├── .gitignore
├── Lectures
├── .DS_Store
├── 01 Introduction to Data Visualization
│ ├── .DS_Store
│ ├── 01 Importance of Data Visualization.ipynb
│ ├── 02 Overview of Popular Visualization Libraries in Python.ipynb
│ └── images
│ │ ├── banner.png
│ │ ├── bokeh.png
│ │ ├── data-visualization.png
│ │ ├── data-visualizations.png
│ │ ├── data-viz-applications.png
│ │ ├── images.png
│ │ ├── interactive-data-viz-tools.png
│ │ ├── matplotlib.webp
│ │ ├── plotly.avif
│ │ ├── plotly_phidgets.jpg
│ │ ├── seaborn.png
│ │ ├── static-data-viz-tools.png
│ │ ├── types-of-data.png
│ │ └── visualization-libraries-comparison.png
├── 03 Plotting with Matplotlib
│ ├── 01 Introduction to Matplotlib.ipynb
│ ├── 02 Figure and Axes Objects.ipynb
│ ├── 03 Basic Plot Types.ipynb
│ ├── 04 Text, Labels, and Annotations.ipynb
│ └── images
│ │ ├── banner.png
│ │ └── matplotlib-figure-anatomy.webp
├── 04 Plotting with Seaborn
│ ├── 01 Introduction to Seaborn.ipynb
│ ├── 02 Introduction to Seaborn Plot Types.ipynb
│ ├── 03 Relational Plots.ipynb
│ ├── 04 Distribution Plots.ipynb
│ ├── 05 Categorical Plots.ipynb
│ ├── 06 Regression Plots.ipynb
│ ├── 07 Matrix Plots.ipynb
│ ├── 08 Building Structured Multi-plot Grids.ipynb
│ ├── 09 Controlling figure aesthetics.ipynb
│ └── images
│ │ ├── banner.png
│ │ └── seaborn-overview.png
└── 06 Real-world Projects
│ ├── 01 Titanic.ipynb
│ ├── 02 Housing.ipynb
│ ├── 03 Breast Cancer.ipynb
│ ├── 04 Life Expectance Dashboard.ipynb
│ ├── 05 Movie Review Sentiment Analysis.ipynb
│ └── datasets
│ ├── housing.csv
│ ├── iranian_books.csv
│ └── resume.pdf
├── README.md
└── images
├── banner.png
└── pytopia-course.png
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | share/python-wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 | MANIFEST
28 |
29 | # PyInstaller
30 | # Usually these files are written by a python script from a template
31 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
32 | *.manifest
33 | *.spec
34 |
35 | # Installer logs
36 | pip-log.txt
37 | pip-delete-this-directory.txt
38 |
39 | # Unit test / coverage reports
40 | htmlcov/
41 | .tox/
42 | .nox/
43 | .coverage
44 | .coverage.*
45 | .cache
46 | nosetests.xml
47 | coverage.xml
48 | *.cover
49 | *.py,cover
50 | .hypothesis/
51 | .pytest_cache/
52 | cover/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | .pybuilder/
76 | target/
77 |
78 | # Jupyter Notebook
79 | .ipynb_checkpoints
80 |
81 | # IPython
82 | profile_default/
83 | ipython_config.py
84 |
85 | # pyenv
86 | # For a library or package, you might want to ignore these files since the code is
87 | # intended to run in multiple environments; otherwise, check them in:
88 | # .python-version
89 |
90 | # pipenv
91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
94 | # install all needed dependencies.
95 | #Pipfile.lock
96 |
97 | # poetry
98 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99 | # This is especially recommended for binary packages to ensure reproducibility, and is more
100 | # commonly ignored for libraries.
101 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102 | #poetry.lock
103 |
104 | # pdm
105 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106 | #pdm.lock
107 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108 | # in version control.
109 | # https://pdm.fming.dev/#use-with-ide
110 | .pdm.toml
111 |
112 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113 | __pypackages__/
114 |
115 | # Celery stuff
116 | celerybeat-schedule
117 | celerybeat.pid
118 |
119 | # SageMath parsed files
120 | *.sage.py
121 |
122 | # Environments
123 | .env
124 | .venv
125 | env/
126 | venv/
127 | ENV/
128 | env.bak/
129 | venv.bak/
130 |
131 | # Spyder project settings
132 | .spyderproject
133 | .spyproject
134 |
135 | # Rope project settings
136 | .ropeproject
137 |
138 | # mkdocs documentation
139 | /site
140 |
141 | # mypy
142 | .mypy_cache/
143 | .dmypy.json
144 | dmypy.json
145 |
146 | # Pyre type checker
147 | .pyre/
148 |
149 | # pytype static type analyzer
150 | .pytype/
151 |
152 | # Cython debug symbols
153 | cython_debug/
154 |
155 | # PyCharm
156 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158 | # and can be added to the global gitignore or merged into this file. For a more nuclear
159 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160 | #.idea/
161 | test.ipynb
162 | .DS_Store
163 |
--------------------------------------------------------------------------------
/Lectures/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/.DS_Store
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/.DS_Store
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/01 Importance of Data Visualization.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "
"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "# Importance of Data Visualization"
15 | ]
16 | },
17 | {
18 | "cell_type": "markdown",
19 | "metadata": {},
20 | "source": [
21 | "Organizations across all industries are collecting and generating vast amounts of information. However, without effective tools and techniques for making sense of this data, it can quickly become overwhelming and meaningless. This is where data visualization comes in. By representing complex data through visual means, we can unlock a wide range of benefits that help us gain valuable insights, communicate effectively, and drive better outcomes."
22 | ]
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "
"
29 | ]
30 | },
31 | {
32 | "cell_type": "markdown",
33 | "metadata": {},
34 | "source": [
35 | "Data visualization offers numerous benefits that help us extract valuable insights, communicate effectively, and drive better decision-making. Some key benefits include:\n",
36 | "\n",
37 | "- **Facilitating data exploration and understanding**: Visualization tools allow us to explore complex datasets quickly and easily, enabling us to identify areas of interest and develop a deeper understanding of the data's structure and relationships.\n",
38 | "\n",
39 | "- **Identifying patterns, trends, and outliers**: By representing data graphically, we can spot clusters, correlations, and anomalies that might be hidden in the raw data. This helps us uncover valuable insights and make data-driven decisions.\n",
40 | "\n",
41 | "- **Enabling faster and better decision-making**: Well-designed dashboards and infographics provide a clear and concise view of the data, allowing decision-makers to quickly grasp key insights and respond to changing circumstances in real-time.\n",
42 | "\n",
43 | "- **Enhancing communication and collaboration**: Data visualizations create a shared visual language that fosters alignment, consensus-building, and cross-functional collaboration within teams and organizations.\n",
44 | "\n",
45 | "- **Providing persuasive and impactful presentations**: Compelling visuals capture the audience's attention and convey messages with clarity and conviction, inspiring action and driving change.\n"
46 | ]
47 | },
48 | {
49 | "cell_type": "markdown",
50 | "metadata": {},
51 | "source": [
52 | "Real-world examples demonstrate the power of data visualization:\n",
53 | "\n",
54 | "- In public health, interactive dashboards and maps have been crucial in tracking and communicating the spread of COVID-19, enabling informed decisions about prevention and response efforts.\n",
55 | "- Companies like Walmart and Coca-Cola have used data visualization to optimize supply chain operations and marketing strategies by identifying efficiencies, anticipating challenges, and adapting to changing conditions.\n"
56 | ]
57 | },
58 | {
59 | "cell_type": "markdown",
60 | "metadata": {},
61 | "source": [
62 | "By leveraging the power of visual communication, data visualization transforms raw data into actionable insights, compelling stories, and meaningful change, driving success in various domains."
63 | ]
64 | },
65 | {
66 | "cell_type": "markdown",
67 | "metadata": {},
68 | "source": [
69 | "**Table of contents** \n",
70 | "- [Real-world Applications](#toc1_) \n",
71 | "- [Key Principles of Effective Data Visualization](#toc2_) \n",
72 | "- [Common Pitfalls and Challenges](#toc3_) \n",
73 | "- [Tools and Technologies for Data Visualization](#toc4_) \n",
74 | " - [Static Data Visualization Tools](#toc4_1_) \n",
75 | " - [Interactive Data Visualization Tools](#toc4_2_) \n",
76 | " - [Importance of Choosing the Right Tool for the Job](#toc4_3_) \n",
77 | " - [Emerging Trends and Future Directions](#toc4_4_) \n",
78 | "- [Case Studies and Examples](#toc5_) \n",
79 | "- [Conclusion](#toc6_) \n",
80 | "\n",
81 | "\n",
88 | ""
89 | ]
90 | },
91 | {
92 | "cell_type": "markdown",
93 | "metadata": {},
94 | "source": [
95 | "## [Real-world Applications](#toc0_)"
96 | ]
97 | },
98 | {
99 | "cell_type": "markdown",
100 | "metadata": {},
101 | "source": [
102 | "
"
103 | ]
104 | },
105 | {
106 | "cell_type": "markdown",
107 | "metadata": {},
108 | "source": [
109 | "Data visualization is a powerful tool used across various industries to gain insights, make decisions, and communicate effectively. Here are some key applications:\n",
110 | "\n",
111 | "1. Business and Finance\n",
112 | " - Market analysis and sales reporting\n",
113 | " - Tracking KPIs and identifying trends\n",
114 | " - Optimizing operations and resource allocation\n",
115 | "\n",
116 | "2. Healthcare and Scientific Research\n",
117 | " - Clinical trials: visualizing treatment efficacy and safety\n",
118 | " - Epidemiology: tracking disease spread and risk factors\n",
119 | " - Exploring complex biological systems and identifying intervention targets\n",
120 | "\n",
121 | "3. Social Sciences and Public Policy\n",
122 | " - Demographic studies: visualizing population distributions and migration patterns\n",
123 | " - Political science: analyzing voting behavior and political coalitions\n",
124 | " - Economics: exploring relationships between variables like income, education, and health\n",
125 | "\n",
126 | "4. Journalism and Media\n",
127 | " - Creating engaging infographics and data-driven stories\n",
128 | " - Investigating complex social and political issues\n",
129 | " - Informing public discourse and inspiring action\n"
130 | ]
131 | },
132 | {
133 | "cell_type": "markdown",
134 | "metadata": {},
135 | "source": [
136 | "Real-world examples:\n",
137 | "- Walmart: optimizing supply chain and inventory management\n",
138 | "- COVID-19 dashboards: tracking virus spread and informing public policy\n",
139 | "- Urban Institute: exploring racial and economic inequality through interactive maps\n",
140 | "- ProPublica: investigating political ad spending, environmental hazards, and police misconduct\n"
141 | ]
142 | },
143 | {
144 | "cell_type": "markdown",
145 | "metadata": {},
146 | "source": [
147 | "As data volumes continue to grow, effective data visualization will become increasingly crucial for understanding and interacting with the world around us."
