├── CONTRIBUTING.md
├── Dockerfile
├── LICENSE
├── README.md
├── __pycache__
├── val_key.cpython-39.pyc
└── val_plate.cpython-39.pyc
├── data
├── Argoverse.yaml
├── GlobalWheat2020.yaml
├── Objects365.yaml
├── SKU-110K.yaml
├── VOC.yaml
├── VisDrone.yaml
├── coco.yaml
├── coco128.yaml
├── hyps
│ ├── hyp.finetune.yaml
│ ├── hyp.finetune_objects365.yaml
│ ├── hyp.key.yaml
│ ├── hyp.scratch-high.yaml
│ ├── hyp.scratch-low.yaml
│ ├── hyp.scratch.yaml
│ ├── hyp.scratch.yolox.yaml
│ └── palte_head.yaml
├── images
│ ├── bus.jpg
│ └── zidane.jpg
├── mydata.yaml
├── scripts
│ ├── download_weights.sh
│ ├── get_coco.sh
│ └── get_coco128.sh
├── xView.yaml
└── yolo_data_key.yaml
├── detect.py
├── detect_single.py
├── export.py
├── hubconf.py
├── models
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-38.pyc
│ ├── __init__.cpython-39.pyc
│ ├── common.cpython-38.pyc
│ ├── common.cpython-39.pyc
│ ├── experimental.cpython-38.pyc
│ ├── experimental.cpython-39.pyc
│ ├── yolo.cpython-38.pyc
│ ├── yolo.cpython-39.pyc
│ ├── yolo_key.cpython-39.pyc
│ ├── yolo_plate.cpython-39.pyc
│ ├── yolox.cpython-38.pyc
│ └── yolox.cpython-39.pyc
├── common.py
├── experimental.py
├── hub
│ ├── anchors.yaml
│ ├── yolov3-spp.yaml
│ ├── yolov3-tiny.yaml
│ ├── yolov3.yaml
│ ├── yolov5-bifpn.yaml
│ ├── yolov5-fpn.yaml
│ ├── yolov5-p2.yaml
│ ├── yolov5-p6.yaml
│ ├── yolov5-p7.yaml
│ ├── yolov5-panet.yaml
│ ├── yolov5l6.yaml
│ ├── yolov5m6.yaml
│ ├── yolov5n6.yaml
│ ├── yolov5s-ghost.yaml
│ ├── yolov5s-transformer.yaml
│ ├── yolov5s6.yaml
│ └── yolov5x6.yaml
├── tf.py
├── yolo.py
├── yolo_key.py
├── yolo_plate.py
├── yolov5_Mobilenetv2.yaml
├── yolov5_Mobilenetv2_n.yaml
├── yolov5_Mobilenetv3.yaml
├── yolov5_Shffule.yaml
├── yolov5l.yaml
├── yolov5m.yaml
├── yolov5n.yaml
├── yolov5s.yaml
├── yolov5s_CBAM.yaml
├── yolov5s_RepVGG.yaml
├── yolov5s_key.yaml
├── yolov5s_plate.yaml
├── yolov5s_plate_2anchor.yaml
├── yolov5x.yaml
├── yolox.py
├── yolox_nano.yaml
└── yoloxs.yaml
├── requirements.txt
├── train.py
├── train_key.py
├── train_plate.py
├── utils
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-38.pyc
│ ├── __init__.cpython-39.pyc
│ ├── augmentations.cpython-38.pyc
│ ├── augmentations.cpython-39.pyc
│ ├── autoanchor.cpython-38.pyc
│ ├── autoanchor.cpython-39.pyc
│ ├── callbacks.cpython-38.pyc
│ ├── callbacks.cpython-39.pyc
│ ├── datasets.cpython-38.pyc
│ ├── datasets.cpython-39.pyc
│ ├── datasets_key.cpython-39.pyc
│ ├── datasets_plate.cpython-39.pyc
│ ├── downloads.cpython-38.pyc
│ ├── downloads.cpython-39.pyc
│ ├── general.cpython-38.pyc
│ ├── general.cpython-39.pyc
│ ├── general_plate.cpython-39.pyc
│ ├── google_utils.cpython-39.pyc
│ ├── loss.cpython-38.pyc
│ ├── loss.cpython-39.pyc
│ ├── loss_key.cpython-39.pyc
│ ├── metrics.cpython-38.pyc
│ ├── metrics.cpython-39.pyc
│ ├── plots.cpython-38.pyc
│ ├── plots.cpython-39.pyc
│ ├── torch_utils.cpython-38.pyc
│ └── torch_utils.cpython-39.pyc
├── activations.py
├── augmentations.py
├── autoanchor.py
├── aws
│ ├── __init__.py
│ ├── mime.sh
│ ├── resume.py
│ └── userdata.sh
├── callbacks.py
├── datasets.py
├── datasets_key.py
├── datasets_plate.py
├── downloads.py
├── flask_rest_api
│ ├── README.md
│ ├── example_request.py
│ └── restapi.py
├── general.py
├── general_plate.py
├── google_app_engine
│ ├── Dockerfile
│ ├── additional_requirements.txt
│ └── app.yaml
├── google_utils.py
├── loggers
│ ├── __init__.py
│ ├── __pycache__
│ │ ├── __init__.cpython-38.pyc
│ │ └── __init__.cpython-39.pyc
│ └── wandb
│ │ ├── README.md
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ ├── __init__.cpython-38.pyc
│ │ ├── __init__.cpython-39.pyc
│ │ ├── wandb_utils.cpython-38.pyc
│ │ └── wandb_utils.cpython-39.pyc
│ │ ├── log_dataset.py
│ │ ├── sweep.py
│ │ ├── sweep.yaml
│ │ └── wandb_utils.py
├── loss.py
├── loss_key.py
├── metrics.py
├── plots.py
├── torch_utils.py
└── wandb_logging
│ ├── __init__.py
│ ├── __pycache__
│ ├── __init__.cpython-38.pyc
│ ├── __init__.cpython-39.pyc
│ ├── wandb_utils.cpython-38.pyc
│ └── wandb_utils.cpython-39.pyc
│ ├── log_dataset.py
│ └── wandb_utils.py
├── val.py
├── val_key.py
├── val_plate.py
└── weights
├── yolov5n.pt
├── yolov5n6.pt
├── yolov5s.pt
└── yolov5s6.pt
/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | ## Contributing to YOLOv5 🚀
2 |
3 | We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
4 |
5 | - Reporting a bug
6 | - Discussing the current state of the code
7 | - Submitting a fix
8 | - Proposing a new feature
9 | - Becoming a maintainer
10 |
11 | YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
12 | helping push the frontiers of what's possible in AI 😃!
13 |
14 | ## Submitting a Pull Request (PR) 🛠️
15 |
16 | Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
17 |
18 | ### 1. Select File to Update
19 |
20 | Select `requirements.txt` to update by clicking on it in GitHub.
21 |

22 |
23 | ### 2. Click 'Edit this file'
24 |
25 | Button is in top-right corner.
26 | 
27 |
28 | ### 3. Make Changes
29 |
30 | Change `matplotlib` version from `3.2.2` to `3.3`.
31 | 
32 |
33 | ### 4. Preview Changes and Submit PR
34 |
35 | Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
36 | for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
37 | changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
38 | 
39 |
40 | ### PR recommendations
41 |
42 | To allow your work to be integrated as seamlessly as possible, we advise you to:
43 |
44 | - ✅ Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master an
45 | automatic [GitHub actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) rebase may
46 | be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature'
47 | with the name of your local branch:
48 |
49 | ```bash
50 | git remote add upstream https://github.com/ultralytics/yolov5.git
51 | git fetch upstream
52 | git checkout feature # <----- replace 'feature' with local branch name
53 | git merge upstream/master
54 | git push -u origin -f
55 | ```
56 |
57 | - ✅ Verify all Continuous Integration (CI) **checks are passing**.
58 | - ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
59 | but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee
60 |
61 | ## Submitting a Bug Report 🐛
62 |
63 | If you spot a problem with YOLOv5 please submit a Bug Report!
64 |
65 | For us to start investigating a possibel problem we need to be able to reproduce it ourselves first. We've created a few
66 | short guidelines below to help users provide what we need in order to get started.
67 |
68 | When asking a question, people will be better able to provide help if you provide **code** that they can easily
69 | understand and use to **reproduce** the problem. This is referred to by community members as creating
70 | a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
71 | the problem should be:
72 |
73 | * ✅ **Minimal** – Use as little code as possible that still produces the same problem
74 | * ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
75 | * ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
76 |
77 | In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
78 | should be:
79 |
80 | * ✅ **Current** – Verify that your code is up-to-date with current
81 | GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
82 | copy to ensure your problem has not already been resolved by previous commits.
83 | * ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
84 | repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
85 |
86 | If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **
87 | Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
88 | a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
89 | understand and diagnose your problem.
90 |
91 | ## License
92 |
93 | By contributing, you agree that your contributions will be licensed under
94 | the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
95 |
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
4 | FROM nvcr.io/nvidia/pytorch:21.05-py3
5 |
6 | # Install linux packages
7 | RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
8 |
9 | # Install python dependencies
10 | COPY requirements.txt .
11 | RUN python -m pip install --upgrade pip
12 | RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof
13 | RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook wandb>=0.12.2
14 | RUN pip install --no-cache -U torch torchvision numpy
15 | # RUN pip install --no-cache torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
16 |
17 | # Create working directory
18 | RUN mkdir -p /usr/src/app
19 | WORKDIR /usr/src/app
20 |
21 | # Copy contents
22 | COPY . /usr/src/app
23 |
24 | # Downloads to user config dir
25 | ADD https://ultralytics.com/assets/Arial.ttf /root/.config/Ultralytics/
26 |
27 | # Set environment variables
28 | # ENV HOME=/usr/src/app
29 |
30 |
31 | # Usage Examples -------------------------------------------------------------------------------------------------------
32 |
33 | # Build and Push
34 | # t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
35 |
36 | # Pull and Run
37 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
38 |
39 | # Pull and Run with local directory access
40 | # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
41 |
42 | # Kill all
43 | # sudo docker kill $(sudo docker ps -q)
44 |
45 | # Kill all image-based
46 | # sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
47 |
48 | # Bash into running container
49 | # sudo docker exec -it 5a9b5863d93d bash
50 |
51 | # Bash into stopped container
52 | # id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
53 |
54 | # Clean up
55 | # docker system prune -a --volumes
56 |
57 | # Update Ubuntu drivers
58 | # https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
59 |
60 | # DDP test
61 | # python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
62 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # yolov5_v6_plate_heading
2 |
3 | + 集成yolov5(v6.0), yolox, 注意力机制, 和repvgg结构
4 | + 添加了多头检测代码,使用train_plate.py文件进行训练
5 |
6 | + 添加了检测+关键点代码,使用train_key.py文件进行训练
7 |
8 |
9 | ```bash
10 | # 多头训练
11 | $ python train_plate.py --data data/mydata.yaml --batch 256 --epochs 200 --weights weights/yolov5s.pt --imgsz 416 --device '0,1' --cfg models/yolov5s_plate.yaml --hyp data/hyps/palte_head.yaml
12 |
13 | # 关键点训练
14 | $ python train_key.py --data data/yolov5s_key.yaml --batch 256 --epochs 200 --weights weights/yolov5s.pt --imgsz 416 --device '0' --cfg models/yolov5s_key.yaml --hyp data/hyps/hyp.key.yaml
15 |
16 | ```
17 |
18 | If you use multi-gpu. It's faster several times:
19 |
20 | ```bash
21 | $ python -m torch.distributed.launch --nproc_per_node 2 train_plate.py --sync-bn
22 | ```
--------------------------------------------------------------------------------
/__pycache__/val_key.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/__pycache__/val_key.cpython-39.pyc
--------------------------------------------------------------------------------
/__pycache__/val_plate.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/__pycache__/val_plate.cpython-39.pyc
--------------------------------------------------------------------------------
/data/Argoverse.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
3 | # Example usage: python train.py --data Argoverse.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── Argoverse ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/Argoverse # dataset root dir
12 | train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
13 | val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
14 | test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
15 |
16 | # Classes
17 | nc: 8 # number of classes
18 | names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names
19 |
20 |
21 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
22 | download: |
23 | import json
24 |
25 | from tqdm import tqdm
26 | from utils.general import download, Path
27 |
28 |
29 | def argoverse2yolo(set):
30 | labels = {}
31 | a = json.load(open(set, "rb"))
32 | for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
33 | img_id = annot['image_id']
34 | img_name = a['images'][img_id]['name']
35 | img_label_name = img_name[:-3] + "txt"
36 |
37 | cls = annot['category_id'] # instance class id
38 | x_center, y_center, width, height = annot['bbox']
39 | x_center = (x_center + width / 2) / 1920.0 # offset and scale
40 | y_center = (y_center + height / 2) / 1200.0 # offset and scale
41 | width /= 1920.0 # scale
42 | height /= 1200.0 # scale
43 |
44 | img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
45 | if not img_dir.exists():
46 | img_dir.mkdir(parents=True, exist_ok=True)
47 |
48 | k = str(img_dir / img_label_name)
49 | if k not in labels:
50 | labels[k] = []
51 | labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
52 |
53 | for k in labels:
54 | with open(k, "w") as f:
55 | f.writelines(labels[k])
56 |
57 |
58 | # Download
59 | dir = Path('../datasets/Argoverse') # dataset root dir
60 | urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
61 | download(urls, dir=dir, delete=False)
62 |
63 | # Convert
64 | annotations_dir = 'Argoverse-HD/annotations/'
65 | (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
66 | for d in "train.json", "val.json":
67 | argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
68 |
--------------------------------------------------------------------------------
/data/GlobalWheat2020.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Global Wheat 2020 dataset http://www.global-wheat.com/
3 | # Example usage: python train.py --data GlobalWheat2020.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── GlobalWheat2020 ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/GlobalWheat2020 # dataset root dir
12 | train: # train images (relative to 'path') 3422 images
13 | - images/arvalis_1
14 | - images/arvalis_2
15 | - images/arvalis_3
16 | - images/ethz_1
17 | - images/rres_1
18 | - images/inrae_1
19 | - images/usask_1
20 | val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
21 | - images/ethz_1
22 | test: # test images (optional) 1276 images
23 | - images/utokyo_1
24 | - images/utokyo_2
25 | - images/nau_1
26 | - images/uq_1
27 |
28 | # Classes
29 | nc: 1 # number of classes
30 | names: ['wheat_head'] # class names
31 |
32 |
33 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
34 | download: |
35 | from utils.general import download, Path
36 |
37 | # Download
38 | dir = Path(yaml['path']) # dataset root dir
39 | urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
40 | 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
41 | download(urls, dir=dir)
42 |
43 | # Make Directories
44 | for p in 'annotations', 'images', 'labels':
45 | (dir / p).mkdir(parents=True, exist_ok=True)
46 |
47 | # Move
48 | for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
49 | 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
50 | (dir / p).rename(dir / 'images' / p) # move to /images
51 | f = (dir / p).with_suffix('.json') # json file
52 | if f.exists():
53 | f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
54 |
--------------------------------------------------------------------------------
/data/Objects365.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Objects365 dataset https://www.objects365.org/
3 | # Example usage: python train.py --data Objects365.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── Objects365 ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/Objects365 # dataset root dir
12 | train: images/train # train images (relative to 'path') 1742289 images
13 | val: images/val # val images (relative to 'path') 5570 images
14 | test: # test images (optional)
15 |
16 | # Classes
17 | nc: 365 # number of classes
18 | names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
19 | 'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
20 | 'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
21 | 'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
22 | 'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
23 | 'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
24 | 'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
25 | 'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
26 | 'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
27 | 'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
28 | 'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
