,2,6,-15,-6,-9,10,7,4,8,-5,6,8,-7,-12,-7,-8,-11,-10,-9,-12,9,4,1,7,1,7,9,-1,-9,-13,-11,-10,14,0,-6,-10,1,-7,-5,4,3,-9,2
17 | 531973,female,men,23.7,-13,-13,-12,-11,-9,-12,-13,-14,-14,-14,-13,-13,-12,-13,-14,-12,-14,-13,-8,-13,-11,-10,-12,-11,-13,-11,-14,-15,-13,-7,-12,-11,-16,-12,-11,-12,-10,-13,-14,-12,-13,-11,-13,-12,-12,-12,-10,-11,-11,-7
18 | 531974,female,men,24.3,57,26,-10,80,-9,-8,19,-8,46,-10,-9,-10,52,20,41,-6,36,-7,63,59,-11,-13,57,37,16,-13,60,38,60,-11,77,57,-12,-12,-7,-12,18,22,-9,20,54,25,-12,41,37,-9,0,39,41,-8
19 | 531975,female,women,34.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
20 | 531976,female,men,50.8,-3,0,0,0,-4,2,-4,-1,1,0,-4,-1,11,-1,0,-4,-1,0,11,0,-1,-2,0,-1,0,4,7,12,1,-4,11,9,-1,0,-2,8,2,4,-2,-2,1,-10,0,0,0,-1,8,1,0,-4
21 | 531977,male,men,21.7,0,36,0,0,44,11,0,0,24,23,41,54,0,1,51,14,-8,14,8,17,5,6,2,5,23,0,54,0,0,0,0,31,16,6,0,31,4,60,-9,3,0,10,21,4,45,0,0,56,10,26
22 | 531978,male,women,22.3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
23 | 531980,female,either,18.9,18,-9,-8,-11,-3,-12,-6,-6,-6,-8,-10,-10,-9,-9,1,8,-6,-11,-10,-11,2,-9,-10,-10,-8,-11,11,-1,-9,-5,8,20,-10,26,-10,-12,-8,-12,-5,15,13,-5,-11,3,-13,-5,-9,4,9,-9
24 | 531981,male,women,28.3,-1,-6,-14,-6,-11,-14,-7,-15,-7,-7,-12,-10,-7,-11,-7,-16,-10,-7,-3,-16,-10,-6,-9,-14,-2,-11,0,-7,-10,-10,-15,-14,-8,-7,-15,-7,-4,-10,-10,-10,-15,-16,4,-14,-16,-6,-6,-17,-17,-9
25 | 531982,male,neither,21.4,-4,-4,0,-2,-6,-4,-2,-5,-5,-5,-6,-5,-4,-2,-6,-5,-4,-1,-6,-8,-4,-6,-6,-2,-8,-4,-6,-7,-5,-4,-6,-6,-1,-4,-6,0,-11,-1,0,-7,-6,-6,-6,-10,-2,-4,-4,0,-10,-7
26 | 531983,female,men,44.6,0,-14,-10,-4,-3,-6,-5,-14,-11,-12,-11,-14,-9,-1,-6,-4,-9,-11,-3,-8,-14,0,-11,0,-14,-12,-9,-8,-9,0,0,0,-5,-3,0,-14,-9,0,-13,-1,-4,-9,-12,-8,-11,-7,0,-1,0,0
27 | 531984,male,,22.7,-16,-13,-18,0,-15,-18,-16,-16,-15,0,-14,-19,-18,-16,-16,10,-18,-17,98,-16,-14,0,0,-18,-17,-16,-13,-16,-18,78,15,-12,-17,251,-17,-15,-14,-16,-17,6,-15,-18,-16,-12,-14,-18,-11,-18,7,-8
28 | 531985,female,men,20.2,-12,-15,-14,-13,-11,-16,-11,-15,-11,-13,-13,-14,-14,-17,-14,-13,-11,-16,-14,-12,-14,-14,-13,-14,-12,-13,-15,-13,-13,-16,-3,-14,-13,-13,-2,-12,-14,-11,-12,-14,-14,-11,-14,-11,-15,-15,-16,-15,-14,-15
29 | 531986,female,men,22.2,-17,-16,-16,-16,-17,-16,-6,-16,-5,-16,-16,-16,-14,-17,-16,-15,-15,-16,-17,-15,-16,-11,-12,-15,-16,-9,-18,-16,-15,-16,-16,-16,-15,-16,-14,-15,-15,-16,-7,-16,0,-17,-16,-17,-16,-13,-17,-16,-17,-15
30 | 531987,female,men,20.3,-12,-13,-12,-16,-15,-14,-14,-11,-16,-16,-13,-13,-12,-14,-11,-14,-14,-13,-16,-15,-14,-13,-14,-15,-18,-14,-14,-14,-13,-15,-15,-15,-16,-9,-13,-13,-13,-14,-14,-12,-14,-15,-12,-19,-13,-14,-14,-12,-11,-14
31 | 531988,male,women,20.4,-2,-14,-15,-11,-13,-11,0,-11,-13,-11,-9,-1,-13,-3,-8,-10,-8,-9,-13,-2,0,-7,-7,-11,-11,-11,-9,-14,-6,-7,-13,-13,-10,-13,-5,-13,-7,-10,-11,-11,-13,-2,-9,-12,-11,-8,-12,0,-13,-14
32 | 531989,female,men,22.2,-13,-14,-16,-12,-15,13,-16,-12,-15,9,-1,-16,-16,-15,-18,-16,-13,-15,-15,-14,-6,-11,-1,5,-17,-16,-16,-16,-14,-16,-14,-13,-16,-15,-14,-17,-13,-15,-13,-15,-17,-15,-13,4,-18,-16,-15,-14,-15,-16
33 | 531990,male,women,18.2,22,-6,-12,-14,25,-12,-14,25,-11,6,-15,-13,40,13,-12,12,-12,-16,30,-13,-11,-11,-11,30,14,-14,5,34,-11,22,11,-14,-10,29,-14,-15,9,-15,-16,5,-14,-11,-10,18,-10,-9,-9,13,31,-15
34 | 531991,female,men,22.6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
35 | 531993,male,men,24.0,-10,0,-13,-16,-13,-15,0,4,-14,-16,-16,-17,0,-5,-16,-2,0,-14,0,-11,8,-15,-1,2,-15,-14,-16,-15,0,2,-14,-13,6,10,-6,0,-14,-10,0,4,-10,8,-3,0,-17,8,0,6,4,-7
36 | 531995,female,neither,21.7,-13,-15,-16,-14,-16,-16,-16,-13,-14,-14,-15,-16,-16,-15,-16,-16,-15,-16,-15,-17,-12,-16,-13,-13,-15,-13,-15,-16,-16,-15,-13,-14,-16,-16,-15,-16,-16,-16,-16,-15,-16,-16,-16,-16,-16,-16,-16,-16,-16,-15
37 | 531996,female,men,24.9,-13,-12,-12,-13,-12,-13,-12,-13,-13,-14,-14,-13,-11,-13,-13,-13,-13,-12,-13,-13,-12,-12,-14,-13,-13,-14,-13,-12,-13,-12,-12,-12,-14,-12,-12,-13,-13,-12,0,-13,-13,-13,-13,-14,-13,-13,-12,-13,-13,-14
38 | 531998,female,men,41.0,57,65,63,69,59,79,70,58,78,68,0,65,53,65,64,49,10,33,72,7,42,73,71,74,66,67,75,22,57,64,53,57,50,70,86,14,55,67,56,61,4,67,80,50,70,70,49,65,63,78
39 | 531999,male,women,29.5,-10,-10,-15,-10,-9,-7,-1,-17,-13,-14,-15,-14,-6,-8,-6,-10,-5,-14,-5,-9,-10,-6,-10,-10,-15,-18,-9,-10,-15,-6,-10,-13,-17,-4,-10,-8,-9,-8,-15,-16,-12,-12,-7,-9,-14,-16,-9,-10,-11,-11
40 | 532000,female,men,19.5,-10,-14,-10,-6,-12,-9,-11,-9,-2,-10,-14,-16,-6,0,-10,-12,-11,-7,-13,-10,-14,-9,-8,-6,-8,-10,-9,-14,-11,-12,0,-10,-9,-10,-9,-7,-14,-9,-13,-7,-11,-9,-16,-13,-11,-11,-14,-9,2,-9
41 | 532182,female,women,21.1,-12,-7,-8,-10,-6,-12,19,-9,-11,-4,-10,-10,-8,-12,-6,-12,-10,-7,-14,-12,-12,-10,-10,0,-5,-10,-10,-11,-9,0,-8,12,-5,-8,-8,-5,-9,-11,-9,-9,0,-12,-9,-6,-11,-10,-8,-8,-11,-11
42 | 532183,female,men,43.4,-7,0,-8,12,7,-10,-9,2,-6,-10,-8,-8,-10,11,-9,-7,-10,-8,-5,-5,-11,8,-8,4,-6,-8,0,3,5,-8,8,-6,-4,8,-7,-9,4,-9,-6,3,-9,-8,-10,-8,-8,-8,-6,-10,10,-2
43 | 532184,female,men,52.2,4,6,-4,2,4,-4,-2,4,-2,-2,-4,-2,-4,2,-2,4,-2,-2,3,-2,-4,4,4,4,-4,-4,-4,3,4,2,4,2,2,-1,4,-3,-4,-2,-2,4,4,2,-2,4,-1,-4,-2,-2,4,-3
44 | 532185,female,men,24.4,-2,-2,-1,-2,-1,-2,-1,-2,-2,-1,-2,-2,-2,-2,-1,-2,-2,-2,-2,-2,-1,-1,-2,-2,-2,-2,-1,-1,-1,-2,-1,-4,-2,-2,-2,-1,-2,-2,-1,-2,-2,-2,-1,-1,-2,-1,-2,-1,-1,-2
45 | 532192,female,men,21.0,-13,-12,-10,-11,-11,-7,0,-10,-12,-13,-12,-6,0,-14,-12,-11,-11,-11,0,-11,-10,-10,-12,0,-12,-11,-11,-10,0,0,0,0,-10,-6,-7,-12,-12,-10,-10,-11,0,-12,-12,-11,-13,-11,-9,0,-12,-12
46 | 532213,male,women,19.9,-5,-10,-12,-7,0,-11,-8,0,-10,-12,-12,-4,-11,-13,-10,0,-9,-7,0,-13,-11,-13,-11,-13,-12,-11,-6,-10,-3,-14,-5,-11,0,0,-12,-13,-13,-13,-9,0,-8,0,-13,-9,-11,-10,-6,-10,-9,-10
47 | 532214,male,women,18.6,-11,-11,-12,0,-11,-12,-10,-7,-8,-11,-11,-12,-11,-9,-11,-10,-11,-11,-11,-12,-11,-11,-11,-10,-11,-8,-10,-10,-12,-12,-6,-9,-10,-9,-10,-10,-11,-7,-11,-12,-9,-10,-6,-11,-12,-10,-11,-11,-11,-10
48 | 532215,male,women,20.3,2,-7,3,-11,-7,-5,-13,-6,-10,-9,-10,-12,-5,9,-5,-6,-11,-11,-11,-13,-14,-10,-12,13,-8,18,-13,0,-13,-14,5,-13,-9,-3,-8,-8,-10,-8,-7,-7,-2,-11,-13,-9,-10,-8,6,-13,-10,-8
49 | 532216,male,women,21.9,-17,-12,-12,-13,-15,-17,-13,-15,-9,-16,0,-16,-17,-17,-16,-16,-14,-17,-15,-16,-16,-14,-9,-13,-13,-12,-8,-14,-10,-5,-4,0,-17,-15,-11,-12,-16,-17,-15,-14,-16,-15,-16,-15,-5,-16,-16,-14,-14,-16
50 | 532217,male,women,18.3,-8,-10,25,-10,-6,-10,-9,-11,-10,-8,-6,-10,10,-5,31,20,-8,-10,-7,-8,-12,-7,-12,17,-12,-12,-6,-10,-12,13,9,2,-4,-3,-11,-11,-8,-5,-8,-12,23,-6,-9,-10,-11,-11,-8,-10,-8,-10
51 | 532218,female,women,19.8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
52 | 532219,female,men,19.7,-11,-11,-7,-3,-5,13,16,-10,10,-11,-9,-11,5,9,0,0,-10,-9,-11,9,-10,-10,3,-9,-10,-12,-10,-10,17,-11,-8,-7,-8,-6,-10,-11,-10,-10,-8,-9,0,-11,-10,-11,7,-10,-10,-10,18,0
53 | 532220,female,men,36.9,0,-4,-12,-4,5,-6,-2,0,-11,-11,-13,-11,0,-12,-7,-7,0,-13,8,-5,-8,-11,0,-12,-5,-14,-3,-5,-10,0,6,10,0,0,-12,-12,-6,-11,0,-5,-11,-3,-7,-7,-11,-13,-10,0,0,0
54 | 532221,female,men,25.0,-15,-16,-18,-16,-11,62,75,-16,-16,-14,-15,-17,-18,-16,-15,-15,-13,-17,-16,-16,-17,-14,-15,21,-17,-17,-17,-13,-16,-16,54,-5,-12,-19,-15,-14,-14,-17,-14,-13,57,-13,-18,-16,-16,-17,-13,-13,-16,-10
55 | 532222,male,women,21.7,-7,-10,-17,-15,0,-18,-10,-15,-16,-17,-16,-5,0,-3,-6,-9,-17,-18,-10,-1,-11,-10,-17,-16,-3,-17,-8,-16,-16,-2,-12,-4,-13,-17,-15,-18,-17,-6,-7,-5,-14,0,-18,-7,-17,-16,-9,-8,-9,0
56 | 532243,male,women,19.7,0,5,-7,0,0,0,0,-3,-6,-2,-2,-2,0,0,-1,0,-5,-2,0,1,-2,-4,0,0,-6,-4,0,-4,0,-2,0,0,-6,0,0,-3,-6,-9,-6,2,-2,1,-2,-2,0,-6,0,0,0,-2
57 | 532244,female,men,18.5,11,-10,-12,-10,-9,-14,-11,-10,-11,-10,-12,0,-10,-11,-8,-10,-10,0,17,-10,-9,-9,19,13,-10,-10,-10,-5,26,-9,-10,22,-10,-12,-2,-8,-10,-10,-11,0,-12,-10,-9,0,0,13,0,-12,-10,-11
58 | 532245,female,either,18.1,3,9,7,0,16,16,14,1,-7,11,3,11,-6,2,20,7,20,-7,2,7,9,5,25,18,-4,4,5,10,8,-6,3,25,20,24,4,5,-4,30,10,-6,4,5,1,7,17,19,-2,9,4,6
59 | 532246,male,women,19.2,-15,-3,-7,-8,3,-2,-13,3,-6,-12,-14,-6,3,-6,-2,7,-12,-15,-13,-13,-14,3,-6,-6,-14,-15,-3,-4,-7,-5,12,-7,-16,-9,-8,-14,-9,-14,-1,-1,-13,5,-4,-7,2,-7,-3,0,0,7
60 | 532247,male,women,18.2,-15,-14,-14,-16,-16,-14,-13,-17,-15,-15,-13,-12,-15,-12,-18,-12,-14,-14,-14,-14,-14,-13,-15,-15,-10,-17,-15,-14,-15,-14,-17,-5,-1,-15,-15,-15,-12,-16,-15,-14,-14,-13,-16,-14,-13,-11,-14,-15,-17,-14
61 | 532249,male,women,25.3,-10,-11,-11,-8,-12,-5,-12,-7,-12,-11,-14,-10,-11,-13,-11,-11,-10,-14,-13,-12,-14,-12,-12,-11,-14,-10,-10,-12,-12,-12,-10,-11,-9,-10,-13,-15,-15,-10,-13,-7,-14,-12,-12,-12,-9,-14,-13,-12,-12,-6
62 | 532250,female,men,19.0,10,-7,-3,1,14,-5,-9,-11,-8,-9,-9,-10,-2,-5,7,-8,-3,-9,5,-7,-6,7,2,7,-6,-10,-6,-3,7,-5,10,-7,-8,-8,-9,-4,4,-3,-5,-6,12,-5,-8,-6,-5,11,15,11,-4,-1
63 | 532251,female,men,20.9,-2,-4,-11,20,5,-11,-11,-3,-14,-11,-8,-14,-9,2,-6,0,-8,-11,14,-1,-12,-3,18,-2,-9,-12,-4,-10,-6,-6,0,7,18,45,-11,-11,-5,-9,-12,-4,-10,-6,-12,8,-4,-2,-1,-3,12,-4
64 | 532252,male,women,23.2,-17,-15,13,-19,-18,-17,-19,-4,-12,18,1,-16,-18,-18,-17,-7,-17,-20,-18,-12,-16,-17,-19,-19,-19,-17,3,-12,-18,-16,-15,-19,-22,0,-17,-20,-18,12,-19,-19,-15,-20,-15,-19,-13,-19,-22,-14,-18,18
65 | 532253,female,either,28.8,-10,-10,-16,-13,-14,-15,-14,-17,-10,-15,-16,-6,-6,-16,-15,-13,-12,-16,-15,-14,-11,-16,-15,-16,-16,-17,-12,-14,-14,-15,-10,-14,-17,-14,-7,-14,-10,-6,-17,-13,-11,-16,-15,-9,-14,-15,-15,-13,-16,-15
66 | 532254,female,either,19.6,-11,-10,-11,0,-13,-3,6,-7,0,-12,-10,-12,12,-10,-7,-9,-11,-12,-12,-11,-10,-11,-11,-1,-13,-12,-11,-14,-7,0,-1,0,-11,-12,0,-12,-10,-10,-11,-11,-6,-7,-12,-8,-3,-11,-13,-13,0,-8
67 | 532255,male,women,21.5,2,-2,6,0,-10,-14,4,11,-15,2,-10,-8,-14,4,-13,-10,18,-10,3,-12,18,-1,1,4,-10,-14,7,-8,-12,-7,9,-12,15,12,-2,-8,-12,-13,-4,7,-12,7,-8,-7,0,-6,-15,5,11,-10
68 | 532256,female,neither,18.6,0,2,4,10,-9,-4,3,4,-8,-4,-8,-6,3,8,8,8,-7,12,0,-7,-2,-1,1,-7,12,2,-11,8,0,-7,8,0,-6,0,-7,-8,-4,-12,-6,0,2,7,-3,-1,14,8,4,10,9,-7
69 | 532257,female,men,19.3,0,12,-10,-9,-10,-3,-9,0,-12,-8,-5,-9,6,23,-6,-6,0,-8,-4,-10,-4,5,-5,7,-5,-10,-6,-3,-2,0,0,1,-9,9,-7,-7,-5,0,-6,-6,-5,4,-3,10,-10,-10,0,0,0,20
70 | 532492,male,men,25.1,49,0,-9,23,-6,12,33,42,-11,-9,-12,-8,-11,61,25,41,18,-9,17,-7,-11,-10,34,-8,-10,-9,-9,34,43,39,0,36,23,35,-10,-9,-8,-9,-8,15,47,55,-12,38,39,-11,48,42,198,37
71 | 532493,male,women,18.5,-7,-10,-13,10,-7,23,-7,-7,7,12,-4,-14,11,-12,-5,2,-12,-8,-12,18,-13,16,-8,-10,-16,-11,-13,-8,-13,-8,16,7,7,-14,-10,-7,-11,-9,-14,-13,-8,3,-14,-11,12,-13,-10,-9,-8,19
72 | 532495,male,women,19.4,0,-11,-15,-1,-3,-14,-3,-10,-8,-8,-14,-10,-2,0,-13,-3,-12,-13,-1,-10,-2,-8,-3,-15,-7,-15,-13,0,-5,-5,0,0,-4,-5,-13,-10,-15,-8,-8,0,-15,-2,-11,-9,-12,-16,-10,-9,-15,-2
73 | 532496,male,,18.9,-14,0,-4,-11,-9,0,0,0,-12,0,-12,-13,0,0,0,0,-10,0,0,-12,0,0,-12,0,0,-13,0,0,0,0,0,0,0,0,0,0,-11,-11,-13,0,-12,0,-13,-12,0,-14,0,0,0,0
74 | 532497,male,women,21.8,9,5,1,12,14,15,34,2,8,11,-11,-12,11,0,14,33,19,43,8,11,13,7,2,4,31,34,4,21,-8,13,31,15,9,2,24,10,24,18,11,30,34,-5,9,18,36,6,-17,15,9,29
75 | 532500,male,women,37.1,-12,-11,-10,-14,-4,-5,-10,-9,-10,-6,-9,-10,-7,-6,-14,-12,-7,-8,0,-15,-11,-9,-9,0,-10,-15,-13,-15,-6,-12,-12,-4,-14,-9,-9,-16,-14,-9,-13,-15,0,-8,-11,-14,-9,-11,-7,-11,-13,-13
76 | 532501,male,either,19.7,2,4,-2,-4,1,5,6,-2,-2,-1,-5,-2,2,6,4,0,0,-4,4,-2,3,-2,-4,8,-4,-4,1,-3,0,-2,5,4,4,7,-3,-4,-1,1,-2,-4,-1,-4,-4,6,1,-2,-2,-3,1,3
77 | 532503,male,women,18.8,-8,0,-10,-10,-10,-2,-8,-1,0,-8,1,-9,-10,-11,14,0,-11,-6,-11,-9,-8,-7,-9,-10,-8,-10,1,-5,-7,-4,-6,24,-6,3,-12,-9,-3,0,-8,0,-9,-10,-8,-12,-8,-4,0,-10,4,-5
78 | 532925,male,women,29.1,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
79 | 532926,male,men,20.2,0,-8,-8,51,40,-11,50,-6,-13,-11,-13,-11,75,34,-11,-4,-12,-8,-4,15,17,-10,38,-8,-9,-11,-12,-7,10,10,-4,-7,11,9,-8,-7,-12,-9,0,-8,-8,-6,-11,-8,-8,31,-4,29,34,-9
80 | 532928,male,men,21.2,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
81 | 532930,female,men,18.5,-9,-10,-10,0,-11,17,-11,-11,-11,-11,-11,-10,-10,19,17,14,18,-8,15,18,-13,-12,-11,-11,-10,-9,-10,0,-10,-9,21,24,-9,19,18,-12,-8,-10,-10,-9,-9,-9,-9,-10,-12,-12,24,13,-10,-10
82 | 532931,male,men,23.8,8,-2,0,10,2,2,6,0,1,6,-3,2,6,5,4,3,-6,1,-6,2,-4,0,-2,0,0,-6,7,0,8,0,6,8,-4,6,2,-4,-2,2,1,-2,2,4,-2,4,-2,-4,0,8,4,10
83 | 533255,male,women,26.5,0,-10,-5,0,-1,0,0,0,-12,-7,-4,-4,-2,-1,-10,0,-7,-4,0,-7,0,0,-10,0,0,-13,0,0,0,0,0,-2,-8,0,-4,-6,0,-12,-1,3,-1,0,-8,-8,0,-3,-7,0,0,-9
84 |
--------------------------------------------------------------------------------
/face-body/data/gender-male_type-stimuli_data.csv:
--------------------------------------------------------------------------------
1 | stimulus name,stimulus sex,age,height(cm),weight(kg),BMI,chest(cm),waist(cm),hips(cm)
andrej,male,21,185,73,21.32943755,97,81,95
aurel,male,23,178,70,22.09317005,87,69,101
bernard,male,27,177,91,29.04657027,95,96,112
blazej,male,22,175,75,24.48979592,96,75,83
boris,male,30,200,88,22,91,91,105
bretislav,male,30,176,70,22.5981405,91,74,90
bystrik,male,25,181,87,26.55596594,105,82,107
cenek,male,28,176,90,29.05475207,109,98,114
cestmir,male,27,187,87,24.8791787,100,86,106
cornelius,male,25,178,75,23.67125363,93,85,104
cyril,male,24,183,78,23.29122996,98,77,103
dalimil,male,26,180,84,25.92592593,103,82,104
denis,male,24,172,70,23.66143862,97,77,97
dionyz,male,24,187,82,23.44934084,100,86,98
dominik,male,23,189,72,20.15621063,81,78,96
drahomir,male,25,179,77,24.03170937,95,85,104
elias,male,21,186,90,26.01456816,99,88,105
ferdinand,male,24,183,83,24.78425752,104,86,99
gabriel,male,24,174,68,22.46003435,87,79,100
hanus,male,28,183,86,25.68007405,96,84,106
henrich,male,25,191,74,20.28453167,88,77,102
hynek,male,25,176,78,25.18078512,91,85,99
josef,male,20,191,80,21.92922343,90,76,104
justin,male,19,174,64,21.13885586,84,74,84
kamil,male,22,183,100,29.86055123,115,90,95
kazimir,male,23,182,71,21.43460935,93,73,98
leonard,male,24,182,76,22.94408888,98,78,92
libor,male,29,181,84,25.64024297,101,91,109
lumir,male,20,183,72,21.49959688,107,77,92
maxim,male,25,183,78,23.29122996,92,84,102
mike,male,24,168,59,20.90419501,98,78,88
milos,male,23,175,59,19.26530612,90,70,95
mojmir,male,20,175,65,21.2244898,89,73,89
moric,male,28,190,75,20.77562327,94,80,98
oleg,male,30,181,85,25.94548396,102,90,106
oliver,male,24,178,60,18.9370029,85,78,91
patrik,male,26,189,75,20.99605274,89,85,95