148 | ]
149 | },
150 | {
151 | "cell_type": "markdown",
152 | "metadata": {},
153 | "source": [
154 | "## [Key Principles of Effective Data Visualization](#toc0_)"
155 | ]
156 | },
157 | {
158 | "cell_type": "markdown",
159 | "metadata": {},
160 | "source": [
161 | "To create impactful and meaningful visualizations, it's essential to follow certain key principles. These principles ensure that your visualizations are clear, accurate, and effectively convey the intended message to your audience.\n",
162 | "\n",
163 | "1. **Choosing the right visualization type for the data and purpose:**\n",
164 | " - Select a visualization type that aligns with the nature of your data (e.g., categorical, numerical, temporal)\n",
165 | " - Consider the purpose of your visualization (e.g., comparison, relationship, distribution) and choose a chart type that effectively communicates that purpose\n",
166 | "\n",
167 | "2. **Ensuring clarity, accuracy, and readability:**\n",
168 | " - Present data accurately and avoid distorting or misrepresenting information\n",
169 | " - Use clear and concise labels, titles, and annotations to guide the viewer's understanding\n",
170 | " - Ensure that the visualization is easily readable by selecting appropriate font sizes, styles, and spacing\n",
171 | "\n",
172 | "3. **Using appropriate colors, scales, and labels:**\n",
173 | " - Choose a color scheme that is visually appealing, distinguishable, and accessible to all viewers, including those with color vision deficiencies\n",
174 | " - Use scales (e.g., axes, legends) that are appropriate for the data range and granularity\n",
175 | " - Label data points, axes, and legends clearly and consistently\n",
176 | "\n",
177 | "4. **Minimizing clutter and focusing on key insights:**\n",
178 | " - Remove unnecessary elements (e.g., gridlines, borders) that do not add value to the visualization\n",
179 | " - Highlight the most important data points or trends to draw the viewer's attention\n",
180 | " - Use whitespace effectively to create visual hierarchy and improve readability\n",
181 | "\n",
182 | "5. **Considering the target audience and context:**\n",
183 | " - Tailor your visualization to the knowledge level and interests of your target audience\n",
184 | " - Provide sufficient context and explanations to help viewers interpret the data accurately\n",
185 | " - Consider the medium and platform where the visualization will be presented (e.g., print, digital, interactive) and optimize accordingly\n"
186 | ]
187 | },
188 | {
189 | "cell_type": "markdown",
190 | "metadata": {},
191 | "source": [
192 | "By adhering to these principles, you can create data visualizations that are not only visually appealing but also effective in communicating insights and driving understanding.\n"
193 | ]
194 | },
195 | {
196 | "cell_type": "markdown",
197 | "metadata": {},
198 | "source": [
199 | "Remember, the goal is to tell a clear and compelling story with your data. By carefully selecting the right visualization type, ensuring clarity and accuracy, using appropriate visual elements, minimizing clutter, and considering your audience, you can unlock the full potential of your data and make a meaningful impact."
200 | ]
201 | },
202 | {
203 | "cell_type": "markdown",
204 | "metadata": {},
205 | "source": [
206 | "## [Common Pitfalls and Challenges](#toc0_)"
207 | ]
208 | },
209 | {
210 | "cell_type": "markdown",
211 | "metadata": {},
212 | "source": [
213 | "While data visualization offers numerous benefits, it's essential to be aware of common pitfalls and challenges that can undermine the effectiveness and integrity of visual representations. Some key issues to watch out for include:\n",
214 | "\n",
215 | "- **Misleading or deceptive visualizations**: \n",
216 | " - Manipulating scales, axes, or color schemes to exaggerate or downplay certain aspects of the data can lead to false conclusions.\n",
217 | " - Cherry-picking data points or selectively presenting information can create a biased or incomplete picture.\n",
218 | " - It's crucial to maintain honesty and transparency in visual representations to ensure trust and credibility.\n",
219 | "\n",
220 | "- **Overcomplicating or oversimplifying the data**:\n",
221 | " - Packing too much information into a single visualization can make it cluttered, confusing, and difficult to interpret.\n",
222 | " - On the other hand, oversimplifying the data by omitting important details or context can lead to misleading or incomplete conclusions.\n",
223 | " - Striking the right balance between complexity and simplicity is key to effective communication.\n",
224 | "\n",
225 | "- **Ignoring the limitations and biases of the data**:\n",
226 | " - Every dataset has its own limitations, uncertainties, and potential biases that should be acknowledged and addressed.\n",
227 | " - Failing to consider factors such as sample size, data quality, or collection methods can lead to flawed analyses and interpretations.\n",
228 | " - It's important to be transparent about the limitations of the data and avoid overstating the conclusions that can be drawn from it.\n",
229 | "\n",
230 | "- **Failing to provide context or explanations**:\n",
231 | " - Visualizations should not be presented in isolation without the necessary context or explanations to help the audience understand and interpret them correctly.\n",
232 | " - Lack of clear labels, legends, or annotations can leave viewers confused or misinterpreting the data.\n",
233 | " - Providing accompanying text, narratives, or interactive elements can help guide the audience and ensure accurate comprehension.\n"
234 | ]
235 | },
236 | {
237 | "cell_type": "markdown",
238 | "metadata": {
239 | "vscode": {
240 | "languageId": "plaintext"
241 | }
242 | },
243 | "source": [
244 | "To learn more about misleading data visualizations, check out the following resources:\n",
245 | "- [How to Spot Visualization Lies](https://flowingdata.com/2017/02/09/how-to-spot-visualization-lies/)\n",
246 | "- [Data Visualizations Designed to Mislead](https://www.datapine.com/blog/misleading-data-visualization-examples/)"
247 | ]
248 | },
249 | {
250 | "cell_type": "markdown",
251 | "metadata": {},
252 | "source": [
253 | "To illustrate these pitfalls, consider the following examples:\n",
254 | "\n",
255 | "- A misleading graph that uses a truncated y-axis to exaggerate small differences between data points, creating a false impression of significant variation.\n",
256 | "- An overly complex network diagram with numerous nodes and edges, making it difficult for viewers to discern the key relationships and insights.\n",
257 | "- A heatmap that fails to normalize the data, leading to biased comparisons between regions with vastly different population sizes.\n",
258 | "- An infographic that presents statistics without specifying the data source, sample size, or timeframe, leaving the audience without the necessary context to evaluate the information.\n"
259 | ]
260 | },
261 | {
262 | "cell_type": "markdown",
263 | "metadata": {},
264 | "source": [
265 | "By being aware of these common pitfalls and challenges, data visualization practitioners can take steps to avoid them and ensure that their visual representations are accurate, informative, and effective. This involves:\n",
266 | "\n",
267 | "- Carefully selecting the appropriate visualization techniques and design choices to accurately represent the data.\n",
268 | "- Striving for clarity and simplicity while still providing sufficient detail and context.\n",
269 | "- Being transparent about the limitations, uncertainties, and potential biases of the data.\n",
270 | "- Providing clear explanations, labels, and annotations to guide the audience's interpretation.\n"
271 | ]
272 | },
273 | {
274 | "cell_type": "markdown",
275 | "metadata": {},
276 | "source": [
277 | "By addressing these challenges head-on, we can create data visualizations that are not only visually appealing but also trustworthy, informative, and impactful."
278 | ]
279 | },
280 | {
281 | "cell_type": "markdown",
282 | "metadata": {},
283 | "source": [
284 | "## [Tools and Technologies for Data Visualization](#toc0_)"
285 | ]
286 | },
287 | {
288 | "cell_type": "markdown",
289 | "metadata": {},
290 | "source": [
291 | "To create effective and engaging data visualizations, you need the right tools and technologies at your disposal. In this section, we'll explore some of the most popular software and libraries used for data visualization, starting with static visualization tools and then moving on to interactive ones. We'll also discuss the importance of choosing the right tool for the job.\n"
292 | ]
293 | },
294 | {
295 | "cell_type": "markdown",
296 | "metadata": {},
297 | "source": [
298 | "### [Static Data Visualization Tools](#toc0_)\n",
299 | "\n",
300 | "1. **Matplotlib:**\n",
301 | " - A fundamental plotting library in Python for creating static, animated, and interactive visualizations\n",
302 | " - Offers a MATLAB-like interface and integrates well with other Python libraries like NumPy and Pandas\n",
303 | " - Suitable for creating a wide range of chart types, from simple line plots to complex heatmaps\n",
304 | "\n",
305 | "2. **Seaborn:**\n",
306 | " - A statistical data visualization library in Python built on top of Matplotlib\n",
307 | " - Provides a high-level interface for creating attractive and informative statistical graphics\n",
308 | " - Offers built-in themes and color palettes for enhancing the aesthetics of the plots\n"
309 | ]
310 | },
311 | {
312 | "cell_type": "markdown",
313 | "metadata": {},
314 | "source": [
315 | "
"
316 | ]
317 | },
318 | {
319 | "cell_type": "markdown",
320 | "metadata": {},
321 | "source": [
322 | "### [Interactive Data Visualization Tools](#toc0_)\n",
323 | "\n",
324 | "1. **Tableau:**\n",
325 | " - A powerful and user-friendly data visualization and business intelligence platform\n",
326 | " - Offers drag-and-drop functionality and a wide range of interactive chart types and dashboards\n",
327 | " - Enables users to explore and interact with data through filtering, highlighting, and drilling down\n",
328 | "\n",
329 | "2. **Microsoft Power BI:**\n",
330 | " - A business analytics service that provides interactive visualizations and business intelligence capabilities\n",
331 | " - Offers a user-friendly interface for creating interactive dashboards and reports\n",
332 | " - Allows users to interact with data through slicers, filters, and cross-filtering between visuals\n",
333 | "\n",
334 | "3. **Plotly:**\n",
335 | " - A web-based plotting library for creating interactive and publication-quality visualizations\n",
336 | " - Supports various programming languages, including Python, R, and JavaScript\n",
337 | " - Enables the creation of interactive charts, 3D plots, and animations with hover effects and zooming capabilities\n",
338 | "\n",
339 | "4. **Dash:**\n",
340 | " - A Python framework for building analytical web applications and dashboards\n",
341 | " - Integrates with Plotly for creating interactive and reactive visualizations\n",
342 | " - Allows for the development of full-stack data visualization applications with user interactions and real-time updates\n",
343 | "\n",
344 | "5. **Bokeh:**\n",
345 | " - A Python library for creating interactive visualizations in web browsers\n",
346 | " - Provides a flexible and powerful way to create interactive plots, dashboards, and data applications\n",
347 | " - Supports interactive tools like hover tooltips, pan and zoom, and selection and filtering\n"
348 | ]
349 | },
350 | {
351 | "cell_type": "markdown",
352 | "metadata": {},
353 | "source": [
354 | "
"
355 | ]
356 | },
357 | {
358 | "cell_type": "markdown",
359 | "metadata": {},
360 | "source": [
361 | "### [Importance of Choosing the Right Tool for the Job](#toc0_)\n"
362 | ]
363 | },
364 | {
365 | "cell_type": "markdown",
366 | "metadata": {},
367 | "source": [
368 | "With the plethora of data visualization tools available, it's crucial to select the one that best suits your specific needs and requirements. Consider the following factors when choosing a tool:\n",
369 | "\n",
370 | "- Static vs. interactive visualization requirements\n",
371 | "- Ease of use and learning curve\n",
372 | "- Flexibility and customization options\n",
373 | "- Compatibility with your data sources and formats\n",
374 | "- Scalability and performance for handling large datasets\n",
375 | "- Integration with your existing workflow and technology stack\n",
376 | "- Cost and licensing considerations\n"
377 | ]
378 | },
379 | {
380 | "cell_type": "markdown",
381 | "metadata": {},
382 | "source": [
383 | "### [Emerging Trends and Future Directions](#toc0_)\n"
384 | ]
385 | },
386 | {
387 | "cell_type": "markdown",
388 | "metadata": {},
389 | "source": [
390 | "As technology advances, the field of data visualization continues to evolve. Here are some emerging trends and future directions:\n",
391 | "\n",
392 | "1. **Interactive and Immersive Visualizations:**\n",
393 | " - The increasing popularity of interactive visualizations that allow users to explore and manipulate data dynamically\n",
394 | " - The rise of virtual reality (VR) and augmented reality (AR) technologies for creating immersive data experiences\n",
395 | "\n",
396 | "2. **Real-time and Streaming Data Visualization:**\n",
397 | " - The need for tools that can handle real-time data streams and provide live updates\n",
398 | " - The development of dashboards and monitoring systems that enable real-time decision-making\n",
399 | "\n",
400 | "3. **AI-Powered Visualizations:**\n",
401 | " - The integration of artificial intelligence and machine learning techniques into data visualization tools\n",
402 | " - The use of AI to automatically generate insights, suggest optimal chart types, and assist in data storytelling\n",
403 | "\n",
404 | "4. **Collaborative and Cloud-Based Platforms:**\n",
405 | " - The growth of cloud-based data visualization platforms that enable collaboration and sharing\n",
406 | " - The ability to access and update visualizations from anywhere, on any device\n"
407 | ]
408 | },
409 | {
410 | "cell_type": "markdown",
411 | "metadata": {},
412 | "source": [
413 | "By staying up-to-date with the latest tools and technologies, you can create data visualizations that are not only informative but also engaging and impactful. Remember to choose the right tool for the job, consider emerging trends, and continuously explore new possibilities in the ever-evolving field of data visualization."