29 | 'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
30 | 'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
31 | 'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
32 | 'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
33 | 'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
34 | 'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
35 | 'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
36 | 'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
37 | 'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
38 | 'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
39 | 'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
40 | 'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
41 | 'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
42 | 'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
43 | 'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
44 | 'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
45 | 'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
46 | 'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
47 | 'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
48 | 'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
49 | 'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
50 | 'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
51 | 'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
52 | 'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
53 | 'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
54 | 'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
55 | 'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
56 | 'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
57 | 'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
58 | 'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis']
59 |
60 |
61 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
62 | download: |
63 | from pycocotools.coco import COCO
64 | from tqdm import tqdm
65 |
66 | from utils.general import download, Path
67 |
68 | # Make Directories
69 | dir = Path(yaml['path']) # dataset root dir
70 | for p in 'images', 'labels':
71 | (dir / p).mkdir(parents=True, exist_ok=True)
72 | for q in 'train', 'val':
73 | (dir / p / q).mkdir(parents=True, exist_ok=True)
74 |
75 | # Download
76 | url = "https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/"
77 | download([url + 'zhiyuan_objv2_train.tar.gz'], dir=dir, delete=False) # annotations json
78 | download([url + f for f in [f'patch{i}.tar.gz' for i in range(51)]], dir=dir / 'images' / 'train',
79 | curl=True, delete=False, threads=8)
80 |
81 | # Move
82 | train = dir / 'images' / 'train'
83 | for f in tqdm(train.rglob('*.jpg'), desc=f'Moving images'):
84 | f.rename(train / f.name) # move to /images/train
85 |
86 | # Labels
87 | coco = COCO(dir / 'zhiyuan_objv2_train.json')
88 | names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
89 | for cid, cat in enumerate(names):
90 | catIds = coco.getCatIds(catNms=[cat])
91 | imgIds = coco.getImgIds(catIds=catIds)
92 | for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
93 | width, height = im["width"], im["height"]
94 | path = Path(im["file_name"]) # image filename
95 | try:
96 | with open(dir / 'labels' / 'train' / path.with_suffix('.txt').name, 'a') as file:
97 | annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
98 | for a in coco.loadAnns(annIds):
99 | x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
100 | x, y = x + w / 2, y + h / 2 # xy to center
101 | file.write(f"{cid} {x / width:.5f} {y / height:.5f} {w / width:.5f} {h / height:.5f}\n")
102 |
103 | except Exception as e:
104 | print(e)
105 |
--------------------------------------------------------------------------------
/data/SKU-110K.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19
3 | # Example usage: python train.py --data SKU-110K.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── SKU-110K ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/SKU-110K # dataset root dir
12 | train: train.txt # train images (relative to 'path') 8219 images
13 | val: val.txt # val images (relative to 'path') 588 images
14 | test: test.txt # test images (optional) 2936 images
15 |
16 | # Classes
17 | nc: 1 # number of classes
18 | names: ['object'] # class names
19 |
20 |
21 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
22 | download: |
23 | import shutil
24 | from tqdm import tqdm
25 | from utils.general import np, pd, Path, download, xyxy2xywh
26 |
27 | # Download
28 | dir = Path(yaml['path']) # dataset root dir
29 | parent = Path(dir.parent) # download dir
30 | urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
31 | download(urls, dir=parent, delete=False)
32 |
33 | # Rename directories
34 | if dir.exists():
35 | shutil.rmtree(dir)
36 | (parent / 'SKU110K_fixed').rename(dir) # rename dir
37 | (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
38 |
39 | # Convert labels
40 | names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
41 | for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
42 | x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
43 | images, unique_images = x[:, 0], np.unique(x[:, 0])
44 | with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
45 | f.writelines(f'./images/{s}\n' for s in unique_images)
46 | for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
47 | cls = 0 # single-class dataset
48 | with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
49 | for r in x[images == im]:
50 | w, h = r[6], r[7] # image width, height
51 | xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
52 | f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
53 |
--------------------------------------------------------------------------------
/data/VOC.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC
3 | # Example usage: python train.py --data VOC.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── VOC ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/VOC
12 | train: # train images (relative to 'path') 16551 images
13 | - images/train2012
14 | - images/train2007
15 | - images/val2012
16 | - images/val2007
17 | val: # val images (relative to 'path') 4952 images
18 | - images/test2007
19 | test: # test images (optional)
20 | - images/test2007
21 |
22 | # Classes
23 | nc: 20 # number of classes
24 | names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
25 | 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
26 |
27 |
28 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
29 | download: |
30 | import xml.etree.ElementTree as ET
31 |
32 | from tqdm import tqdm
33 | from utils.general import download, Path
34 |
35 |
36 | def convert_label(path, lb_path, year, image_id):
37 | def convert_box(size, box):
38 | dw, dh = 1. / size[0], 1. / size[1]
39 | x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
40 | return x * dw, y * dh, w * dw, h * dh
41 |
42 | in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
43 | out_file = open(lb_path, 'w')
44 | tree = ET.parse(in_file)
45 | root = tree.getroot()
46 | size = root.find('size')
47 | w = int(size.find('width').text)
48 | h = int(size.find('height').text)
49 |
50 | for obj in root.iter('object'):
51 | cls = obj.find('name').text
52 | if cls in yaml['names'] and not int(obj.find('difficult').text) == 1:
53 | xmlbox = obj.find('bndbox')
54 | bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
55 | cls_id = yaml['names'].index(cls) # class id
56 | out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
57 |
58 |
59 | # Download
60 | dir = Path(yaml['path']) # dataset root dir
61 | url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
62 | urls = [url + 'VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
63 | url + 'VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
64 | url + 'VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
65 | download(urls, dir=dir / 'images', delete=False)
66 |
67 | # Convert
68 | path = dir / f'images/VOCdevkit'
69 | for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
70 | imgs_path = dir / 'images' / f'{image_set}{year}'
71 | lbs_path = dir / 'labels' / f'{image_set}{year}'
72 | imgs_path.mkdir(exist_ok=True, parents=True)
73 | lbs_path.mkdir(exist_ok=True, parents=True)
74 |
75 | image_ids = open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt').read().strip().split()
76 | for id in tqdm(image_ids, desc=f'{image_set}{year}'):
77 | f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
78 | lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
79 | f.rename(imgs_path / f.name) # move image
80 | convert_label(path, lb_path, year, id) # convert labels to YOLO format
81 |
--------------------------------------------------------------------------------
/data/VisDrone.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset
3 | # Example usage: python train.py --data VisDrone.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── VisDrone ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/VisDrone # dataset root dir
12 | train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
13 | val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
14 | test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
15 |
16 | # Classes
17 | nc: 10 # number of classes
18 | names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
19 |
20 |
21 | # Download script/URL (optional) ---------------------------------------------------------------------------------------
22 | download: |
23 | from utils.general import download, os, Path
24 |
25 | def visdrone2yolo(dir):
26 | from PIL import Image
27 | from tqdm import tqdm
28 |
29 | def convert_box(size, box):
30 | # Convert VisDrone box to YOLO xywh box
31 | dw = 1. / size[0]
32 | dh = 1. / size[1]
33 | return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
34 |
35 | (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
36 | pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
37 | for f in pbar:
38 | img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
39 | lines = []
40 | with open(f, 'r') as file: # read annotation.txt
41 | for row in [x.split(',') for x in file.read().strip().splitlines()]:
42 | if row[4] == '0': # VisDrone 'ignored regions' class 0
43 | continue
44 | cls = int(row[5]) - 1
45 | box = convert_box(img_size, tuple(map(int, row[:4])))
46 | lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
47 | with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
48 | fl.writelines(lines) # write label.txt
49 |
50 |
51 | # Download
52 | dir = Path(yaml['path']) # dataset root dir
53 | urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
54 | 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
55 | 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
56 | 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
57 | download(urls, dir=dir)
58 |
59 | # Convert
60 | for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
61 | visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
62 |
--------------------------------------------------------------------------------
/data/coco.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # COCO 2017 dataset http://cocodataset.org
3 | # Example usage: python train.py --data coco.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── coco ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/coco # dataset root dir
12 | train: train2017.txt # train images (relative to 'path') 118287 images
13 | val: val2017.txt # train images (relative to 'path') 5000 images
14 | test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
15 |
16 | # Classes
17 | nc: 80 # number of classes
18 | names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
19 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
20 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
21 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
22 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
23 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
24 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
25 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
26 | 'hair drier', 'toothbrush'] # class names
27 |
28 |
29 | # Download script/URL (optional)
30 | download: |
31 | from utils.general import download, Path
32 |
33 | # Download labels
34 | segments = False # segment or box labels
35 | dir = Path(yaml['path']) # dataset root dir
36 | url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
37 | urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
38 | download(urls, dir=dir.parent)
39 |
40 | # Download data
41 | urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
42 | 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
43 | 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
44 | download(urls, dir=dir / 'images', threads=3)
45 |
--------------------------------------------------------------------------------
/data/coco128.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
3 | # Example usage: python train.py --data coco128.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── coco128 ← downloads here
8 |
9 |
10 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11 | path: ../datasets/coco128 # dataset root dir
12 | train: images/train2017 # train images (relative to 'path') 128 images
13 | val: images/train2017 # val images (relative to 'path') 128 images
14 | test: # test images (optional)
15 |
16 | # Classes
17 | nc: 80 # number of classes
18 | names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
19 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
20 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
21 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
22 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
23 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
24 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
25 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
26 | 'hair drier', 'toothbrush'] # class names
27 |
28 |
29 | # Download script/URL (optional)
30 | download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
--------------------------------------------------------------------------------
/data/hyps/hyp.finetune.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Hyperparameters for VOC finetuning
3 | # python train.py --batch 64 --weights yolov5m.pt --data VOC.yaml --img 512 --epochs 50
4 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5 |
6 | # Hyperparameter Evolution Results
7 | # Generations: 306
8 | # P R mAP.5 mAP.5:.95 box obj cls
9 | # Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146
10 |
11 | lr0: 0.0032
12 | lrf: 0.12
13 | momentum: 0.843
14 | weight_decay: 0.00036
15 | warmup_epochs: 2.0
16 | warmup_momentum: 0.5
17 | warmup_bias_lr: 0.05
18 | box: 0.0296
19 | cls: 0.243
20 | cls_pw: 0.631
21 | obj: 0.301
22 | obj_pw: 0.911
23 | iou_t: 0.2
24 | anchor_t: 2.91
25 | # anchors: 3.63
26 | fl_gamma: 0.0
27 | hsv_h: 0.0138
28 | hsv_s: 0.664
29 | hsv_v: 0.464
30 | degrees: 0.373
31 | translate: 0.245
32 | scale: 0.898
33 | shear: 0.602
34 | perspective: 0.0
35 | flipud: 0.00856
36 | fliplr: 0.5
37 | mosaic: 1.0
38 | mixup: 0.243
39 | copy_paste: 0.0
40 |
--------------------------------------------------------------------------------
/data/hyps/hyp.finetune_objects365.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | lr0: 0.00258
4 | lrf: 0.17
5 | momentum: 0.779
6 | weight_decay: 0.00058
7 | warmup_epochs: 1.33
8 | warmup_momentum: 0.86
9 | warmup_bias_lr: 0.0711
10 | box: 0.0539
11 | cls: 0.299
12 | cls_pw: 0.825
13 | obj: 0.632
14 | obj_pw: 1.0
15 | iou_t: 0.2
16 | anchor_t: 3.44
17 | anchors: 3.2
18 | fl_gamma: 0.0
19 | hsv_h: 0.0188
20 | hsv_s: 0.704
21 | hsv_v: 0.36
22 | degrees: 0.0
23 | translate: 0.0902
24 | scale: 0.491
25 | shear: 0.0
26 | perspective: 0.0
27 | flipud: 0.0
28 | fliplr: 0.5
29 | mosaic: 1.0
30 | mixup: 0.0
31 | copy_paste: 0.0
32 |
--------------------------------------------------------------------------------
/data/hyps/hyp.key.yaml:
--------------------------------------------------------------------------------
1 | # Hyperparameters for COCO training from scratch
2 | # python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
3 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
4 |
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.5 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 1.0 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | iou_t: 0.20 # IoU training threshold