prokop,male,22,176,73,23.56663223,89,80,104
ramiro,male,22,175,75,24.48979592,92,82,97
rehor,male,20,200,100,25,100,86,112
rudolf,male,22,179,70,21.84700852,95,86,103
sobeslav,male,23,187,100,28.59675713,108,97,111
stefan,male,22,180,73,22.5308642,86,81,88
svatopluk,male,21,173,53,17.70857697,90,71,80
tichomir,male,28,187,83,23.73530842,95,84,104
tomasi,male,19,190,75,20.77562327,98,74,92
valer,male,24,184,77,22.74338374,95,84,102
vasil,male,25,175,68,22.20408163,94,77,100
vendelin,male,30,178,75,23.67125363,95,85,104
vladislav,male,20,176,63,20.33832645,85,72,91
--------------------------------------------------------------------------------
/face-body/dataset_description.json:
--------------------------------------------------------------------------------
1 | {
2 | "@context": "https://schema.org/",
3 | "@type": "Dataset",
4 | "name": "Faces and Bodies",
5 | "description": "This project examines the social perception of bodies, in comparison to faces, focusing on the dimension structure from Oosterhof & Todorov (2008, PNAS).",
6 | "schemaVersion": "Psych-DS 0.1.0",
7 | "creator": [
8 | {
9 | "@type": "Person",
10 | "name": "Lisa DeBruine"
11 | },
12 | {
13 | "@type": "Person",
14 | "name": "Danielle Morrison"
15 | }
16 | ],
17 | "citation": "Morrison D, Wang H, Hahn AC, Jones BC, DeBruine LM (2017) Predicting the reward value of faces and bodies from social perception. PLoS ONE 12(9): e0185093.",
18 | "sameAs": "https://doi.org/10.1371/journal.pone.0185093",
19 | "temporalCoverage": "2000-01-01/2018-12-31",
20 | "keywords": [
21 | "faces",
22 | "bodies"
23 | ],
24 | "variableMeasured": ["stimulus name","stimulus sex","age","height(cm)","weight(kg)","BMI","chest(cm)","waist(cm)","hips(cm)","user_id","sex","sexpref","alexandra","anastazie","anezka","bera","bohdana","brenda","carol","christianne","dagmar","debra","dobromila","dusana","edita","eleanora","elena","eugenia","evzenie","gabriela","gejza","ida","ingrid","irena","jindriska","jitka","karina","kordula","lea","linda","livia","lujza","margita","marika","matylda","miloslava","milota","miriama","peggy","perla","radmila","sarlota","saskie","sidonia","stela","tamara","ursula","viktoria","viola","vladena","zelmira","zlata","andrej","aurel","bernard","blazej","boris","bretislav","bystrik","cenek","cestmir","cornelius","cyril","dalimil","denis","dionyz","dominik","drahomir","elias","ferdinand","gabriel","hanus","henrich","hynek","josef","justin","kamil","kazimir","leonard","libor","lumir","maxim","mike","milos","mojmir","moric","oleg","oliver","patrik","prokop","ramiro","rehor","rudolf","sobeslav","stefan","svatopluk","tichomir","tomasi","valer","vasil","vendelin","vladislav","judgment","stimulus_sex","type","rater_sex","rater_age"]
25 | }
26 |
--------------------------------------------------------------------------------
/img/commit-changes.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/img/commit-changes.png
--------------------------------------------------------------------------------
/img/create-branch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/img/create-branch.png
--------------------------------------------------------------------------------
/img/pull-request-form.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/img/pull-request-form.png
--------------------------------------------------------------------------------
/img/pull-request-prompt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/img/pull-request-prompt.png
--------------------------------------------------------------------------------
/img/pull-request-result.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/img/pull-request-result.png
--------------------------------------------------------------------------------
/img/upload-files.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/img/upload-files.png
--------------------------------------------------------------------------------
/informative-mistakes-dataset/data/non_csv_file.txt:
--------------------------------------------------------------------------------
1 | sub_id,date,garment,yarn_color
2 | r2d2,2021-02-21,hat,Country Blue
3 | r2d2,1999-08-12,scarf,Eggplant
4 | r2d2,2008-12-12,hat,Royal
5 | r2d2,2019,hat,Grey
6 | r2d2,1999,snood,Gold
7 | r2d2,2014-01-01,sweater,Kelly
8 | c3p0,2021,mittens,Lavender
9 | c3p0,2020,glove,Toast
10 | c3p0,2020-12-12,,Mint Green
11 | bb8,2020,scarf,Maroon
12 | bb8,2021,scarf,Pink Carnation
13 |
--------------------------------------------------------------------------------
/informative-mistakes-dataset/data/study-validname_type-pdf_data.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/informative-mistakes-dataset/data/study-validname_type-pdf_data.csv
--------------------------------------------------------------------------------
/informative-mistakes-dataset/data/study-yarncolor_data.csv:
--------------------------------------------------------------------------------
1 | sub_id,date,garment,yarn_color
2 | r2d2,2021-02-21,hat,Country Blue
3 | r2d2,1999-08-12,scarf,Eggplant
4 | r2d2,2008-12-12,hat,Royal
5 | r2d2,2019,hat,Grey
6 | r2d2,1999,snood,Gold
7 | r2d2,2014-01-01,sweater,Kelly
8 | c3p0,2021,mittens,Lavender
9 | c3p0,2020,glove,Toast
10 | c3p0,2020-12-12,,Mint Green
11 | bb8,2020,scarf,Maroon
12 | bb8,2021,scarf,Pink Carnation
13 |
--------------------------------------------------------------------------------
/informative-mistakes-dataset/data/study-yarncolor_type-badnames_data.csv:
--------------------------------------------------------------------------------
1 | sub_id,,garment,yarn_color,yarn_color
2 | r2d2,2021-02-21,hat,Country Blue,
3 | r2d2,1999-08-12,scarf,Eggplant,
4 | r2d2,2008-12-12,hat,Royal,
5 | r2d2,2019,hat,Grey,
6 | r2d2,,,,
7 | r2d2,2014-01-01,sweater,Kelly,
8 | c3p0,2021,mittens,Lavender,
9 | c3p0,2020,glove,Toast,
10 | c3p0,2020-12-12,,Mint Green,
11 | bb8,2020,scarf,Maroon,
12 | bb8,2021,scarf,Pink Carnation,
13 |
--------------------------------------------------------------------------------
/informative-mistakes-dataset/data/subdir/subdir/study-yarn_location-subdir_data.csv:
--------------------------------------------------------------------------------
1 | sub_id,date,yarn_color,rating
2 | r2d2,2021-02-21,Country Blue,199
3 | r2d2,1999-08-12,Eggplant,12
4 | r2d2,2008-12-12,Royal,0
5 | r2d2,2019,Grey,-1
6 | r2d2,1999,Gold,14
7 | r2d2,2014-01-01,Kelly,
8 | c3p0,2021,Lavender,
9 | c3p0,2020,Toast,
10 | c3p0,2020-12-12,Mint Green,
11 | bb8,2020,Maroon,
12 | bb8,2021,Pink Carnation,2000
13 |
--------------------------------------------------------------------------------
/informative-mistakes-dataset/data/wrong-name-structure.csv:
--------------------------------------------------------------------------------
1 | sub_id,date,garment,yarn_color
2 | r2d2,2021-02-21,hat,Country Blue
3 | r2d2,1999-08-12,scarf,Eggplant
4 | r2d2,2008-12-12,hat,Royal
5 | r2d2,2019,hat,Grey
6 | r2d2,1999,snood,Gold
7 | r2d2,2014-01-01,sweater,Kelly
8 | c3p0,2021,mittens,Lavender
9 | c3p0,2020,glove,Toast
10 | c3p0,2020-12-12,,Mint Green
11 | bb8,2020,scarf,Maroon
12 | bb8,2021,scarf,Pink Carnation
13 |
--------------------------------------------------------------------------------
/informative-mistakes-dataset/dataset_description.json:
--------------------------------------------------------------------------------
1 | {
2 | "@context" : "http://schema.org/",
3 | "@type" : "Dataset",
4 | "name" : "Psych-DS 'Infomative Mistakes' Dataset",
5 | "description" : "This is a minimal example of a dataset which is several key mistakes away from being a valid Psych-DS dataset.",
6 | "variableMeasured" : ["lab_id", "age_years","responded","trial_id","response", "sub_id", "date", "rating"]
7 | }
--------------------------------------------------------------------------------
/macrophage-conditioning/README.md:
--------------------------------------------------------------------------------
1 | ## Learning in a simple biological system: a pilot study of classical conditioning of human macrophages in vitro
2 |
3 | This project represents an attempt at standardization according to the [Psych-DS Specification](https://docs.google.com/document/d/1u8o5jnWk0Iqp_J06PTu5NjBfVsdoPbBhstht6W0fFp0/edit#)
4 | Original study conducted by Gustav Nilsonne et al. Full article available [here](https://behavioralandbrainfunctions.biomedcentral.com/articles/10.1186/1744-9081-7-47).
5 | Conformance work according to Psych-DS specification carried out by Love Ahnström during July 2022.
--------------------------------------------------------------------------------
/macrophage-conditioning/data/primary_data/IL-6 ELISA 090603.pzf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/macrophage-conditioning/data/primary_data/IL-6 ELISA 090603.pzf
--------------------------------------------------------------------------------
/macrophage-conditioning/data/primary_data/IL-6 ELISA 090603.pzfx:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 | Project info 1
12 |
13 | Experiment Date2022-07-23
14 | Experiment ID
15 | Notebook ID
16 | Project
17 | Experimenter
18 | Protocol
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 | Absolute values
27 |
28 |
29 | Group 1
30 | Group 2
31 | Group 3
32 | Group 4
33 | Group 5
34 | Group 6
35 |
36 |
37 |
38 | Group
39 |
40 | 1
41 | 2
42 | 3
43 | 4
44 | 5
45 | 6
46 |
47 |
48 |
49 | Group
50 |
51 | 1
52 | 2
53 | 3
54 | 4
55 | 5
56 | 6
57 |
58 |
59 |
60 | D1S1
61 |
62 | 0,292
63 | 0,205
64 | 0,724
65 | 6,353
66 | 0,271
67 | 0,436
68 |
69 |
70 | 0,234
71 | 0,195
72 | 0,942
73 | 6,598
74 | 0,348
75 | 0,436
76 |
77 |
78 |
79 | D1S2
80 |
81 | 0,21
82 | 0,376
83 | 0,163
84 | 4,882
85 | 1,341
86 | 1,245
87 |
88 |
89 | 0,245
90 | 0,382
91 | 0,163
92 | 4,816
93 | 1,263
94 | 1,686
95 |
96 |
97 |
98 | D2S1
99 |
100 | 0,172
101 | 0,2
102 | 0,292
103 | 1,021
104 | 0,958
105 | 0,538
106 |
107 |
108 | 0,163
109 | 0,195
110 | 0,224
111 | 1,062
112 | 1,095
113 | 0,493
114 |
115 |
116 |
117 | D2S2
118 |
119 | 0,625
120 | 0,297
121 | 0,154
122 | 1,211
123 | 0,474
124 | 0,353
125 |
126 |
127 | 0,565
128 | 0,281
129 | 0,132
130 | 1,658
131 | 0,468
132 | 0,4
133 |
134 |
135 |
136 | 5
137 |
138 |
139 |
140 |
141 | 6
142 |
143 |
144 |
145 |
146 |
147 | Relative values
148 |
149 |
150 | Group 1
151 | Group 2
152 | Group 3
153 | Group 4
154 | Group 5
155 | Group 6
156 |
157 |
158 |
159 | D1S1
160 |
161 | 1,110266
162 | 0,7794677
163 | 2,752852
164 | 24,15589
165 | 1,030418
166 | 1,657795
167 |
168 |
169 | 0,8897339
170 | 0,7414449
171 | 3,581749
172 | 25,08745
173 | 1,323194
174 | 1,657795
175 |
176 |
177 |
178 | D1S2
179 |
180 | 0,9230769
181 | 1,652747
182 | 0,7164835
183 | 21,45934
184 | 5,894506
185 | 5,472528
186 |
187 |
188 | 1,076923
189 | 1,679121
190 | 0,7164835
191 | 21,16923
192 | 5,551648
193 | 7,410989
194 |
195 |
196 |
197 | D2S1
198 |
199 | 1,026866
200 | 1,19403
201 | 1,743284
202 | 6,095522
203 | 5,719403
204 | 3,21194
205 |
206 |
207 | 0,9731343
208 | 1,164179
209 | 1,337313
210 | 6,340299
211 | 6,537313
212 | 2,943284
213 |
214 |
215 |
216 | D2S2
217 |
218 | 1,05042
219 | 0,4991597
220 | 0,2588235
221 | 2,035294
222 | 0,7966387
223 | 0,5932773
224 |
225 |
226 | 0,9495798
227 | 0,4722689
228 | 0,2218487
229 | 2,786555
230 | 0,7865546
231 | 0,6722689
232 |
233 |
234 |
235 | 5
236 |
237 |
238 |
239 |
240 | 6
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 | eNrsXQl4FEXaru6Z6bm7kxA5F2w5AySYBMINmQQQcQFjEpXLYyADJkxmMJMEPBlZQBf/xYCg
249 | Iqw/ePADK+KJgv780ZWIu+B6Ig8gIuLKw+UBy/OAYP6q7uprZjKZZGZyUS9Uqo/q6qrvq6+6
250 | 6uvqd/LG3HDD+PycQZTfBgCooqooGv4tAlPoDeAeeOQ9GmiwWAeAHm9/3AsAGp73gUoQKQrA
251 | uJDHaX9eHwDGoi0YXDAYYDhPiWdrITSpVTGFg/p4fXcjICAgICAgICAgICAgICCIHygiAgIC
252 | AgICAgICAgICAgICAgICAgICAoKooQO58O/pdgAkwzhfB8BEff1XUfJftO5uD9wyiMf0YB38
253 | e2MeP8br9pbxE50+V9lNrnJ+0JD0dD5vzER+sHChHjDrwJSUdkaUCQVOWrymIhhzYApNw3gK
254 | rYN/JzaoIpQqRov8OlHBiwIRGD8tlNMoVFxETlmx0x0m754wsKr9KvFmOprqjvMR71pwX+lM
255 | b5iM+sDQLmQ+STgfWgi3F3vmFMHgC1OeP4TMh8b56IQDhcWlLh8/2TWfz/eWOj1B+fSAwV5H
256 | eRjHQ8IyzscNADwsbKHFnKuACadFshX3KM0erdnTafb0eO9xYcsPw2rwpVHJr/Gl1YIs6iQg
257 | ICAgIGh6oAfzWvkjkBpQSUsjEgKCpgTtMPnFT37MIAGN9Gf6vO6Kchdf6XRXuHzAAlKp4GmP
258 | nuZDzh2uRiAxpOLJlR7wwArS8TdUFhxG4XH+vTg8T0KLDjwMRrwdCDRLSxFVDfgNRvlzOTTD
259 | GgfnWU9R7UIek+0N9/4JeEbnmAdn3HB7OZgCxC1KnuWKLecWoHyg9zu8QmpVlLYNCpDmj0B1
260 | DQo20FGV+hYchPsvlM5SdZy1C7NpdfkdPlUKnyI3MSWlqkP4lLQqoLNDcA2DU+pwqD+lHgch
261 | JSx9NynlwsCUBhzCpeT8I7FW1JJGsQtv01jUNpVe1TCLck1QZXJOSKTDiSU3xRMgDzc7Bp+h
262 | AsQeSuHotsfD+KOqcGNcKQ82tgv3UVfJiPM24kBjZ44Rl/IavK3HpTViwfXA2wicQxRVgmqA
263 | EygqCudhqVNUqFTjy7wV80LIi8ZXJNQrLzPQftGqlpelns5ckpdUHxBG9RTuDkapSkdp6oOk
264 | NDajICOq6uhV9hRYnVERqZ+Wq0PFojqZzVwdnVwdOvrqZDa7dii5OrpYVCezxVRH38DqaPsC
265 | dDQrqrpQUddF6QcMUddlcAuoy5/x1hpZNyY8/KdgKa+DcV6Zt8Q1q5wv9sz28hm8u9hXzntn
266 | 87O8Hl+501MuzQdO6MQg4UWazANCzQdehEE7H7DhgIQ3QRVuIaHFBmmQNCGC+YAaFUKgwh6j
267 | VIMvAQtpYV+cD0jdiwRbwN2l+YCtnvkAF3Cddj4gtUFlxN9RVTsKj4+ls2KHaFTdUSqlekys
268 | V5XKGNQhoiHaGNynNGhsjLKXbp2LCxjPsTGH8+aA+GqNxqWy4lL2UY2NB+Aqo2fFcFw29TPE
269 | VI/ITGFFhkp1G/LJNFpeFtWEJ1bySg7IS5qchnvW0NjVlO9yO8uLK+txNYFFgLiaQjxa0Nvh
270 | 4EcLcTW1fVcT0vNqygb+TdlDHgv0Gag7f8XVxOGHm9rVBFSult9Vs+VQvQVQPVp0qhAbV5NZ
271 | csxUqlJUhnI1WSJKSeM+W0opO5AqQ7mabBGl1KueCfW7mtiIXE1cgKTpMK4mLnpXExdijNFa
272 | XE3mMKIKnJJxsXHNBIorlq4ZSyyqk9nM1VFcM9boq5PZ7NpRfBm2WFQns8VUx97A6kTrmgms
273 | SyxdM2zUdRncAuryZ6wh9XA5qYFvZtEdTTAfMlwOHi6bYN/UDqQjU2Z6W5Lt+1lJi7l4YMSA
274 | /tjMaZAprLoVF+w+B5bBKFH1UuMxk6R5Sn5i/m0LQp5DaRFKF7BJ01IoeZUnQhHoBP8pqHZI
275 | hQ+VE0KyZiLZHpZVcrWiJ+gV3DINeFuai6NtnWp7PXgMl1yvGvhJV9QGIDDHwPPqu4Q6r6vn
276 | /AphIim9t9OprOoa+QxQ2RlK0QGMDNJ4Tyy9n7PFuKNq32RU64yC+Sg5fDHpA3QFP62os0Ob
277 | I6/af1UvapsSSqCHEglVhqnaHKpnBuWgE3JgYG9iAi8JhK2G+ltyWKA0jcspVJrY5bTVH+iZ
278 | 2gxSgbLOORIr3iRMkupzMEeWr6VB+aLUWx3aOlAR34tq0L0iz9faoHytIepAR3wvukH3ijxf
279 | W4PytQXUgWoDbYlqA22JagNtiW4DbYluA22JbrVtqZd/qeqYMvK4ucuJNx+ZPDcbZWEyKi49
280 | PFIBhUHXqGNa47ILB/Xd5ws1TBNeTFiE2YuFEq8X90dSaJ+S9++h0T4t76/SoX2dvF+tR/t6
281 | ef+0Ae2jkcES0D1cobK7y6UTa/Iojh/D8VbQF48xBoQb1KB5D3qv0guLmapzsOUXxDxNblxi
282 | ynTgDhocBjekSDj1Qou5HjGAmIkhXSMGmohhKQheMs9jo3sgWxlsqx2F/cDdSmJHcFcXObdi
283 | sBhAbI0i/O0TNGLQh52BvKpvWGugVB+vxkUM8WoNBiKGpcHPC3n+Wa0xitBimOAI7hno1mIU
284 | WjEYY9oa6Ki6yGZsDaarXQwd/dKgLkm+RbIy5K5VltJX5fQAnQMG4+ql9lU51ylr+1SeZN7f