414 | ]
415 | },
416 | {
417 | "cell_type": "markdown",
418 | "metadata": {},
419 | "source": [
420 | "## [Case Studies and Examples](#toc0_)"
421 | ]
422 | },
423 | {
424 | "cell_type": "markdown",
425 | "metadata": {},
426 | "source": [
427 | "Explore the following real-world examples and case studies that showcase the power and potential of data visualization across various domains:\n",
428 | "\n",
429 | "1. COVID-19 Dashboard by Johns Hopkins University\n",
430 | " - Link: [https://coronavirus.jhu.edu/map.html](https://coronavirus.jhu.edu/map.html)\n",
431 | " - Johns Hopkins University created an interactive dashboard that visualizes the global spread of COVID-19 in real-time.\n",
432 | " - The dashboard combines data from multiple sources to provide a comprehensive view of the pandemic, allowing users to explore the data at different levels of granularity.\n",
433 | " - It has become a go-to resource for researchers, policymakers, and the general public, helping to inform critical decisions about public health interventions.\n",
434 | "\n",
435 | "2. Gapminder's World Health Chart\n",
436 | " - Link: [https://www.gapminder.org/tools/#$chart-type=bubbles](https://www.gapminder.org/tools/#$chart-type=bubbles)\n",
437 | " - Gapminder's interactive bubble chart visualizes global health data, allowing users to explore the relationship between life expectancy, fertility rate, and income per capita for countries worldwide.\n",
438 | " - The visualization's dynamic and engaging design has made it a popular tool for educators, researchers, and policymakers, helping to promote a fact-based understanding of global development trends.\n",
439 | "\n",
440 | "3. NASA's Climate Time Machine\n",
441 | " - Link: [https://climate.nasa.gov/interactives/climate-time-machine](https://climate.nasa.gov/interactives/climate-time-machine)\n",
442 | " - NASA's Climate Time Machine is an interactive visualization that allows users to explore how key climate indicators, such as sea level, carbon dioxide concentration, and global temperature, have changed over time.\n",
443 | " - The visualization's intuitive design and compelling animations help to communicate the urgency of the climate crisis and the need for action to a broad audience.\n"
444 | ]
445 | },
446 | {
447 | "cell_type": "markdown",
448 | "metadata": {},
449 | "source": [
450 | "These case studies and examples demonstrate the diverse applications and impact of data visualization across fields like public health, business, journalism, education, and environmental science. By exploring these projects and following the provided links, you can gain inspiration and practical insights for your own visualization work."
451 | ]
452 | },
453 | {
454 | "cell_type": "markdown",
455 | "metadata": {},
456 | "source": [
457 | "## [Conclusion](#toc0_)"
458 | ]
459 | },
460 | {
461 | "cell_type": "markdown",
462 | "metadata": {},
463 | "source": [
464 | "Throughout this lecture, we have explored the importance and power of data visualization in today's data-driven world. We have seen how visual representations can help us make sense of complex information, uncover insights, and communicate ideas more effectively.\n"
465 | ]
466 | },
467 | {
468 | "cell_type": "markdown",
469 | "metadata": {},
470 | "source": [
471 | "Let's recap some of the key points we covered:\n",
472 | "\n",
473 | "- Data visualization is a critical tool for turning raw data into meaningful and actionable insights.\n",
474 | "- The human brain is wired to process visual information quickly and efficiently, making data visualization a powerful means of communication.\n",
475 | "- Effective data visualization offers numerous benefits, including facilitating data exploration, identifying patterns and trends, enabling better decision-making, enhancing collaboration, and creating compelling presentations.\n",
476 | "- However, creating effective visualizations requires careful consideration and avoiding common pitfalls, such as misleading representations, overcomplexity, and lack of context.\n",
477 | "- Real-world case studies and examples demonstrate the wide-ranging applications and impact of data visualization across various domains, from public health and climate science to journalism and business.\n"
478 | ]
479 | },
480 | {
481 | "cell_type": "markdown",
482 | "metadata": {},
483 | "source": [
484 | "As we conclude this lecture, I encourage you to incorporate data visualization into your own work, whether you are a researcher, analyst, journalist, or business professional. By harnessing the power of visual communication, you can unlock new insights, make better decisions, and tell more compelling stories with your data.\n"
485 | ]
486 | },
487 | {
488 | "cell_type": "markdown",
489 | "metadata": {},
490 | "source": [
491 | "To support you in your data visualization journey, here are some valuable resources for further learning and exploration:\n",
492 | "\n",
493 | "- \"Storytelling with Data\" by Cole Nussbaumer Knaflic - A practical guide to creating effective data visualizations and communicating insights with clarity and impact.\n",
494 | "- \"Data Visualization: A Practical Introduction\" by Kieran Healy - A comprehensive introduction to the principles and techniques of data visualization using R and ggplot2.\n",
495 | "- Tableau Public Gallery - A collection of inspiring data visualization examples created with Tableau, covering a wide range of topics and industries: [https://public.tableau.com/en-us/gallery/?tab=viz-of-the-day&type=viz-of-the-day](https://public.tableau.com/en-us/gallery/?tab=viz-of-the-day&type=viz-of-the-day)\n",
496 | "- D3.js - A powerful JavaScript library for creating interactive and dynamic data visualizations for the web: [https://d3js.org/](https://d3js.org/)\n",
497 | "- Flowing Data - A blog by data visualization expert Nathan Yau, featuring tutorials, examples, and insights on the latest trends and techniques in data visualization: [https://flowingdata.com/](https://flowingdata.com/)\n"
498 | ]
499 | },
500 | {
501 | "cell_type": "markdown",
502 | "metadata": {},
503 | "source": [
504 | "Remember, the key to effective data visualization is to always keep your audience and purpose in mind, strive for clarity and simplicity, and let the data tell its story. By following these principles and continuously learning and experimenting, you can harness the full potential of data visualization to inform, inspire, and drive change.\n"
505 | ]
506 | }
507 | ],
508 | "metadata": {
509 | "language_info": {
510 | "name": "python"
511 | }
512 | },
513 | "nbformat": 4,
514 | "nbformat_minor": 2
515 | }
516 |
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/banner.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/banner.png
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/bokeh.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/bokeh.png
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/data-visualization.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/data-visualization.png
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/data-visualizations.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/data-visualizations.png
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/data-viz-applications.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/data-viz-applications.png
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/images.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/images.png
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/interactive-data-viz-tools.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/interactive-data-viz-tools.png
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/matplotlib.webp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/matplotlib.webp
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/plotly.avif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/plotly.avif
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/plotly_phidgets.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/plotly_phidgets.jpg