19 | anchor_t: 4.0 # anchor-multiple threshold
20 | # anchors: 3 # anchors per output layer (0 to ignore)
21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25 | degrees: 0.0 # image rotation (+/- deg)
26 | translate: 0.1 # image translation (+/- fraction)
27 | scale: 0.5 # image scale (+/- gain)
28 | shear: 0.0 # image shear (+/- deg)
29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30 | flipud: 0.0 # image flip up-down (probability)
31 | fliplr: 0.5 # image flip left-right (probability)
32 | mosaic: 1.0 # image mosaic (probability)
33 | mixup: 0.0 # image mixup (probability)
34 |
35 | landmark: 0.05
36 |
--------------------------------------------------------------------------------
/data/hyps/hyp.scratch-high.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Hyperparameters for high-augmentation COCO training from scratch
3 | # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
4 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.3 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 0.7 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | iou_t: 0.20 # IoU training threshold
19 | anchor_t: 4.0 # anchor-multiple threshold
20 | # anchors: 3 # anchors per output layer (0 to ignore)
21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25 | degrees: 0.0 # image rotation (+/- deg)
26 | translate: 0.1 # image translation (+/- fraction)
27 | scale: 0.9 # image scale (+/- gain)
28 | shear: 0.0 # image shear (+/- deg)
29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30 | flipud: 0.0 # image flip up-down (probability)
31 | fliplr: 0.5 # image flip left-right (probability)
32 | mosaic: 1.0 # image mosaic (probability)
33 | mixup: 0.1 # image mixup (probability)
34 | copy_paste: 0.1 # segment copy-paste (probability)
--------------------------------------------------------------------------------
/data/hyps/hyp.scratch-low.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Hyperparameters for low-augmentation COCO training from scratch
3 | # python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
4 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.5 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 1.0 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | iou_t: 0.20 # IoU training threshold
19 | anchor_t: 4.0 # anchor-multiple threshold
20 | # anchors: 3 # anchors per output layer (0 to ignore)
21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25 | degrees: 0.0 # image rotation (+/- deg)
26 | translate: 0.1 # image translation (+/- fraction)
27 | scale: 0.5 # image scale (+/- gain)
28 | shear: 0.0 # image shear (+/- deg)
29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30 | flipud: 0.0 # image flip up-down (probability)
31 | fliplr: 0.5 # image flip left-right (probability)
32 | mosaic: 1.0 # image mosaic (probability)
33 | mixup: 0.0 # image mixup (probability)
34 | copy_paste: 0.0 # segment copy-paste (probability)
--------------------------------------------------------------------------------
/data/hyps/hyp.scratch.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Hyperparameters for COCO training from scratch
3 | # python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
4 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.5 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 1.0 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | iou_t: 0.20 # IoU training threshold
19 | anchor_t: 4.0 # anchor-multiple threshold
20 | # anchors: 3 # anchors per output layer (0 to ignore)
21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25 | degrees: 0.0 # image rotation (+/- deg)
26 | translate: 0.1 # image translation (+/- fraction)
27 | scale: 0.5 # image scale (+/- gain)
28 | shear: 0.0 # image shear (+/- deg)
29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30 | flipud: 0.0 # image flip up-down (probability)
31 | fliplr: 0.5 # image flip left-right (probability)
32 | mosaic: 1.0 # image mosaic (probability)
33 | mixup: 0.0 # image mixup (probability)
34 | copy_paste: 0.0 # segment copy-paste (probability)
35 |
--------------------------------------------------------------------------------
/data/hyps/hyp.scratch.yolox.yaml:
--------------------------------------------------------------------------------
1 | # Hyperparameters for COCO training from scratch
2 | # python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
3 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
4 |
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain, not used
14 | cls: 0.5 # cls loss gain, not used
15 | cls_pw: 1.0 # cls BCELoss positive_weight, not used
16 | obj: 1.0 # obj loss gain (scale with pixels), not used
17 | obj_pw: 1.0 # obj BCELoss positive_weight, not used
18 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
19 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
20 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
21 | degrees: 0.0 # image rotation (+/- deg)
22 | translate: 0.1 # image translation (+/- fraction)
23 | scale: 0.5 # image scale (+/- gain)
24 | shear: 0.0 # image shear (+/- deg)
25 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
26 | flipud: 0.0 # image flip up-down (probability)
27 | fliplr: 0.5 # image flip left-right (probability)
28 | mosaic: 1.0 # image mosaic (probability)
29 | mixup: 0.0 # image mixup (probability)
30 | mixup_mode: "yolov5" # image mixup mode: "yolox" is yolox mixup, else yolov5 mixup
31 | mixup_scale: [0.5, 1.5] # image mixup scale, used by yolox mixup mode
32 | mixup_ratio: 0.5 # image mixup ratio
33 | copy_paste: 0.0 # segment copy-paste (probability)
34 | no_aug_epochs: 15
--------------------------------------------------------------------------------
/data/hyps/palte_head.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Hyperparameters for COCO training from scratch
3 | # python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
4 | # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5 |
6 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7 | lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
8 | momentum: 0.937 # SGD momentum/Adam beta1
9 | weight_decay: 0.0005 # optimizer weight decay 5e-4
10 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
11 | warmup_momentum: 0.8 # warmup initial momentum
12 | warmup_bias_lr: 0.1 # warmup initial bias lr
13 | box: 0.05 # box loss gain
14 | cls: 0.5 # cls loss gain
15 | cls_pw: 1.0 # cls BCELoss positive_weight
16 | obj: 1.0 # obj loss gain (scale with pixels)
17 | obj_pw: 1.0 # obj BCELoss positive_weight
18 | iou_t: 0.20 # IoU training threshold
19 | anchor_t: 4.0 # anchor-multiple threshold
20 | # anchors: 3 # anchors per output layer (0 to ignore)
21 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25 | degrees: 0.0 # image rotation (+/- deg)
26 | translate: 0.1 # image translation (+/- fraction)
27 | scale: 0.5 # image scale (+/- gain)
28 | shear: 0.0 # image shear (+/- deg)
29 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30 | flipud: 0.0 # image flip up-down (probability)
31 | fliplr: 0.5 # image flip left-right (probability)
32 | mosaic: 1.0 # image mosaic (probability)
33 | mixup: 0.0 # image mixup (probability)
34 | copy_paste: 0.0 # segment copy-paste (probability)
35 |
--------------------------------------------------------------------------------
/data/images/bus.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/data/images/bus.jpg
--------------------------------------------------------------------------------
/data/images/zidane.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/data/images/zidane.jpg
--------------------------------------------------------------------------------
/data/mydata.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC
3 | # Example usage: python train.py --data VOC.yaml
4 | # parent
5 | # ├── yolov5
6 | # └── datasets
7 | # └── VOC ← downloads here
8 |
9 | headnum : 3
10 |
11 | # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12 | path: ../data/det
13 | train1: # train images (relative to 'path') 16551 images
14 | - train1/images
15 | val1: # val images (relative to 'path') 4952 images
16 | - valtest/images
17 | test1: # test images (optional)
18 | - valtest/images
19 |
20 | # Classes
21 | nc1: 2 # number of classes
22 | names1: ['carplate', 'flag'] # class names
23 |
24 | #
25 | train2: # train images (relative to 'path') 16551 images
26 | - train2/images
27 | val2: # val images (relative to 'path') 4952 images
28 | - valtest/images
29 | test2: # test images (optional)
30 | - valtest/images
31 | # Classes
32 | nc2: 3 # number of classes
33 | names2: ['carplate1', 'flag1', 'flag12'] # class names #,'carplate1', 'flag1'
34 |
35 |
36 | train3: # train images (relative to 'path') 16551 images
37 | - train3/images
38 | val3: # val images (relative to 'path') 4952 images
39 | - valtest/images
40 | test3: # test images (optional)
41 | - valtest/images
42 | # Classes
43 | nc3: 4 # number of classes
44 | names3: ['carplate2', 'flag2','carplate22', 'flag22'] # class names
45 |
46 |
--------------------------------------------------------------------------------
/data/scripts/download_weights.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
3 | # Download latest models from https://github.com/ultralytics/yolov5/releases
4 | # Example usage: bash path/to/download_weights.sh
5 | # parent
6 | # └── yolov5
7 | # ├── yolov5s.pt ← downloads here
8 | # ├── yolov5m.pt
9 | # └── ...
10 |
11 | python - <= cls >= 0, f'incorrect class index {cls}'
74 |
75 | # Write YOLO label
76 | if id not in shapes:
77 | shapes[id] = Image.open(file).size
78 | box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
79 | with open((labels / id).with_suffix('.txt'), 'a') as f:
80 | f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
81 | except Exception as e:
82 | print(f'WARNING: skipping one label for {file}: {e}')
83 |
84 |
85 | # Download manually from https://challenge.xviewdataset.org
86 | dir = Path(yaml['path']) # dataset root dir
87 | # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
88 | # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
89 | # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
90 | # download(urls, dir=dir, delete=False)
91 |
92 | # Convert labels
93 | convert_labels(dir / 'xView_train.geojson')
94 |
95 | # Move images
96 | images = Path(dir / 'images')
97 | images.mkdir(parents=True, exist_ok=True)
98 | Path(dir / 'train_images').rename(dir / 'images' / 'train')
99 | Path(dir / 'val_images').rename(dir / 'images' / 'val')
100 |
101 | # Split
102 | autosplit(dir / 'images' / 'train')
103 |
--------------------------------------------------------------------------------
/data/yolo_data_key.yaml:
--------------------------------------------------------------------------------
1 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
2 | #train: /home/xialuxi/work/dukto/data/CCPD2020/CCPD2020/images/train/ # 16551 images
3 | #val: /home/xialuxi/work/dukto/data/CCPD2020/CCPD2020/images/val/ # 4952 images
4 |
5 |
6 | train: ../ADAS/1964/train/images/ # 450 images
7 |
8 | val: ../ADAS/1964/valtest/images/ # 50 images
9 |
10 | # number of classes
11 | nc: 10
12 |
13 | # class names
14 | names: ['people','cyclist','Hcar','Htruck','Hbus','Hother','Bcar','Btruck','Bbus','Bother'] # class names
15 |
--------------------------------------------------------------------------------
/detect_single.py:
--------------------------------------------------------------------------------
1 | # from utils.datasets import *
2 | # from utils.utils import *
3 | import torch
4 | import cv2
5 | import numpy as np
6 | import time
7 | import random
8 | import glob
9 | import os
10 |
11 | from utils.augmentations import letterbox
12 | from utils.general import non_max_suppression,xyxy2xywh,scale_coords
13 |
14 | cuda = True
15 | device = torch.device('cuda:0' if cuda else 'cpu')
16 |
17 | def time_synchronized():
18 | torch.cuda.synchronize() if torch.cuda.is_available() else None
19 | return time.time()
20 |
21 |
22 | def get_model(weights):
23 | #fuse conv_bn and repvgg
24 | # model = torch.load(weights, map_location=device)['model'].float().fuse_model().eval()
25 | #only fuse conv_bn
26 | model = torch.load(weights, map_location=device)['model'].float().fuse().eval()
27 | return model
28 |
29 | def process_img(orgimg):
30 | import copy
31 | image = copy.deepcopy(orgimg)
32 | img = letterbox(image, new_shape=(416,416), auto=False)[0]
33 | # Convert
34 | img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
35 | img = np.ascontiguousarray(img)
36 | img = torch.from_numpy(img).to(device)
37 | img = img.float() # uint8 to fp16/32
38 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
39 | if img.ndimension() == 3:
40 | img = img.unsqueeze(0)
41 | return img
42 |
43 | def show_results(img, xywh, class_num, conf=0.4):
44 | h,w,c = img.shape
45 | tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
46 | x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
47 | y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
48 | x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
49 | y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
50 | color = (0, 0, 255)
51 | cv2.rectangle(img, (x1,y1), (x2, y2), color, thickness=tl+2, lineType=cv2.LINE_AA)
52 | label = str(int(class_num)) + ' : ' + str(round(float(conf), 4))
53 | cv2.putText(img, label, (x1, y1 - 2), 0, tl , [225, 255, 255], thickness=tl+2, lineType=cv2.LINE_AA)
54 | return img
55 |
56 |
57 | def detect(model, image, conf_thres, iou_thres,headi = 5):
58 |
59 | #img
60 | #h, w, c = image.shape
61 | #h_4, w_4 = h //4, w // 4
62 | #image = image[:, 240:1680, :]
63 | #t_img = np.ones((1440, 1920, 3), dtype=np.uint8)
64 | #t_img[:, :, :] = 114
65 | #t_img[180:1260, :, :] = image
66 | #image = t_img
67 |
68 | img = process_img(image)
69 | #print(img.shape)
70 | pred = model(img,headi = headi)[0]
71 | pred = non_max_suppression(pred, conf_thres, iou_thres)
72 | for i, det in enumerate(pred): # detections per image
73 | gn = torch.tensor(image.shape)[[1, 0, 1, 0]] # normalization gain whwh
74 | if det is not None and len(det):
75 | # Rescale boxes from img_size to im0 size
76 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], image.shape).round()
77 | # Write results
78 | for *xyxy, conf, cls in det:
79 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
80 | image = show_results(image, xywh, cls, conf)
81 | return image
82 |
83 |
84 |
85 |
86 | def detect_video(model, path, save_path = None):
87 | cv2.namedWindow("video",cv2.WINDOW_NORMAL)
88 | conf_thres, iou_thres = 0.4, 0.4
89 | capture = cv2.VideoCapture(path)
90 | fps = capture.get(cv2.CAP_PROP_FPS)
91 | size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
92 | #size = (1920, 1440)
93 | print('video fram size: ', size)
94 | save = False
95 | if save_path is not None:
96 | save = True
97 | print('save video to ', save_path)
98 | videoWriter = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'MJPG'), fps, size)
99 |
100 |
101 | if capture.isOpened():
102 | while True:
103 | ret, frame = capture.read()
104 | if ret == True:
105 | frame = detect(model, frame, conf_thres, iou_thres)
106 | cv2.imshow('video', frame)
107 | if save:
108 | videoWriter.write(frame) # 写视频帧
109 | else:
110 | break
111 | if cv2.waitKey(1) == ord('q'):
112 | break
113 | cv2.destroyAllWindows()
114 |
115 |
116 | def detect_image(model, path,haedi = 5, save_path = None):
117 | conf_thres, iou_thres = 0.4, 0.4
118 | cv2.namedWindow("image",cv2.WINDOW_NORMAL)
119 | frame = cv2.imread(path)
120 | frame = detect(model, frame, conf_thres, iou_thres, haedi)
121 | if save_path is not None:
122 | cv2.imwrite(save_path, frame)
123 | cv2.imshow('image', frame)
124 | if cv2.waitKey(0) == ord('q'):
125 | cv2.destroyAllWindows()
126 |
127 |
128 | if __name__ == '__main__':
129 |
130 | """
131 | headi = 0 老挝车牌
132 | headi = 1 蒙古
133 | headi = 2 缅甸车牌
134 | headi = 3 中东车牌
135 | headi = 4 朝鲜 ,越南,俄罗斯 巴基斯坦,哈萨克斯坦,非洲(科特迪瓦,尼日利亚)
136 | headi = 5 大陆车牌
137 |
138 | """
139 |
140 | #detect_test()
141 | weights = './runs/train/exp48/weights/last.pt'
142 | model = get_model(weights)
143 |
144 | video_path = '../sample/20211028_20211028180130_20211028181132_180131.mp4'
145 | save_path = '../sample/save.mp4'
146 | #detect_video(model, video_path, save_path)
147 |