285 | TUh3g+F580H7dK7EUGPebh/CiY7GQywc0IHFuPiHhHd9FtUwVHKvBYafm8pFqnHe/I73r8PO
286 | b3RKOp8MFmje7UY21aHCNBfeIcrODC4avrLcZbvEdmUuWkbY9rMG5jtLge0sS8EG2XDZpTeb
287 | 7FCc4q/S1FyeZsKNn0JMPZ5dg/Bxdobp5T8gByQLm7fySK/1B19hhmadIDiui5CJU3rNs88E
288 | ZRQs8b5ynuvAMHi6k1pPtFIjIA8owjkAUbJarWr1QKTICAV1VkwdDcOMeytTkAlq09cxTaiF
289 | gqpVl67ugHzsjhw4VsYx2kehKgePoR1SrNxTeQqmONKFurJMDsgQtjLh7KgxpgHCzEYV0xjB
290 | 7LdugKZxF3PJ+hA0jfHMMevqVmgalGwalPx2RW0aW0PIYf6u/+58/TcfZu+cYKP7P9oOmgal
291 | Mo2txu/DmgYVJ9MIP1FooGlQTWAaUFBNahp5zCFsGuXwaRs/03iYYdnj0DSeZzLZamgay5jO
292 | 7IFWaBq0bBq08GIq0DRKQshh3ijL1y/M25295NQt73Rb8ks2C1OrJoLVoJlMg46dadBNYBpQ
293 | UE1qGk8yk7BpvA2FGT/TeJ/Zae9jv8T+wByx6+z72X1Mjb2LvfWZhk42DfTWVBdkGn1CyOHE
294 | b5t/+XzSB/ipcQmahk77MVIzmYYudqahawrTALVNahr7maHYNC6BqXEzDRqcZGzmwbYLZtaY
295 | bk6yfW7ubbzRfMm6E4ornWqEaVDNYRoSMuRG2D2orUgFU83l5OuTwfVCTVfVirJfBc/dK7SU
296 | QThFf3+S7AfrAmCfgZGK9kCBa1aZq7zY60Ffh02YmDY4lXfi9UlpwnsTaZxGCW9JzODoAGnl
297 | hEVYETVAXmtTBBvwXPi3v6MxKlfyrVvlJjg138aKU/MvWHFqvp8Vp+atb3opOilMGjUrK4Kq
298 | Hf1wfcQGEfgzv8jxHa9pvAksMTxvzmIusZsNNeZEKGPkAkEx3QqfOpHJWdcMcqZBPrvRmsvd
299 | Zq9k/2HtxmXal7PHrAzX2Q7norrFeFVX5HLO1OlBLgfARisQ4ttgPvmsEqPj3eDxf+A4Ex6v
300 | ZJUYHWfg8WM4RuVYzirxMWsoOUvrwsQu7L8sje3CdgKxC9sJ0CcvUhdGyV2YTujCjKohcarg
301 | HJ6aUVhc7obdVW8huaGO7ooRitb0nZYNfG6nLSe5g5YL9t6WGm675Sw72vIK9xwsDa8XlWxq
302 | gJJ5vamZjEkfg+cUwEpWnkx6aSmlX1ErSoEW9acJpisNuChhJGQGKT0UPSbgUdRc+LcU/BEg
303 | Ms3G6VLJNbwuV0Jdllgv2LdDXd5gPct+AnU5wNradGmIgS4prEvFRA116zKzJeqyu/Ukdwnq
304 | 8gZrDbcf6vJO6yvcrlanSyYGuqSxLmlZl0xdusxsmXb5OtTlMtsF+36oy9m2s+xZqMvJttam
305 | S2MMdKnDutTJujTWrcsWZ5c0qNGlc8n2lMSTukLuZ5s+kda7uQO200IxGj74bBqEmteZYvi8
306 | ROdEXZoEXU4HtGomNx0In+EXFaOZXLFnznDzmAKzJqTB/3YzxK1wD4U04Rjes9sLETH4cLOS
307 | WN5CaettIiZ8pvFDqciaxv36/MQk7mTSc/rKxLNsTdJ2/fLE/ewrSejeDW8akTSP52CJKhMB
308 | OMsqcU2SeLwmqbFNIykuTSNJaBq7NU1jN/w7OXc4L9Bx+fiBvNNTxA/inWUu3jmrvMLpdt/H
309 | l9/j4n3OUhc/y+V28/O88yrQB/1eTyrv9Akp54gXZwkXDx7AF97j8ompffx8F0wwu7jMV867
310 | Fszz+lxFfLmX93jLSp1uvtRVVFxRys/2lvED0/nSYg+fMkddkKy+QuSrmOlz3Vvh8pSj0nj5
311 | MQVyukHiPfsOSBM+EJNe2cSu4YGIJmqj7em2NzmTfaa90FbFHbfdb3fbFnB7ba2tT0qOS8NL
312 | FvTCabxLaGFFylgvbAipvM9VVuzy9W05/cinJobLs/zMnTf141ItezmbOZdLtrzJNX7e3Tzq
313 | pGKgznuxOss0825lgia+42U082405JyCp90tzUtIg9/0b5v3GU6x1xoOmTcbPmKHGM6ZVxi2
314 | sY13DP8GC3KKFeO3YbPdZ1BidPxaGH+E40Pw+GZVjI4PgfE2HJ+Dx1eo4m1sXV4VWtbuYl1j
315 | tftYSMewMmWjBe320Jgu+kp/gqfcVeZ2Vcwt9iCn8Lw515e6+ZRSl9PD9+fLnJ45rr6BqlfM
316 | mREKHFvVK/mGUn1Hh1/4yPYx6hGhcfbLdTtnzV0nm8YiwDN1e9/DvW8ISCPlAdpSICAgILja
317 | cdov+cDOAIdOecAOAqEWGxAQEITDGZCg1856iRUREFztvYL0bKXJs5WAIEor0qmsqK15Jkgg
318 | IZ5BsSI9eRYREET5LDIQKyIgiNKKGGJFBARRWpGRWBEBQaNw2uF3/ElePaGQmb8g8+iIHv0X
319 | hZ93QB4Ic0AO4r4jR0kh/caTBHGxV7Uj32SHh6dVOt1XYKZHuwOw4OCZNZMmf+DouNSYM8m2
320 | dGzyrMtT3zlP9/7L2qcsGa+tWLxkZ/clbN7mrpkTbRU/UO8tm5/+C33k/bfmbCo4mNs3Lbu3
321 | 5cT43OELfxoy8F9DvB/rf8jJui0x96ePTB+nuUt//XXc5pTK/0we92LhW0WjHd99m3VkxYTu
322 | PSvPj//dMXP9lXZ/2T4i5+YVXQadMqZ9v5RPP+zKmplw8tHJP59NPvmQ27D22RlfT/pxx/oN
323 | uddR1f9nODrqr3nDRm9adX1yv3Fbtq9dlFeaNTEt89nSQ3tudxn73fHul5NGntwx8InTN/nd
324 | C5yvnXnE4BlR0GnxHadentp958fdL185vW+15eKIM2+NeOSF12t7XHnkrTkLHrg4Y9eWI991
325 | 7nJH5aU9q71L2G8nfDDp3Iabp3Yv/Pube1N152z/6fd9u092P7DrnfVdlvbZem7mDM9vH/zJ
326 | 5JzushX4ju048MSnlS//1i9j413bfOtGbn7/8YFre66dkXn/hcMn7v2O2Xb48HDmbykl09l5
327 | D56b7Fw4/hM+p6qw34pXBnWtOfxq5cjLnxUc31Ly4fEuzoLSOXOmLOvb68nbd4xKXfavc184
328 | 3hjxcqenjx0tvO4ZT+Udz1zs5Jzsy7w8P/GA3v3r3MH3Ta0Fa/2Tqnt/X7rozu++1rvpwWuK
329 | 2hXVdl2794fZj+6a++TRFx+f98b0nQ9kfKq7/+iM9cbz/m5wy8GdoEahnTv3Ljz38BXrhblT
330 | rdNcnqIkzJlPRfwTUyJnPvmJKQy/ljOfCuDMp4I481Pxyr2GcuYj1MeZT4HYc+aj1iFx5pvx
331 | kPkK/qkjI962qrZtqm0tZ7766lCc9uocQ5231nPeVs/5SDjz9XhqzeC8GseZL7IfmGFsVXKo
332 | vvXvn6ArHLPaD3Nocxyt2hf5Bq34V8jtgG0kZ74N/+RRAmxVhDO/PhDOfC0IZz7hzCec+bFq
333 | S4Qzn3DmR9eWRG5aaerX8jjzRXZXhTOfC+DM5wI487kAznwugDOfa07OfEudg62riizeSsSw
334 | FAT/hPhoh8g/uyYCzvy6WdJBo8QAQLNx5tvDzkCuGrJ4lohhKQj6XcirlTM/IaatodVy5ide
335 | 7WLoKA8xCWd+3U4cab/5OPM/wpz5pzBn/hetkjMf1V6keNULjnuxRPqwnPnl6bf4Nt16Iltn
336 | XnYtckC2Uc58KmA+0/o583ObiDN/CubMfxBz5he1Ss58g2waiCLNEmQaoTjzt5xv94nnzL+z
337 | N+xyTX66IqutcubH2zSanjOfoiTO/D5x5czfahc58z+zi5z5O+ytkTOfkU0DMc5Zg0wjFGf+
338 | iVNjUpCr6IvDFmdWb/RLK22SMz/eptH0nPkPyJz5KXHlzB/Dipz5c1iRM/9mtjVy5htl0zAK
339 | zDqBphGKM//XfjWF6I3upxbb1G9uYhxtlDM/7qbR5Jz5nWTO/D5x5Mw3GW3mjrYL5lRjuvm8
340 | 9XPzWOON5sOtkDMf6TfenPnmyDnzy/D6JMKZH7/eEKk8Mi53c7Nw5s/AnPn+Vs6Zb4tYzjbC
341 | mR8FZ74NxJ8z30Y485uXz9keg+eUHivZLKvVTjjzm0GXbAx0acC6tMi6ZAlnfjPokouBLhms
342 | S6usS45w5jeDLhNioEsj1qVN1mUC4cxvhnldIogHP3Xi1cyZ31aoy6+JS9O4prVRl9f9Ewit
343 | S53t46LO9uQnEOL1EwhthTPfAuLPmW9pdZz5B/XV5o2Gw+zv+uPmRYZ32PaGy+YSw/ooOPMP
344 | woIcZsW4GvaXGw1KjI7/Do+/g+Pj8PgigxKj4+1hvB7Hl+HxElW8vk7OfCuInjP/TuwYLqmD
345 | M98qaLev5pmBVmYFcObP9rqL+Fn3IK78epjzTUIDcFwbH+Z8Jd9QDYAw5xPmfAICAoLGgzDn
346 | ExDEDoQ5n4CAILBXIMz5BASxsiLCnE8CCYQ5n4CguZ9FhDmfgCBaKyLM+QQE0VoRYc4nIGgc
347 | CHM+Yc5vVub8LD+NmxFqSBOd93kryvkMTJmP6PLzdcq3zw5AKPMxNJT5SC6DhdEkLXg73hKW
348 | i6lJpNH2EGFVsChuSYaUalvk36JV1hsf/i0r4Kl85pI1hxtLVTL7rV25GdRyZpfVIKQMvXyP
349 | Ai1tVbDEvxXJ4kxxgV6hjbVIK4FTxXNHgsjvEOL1NaoVXLblM/s75HC8vZJ5vUNXbqh9OfNs
350 | h6tH8FRTC76jYyGmlIAmG2LlIlmvSNYrEhAQEISZpZH1igQEMfQdkvWKBAQE2l6BrFckIIiV
351 | FZH1iiSQQNYrEhA097OIrFckIIjWish6RQKCaK2IrFckIGgc0HpFZZVigekrIK4oRKx5V2i0
352 | ovBc2h/3Ol13373gnx9WH13512l9mSLj0Hd37H63Q6/2RVOm9nL9z48v9fzxx+MddoBbL9EZ
353 | PfIM1oRaI/3tl+8lVw14mM8+8NXu7L79s3b0PPLappTXkjaus6d8RQ06/NrQNyw3ZgzN3Z3z
354 | VElGburqJVNPrrpr1cppyTPy1zxpebPz3vdLhuy5/5lvVqbv86wZNixva7Gjd874f9792ZSq
355 | Kfkrp60an7dtUPv/3b16x4SLwz589+s+A6+/ZkuWcc+H2zLSBnJjn1jabdwG40vOB8Gt8848
356 | jVbGZTmGyivj0PKcvDJviWtWOV/sme2V18ehtXETsTDUJGeknWjXxyGIZGhINqKH14L/Kbxl
357 | iLOsFHQCTwrrfETsyQ2dvXR8D/otlez+jlJhCZLUu4sl+Lp3n+cOUKUJUmv1CGuOxi2Y5yor
358 | LnV5yvmxznIX8AqMzJnpmZlp6UPSMgcC8QJKuIDVXjBhLEwu1ElMRAuJUPkne8tdM73euUFJ
359 | dEISk9KCtKf1wmm75jauMm0ag5DGLGZR7p3ldWvPM8J54QA+vgz0BPK7NfRjttn79u4dHUqO
360 | ii0PdeiEH5+J1nNCOf4fAAD//wMA4ObbuA==
361 |
--------------------------------------------------------------------------------
/macrophage-conditioning/data/primary_data/figures/fig 1 il6_log.eps:
--------------------------------------------------------------------------------
1 | %!PS-Adobe-2.0 EPSF-2.0
2 | %% This is a Stata generated postscript file
3 | %%BoundingBox: 0 0 226 173
4 | %%HiResBoundingBox: 0.000 0.000 224.640 172.224
5 | %%DocumentNeededResources: font Helvetica
6 | /xratio 0.007020 def
7 | /yratio 0.007020 def
8 | /Sbgfill {
9 | /y1 exch def
10 | /x1 exch def
11 | /y0 exch def
12 | /x0 exch def
13 | x0 y0 moveto
14 | x0 y1 lineto x1 y1 lineto x1 y0 lineto x0 y0 lineto
15 | fill
16 | } def
17 | /Spt {
18 | yratio mul
19 | /yp exch def
20 | xratio mul
21 | /xp exch def
22 | Slrgb setrgbcolor
23 | newpath
24 | xp yp moveto
25 | xp Slw add yp
26 | lineto
27 | currentlinecap
28 | 1 setlinecap
29 | stroke
30 | setlinecap
31 | } def
32 | /Sln {
33 | yratio mul
34 | /y1p exch def
35 | xratio mul
36 | /x1p exch def
37 | yratio mul
38 | /y0p exch def
39 | xratio mul
40 | /x0p exch def
41 | Slw setlinewidth
42 | Slrgb setrgbcolor
43 | x0p y0p M x1p y1p lineto S
44 | } def
45 | /Stxtl {
46 | /sp exch def
47 | yratio mul
48 | /sizep exch def
49 | dup
50 | /anglep exch def
51 | 0 exch sub
52 | /angle2p exch def
53 | yratio mul
54 | /y0p exch def
55 | xratio mul
56 | /x0p exch def
57 | Strgb setrgbcolor
58 | x0p y0p M anglep rotate sizep fntsize sp show stroke angle2p rotate
59 | } def
60 | /Stxtc {
61 | /sp exch def
62 | yratio mul
63 | /sizep exch def
64 | dup
65 | /anglep exch def
66 | 0 exch sub
67 | /angle2p exch def
68 | yratio mul
69 | /y0p exch def
70 | xratio mul
71 | /x0p exch def
72 | Strgb setrgbcolor
73 | x0p y0p M anglep rotate sizep fntsize sp stringwidth exch -2 div exch rm sp show stroke angle2p rotate
74 | } def
75 | /Stxtr {
76 | /sp exch def
77 | yratio mul
78 | /sizep exch def
79 | dup
80 | /anglep exch def
81 | 0 exch sub
82 | /angle2p exch def
83 | yratio mul
84 | /y0p exch def
85 | xratio mul
86 | /x0p exch def
87 | Strgb setrgbcolor
88 | x0p y0p M anglep rotate sizep fntsize sp stringwidth 1 index -1 mul exch rm pop sp show stroke angle2p rotate
89 | } def
90 | /Srect {
91 | /sfill exch def
92 | yratio mul
93 | /y1 exch def
94 | xratio mul
95 | /x1 exch def
96 | yratio mul
97 | /y0 exch def
98 | xratio mul
99 | /x0 exch def
100 | sfill 1 eq {
101 | Ssrgb setrgbcolor
102 | x0 y0 moveto
103 | x0 y1 lineto x1 y1 lineto x1 y0 lineto x0 y0 lineto
104 | fill
105 | } if
106 | Slw setlinewidth
107 | Slrgb setrgbcolor
108 | x0 y0 moveto
109 | x0 y1 lineto x1 y1 lineto x1 y0 lineto x0 y0 lineto
110 | stroke
111 | } def
112 | /Stri {
113 | /sfill exch def
114 | xratio mul
115 | /r exch def
116 | yratio mul
117 | /y0 exch def
118 | xratio mul
119 | /x0 exch def
120 | /xcen x0 def
121 | y0 r add
122 | /ytop exch def
123 | r 2 div
124 | y0 exch sub
125 | /ybot exch def
126 | r 3 sqrt 2 div mul dup
127 | xcen exch sub
128 | /xleft exch def
129 | xcen add
130 | /xright exch def
131 | sfill 1 eq {
132 | Ssrgb setrgbcolor
133 | xcen ytop moveto xright ybot lineto xleft ybot lineto xcen ytop lineto fill
134 | } if
135 | Slw setlinewidth
136 | Slrgb setrgbcolor
137 | xcen ytop moveto xright ybot lineto xleft ybot lineto xcen ytop lineto stroke
138 | } def
139 | /Soldtri {
140 | /sfill exch def
141 | xratio mul
142 | /r exch def
143 | yratio mul
144 | /y0 exch def
145 | xratio mul
146 | /x0 exch def
147 | x0 r sub
148 | /x1 exch def
149 | y0 r sub
150 | /y1 exch def
151 | x0 r add
152 | /x2 exch def
153 | y0 r sub
154 | /y2 exch def
155 | /x3 x0 def
156 | y0 r add
157 | /y3 exch def
158 | sfill 1 eq {
159 | Ssrgb setrgbcolor
160 | x1 y1 moveto x2 y2 lineto x3 y3 lineto x1 y1 lineto fill
161 | } if
162 | Slw setlinewidth
163 | Slrgb setrgbcolor
164 | x1 y1 moveto x2 y2 lineto x3 y3 lineto x1 y1 lineto stroke
165 | } def
166 | /Sdia {
167 | /sfill exch def
168 | xratio mul
169 | /r exch def
170 | yratio mul
171 | /y exch def
172 | xratio mul
173 | /x exch def
174 | x r sub
175 | /x0 exch def
176 | /y0 y def
177 | /x1 x def
178 | y r sub
179 | /y1 exch def
180 | x r add
181 | /x2 exch def
182 | /y2 y def
183 | /x3 x def
184 | y r add
185 | /y3 exch def
186 | sfill 1 eq {
187 | Ssrgb setrgbcolor
188 | x0 y0 moveto x1 y1 lineto x2 y2 lineto x3 y3 lineto x0 y0 lineto fill
189 | } if
190 | Slw setlinewidth
191 | Slrgb setrgbcolor
192 | x0 y0 moveto x1 y1 lineto x2 y2 lineto x3 y3 lineto x0 y0 lineto stroke
193 | } def
194 | /Scc {
195 | /sfill exch def
196 | xratio mul
197 | /r0 exch def
198 | yratio mul
199 | /y0 exch def
200 | xratio mul
201 | /x0 exch def
202 | sfill 1 eq {
203 | Ssrgb setrgbcolor
204 | x0 y0 r0 0 360 arc fill
205 | } if
206 | Slw setlinewidth
207 | Slrgb setrgbcolor
208 | x0 y0 r0 0 360 arc stroke
209 | } def
210 | /Spie {
211 | /sfill exch def
212 | /a1 exch def
213 | /a0 exch def
214 | xratio mul
215 | /r exch def
216 | yratio mul
217 | /y exch def
218 | xratio mul
219 | /x exch def
220 | sfill 1 eq {
221 | Ssrgb setrgbcolor
222 | newpath x y moveto x y r a0 a1 arc closepath
223 | fill
224 | } if
225 | Slw setlinewidth
226 | Slrgb setrgbcolor
227 | newpath x y moveto x y r a0 a1 arc closepath
228 | stroke
229 | } def
230 | /Splu {
231 | xratio mul
232 | /r exch def
233 | yratio mul
234 | /y exch def
235 | xratio mul
236 | /x exch def
237 | x r sub
238 | /x0 exch def
239 | x r add
240 | /x1 exch def
241 | x0 y M x1 y L
242 | y r sub
243 | /y0 exch def
244 | y r add
245 | /y1 exch def
246 | x y0 M x y1 L
247 | } def
248 | /Scro {
249 | xratio mul
250 | /r exch def
251 | yratio mul
252 | /y exch def
253 | xratio mul
254 | /x exch def
255 | x r sub
256 | /x0 exch def
257 | y r sub
258 | /y0 exch def
259 | x r add
260 | /x1 exch def
261 | y r add
262 | /y1 exch def
263 | x0 y0 M x1 y1 L
264 | x r add
265 | /x0 exch def
266 | y r sub
267 | /y0 exch def
268 | x r sub
269 | /x1 exch def
270 | y r add
271 | /y1 exch def
272 | x0 y0 M x1 y1 L
273 | } def
274 | /Sm {
275 | yratio mul
276 | /y exch def
277 | xratio mul
278 | /x exch def
279 | x y M
280 | } def
281 | /Sl {
282 | yratio mul
283 | /y exch def
284 | xratio mul
285 | /x exch def
286 | x y L
287 | } def
288 | /SPl {
289 | yratio mul
290 | /y exch def
291 | xratio mul
292 | /x exch def
293 | x y PL
294 | } def
295 | /Lcs {
296 | currentlinecap
297 | 1 setlinecap
298 | } def
299 | /Lcr {
300 | setlinecap
301 | } def
302 | /Sbp {
303 | newpath
304 | } def
305 | /Sep {
306 | /sfill exch def
307 | closepath
308 | sfill 1 eq {
309 | Ssrgb setrgbcolor
310 | gsave
311 | fill
312 | grestore
313 | } if
314 | Slw setlinewidth
315 | Slrgb setrgbcolor
316 | Lcs
317 | stroke
318 | Lcr
319 | } def
320 | /cp {currentpoint} def
321 | /M {moveto} def
322 | /rm {rmoveto} def
323 | /S {stroke} def
324 | /L {Slw setlinewidth Slrgb setrgbcolor lineto Lcs S Lcr} def
325 | /PL {Slw setlinewidth Slrgb setrgbcolor lineto} def
326 | /MF-Helvetica {
327 | /newfontname exch def
328 | /fontname exch def
329 | /fontdict fontname findfont def
330 | /newfont fontdict maxlength dict def
331 | fontdict {
332 | exch dup /FID eq {pop pop} {exch newfont 3 1 roll put} ifelse
333 | } forall
334 | newfont /FontName newfontname put
335 | newfont /Encoding ISOLatin1Encoding put
336 | newfontname newfont definefont pop
337 | } def
338 | /Helvetica /Helvetica-0 MF-Helvetica
339 | /Slw 0.120 def
340 | 1.000 1.000 1.000 setrgbcolor
341 | 0 0 224.640 172.224 Sbgfill
342 | /Slrgb {1.000 1.000 1.000} def
343 | /Strgb {1.000 1.000 1.000} def
344 | /Ssrgb {1.000 1.000 1.000} def
345 | /Slw 0.344 def
346 | 0 0 31999 24533 1 Srect
347 | /Slrgb {0.000 0.000 0.000} def
348 | 3925 2391 31140 23674 0 Srect
349 | /Strgb {0.000 0.000 0.000} def
350 | /Slw 0.517 def
351 | /Slrgb {0.878 0.878 0.878} def
352 | 3925 -8457 31140 -8457 Sln
353 | /Slw 0.344 def
354 | /Slrgb {0.000 0.000 0.000} def
355 | /Slw 0.517 def
356 | /Slrgb {0.878 0.878 0.878} def
357 | 3925 17206 31140 17206 Sln
358 | /Slw 0.344 def
359 | /Slrgb {0.000 0.000 0.000} def
360 | /Slw 0.517 def
361 | /Slrgb {0.878 0.878 0.878} def
362 | 3925 20745 31140 20745 Sln
363 | /Slw 0.344 def
364 | /Slrgb {0.000 0.000 0.000} def
365 | /Slw 0.517 def
366 | /Slrgb {0.878 0.878 0.878} def
367 | 3925 22815 31140 22815 Sln
368 | /Slw 0.344 def
369 | /Slrgb {0.000 0.000 0.000} def