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/seaborn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/seaborn.png
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/static-data-viz-tools.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/static-data-viz-tools.png
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/types-of-data.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/types-of-data.png
--------------------------------------------------------------------------------
/Lectures/01 Introduction to Data Visualization/images/visualization-libraries-comparison.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/01 Introduction to Data Visualization/images/visualization-libraries-comparison.png
--------------------------------------------------------------------------------
/Lectures/03 Plotting with Matplotlib/images/banner.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/03 Plotting with Matplotlib/images/banner.png
--------------------------------------------------------------------------------
/Lectures/03 Plotting with Matplotlib/images/matplotlib-figure-anatomy.webp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/03 Plotting with Matplotlib/images/matplotlib-figure-anatomy.webp
--------------------------------------------------------------------------------
/Lectures/04 Plotting with Seaborn/images/banner.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/04 Plotting with Seaborn/images/banner.png
--------------------------------------------------------------------------------
/Lectures/04 Plotting with Seaborn/images/seaborn-overview.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/04 Plotting with Seaborn/images/seaborn-overview.png
--------------------------------------------------------------------------------
/Lectures/06 Real-world Projects/04 Life Expectance Dashboard.ipynb:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/06 Real-world Projects/04 Life Expectance Dashboard.ipynb
--------------------------------------------------------------------------------
/Lectures/06 Real-world Projects/05 Movie Review Sentiment Analysis.ipynb:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/06 Real-world Projects/05 Movie Review Sentiment Analysis.ipynb
--------------------------------------------------------------------------------
/Lectures/06 Real-world Projects/datasets/housing.csv:
--------------------------------------------------------------------------------
1 | price,area,bedrooms,bathrooms,stories,mainroad,guestroom,basement,hotwaterheating,airconditioning,parking,prefarea,furnishingstatus
2 | 13300000,7420,4,2,3,yes,no,no,no,yes,2,yes,furnished
3 | 12250000,8960,4,4,4,yes,no,no,no,yes,3,no,furnished
4 | 12250000,9960,3,2,2,yes,no,yes,no,no,2,yes,semi-furnished
5 | 12215000,7500,4,2,2,yes,no,yes,no,yes,3,yes,furnished
6 | 11410000,7420,4,1,2,yes,yes,yes,no,yes,2,no,furnished
7 | 10850000,7500,3,3,1,yes,no,yes,no,yes,2,yes,semi-furnished
8 | 10150000,8580,4,3,4,yes,no,no,no,yes,2,yes,semi-furnished
9 | 10150000,16200,5,3,2,yes,no,no,no,no,0,no,unfurnished
10 | 9870000,8100,4,1,2,yes,yes,yes,no,yes,2,yes,furnished
11 | 9800000,5750,3,2,4,yes,yes,no,no,yes,1,yes,unfurnished
12 | 9800000,13200,3,1,2,yes,no,yes,no,yes,2,yes,furnished
13 | 9681000,6000,4,3,2,yes,yes,yes,yes,no,2,no,semi-furnished
14 | 9310000,6550,4,2,2,yes,no,no,no,yes,1,yes,semi-furnished
15 | 9240000,3500,4,2,2,yes,no,no,yes,no,2,no,furnished
16 | 9240000,7800,3,2,2,yes,no,no,no,no,0,yes,semi-furnished
17 | 9100000,6000,4,1,2,yes,no,yes,no,no,2,no,semi-furnished
18 | 9100000,6600,4,2,2,yes,yes,yes,no,yes,1,yes,unfurnished
19 | 8960000,8500,3,2,4,yes,no,no,no,yes,2,no,furnished
20 | 8890000,4600,3,2,2,yes,yes,no,no,yes,2,no,furnished
21 | 8855000,6420,3,2,2,yes,no,no,no,yes,1,yes,semi-furnished
22 | 8750000,4320,3,1,2,yes,no,yes,yes,no,2,no,semi-furnished
23 | 8680000,7155,3,2,1,yes,yes,yes,no,yes,2,no,unfurnished
24 | 8645000,8050,3,1,1,yes,yes,yes,no,yes,1,no,furnished
25 | 8645000,4560,3,2,2,yes,yes,yes,no,yes,1,no,furnished
26 | 8575000,8800,3,2,2,yes,no,no,no,yes,2,no,furnished
27 | 8540000,6540,4,2,2,yes,yes,yes,no,yes,2,yes,furnished
28 | 8463000,6000,3,2,4,yes,yes,yes,no,yes,0,yes,semi-furnished
29 | 8400000,8875,3,1,1,yes,no,no,no,no,1,no,semi-furnished
30 | 8400000,7950,5,2,2,yes,no,yes,yes,no,2,no,unfurnished
31 | 8400000,5500,4,2,2,yes,no,yes,no,yes,1,yes,semi-furnished
32 | 8400000,7475,3,2,4,yes,no,no,no,yes,2,no,unfurnished
33 | 8400000,7000,3,1,4,yes,no,no,no,yes,2,no,semi-furnished
34 | 8295000,4880,4,2,2,yes,no,no,no,yes,1,yes,furnished
35 | 8190000,5960,3,3,2,yes,yes,yes,no,no,1,no,unfurnished
36 | 8120000,6840,5,1,2,yes,yes,yes,no,yes,1,no,furnished
37 | 8080940,7000,3,2,4,yes,no,no,no,yes,2,no,furnished
38 | 8043000,7482,3,2,3,yes,no,no,yes,no,1,yes,furnished
39 | 7980000,9000,4,2,4,yes,no,no,no,yes,2,no,furnished
40 | 7962500,6000,3,1,4,yes,yes,no,no,yes,2,no,unfurnished
41 | 7910000,6000,4,2,4,yes,no,no,no,yes,1,no,semi-furnished
42 | 7875000,6550,3,1,2,yes,no,yes,no,yes,0,yes,furnished
43 | 7840000,6360,3,2,4,yes,no,no,no,yes,0,yes,furnished
44 | 7700000,6480,3,2,4,yes,no,no,no,yes,2,no,unfurnished
45 | 7700000,6000,4,2,4,yes,no,no,no,no,2,no,semi-furnished
46 | 7560000,6000,4,2,4,yes,no,no,no,yes,1,no,furnished
47 | 7560000,6000,3,2,3,yes,no,no,no,yes,0,no,semi-furnished
48 | 7525000,6000,3,2,4,yes,no,no,no,yes,1,no,furnished
49 | 7490000,6600,3,1,4,yes,no,no,no,yes,3,yes,furnished
50 | 7455000,4300,3,2,2,yes,no,yes,no,no,1,no,unfurnished
51 | 7420000,7440,3,2,1,yes,yes,yes,no,yes,0,yes,semi-furnished
52 | 7420000,7440,3,2,4,yes,no,no,no,no,1,yes,unfurnished
53 | 7420000,6325,3,1,4,yes,no,no,no,yes,1,no,unfurnished
54 | 7350000,6000,4,2,4,yes,yes,no,no,yes,1,no,furnished
55 | 7350000,5150,3,2,4,yes,no,no,no,yes,2,no,semi-furnished
56 | 7350000,6000,3,2,2,yes,yes,no,no,yes,1,no,semi-furnished
57 | 7350000,6000,3,1,2,yes,no,no,no,yes,1,no,unfurnished
58 | 7343000,11440,4,1,2,yes,no,yes,no,no,1,yes,semi-furnished
59 | 7245000,9000,4,2,4,yes,yes,no,no,yes,1,yes,furnished
60 | 7210000,7680,4,2,4,yes,yes,no,no,yes,1,no,semi-furnished
61 | 7210000,6000,3,2,4,yes,yes,no,no,yes,1,no,furnished
62 | 7140000,6000,3,2,2,yes,yes,no,no,no,1,no,semi-furnished
63 | 7070000,8880,2,1,1,yes,no,no,no,yes,1,no,semi-furnished
64 | 7070000,6240,4,2,2,yes,no,no,no,yes,1,no,furnished
65 | 7035000,6360,4,2,3,yes,no,no,no,yes,2,yes,furnished
66 | 7000000,11175,3,1,1,yes,no,yes,no,yes,1,yes,furnished
67 | 6930000,8880,3,2,2,yes,no,yes,no,yes,1,no,furnished
68 | 6930000,13200,2,1,1,yes,no,yes,yes,no,1,no,furnished
69 | 6895000,7700,3,2,1,yes,no,no,no,no,2,no,unfurnished
70 | 6860000,6000,3,1,1,yes,no,no,no,yes,1,no,furnished
71 | 6790000,12090,4,2,2,yes,no,no,no,no,2,yes,furnished
72 | 6790000,4000,3,2,2,yes,no,yes,no,yes,0,yes,semi-furnished
73 | 6755000,6000,4,2,4,yes,no,no,no,yes,0,no,unfurnished
74 | 6720000,5020,3,1,4,yes,no,no,no,yes,0,yes,unfurnished
75 | 6685000,6600,2,2,4,yes,no,yes,no,no,0,yes,furnished
76 | 6650000,4040,3,1,2,yes,no,yes,yes,no,1,no,furnished
77 | 6650000,4260,4,2,2,yes,no,no,yes,no,0,no,semi-furnished
78 | 6650000,6420,3,2,3,yes,no,no,no,yes,0,yes,furnished
79 | 6650000,6500,3,2,3,yes,no,no,no,yes,0,yes,furnished
80 | 6650000,5700,3,1,1,yes,yes,yes,no,yes,2,yes,furnished
81 | 6650000,6000,3,2,3,yes,yes,no,no,yes,0,no,furnished
82 | 6629000,6000,3,1,2,yes,no,no,yes,no,1,yes,semi-furnished
83 | 6615000,4000,3,2,2,yes,no,yes,no,yes,1,no,semi-furnished
84 | 6615000,10500,3,2,1,yes,no,yes,no,yes,1,yes,furnished
85 | 6580000,6000,3,2,4,yes,no,no,no,yes,0,no,semi-furnished
86 | 6510000,3760,3,1,2,yes,no,no,yes,no,2,no,semi-furnished
87 | 6510000,8250,3,2,3,yes,no,no,no,yes,0,no,furnished
88 | 6510000,6670,3,1,3,yes,no,yes,no,no,0,yes,unfurnished
89 | 6475000,3960,3,1,1,yes,no,yes,no,no,2,no,semi-furnished
90 | 6475000,7410,3,1,1,yes,yes,yes,no,yes,2,yes,unfurnished
91 | 6440000,8580,5,3,2,yes,no,no,no,no,2,no,furnished
92 | 6440000,5000,3,1,2,yes,no,no,no,yes,0,no,semi-furnished
93 | 6419000,6750,2,1,1,yes,yes,yes,no,no,2,yes,furnished
94 | 6405000,4800,3,2,4,yes,yes,no,no,yes,0,no,furnished
95 | 6300000,7200,3,2,1,yes,no,yes,no,yes,3,no,semi-furnished