148 | image_path = './43eb0e68965711513412c4b051051770.JPG'
149 | detect_image(model, image_path,haedi =2)
150 |
151 |
152 |
--------------------------------------------------------------------------------
/hubconf.py:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | """
3 | PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
4 |
5 | Usage:
6 | import torch
7 | model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
8 | """
9 |
10 | import torch
11 |
12 |
13 | def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
14 | """Creates a specified YOLOv5 model
15 |
16 | Arguments:
17 | name (str): name of model, i.e. 'yolov5s'
18 | pretrained (bool): load pretrained weights into the model
19 | channels (int): number of input channels
20 | classes (int): number of model classes
21 | autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
22 | verbose (bool): print all information to screen
23 | device (str, torch.device, None): device to use for model parameters
24 |
25 | Returns:
26 | YOLOv5 pytorch model
27 | """
28 | from pathlib import Path
29 |
30 | from models.yolo import Model
31 | from models.experimental import attempt_load
32 | from utils.general import check_requirements, set_logging
33 | from utils.downloads import attempt_download
34 | from utils.torch_utils import select_device
35 |
36 | file = Path(__file__).resolve()
37 | check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
38 | set_logging(verbose=verbose)
39 |
40 | save_dir = Path('') if str(name).endswith('.pt') else file.parent
41 | path = (save_dir / name).with_suffix('.pt') # checkpoint path
42 | try:
43 | device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
44 |
45 | if pretrained and channels == 3 and classes == 80:
46 | model = attempt_load(path, map_location=device) # download/load FP32 model
47 | else:
48 | cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path
49 | model = Model(cfg, channels, classes) # create model
50 | if pretrained:
51 | ckpt = torch.load(attempt_download(path), map_location=device) # load
52 | msd = model.state_dict() # model state_dict
53 | csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
54 | csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
55 | model.load_state_dict(csd, strict=False) # load
56 | if len(ckpt['model'].names) == classes:
57 | model.names = ckpt['model'].names # set class names attribute
58 | if autoshape:
59 | model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
60 | return model.to(device)
61 |
62 | except Exception as e:
63 | help_url = 'https://github.com/ultralytics/yolov5/issues/36'
64 | s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
65 | raise Exception(s) from e
66 |
67 |
68 | def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
69 | # YOLOv5 custom or local model
70 | return _create(path, autoshape=autoshape, verbose=verbose, device=device)
71 |
72 |
73 | def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
74 | # YOLOv5-nano model https://github.com/ultralytics/yolov5
75 | return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
76 |
77 |
78 | def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
79 | # YOLOv5-small model https://github.com/ultralytics/yolov5
80 | return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
81 |
82 |
83 | def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
84 | # YOLOv5-medium model https://github.com/ultralytics/yolov5
85 | return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
86 |
87 |
88 | def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
89 | # YOLOv5-large model https://github.com/ultralytics/yolov5
90 | return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
91 |
92 |
93 | def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
94 | # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
95 | return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
96 |
97 |
98 | def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
99 | # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
100 | return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
101 |
102 |
103 | def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
104 | # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
105 | return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
106 |
107 |
108 | def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
109 | # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
110 | return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
111 |
112 |
113 | def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
114 | # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
115 | return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
116 |
117 |
118 | def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
119 | # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
120 | return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
121 |
122 |
123 | if __name__ == '__main__':
124 | model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
125 | # model = custom(path='path/to/model.pt') # custom
126 |
127 | # Verify inference
128 | import cv2
129 | import numpy as np
130 | from PIL import Image
131 | from pathlib import Path
132 |
133 | imgs = ['data/images/zidane.jpg', # filename
134 | Path('data/images/zidane.jpg'), # Path
135 | 'https://ultralytics.com/images/zidane.jpg', # URI
136 | cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
137 | Image.open('data/images/bus.jpg'), # PIL
138 | np.zeros((320, 640, 3))] # numpy
139 |
140 | results = model(imgs) # batched inference
141 | results.print()
142 | results.save()
143 |
--------------------------------------------------------------------------------
/models/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__init__.py
--------------------------------------------------------------------------------
/models/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/models/__pycache__/common.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/common.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/common.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/common.cpython-39.pyc
--------------------------------------------------------------------------------
/models/__pycache__/experimental.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/experimental.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/experimental.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/experimental.cpython-39.pyc
--------------------------------------------------------------------------------
/models/__pycache__/yolo.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/yolo.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/yolo.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/yolo.cpython-39.pyc
--------------------------------------------------------------------------------
/models/__pycache__/yolo_key.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/yolo_key.cpython-39.pyc
--------------------------------------------------------------------------------
/models/__pycache__/yolo_plate.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/yolo_plate.cpython-39.pyc
--------------------------------------------------------------------------------
/models/__pycache__/yolox.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/yolox.cpython-38.pyc
--------------------------------------------------------------------------------
/models/__pycache__/yolox.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/models/__pycache__/yolox.cpython-39.pyc
--------------------------------------------------------------------------------
/models/experimental.py:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | """
3 | Experimental modules
4 | """
5 |
6 | import numpy as np
7 | import torch
8 | import torch.nn as nn
9 |
10 | from models.common import Conv
11 | from utils.downloads import attempt_download
12 |
13 |
14 | class CrossConv(nn.Module):
15 | # Cross Convolution Downsample
16 | def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
17 | # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
18 | super().__init__()
19 | c_ = int(c2 * e) # hidden channels
20 | self.cv1 = Conv(c1, c_, (1, k), (1, s))
21 | self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
22 | self.add = shortcut and c1 == c2
23 |
24 | def forward(self, x):
25 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
26 |
27 |
28 | class Sum(nn.Module):
29 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
30 | def __init__(self, n, weight=False): # n: number of inputs
31 | super().__init__()
32 | self.weight = weight # apply weights boolean
33 | self.iter = range(n - 1) # iter object
34 | if weight:
35 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
36 |
37 | def forward(self, x):
38 | y = x[0] # no weight
39 | if self.weight:
40 | w = torch.sigmoid(self.w) * 2
41 | for i in self.iter:
42 | y = y + x[i + 1] * w[i]
43 | else:
44 | for i in self.iter:
45 | y = y + x[i + 1]
46 | return y
47 |
48 |
49 | class MixConv2d(nn.Module):
50 | # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
51 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
52 | super().__init__()
53 | groups = len(k)
54 | if equal_ch: # equal c_ per group
55 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
56 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
57 | else: # equal weight.numel() per group
58 | b = [c2] + [0] * groups
59 | a = np.eye(groups + 1, groups, k=-1)
60 | a -= np.roll(a, 1, axis=1)
61 | a *= np.array(k) ** 2
62 | a[0] = 1
63 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
64 |
65 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
66 | self.bn = nn.BatchNorm2d(c2)
67 | self.act = nn.LeakyReLU(0.1, inplace=True)
68 |
69 | def forward(self, x):
70 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
71 |
72 |
73 | class Ensemble(nn.ModuleList):
74 | # Ensemble of models
75 | def __init__(self):
76 | super().__init__()
77 |
78 | def forward(self, x, augment=False, profile=False, visualize=False):
79 | y = []
80 | for module in self:
81 | y.append(module(x, augment, profile, visualize)[0])
82 | # y = torch.stack(y).max(0)[0] # max ensemble
83 | # y = torch.stack(y).mean(0) # mean ensemble
84 | y = torch.cat(y, 1) # nms ensemble
85 | return y, None # inference, train output
86 |
87 |
88 | def attempt_load(weights, map_location=None, inplace=True, fuse=True):
89 | from models.yolo import Detect, Model
90 |
91 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
92 | model = Ensemble()
93 | for w in weights if isinstance(weights, list) else [weights]:
94 | ckpt = torch.load(attempt_download(w), map_location=map_location) # load
95 | if fuse:
96 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
97 | else:
98 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().eval()) # without layer fuse
99 |
100 |
101 | # Compatibility updates
102 | for m in model.modules():
103 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
104 | m.inplace = inplace # pytorch 1.7.0 compatibility
105 | if type(m) is Detect:
106 | if not isinstance(m.anchor_grid, list): # new Detect Layer compatibility
107 | delattr(m, 'anchor_grid')
108 | setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
109 | elif type(m) is Conv:
110 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
111 |
112 | if len(model) == 1:
113 | return model[-1] # return model
114 | else:
115 | print(f'Ensemble created with {weights}\n')
116 | for k in ['names']:
117 | setattr(model, k, getattr(model[-1], k))
118 | model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
119 | return model # return ensemble
120 |
--------------------------------------------------------------------------------
/models/hub/anchors.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | # Default anchors for COCO data
3 |
4 |
5 | # P5 -------------------------------------------------------------------------------------------------------------------
6 | # P5-640:
7 | anchors_p5_640:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 |
13 | # P6 -------------------------------------------------------------------------------------------------------------------
14 | # P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
15 | anchors_p6_640:
16 | - [9,11, 21,19, 17,41] # P3/8
17 | - [43,32, 39,70, 86,64] # P4/16
18 | - [65,131, 134,130, 120,265] # P5/32
19 | - [282,180, 247,354, 512,387] # P6/64
20 |
21 | # P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
22 | anchors_p6_1280:
23 | - [19,27, 44,40, 38,94] # P3/8
24 | - [96,68, 86,152, 180,137] # P4/16
25 | - [140,301, 303,264, 238,542] # P5/32
26 | - [436,615, 739,380, 925,792] # P6/64
27 |
28 | # P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
29 | anchors_p6_1920:
30 | - [28,41, 67,59, 57,141] # P3/8
31 | - [144,103, 129,227, 270,205] # P4/16
32 | - [209,452, 455,396, 358,812] # P5/32
33 | - [653,922, 1109,570, 1387,1187] # P6/64
34 |
35 |
36 | # P7 -------------------------------------------------------------------------------------------------------------------
37 | # P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
38 | anchors_p7_640:
39 | - [11,11, 13,30, 29,20] # P3/8
40 | - [30,46, 61,38, 39,92] # P4/16
41 | - [78,80, 146,66, 79,163] # P5/32
42 | - [149,150, 321,143, 157,303] # P6/64
43 | - [257,402, 359,290, 524,372] # P7/128
44 |
45 | # P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
46 | anchors_p7_1280:
47 | - [19,22, 54,36, 32,77] # P3/8
48 | - [70,83, 138,71, 75,173] # P4/16
49 | - [165,159, 148,334, 375,151] # P5/32
50 | - [334,317, 251,626, 499,474] # P6/64
51 | - [750,326, 534,814, 1079,818] # P7/128
52 |
53 | # P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
54 | anchors_p7_1920:
55 | - [29,34, 81,55, 47,115] # P3/8
56 | - [105,124, 207,107, 113,259] # P4/16
57 | - [247,238, 222,500, 563,227] # P5/32
58 | - [501,476, 376,939, 749,711] # P6/64
59 | - [1126,489, 801,1222, 1618,1227] # P7/128
60 |
--------------------------------------------------------------------------------
/models/hub/yolov3-spp.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # darknet53 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, Bottleneck, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, Bottleneck, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, Bottleneck, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, Bottleneck, [1024]], # 10
26 | ]
27 |
28 | # YOLOv3-SPP head
29 | head:
30 | [[-1, 1, Bottleneck, [1024, False]],
31 | [-1, 1, SPP, [512, [5, 9, 13]]],
32 | [-1, 1, Conv, [1024, 3, 1]],
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35 |
36 | [-2, 1, Conv, [256, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 | [-1, 1, Bottleneck, [512, False]],
40 | [-1, 1, Bottleneck, [512, False]],
41 | [-1, 1, Conv, [256, 1, 1]],
42 | [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43 |
44 | [-2, 1, Conv, [128, 1, 1]],
45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 | [[-1, 6], 1, Concat, [1]], # cat backbone P3
47 | [-1, 1, Bottleneck, [256, False]],
48 | [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49 |
50 | [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 | ]
52 |
--------------------------------------------------------------------------------
/models/hub/yolov3-tiny.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,14, 23,27, 37,58] # P4/16
9 | - [81,82, 135,169, 344,319] # P5/32
10 |
11 | # YOLOv3-tiny backbone
12 | backbone:
13 | # [from, number, module, args]
14 | [[-1, 1, Conv, [16, 3, 1]], # 0
15 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
16 | [-1, 1, Conv, [32, 3, 1]],
17 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
18 | [-1, 1, Conv, [64, 3, 1]],
19 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
20 | [-1, 1, Conv, [128, 3, 1]],
21 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
22 | [-1, 1, Conv, [256, 3, 1]],
23 | [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
24 | [-1, 1, Conv, [512, 3, 1]],
25 | [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
26 | [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
27 | ]
28 |
29 | # YOLOv3-tiny head
30 | head:
31 | [[-1, 1, Conv, [1024, 3, 1]],
32 | [-1, 1, Conv, [256, 1, 1]],
33 | [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
34 |
35 | [-2, 1, Conv, [128, 1, 1]],
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