370 | /Ssrgb {0.376 0.376 0.376} def
371 | /Slw 0.517 def
372 | /Slrgb {0.376 0.376 0.376} def
373 | 5164 16966 7067 18261 1 Srect
374 | /Slw 0.775 def
375 | /Slrgb {1.000 1.000 1.000} def
376 | 5164 17496 7067 17496 Sln
377 | /Slw 0.517 def
378 | /Slrgb {0.376 0.376 0.376} def
379 | 6115 16966 6115 16565 Sln
380 | 6115 18261 6115 19054 Sln
381 | 5478 16565 6753 16565 Sln
382 | 5478 19054 6753 19054 Sln
383 | 8970 14686 10873 18670 1 Srect
384 | /Slw 0.775 def
385 | /Slrgb {1.000 1.000 1.000} def
386 | 8970 17814 10873 17814 Sln
387 | /Slw 0.517 def
388 | /Slrgb {0.376 0.376 0.376} def
389 | 9921 14686 9921 12679 Sln
390 | 9921 18670 9921 20010 Sln
391 | 9284 12679 10559 12679 Sln
392 | 9284 20010 10559 20010 Sln
393 | 12775 4559 14678 5699 1 Srect
394 | /Slw 0.775 def
395 | /Slrgb {1.000 1.000 1.000} def
396 | 12775 4826 14678 4826 Sln
397 | /Slw 0.517 def
398 | /Slrgb {0.376 0.376 0.376} def
399 | 13727 4559 13727 4436 Sln
400 | 13727 5699 13727 6074 Sln
401 | 13089 4436 14364 4436 Sln
402 | 13089 6074 14364 6074 Sln
403 | 16581 3772 18484 5079 1 Srect
404 | /Slw 0.775 def
405 | /Slrgb {1.000 1.000 1.000} def
406 | 16581 4374 18484 4374 Sln
407 | /Slw 0.517 def
408 | /Slrgb {0.376 0.376 0.376} def
409 | 17533 3772 17533 3250 Sln
410 | 17533 5079 17533 5699 Sln
411 | 16895 3250 18170 3250 Sln
412 | 16895 5699 18170 5699 Sln
413 | 20387 14083 22290 20917 1 Srect
414 | /Slw 0.775 def
415 | /Slrgb {1.000 1.000 1.000} def
416 | 20387 18660 22290 18660 Sln
417 | /Slw 0.517 def
418 | /Slrgb {0.376 0.376 0.376} def
419 | 21338 14083 21338 12752 Sln
420 | 21338 20917 21338 22164 Sln
421 | 20701 12752 21976 12752 Sln
422 | 20701 22164 21976 22164 Sln
423 | 24193 13808 26095 20213 1 Srect
424 | /Slw 0.775 def
425 | /Slrgb {1.000 1.000 1.000} def
426 | 24193 16427 26095 16427 Sln
427 | /Slw 0.517 def
428 | /Slrgb {0.376 0.376 0.376} def
429 | 25144 13808 25144 12032 Sln
430 | 25144 20213 25144 21789 Sln
431 | 24507 12032 25781 12032 Sln
432 | 24507 21789 25781 21789 Sln
433 | 27998 4529 29901 7240 1 Srect
434 | /Slw 0.775 def
435 | /Slrgb {1.000 1.000 1.000} def
436 | 27998 6273 29901 6273 Sln
437 | /Slw 0.517 def
438 | /Slrgb {0.376 0.376 0.376} def
439 | 28950 4529 28950 3772 Sln
440 | 28950 7240 28950 7382 Sln
441 | 28312 3772 29587 3772 Sln
442 | 28312 7382 29587 7382 Sln
443 | 13727 8365 269 1 Scc
444 | 28950 10025 269 1 Scc
445 | /Slw 0.344 def
446 | /Slrgb {0.000 0.000 0.000} def
447 | 3925 2391 3925 23674 Sln
448 | 3925 -8457 3584 -8457 Sln
449 | 3107 -8457 0
450 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
451 | (0) stringwidth pop add
452 | 2 div xratio div
453 | dup 4 3 roll exch 90.000 cos mul sub 3 1 roll 90.000 sin mul sub 2 copy
454 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
455 | 90.000 1022
456 | (0) Stxtl
457 | (0) stringwidth pop xratio div
458 | dup 4 3 roll exch 90.000 cos mul add 3 1 roll 90.000 sin mul add 2 copy
459 | pop pop pop pop
460 | 3925 17206 3584 17206 Sln
461 | 3107 17206 0
462 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
463 | (1) stringwidth pop add
464 | 2 div xratio div
465 | dup 4 3 roll exch 90.000 cos mul sub 3 1 roll 90.000 sin mul sub 2 copy
466 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
467 | 90.000 1022
468 | (1) Stxtl
469 | (1) stringwidth pop xratio div
470 | dup 4 3 roll exch 90.000 cos mul add 3 1 roll 90.000 sin mul add 2 copy
471 | pop pop pop pop
472 | 3925 20745 3584 20745 Sln
473 | 3107 20745 0
474 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
475 | (2) stringwidth pop add
476 | 2 div xratio div
477 | dup 4 3 roll exch 90.000 cos mul sub 3 1 roll 90.000 sin mul sub 2 copy
478 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
479 | 90.000 1022
480 | (2) Stxtl
481 | (2) stringwidth pop xratio div
482 | dup 4 3 roll exch 90.000 cos mul add 3 1 roll 90.000 sin mul add 2 copy
483 | pop pop pop pop
484 | 3925 22815 3584 22815 Sln
485 | 3107 22815 0
486 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
487 | (3) stringwidth pop add
488 | 2 div xratio div
489 | dup 4 3 roll exch 90.000 cos mul sub 3 1 roll 90.000 sin mul sub 2 copy
490 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
491 | 90.000 1022
492 | (3) Stxtl
493 | (3) stringwidth pop xratio div
494 | dup 4 3 roll exch 90.000 cos mul add 3 1 roll 90.000 sin mul add 2 copy
495 | pop pop pop pop
496 | 1744 13033 0
497 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
498 | (IL-6 \(pg/ml\)) stringwidth pop add
499 | 2 div xratio div
500 | dup 4 3 roll exch 90.000 cos mul sub 3 1 roll 90.000 sin mul sub 2 copy
501 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
502 | 90.000 1022
503 | (IL-6 \(pg/ml\)) Stxtl
504 | (IL-6 \(pg/ml\)) stringwidth pop xratio div
505 | dup 4 3 roll exch 90.000 cos mul add 3 1 roll 90.000 sin mul add 2 copy
506 | pop pop pop pop
507 | 3925 2391 31140 2391 Sln
508 | 6115 1336 0
509 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
510 | (1) stringwidth pop add
511 | 2 div xratio div
512 | dup 4 3 roll exch 0.000 cos mul sub 3 1 roll 0.000 sin mul sub 2 copy
513 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
514 | 0.000 1022
515 | (1) Stxtl
516 | (1) stringwidth pop xratio div
517 | dup 4 3 roll exch 0.000 cos mul add 3 1 roll 0.000 sin mul add 2 copy
518 | pop pop pop pop
519 | 9921 1336 0
520 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
521 | (2) stringwidth pop add
522 | 2 div xratio div
523 | dup 4 3 roll exch 0.000 cos mul sub 3 1 roll 0.000 sin mul sub 2 copy
524 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
525 | 0.000 1022
526 | (2) Stxtl
527 | (2) stringwidth pop xratio div
528 | dup 4 3 roll exch 0.000 cos mul add 3 1 roll 0.000 sin mul add 2 copy
529 | pop pop pop pop
530 | 13727 1336 0
531 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
532 | (3) stringwidth pop add
533 | 2 div xratio div
534 | dup 4 3 roll exch 0.000 cos mul sub 3 1 roll 0.000 sin mul sub 2 copy
535 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
536 | 0.000 1022
537 | (3) Stxtl
538 | (3) stringwidth pop xratio div
539 | dup 4 3 roll exch 0.000 cos mul add 3 1 roll 0.000 sin mul add 2 copy
540 | pop pop pop pop
541 | 17533 1336 0
542 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
543 | (4) stringwidth pop add
544 | 2 div xratio div
545 | dup 4 3 roll exch 0.000 cos mul sub 3 1 roll 0.000 sin mul sub 2 copy
546 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
547 | 0.000 1022
548 | (4) Stxtl
549 | (4) stringwidth pop xratio div
550 | dup 4 3 roll exch 0.000 cos mul add 3 1 roll 0.000 sin mul add 2 copy
551 | pop pop pop pop
552 | 21338 1336 0
553 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
554 | (5) stringwidth pop add
555 | 2 div xratio div
556 | dup 4 3 roll exch 0.000 cos mul sub 3 1 roll 0.000 sin mul sub 2 copy
557 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
558 | 0.000 1022
559 | (5) Stxtl
560 | (5) stringwidth pop xratio div
561 | dup 4 3 roll exch 0.000 cos mul add 3 1 roll 0.000 sin mul add 2 copy
562 | pop pop pop pop
563 | 25144 1336 0
564 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
565 | (6) stringwidth pop add
566 | 2 div xratio div
567 | dup 4 3 roll exch 0.000 cos mul sub 3 1 roll 0.000 sin mul sub 2 copy
568 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
569 | 0.000 1022
570 | (6) Stxtl
571 | (6) stringwidth pop xratio div
572 | dup 4 3 roll exch 0.000 cos mul add 3 1 roll 0.000 sin mul add 2 copy
573 | pop pop pop pop
574 | 28950 1336 0
575 | /Helvetica-0 findfont 1022 yratio mul scalefont setfont
576 | (7) stringwidth pop add
577 | 2 div xratio div
578 | dup 4 3 roll exch 0.000 cos mul sub 3 1 roll 0.000 sin mul sub 2 copy
579 | /fntsize {/Helvetica-0 findfont exch scalefont setfont } def
580 | 0.000 1022
581 | (7) Stxtl
582 | (7) stringwidth pop xratio div
583 | dup 4 3 roll exch 0.000 cos mul add 3 1 roll 0.000 sin mul add 2 copy
584 | pop pop pop pop
585 | S showpage
586 | %%EOF
587 |
--------------------------------------------------------------------------------
/macrophage-conditioning/data/primary_data/figures/fig 1 il6_log.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/macrophage-conditioning/data/primary_data/figures/fig 1 il6_log.jpg
--------------------------------------------------------------------------------
/macrophage-conditioning/data/primary_data/figures/fig 2 il6 log.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/macrophage-conditioning/data/primary_data/figures/fig 2 il6 log.jpg
--------------------------------------------------------------------------------
/macrophage-conditioning/data/primary_data/makrofag_parings_n_evocation_raw.txt:
--------------------------------------------------------------------------------
1 | Well ID id pairing dubblett il6 il6_mean
2 | SPL1 1 1 1 3.115 3.232
3 | 1 1 2 3.348
4 | SPL2 2 1 1 3.262 3.137
5 | 2 1 2 3.012
6 | SPL3 1 2 1 2.679 2.915
7 | 1 2 2 3.151
8 | SPL4 2 2 1 3.284 3.369
9 | 2 2 2 3.453
10 | SPL5 1 3 1 3.243 3.266
11 | 1 3 2 3.289
12 | SPL6 2 3 1 3.207 3.051
13 | 2 3 2 2.895
14 | SPL7 1 4 1 0.82 0.565
15 | 1 4 2 0.309
16 | SPL8 2 4 1 0.766 0.929
17 | 2 4 2 1.093
18 | SPL9 1 5 1 0.54 0.625
19 | 1 5 2 0.711
20 | SPL10 2 5 1 0.558 0.631
21 | 2 5 2 0.705
22 | SPL11 3 1 1 2.912 2.938
23 | 3 1 2 2.964
24 | SPL12 4 1 1 3.037 2.971
25 | 4 1 2 2.906
26 | SPL13 3 2 1 2.057 2.076
27 | 3 2 2 2.095
28 | SPL14 4 2 1 2.377 2.271
29 | 4 2 2 2.164
30 | SPL15 3 3 1 3.493 3.217
31 | 3 3 2 2.942
32 | SPL16 4 3 1 3.462 3.382
33 | 4 3 2 3.301
34 | SPL17 5 1 1 1.279 1.413
35 | 5 1 2 1.547
36 | SPL18 6 1 1 2.044 1.968
37 | 6 1 2 1.891
38 | SPL19 5 2 1 0.907 1.109
39 | 5 2 2 1.311
40 | SPL20 6 2 1 0.782 0.829
41 | 6 2 2 0.875
42 | SPL21 5 3 1 1.422 1.422
43 | 5 3 2 1.423
44 | SPL22 6 3 1 1.672 1.658
45 | 6 3 2 1.644
46 | SPL23 7 1 1 1.255 1.409
47 | 7 1 2 1.563
48 | SPL24 8 1 1 3.001 3.093
49 | 8 1 2 3.184
50 | SPL25 7 2 1 1.238 1.29
51 | 7 2 2 1.342
52 | SPL26 8 2 1 0.83 0.84
53 | 8 2 2 0.85
54 | SPL27 7 3 1 2.757 2.667
55 | 7 3 2 2.576
56 | SPL28 8 3 1 2.672 2.416
57 | 8 3 2 2.16
58 | SPL29 7 1 1.058 1.078
59 | 7 2 1.097
60 | SPL30 8 1 1.536 1.436
61 | 8 2 1.336
62 | SPL31 7 1 0.993 1.017
63 | 7 2 1.04
64 | SPL32 8 1 1.196 1.236
65 | 8 2 1.277
66 | SPL33 7 1 0.083 0.085
67 | 7 2 0.088
68 | SPL34 8 1 0.085 0.082
69 | 8 2 0.079
70 | SPL35 7 1 0.068 0.076
71 | 7 2 0.084
72 | SPL36 8 1 0.081 0.079
73 | 8 2 0.077
74 | SPL37 7 1 2.533 2.641
75 | 7 2 2.748
76 | SPL38 8 1 2.403 2.258
77 | 8 2 2.112
78 | SPL39 7 1 2.053 2.114
79 | 7 2 2.175
80 | SPL40 8 1 2.341 2.454
81 | 8 2 2.566
82 | SPL41 7 1 0.109 0.111
83 | 7 2 0.113
84 | SPL42 8 1 0.087 0.085
85 | 8 2 0.083
86 | 1 6 1 0.657 0.647
87 | 1 6 2 0.638
88 | 2 6 1 0.731 0.75
89 | 2 6 2 0.77
--------------------------------------------------------------------------------
/macrophage-conditioning/data/study-1_data.csv:
--------------------------------------------------------------------------------
1 | group,donor_strand,measurement,il6_secretion_abs,il6_secretion_rel
2 | 1,D1S1,1,0.292,1.110266
3 | 2,D1S1,1,0.205,0.7794677
4 | 3,D1S1,1,0.724,2.752852
5 | 4,D1S1,1,6.353,24.15589
6 | 5,D1S1,1,0.271,1.030418
7 | 6,D1S1,1,0.436,1.657795
8 | 1,D1S1,2,0.234,0.8897339
9 | 2,D1S1,2,0.195,0.7414449
10 | 3,D1S1,2,0.942,3.581749
11 | 4,D1S1,2,6.598,25.08745
12 | 5,D1S1,2,0.348,1.323194
13 | 6,D1S1,2,0.436,1.657795
14 | 1,D1S2,1,0.21,0.9230769
15 | 2,D1S2,1,0.376,1.652747
16 | 3,D1S2,1,0.163,0.7164835
17 | 4,D1S2,1,4.882,21.45934
18 | 5,D1S2,1,1.341,5.894506
19 | 6,D1S2,1,1.245,5.472528
20 | 1,D1S2,2,0.245,1.076923
21 | 2,D1S2,2,0.382,1.679121
22 | 3,D1S2,2,0.163,0.7164835
23 | 4,D1S2,2,4.816,21.16923
24 | 5,D1S2,2,1.263,5.551648
25 | 6,D1S2,2,1.686,7.410989
26 | 1,D2S1,1,0.172,1.026866
27 | 2,D2S1,1,0.2,1.19403
28 | 3,D2S1,1,0.292,1.743284
29 | 4,D2S1,1,1.021,6.095522
30 | 5,D2S1,1,0.958,5.719403
31 | 6,D2S1,1,0.538,3.21194
32 | 1,D2S1,2,0.163,0.9731343
33 | 2,D2S1,2,0.195,1.164179
34 | 3,D2S1,2,0.224,1.337313
35 | 4,D2S1,2,1.062,6.340299
36 | 5,D2S1,2,1.095,6.537313
37 | 6,D2S1,2,0.493,2.943284
38 | 1,D2S2,1,0.625,1.05042
39 | 2,D2S2,1,0.297,0.4991597
40 | 3,D2S2,1,0.154,0.2588235
41 | 4,D2S2,1,1.211,2.035294
42 | 5,D2S2,1,0.474,0.7966387
43 | 6,D2S2,1,0.353,0.5932773
44 | 1,D2S2,2,0.565,0.9495798
45 | 2,D2S2,2,0.281,0.4722689
46 | 3,D2S2,2,0.132,0.2218487
47 | 4,D2S2,2,1.658,2.786555
48 | 5,D2S2,2,0.468,0.7865546
49 | 6,D2S2,2,0.4,0.6722689
--------------------------------------------------------------------------------
/macrophage-conditioning/dataset_description.json:
--------------------------------------------------------------------------------
1 | {
2 | "@context": "http://schema.org/",
3 | "@type": "Dataset",
4 | "name": "Learning in a simple biological system: a pilot study of classical conditioning of human macrophages in vitro",
5 | "description": "Learning in a simple biological system: a pilot study of classical conditioning of human macrophages in vitro",
6 | "schemaVersion": "Psych-DS 0.4.0",
7 | "creator": [
8 | {
9 | "@type": "Person",
10 | "name": "Gustav Nilsonne"
11 | },
12 | {
13 | "@type": "Person",
14 | "name": "Alva Appelgren"
15 | },
16 | {
17 | "@type": "Person",
18 | "name": "John Axelsson"
19 | },
20 | {
21 | "@type": "Person",
22 | "name": "Mats Fredrikson"
23 | },
24 | {
25 | "@type": "Person",
26 | "name": "Mats Lekander"
27 | }
28 | ],
29 | "citation": "Nilsonne, G., Appelgren, A., Axelsson, J. et al. Learning in a simple biological system: a pilot study of classical conditioning of human macrophages in vitro. Behav Brain Funct 7, 47 (2011).",
30 | "sameAs": "https://doi.org/10.1186/1744-9081-7-47",
31 | "temporalCoverage": "2008-07-15/2011-12-18",
32 | "keywords": [
33 | "associative learning",
34 | "conditioning",
35 | "habituation",
36 | "in vitro",
37 | "monocyte",
38 | "macrophage",
39 | "lipopolysaccharide",
40 | "streptomycin",
41 | "interleukin-6"
42 | ],
43 | "variableMeasured": [
44 | {
45 | "type": "PropertyValue",
46 | "unitText": "Group",
47 | "name": "group",
48 | "description": "The type of stimulus received. Group 1: training=CS+UCS - evocation=CS. Group 2: training=CS+UCS - evocation=none. Group 3: training=CS - evocation=none. Group 4: training=CS - evocation=CS. Group 5: training=UCS - evocation=none. Group 6: training=UCS - evocation=CS. Group 7: training=none - evocation=none."