96 | 6300000,6000,4,2,4,yes,no,no,no,no,1,no,semi-furnished
97 | 6300000,4100,3,2,3,yes,no,no,no,yes,2,no,semi-furnished
98 | 6300000,9000,3,1,1,yes,no,yes,no,no,1,yes,furnished
99 | 6300000,6400,3,1,1,yes,yes,yes,no,yes,1,yes,semi-furnished
100 | 6293000,6600,3,2,3,yes,no,no,no,yes,0,yes,unfurnished
101 | 6265000,6000,4,1,3,yes,yes,yes,no,no,0,yes,unfurnished
102 | 6230000,6600,3,2,1,yes,no,yes,no,yes,0,yes,unfurnished
103 | 6230000,5500,3,1,3,yes,no,no,no,no,1,yes,unfurnished
104 | 6195000,5500,3,2,4,yes,yes,no,no,yes,1,no,semi-furnished
105 | 6195000,6350,3,2,3,yes,yes,no,no,yes,0,no,furnished
106 | 6195000,5500,3,2,1,yes,yes,yes,no,no,2,yes,furnished
107 | 6160000,4500,3,1,4,yes,no,no,no,yes,0,no,unfurnished
108 | 6160000,5450,4,2,1,yes,no,yes,no,yes,0,yes,semi-furnished
109 | 6125000,6420,3,1,3,yes,no,yes,no,no,0,yes,unfurnished
110 | 6107500,3240,4,1,3,yes,no,no,no,no,1,no,semi-furnished
111 | 6090000,6615,4,2,2,yes,yes,no,yes,no,1,no,semi-furnished
112 | 6090000,6600,3,1,1,yes,yes,yes,no,no,2,yes,semi-furnished
113 | 6090000,8372,3,1,3,yes,no,no,no,yes,2,no,unfurnished
114 | 6083000,4300,6,2,2,yes,no,no,no,no,0,no,furnished
115 | 6083000,9620,3,1,1,yes,no,yes,no,no,2,yes,furnished
116 | 6020000,6800,2,1,1,yes,yes,yes,no,no,2,no,furnished
117 | 6020000,8000,3,1,1,yes,yes,yes,no,yes,2,yes,semi-furnished
118 | 6020000,6900,3,2,1,yes,yes,yes,no,no,0,yes,unfurnished
119 | 5950000,3700,4,1,2,yes,yes,no,no,yes,0,no,furnished
120 | 5950000,6420,3,1,1,yes,no,yes,no,yes,0,yes,furnished
121 | 5950000,7020,3,1,1,yes,no,yes,no,yes,2,yes,semi-furnished
122 | 5950000,6540,3,1,1,yes,yes,yes,no,no,2,yes,furnished
123 | 5950000,7231,3,1,2,yes,yes,yes,no,yes,0,yes,semi-furnished
124 | 5950000,6254,4,2,1,yes,no,yes,no,no,1,yes,semi-furnished
125 | 5950000,7320,4,2,2,yes,no,no,no,no,0,no,furnished
126 | 5950000,6525,3,2,4,yes,no,no,no,no,1,no,furnished
127 | 5943000,15600,3,1,1,yes,no,no,no,yes,2,no,semi-furnished
128 | 5880000,7160,3,1,1,yes,no,yes,no,no,2,yes,unfurnished
129 | 5880000,6500,3,2,3,yes,no,no,no,yes,0,no,unfurnished
130 | 5873000,5500,3,1,3,yes,yes,no,no,yes,1,no,furnished
131 | 5873000,11460,3,1,3,yes,no,no,no,no,2,yes,semi-furnished
132 | 5866000,4800,3,1,1,yes,yes,yes,no,no,0,no,unfurnished
133 | 5810000,5828,4,1,4,yes,yes,no,no,no,0,no,semi-furnished
134 | 5810000,5200,3,1,3,yes,no,no,no,yes,0,no,semi-furnished
135 | 5810000,4800,3,1,3,yes,no,no,no,yes,0,no,unfurnished
136 | 5803000,7000,3,1,1,yes,no,yes,no,no,2,yes,semi-furnished
137 | 5775000,6000,3,2,4,yes,no,no,no,yes,0,no,unfurnished
138 | 5740000,5400,4,2,2,yes,no,no,no,yes,2,no,unfurnished
139 | 5740000,4640,4,1,2,yes,no,no,no,no,1,no,semi-furnished
140 | 5740000,5000,3,1,3,yes,no,no,no,yes,0,no,semi-furnished
141 | 5740000,6360,3,1,1,yes,yes,yes,no,yes,2,yes,furnished
142 | 5740000,5800,3,2,4,yes,no,no,no,yes,0,no,unfurnished
143 | 5652500,6660,4,2,2,yes,yes,yes,no,no,1,yes,semi-furnished
144 | 5600000,10500,4,2,2,yes,no,no,no,no,1,no,semi-furnished
145 | 5600000,4800,5,2,3,no,no,yes,yes,no,0,no,unfurnished
146 | 5600000,4700,4,1,2,yes,yes,yes,no,yes,1,no,furnished
147 | 5600000,5000,3,1,4,yes,no,no,no,no,0,no,furnished
148 | 5600000,10500,2,1,1,yes,no,no,no,no,1,no,semi-furnished
149 | 5600000,5500,3,2,2,yes,no,no,no,no,1,no,semi-furnished
150 | 5600000,6360,3,1,3,yes,no,no,no,no,0,yes,semi-furnished
151 | 5600000,6600,4,2,1,yes,no,yes,no,no,0,yes,semi-furnished
152 | 5600000,5136,3,1,2,yes,yes,yes,no,yes,0,yes,unfurnished
153 | 5565000,4400,4,1,2,yes,no,no,no,yes,2,yes,semi-furnished
154 | 5565000,5400,5,1,2,yes,yes,yes,no,yes,0,yes,furnished
155 | 5530000,3300,3,3,2,yes,no,yes,no,no,0,no,semi-furnished
156 | 5530000,3650,3,2,2,yes,no,no,no,no,2,no,semi-furnished
157 | 5530000,6100,3,2,1,yes,no,yes,no,no,2,yes,furnished
158 | 5523000,6900,3,1,1,yes,yes,yes,no,no,0,yes,semi-furnished
159 | 5495000,2817,4,2,2,no,yes,yes,no,no,1,no,furnished
160 | 5495000,7980,3,1,1,yes,no,no,no,no,2,no,semi-furnished
161 | 5460000,3150,3,2,1,yes,yes,yes,no,yes,0,no,furnished
162 | 5460000,6210,4,1,4,yes,yes,no,no,yes,0,no,furnished
163 | 5460000,6100,3,1,3,yes,yes,no,no,yes,0,yes,semi-furnished
164 | 5460000,6600,4,2,2,yes,yes,yes,no,no,0,yes,semi-furnished
165 | 5425000,6825,3,1,1,yes,yes,yes,no,yes,0,yes,semi-furnished
166 | 5390000,6710,3,2,2,yes,yes,yes,no,no,1,yes,furnished
167 | 5383000,6450,3,2,1,yes,yes,yes,yes,no,0,no,unfurnished
168 | 5320000,7800,3,1,1,yes,no,yes,no,yes,2,yes,unfurnished
169 | 5285000,4600,2,2,1,yes,no,no,no,yes,2,no,semi-furnished
170 | 5250000,4260,4,1,2,yes,no,yes,no,yes,0,no,furnished
171 | 5250000,6540,4,2,2,no,no,no,no,yes,0,no,semi-furnished
172 | 5250000,5500,3,2,1,yes,no,yes,no,no,0,no,semi-furnished
173 | 5250000,10269,3,1,1,yes,no,no,no,no,1,yes,semi-furnished
174 | 5250000,8400,3,1,2,yes,yes,yes,no,yes,2,yes,unfurnished
175 | 5250000,5300,4,2,1,yes,no,no,no,yes,0,yes,unfurnished
176 | 5250000,3800,3,1,2,yes,yes,yes,no,no,1,yes,unfurnished
177 | 5250000,9800,4,2,2,yes,yes,no,no,no,2,no,semi-furnished
178 | 5250000,8520,3,1,1,yes,no,no,no,yes,2,no,furnished
179 | 5243000,6050,3,1,1,yes,no,yes,no,no,0,yes,semi-furnished
180 | 5229000,7085,3,1,1,yes,yes,yes,no,no,2,yes,semi-furnished
181 | 5215000,3180,3,2,2,yes,no,no,no,no,2,no,semi-furnished
182 | 5215000,4500,4,2,1,no,no,yes,no,yes,2,no,semi-furnished
183 | 5215000,7200,3,1,2,yes,yes,yes,no,no,1,yes,furnished
184 | 5145000,3410,3,1,2,no,no,no,no,yes,0,no,semi-furnished
185 | 5145000,7980,3,1,1,yes,no,no,no,no,1,yes,semi-furnished
186 | 5110000,3000,3,2,2,yes,yes,yes,no,no,0,no,furnished
187 | 5110000,3000,3,1,2,yes,no,yes,no,no,0,no,unfurnished
188 | 5110000,11410,2,1,2,yes,no,no,no,no,0,yes,furnished
189 | 5110000,6100,3,1,1,yes,no,yes,no,yes,0,yes,semi-furnished
190 | 5075000,5720,2,1,2,yes,no,no,no,yes,0,yes,unfurnished
191 | 5040000,3540,2,1,1,no,yes,yes,no,no,0,no,semi-furnished
192 | 5040000,7600,4,1,2,yes,no,no,no,yes,2,no,furnished
193 | 5040000,10700,3,1,2,yes,yes,yes,no,no,0,no,semi-furnished
194 | 5040000,6600,3,1,1,yes,yes,yes,no,no,0,yes,furnished
195 | 5033000,4800,2,1,1,yes,yes,yes,no,no,0,no,semi-furnished
196 | 5005000,8150,3,2,1,yes,yes,yes,no,no,0,no,semi-furnished
197 | 4970000,4410,4,3,2,yes,no,yes,no,no,2,no,semi-furnished
198 | 4970000,7686,3,1,1,yes,yes,yes,yes,no,0,no,semi-furnished
199 | 4956000,2800,3,2,2,no,no,yes,no,yes,1,no,semi-furnished
200 | 4935000,5948,3,1,2,yes,no,no,no,yes,0,no,semi-furnished
201 | 4907000,4200,3,1,2,yes,no,no,no,no,1,no,furnished
202 | 4900000,4520,3,1,2,yes,no,yes,no,yes,0,no,semi-furnished
203 | 4900000,4095,3,1,2,no,yes,yes,no,yes,0,no,semi-furnished
204 | 4900000,4120,2,1,1,yes,no,yes,no,no,1,no,semi-furnished
205 | 4900000,5400,4,1,2,yes,no,no,no,no,0,no,semi-furnished
206 | 4900000,4770,3,1,1,yes,yes,yes,no,no,0,no,semi-furnished
207 | 4900000,6300,3,1,1,yes,no,no,no,yes,2,no,semi-furnished
208 | 4900000,5800,2,1,1,yes,yes,yes,no,yes,0,no,semi-furnished
209 | 4900000,3000,3,1,2,yes,no,yes,no,yes,0,no,semi-furnished
210 | 4900000,2970,3,1,3,yes,no,no,no,no,0,no,semi-furnished
211 | 4900000,6720,3,1,1,yes,no,no,no,no,0,no,unfurnished
212 | 4900000,4646,3,1,2,yes,yes,yes,no,no,2,no,semi-furnished
213 | 4900000,12900,3,1,1,yes,no,no,no,no,2,no,furnished
214 | 4893000,3420,4,2,2,yes,no,yes,no,yes,2,no,semi-furnished
215 | 4893000,4995,4,2,1,yes,no,yes,no,no,0,no,semi-furnished
216 | 4865000,4350,2,1,1,yes,no,yes,no,no,0,no,unfurnished
217 | 4830000,4160,3,1,3,yes,no,no,no,no,0,no,unfurnished
218 | 4830000,6040,3,1,1,yes,no,no,no,no,2,yes,semi-furnished
219 | 4830000,6862,3,1,2,yes,no,no,no,yes,2,yes,furnished
220 | 4830000,4815,2,1,1,yes,no,no,no,yes,0,yes,semi-furnished
221 | 4795000,7000,3,1,2,yes,no,yes,no,no,0,no,unfurnished
222 | 4795000,8100,4,1,4,yes,no,yes,no,yes,2,no,semi-furnished
223 | 4767000,3420,4,2,2,yes,no,no,no,no,0,no,semi-furnished
224 | 4760000,9166,2,1,1,yes,no,yes,no,yes,2,no,semi-furnished
225 | 4760000,6321,3,1,2,yes,no,yes,no,yes,1,no,furnished
226 | 4760000,10240,2,1,1,yes,no,no,no,yes,2,yes,unfurnished
227 | 4753000,6440,2,1,1,yes,no,no,no,yes,3,no,semi-furnished
228 | 4690000,5170,3,1,4,yes,no,no,no,yes,0,no,semi-furnished