38 | [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
39 |
40 | [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
41 | ]
42 |
--------------------------------------------------------------------------------
/models/hub/yolov3.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # darknet53 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [32, 3, 1]], # 0
16 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17 | [-1, 1, Bottleneck, [64]],
18 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19 | [-1, 2, Bottleneck, [128]],
20 | [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21 | [-1, 8, Bottleneck, [256]],
22 | [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23 | [-1, 8, Bottleneck, [512]],
24 | [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25 | [-1, 4, Bottleneck, [1024]], # 10
26 | ]
27 |
28 | # YOLOv3 head
29 | head:
30 | [[-1, 1, Bottleneck, [1024, False]],
31 | [-1, 1, Conv, [512, [1, 1]]],
32 | [-1, 1, Conv, [1024, 3, 1]],
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35 |
36 | [-2, 1, Conv, [256, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 | [-1, 1, Bottleneck, [512, False]],
40 | [-1, 1, Bottleneck, [512, False]],
41 | [-1, 1, Conv, [256, 1, 1]],
42 | [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43 |
44 | [-2, 1, Conv, [128, 1, 1]],
45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 | [[-1, 6], 1, Concat, [1]], # cat backbone P3
47 | [-1, 1, Bottleneck, [256, False]],
48 | [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49 |
50 | [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 | ]
52 |
--------------------------------------------------------------------------------
/models/hub/yolov5-bifpn.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]]
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 BiFPN head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14, 6], 1, Concat, [1]], # cat P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/hub/yolov5-fpn.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, Bottleneck, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 6, BottleneckCSP, [1024]], # 9
25 | ]
26 |
27 | # YOLOv5 FPN head
28 | head:
29 | [[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
30 |
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
35 |
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
38 | [-1, 1, Conv, [256, 1, 1]],
39 | [-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
40 |
41 | [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
42 | ]
43 |
--------------------------------------------------------------------------------
/models/hub/yolov5-p2.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors: 3
8 |
9 | # YOLOv5 backbone
10 | backbone:
11 | # [from, number, module, args]
12 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
13 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14 | [-1, 3, C3, [128]],
15 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16 | [-1, 9, C3, [256]],
17 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18 | [-1, 9, C3, [512]],
19 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
20 | [-1, 1, SPP, [1024, [5, 9, 13]]],
21 | [-1, 3, C3, [1024, False]], # 9
22 | ]
23 |
24 | # YOLOv5 head
25 | head:
26 | [[-1, 1, Conv, [512, 1, 1]],
27 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
28 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
29 | [-1, 3, C3, [512, False]], # 13
30 |
31 | [-1, 1, Conv, [256, 1, 1]],
32 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
34 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
35 |
36 | [-1, 1, Conv, [128, 1, 1]],
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 2], 1, Concat, [1]], # cat backbone P2
39 | [-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
40 |
41 | [-1, 1, Conv, [128, 3, 2]],
42 | [[-1, 18], 1, Concat, [1]], # cat head P3
43 | [-1, 3, C3, [256, False]], # 24 (P3/8-small)
44 |
45 | [-1, 1, Conv, [256, 3, 2]],
46 | [[-1, 14], 1, Concat, [1]], # cat head P4
47 | [-1, 3, C3, [512, False]], # 27 (P4/16-medium)
48 |
49 | [-1, 1, Conv, [512, 3, 2]],
50 | [[-1, 10], 1, Concat, [1]], # cat head P5
51 | [-1, 3, C3, [1024, False]], # 30 (P5/32-large)
52 |
53 | [[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
54 | ]
55 |
--------------------------------------------------------------------------------
/models/hub/yolov5-p6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors: 3
8 |
9 | # YOLOv5 backbone
10 | backbone:
11 | # [from, number, module, args]
12 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
13 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14 | [-1, 3, C3, [128]],
15 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16 | [-1, 9, C3, [256]],
17 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18 | [-1, 9, C3, [512]],
19 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20 | [-1, 3, C3, [768]],
21 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22 | [-1, 1, SPP, [1024, [3, 5, 7]]],
23 | [-1, 3, C3, [1024, False]], # 11
24 | ]
25 |
26 | # YOLOv5 head
27 | head:
28 | [[-1, 1, Conv, [768, 1, 1]],
29 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
31 | [-1, 3, C3, [768, False]], # 15
32 |
33 | [-1, 1, Conv, [512, 1, 1]],
34 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
36 | [-1, 3, C3, [512, False]], # 19
37 |
38 | [-1, 1, Conv, [256, 1, 1]],
39 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
41 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
42 |
43 | [-1, 1, Conv, [256, 3, 2]],
44 | [[-1, 20], 1, Concat, [1]], # cat head P4
45 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
46 |
47 | [-1, 1, Conv, [512, 3, 2]],
48 | [[-1, 16], 1, Concat, [1]], # cat head P5
49 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
50 |
51 | [-1, 1, Conv, [768, 3, 2]],
52 | [[-1, 12], 1, Concat, [1]], # cat head P6
53 | [-1, 3, C3, [1024, False]], # 32 (P5/64-xlarge)
54 |
55 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
56 | ]
57 |
--------------------------------------------------------------------------------
/models/hub/yolov5-p7.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors: 3
8 |
9 | # YOLOv5 backbone
10 | backbone:
11 | # [from, number, module, args]
12 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
13 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14 | [-1, 3, C3, [128]],
15 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16 | [-1, 9, C3, [256]],
17 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18 | [-1, 9, C3, [512]],
19 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20 | [-1, 3, C3, [768]],
21 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22 | [-1, 3, C3, [1024]],
23 | [-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
24 | [-1, 1, SPP, [1280, [3, 5]]],
25 | [-1, 3, C3, [1280, False]], # 13
26 | ]
27 |
28 | # YOLOv5 head
29 | head:
30 | [[-1, 1, Conv, [1024, 1, 1]],
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 10], 1, Concat, [1]], # cat backbone P6
33 | [-1, 3, C3, [1024, False]], # 17
34 |
35 | [-1, 1, Conv, [768, 1, 1]],
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
38 | [-1, 3, C3, [768, False]], # 21
39 |
40 | [-1, 1, Conv, [512, 1, 1]],
41 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
42 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
43 | [-1, 3, C3, [512, False]], # 25
44 |
45 | [-1, 1, Conv, [256, 1, 1]],
46 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
47 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
48 | [-1, 3, C3, [256, False]], # 29 (P3/8-small)
49 |
50 | [-1, 1, Conv, [256, 3, 2]],
51 | [[-1, 26], 1, Concat, [1]], # cat head P4
52 | [-1, 3, C3, [512, False]], # 32 (P4/16-medium)
53 |
54 | [-1, 1, Conv, [512, 3, 2]],
55 | [[-1, 22], 1, Concat, [1]], # cat head P5
56 | [-1, 3, C3, [768, False]], # 35 (P5/32-large)
57 |
58 | [-1, 1, Conv, [768, 3, 2]],
59 | [[-1, 18], 1, Concat, [1]], # cat head P6
60 | [-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
61 |
62 | [-1, 1, Conv, [1024, 3, 2]],
63 | [[-1, 14], 1, Concat, [1]], # cat head P7
64 | [-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
65 |
66 | [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
67 | ]
68 |
--------------------------------------------------------------------------------
/models/hub/yolov5-panet.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, BottleneckCSP, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, BottleneckCSP, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, BottleneckCSP, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, BottleneckCSP, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 PANet head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, BottleneckCSP, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/hub/yolov5l6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [19,27, 44,40, 38,94] # P3/8
9 | - [96,68, 86,152, 180,137] # P4/16
10 | - [140,301, 303,264, 238,542] # P5/32
11 | - [436,615, 739,380, 925,792] # P6/64
12 |
13 | # YOLOv5 v6.0 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18 | [-1, 3, C3, [128]],
19 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20 | [-1, 6, C3, [256]],
21 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22 | [-1, 9, C3, [512]],
23 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24 | [-1, 3, C3, [768]],
25 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26 | [-1, 3, C3, [1024]],
27 | [-1, 1, SPPF, [1024, 5]], # 11
28 | ]
29 |
30 | # YOLOv5 v6.0 head
31 | head:
32 | [[-1, 1, Conv, [768, 1, 1]],
33 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
35 | [-1, 3, C3, [768, False]], # 15
36 |
37 | [-1, 1, Conv, [512, 1, 1]],
38 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
40 | [-1, 3, C3, [512, False]], # 19
41 |
42 | [-1, 1, Conv, [256, 1, 1]],
43 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
45 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46 |
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, 20], 1, Concat, [1]], # cat head P4
49 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50 |
51 | [-1, 1, Conv, [512, 3, 2]],
52 | [[-1, 16], 1, Concat, [1]], # cat head P5
53 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54 |
55 | [-1, 1, Conv, [768, 3, 2]],
56 | [[-1, 12], 1, Concat, [1]], # cat head P6
57 | [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58 |
59 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60 | ]
61 |
--------------------------------------------------------------------------------
/models/hub/yolov5m6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.67 # model depth multiple
6 | width_multiple: 0.75 # layer channel multiple
7 | anchors:
8 | - [19,27, 44,40, 38,94] # P3/8
9 | - [96,68, 86,152, 180,137] # P4/16
10 | - [140,301, 303,264, 238,542] # P5/32
11 | - [436,615, 739,380, 925,792] # P6/64
12 |
13 | # YOLOv5 v6.0 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18 | [-1, 3, C3, [128]],
19 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20 | [-1, 6, C3, [256]],
21 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22 | [-1, 9, C3, [512]],
23 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24 | [-1, 3, C3, [768]],
25 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26 | [-1, 3, C3, [1024]],
27 | [-1, 1, SPPF, [1024, 5]], # 11
28 | ]
29 |
30 | # YOLOv5 v6.0 head
31 | head:
32 | [[-1, 1, Conv, [768, 1, 1]],
33 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
35 | [-1, 3, C3, [768, False]], # 15
36 |
37 | [-1, 1, Conv, [512, 1, 1]],
38 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
40 | [-1, 3, C3, [512, False]], # 19
41 |
42 | [-1, 1, Conv, [256, 1, 1]],
43 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
45 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46 |
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, 20], 1, Concat, [1]], # cat head P4
49 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50 |
51 | [-1, 1, Conv, [512, 3, 2]],
52 | [[-1, 16], 1, Concat, [1]], # cat head P5
53 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54 |
55 | [-1, 1, Conv, [768, 3, 2]],
56 | [[-1, 12], 1, Concat, [1]], # cat head P6
57 | [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58 |
59 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60 | ]
61 |
--------------------------------------------------------------------------------
/models/hub/yolov5n6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.25 # layer channel multiple
7 | anchors:
8 | - [19,27, 44,40, 38,94] # P3/8
9 | - [96,68, 86,152, 180,137] # P4/16
10 | - [140,301, 303,264, 238,542] # P5/32
11 | - [436,615, 739,380, 925,792] # P6/64
12 |
13 | # YOLOv5 v6.0 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18 | [-1, 3, C3, [128]],
19 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20 | [-1, 6, C3, [256]],
21 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22 | [-1, 9, C3, [512]],
23 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24 | [-1, 3, C3, [768]],
25 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26 | [-1, 3, C3, [1024]],
27 | [-1, 1, SPPF, [1024, 5]], # 11
28 | ]
29 |
30 | # YOLOv5 v6.0 head
31 | head:
32 | [[-1, 1, Conv, [768, 1, 1]],
33 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
35 | [-1, 3, C3, [768, False]], # 15
36 |
37 | [-1, 1, Conv, [512, 1, 1]],
38 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
40 | [-1, 3, C3, [512, False]], # 19
41 |
42 | [-1, 1, Conv, [256, 1, 1]],
43 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
45 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46 |
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, 20], 1, Concat, [1]], # cat head P4
49 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50 |
51 | [-1, 1, Conv, [512, 3, 2]],
52 | [[-1, 16], 1, Concat, [1]], # cat head P5
53 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54 |
55 | [-1, 1, Conv, [768, 3, 2]],
56 | [[-1, 12], 1, Concat, [1]], # cat head P6
57 | [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58 |
59 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60 | ]
61 |
--------------------------------------------------------------------------------
/models/hub/yolov5s-ghost.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.50 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3Ghost, [128]],
18 | [-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3Ghost, [256]],
20 | [-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3Ghost, [512]],
22 | [-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3Ghost, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, GhostConv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3Ghost, [512, False]], # 13
33 |
34 | [-1, 1, GhostConv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, GhostConv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, GhostConv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/hub/yolov5s-transformer.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.50 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3TR, [1024, False]], # 9 <-------- C3TR() Transformer module
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/hub/yolov5s6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.50 # layer channel multiple
7 | anchors:
8 | - [19,27, 44,40, 38,94] # P3/8
9 | - [96,68, 86,152, 180,137] # P4/16
10 | - [140,301, 303,264, 238,542] # P5/32
11 | - [436,615, 739,380, 925,792] # P6/64
12 |
13 | # YOLOv5 v6.0 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18 | [-1, 3, C3, [128]],
19 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20 | [-1, 6, C3, [256]],
21 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22 | [-1, 9, C3, [512]],
23 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24 | [-1, 3, C3, [768]],
25 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26 | [-1, 3, C3, [1024]],
27 | [-1, 1, SPPF, [1024, 5]], # 11
28 | ]
29 |
30 | # YOLOv5 v6.0 head
31 | head:
32 | [[-1, 1, Conv, [768, 1, 1]],
33 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
35 | [-1, 3, C3, [768, False]], # 15
36 |
37 | [-1, 1, Conv, [512, 1, 1]],
38 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
40 | [-1, 3, C3, [512, False]], # 19
41 |
42 | [-1, 1, Conv, [256, 1, 1]],
43 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
45 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46 |
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, 20], 1, Concat, [1]], # cat head P4