49 | },
50 | {
51 | "type": "PropertyValue",
52 | "unitText": "Donor/Strand",
53 | "name": "donor_strand",
54 | "description": "The donor of the macrophages id and strand number combined."
55 | },
56 | {
57 | "type": "PropertyValue",
58 | "unitText": "Measurement",
59 | "name": "measurement",
60 | "description": "The measurement number for a given combination of donor/strand and group"
61 | },
62 | {
63 | "type": "PropertyValue",
64 | "unitText": "IL-6 secretion absolute (pg/ml)",
65 | "name": "il6_secretion_abs",
66 | "description": "The measured absolute secretion of IL-6 in pg/ml."
67 | },
68 | {
69 | "type": "PropertyValue",
70 | "unitText": "IL-6 secretion relative (fold change)",
71 | "name": "il6_secretion_rel",
72 | "description": "The measured relative secretion of IL-6 in fold change."
73 | }
74 | ]
75 | }
--------------------------------------------------------------------------------
/mistakes-corrected-dataset/data/study-yarncolor_data.csv:
--------------------------------------------------------------------------------
1 | sub_id,date,garment,yarn_color
2 | r2d2,2021-02-21,hat,Country Blue
3 | r2d2,1999-08-12,scarf,Eggplant
4 | r2d2,2008-12-12,hat,Royal
5 | r2d2,2019,hat,Grey
6 | r2d2,1999,snood,Gold
7 | r2d2,2014-01-01,sweater,Kelly
8 | c3p0,2021,mittens,Lavender
9 | c3p0,2020,glove,Toast
10 | c3p0,2020-12-12,,Mint Green
11 | bb8,2020,scarf,Maroon
12 | bb8,2021,scarf,Pink Carnation
13 |
--------------------------------------------------------------------------------
/mistakes-corrected-dataset/data/study-yarncolor_file-badnames_data.csv:
--------------------------------------------------------------------------------
1 | sub_id,date,garment,yarn_color,yarn_color2
2 | r2d2,2021-02-21,hat,Country Blue,
3 | r2d2,1999-08-12,scarf,Eggplant,
4 | r2d2,2008-12-12,hat,Royal,
5 | r2d2,2019,hat,Grey,
6 | r2d2,,,,
7 | r2d2,2014-01-01,sweater,Kelly,
8 | c3p0,2021,mittens,Lavender,
9 | c3p0,2020,glove,Toast,
10 | c3p0,2020-12-12,,Mint Green,
11 | bb8,2020,scarf,Maroon,
12 | bb8,2021,scarf,Pink Carnation,
13 |
--------------------------------------------------------------------------------
/mistakes-corrected-dataset/data/study-yarncolor_file-noncsvfile_data.csv:
--------------------------------------------------------------------------------
1 | sub_id,date,garment,yarn_color
2 | r2d2,2021-02-21,hat,Country Blue
3 | r2d2,1999-08-12,scarf,Eggplant
4 | r2d2,2008-12-12,hat,Royal
5 | r2d2,2019,hat,Grey
6 | r2d2,1999,snood,Gold
7 | r2d2,2014-01-01,sweater,Kelly
8 | c3p0,2021,mittens,Lavender
9 | c3p0,2020,glove,Toast
10 | c3p0,2020-12-12,,Mint Green
11 | bb8,2020,scarf,Maroon
12 | bb8,2021,scarf,Pink Carnation
13 |
--------------------------------------------------------------------------------
/mistakes-corrected-dataset/data/study-yarncolor_file-wrongname_data.csv:
--------------------------------------------------------------------------------
1 | sub_id,date,garment,yarn_color
2 | r2d2,2021-02-21,hat,Country Blue
3 | r2d2,1999-08-12,scarf,Eggplant
4 | r2d2,2008-12-12,hat,Royal
5 | r2d2,2019,hat,Grey
6 | r2d2,1999,snood,Gold
7 | r2d2,2014-01-01,sweater,Kelly
8 | c3p0,2021,mittens,Lavender
9 | c3p0,2020,glove,Toast
10 | c3p0,2020-12-12,,Mint Green
11 | bb8,2020,scarf,Maroon
12 | bb8,2021,scarf,Pink Carnation
13 |
--------------------------------------------------------------------------------
/mistakes-corrected-dataset/data/subdir/subdir/study-yarn_location-subdir_data.csv:
--------------------------------------------------------------------------------
1 | sub_id,date,yarn_color,rating
2 | r2d2,2021-02-21,Country Blue,199
3 | r2d2,1999-08-12,Eggplant,12
4 | r2d2,2008-12-12,Royal,0
5 | r2d2,2019,Grey,-1
6 | r2d2,1999,Gold,14
7 | r2d2,2014-01-01,Kelly,
8 | c3p0,2021,Lavender,
9 | c3p0,2020,Toast,
10 | c3p0,2020-12-12,Mint Green,
11 | bb8,2020,Maroon,
12 | bb8,2021,Pink Carnation,2000
13 |
--------------------------------------------------------------------------------
/mistakes-corrected-dataset/dataset_description.json:
--------------------------------------------------------------------------------
1 | {
2 | "@context" : "http://schema.org/",
3 | "@type" : "Dataset",
4 | "name" : "Psych-DS 'Mistakes Corrected' Dataset",
5 | "description" : "This is a minimal example of a dataset which has now been corrected to meet the Psych-DS spec (according to the sips-2022 validator tool)",
6 | "variableMeasured" : ["sub_id", "date", "rating", "yarn_color", "yarn_color2", "garment"]
7 | }
--------------------------------------------------------------------------------
/nih-reviews/Codebook.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/nih-reviews/Codebook.xlsx
--------------------------------------------------------------------------------
/nih-reviews/README.md:
--------------------------------------------------------------------------------
1 | # NIH reviews
2 |
3 | The nih-reviews project contains data taken from [Forscher, Cox, Brauer, and Devine (2019)](https://psyarxiv.com/r2xvb), in which 446 scientists each reviewed 3 of 48 NIH R01 grant proposals. 412 of these scientists were used for the primary analysis in the manuscript. The nih-reviews folder contains:
4 |
5 | * *nih_data.tsv*. This is a tab-delimited file in which each row represents a review of a single grant proposal by a single reviewer
6 | * *dataset_description.json*. This is a json file containing machine-readable meta-data for this project
7 | * *codebook.xlsx*. This is a codebook containing descriptions of each variable in nih_data.tsv
8 | * *raw_data*. This contains the raw and source datafiles from this project
9 |
10 | The data can be cited as Forscher, P. S., Cox, W. T. L., Brauer, M., & Devine, P. G. (2018, May 25). Little race or gender bias in an experiment of initial review of NIH R01 grant proposals. https://doi.org/10.31234/osf.io/r2xvb
11 |
--------------------------------------------------------------------------------
/nih-reviews/data/study-nih_data.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/nih-reviews/data/study-nih_data.csv
--------------------------------------------------------------------------------
/nih-reviews/dataset_description.json:
--------------------------------------------------------------------------------
1 | {
2 | "@context": "https://schema.org/",
3 | "@type": "Dataset",
4 | "name": "NIH reviews",
5 | "description": "Reviewer scores of different subsets of 48 NIH grant proposals from this paper: https://psyarxiv.com/r2xvb",
6 | "schemaVersion": "Psych-DS 0.1.0",
7 | "creator": [
8 | {
9 | "@type": "Person",
10 | "name": "Patrick S. Forscher"
11 | }
12 | ],
13 | "citation": "Forscher, P. S., Cox, W. T. L., Brauer, M., & Devine, P. G. (2018, May 25). Little race or gender bias in an experiment of initial review of NIH R01 grant proposals. https://doi.org/10.31234/osf.io/r2xvb",
14 | "sameAs": "https://doi.org/10.31234/osf.io/r2xvb",
15 | "temporalCoverage": "2015-05-26/2017-04-24",
16 | "keywords": [
17 | "gender bias",
18 | "race bias",
19 | "science policy"
20 | ],
21 | "variableMeasured": ["participant_id","grant_id","deception_check","list","set","outside_resources_text","participant_race","participant_sex","participant_title","concern_women_r","concern_race","concern_efficient","concern_cut","concern_foreign","concern_transparent","concern_prestige_inst","concern_blind","concern_flaw","concern_new","concern_old","concern_elected","concern_good","study_section","institute","old_score","quality","quality_dich","quality_gmc","quality_cmc","diff_qual","dual_pi","foreign_pi","condition","wf","bm","bf","imp_score","sig_score","inv_score","inn_score","app_score","env_score","imp_text","sig_text_str","sig_text_wkn","inv_text_str","inv_text_wkn","inn_text_str","inn_text_wkn","app_text_str","app_text_wkn","env_text_str","env_text_wkn","imp_text_cln","sig_text_str_cln","sig_text_wkn_cln","inv_text_str_cln","inv_text_wkn_cln","inn_text_str_cln","inn_text_wkn_cln","app_text_str_cln","app_text_wkn_cln","env_text_str_cln","env_text_wkn_cln","imp_text_n","sig_text_str_n","sig_text_wkn_n","inv_text_str_n","inv_text_wkn_n","inn_text_str_n","inn_text_wkn_n","app_text_str_n","app_text_wkn_n","env_text_str_n","env_text_wkn_n","imp_text_achieve","imp_text_ability","imp_text_research","imp_text_standout","imp_text_agentic","imp_text_negeval","imp_text_poseval","imp_text_negate","imp_text_pronouns","sig_text_str_achieve","sig_text_str_ability","sig_text_str_research","sig_text_str_standout","sig_text_str_agentic","sig_text_str_negeval","sig_text_str_poseval","sig_text_str_negate","sig_text_str_pronouns","sig_text_wkn_achieve","sig_text_wkn_ability","sig_text_wkn_research","sig_text_wkn_standout","sig_text_wkn_agentic","sig_text_wkn_negeval","sig_text_wkn_poseval","sig_text_wkn_negate","sig_text_wkn_pronouns","inv_text_str_achieve","inv_text_str_ability","inv_text_str_research","inv_text_str_standout","inv_text_str_agentic","inv_text_str_negeval","inv_text_str_poseval","inv_text_str_negate","inv_text_str_pronouns","inv_text_wkn_achieve","inv_text_wkn_ability","inv_text_wkn_research","inv_text_wkn_standout","inv_text_wkn_agentic","inv_text_wkn_negeval","inv_text_wkn_poseval","inv_text_wkn_negate","inv_text_wkn_pronouns","inn_text_str_achieve","inn_text_str_ability","inn_text_str_research","inn_text_str_standout","inn_text_str_agentic","inn_text_str_negeval","inn_text_str_poseval","inn_text_str_negate","inn_text_str_pronouns","inn_text_wkn_achieve","inn_text_wkn_ability","inn_text_wkn_research","inn_text_wkn_standout","inn_text_wkn_agentic","inn_text_wkn_negeval","inn_text_wkn_poseval","inn_text_wkn_negate","inn_text_wkn_pronouns","app_text_str_achieve","app_text_str_ability","app_text_str_research","app_text_str_standout","app_text_str_agentic","app_text_str_negeval","app_text_str_poseval","app_text_str_negate","app_text_str_pronouns","app_text_wkn_achieve","app_text_wkn_ability","app_text_wkn_research","app_text_wkn_standout","app_text_wkn_agentic","app_text_wkn_negeval","app_text_wkn_poseval","app_text_wkn_negate","app_text_wkn_pronouns","env_text_str_achieve","env_text_str_ability","env_text_str_research","env_text_str_standout","env_text_str_agentic","env_text_str_negeval","env_text_str_poseval","env_text_str_negate","env_text_str_pronouns","env_text_wkn_achieve","env_text_wkn_ability","env_text_wkn_research","env_text_wkn_standout","env_text_wkn_agentic","env_text_wkn_negeval","env_text_wkn_poseval","env_text_wkn_negate","env_text_wkn_pronouns"]
22 | }
--------------------------------------------------------------------------------
/nih-reviews/nih_data.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/nih-reviews/nih_data.csv
--------------------------------------------------------------------------------
/object-orientation/LAB_processing.R:
--------------------------------------------------------------------------------
1 | # Be sure all the raw data are in "raw_data" before you run this code.
2 | # This script has to be located in the same folder where we stored "raw_data"
3 |
4 | # load required packages
5 | if(!require(tidyverse)) {install.packages("tidyverse");library(tidyverse)} else (library(tidyverse))
6 | if(!require(readbulk)) {install.packages("readbulk");library(readbulk)} else (library(readbulk))
7 |
8 | # Import and Merge SP raw data
9 | LAB_SP_raw <- read_opensesame(directory = "raw_data",subdirectories = "SP")
10 |
11 | # Split the data of verification and memory
12 | LAB_SP_memory <- LAB_SP_raw %>% subset( Task == "M")
13 | LAB_SP_verification <- LAB_SP_raw %>% subset(Task == "V")
14 |
15 | # Import and Merge PP raw data
16 | LAB_PP_raw <- read_opensesame(directory = "raw_data",subdirectories = "PP")
17 |
18 | # Check LAB ID
19 | # There will be the code to import the mappings of LAB ID and SEED.
20 |
21 | ## Filter the variables to be analyzed
22 | SP_verification_variables <- c(names(LAB_SP_raw)[c(155,157,5,2,3,4,6,7,120,21,134,223,104,115,116,94)])
23 | SP_memory_variables <- c(names(LAB_SP_raw)[c(155,157,5,2,19,120,21,134,104,223,115,116,94)])
24 | PP_variables <- c(names(LAB_PP_raw))[c(126,5,1,3,4,6,7,101,19,110,83,176,93,82,178,95,96,72)]
25 |
26 | ## Export the raw data to be further analyzed.
27 | LAB_SP_verification[,SP_verification_variables] %>%
28 | write.csv(file = paste0("./raw_data/",LAB_SP_raw$LAB_SEED %>% unique,"_SP_V.csv"), row.names = FALSE)
29 | LAB_SP_memory[,SP_memory_variables] %>%
30 | write.csv(file = paste0("./raw_data/",LAB_SP_raw$LAB_SEED %>% unique,"_SP_M.csv"), row.names = FALSE)
31 | LAB_PP_raw[,PP_variables] %>%
32 | write.csv(file = paste0("./raw_data/",LAB_PP_raw$LAB_SEED %>% unique,"_PP.csv"), row.names = FALSE)
33 |
34 |
35 | ## Retrieve the verification response data
36 | ## Erase the participants which an accuracy lower than 70%
37 | ## Reserve correct responses of S-P verification task
38 | ## Data set for mixed-effect model, all observations are reserved
39 | (Complete_LAB_SP = df_LAB_SP %>%
40 | subset( Task == "V") %>%
41 | filter(Match %in% c('Y','N')) %>%
42 | filter(correct == 1)) %>%
43 | write.csv(file = paste0(df_LAB_SP$LID %>% levels(),"_SP_complete.csv"))
44 |
45 | ## Summarize the cleaned data of this Lab
46 | ( Participant_complete_LAB_SP = Complete_LAB_SP %>%
47 | filter( !(Complete_LAB_SP$PID %in% Excluded_ID) ) %>%
48 | group_by(LID, PID, ORDER, Match) %>%
49 | summarise(V_RT = median(response_time, na.rm = TRUE), V_Acc = 100*n()/12) %>%
50 | left_join(LAB_SP_memory, by = "PID") %>%
51 | arrange( as.numeric(as.character(PID) ) ) ) %>%
52 | write.csv(file = paste0(Complete_LAB_SP$LID %>% levels(),"_SP.csv") )
53 |
54 | ## Transform the cleaned data for packaged software
55 | Participant_complete_LAB_SP %>% filter(Match == "Y") %>%
56 | select(LID, PID, V_RT, V_Acc, M_acc) %>%
57 | left_join( (Participant_complete_LAB_SP %>%
58 | filter(Match == "N") %>%
59 | select(LID, PID, V_RT, V_Acc, M_acc)), by = c("LID","PID") ) %>%
60 | rename(V_RT_Y = V_RT.x, V_RT_N = V_RT.y, V_acc_Y = V_Acc.x, V_acc_N = V_Acc.y, M_acc_Y = M_acc.x, M_acc_N = M_acc.y) %>%
61 | write.csv(file = paste0(Complete_LAB_SP$LID %>% levels(),"_SP_JASP.csv") )
62 |
63 |
64 | ## Count the number of available participants
65 | Participant_complete_LAB_SP %>% pull(PID) %>%
66 | unique() %>%
67 | length()
68 |
69 | ###########
70 |
71 | # Access PP raw data
72 | LAB_PP_raw <- paste0(csv_dir_path,"\\", list.files(path = csv_dir_path, pattern = "PP", all.files = TRUE,include.dirs = TRUE, recursive = TRUE))
73 |
74 | # Define the IDs during imported data
75 | LAB_PP <- lapply(LAB_PP_raw,function(i){
76 | cbind(LID = (i %>% stri_replace_all_fixed(pattern = paste0(csv_dir_path,"\\"), replacement="") %>%
77 | stri_split_fixed(pattern = "_") %>% unlist(use.names=FALSE) %>%
78 | stri_replace_all_fixed(pattern = ".csv", replacement = ""))[1], ## Lab ID
79 | PID = (i %>% stri_replace_all_fixed(pattern = paste0(csv_dir_path,"\\"), replacement="") %>%
80 | stri_split_fixed(pattern = "_") %>% unlist(use.names=FALSE) %>%
81 | stri_replace_all_fixed(pattern = ".csv", replacement = ""))[3], ## Participant ID
82 | read.csv(i, header=TRUE))
83 | })
84 |
85 | # Combine all data into one dataframe
86 | suppressMessages( df_LAB_PP <- do.call(rbind.data.frame, LAB_PP) )
87 |
88 | ## Compute the accuracies of verification responses by participant
89 | LAB_PP_accuracy <- df_LAB_PP %>%
90 | group_by(PID) %>%
91 | summarise(C_acc = mean(correct)*100, trials_N=n())
92 |
93 | ## Print the number of participants had a lower 70% P-P accuracy
94 | (LAB_PP_accuracy$C_acc < 70) %>% sum()
95 |
96 | ## Reserve correct responses of P-P verification task
97 | ## Data set for mixed-effect model, all observations are reserved
98 | (Complete_LAB_PP = df_LAB_PP %>%
99 | filter(Identical %in% c('Y','N')) %>%
100 | filter(correct == 1)) %>%
101 | write.csv(file = paste0(df_LAB_PP$LID %>% levels(),"_PP_complete.csv"))
102 |
103 | ## Summarize the cleaned data of this Lab
104 | (Participant_complete_LAB_PP = Complete_LAB_PP %>%
105 | filter( !(PID %in% Excluded_ID) ) %>%
106 | group_by(LID, PID, Identical) %>%
107 | summarise(V_RT = median(response_time, na.rm = TRUE), V_Acc = 100*n()/12) %>%
108 | arrange( as.numeric(as.character(PID) ) ) ) %>%
109 | write.csv(file = paste0(Complete_LAB_PP$LID %>% levels(),"_PP.csv") )
110 |
111 | ## Transform the cleaned data for packaged software
112 | Participant_complete_LAB_PP %>% filter(Identical == "Y") %>% select(LID, PID, V_RT, V_Acc) %>%
113 | left_join( (Participant_complete_LAB_PP %>% filter(Identical == "N") %>% select(LID, PID, V_RT, V_Acc)), by = c("LID","PID") ) %>%
114 | rename(V_RT_Y = V_RT.x, V_RT_N = V_RT.y, V_acc_Y = V_Acc.x, V_acc_N = V_Acc.y) %>%
115 | write.csv(file = paste0(Complete_LAB_PP$LID %>% levels(),"_PP_JASP.csv") )
116 |
--------------------------------------------------------------------------------
/object-orientation/OrientationCrossLanguages_2018PSA_PP_1.2.0.osexp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/object-orientation/OrientationCrossLanguages_2018PSA_PP_1.2.0.osexp
--------------------------------------------------------------------------------
/object-orientation/OrientationCrossLanguages_2018PSA_SP_1.2.0.osexp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/object-orientation/OrientationCrossLanguages_2018PSA_SP_1.2.0.osexp
--------------------------------------------------------------------------------
/object-orientation/README.md:
--------------------------------------------------------------------------------
1 | # README - Faces and Bodies
2 |
3 | This project evaluate the replicability of object orientation effect across languages. The original paradigm was developed in English (Stanfield and Zwaan, 2001). The available materials were released by Zwaan and Pecher (2012).