229 | 4690000,6000,2,1,1,yes,no,yes,no,yes,1,no,furnished
230 | 4690000,3630,3,1,2,yes,no,no,no,no,2,no,semi-furnished
231 | 4690000,9667,4,2,2,yes,yes,yes,no,no,1,no,semi-furnished
232 | 4690000,5400,2,1,2,yes,no,no,no,no,0,yes,semi-furnished
233 | 4690000,4320,3,1,1,yes,no,no,no,no,0,yes,semi-furnished
234 | 4655000,3745,3,1,2,yes,no,yes,no,no,0,no,furnished
235 | 4620000,4160,3,1,1,yes,yes,yes,no,yes,0,no,unfurnished
236 | 4620000,3880,3,2,2,yes,no,yes,no,no,2,no,semi-furnished
237 | 4620000,5680,3,1,2,yes,yes,no,no,yes,1,no,semi-furnished
238 | 4620000,2870,2,1,2,yes,yes,yes,no,no,0,yes,semi-furnished
239 | 4620000,5010,3,1,2,yes,no,yes,no,no,0,no,semi-furnished
240 | 4613000,4510,4,2,2,yes,no,yes,no,no,0,no,semi-furnished
241 | 4585000,4000,3,1,2,yes,no,no,no,no,1,no,furnished
242 | 4585000,3840,3,1,2,yes,no,no,no,no,1,yes,semi-furnished
243 | 4550000,3760,3,1,1,yes,no,no,no,no,2,no,semi-furnished
244 | 4550000,3640,3,1,2,yes,no,no,no,yes,0,no,furnished
245 | 4550000,2550,3,1,2,yes,no,yes,no,no,0,no,furnished
246 | 4550000,5320,3,1,2,yes,yes,yes,no,no,0,yes,semi-furnished
247 | 4550000,5360,3,1,2,yes,no,no,no,no,2,yes,unfurnished
248 | 4550000,3520,3,1,1,yes,no,no,no,no,0,yes,semi-furnished
249 | 4550000,8400,4,1,4,yes,no,no,no,no,3,no,unfurnished
250 | 4543000,4100,2,2,1,yes,yes,yes,no,no,0,no,semi-furnished
251 | 4543000,4990,4,2,2,yes,yes,yes,no,no,0,yes,furnished
252 | 4515000,3510,3,1,3,yes,no,no,no,no,0,no,semi-furnished
253 | 4515000,3450,3,1,2,yes,no,yes,no,no,1,no,semi-furnished
254 | 4515000,9860,3,1,1,yes,no,no,no,no,0,no,semi-furnished
255 | 4515000,3520,2,1,2,yes,no,no,no,no,0,yes,furnished
256 | 4480000,4510,4,1,2,yes,no,no,no,yes,2,no,semi-furnished
257 | 4480000,5885,2,1,1,yes,no,no,no,yes,1,no,unfurnished
258 | 4480000,4000,3,1,2,yes,no,no,no,no,2,no,furnished
259 | 4480000,8250,3,1,1,yes,no,no,no,no,0,no,furnished
260 | 4480000,4040,3,1,2,yes,no,no,no,no,1,no,semi-furnished
261 | 4473000,6360,2,1,1,yes,no,yes,no,yes,1,no,furnished
262 | 4473000,3162,3,1,2,yes,no,no,no,yes,1,no,furnished
263 | 4473000,3510,3,1,2,yes,no,no,no,no,0,no,semi-furnished
264 | 4445000,3750,2,1,1,yes,yes,yes,no,no,0,no,semi-furnished
265 | 4410000,3968,3,1,2,no,no,no,no,no,0,no,semi-furnished
266 | 4410000,4900,2,1,2,yes,no,yes,no,no,0,no,semi-furnished
267 | 4403000,2880,3,1,2,yes,no,no,no,no,0,yes,semi-furnished
268 | 4403000,4880,3,1,1,yes,no,no,no,no,2,yes,unfurnished
269 | 4403000,4920,3,1,2,yes,no,no,no,no,1,no,semi-furnished
270 | 4382000,4950,4,1,2,yes,no,no,no,yes,0,no,semi-furnished
271 | 4375000,3900,3,1,2,yes,no,no,no,no,0,no,unfurnished
272 | 4340000,4500,3,2,3,yes,no,no,yes,no,1,no,furnished
273 | 4340000,1905,5,1,2,no,no,yes,no,no,0,no,semi-furnished
274 | 4340000,4075,3,1,1,yes,yes,yes,no,no,2,no,semi-furnished
275 | 4340000,3500,4,1,2,yes,no,no,no,no,2,no,furnished
276 | 4340000,6450,4,1,2,yes,no,no,no,no,0,no,semi-furnished
277 | 4319000,4032,2,1,1,yes,no,yes,no,no,0,no,furnished
278 | 4305000,4400,2,1,1,yes,no,no,no,no,1,no,semi-furnished
279 | 4305000,10360,2,1,1,yes,no,no,no,no,1,yes,semi-furnished
280 | 4277000,3400,3,1,2,yes,no,yes,no,no,2,yes,semi-furnished
281 | 4270000,6360,2,1,1,yes,no,no,no,no,0,no,furnished
282 | 4270000,6360,2,1,2,yes,no,no,no,no,0,no,unfurnished
283 | 4270000,4500,2,1,1,yes,no,no,no,yes,2,no,furnished
284 | 4270000,2175,3,1,2,no,yes,yes,no,yes,0,no,unfurnished
285 | 4270000,4360,4,1,2,yes,no,no,no,no,0,no,furnished
286 | 4270000,7770,2,1,1,yes,no,no,no,no,1,no,furnished
287 | 4235000,6650,3,1,2,yes,yes,no,no,no,0,no,semi-furnished
288 | 4235000,2787,3,1,1,yes,no,yes,no,no,0,yes,furnished
289 | 4200000,5500,3,1,2,yes,no,no,no,yes,0,no,unfurnished
290 | 4200000,5040,3,1,2,yes,no,yes,no,yes,0,no,unfurnished
291 | 4200000,5850,2,1,1,yes,yes,yes,no,no,2,no,semi-furnished
292 | 4200000,2610,4,3,2,no,no,no,no,no,0,no,semi-furnished
293 | 4200000,2953,3,1,2,yes,no,yes,no,yes,0,no,unfurnished
294 | 4200000,2747,4,2,2,no,no,no,no,no,0,no,semi-furnished
295 | 4200000,4410,2,1,1,no,no,no,no,no,1,no,unfurnished
296 | 4200000,4000,4,2,2,no,no,no,no,no,0,no,semi-furnished
297 | 4200000,2325,3,1,2,no,no,no,no,no,0,no,semi-furnished
298 | 4200000,4600,3,2,2,yes,no,no,no,yes,1,no,semi-furnished
299 | 4200000,3640,3,2,2,yes,no,yes,no,no,0,no,unfurnished
300 | 4200000,5800,3,1,1,yes,no,no,yes,no,2,no,semi-furnished
301 | 4200000,7000,3,1,1,yes,no,no,no,no,3,no,furnished
302 | 4200000,4079,3,1,3,yes,no,no,no,no,0,no,semi-furnished
303 | 4200000,3520,3,1,2,yes,no,no,no,no,0,yes,semi-furnished
304 | 4200000,2145,3,1,3,yes,no,no,no,no,1,yes,unfurnished
305 | 4200000,4500,3,1,1,yes,no,yes,no,no,0,no,furnished
306 | 4193000,8250,3,1,1,yes,no,yes,no,no,3,no,semi-furnished
307 | 4193000,3450,3,1,2,yes,no,no,no,no,1,no,semi-furnished
308 | 4165000,4840,3,1,2,yes,no,no,no,no,1,no,semi-furnished
309 | 4165000,4080,3,1,2,yes,no,no,no,no,2,no,semi-furnished
310 | 4165000,4046,3,1,2,yes,no,yes,no,no,1,no,semi-furnished
311 | 4130000,4632,4,1,2,yes,no,no,no,yes,0,no,semi-furnished
312 | 4130000,5985,3,1,1,yes,no,yes,no,no,0,no,semi-furnished
313 | 4123000,6060,2,1,1,yes,no,yes,no,no,1,no,semi-furnished
314 | 4098500,3600,3,1,1,yes,no,yes,no,yes,0,yes,furnished
315 | 4095000,3680,3,2,2,yes,no,no,no,no,0,no,semi-furnished
316 | 4095000,4040,2,1,2,yes,no,no,no,no,1,no,semi-furnished
317 | 4095000,5600,2,1,1,yes,no,no,no,yes,0,no,semi-furnished
318 | 4060000,5900,4,2,2,no,no,yes,no,no,1,no,unfurnished
319 | 4060000,4992,3,2,2,yes,no,no,no,no,2,no,unfurnished
320 | 4060000,4340,3,1,1,yes,no,no,no,no,0,no,semi-furnished
321 | 4060000,3000,4,1,3,yes,no,yes,no,yes,2,no,semi-furnished
322 | 4060000,4320,3,1,2,yes,no,no,no,no,2,yes,furnished
323 | 4025000,3630,3,2,2,yes,no,no,yes,no,2,no,semi-furnished
324 | 4025000,3460,3,2,1,yes,no,yes,no,yes,1,no,furnished
325 | 4025000,5400,3,1,1,yes,no,no,no,no,3,no,semi-furnished
326 | 4007500,4500,3,1,2,no,no,yes,no,yes,0,no,semi-furnished
327 | 4007500,3460,4,1,2,yes,no,no,no,yes,0,no,semi-furnished
328 | 3990000,4100,4,1,1,no,no,yes,no,no,0,no,unfurnished
329 | 3990000,6480,3,1,2,no,no,no,no,yes,1,no,semi-furnished
330 | 3990000,4500,3,2,2,no,no,yes,no,yes,0,no,semi-furnished
331 | 3990000,3960,3,1,2,yes,no,no,no,no,0,no,furnished
332 | 3990000,4050,2,1,2,yes,yes,yes,no,no,0,yes,unfurnished
333 | 3920000,7260,3,2,1,yes,yes,yes,no,no,3,no,furnished
334 | 3920000,5500,4,1,2,yes,yes,yes,no,no,0,no,semi-furnished
335 | 3920000,3000,3,1,2,yes,no,no,no,no,0,no,semi-furnished
336 | 3920000,3290,2,1,1,yes,no,no,yes,no,1,no,furnished
337 | 3920000,3816,2,1,1,yes,no,yes,no,yes,2,no,furnished
338 | 3920000,8080,3,1,1,yes,no,no,no,yes,2,no,semi-furnished
339 | 3920000,2145,4,2,1,yes,no,yes,no,no,0,yes,unfurnished
340 | 3885000,3780,2,1,2,yes,yes,yes,no,no,0,no,semi-furnished
341 | 3885000,3180,4,2,2,yes,no,no,no,no,0,no,furnished
342 | 3850000,5300,5,2,2,yes,no,no,no,no,0,no,semi-furnished
343 | 3850000,3180,2,2,1,yes,no,yes,no,no,2,no,semi-furnished
344 | 3850000,7152,3,1,2,yes,no,no,no,yes,0,no,furnished
345 | 3850000,4080,2,1,1,yes,no,no,no,no,0,no,semi-furnished
346 | 3850000,3850,2,1,1,yes,no,no,no,no,0,no,semi-furnished
347 | 3850000,2015,3,1,2,yes,no,yes,no,no,0,yes,semi-furnished
348 | 3850000,2176,2,1,2,yes,yes,no,no,no,0,yes,semi-furnished
349 | 3836000,3350,3,1,2,yes,no,no,no,no,0,no,unfurnished
350 | 3815000,3150,2,2,1,no,no,yes,no,no,0,no,semi-furnished
351 | 3780000,4820,3,1,2,yes,no,no,no,no,0,no,semi-furnished
352 | 3780000,3420,2,1,2,yes,no,no,yes,no,1,no,semi-furnished
353 | 3780000,3600,2,1,1,yes,no,no,no,no,0,no,semi-furnished
354 | 3780000,5830,2,1,1,yes,no,no,no,no,2,no,unfurnished
355 | 3780000,2856,3,1,3,yes,no,no,no,no,0,yes,furnished
356 | 3780000,8400,2,1,1,yes,no,no,no,no,1,no,furnished
357 | 3773000,8250,3,1,1,yes,no,no,no,no,2,no,furnished
358 | 3773000,2520,5,2,1,no,no,yes,no,yes,1,no,furnished
359 | 3773000,6930,4,1,2,no,no,no,no,no,1,no,furnished
360 | 3745000,3480,2,1,1,yes,no,no,no,no,0,yes,semi-furnished
361 | 3710000,3600,3,1,1,yes,no,no,no,no,1,no,unfurnished
362 | 3710000,4040,2,1,1,yes,no,no,no,no,0,no,semi-furnished
363 | 3710000,6020,3,1,1,yes,no,no,no,no,0,no,semi-furnished