49 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50 |
51 | [-1, 1, Conv, [512, 3, 2]],
52 | [[-1, 16], 1, Concat, [1]], # cat head P5
53 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54 |
55 | [-1, 1, Conv, [768, 3, 2]],
56 | [[-1, 12], 1, Concat, [1]], # cat head P6
57 | [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58 |
59 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60 | ]
61 |
--------------------------------------------------------------------------------
/models/hub/yolov5x6.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.33 # model depth multiple
6 | width_multiple: 1.25 # layer channel multiple
7 | anchors:
8 | - [19,27, 44,40, 38,94] # P3/8
9 | - [96,68, 86,152, 180,137] # P4/16
10 | - [140,301, 303,264, 238,542] # P5/32
11 | - [436,615, 739,380, 925,792] # P6/64
12 |
13 | # YOLOv5 v6.0 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18 | [-1, 3, C3, [128]],
19 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20 | [-1, 6, C3, [256]],
21 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22 | [-1, 9, C3, [512]],
23 | [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24 | [-1, 3, C3, [768]],
25 | [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26 | [-1, 3, C3, [1024]],
27 | [-1, 1, SPPF, [1024, 5]], # 11
28 | ]
29 |
30 | # YOLOv5 v6.0 head
31 | head:
32 | [[-1, 1, Conv, [768, 1, 1]],
33 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34 | [[-1, 8], 1, Concat, [1]], # cat backbone P5
35 | [-1, 3, C3, [768, False]], # 15
36 |
37 | [-1, 1, Conv, [512, 1, 1]],
38 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
40 | [-1, 3, C3, [512, False]], # 19
41 |
42 | [-1, 1, Conv, [256, 1, 1]],
43 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
45 | [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46 |
47 | [-1, 1, Conv, [256, 3, 2]],
48 | [[-1, 20], 1, Concat, [1]], # cat head P4
49 | [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50 |
51 | [-1, 1, Conv, [512, 3, 2]],
52 | [[-1, 16], 1, Concat, [1]], # cat head P5
53 | [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54 |
55 | [-1, 1, Conv, [768, 3, 2]],
56 | [[-1, 12], 1, Concat, [1]], # cat head P6
57 | [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58 |
59 | [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60 | ]
61 |
--------------------------------------------------------------------------------
/models/yolov5_Mobilenetv2.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # Mobilenetv3Small backbone
13 | # MobileNetV3_Block in_ch, [out_ch, hid_ch, k_s, stride, SE, HardSwish]
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [32, 3, 2]], # 0-p1/2
17 | [-1, 1, MobileNetV2_Block, [16, 1, 1]], # 1
18 | [-1, 1, MobileNetV2_Block, [24, 2, 6]], # 2-p2/4
19 | [-1, 1, MobileNetV2_Block, [24, 1, 6]], # 3
20 | [-1, 1, MobileNetV2_Block, [32, 2, 6]], # 4-p3/8
21 | [-1, 2, MobileNetV2_Block, [32, 1, 6]], # 5
22 |
23 | [-1, 1, MobileNetV2_Block, [64, 2, 6]], # 6-p4/16
24 | [-1, 3, MobileNetV2_Block, [64, 1, 6]], # 7
25 | [-1, 1, MobileNetV2_Block, [96, 1, 6]], # 8
26 | [-1, 2, MobileNetV2_Block, [96, 1, 6]], # 9
27 | [-1, 1, MobileNetV2_Block, [160, 2, 6]], # 10-p5/32
28 | [-1, 2, MobileNetV2_Block, [160, 1, 6]], # 11
29 | [-1, 1, MobileNetV2_Block, [320, 1, 6]], # 12
30 |
31 | [-1, 1, SPPF, [1024, 5]], # 13
32 | ]
33 |
34 | # YOLOv5 v6.0 head
35 | head:
36 | [[-1, 1, Conv, [256, 1, 1]], # 14
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 9], 1, Concat, [1]], # cat backbone P4
39 | [-1, 1, C3, [256, False]], # 17
40 |
41 | [-1, 1, Conv, [128, 1, 1]], # 18
42 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
43 | [[-1, 5], 1, Concat, [1]], # cat backbone P3
44 | [-1, 1, C3, [128, False]], # 20 (P3/8-small)
45 |
46 | [-1, 1, Conv, [128, 3, 2]],
47 | [[-1, 18], 1, Concat, [1]], # cat head P4
48 | [-1, 1, C3, [256, False]], # 24 (P4/16-medium)
49 |
50 | [-1, 1, Conv, [256, 3, 2]],
51 | [[-1, 14], 1, Concat, [1]], # cat head P5
52 | [-1, 1, C3, [512, False]], # 27 (P5/32-large)
53 |
54 | [[21, 24, 27], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
55 | ]
--------------------------------------------------------------------------------
/models/yolov5_Mobilenetv2_n.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # Mobilenetv3Small backbone
13 | # MobileNetV3_Block in_ch, [out_ch, hid_ch, k_s, stride, SE, HardSwish]
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, RepVGGBlock, [8, 3, 2]], # 0-p1/2
17 | [-1, 1, MobileNetV2_Block, [16, 1, 1]], # 1
18 | [-1, 1, MobileNetV2_Block, [16, 2, 2]], # 2-p2/4
19 | [-1, 1, MobileNetV2_Block, [16, 1, 2]], # 3
20 | [-1, 1, MobileNetV2_Block, [32, 2, 2]], # 4-p3/8
21 | [-1, 1, MobileNetV2_Block, [32, 1, 2]], # 5
22 |
23 | [-1, 1, MobileNetV2_Block, [64, 2, 2]], # 6-p4/16
24 | [-1, 1, MobileNetV2_Block, [64, 1, 2]], # 7
25 | [-1, 1, MobileNetV2_Block, [64, 1, 2]], # 8
26 | [-1, 1, MobileNetV2_Block, [64, 1, 2]], # 9
27 | [-1, 1, MobileNetV2_Block, [128, 2, 2]], # 10-p5/32
28 | [-1, 1, MobileNetV2_Block, [128, 1, 2]], # 11
29 | [-1, 1, MobileNetV2_Block, [128, 1, 2]], # 12
30 |
31 | [-1, 1, SPPF, [256, 5]], # 13
32 | ]
33 |
34 | # YOLOv5 v6.0 head
35 | head:
36 | [[-1, 1, Conv, [128, 1, 1]], # 14
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 9], 1, Concat, [1]], # cat backbone P4
39 | [-1, 1, C3, [128, False]], # 17
40 |
41 | [-1, 1, Conv, [64, 1, 1]], # 18
42 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
43 | [[-1, 5], 1, Concat, [1]], # cat backbone P3
44 | [-1, 1, C3, [64, False]], # 20 (P3/8-small)
45 |
46 | [-1, 1, RepVGGBlock, [64, 3, 2]],
47 | [[-1, 18], 1, Concat, [1]], # cat head P4
48 | [-1, 1, C3, [128, False]], # 24 (P4/16-medium)
49 |
50 | [-1, 1, RepVGGBlock, [128, 3, 2]],
51 | [[-1, 14], 1, Concat, [1]], # cat head P5
52 | [-1, 1, C3, [256, False]], # 27 (P5/32-large)
53 |
54 | [[21, 24, 27], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
55 | ]
56 |
--------------------------------------------------------------------------------
/models/yolov5_Mobilenetv3.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # Mobilenetv3Small backbone
13 | # MobileNetV3_Block in_ch, [out_ch, hid_ch, k_s, stride, SE, HardSwish]
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [16, 3, 2]], # 0-p1/2
17 | [-1, 1, MobileNetV3_Block, [16, 16, 3, 2, 1, 0]], # 1-p2/4
18 | [-1, 1, MobileNetV3_Block, [24, 72, 3, 2, 0, 0]], # 2-p3/8
19 | [-1, 1, MobileNetV3_Block, [24, 88, 3, 1, 0, 0]], # 3
20 |
21 | [-1, 1, MobileNetV3_Block, [40, 96, 5, 2, 1, 1]], # 4-p4/16
22 | [-1, 1, MobileNetV3_Block, [40, 240, 5, 1, 1, 1]], # 5
23 | [-1, 1, MobileNetV3_Block, [40, 240, 5, 1, 1, 1]], # 6
24 | [-1, 1, MobileNetV3_Block, [48, 120, 5, 1, 1, 1]], # 7
25 | [-1, 1, MobileNetV3_Block, [48, 144, 5, 1, 1, 1]], # 8
26 |
27 | [-1, 1, MobileNetV3_Block, [96, 288, 5, 2, 1, 1]], # 9-p5/32
28 | [-1, 1, MobileNetV3_Block, [96, 576, 5, 1, 1, 1]], # 10
29 | [-1, 1, MobileNetV3_Block, [96, 576, 5, 1, 1, 1]], # 11
30 |
31 | [-1, 1, SPPF, [1024, 5]], # 12
32 | ]
33 |
34 | # YOLOv5 v6.0 head
35 | head:
36 | [[-1, 1, Conv, [512, 1, 1]], # 13
37 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38 | [[-1, 8], 1, Concat, [1]], # cat backbone P4
39 | [-1, 3, C3, [512, False]], # 16
40 |
41 | [-1, 1, Conv, [256, 1, 1]], # 17
42 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
43 | [[-1, 3], 1, Concat, [1]], # cat backbone P3
44 | [-1, 3, C3, [256, False]], # 20 (P3/8-small)
45 |
46 | [-1, 1, Conv, [256, 3, 2]],
47 | [[-1, 17], 1, Concat, [1]], # cat head P4
48 | [-1, 3, C3, [512, False]], # 23 (P4/16-medium)
49 |
50 | [-1, 1, Conv, [512, 3, 2]],
51 | [[-1, 13], 1, Concat, [1]], # cat head P5
52 | [-1, 3, C3, [1024, False]], # 26 (P5/32-large)
53 |
54 | [[20, 23, 26], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
55 | ]
--------------------------------------------------------------------------------
/models/yolov5_Shffule.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 1.0 # model depth multiple
4 | width_multiple: 1.0 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [ 4,5, 8,10, 13,16 ] # P3/8
9 | - [ 23,29, 43,55, 73,105 ] # P4/16
10 | - [ 146,217, 231,300, 335,433 ] # P5/32
11 |
12 | # custom backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [ [ -1, 1, conv_bn_relu_maxpool, [ 24 ] ], # 0-P2/4
16 | [ -1, 1, Shuffle_Block, [ 116, 2 ] ], # 1-P3/8
17 | [ -1, 3, Shuffle_Block, [ 116, 1 ] ], # 2
18 | [ -1, 1, Shuffle_Block, [ 232, 2 ] ], # 3-P4/16
19 | [ -1, 7, Shuffle_Block, [ 232, 1 ] ], # 4
20 | [ -1, 1, Shuffle_Block, [ 464, 2 ] ], # 5-P5/32
21 | [ -1, 3, Shuffle_Block, [ 464, 1 ] ], # 6
22 | ]
23 |
24 | # YOLOv5 head
25 | head:
26 | [ [ -1, 1, Conv, [ 128, 1, 1 ] ],
27 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
28 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P4
29 | [ -1, 1, C3, [ 128, False ] ], # 10
30 |
31 | [ -1, 1, Conv, [ 128, 1, 1 ] ],
32 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
33 | [ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P3
34 | [ -1, 1, C3, [ 128, False ] ], # 14 (P3/8-small)
35 |
36 | [ -1, 1, Conv, [ 128, 3, 2 ] ],
37 | [ [ -1, 11 ], 1, Concat, [ 1 ] ], # cat head P4
38 | [ -1, 1, C3, [ 128, False ] ], # 17 (P4/16-medium)
39 |
40 | [ -1, 1, Conv, [ 128, 3, 2 ] ],
41 | [ [ -1, 7 ], 1, Concat, [ 1 ] ], # cat head P5
42 | [ -1, 1, C3, [ 128, False ] ], # 20 (P5/32-large)
43 |
44 | [ [ 14, 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
45 | ]
--------------------------------------------------------------------------------
/models/yolov5l.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.0 # model depth multiple
6 | width_multiple: 1.0 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5m.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.67 # model depth multiple
6 | width_multiple: 0.75 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5n.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.25 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5s.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.50 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5s_CBAM.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.50 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 | [-1, 1, CBAM, [512]], # 14
34 |
35 | [-1, 1, Conv, [256, 1, 1]],
36 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
38 | [-1, 3, C3, [256, False]], # 18 (P3/8-small)
39 | [-1, 1, CBAM, [256]], # 19
40 |
41 | [-1, 1, Conv, [256, 3, 2]],
42 | [[-1, 15], 1, Concat, [1]], # cat head P4
43 | [-1, 3, C3, [512, False]], # 22 (P4/16-medium)
44 | [-1, 1, CBAM, [512]], # 23
45 |
46 | [-1, 1, Conv, [512, 3, 2]],
47 | [[-1, 10], 1, Concat, [1]], # cat head P5
48 | [-1, 3, C3, [1024, False]], # 26 (P5/32-large)
49 |
50 | [[19, 23, 26], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51 | ]
52 |
--------------------------------------------------------------------------------
/models/yolov5s_RepVGG.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 0.33 # model depth multiple
6 | width_multiple: 0.50 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, RepVGGBlock, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, RepVGGBlock, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, RepVGGBlock, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, RepVGGBlock, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, RepVGGBlock, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, RepVGGBlock, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5s_key.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 0.33 # model depth multiple
4 | width_multiple: 0.50 # layer channel multiple
5 |
6 | # anchors
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 3]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 9, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 1, SPP, [1024, [5, 9, 13]]],
24 | [-1, 3, C3, [1024, False]], # 9
25 | ]
26 |
27 | # YOLOv5 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolov5s_plate.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 |
5 | nc1 : 20
6 | nc2 : 30
7 | nc3 : 40
8 |
9 | nc: [nc1,nc2,nc3] # number of classes
10 | depth_multiple: 0.33 # model depth multiple
11 | width_multiple: 0.50 # layer channel multiple
12 | anchors:
13 | - [10,13, 16,30, 33,23] # P3/8
14 | - [30,61, 62,45, 59,119] # P4/16
15 | - [116,90, 156,198, 373,326] # P5/32
16 |
17 | # YOLOv5 v6.0 backbone
18 | backbone:
19 | # [from, number, module, args]
20 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
21 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
22 | [-1, 3, C3, [128]],
23 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
24 | [-1, 6, C3, [256]],
25 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
26 | [-1, 9, C3, [512]],
27 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
28 | [-1, 3, C3, [1024]],
29 | [-1, 1, SPPF, [1024, 5]], # 9
30 | ]
31 |
32 | # YOLOv5 v6.0 head
33 | head1:
34 | [[-1, 1, Conv, [512, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
37 | [-1, 3, C3, [512, False]], # 13
38 |
39 | [-1, 1, Conv, [256, 1, 1]],
40 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
41 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
42 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
43 |
44 | [-1, 1, Conv, [256, 3, 2]],
45 | [[-1, 14], 1, Concat, [1]], # cat head P4
46 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
47 |
48 | [-1, 1, Conv, [512, 3, 2]],
49 | [[-1, 10], 1, Concat, [1]], # cat head P5
50 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
51 |
52 | [[17, 20, 23], 1, Detect, [nc1, anchors]], # Detect(P3, P4, P5) 24
53 |
54 | ]
55 |
56 | head2:
57 | [[9, 1, Conv, [512, 1, 1]],
58 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
59 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
60 | [-1, 3, C3, [512, False]], # 28
61 |
62 | [-1, 1, Conv, [256, 1, 1]],
63 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
64 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
65 | [-1, 3, C3, [256, False]], # 32 (P3/8-small)
66 |
67 | [-1, 1, Conv, [256, 3, 2]],
68 | [[-1, 29], 1, Concat, [1]], # cat head P4
69 | [-1, 3, C3, [512, False]], # 35 (P4/16-medium)
70 |
71 | [-1, 1, Conv, [512, 3, 2]],
72 | [[-1, 25], 1, Concat, [1]], # cat head P5
73 | [-1, 3, C3, [1024, False]], # 38 (P5/32-large)
74 |
75 | [[32, 35, 38], 1, Detect, [nc2, anchors]], # Detect(P3, P4, P5) 39
76 | ]
77 |
78 | head3:
79 | [ [ 9, 1, Conv, [ 512, 1, 1 ] ],
80 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
81 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
82 | [ -1, 3, C3, [ 512, False ] ], # 43
83 |
84 | [ -1, 1, Conv, [ 256, 1, 1 ] ],
85 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
86 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
87 | [ -1, 3, C3, [ 256, False ] ], # 47 (P3/8-small)
88 |
89 | [ -1, 1, Conv, [ 256, 3, 2 ] ],
90 | [ [ -1, 44 ], 1, Concat, [ 1 ] ], # cat head P4
91 | [ -1, 3, C3, [ 512, False ] ], # 50 (P4/16-medium)
92 |
93 | [ -1, 1, Conv, [ 512, 3, 2 ] ],
94 | [ [ -1, 40 ], 1, Concat, [ 1 ] ], # cat head P5
95 | [ -1, 3, C3, [ 1024, False ] ], # 53 (P5/32-large)
96 |
97 | [ [ 47, 50, 53 ], 1, Detect, [ nc3, anchors ] ], # Detect(P3, P4, P5)
98 | ]
--------------------------------------------------------------------------------
/models/yolov5s_plate_2anchor.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 |
5 | nc1 : 64
6 | nc2 : 74
7 | nc3 : 39
8 | nc4 : 46
9 | nc5 : 66
10 | nc6 : 94
11 | nc: [nc1,nc2,nc3,nc4,nc5,nc6] # number of classes
12 | depth_multiple: 0.33 # model depth multiple
13 | width_multiple: 0.50 # layer channel multiple
14 | anchors:
15 | # - [10,13, 16,30, 33,23] # P3/8
16 | # - [30,61, 62,45, 59,119] # P4/16
17 | # - [116,90, 156,198, 373,326] # P5/32
18 |
19 | # size=416
20 | # - [32,61, 44,87, 53,75] # P3/8
21 | # - [50,92, 53,101, 76,120] # P4/16
22 |
23 | - [29,42, 36,64, 52,73] # P3/8
24 | - [46,90, 53,98, 69,114] # P4/16
25 |
26 |
27 | # YOLOv5 v6.0 backbone
28 | backbone:
29 | # [from, number, module, args]
30 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
31 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
32 | [-1, 3, C3, [128]],
33 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
34 | [-1, 6, C3, [256]],
35 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
36 | [-1, 9, C3, [512]],
37 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