4 |
5 | ## Files
6 |
7 | **STI_LIST.xls**: The sheets of all materials and stimuli lists.
8 | - *STI*: Collection of all critical stimuli. `Picture_H`: File names of object pictures presented in horizontal; `Picture_V`: File names of object pictures presented in vertical; `XXX_Sentence_H`: Sentences implied the horizontal orientation of the target object; `XXX_Sentence_V`: Sentences implied the vertical orientation of the target object. XXX stands for the which language the sentences written in.
9 | - *Fillers*: Collection of all filler stimuli. `Picture_Fillers_A` and `Picture_Fillers_B`: File names of object pictures which are irrelavent to the corresponding sentences; `XXX_Sentence_Fillers_A` and `XXX_Sentence_Fillers_B`: Sentences which do not imply the particular orientation of object; XXX stands for the which language the sentences written in.
10 | - *Prac1* and *Prac2*: Stimuli list of practice trials.
11 | - *XXX_LIST1*, *XXX_LIST2*, *XXX_LIST3*, and *XXX_LIST4*: Stimuli lists of experimental trials for sentence-picture verification. XXX stands for the which language the sentences written in.
12 | - *PP_LIST1*, *PP_LIST2*, *PP_LIST3*, and *PP_LIST4*: Stimuli lists of experimental trials for picture-picture verification.
13 |
14 | **LAB_processing.R**: R script which merge raw data and filter the variables to be analyzed. There will be three csv files created in the folder `raw_data`: `ID_SP_V.csv`,`ID_SP_M.csv`, and `ID_PP.csv`. `ID` stands for the specific ID for the study site. This script is for the processing of the data from one study site.
15 |
16 | **OrientationCrossLanguages_2018PSA_SP_1.2.0.osexp**: Opensesame script of sentence-picture verification task for one study site. The instructions and materials will be translated to the site langauge before the beginning.
17 |
18 | **OrientationCrossLanguages_2018PSA_PP_1.2.0.osexp**: Opensesame script of picture-picture verification task for one study site. The instructions and materials will be translated to the site langauge before the beginning.
19 |
20 | ## Codebooks of data files
21 | - **ID_SP_V.csv**
22 | subject_nr: Participant ID (Integers: 1 ~ 160)
23 | task_order: Yes(SP task was the first study); No (SP task was after the other study); none of above(SP task was conducted for the other reason)
24 | PList: List files for practice trials.
25 | List: List files for experimental trails.
26 | Match: Matching of sentence and target object orientation.
27 | Orientation: Defined orientation of the target object.
28 | Probe: Probe sentences in the particular trials.
29 | Target: Target object files.
30 | response: The triggered response key in the particular trials.
31 | correct: Correctness of participant's response in the particular trials.
32 | response_time: Reaction time to trigger the response in the particular trials.
33 | fullscreen: yes(SP task was conducted under fullscreen mode);no(SP task was not conducted under fullscreen mode)
34 | File: Source file names of the participants' raw data.
35 | opensesame_codename: Code name of Opensesame installed in the study site.
36 | opensesame_version: Version of Opensesame installed in the study site.
37 | experiment_file: Filename of Opensesame script this study site applied for their participants.
38 |
39 | - **ID_SP_M.csv**
40 | subject_nr: Participant ID (Integers: 1 ~ 160)
41 | task_order: Yes(SP task was the first study); No (SP task was after the other study); none of above(SP task was conducted for the other reason)
42 | PList: List files for practice trials.
43 | List: List files for experimental trails.
44 | compensation: The probe sentences were selected for the memory trials.
45 | response: The triggered response key in the particular trials.
46 | correct: Correctness of participant's response in the particular trials.
47 | response_time: Reaction time to trigger the response in the particular trials.
48 | fullscreen: yes(SP task was conducted under fullscreen mode);no(SP task was not conducted under fullscreen mode)
49 | File: Source file names of the participants' raw data.
50 | opensesame_codename: Code name of Opensesame installed in the study site.
51 | opensesame_version: Version of Opensesame installed in the study site.
52 | experiment_file: Filename of Opensesame script this study site applied for their participants.
53 |
54 | - **ID_PP.csv**
55 | subject_nr: Participant ID (Integers: 1 ~ 160)
56 | PPList: List files for experimental trials.
57 | Identical: Y(Two object were presented in the same orientation), N(Two object were presented in different orientation).
58 | Orientation1: Orientation of left object.
59 | Orientation2: Orientation of right object
60 | Picture1: Picure file name of left object.
61 | Picture2: Picure file name of right object.
62 | response: The triggered response key in the particular trials.
63 | correct: Correctness of participant's response in the particular trials.
64 | response_time: Reaction time to trigger the response in the particular trials.
65 | gender: Participant's gender (Male, Female, Not to be identified, No will to say).
66 | year: Participant's birth year (4 digits integer)
67 | month: Participant's birth month (1~12)
68 | fullscreen: yes(PP task was conducted under fullscreen mode);no(PP task was not conducted under fullscreen mode)
69 | File: Source file names of the participants' raw data.
70 | opensesame_codename: Code name of Opensesame installed in the study site.
71 | opensesame_version: Version of Opensesame installed in the study site.
72 | experiment_file: Filename of Opensesame script this study site applied for their participants.
73 |
74 | ## Citation
75 |
76 | Stanfield, R. A., & Zwaan, R. A. (2001). The effect of implied orientation derived from verbal context on picture recognition. Psychological Science, 12(2), 153–156. https://doi.org/10.1111/1467-9280.00326
77 |
78 | Zwaan, R. A., & Pecher, D. (2012). Revisiting Mental Simulation in Language Comprehension: Six Replication Attempts. PLoS ONE, 7, e51382. https://doi.org/10.1371/journal.pone.0051382
79 |
--------------------------------------------------------------------------------
/object-orientation/STI_LISTS.xls:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/psych-ds/example-datasets/b0b7ef053cb7a09693b5e3617afec7e4723dd46f/object-orientation/STI_LISTS.xls
--------------------------------------------------------------------------------
/object-orientation/data/num-100_conda-SP_condb-M_data.csv:
--------------------------------------------------------------------------------
1 | "subject_nr","task_order","PList","List","compensation","response","correct","response_time","File","opensesame_codename","opensesame_version","experiment_file"
2 | 1,"none of above","ENG_Prac2.csv","ENG_LIST1.csv",0,"j",0,1091,"subject-1.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
3 | 1,"none of above","ENG_Prac2.csv","ENG_LIST1.csv",0,"j",1,1112,"subject-1.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
4 | 1,"none of above","ENG_Prac2.csv","ENG_LIST1.csv",0,"j",1,636,"subject-1.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
5 | 1,"none of above","ENG_Prac2.csv","ENG_LIST1.csv",0,"j",0,693,"subject-1.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
6 | 1,"none of above","ENG_Prac2.csv","ENG_LIST1.csv",0,"j",0,800,"subject-1.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
7 | 1,"none of above","ENG_Prac2.csv","ENG_LIST1.csv",0,"j",0,863,"subject-1.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
8 | 1,"none of above","ENG_Prac2.csv","ENG_LIST1.csv",0,"j",0,603,"subject-1.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
9 | 1,"none of above","ENG_Prac2.csv","ENG_LIST1.csv",0,"j",0,676,"subject-1.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
10 | 1,"none of above","ENG_Prac2.csv","ENG_LIST1.csv",0,"j",1,761,"subject-1.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
11 | 1,"none of above","ENG_Prac2.csv","ENG_LIST1.csv",0,"j",1,815,"subject-1.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
12 | 1,"none of above","ENG_Prac2.csv","ENG_LIST1.csv",0,"j",1,804,"subject-1.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
13 | 2,"none of above","ENG_Prac2.csv","ENG_LIST2.csv",0,"j",0,1290,"subject-2.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
14 | 2,"none of above","ENG_Prac2.csv","ENG_LIST2.csv",0,"j",1,800,"subject-2.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
15 | 2,"none of above","ENG_Prac2.csv","ENG_LIST2.csv",0,"j",1,1530,"subject-2.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
16 | 2,"none of above","ENG_Prac2.csv","ENG_LIST2.csv",0,"j",0,1162,"subject-2.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
17 | 2,"none of above","ENG_Prac2.csv","ENG_LIST2.csv",0,"j",1,759,"subject-2.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
18 | 2,"none of above","ENG_Prac2.csv","ENG_LIST2.csv",0,"j",1,838,"subject-2.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
19 | 2,"none of above","ENG_Prac2.csv","ENG_LIST2.csv",0,"j",1,692,"subject-2.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
20 | 2,"none of above","ENG_Prac2.csv","ENG_LIST2.csv",0,"j",0,910,"subject-2.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
21 | 2,"none of above","ENG_Prac2.csv","ENG_LIST2.csv",0,"j",0,1254,"subject-2.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
22 | 2,"none of above","ENG_Prac2.csv","ENG_LIST2.csv",0,"j",1,962,"subject-2.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
23 | 2,"none of above","ENG_Prac2.csv","ENG_LIST2.csv",0,"j",1,833,"subject-2.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
24 | 3,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,964,"subject-3.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
25 | 3,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,1283,"subject-3.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
26 | 3,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,1035,"subject-3.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
27 | 3,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,635,"subject-3.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
28 | 3,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",1,1034,"subject-3.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
29 | 3,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",1,792,"subject-3.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
30 | 3,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,722,"subject-3.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
31 | 3,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,2024,"subject-3.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
32 | 3,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",1,825,"subject-3.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
33 | 3,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,907,"subject-3.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
34 | 3,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",1,843,"subject-3.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
35 | 4,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,740,"subject-4.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
36 | 4,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,634,"subject-4.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
37 | 4,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,850,"subject-4.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
38 | 4,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,774,"subject-4.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
39 | 4,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",1,1011,"subject-4.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
40 | 4,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",1,625,"subject-4.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
41 | 4,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",1,616,"subject-4.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
42 | 4,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,908,"subject-4.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
43 | 4,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,915,"subject-4.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
44 | 4,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,749,"subject-4.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
45 | 4,"none of above","ENG_Prac1.csv","ENG_LIST3.csv",0,"j",0,573,"subject-4.csv","Kafkaesque Koffka","3.2.6","OrientationCrossLanguages_2018PSA_SP_1.1.0.osexp"
46 |
--------------------------------------------------------------------------------
/object-orientation/dataset_description.json:
--------------------------------------------------------------------------------
1 | {
2 | "@context":"https://schema.org/",
3 | "@type":"Dataset",
4 | "description":"n/a",
5 | "name": "object-orientation",
6 | "variableMeasured": ["subject_nr","task_order","PList","List","compensation","response","correct","response_time","File","opensesame_codename","opensesame_version","experiment_file","PPList","Identical","Orientation1","Orientation2","Picture1","Picture2","gender","year","month","fullscreen","Match","Orientation","Probe","Target","LAB_SEED","Task","acc","accuracy","alt_task","average_response_time","avg_rt","background","bidi","canvas_backend","clock_backend","color_backend","coordinates","correct_Introduction_E","correct_Probe_Prac_response","correct_Probe_response","correct_Probe_sti_response","correct_Start_E","correct_Target_response","correct_Target_response_Prac","correct_Welcome_E","correct_count","correct_response","count_Check_This","count_Disable_Mouse","count_EXP","count_First_Fixation","count_First_Fixation_Prac","count_Introduction_C","count_Introduction_E","count_LAB_SEED","count_Language_Selection","count_List_Select_E","count_List_Select_TC","count_List_Selection","count_Memory_loop","count_Memory_sequence","count_Prac","count_Prac_Count","count_Prac_Reset","count_Prac_Trial","count_Prac_loop","count_Prac_seq","count_Prac_setup","count_Probe","count_Probe_Collect","count_Probe_Prac","count_Probe_Prac_response","count_Probe_import","count_Probe_response","count_Probe_sti","count_Probe_sti_correct","count_Probe_sti_response","count_Probe_sti_wrong","count_STUDY_order","count_Second_Fixation","count_Second_Fixation_Prac","count_Start_C","count_Start_E","count_Target","count_Target_Prac","count_Target_response","count_Target_response_Prac","count_Target_response_correct","count_Target_response_correct_Prac","count_Target_response_noans","count_Target_response_noans_Prac","count_Target_response_wrong","count_Target_response_wrong_Prac","count_Trial_logger","count_Verification_Break","count_Verification_End","count_Verification_Exp","count_Verification_Prac","count_Verification_Start","count_Verification_Trial","count_Verification_Welcome","count_Verification_loop","count_Welcome_C","count_Welcome_E","count_presetup","datetime","description","disable_garbage_collection","empty_column","experiment_path","font_bold","font_family","font_italic","font_size","font_underline","foreground","form_clicks","form_response","height","keyboard_backend","language1","language2","live_row","live_row_Prac","live_row_Prac_loop","live_row_Verification_loop","logfile","mouse_backend","rectarget","repeat_cycle","reset_loop","response_Introduction_C","response_Introduction_E","response_Probe_Prac_response","response_Probe_response","response_Probe_sti_response","response_Start_C","response_Start_E","response_Target_response","response_Target_response_Prac","response_Verification_Break","response_Verification_End","response_Welcome_C","response_Welcome_E","response_time_Introduction_C","response_time_Introduction_E","response_time_Probe_Prac_response","response_time_Probe_response","response_time_Probe_sti_response","response_time_Start_C","response_time_Start_E","response_time_Target_response","response_time_Target_response_Prac","response_time_Verification_Break","response_time_Verification_End","response_time_Welcome_C","response_time_Welcome_E","round_decimals","sampler_backend","sound_buf_size","sound_channels","sound_freq","sound_sample_size","start","subject_parity","time_Check_This","time_Disable_Mouse","time_EXP","time_First_Fixation","time_First_Fixation_Prac","time_Introduction_C","time_Introduction_E","time_LAB_SEED","time_Language_Selection","time_List_Select_E","time_List_Select_TC","time_List_Selection","time_Memory_loop","time_Memory_sequence","time_Prac","time_Prac_Count","time_Prac_Reset","time_Prac_Trial","time_Prac_loop","time_Prac_seq","time_Prac_setup","time_Probe","time_Probe_Collect","time_Probe_Prac","time_Probe_Prac_response","time_Probe_import","time_Probe_response","time_Probe_sti","time_Probe_sti_correct","time_Probe_sti_response","time_Probe_sti_wrong","time_STUDY_order","time_Second_Fixation","time_Second_Fixation_Prac","time_Start_C","time_Start_E","time_Target","time_Target_Prac","time_Target_response","time_Target_response_Prac","time_Target_response_correct","time_Target_response_correct_Prac","time_Target_response_noans","time_Target_response_noans_Prac","time_Target_response_wrong","time_Target_response_wrong_Prac","time_Trial_logger","time_Verification_Break","time_Verification_End","time_Verification_Exp","time_Verification_Prac","time_Verification_Start","time_Verification_Trial","time_Verification_Welcome","time_Verification_loop","time_Welcome_C","time_Welcome_E","time_presetup","title","total_correct","total_response_time","total_responses","uniform_coordinates","width","correct_Pictures_response","correct_Welcome_PP_E","count_List_Select","count_Pictures_Break","count_Pictures_End","count_Pictures_Exp","count_Pictures_Fixation","count_Pictures_Fixation_Prac","count_Pictures_Prac","count_Pictures_Start","count_Pictures_Target","count_Pictures_Trial","count_Pictures_Welcome","count_Pictures_loop","count_Pictures_response","count_Pictures_response_correct","count_Pictures_response_noans","count_Pictures_response_wrong","count_Prac_Count_1","count_Target_response_noans_Prac_1","count_Target_response_wrong_Prac_1","count_Welcome_PP_C","count_Welcome_PP_E","count_postdata_C","count_postdata_E","live_row_Pictures_loop","osf_always_upload_experiment","osf_id","response_Pictures_Break","response_Pictures_End","response_Pictures_response","response_Welcome_PP_C","response_Welcome_PP_E","response_time_Pictures_Break","response_time_Pictures_End","response_time_Pictures_response","response_time_Welcome_PP_C","response_time_Welcome_PP_E","time_List_Select","time_Pictures_Break","time_Pictures_End","time_Pictures_Exp","time_Pictures_Fixation","time_Pictures_Fixation_Prac","time_Pictures_Prac","time_Pictures_Start","time_Pictures_Target","time_Pictures_Trial","time_Pictures_Welcome","time_Pictures_loop","time_Pictures_response","time_Pictures_response_correct","time_Pictures_response_noans","time_Pictures_response_wrong","time_Prac_Count_1","time_Target_response_noans_Prac_1","time_Target_response_wrong_Prac_1","time_Welcome_PP_C","time_Welcome_PP_E","time_postdata_C","time_postdata_E","count_Post","time_Post"]
7 | }
--------------------------------------------------------------------------------
/safi-survey/README.md:
--------------------------------------------------------------------------------
1 | # SAFI Survey example dataset for Psych-DS specification
2 |
3 | It serves as an example for how a Psych-DS dataset could look like. Dataset used in this example is the SAFI (Studying African Farmer-Led Irrigation) Survey, part of a project about farming and irrigation methods. This is survey data relating to households and agriculture in Tanzania and Mozambique. The survey data was collected through interviews conducted between November 2016 and June 2017. The survey covered such things as; household features (e.g. construction materials used, number of household members), agricultural practices (e.g. water usage), assets (e.g. number and types of livestock) and details about the household members. Original data source:
4 |
5 | *Woodhouse, Philip; Veldwisch, Gert Jan; Brockington, Daniel; Komakech, Hans C.; Manjichi, Angela; Venot, Jean-Philippe (2018). SAFI Survey Results. figshare. Dataset. (CC0 license)*
6 |
7 | This dataset is also used in the [R for Social Scientists](https://datacarpentry.org/r-socialsci/) lesson from [Data Carpentry](https://datacarpentry.org/). The `SAFI_clean.csv` file was used to create a simple example dataset for Psych-DS.