364 | 3710000,4050,2,1,1,yes,no,no,no,no,0,no,furnished
365 | 3710000,3584,2,1,1,yes,no,no,yes,no,0,no,semi-furnished
366 | 3703000,3120,3,1,2,no,no,yes,yes,no,0,no,semi-furnished
367 | 3703000,5450,2,1,1,yes,no,no,no,no,0,no,furnished
368 | 3675000,3630,2,1,1,yes,no,yes,no,no,0,no,furnished
369 | 3675000,3630,2,1,1,yes,no,no,no,yes,0,no,unfurnished
370 | 3675000,5640,2,1,1,no,no,no,no,no,0,no,semi-furnished
371 | 3675000,3600,2,1,1,yes,no,no,no,no,0,no,furnished
372 | 3640000,4280,2,1,1,yes,no,no,no,yes,2,no,semi-furnished
373 | 3640000,3570,3,1,2,yes,no,yes,no,no,0,no,semi-furnished
374 | 3640000,3180,3,1,2,no,no,yes,no,no,0,no,semi-furnished
375 | 3640000,3000,2,1,2,yes,no,no,no,yes,0,no,furnished
376 | 3640000,3520,2,2,1,yes,no,yes,no,no,0,no,semi-furnished
377 | 3640000,5960,3,1,2,yes,yes,yes,no,no,0,no,unfurnished
378 | 3640000,4130,3,2,2,yes,no,no,no,no,2,no,semi-furnished
379 | 3640000,2850,3,2,2,no,no,yes,no,no,0,yes,unfurnished
380 | 3640000,2275,3,1,3,yes,no,no,yes,yes,0,yes,semi-furnished
381 | 3633000,3520,3,1,1,yes,no,no,no,no,2,yes,unfurnished
382 | 3605000,4500,2,1,1,yes,no,no,no,no,0,no,semi-furnished
383 | 3605000,4000,2,1,1,yes,no,no,no,no,0,yes,semi-furnished
384 | 3570000,3150,3,1,2,yes,no,yes,no,no,0,no,furnished
385 | 3570000,4500,4,2,2,yes,no,yes,no,no,2,no,furnished
386 | 3570000,4500,2,1,1,no,no,no,no,no,0,no,furnished
387 | 3570000,3640,2,1,1,yes,no,no,no,no,0,no,unfurnished
388 | 3535000,3850,3,1,1,yes,no,no,no,no,2,no,unfurnished
389 | 3500000,4240,3,1,2,yes,no,no,no,yes,0,no,semi-furnished
390 | 3500000,3650,3,1,2,yes,no,no,no,no,0,no,unfurnished
391 | 3500000,4600,4,1,2,yes,no,no,no,no,0,no,semi-furnished
392 | 3500000,2135,3,2,2,no,no,no,no,no,0,no,unfurnished
393 | 3500000,3036,3,1,2,yes,no,yes,no,no,0,no,semi-furnished
394 | 3500000,3990,3,1,2,yes,no,no,no,no,0,no,semi-furnished
395 | 3500000,7424,3,1,1,no,no,no,no,no,0,no,unfurnished
396 | 3500000,3480,3,1,1,no,no,no,no,yes,0,no,unfurnished
397 | 3500000,3600,6,1,2,yes,no,no,no,no,1,no,unfurnished
398 | 3500000,3640,2,1,1,yes,no,no,no,no,1,no,semi-furnished
399 | 3500000,5900,2,1,1,yes,no,no,no,no,1,no,furnished
400 | 3500000,3120,3,1,2,yes,no,no,no,no,1,no,unfurnished
401 | 3500000,7350,2,1,1,yes,no,no,no,no,1,no,semi-furnished
402 | 3500000,3512,2,1,1,yes,no,no,no,no,1,yes,unfurnished
403 | 3500000,9500,3,1,2,yes,no,no,no,no,3,yes,unfurnished
404 | 3500000,5880,2,1,1,yes,no,no,no,no,0,no,unfurnished
405 | 3500000,12944,3,1,1,yes,no,no,no,no,0,no,unfurnished
406 | 3493000,4900,3,1,2,no,no,no,no,no,0,no,unfurnished
407 | 3465000,3060,3,1,1,yes,no,no,no,no,0,no,unfurnished
408 | 3465000,5320,2,1,1,yes,no,no,no,no,1,yes,unfurnished
409 | 3465000,2145,3,1,3,yes,no,no,no,no,0,yes,furnished
410 | 3430000,4000,2,1,1,yes,no,no,no,no,0,no,unfurnished
411 | 3430000,3185,2,1,1,yes,no,no,no,no,2,no,unfurnished
412 | 3430000,3850,3,1,1,yes,no,no,no,no,0,no,unfurnished
413 | 3430000,2145,3,1,3,yes,no,no,no,no,0,yes,furnished
414 | 3430000,2610,3,1,2,yes,no,yes,no,no,0,yes,unfurnished
415 | 3430000,1950,3,2,2,yes,no,yes,no,no,0,yes,unfurnished
416 | 3423000,4040,2,1,1,yes,no,no,no,no,0,no,unfurnished
417 | 3395000,4785,3,1,2,yes,yes,yes,no,yes,1,no,furnished
418 | 3395000,3450,3,1,1,yes,no,yes,no,no,2,no,unfurnished
419 | 3395000,3640,2,1,1,yes,no,no,no,no,0,no,furnished
420 | 3360000,3500,4,1,2,yes,no,no,no,yes,2,no,unfurnished
421 | 3360000,4960,4,1,3,no,no,no,no,no,0,no,semi-furnished
422 | 3360000,4120,2,1,2,yes,no,no,no,no,0,no,unfurnished
423 | 3360000,4750,2,1,1,yes,no,no,no,no,0,no,unfurnished
424 | 3360000,3720,2,1,1,no,no,no,no,yes,0,no,unfurnished
425 | 3360000,3750,3,1,1,yes,no,no,no,no,0,no,unfurnished
426 | 3360000,3100,3,1,2,no,no,yes,no,no,0,no,semi-furnished
427 | 3360000,3185,2,1,1,yes,no,yes,no,no,2,no,furnished
428 | 3353000,2700,3,1,1,no,no,no,no,no,0,no,furnished
429 | 3332000,2145,3,1,2,yes,no,yes,no,no,0,yes,furnished
430 | 3325000,4040,2,1,1,yes,no,no,no,no,1,no,unfurnished
431 | 3325000,4775,4,1,2,yes,no,no,no,no,0,no,unfurnished
432 | 3290000,2500,2,1,1,no,no,no,no,yes,0,no,unfurnished
433 | 3290000,3180,4,1,2,yes,no,yes,no,yes,0,no,unfurnished
434 | 3290000,6060,3,1,1,yes,yes,yes,no,no,0,no,furnished
435 | 3290000,3480,4,1,2,no,no,no,no,no,1,no,semi-furnished
436 | 3290000,3792,4,1,2,yes,no,no,no,no,0,no,semi-furnished
437 | 3290000,4040,2,1,1,yes,no,no,no,no,0,no,unfurnished
438 | 3290000,2145,3,1,2,yes,no,yes,no,no,0,yes,furnished
439 | 3290000,5880,3,1,1,yes,no,no,no,no,1,no,unfurnished
440 | 3255000,4500,2,1,1,no,no,no,no,no,0,no,semi-furnished
441 | 3255000,3930,2,1,1,no,no,no,no,no,0,no,unfurnished
442 | 3234000,3640,4,1,2,yes,no,yes,no,no,0,no,unfurnished
443 | 3220000,4370,3,1,2,yes,no,no,no,no,0,no,unfurnished
444 | 3220000,2684,2,1,1,yes,no,no,no,yes,1,no,unfurnished
445 | 3220000,4320,3,1,1,no,no,no,no,no,1,no,unfurnished
446 | 3220000,3120,3,1,2,no,no,no,no,no,0,no,furnished
447 | 3150000,3450,1,1,1,yes,no,no,no,no,0,no,furnished
448 | 3150000,3986,2,2,1,no,yes,yes,no,no,1,no,unfurnished
449 | 3150000,3500,2,1,1,no,no,yes,no,no,0,no,semi-furnished
450 | 3150000,4095,2,1,1,yes,no,no,no,no,2,no,semi-furnished
451 | 3150000,1650,3,1,2,no,no,yes,no,no,0,no,unfurnished
452 | 3150000,3450,3,1,2,yes,no,yes,no,no,0,no,semi-furnished
453 | 3150000,6750,2,1,1,yes,no,no,no,no,0,no,semi-furnished
454 | 3150000,9000,3,1,2,yes,no,no,no,no,2,no,semi-furnished
455 | 3150000,3069,2,1,1,yes,no,no,no,no,1,no,unfurnished
456 | 3143000,4500,3,1,2,yes,no,no,no,yes,0,no,unfurnished
457 | 3129000,5495,3,1,1,yes,no,yes,no,no,0,no,unfurnished
458 | 3118850,2398,3,1,1,yes,no,no,no,no,0,yes,semi-furnished
459 | 3115000,3000,3,1,1,no,no,no,no,yes,0,no,unfurnished
460 | 3115000,3850,3,1,2,yes,no,no,no,no,0,no,unfurnished
461 | 3115000,3500,2,1,1,yes,no,no,no,no,0,no,unfurnished
462 | 3087000,8100,2,1,1,yes,no,no,no,no,1,no,unfurnished
463 | 3080000,4960,2,1,1,yes,no,yes,no,yes,0,no,unfurnished
464 | 3080000,2160,3,1,2,no,no,yes,no,no,0,no,semi-furnished
465 | 3080000,3090,2,1,1,yes,yes,yes,no,no,0,no,unfurnished
466 | 3080000,4500,2,1,2,yes,no,no,yes,no,1,no,semi-furnished
467 | 3045000,3800,2,1,1,yes,no,no,no,no,0,no,unfurnished
468 | 3010000,3090,3,1,2,no,no,no,no,no,0,no,semi-furnished
469 | 3010000,3240,3,1,2,yes,no,no,no,no,2,no,semi-furnished
470 | 3010000,2835,2,1,1,yes,no,no,no,no,0,no,semi-furnished
471 | 3010000,4600,2,1,1,yes,no,no,no,no,0,no,furnished
472 | 3010000,5076,3,1,1,no,no,no,no,no,0,no,unfurnished
473 | 3010000,3750,3,1,2,yes,no,no,no,no,0,no,unfurnished
474 | 3010000,3630,4,1,2,yes,no,no,no,no,3,no,semi-furnished
475 | 3003000,8050,2,1,1,yes,no,no,no,no,0,no,unfurnished
476 | 2975000,4352,4,1,2,no,no,no,no,no,1,no,unfurnished
477 | 2961000,3000,2,1,2,yes,no,no,no,no,0,no,semi-furnished
478 | 2940000,5850,3,1,2,yes,no,yes,no,no,1,no,unfurnished
479 | 2940000,4960,2,1,1,yes,no,no,no,no,0,no,unfurnished
480 | 2940000,3600,3,1,2,no,no,no,no,no,1,no,unfurnished
481 | 2940000,3660,4,1,2,no,no,no,no,no,0,no,unfurnished
482 | 2940000,3480,3,1,2,no,no,no,no,no,1,no,semi-furnished
483 | 2940000,2700,2,1,1,no,no,no,no,no,0,no,furnished
484 | 2940000,3150,3,1,2,no,no,no,no,no,0,no,unfurnished
485 | 2940000,6615,3,1,2,yes,no,no,no,no,0,no,semi-furnished
486 | 2870000,3040,2,1,1,no,no,no,no,no,0,no,unfurnished
487 | 2870000,3630,2,1,1,yes,no,no,no,no,0,no,unfurnished
488 | 2870000,6000,2,1,1,yes,no,no,no,no,0,no,semi-furnished
489 | 2870000,5400,4,1,2,yes,no,no,no,no,0,no,unfurnished
490 | 2852500,5200,4,1,3,yes,no,no,no,no,0,no,unfurnished
491 | 2835000,3300,3,1,2,no,no,no,no,no,1,no,semi-furnished
492 | 2835000,4350,3,1,2,no,no,no,yes,no,1,no,unfurnished
493 | 2835000,2640,2,1,1,no,no,no,no,no,1,no,furnished
494 | 2800000,2650,3,1,2,yes,no,yes,no,no,1,no,unfurnished
495 | 2800000,3960,3,1,1,yes,no,no,no,no,0,no,furnished
496 | 2730000,6800,2,1,1,yes,no,no,no,no,0,no,unfurnished
497 | 2730000,4000,3,1,2,yes,no,no,no,no,1,no,unfurnished
498 | 2695000,4000,2,1,1,yes,no,no,no,no,0,no,unfurnished
499 | 2660000,3934,2,1,1,yes,no,no,no,no,0,no,unfurnished
500 | 2660000,2000,2,1,2,yes,no,no,no,no,0,no,semi-furnished
501 | 2660000,3630,3,3,2,no,yes,no,no,no,0,no,unfurnished