38 | [-1, 3, C3, [1024]],
39 | [-1, 1, SPPF, [1024, 5]], # 9
40 | ]
41 |
42 | # YOLOv5 v6.0 head
43 | head1:
44 | [[-1, 1, Conv, [512, 1, 1]],
45 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
47 | [-1, 3, C3, [512, False]], # 13
48 |
49 | [-1, 1, Conv, [256, 1, 1]],
50 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
51 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
52 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
53 |
54 | [-1, 1, Conv, [256, 3, 2]],
55 | [[-1, 14], 1, Concat, [1]], # cat head P4
56 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
57 |
58 | [[17, 20], 1, Detect, [nc1, anchors]], # Detect(P3, P4, P5) 21
59 | ]
60 |
61 | head2:
62 | [[9, 1, Conv, [512, 1, 1]],
63 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
64 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
65 | [-1, 3, C3, [512, False]], # 25
66 |
67 | [-1, 1, Conv, [256, 1, 1]],
68 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
69 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
70 | [-1, 3, C3, [256, False]], # 29 (P3/8-small)
71 |
72 | [-1, 1, Conv, [256, 3, 2]],
73 | [[-1, 26], 1, Concat, [1]], # cat head P4
74 | [-1, 3, C3, [512, False]], # 32 (P4/16-medium)
75 |
76 | [[29, 32], 1, Detect, [nc2, anchors]], # Detect(P3, P4, P5) 33
77 | ]
78 |
79 | head3:
80 | [ [ 9, 1, Conv, [ 512, 1, 1 ] ],
81 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
82 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
83 | [ -1, 3, C3, [ 512, False ] ], # 37
84 |
85 | [ -1, 1, Conv, [ 256, 1, 1 ] ],
86 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
87 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
88 | [ -1, 3, C3, [ 256, False ] ], # 41 (P3/8-small)
89 |
90 | [ -1, 1, Conv, [ 256, 3, 2 ] ],
91 | [ [ -1, 38 ], 1, Concat, [ 1 ] ], # cat head P4
92 | [ -1, 3, C3, [ 512, False ] ], # 44 (P4/16-medium)
93 |
94 | [ [ 41, 44 ], 1, Detect, [ nc3, anchors ] ], # Detect(P3, P4, P5) 45
95 | ]
96 |
97 | head4:
98 | [ [ 9, 1, Conv, [ 512, 1, 1 ] ],
99 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
100 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
101 | [ -1, 3, C3, [ 512, False ] ], # 49
102 |
103 | [ -1, 1, Conv, [ 256, 1, 1 ] ],
104 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
105 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
106 | [ -1, 3, C3, [ 256, False ] ], # 53 (P3/8-small)
107 |
108 | [ -1, 1, Conv, [ 256, 3, 2 ] ],
109 | [ [ -1, 50 ], 1, Concat, [ 1 ] ], # cat head P4
110 | [ -1, 3, C3, [ 512, False ] ], # 56 (P4/16-medium)
111 |
112 | [ [ 53, 56 ], 1, Detect, [ nc4, anchors ] ], # Detect(P3, P4, P5) 57
113 | ]
114 |
115 | head5:
116 | [ [ 9, 1, Conv, [ 512, 1, 1 ] ],
117 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
118 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
119 | [ -1, 3, C3, [ 512, False ] ], # 61
120 |
121 | [ -1, 1, Conv, [ 256, 1, 1 ] ],
122 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
123 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
124 | [ -1, 3, C3, [ 256, False ] ], # 65 (P3/8-small)
125 |
126 | [ -1, 1, Conv, [ 256, 3, 2 ] ],
127 | [ [ -1, 62 ], 1, Concat, [ 1 ] ], # cat head P4
128 | [ -1, 3, C3, [ 512, False ] ], # 68 (P4/16-medium)
129 |
130 | [ [ 65, 68 ], 1, Detect, [ nc5, anchors ] ], # Detect(P3, P4, P5) 69
131 | ]
132 |
133 | head6:
134 | [ [ 9, 1, Conv, [ 512, 1, 1 ] ],
135 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
136 | [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
137 | [ -1, 3, C3, [ 512, False ] ], # 73
138 |
139 | [ -1, 1, Conv, [ 256, 1, 1 ] ],
140 | [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
141 | [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
142 | [ -1, 3, C3, [ 256, False ] ], # 77 (P3/8-small)
143 |
144 | [ -1, 1, Conv, [ 256, 3, 2 ] ],
145 | [ [ -1, 74 ], 1, Concat, [ 1 ] ], # cat head P4
146 | [ -1, 3, C3, [ 512, False ] ], # 80 (P4/16-medium)
147 |
148 | [ [ 77, 80 ], 1, Detect, [ nc6, anchors ] ], # Detect(P3, P4, P5) 81
149 | ]
--------------------------------------------------------------------------------
/models/yolov5x.yaml:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 |
3 | # Parameters
4 | nc: 80 # number of classes
5 | depth_multiple: 1.33 # model depth multiple
6 | width_multiple: 1.25 # layer channel multiple
7 | anchors:
8 | - [10,13, 16,30, 33,23] # P3/8
9 | - [30,61, 62,45, 59,119] # P4/16
10 | - [116,90, 156,198, 373,326] # P5/32
11 |
12 | # YOLOv5 v6.0 backbone
13 | backbone:
14 | # [from, number, module, args]
15 | [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17 | [-1, 3, C3, [128]],
18 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19 | [-1, 6, C3, [256]],
20 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21 | [-1, 9, C3, [512]],
22 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23 | [-1, 3, C3, [1024]],
24 | [-1, 1, SPPF, [1024, 5]], # 9
25 | ]
26 |
27 | # YOLOv5 v6.0 head
28 | head:
29 | [[-1, 1, Conv, [512, 1, 1]],
30 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
32 | [-1, 3, C3, [512, False]], # 13
33 |
34 | [-1, 1, Conv, [256, 1, 1]],
35 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
37 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38 |
39 | [-1, 1, Conv, [256, 3, 2]],
40 | [[-1, 14], 1, Concat, [1]], # cat head P4
41 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42 |
43 | [-1, 1, Conv, [512, 3, 2]],
44 | [[-1, 10], 1, Concat, [1]], # cat head P5
45 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46 |
47 | [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48 | ]
49 |
--------------------------------------------------------------------------------
/models/yolox_nano.yaml:
--------------------------------------------------------------------------------
1 | # Parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 0.33 # model depth multiple
4 | width_multiple: 0.25 # layer channel multiple
5 | anchors: 1 # number of anchors
6 | loss: ComputeXLoss
7 |
8 | # YOLOv5 backbone
9 | backbone:
10 | # [from, number, module, args]
11 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
12 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
13 | [-1, 3, C3, [128]],
14 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
15 | [-1, 9, C3, [256]],
16 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
17 | [-1, 9, C3, [512]],
18 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
19 | [-1, 1, SPP, [1024, [5, 9, 13]]],
20 | [-1, 3, C3, [1024, False]], # 9
21 | ]
22 |
23 | # YOLOv5 head
24 | head:
25 | [[-1, 1, Conv, [512, 1, 1]],
26 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
27 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
28 | [-1, 3, C3, [512, False]], # 13
29 |
30 | [-1, 1, Conv, [256, 1, 1]],
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
33 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
34 |
35 | [-1, 1, Conv, [256, 3, 2]],
36 | [[-1, 14], 1, Concat, [1]], # cat head P4
37 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
38 |
39 | [-1, 1, Conv, [512, 3, 2]],
40 | [[-1, 10], 1, Concat, [1]], # cat head P5
41 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
42 |
43 | # yolox head
44 | [17, 1, Conv, [256, 1, 1]], # 24 lateral0 (P3/8-small)
45 | [20, 1, Conv, [256, 1, 1]], # 25 lateral1 (P4/16-medium)
46 | [23, 1, Conv, [256, 1, 1]], # 26 lateral2 (P5/32-large)
47 |
48 | [24, 2, Conv, [256, 3, 1]], # 27 cls0 (P3/8-small)
49 | [24, 2, Conv, [256, 3, 1]], # 28 reg0 (P3/8-small)
50 |
51 | [25, 2, Conv, [256, 3, 1]], # 29 cls1 (P4/16-medium)
52 | [25, 2, Conv, [256, 3, 1]], # 30 reg1 (P4/16-medium)
53 |
54 | [26, 2, Conv, [256, 3, 1]], # 31 cls2 (P5/32-large)
55 | [26, 2, Conv, [256, 3, 1]], # 32 reg2 (P5/32-large)
56 |
57 | [[27, 28, 29, 30, 31, 32], 1, DetectX, [nc, anchors]], # Detect(P3, P4, P5)
58 | ]
59 |
--------------------------------------------------------------------------------
/models/yoloxs.yaml:
--------------------------------------------------------------------------------
1 | # Parameters
2 | nc: 80 # number of classes
3 | depth_multiple: 0.33 # model depth multiple
4 | width_multiple: 0.50 # layer channel multiple
5 | anchors: 1 # number of anchors
6 | loss: ComputeXLoss
7 |
8 | # YOLOv5 backbone
9 | backbone:
10 | # [from, number, module, args]
11 | [[-1, 1, Focus, [64, 3]], # 0-P1/2
12 | [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
13 | [-1, 3, C3, [128]],
14 | [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
15 | [-1, 9, C3, [256]],
16 | [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
17 | [-1, 9, C3, [512]],
18 | [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
19 | [-1, 1, SPP, [1024, [5, 9, 13]]],
20 | [-1, 3, C3, [1024, False]], # 9
21 | ]
22 |
23 | # YOLOv5 head
24 | head:
25 | [[-1, 1, Conv, [512, 1, 1]],
26 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
27 | [[-1, 6], 1, Concat, [1]], # cat backbone P4
28 | [-1, 3, C3, [512, False]], # 13
29 |
30 | [-1, 1, Conv, [256, 1, 1]],
31 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32 | [[-1, 4], 1, Concat, [1]], # cat backbone P3
33 | [-1, 3, C3, [256, False]], # 17 (P3/8-small)
34 |
35 | [-1, 1, Conv, [256, 3, 2]],
36 | [[-1, 14], 1, Concat, [1]], # cat head P4
37 | [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
38 |
39 | [-1, 1, Conv, [512, 3, 2]],
40 | [[-1, 10], 1, Concat, [1]], # cat head P5
41 | [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
42 |
43 | # yolox head
44 | [17, 1, Conv, [256, 1, 1]], # 24 lateral0 (P3/8-small)
45 | [20, 1, Conv, [256, 1, 1]], # 25 lateral1 (P4/16-medium)
46 | [23, 1, Conv, [256, 1, 1]], # 26 lateral2 (P5/32-large)
47 |
48 | [24, 2, Conv, [256, 3, 1]], # 27 cls0 (P3/8-small)
49 | [24, 2, Conv, [256, 3, 1]], # 28 reg0 (P3/8-small)
50 |
51 | [25, 2, Conv, [256, 3, 1]], # 29 cls1 (P4/16-medium)
52 | [25, 2, Conv, [256, 3, 1]], # 30 reg1 (P4/16-medium)
53 |
54 | [26, 2, Conv, [256, 3, 1]], # 31 cls2 (P5/32-large)
55 | [26, 2, Conv, [256, 3, 1]], # 32 reg2 (P5/32-large)
56 |
57 | [[27, 28, 29, 30, 31, 32], 1, DetectX, [nc, anchors]], # Detect(P3, P4, P5)
58 | ]
59 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | # pip install -r requirements.txt
2 |
3 | # Base ----------------------------------------
4 | matplotlib>=3.2.2
5 | numpy>=1.18.5
6 | opencv-python>=4.1.2
7 | Pillow>=7.1.2
8 | PyYAML>=5.3.1
9 | requests>=2.23.0
10 | scipy>=1.4.1
11 | torch>=1.7.0
12 | torchvision>=0.8.1
13 | tqdm>=4.41.0
14 |
15 | # Logging -------------------------------------
16 | tensorboard>=2.4.1
17 | # wandb
18 |
19 | # Plotting ------------------------------------
20 | pandas>=1.1.4
21 | seaborn>=0.11.0
22 |
23 | # Export --------------------------------------
24 | # coremltools>=4.1 # CoreML export
25 | # onnx>=1.9.0 # ONNX export
26 | # onnx-simplifier>=0.3.6 # ONNX simplifier
27 | # scikit-learn==0.19.2 # CoreML quantization
28 | # tensorflow>=2.4.1 # TFLite export
29 | # tensorflowjs>=3.9.0 # TF.js export
30 |
31 | # Extras --------------------------------------
32 | # albumentations>=1.0.3
33 | # Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
34 | # pycocotools>=2.0 # COCO mAP
35 | # roboflow
36 | thop # FLOPs computation
37 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__init__.py
--------------------------------------------------------------------------------
/utils/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/augmentations.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/augmentations.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/augmentations.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/augmentations.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/autoanchor.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/autoanchor.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/autoanchor.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/autoanchor.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/callbacks.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/callbacks.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/callbacks.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/callbacks.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/datasets.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/datasets.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/datasets.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/datasets.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/datasets_key.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/datasets_key.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/datasets_plate.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/datasets_plate.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/downloads.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/downloads.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/downloads.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/downloads.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/general.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/general.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/general.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/general.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/general_plate.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/general_plate.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/google_utils.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/google_utils.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/loss.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/loss.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/loss.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/loss.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/loss_key.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/loss_key.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/metrics.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/metrics.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/metrics.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/metrics.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/plots.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/plots.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/plots.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/plots.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/torch_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/torch_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/torch_utils.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/__pycache__/torch_utils.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/activations.py:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | """
3 | Activation functions
4 | """
5 |
6 | import torch
7 | import torch.nn as nn
8 | import torch.nn.functional as F
9 |
10 |
11 | # SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
12 | class SiLU(nn.Module): # export-friendly version of nn.SiLU()
13 | @staticmethod
14 | def forward(x):
15 | return x * torch.sigmoid(x)
16 |
17 |
18 | class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
19 | @staticmethod
20 | def forward(x):
21 | # return x * F.hardsigmoid(x) # for torchscript and CoreML
22 | return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
23 |
24 |
25 | # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
26 | class Mish(nn.Module):
27 | @staticmethod
28 | def forward(x):
29 | return x * F.softplus(x).tanh()
30 |
31 |
32 | class MemoryEfficientMish(nn.Module):
33 | class F(torch.autograd.Function):
34 | @staticmethod
35 | def forward(ctx, x):
36 | ctx.save_for_backward(x)
37 | return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
38 |
39 | @staticmethod
40 | def backward(ctx, grad_output):
41 | x = ctx.saved_tensors[0]
42 | sx = torch.sigmoid(x)
43 | fx = F.softplus(x).tanh()
44 | return grad_output * (fx + x * sx * (1 - fx * fx))
45 |
46 | def forward(self, x):
47 | return self.F.apply(x)
48 |
49 |
50 | # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
51 | class FReLU(nn.Module):
52 | def __init__(self, c1, k=3): # ch_in, kernel
53 | super().__init__()
54 | self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
55 | self.bn = nn.BatchNorm2d(c1)
56 |
57 | def forward(self, x):
58 | return torch.max(x, self.bn(self.conv(x)))
59 |
60 |
61 | # ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
62 | class AconC(nn.Module):
63 | r""" ACON activation (activate or not).