8 |
9 | ### Related resources
10 |
11 | We also used the same dataset as an example for how a publication package could look like (not in Psych-DS format). If you are interested, you can find it on Zenodo:
12 |
13 | *Klapwijk, Eduard, Sunami, Nami, Mania, Joanna, Lushaj, Bora, & Volkova, Anna. (2023). EUR publication package example [Data set]. Zenodo. *
14 |
15 | ### Files
16 |
17 | `data/study-safi-survey_data.csv` - raw data file of the SAFI survey
18 |
19 | ### Validation
20 |
21 | 2023-06-24: dataset successfully validated using the [Psych-DS Checker - SIPS 2022 Prototype](https://github.com/psych-ds/pds-validator-sips2022) and `dataset_description.json` validated with 0 warning and 0 errors using the [Schema.org validator](https://validator.schema.org)
22 |
--------------------------------------------------------------------------------
/safi-survey/data/study-safisurvey_data.csv:
--------------------------------------------------------------------------------
1 | key_ID,village,interview_date,no_membrs,years_liv,respondent_wall_type,rooms,memb_assoc,affect_conflicts,liv_count,items_owned,no_meals,months_lack_food,instanceID
2 | 1,God,2016-11-17T00:00:00Z,3,4,muddaub,1,NULL,NULL,1,bicycle;television;solar_panel;table,2,Jan,uuid:ec241f2c-0609-46ed-b5e8-fe575f6cefef
3 | 1,God,2016-11-17T00:00:00Z,7,9, muddaub,1,yes,once,3,cow_cart;bicycle;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,2,Jan;Sept;Oct;Nov;Dec,uuid:099de9c9-3e5e-427b-8452-26250e840d6e
4 | 3,God,2016-11-17T00:00:00Z,10,15, burntbricks,1,NULL,NULL,1,solar_torch,2,Jan;Feb;Mar;Oct;Nov;Dec,uuid:193d7daf-9582-409b-bf09-027dd36f9007
5 | 4,God,2016-11-17T00:00:00Z,7,6, burntbricks,1,NULL,NULL,2,bicycle;radio;cow_plough;solar_panel;mobile_phone,2,Sept;Oct;Nov;Dec,uuid:148d1105-778a-4755-aa71-281eadd4a973
6 | 5,God,2016-11-17T00:00:00Z,7,40,burntbricks,1,NULL,NULL,4,motorcyle;radio;cow_plough;mobile_phone,2,Aug;Sept;Oct;Nov,uuid:2c867811-9696-4966-9866-f35c3e97d02d
7 | 6,God,2016-11-17T00:00:00Z,3,3,muddaub,1,NULL,NULL,1,NULL,2,Aug;Sept;Oct,uuid:daa56c91-c8e3-44c3-a663-af6a49a2ca70
8 | 7,God,2016-11-17T00:00:00Z,6,38,muddaub,1,no,never,1,motorcyle;cow_plough,3,Nov,uuid:ae20a58d-56f4-43d7-bafa-e7963d850844
9 | 8,Chirodzo,2016-11-16T00:00:00Z,12,70,burntbricks,3,yes,never,2,motorcyle;bicycle;television;radio;cow_plough;solar_panel;solar_torch;table;fridge,2,Jan,uuid:d6cee930-7be1-4fd9-88c0-82a08f90fb5a
10 | 9,Chirodzo,2016-11-16T00:00:00Z,8,6,burntbricks,1,no,never,3,television;solar_panel;solar_torch,3,Jan;Dec,uuid:846103d2-b1db-4055-b502-9cd510bb7b37
11 | 10,Chirodzo,2016-12-16T00:00:00Z,12,23,burntbricks,5,no,never,2,cow_cart;motorcyle;bicycle;television;radio;cow_plough;solar_panel;solar_torch;table,3,Jan;Oct;Nov;Dec,uuid:8f4e49bc-da81-4356-ae34-e0d794a23721
12 | 11,God,2016-11-21T00:00:00Z,6,20,sunbricks,1,NULL,NULL,2,radio;cow_plough,2,Oct;Nov,uuid:d29b44e3-3348-4afc-aa4d-9eb34c89d483
13 | 12,God,2016-11-21T00:00:00Z,7,20,burntbricks,3,yes,never,2,cow_cart;bicycle;radio;cow_plough;table,3,Sept;Oct,uuid:e6ee6269-b467-4e37-91fc-5e9eaf934557
14 | 13,God,2016-11-21T00:00:00Z,6,8,burntbricks,1,no,never,3,bicycle;radio;cow_plough;mobile_phone,2,Sept;Oct;Nov,uuid:6c00c145-ee3b-409c-8c02-2c8d743b6918
15 | 14,God,2016-11-21T00:00:00Z,10,20,burntbricks,3,NULL,NULL,3,bicycle;radio;cow_plough;solar_panel;table;mobile_phone,3,June;July;Aug;Sept;Oct;Nov,uuid:9b21467f-1116-4340-a3b1-1ab64f13c87d
16 | 15,God,2016-11-21T00:00:00Z,5,30,sunbricks,2,yes,once,3,bicycle;radio;cow_plough;solar_panel;table,2,Jan;Feb;Mar;Apr;May;June;July;Aug;Sept;Oct;Nov,uuid:a837e545-ff86-4a1c-a1a5-6186804b985f
17 | 16,God,2016-11-24T00:00:00Z,6,47,muddaub,1,NULL,NULL,4,radio;cow_plough;solar_panel;solar_torch,3,Jan;Feb,uuid:d17db52f-4b87-4768-b534-ea8f9704c565
18 | 17,God,2016-11-21T00:00:00Z,8,20,sunbricks,1,NULL,NULL,1,mobile_phone,2,Nov;Dec,uuid:4707f3dc-df18-4348-9c2c-eec651e89b6b
19 | 18,God,2016-11-21T00:00:00Z,4,20,muddaub,1,NULL,NULL,3,bicycle;mobile_phone,2,Oct;Nov,uuid:7ffe7bd1-a15c-420c-a137-e1f006c317a3
20 | 19,God,2016-11-21T00:00:00Z,9,23,burntbricks,2,NULL,NULL,2,bicycle;radio;cow_plough;solar_panel;solar_torch;mobile_phone,3,Oct;Nov;Dec,uuid:e32f2dc0-0d05-42fb-8e21-605757ddf07d
21 | 20,God,2016-11-21T00:00:00Z,6,1,burntbricks,1,NULL,NULL,1,bicycle;cow_plough;solar_torch,2,Oct;Nov,uuid:d1005274-bf52-4e79-8380-3350dd7c2bac
22 | 21,God,2016-11-21T00:00:00Z,8,20,burntbricks,1,no,never,3,NULL,2,Jan;Feb;Mar;Oct;Nov;Dec,uuid:6570a7d0-6a0b-452c-aa2e-922500e35749
23 | 22,God,2016-11-21T00:00:00Z,4,20,muddaub,1,NULL,NULL,1,radio,2,Jan;Feb;Mar;Apr;Aug;Sept;Oct;Nov;Dec,uuid:a51c3006-8847-46ff-9d4e-d29919b8ecf9
24 | 23,Ruaca,2016-11-21T00:00:00Z,10,20,burntbricks,4,NULL,NULL,3,cow_cart;bicycle;television;radio;cow_plough;solar_panel;electricity;mobile_phone,3,none,uuid:58b37b6d-d6cd-4414-8790-b9c68bca98de
25 | 24,Ruaca,2016-11-21T00:00:00Z,6,4,burntbricks,2,no,never,3,radio;table;sofa_set;mobile_phone,2,Nov;Dec,uuid:661457d3-7e61-45e8-a238-7415e7548f82
26 | 25,Ruaca,2016-11-21T00:00:00Z,11,6,burntbricks,3,no,never,2,cow_cart;motorcyle;television;radio;cow_plough;solar_panel;solar_torch;table;sofa_set;mobile_phone,2,Jan;Feb;Oct,uuid:45ed84c4-114e-4df0-9f5d-c800806c2bee
27 | 26,Ruaca,2016-11-21T00:00:00Z,3,20,burntbricks,2,no,never,2,radio;cow_plough;table;mobile_phone,2,none,uuid:1c54ee24-22c4-4ee9-b1ad-42d483c08e2e
28 | 27,Ruaca,2016-11-21T00:00:00Z,7,36,burntbricks,2,NULL,NULL,3,bicycle;radio;cow_plough;solar_panel;solar_torch;mobile_phone,3,none,uuid:3197cded-1fdc-4c0c-9b10-cfcc0bf49c4d
29 | 28,Ruaca,2016-11-21T00:00:00Z,2,2,muddaub,1,no,more_once,1,NULL,3,Aug;Sept;Oct,uuid:1de53318-a8cf-4736-99b1-8239f8822473
30 | 29,Ruaca,2016-11-21T00:00:00Z,7,10,burntbricks,2,yes,frequently,1,motorcyle;bicycle;radio;table;mobile_phone,3,Jan;Feb,uuid:adcd7463-8943-4c67-b25f-f72311409476
31 | 30,Ruaca,2016-11-21T00:00:00Z,7,22,muddaub,2,NULL,NULL,1,bicycle;radio;mobile_phone,2,Jan;Feb,uuid:59341ead-92be-45a9-8545-6edf9f94fdc6
32 | 31,Ruaca,2016-11-21T00:00:00Z,3,2,muddaub,1,NULL,NULL,1,NULL,3,none,uuid:cb06eb49-dd39-4150-8bbe-a599e074afe8
33 | 32,Ruaca,2016-11-21T00:00:00Z,19,69,muddaub,2,yes,more_once,5,cow_cart;motorcyle;radio;cow_plough;solar_panel;mobile_phone,2,none,uuid:25597af3-cd79-449c-a48a-fb9aea6c48bf
34 | 33,Ruaca,2016-11-21T00:00:00Z,8,34,muddaub,1,no,more_once,2,cow_cart;lorry;motorcyle;sterio;cow_plough;solar_panel;mobile_phone,2,none,uuid:0fbd2df1-2640-4550-9fbd-7317feaa4758
35 | 34,Chirodzo,2016-11-17T00:00:00Z,8,18,burntbricks,3,yes,more_once,3,television;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,2,Jan;Dec,uuid:14c78c45-a7cc-4b2a-b765-17c82b43feb4
36 | 35,Chirodzo,2016-11-17T00:00:00Z,5,45,muddaub,1,yes,more_once,2,bicycle;cow_plough,3,Jan;Sept;Oct;Nov;Dec,uuid:ff7496e7-984a-47d3-a8a1-13618b5683ce
37 | 36,Chirodzo,2016-11-17T00:00:00Z,6,23,sunbricks,1,yes,once,3,cow_cart;bicycle;radio;cow_plough;solar_panel;mobile_phone,3,none,uuid:c90eade0-1148-4a12-8c0e-6387a36f45b1
38 | 37,Chirodzo,2016-11-17T00:00:00Z,3,8,burntbricks,1,NULL,NULL,2,bicycle;television;radio;cow_plough;solar_panel;solar_torch;mobile_phone,3,Jan;Nov;Dec,uuid:408c6c93-d723-45ef-8dee-1b1bd3fe20cd
39 | 38,God,2016-11-17T00:00:00Z,10,19,muddaub,1,yes,never,3,bicycle;radio;cow_plough;solar_panel;table;mobile_phone,3,Nov,uuid:81309594-ff58-4dc1-83a7-72af5952ee08
40 | 39,God,2016-11-17T00:00:00Z,6,22,muddaub,1,NULL,NULL,1,NULL,3,Nov,uuid:c0fb6310-55af-4831-ae3d-2729556c3285
41 | 40,God,2016-11-17T00:00:00Z,9,23,burntbricks,1,yes,never,1,bicycle;radio;cow_plough;solar_panel;table;mobile_phone,3,Sept;Oct;Nov,uuid:c0b34854-eede-4e81-b183-ef58a45bfc34
42 | 41,God,2016-11-17T00:00:00Z,7,22,muddaub,1,NULL,NULL,2,motorcyle;bicycle;radio;cow_plough;table,3,Oct;Nov,uuid:b3ba34d8-eea1-453d-bc73-c141bcbbc5e5
43 | 42,God,2016-11-17T00:00:00Z,8,8,sunbricks,1,no,never,3,mobile_phone,3,Jan;Nov;Dec,uuid:e3a1dd8a-1bda-428c-a014-2b527f11ae64
44 | 43,Chirodzo,2016-11-17T00:00:00Z,7,29,muddaub,1,no,never,2,cow_plough;mobile_phone,2,Jan;Feb;Oct;Nov;Dec,uuid:b4dff49f-ef27-40e5-a9d1-acf287b47358
45 | 44,Chirodzo,2016-11-17T00:00:00Z,2,6,muddaub,1,NULL,NULL,3,radio;solar_torch,2,Jan;Dec,uuid:f9fadf44-d040-4fca-86c1-2835f79c4952
46 | 45,Chirodzo,2016-11-17T00:00:00Z,9,7,muddaub,1,no,never,4,motorcyle;bicycle;television;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,3,none,uuid:e3554d22-35b1-4fb9-b386-dd5866ad5792
47 | 46,Chirodzo,2016-11-17T00:00:00Z,10,42,burntbricks,2,no,once,2,motorcyle;computer;television;sterio;solar_panel;solar_torch;table;mobile_phone,2,Sept;Oct;Nov,uuid:35f297e0-aa5d-4149-9b7b-4965004cfc37
48 | 47,Chirodzo,2016-11-17T00:00:00Z,2,2,muddaub,1,yes,once,1,solar_torch;mobile_phone,3,none,uuid:2d0b1936-4f82-4ec3-a3b5-7c3c8cd6cc2b
49 | 48,Chirodzo,2016-11-16T00:00:00Z,7,58,muddaub,1,NULL,NULL,3,radio,3,June;July;Aug;Sept;Oct;Nov,uuid:e180899c-7614-49eb-a97c-40ed013a38a2
50 | 49,Chirodzo,2016-11-16T00:00:00Z,6,26,burntbricks,2,NULL,NULL,2,bicycle;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,3,Jan;Nov;Dec,uuid:2303ebc1-2b3c-475a-8916-b322ebf18440
51 | 50,Chirodzo,2016-11-16T00:00:00Z,6,7,muddaub,1,yes,never,1,solar_torch,2,June;July;Aug;Sept;Oct;Nov;Dec,uuid:4267c33c-53a7-46d9-8bd6-b96f58a4f92c
52 | 51,Chirodzo,2016-11-16T00:00:00Z,5,30,muddaub,1,NULL,NULL,1,radio,3,Oct;Nov,uuid:18ac8e77-bdaf-47ab-85a2-e4c947c9d3ce
53 | 52,Chirodzo,2016-11-16T00:00:00Z,11,15,burntbricks,3,no,never,3,motorcyle;television;radio;cow_plough;solar_panel;mobile_phone,3,Aug;Sept;Oct;Nov,uuid:6db55cb4-a853-4000-9555-757b7fae2bcf
54 | 21,Chirodzo,2016-11-16T00:00:00Z,8,16,burntbricks,3,yes,frequently,2,bicycle;radio;mobile_phone,2,Nov,uuid:cc7f75c5-d13e-43f3-97e5-4f4c03cb4b12
55 | 54,Chirodzo,2016-11-16T00:00:00Z,7,15,muddaub,1,no,never,1,NULL,2,Sept;Oct;Nov,uuid:273ab27f-9be3-4f3b-83c9-d3e1592de919
56 | 55,Chirodzo,2016-11-16T00:00:00Z,9,23,muddaub,2,NULL,NULL,1,television;cow_plough;mobile_phone,2,Oct;Nov,uuid:883c0433-9891-4121-bc63-744f082c1fa0
57 | 56,Chirodzo,2016-11-16T00:00:00Z,12,23,burntbricks,2,yes,never,2,motorcyle;bicycle;mobile_phone,3,none,uuid:973c4ac6-f887-48e7-aeaf-4476f2cfab76
58 | 57,Chirodzo,2016-11-16T00:00:00Z,4,27,burntbricks,1,no,never,1,radio,2,none,uuid:a7184e55-0615-492d-9835-8f44f3b03a71
59 | 58,Chirodzo,2016-11-16T00:00:00Z,11,45,burntbricks,3,no,never,3,motorcyle;bicycle;television;radio;cow_plough;solar_panel;mobile_phone,2,none,uuid:a7a3451f-cd0d-4027-82d9-8dcd1234fcca
60 | 59,Chirodzo,2016-11-16T00:00:00Z,2,60,muddaub,3,NULL,NULL,3,NULL,2,none,uuid:1936db62-5732-45dc-98ff-9b3ac7a22518
61 | 60,Chirodzo,2016-11-16T00:00:00Z,8,15,burntbricks,2,no,never,4,cow_plough,2,none,uuid:85465caf-23e4-4283-bb72-a0ef30e30176
62 | 61,Chirodzo,2016-11-16T00:00:00Z,10,14,muddaub,1,yes,more_once,3,cow_cart;motorcyle;bicycle;television;radio;cow_plough;solar_panel;table;mobile_phone,3,Jan;Feb;Dec,uuid:2401cf50-8859-44d9-bd14-1bf9128766f2
63 | 62,Chirodzo,2016-11-16T00:00:00Z,5,5,muddaub,1,NULL,NULL,1,bicycle;radio;mobile_phone,3,Aug;Sept;Oct;Nov,uuid:c6597ecc-cc2a-4c35-a6dc-e62c71b345d6
64 | 63,Chirodzo,2016-11-16T00:00:00Z,4,10,muddaub,1,NULL,NULL,1,NULL,3,Jan;Oct;Nov;Dec,uuid:86ed4328-7688-462f-aac7-d6518414526a
65 | 64,Chirodzo,2016-11-16T00:00:00Z,6,1,muddaub,1,NULL,NULL,1,bicycle;solar_torch;table;sofa_set;mobile_phone,3,Jan;Feb;Dec,uuid:28cfd718-bf62-4d90-8100-55fafbe45d06
66 | 65,Chirodzo,2016-11-16T00:00:00Z,8,20,burntbricks,3,no,once,3,motorcyle;radio;cow_plough;table,3,Jan;Feb;Mar,uuid:143f7478-0126-4fbc-86e0-5d324339206b
67 | 66,Chirodzo,2016-11-16T00:00:00Z,10,37,burntbricks,3,yes,frequently,4,cow_cart;motorcyle;bicycle;television;radio;cow_plough;solar_panel;solar_torch;mobile_phone,3,none,uuid:a457eab8-971b-4417-a971-2e55b8702816
68 | 67,Chirodzo,2016-11-16T00:00:00Z,5,31,burntbricks,2,no,more_once,4,motorcyle;radio;cow_plough;solar_panel;mobile_phone,3,none,uuid:6c15d667-2860-47e3-a5e7-7f679271e419
69 | 68,Chirodzo,2016-11-16T00:00:00Z,8,52,burntbricks,3,no,more_once,3,motorcyle;television;sterio;solar_panel;mobile_phone,3,none,uuid:ef04b3eb-b47d-412e-9b09-4f5e08fc66f9
70 | 69,Chirodzo,2016-11-16T00:00:00Z,4,12,muddaub,1,no,more_once,1,bicycle;radio;solar_torch;mobile_phone,3,none,uuid:f86933a5-12b8-4427-b821-43c5b039401d
71 | 70,Chirodzo,2016-11-16T00:00:00Z,8,25,burntbricks,2,no,more_once,4,cow_cart;bicycle;radio;cow_plough;solar_panel;mobile_phone,2,none,uuid:1feb0108-4599-4bf9-8a07-1f5e66a50a0a
72 | 71,Ruaca,2016-11-18T00:00:00Z,6,14,burntbricks,1,yes,more_once,3,radio;cow_plough;mobile_phone,2,Aug;Sept;Oct;Nov,uuid:761f9c49-ec93-4932-ba4c-cc7b78dfcef1
73 | 127,Chirodzo,2016-11-16T00:00:00Z,4,18,burntbricks,8,NULL,NULL,1,mobile_phone,2,Aug;Sept;Oct,uuid:f6d04b41-b539-4e00-868a-0f62b427587d
74 | 133,Ruaca,2016-11-23T00:00:00Z,5,25,burntbricks,2,no,never,5,cow_cart;car;lorry;motorcyle;bicycle;television;sterio;cow_plough;solar_panel;solar_torch;electricity;table;sofa_set;mobile_phone;fridge,3,Jan;Oct;Nov,uuid:429d279a-a519-4dcc-9f64-4673b0fd5d53
75 | 152,Ruaca,2016-11-24T00:00:00Z,10,16,burntbricks,1,yes,once,3,motorcyle;bicycle;radio;sterio;cow_plough;solar_panel;mobile_phone,3,none,uuid:59738c17-1cda-49ee-a563-acd76f6bc487
76 | 153,Ruaca,2016-11-24T00:00:00Z,5,41,burntbricks,1,NULL,NULL,1,NULL,2,Oct;Nov,uuid:7e7961ca-fa1c-4567-9bfa-a02f876e4e03
77 | 155,God,2016-11-24T00:00:00Z,4,4,burntbricks,1,NULL,NULL,1,electricity,2,Jan;Sept;Oct;Nov;Dec,uuid:77b3021b-a9d6-4276-aaeb-5bfcfd413852
78 | 178,Ruaca,2016-11-25T00:00:00Z,5,79,burntbricks,2,yes,frequently,3,radio;cow_plough;solar_panel;mobile_phone,3,none,uuid:2186e2ec-f65a-47cc-9bc1-a0f36dd9591c
79 | 177,God,2016-11-25T00:00:00Z,10,13,sunbricks,1,no,more_once,2,motorcyle;television;cow_plough;solar_panel;mobile_phone,3,Nov,uuid:87998c33-c8d2-49ec-9dae-c123735957ec
80 | 180,Ruaca,2016-11-25T00:00:00Z,7,50,muddaub,1,no,never,3,cow_plough;solar_panel,3,Oct;Nov,uuid:ece89122-ea99-4378-b67e-a170127ec4e6
81 | 181,God,2016-11-25T00:00:00Z,11,25,sunbricks,2,yes,more_once,3,cow_cart;motorcyle;bicycle;television;radio;cow_plough;solar_panel;mobile_phone,3,none,uuid:bf373763-dca5-4906-901b-d1bacb4f0286
82 | 182,God,2016-11-25T00:00:00Z,7,21,muddaub,3,no,more_once,2,solar_panel,3,Jan;Feb;Nov;Dec,uuid:394033e8-a6e2-4e39-bfac-458753a1ed78
83 | 186,God,2016-11-28T00:00:00Z,7,24,muddaub,1,no,more_once,2,cow_plough;mobile_phone,3,none,uuid:268bfd97-991c-473f-bd51-bc80676c65c6
84 | 187,God,2016-11-28T00:00:00Z,5,43,muddaub,2,yes,more_once,4,cow_cart;motorcyle;bicycle;television;radio;cow_plough;solar_panel;solar_torch;mobile_phone,3,none,uuid:0a42c9ee-a840-4dda-8123-15c1bede5dfc
85 | 195,God,2016-11-28T00:00:00Z,5,48,burntbricks,1,no,never,3,cow_cart;bicycle;radio;cow_plough;solar_torch,2,Sept;Oct;Nov,uuid:2c132929-9c8f-450a-81ff-367360ce2c19
86 | 196,God,2016-11-28T00:00:00Z,7,49,burntbricks,2,yes,more_once,3,radio;cow_plough;mobile_phone,3,none,uuid:44e427d1-a448-4bf2-b529-7d67b2266c06
87 | 197,God,2016-11-28T00:00:00Z,5,19,burntbricks,2,no,more_once,3,bicycle;television;radio;cow_plough;solar_torch;table;mobile_phone,2,Nov,uuid:85c99fd2-775f-40c9-8654-68223f59d091