502 | 2660000,2800,3,1,1,yes,no,no,no,no,0,no,unfurnished
503 | 2660000,2430,3,1,1,no,no,no,no,no,0,no,unfurnished
504 | 2660000,3480,2,1,1,yes,no,no,no,no,1,no,semi-furnished
505 | 2660000,4000,3,1,1,yes,no,no,no,no,0,no,semi-furnished
506 | 2653000,3185,2,1,1,yes,no,no,no,yes,0,no,unfurnished
507 | 2653000,4000,3,1,2,yes,no,no,no,yes,0,no,unfurnished
508 | 2604000,2910,2,1,1,no,no,no,no,no,0,no,unfurnished
509 | 2590000,3600,2,1,1,yes,no,no,no,no,0,no,unfurnished
510 | 2590000,4400,2,1,1,yes,no,no,no,no,0,no,unfurnished
511 | 2590000,3600,2,2,2,yes,no,yes,no,no,1,no,furnished
512 | 2520000,2880,3,1,1,no,no,no,no,no,0,no,unfurnished
513 | 2520000,3180,3,1,1,no,no,no,no,no,0,no,unfurnished
514 | 2520000,3000,2,1,2,yes,no,no,no,no,0,no,furnished
515 | 2485000,4400,3,1,2,yes,no,no,no,no,0,no,unfurnished
516 | 2485000,3000,3,1,2,no,no,no,no,no,0,no,semi-furnished
517 | 2450000,3210,3,1,2,yes,no,yes,no,no,0,no,unfurnished
518 | 2450000,3240,2,1,1,no,yes,no,no,no,1,no,unfurnished
519 | 2450000,3000,2,1,1,yes,no,no,no,no,1,no,unfurnished
520 | 2450000,3500,2,1,1,yes,yes,no,no,no,0,no,unfurnished
521 | 2450000,4840,2,1,2,yes,no,no,no,no,0,no,unfurnished
522 | 2450000,7700,2,1,1,yes,no,no,no,no,0,no,unfurnished
523 | 2408000,3635,2,1,1,no,no,no,no,no,0,no,unfurnished
524 | 2380000,2475,3,1,2,yes,no,no,no,no,0,no,furnished
525 | 2380000,2787,4,2,2,yes,no,no,no,no,0,no,furnished
526 | 2380000,3264,2,1,1,yes,no,no,no,no,0,no,unfurnished
527 | 2345000,3640,2,1,1,yes,no,no,no,no,0,no,unfurnished
528 | 2310000,3180,2,1,1,yes,no,no,no,no,0,no,unfurnished
529 | 2275000,1836,2,1,1,no,no,yes,no,no,0,no,semi-furnished
530 | 2275000,3970,1,1,1,no,no,no,no,no,0,no,unfurnished
531 | 2275000,3970,3,1,2,yes,no,yes,no,no,0,no,unfurnished
532 | 2240000,1950,3,1,1,no,no,no,yes,no,0,no,unfurnished
533 | 2233000,5300,3,1,1,no,no,no,no,yes,0,yes,unfurnished
534 | 2135000,3000,2,1,1,no,no,no,no,no,0,no,unfurnished
535 | 2100000,2400,3,1,2,yes,no,no,no,no,0,no,unfurnished
536 | 2100000,3000,4,1,2,yes,no,no,no,no,0,no,unfurnished
537 | 2100000,3360,2,1,1,yes,no,no,no,no,1,no,unfurnished
538 | 1960000,3420,5,1,2,no,no,no,no,no,0,no,unfurnished
539 | 1890000,1700,3,1,2,yes,no,no,no,no,0,no,unfurnished
540 | 1890000,3649,2,1,1,yes,no,no,no,no,0,no,unfurnished
541 | 1855000,2990,2,1,1,no,no,no,no,no,1,no,unfurnished
542 | 1820000,3000,2,1,1,yes,no,yes,no,no,2,no,unfurnished
543 | 1767150,2400,3,1,1,no,no,no,no,no,0,no,semi-furnished
544 | 1750000,3620,2,1,1,yes,no,no,no,no,0,no,unfurnished
545 | 1750000,2910,3,1,1,no,no,no,no,no,0,no,furnished
546 | 1750000,3850,3,1,2,yes,no,no,no,no,0,no,unfurnished
547 |
--------------------------------------------------------------------------------
/Lectures/06 Real-world Projects/datasets/resume.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/Lectures/06 Real-world Projects/datasets/resume.pdf
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 | 
4 | 
5 | 
6 | 
7 | 
8 | [](https://www.pytopia.ai)
9 | [](https://t.me/pytopia_ai)
10 | [](https://instagram.com/pytopia.ai)
11 | [](https://www.youtube.com/@pytopia)
12 | [](https://linkedin.com/company/pytopia)
13 | [](https://twitter.com/pytopia_ai)
14 |
15 | Welcome to the Data Visualization for Machine Learning course repository! This practical course is designed to equip you with the essential skills and techniques for creating compelling and informative visualizations that are crucial in the field of Machine Learning. Whether you're a beginner looking to enhance your data visualization capabilities or an experienced practitioner seeking to leverage visualizations for better insights, this course has something to offer.
16 |
17 | # 🎯 Course Objectives
18 |
19 | By the end of this course, you will:
20 |
21 | - Understand the fundamental principles and best practices of data visualization
22 | - Master the popular data visualization libraries: Matplotlib, Seaborn, and Pandas
23 | - Create a wide range of visualizations, from basic plots to advanced statistical graphics
24 | - Learn how to customize and fine-tune your visualizations for maximum impact
25 | - Gain hands-on experience through real-world projects that simulate Machine Learning scenarios
26 | - Discover how effective data visualization can enhance your Machine Learning workflow
27 |
28 | # 📚 Course Contents
29 |
30 | The course is divided into the following chapters:
31 |
32 | 1. Introduction to Data Visualization
33 | 2. Getting Started with Matplotlib
34 | 3. Basic Plotting with Matplotlib
35 | 4. Advanced Matplotlib Concepts
36 | 5. Introduction to Seaborn
37 | 6. Statistical Plotting with Seaborn
38 | 7. Customizing Seaborn Plots
39 | 8. Data Visualization with Pandas
40 | 9. Real-world Projects
41 |
42 | Each chapter includes a combination of theoretical explanations, practical examples, and hands-on exercises to reinforce your understanding of the concepts and their applications in Machine Learning. The real-world projects in the final chapter provide you with the opportunity to apply your data visualization skills to realistic Machine Learning scenarios, giving you valuable experience and a portfolio of visualizations to showcase.
43 |
44 | # ✅ Prerequisites
45 |
46 | To get the most out of this course, you should have:
47 |
48 | - Basic knowledge of Python programming
49 | - Basic familiarity with data manipulation using libraries like NumPy and Pandas
50 | - Enthusiasm to explore the power of data visualization in Machine Learning!
51 |
52 | # 📚 Learn with Us!
53 | We also offer a [course on these contents](https://www.pytopia.ai/courses/data-visualization) where learners can interact with peers and instructors, ask questions, and participate in online coding sessions. By registering for the course, you also gain access to our dedicated Telegram group. Enroll now and start learning! Here are some useful links:
54 |
55 | - [Data Visualization Course](https://www.pytopia.ai/courses/data-visualization)
56 | - [Pytopia Public Telegram Group](https://t.me/pytopia_ai)
57 | - [Pytopia Website](https://www.pytopia.ai/)
58 |
59 | [
](https://www.pytopia.ai/courses/data-visualization)
60 |
61 | # 🚀 Getting Started
62 |
63 | To get started with the course, follow these steps:
64 |
65 | 1. Clone this repository to your local machine using the following command:
66 | ```
67 | git clone https://github.com/pytopia/data-visualization.git
68 | ```
69 |
70 | 2. Navigate to the cloned repository:
71 | ```
72 | cd data-visualization
73 | ```
74 |
75 | 3. Set up the required dependencies and environment by following the instructions in the `setup.md` file.
76 |
77 | 4. Start exploring the course materials, beginning with the first chapter.
78 |
79 | Throughout the course, you will learn how to create visually appealing and informative plots, charts, and graphs that can help you gain insights from your data, communicate findings effectively, and enhance your Machine Learning models. By the end of this course, you will have a strong foundation in data visualization techniques and be able to apply them confidently in your Machine Learning projects.
80 |
81 | # 📞 Contact Information
82 |
83 | Feel free to reach out to us!
84 |
85 | - 🌐 Website: [pytopia.ia](https://www.pytopia.ai)
86 | - 💬 Telegram: [pytopia_ai](https://t.me/pytopia_ai)
87 | - 🎥 YouTube: [pytopia](https://www.youtube.com/@pytopia)
88 | - 📸 Instagram: [pytopia.ai](https://www.instagram.com/pytopia.ai)
89 | - 🎓 LinkedIn: [pytopia](https://www.linkedin.com/in/pytopia)
90 | - 🐦 Twitter: [pytopia_ai](https://twitter.com/pytopia_ai)
91 | - 📧 Email: [pytopia.ai@gmail.com](mailto:pytopia.ai@gmail.com)
92 |
--------------------------------------------------------------------------------
/images/banner.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/images/banner.png
--------------------------------------------------------------------------------
/images/pytopia-course.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/pytopia/Data-Visualization/8d7371fdf1e265862f96ca47b5451b3b9180a4b1/images/pytopia-course.png
--------------------------------------------------------------------------------