88 | 198,God,2016-11-28T00:00:00Z,3,49,burntbricks,1,no,never,1,NULL,3,Nov,uuid:28c64954-739c-444c-a6e0-355878e471c8
89 | 201,God,2016-11-21T00:00:00Z,4,6,muddaub,2,NULL,NULL,2,bicycle;radio;solar_torch;mobile_phone,2,Oct;Nov;Dec,uuid:9e79a31c-3ea5-44f0-80f9-a32db49422e3
90 | 202,God,2016-11-17T00:00:00Z,12,12,burntbricks,4,yes,more_once,3,cow_cart;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,3,Jan;Feb;Mar;Oct;Nov;Dec,uuid:06d39051-38ef-4757-b68b-3327b1f16b9d
91 | 72,Ruaca,2017-04-26T00:00:00Z,6,24,muddaub,1,yes,more_once,3,bicycle;radio;cow_plough,2,Jan;Aug;Sept;Oct;Nov;Dec,uuid:c4a2c982-244e-45a5-aa4b-71fa53f99e18
92 | 73,Ruaca,2017-04-26T00:00:00Z,7,9,burntbricks,2,yes,more_once,3,cow_cart;motorcyle;bicycle;television;radio;cow_plough;solar_panel;table;mobile_phone,3,Jan;Sept;Oct,uuid:ac3da862-9e6c-4962-94b6-f4c31624f207
93 | 76,Ruaca,2017-04-26T00:00:00Z,17,48,burntbricks,2,yes,more_once,4,bicycle;radio;cow_plough;solar_panel;mobile_phone,3,none,uuid:4178a296-903a-4a8e-9cfa-0cd6143476e8
94 | 83,Ruaca,2017-04-27T00:00:00Z,5,22,burntbricks,1,yes,never,2,radio;cow_plough;solar_torch,2,Aug;Sept;Oct,uuid:a1e9df00-c8ae-411c-931c-c7df898c68d0
95 | 85,Ruaca,2017-04-27T00:00:00Z,7,40,sunbricks,1,no,never,2,radio;cow_plough,2,Oct;Nov,uuid:4d0f472b-f8ae-4026-87c9-6b5be14b0a70
96 | 89,God,2017-04-27T00:00:00Z,5,10,burntbricks,2,no,never,3,bicycle;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,3,Oct;Nov,uuid:b3b309c6-f234-4830-8b30-87d26a17ee1d
97 | 101,God,2017-04-27T00:00:00Z,3,4,muddaub,1,no,never,1,bicycle;solar_torch,3,Sept;Oct;Nov,uuid:3c174acd-e431-4523-9ad6-eb14cddca805
98 | 103,Ruaca,2017-04-27T00:00:00Z,6,96,sunbricks,1,no,never,5,cow_cart;cow_plough;solar_panel;sofa_set;mobile_phone,3,Jan;Feb;Dec,uuid:e9d79844-ef14-493b-bbd6-d13691cc660e
99 | 102,Ruaca,2017-04-28T00:00:00Z,12,15,burntbricks,2,yes,frequently,2,cow_plough;table;sofa_set;mobile_phone,3,Jan;Feb,uuid:76206b0b-af74-4344-b24f-81e839f0d7b0
100 | 78,Ruaca,2017-04-28T00:00:00Z,6,48,burntbricks,1,no,more_once,2,cow_plough,2,Aug;Sept;Oct,uuid:da3fa7cc-5ce9-44fd-9a78-b8982b607515
101 | 80,Ruaca,2017-04-28T00:00:00Z,5,12,muddaub,1,no,more_once,1,cow_cart;bicycle;radio;cow_plough;solar_panel;solar_torch,3,none,uuid:a85df6df-0336-46fa-a9f4-522bf6f8b438
102 | 104,Ruaca,2017-04-28T00:00:00Z,14,52,sunbricks,1,yes,never,4,cow_cart;bicycle;cow_plough,3,Jan;Feb;Dec,uuid:bb2bb365-7d7d-4fe9-9353-b21269676119
103 | 105,Ruaca,2017-04-28T00:00:00Z,6,40,sunbricks,1,yes,frequently,2,motorcyle;radio;cow_plough;solar_panel;mobile_phone,3,Jan;Feb;Dec,uuid:af0904ee-4fdb-4090-973f-599c81ddf022
104 | 106,God,2017-04-30T00:00:00Z,15,22,sunbricks,5,no,never,2,cow_cart;motorcyle;bicycle;radio;sterio;cow_plough;solar_panel;solar_torch;table;mobile_phone,3,Oct;Nov;Dec,uuid:468797c1-4a65-4f35-9c83-e28ce46972a2
105 | 109,God,2017-05-03T00:00:00Z,4,12,sunbricks,1,NULL,NULL,3,cow_cart;bicycle;radio;cow_plough;table,3,July;Aug;Sept;Oct;Nov,uuid:602cd3f6-4a97-49c6-80e3-bcfd5c78dfa4
106 | 110,Ruaca,2017-05-03T00:00:00Z,6,22,sunbricks,3,no,never,3,bicycle;radio;cow_plough;table;mobile_phone,2,none,uuid:e7c51ac4-24e4-475e-88e7-f85e896945e3
107 | 113,Ruaca,2017-05-03T00:00:00Z,11,26,burntbricks,3,no,never,4,cow_cart;motorcyle;bicycle;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,3,none,uuid:01210861-aba1-4268-98d0-0260e05f5155
108 | 118,Ruaca,2017-05-04T00:00:00Z,5,25,muddaub,1,NULL,NULL,1,radio;solar_torch;mobile_phone,3,Oct;Nov;Dec,uuid:77335b2e-8812-4a35-b1e5-ca9ab626dfea
109 | 125,Ruaca,2017-05-04T00:00:00Z,5,14,burntbricks,1,no,more_once,2,bicycle;radio;cow_plough;solar_panel;solar_torch;mobile_phone,3,Jan;Sept;Oct;Nov;Dec,uuid:02b05c68-302e-4e7a-b229-81cb1377fd29
110 | 119,Ruaca,2017-05-04T00:00:00Z,3,14,muddaub,1,no,never,4,bicycle;cow_plough;solar_panel;mobile_phone,3,none,uuid:fa201fce-4e94-44b8-b435-c558c2e1ed55
111 | 115,Ruaca,2017-05-11T00:00:00Z,4,16,sunbricks,2,NULL,NULL,3,cow_cart;motorcyle;bicycle;television;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,3,none,uuid:628fe23d-188f-43e4-a203-a4bf3257d461
112 | 108,God,2017-05-11T00:00:00Z,15,22,burntbricks,2,no,never,4,cow_cart;bicycle;radio;cow_plough;solar_panel;table;mobile_phone,3,Aug;Sept;Oct;Nov,uuid:e4f4d6ba-e698-45a5-947f-ba6da88cc22b
113 | 116,Ruaca,2017-05-11T00:00:00Z,5,25,burntbricks,3,NULL,NULL,3,motorcyle;bicycle;television;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,3,Jan;Nov;Dec,uuid:cfee6297-2c0e-4f8a-94cc-9aaee0bd64cb
114 | 117,Ruaca,2017-05-11T00:00:00Z,10,28,muddaub,4,NULL,NULL,1,motorcyle;television;radio;solar_panel;solar_torch;table;mobile_phone,3,Jan;Feb;Nov;Dec,uuid:3fe626b3-c794-48e1-a80f-5bfe440c507b
115 | 144,Ruaca,2017-05-18T00:00:00Z,7,5,burntbricks,4,no,frequently,4,cow_cart;television;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,2,none,uuid:0670cef6-d233-4852-89d8-36955261b0a3
116 | 143,Ruaca,2017-05-18T00:00:00Z,10,24,burntbricks,2,no,frequently,3,cow_cart;motorcyle;television;radio;cow_plough;solar_torch;table;mobile_phone,3,Jan;Dec,uuid:9a096a12-b335-468c-b3cc-1191180d62de
117 | 150,Ruaca,2017-05-18T00:00:00Z,7,8,muddaub,1,no,never,1,mobile_phone,3,Sept;Oct;Nov,uuid:92613d0d-e7b1-4d62-8ea4-451d7cd0a982
118 | 159,God,2017-05-18T00:00:00Z,4,24,sunbricks,1,no,never,1,radio;solar_panel;solar_torch,3,Sept;Oct;Nov,uuid:37577f91-d665-443e-8d70-b914954cef4b
119 | 160,God,2017-06-03T00:00:00Z,7,13,burntbricks,2,yes,frequently,2,cow_cart;cow_plough;solar_torch;mobile_phone,2,Nov,uuid:f22831ec-6bc3-4b73-9197-4b01e01abb66
120 | 165,Ruaca,2017-06-03T00:00:00Z,9,14,burntbricks,1,no,never,3,cow_cart;motorcyle;bicycle;television;radio;cow_plough;solar_torch;electricity;table;sofa_set;mobile_phone;fridge,3,none,uuid:62f3f7af-f0f3-4f88-b9e0-acf8baa49ae4
121 | 166,Ruaca,2017-06-03T00:00:00Z,11,16,muddaub,1,no,never,1,bicycle;solar_torch;mobile_phone,2,Feb;Mar,uuid:40aac732-94df-496c-97ba-5b67f59bcc7a
122 | 167,Ruaca,2017-06-03T00:00:00Z,8,24,muddaub,1,no,never,3,motorcyle;radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,2,Jan;Nov;Dec,uuid:a9d1a013-043b-475d-a71b-77ed80abe970
123 | 174,Ruaca,2017-06-03T00:00:00Z,12,25,burntbricks,2,no,never,3,car;lorry;motorcyle;radio;sterio;cow_plough;solar_panel;solar_torch;table;sofa_set;mobile_phone;fridge,3,Jan;Feb;Dec,uuid:43ec6132-478c-4f87-878d-fb3c0c4d0c74
124 | 175,Ruaca,2017-06-03T00:00:00Z,7,36,burntbricks,1,no,never,4,motorcyle;bicycle;radio;sterio;cow_plough;solar_panel;table;mobile_phone,2,Jan;Oct;Nov;Dec,uuid:64fc743e-8176-40f6-8ae4-36ae97fac1d9
125 | 189,Ruaca,2017-06-03T00:00:00Z,15,16,sunbricks,1,no,never,3,motorcyle;radio;sterio;cow_plough;solar_panel;table;mobile_phone,3,Nov,uuid:c17e374c-280b-4e78-bf21-74a7c1c73492
126 | 191,Ruaca,2017-06-03T00:00:00Z,10,5,burntbricks,4,no,never,1,radio;cow_plough;solar_panel;solar_torch;mobile_phone,2,Oct;Nov;Dec,uuid:dad53aff-b520-4015-a9e3-f5fdf9168fe1
127 | 192,Chirodzo,2017-06-03T00:00:00Z,9,20,burntbricks,1,no,once,1,bicycle;television;radio;sterio;solar_panel;solar_torch;table;mobile_phone,3,Jan;Nov;Dec,uuid:f94409a6-e461-4e4c-a6fb-0072d3d58b00
128 | 126,Ruaca,2017-05-18T00:00:00Z,3,7,burntbricks,1,no,more_once,3,motorcyle;radio;solar_panel,3,Oct;Nov;Dec,uuid:69caea81-a4e5-4e8d-83cd-9c18d8e8d965
129 | 193,Ruaca,2017-06-04T00:00:00Z,7,10,cement,3,no,more_once,3,car;lorry;television;radio;sterio;cow_plough;solar_torch;electricity;table;sofa_set;mobile_phone;fridge,3,none,uuid:5ccc2e5a-ea90-48b5-8542-69400d5334df
130 | 194,Ruaca,2017-06-04T00:00:00Z,4,5,muddaub,1,no,more_once,1,radio;solar_panel;solar_torch;mobile_phone,3,Sept;Oct;Nov,uuid:95c11a30-d44f-40c4-8ea8-ec34fca6bbbf
131 | 199,Chirodzo,2017-06-04T00:00:00Z,7,17,burntbricks,2,yes,more_once,2,cow_cart;lorry;motorcyle;computer;television;radio;sterio;cow_plough;solar_panel;solar_torch;electricity;mobile_phone,3,Nov;Dec,uuid:ffc83162-ff24-4a87-8709-eff17abc0b3b
132 | 200,Chirodzo,2017-06-04T00:00:00Z,8,20,burntbricks,2,NULL,NULL,3,radio;cow_plough;solar_panel;solar_torch;table;mobile_phone,3,Oct;Nov,uuid:aa77a0d7-7142-41c8-b494-483a5b68d8a7
--------------------------------------------------------------------------------
/safi-survey/dataset_description.json:
--------------------------------------------------------------------------------
1 | {
2 | "@context": "http://schema.org/",
3 | "@type": "Dataset",
4 | "schemaVersion": "Psych-DS 0.1.0",
5 | "name": "SAFI (Studying African Farmer-Led Irrigation)",
6 | "description": "Project about farming and irrigation methods. This is survey data relating to households and agriculture in Tanzania and Mozambique. The survey data was collected through interviews conducted between November 2016 and June 2017. The survey covered such things as; household features (e.g. construction materials used, number of household members), agricultural practices (e.g. water usage), assets (e.g. number and types of livestock) and details about the household members. Original data: Woodhouse, Philip; Veldwisch, Gert Jan; Brockington, Daniel; Komakech, Hans C.; Manjichi, Angela; Venot, Jean-Philippe (2018). SAFI Survey Results. figshare. Dataset. https://doi.org/10.6084/m9.figshare.6262019.v4",
7 | "author": [
8 | {
9 | "@type": "Person",
10 | "name": "Eduard Klapwijk",
11 | "@id": "https://orcid.org/0000-0002-8936-0365"
12 | }
13 | ],
14 | "url": "https://doi.org/10.5281/zenodo.7956600",
15 | "citation": "Klapwijk, Eduard, Sunami, Nami, Mania, Joanna, Lushaj, Bora, & Volkova, Anna. (2023). EUR publication package example [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7956600",
16 | "variableMeasured": [
17 | {
18 | "type": "PropertyValue",
19 | "name": "key_ID",
20 | "description": "Unique Id for each observation"
21 | },
22 | {
23 | "type": "PropertyValue",
24 | "name": "village",
25 | "description": "Village name"
26 | },
27 | {
28 | "type": "PropertyValue",
29 | "name": "interview_date",
30 | "description": "Date of interview"
31 | },
32 | {
33 | "type": "PropertyValue",
34 | "name": "no_membrs",
35 | "description": "Number of household members"
36 | },
37 | {
38 | "type": "PropertyValue",
39 | "name": "years_liv",
40 | "description": "Number of years living in a given village"
41 | },
42 | {
43 | "type": "PropertyValue",
44 | "name": "respondent_wall_type",
45 | "description": "Type of wall in the house"
46 | },
47 | {
48 | "type": "PropertyValue",
49 | "name": "rooms",
50 | "description": "Number of rooms for sleeping"
51 | },
52 | {
53 | "type": "PropertyValue",
54 | "name": "memb_assoc",
55 | "description": "Membership irrigation association"
56 | },
57 | {
58 | "type": "PropertyValue",
59 | "name": "affect_conflicts",
60 | "description": "Frequency affected by a conflict"
61 | },
62 | {
63 | "type": "PropertyValue",
64 | "name": "liv_count",
65 | "description": "Livestock count"
66 | },
67 | {
68 | "type": "PropertyValue",
69 | "name": "items_owned",
70 | "description": "Items owned by a household"
71 | },
72 | {
73 | "type": "PropertyValue",
74 | "name": "no_meals",
75 | "description": "Number of meals per day"
76 | },
77 | {
78 | "type": "PropertyValue",
79 | "name": "months_lack_food",
80 | "description": "Month with no food available"
81 | },
82 | {
83 | "type": "PropertyValue",
84 | "name": "instanceID",
85 | "description": "Unique identifier for the form data submission"
86 | }
87 | ]
88 | }
--------------------------------------------------------------------------------
/template-dataset/README.md:
--------------------------------------------------------------------------------
1 | # README - Template project
2 |
3 | This is a README file. It is a [Markdown file](https://en.wikipedia.org/wiki/Markdown), which means it's a simple text document, but you can use simple syntax like you see here and many programs will display it more nicely - for instance, the words 'Markdown file' will appear as a link that goes to `https://en.wikipedia.org/wiki/Markdown`.
4 |
5 | This is the first document someone will read when they access your project! Write something informative in here, such as:
6 |
7 | * A quick summary of what the project is
8 |
9 | * A list of what files can be found in this folder and what they are
10 |
11 | * Instructions for how to cite this datset/project. You can also put your citation information in `dataset_description.JSON`!
12 |
--------------------------------------------------------------------------------
/template-dataset/data/study-yarncolor_data.csv:
--------------------------------------------------------------------------------
1 | sub_id,date,garment,yarn_color
2 | r2d2,2021-02-21,hat,Country Blue
3 | r2d2,1999-08-12,scarf,Eggplant
4 | r2d2,2008-12-12,hat,Royal
5 | r2d2,2019,hat,Grey
6 | r2d2,1999,snood,Gold
7 | r2d2,2014-01-01,sweater,Kelly
8 | c3p0,2021,mittens,Lavender
9 | c3p0,2020,glove,Toast
10 | c3p0,2020-12-12,,Mint Green
11 | bb8,2020,scarf,Maroon
12 | bb8,2021,scarf,Pink Carnation
13 |
--------------------------------------------------------------------------------
/template-dataset/dataset_description.json:
--------------------------------------------------------------------------------
1 | {
2 | "@context": "https://schema.org/",
3 | "@type": "Dataset",
4 | "name": "Psych-DS Example Dataset",
5 | "description": "This is a 'skeleton' dataset for Psych-DS",
6 | "schemaVersion": "Psych-DS 0.1.0",
7 | "creator": [
8 | {
9 | "@type": "Person",
10 | "name": "Melissa Kline"
11 | },
12 | {
13 | "@type": "Person",
14 | "name": "Schmelissa Schmine",
15 | "birthDate": "1950-01-01",
16 | "favoriteSandwich": "grilled cheese"
17 | }
18 | ],
19 | "citation": "Kline (2018). Not a real paper, No Journal, p. 1-24.",
20 | "sameAs": "https://doi.org/doi-goes-here",
21 | "temporalCoverage": "1950-01-01/2013-12-18",
22 | "keywords": [
23 | "foo",
24 | "bar"
25 | ],
26 | "variableMeasured": [
27 | {
28 | "@type": "PropertyValue",
29 | "unitText": "Participant",
30 | "name": "participant_id",
31 | "description": "Identity of each zebra. Provides a unique rowid in this dataset.",
32 | "naValues": "NA"
33 | },
34 | {
35 | "@type": "PropertyValue",
36 | "unitText": "Smoots",
37 | "name": "length_in_smoots",
38 | "description": "The length of a zebra, in smoots",
39 | "minValue": "0",
40 | "naValues": "NA"
41 | },
42 | {
43 | "@type": "PropertyValue",
44 | "unitCode": "C26",
45 | "name": "milliseconds",
46 | "description": "Time the zebra started running before/after the starting gun goes off"
47 | },
48 | {
49 | "@type": "PropertyValue",
50 | "unitText": null,
51 | "name": "team",
52 | "description": "Which team the zebra is on",
53 | "levels": [
54 | "Red team",
55 | "Blue team"
56 | ],
57 | "ordered": "False",
58 | "naValues": [
59 | "NA",
60 | "No team"
61 | ]
62 | },
63 | {
64 | "@type": "PropertyValue",
65 | "name": "sub_id",
66 | "description": "subject ID"
67 | },
68 | {
69 | "@type": "PropertyValue",
70 | "name": "date",
71 | "description": "Date when response was made"
72 | },
73 | {
74 | "@type": "PropertyValue",
75 | "name": "garment"
76 | },
77 | {
78 | "@type": "PropertyValue",
79 | "name": "yarn_color"
80 | }
81 | ]
82 | }
83 |
--------------------------------------------------------------------------------