64 | AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
65 | according to "Activate or Not: Learning Customized Activation" .
66 | """
67 |
68 | def __init__(self, c1):
69 | super().__init__()
70 | self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
71 | self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
72 | self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
73 |
74 | def forward(self, x):
75 | dpx = (self.p1 - self.p2) * x
76 | return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
77 |
78 |
79 | class MetaAconC(nn.Module):
80 | r""" ACON activation (activate or not).
81 | MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
82 | according to "Activate or Not: Learning Customized Activation" .
83 | """
84 |
85 | def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
86 | super().__init__()
87 | c2 = max(r, c1 // r)
88 | self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
89 | self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
90 | self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
91 | self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
92 | # self.bn1 = nn.BatchNorm2d(c2)
93 | # self.bn2 = nn.BatchNorm2d(c1)
94 |
95 | def forward(self, x):
96 | y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
97 | # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
98 | # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
99 | beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
100 | dpx = (self.p1 - self.p2) * x
101 | return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
102 |
--------------------------------------------------------------------------------
/utils/autoanchor.py:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | """
3 | Auto-anchor utils
4 | """
5 |
6 | import random
7 |
8 | import numpy as np
9 | import torch
10 | import yaml
11 | from tqdm import tqdm
12 |
13 | from utils.general import colorstr
14 |
15 |
16 | def check_anchor_order(m):
17 | # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
18 | a = m.anchors.prod(-1).view(-1) # anchor area
19 | da = a[-1] - a[0] # delta a
20 | ds = m.stride[-1] - m.stride[0] # delta s
21 | if da.sign() != ds.sign(): # same order
22 | print('Reversing anchor order')
23 | m.anchors[:] = m.anchors.flip(0)
24 |
25 |
26 | def check_anchors(dataset, model, thr=4.0, imgsz=640):
27 | # Check anchor fit to data, recompute if necessary
28 | prefix = colorstr('autoanchor: ')
29 | print(f'\n{prefix}Analyzing anchors... ', end='')
30 | m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
31 | shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
32 | scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
33 | wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
34 |
35 | def metric(k): # compute metric
36 | r = wh[:, None] / k[None]
37 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
38 | best = x.max(1)[0] # best_x
39 | aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
40 | bpr = (best > 1. / thr).float().mean() # best possible recall
41 | return bpr, aat
42 |
43 | anchors = m.anchors.clone() * m.stride.to(m.anchors.device).view(-1, 1, 1) # current anchors
44 | bpr, aat = metric(anchors.cpu().view(-1, 2))
45 | print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
46 | if bpr < 0.98: # threshold to recompute
47 | print('. Attempting to improve anchors, please wait...')
48 | na = m.anchors.numel() // 2 # number of anchors
49 | try:
50 | anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
51 | except Exception as e:
52 | print(f'{prefix}ERROR: {e}')
53 | new_bpr = metric(anchors)[0]
54 | if new_bpr > bpr: # replace anchors
55 | anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
56 | m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
57 | check_anchor_order(m)
58 | print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
59 | else:
60 | print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
61 | print('') # newline
62 |
63 |
64 | def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
65 | """ Creates kmeans-evolved anchors from training dataset
66 |
67 | Arguments:
68 | dataset: path to data.yaml, or a loaded dataset
69 | n: number of anchors
70 | img_size: image size used for training
71 | thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
72 | gen: generations to evolve anchors using genetic algorithm
73 | verbose: print all results
74 |
75 | Return:
76 | k: kmeans evolved anchors
77 |
78 | Usage:
79 | from utils.autoanchor import *; _ = kmean_anchors()
80 | """
81 | from scipy.cluster.vq import kmeans
82 |
83 | thr = 1. / thr
84 | prefix = colorstr('autoanchor: ')
85 |
86 | def metric(k, wh): # compute metrics
87 | r = wh[:, None] / k[None]
88 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
89 | # x = wh_iou(wh, torch.tensor(k)) # iou metric
90 | return x, x.max(1)[0] # x, best_x
91 |
92 | def anchor_fitness(k): # mutation fitness
93 | _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
94 | return (best * (best > thr).float()).mean() # fitness
95 |
96 | def print_results(k):
97 | k = k[np.argsort(k.prod(1))] # sort small to large
98 | x, best = metric(k, wh0)
99 | bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
100 | print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
101 | print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
102 | f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
103 | for i, x in enumerate(k):
104 | print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
105 | return k
106 |
107 | if isinstance(dataset, str): # *.yaml file
108 | with open(dataset, errors='ignore') as f:
109 | data_dict = yaml.safe_load(f) # model dict
110 | from utils.datasets import LoadImagesAndLabels
111 | dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
112 |
113 | # Get label wh
114 | shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
115 | wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
116 |
117 | # Filter
118 | i = (wh0 < 3.0).any(1).sum()
119 | if i:
120 | print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
121 | wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
122 | # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
123 |
124 | # Kmeans calculation
125 | print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
126 | s = wh.std(0) # sigmas for whitening
127 | k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
128 | assert len(k) == n, f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}'
129 | k *= s
130 | wh = torch.tensor(wh, dtype=torch.float32) # filtered
131 | wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
132 | k = print_results(k)
133 |
134 | # Plot
135 | # k, d = [None] * 20, [None] * 20
136 | # for i in tqdm(range(1, 21)):
137 | # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
138 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
139 | # ax = ax.ravel()
140 | # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
141 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
142 | # ax[0].hist(wh[wh[:, 0]<100, 0],400)
143 | # ax[1].hist(wh[wh[:, 1]<100, 1],400)
144 | # fig.savefig('wh.png', dpi=200)
145 |
146 | # Evolve
147 | npr = np.random
148 | f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
149 | pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
150 | for _ in pbar:
151 | v = np.ones(sh)
152 | while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
153 | v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
154 | kg = (k.copy() * v).clip(min=2.0)
155 | fg = anchor_fitness(kg)
156 | if fg > f:
157 | f, k = fg, kg.copy()
158 | pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
159 | if verbose:
160 | print_results(k)
161 |
162 | return print_results(k)
163 |
--------------------------------------------------------------------------------
/utils/aws/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/aws/__init__.py
--------------------------------------------------------------------------------
/utils/aws/mime.sh:
--------------------------------------------------------------------------------
1 | # AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
2 | # This script will run on every instance restart, not only on first start
3 | # --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
4 |
5 | Content-Type: multipart/mixed; boundary="//"
6 | MIME-Version: 1.0
7 |
8 | --//
9 | Content-Type: text/cloud-config; charset="us-ascii"
10 | MIME-Version: 1.0
11 | Content-Transfer-Encoding: 7bit
12 | Content-Disposition: attachment; filename="cloud-config.txt"
13 |
14 | #cloud-config
15 | cloud_final_modules:
16 | - [scripts-user, always]
17 |
18 | --//
19 | Content-Type: text/x-shellscript; charset="us-ascii"
20 | MIME-Version: 1.0
21 | Content-Transfer-Encoding: 7bit
22 | Content-Disposition: attachment; filename="userdata.txt"
23 |
24 | #!/bin/bash
25 | # --- paste contents of userdata.sh here ---
26 | --//
27 |
--------------------------------------------------------------------------------
/utils/aws/resume.py:
--------------------------------------------------------------------------------
1 | # Resume all interrupted trainings in yolov5/ dir including DDP trainings
2 | # Usage: $ python utils/aws/resume.py
3 |
4 | import os
5 | import sys
6 | from pathlib import Path
7 |
8 | import torch
9 | import yaml
10 |
11 | FILE = Path(__file__).resolve()
12 | ROOT = FILE.parents[2] # YOLOv5 root directory
13 | if str(ROOT) not in sys.path:
14 | sys.path.append(str(ROOT)) # add ROOT to PATH
15 |
16 | port = 0 # --master_port
17 | path = Path('').resolve()
18 | for last in path.rglob('*/**/last.pt'):
19 | ckpt = torch.load(last)
20 | if ckpt['optimizer'] is None:
21 | continue
22 |
23 | # Load opt.yaml
24 | with open(last.parent.parent / 'opt.yaml', errors='ignore') as f:
25 | opt = yaml.safe_load(f)
26 |
27 | # Get device count
28 | d = opt['device'].split(',') # devices
29 | nd = len(d) # number of devices
30 | ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
31 |
32 | if ddp: # multi-GPU
33 | port += 1
34 | cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
35 | else: # single-GPU
36 | cmd = f'python train.py --resume {last}'
37 |
38 | cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
39 | print(cmd)
40 | os.system(cmd)
41 |
--------------------------------------------------------------------------------
/utils/aws/userdata.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
3 | # This script will run only once on first instance start (for a re-start script see mime.sh)
4 | # /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
5 | # Use >300 GB SSD
6 |
7 | cd home/ubuntu
8 | if [ ! -d yolov5 ]; then
9 | echo "Running first-time script." # install dependencies, download COCO, pull Docker
10 | git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
11 | cd yolov5
12 | bash data/scripts/get_coco.sh && echo "COCO done." &
13 | sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
14 | python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
15 | wait && echo "All tasks done." # finish background tasks
16 | else
17 | echo "Running re-start script." # resume interrupted runs
18 | i=0
19 | list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
20 | while IFS= read -r id; do
21 | ((i++))
22 | echo "restarting container $i: $id"
23 | sudo docker start $id
24 | # sudo docker exec -it $id python train.py --resume # single-GPU
25 | sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
26 | done <<<"$list"
27 | fi
28 |
--------------------------------------------------------------------------------
/utils/callbacks.py:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | """
3 | Callback utils
4 | """
5 |
6 |
7 | class Callbacks:
8 | """"
9 | Handles all registered callbacks for YOLOv5 Hooks
10 | """
11 |
12 | # Define the available callbacks
13 | _callbacks = {
14 | 'on_pretrain_routine_start': [],
15 | 'on_pretrain_routine_end': [],
16 |
17 | 'on_train_start': [],
18 | 'on_train_epoch_start': [],
19 | 'on_train_batch_start': [],
20 | 'optimizer_step': [],
21 | 'on_before_zero_grad': [],
22 | 'on_train_batch_end': [],
23 | 'on_train_epoch_end': [],
24 |
25 | 'on_val_start': [],
26 | 'on_val_batch_start': [],
27 | 'on_val_image_end': [],
28 | 'on_val_batch_end': [],
29 | 'on_val_end': [],
30 |
31 | 'on_fit_epoch_end': [], # fit = train + val
32 | 'on_model_save': [],
33 | 'on_train_end': [],
34 |
35 | 'teardown': [],
36 | }
37 |
38 | def register_action(self, hook, name='', callback=None):
39 | """
40 | Register a new action to a callback hook
41 |
42 | Args:
43 | hook The callback hook name to register the action to
44 | name The name of the action for later reference
45 | callback The callback to fire
46 | """
47 | assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
48 | assert callable(callback), f"callback '{callback}' is not callable"
49 | self._callbacks[hook].append({'name': name, 'callback': callback})
50 |
51 | def get_registered_actions(self, hook=None):
52 | """"
53 | Returns all the registered actions by callback hook
54 |
55 | Args:
56 | hook The name of the hook to check, defaults to all
57 | """
58 | if hook:
59 | return self._callbacks[hook]
60 | else:
61 | return self._callbacks
62 |
63 | def run(self, hook, *args, **kwargs):
64 | """
65 | Loop through the registered actions and fire all callbacks
66 |
67 | Args:
68 | hook The name of the hook to check, defaults to all
69 | args Arguments to receive from YOLOv5
70 | kwargs Keyword Arguments to receive from YOLOv5
71 | """
72 |
73 | assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
74 |
75 | for logger in self._callbacks[hook]:
76 | logger['callback'](*args, **kwargs)
77 |
--------------------------------------------------------------------------------
/utils/downloads.py:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | """
3 | Download utils
4 | """
5 |
6 | import os
7 | import platform
8 | import subprocess
9 | import time
10 | import urllib
11 | from pathlib import Path
12 | from zipfile import ZipFile
13 |
14 | import requests
15 | import torch
16 |
17 |
18 | def gsutil_getsize(url=''):
19 | # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
20 | s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
21 | return eval(s.split(' ')[0]) if len(s) else 0 # bytes
22 |
23 |
24 | def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
25 | # Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
26 | file = Path(file)
27 | assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
28 | try: # url1
29 | print(f'Downloading {url} to {file}...')
30 | torch.hub.download_url_to_file(url, str(file))
31 | assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
32 | except Exception as e: # url2
33 | file.unlink(missing_ok=True) # remove partial downloads
34 | print(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
35 | os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
36 | finally:
37 | if not file.exists() or file.stat().st_size < min_bytes: # check
38 | file.unlink(missing_ok=True) # remove partial downloads
39 | print(f"ERROR: {assert_msg}\n{error_msg}")
40 | print('')
41 |
42 |
43 | def attempt_download(file, repo='ultralytics/yolov5'): # from utils.downloads import *; attempt_download()
44 | # Attempt file download if does not exist
45 | file = Path(str(file).strip().replace("'", ''))
46 |
47 | if not file.exists():
48 | # URL specified
49 | name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
50 | if str(file).startswith(('http:/', 'https:/')): # download
51 | url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
52 | name = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
53 | safe_download(file=name, url=url, min_bytes=1E5)
54 | return name
55 |
56 | # GitHub assets
57 | file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
58 | try:
59 | response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
60 | assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
61 | tag = response['tag_name'] # i.e. 'v1.0'
62 | except: # fallback plan
63 | assets = ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt',
64 | 'yolov5s6.pt', 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
65 | try:
66 | tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
67 | except:
68 | tag = 'v5.0' # current release
69 |
70 | if name in assets:
71 | safe_download(file,
72 | url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
73 | # url2=f'https://storage.googleapis.com/{repo}/ckpt/{name}', # backup url (optional)
74 | min_bytes=1E5,
75 | error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/')
76 |
77 | return str(file)
78 |
79 |
80 | def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
81 | # Downloads a file from Google Drive. from yolov5.utils.downloads import *; gdrive_download()
82 | t = time.time()
83 | file = Path(file)
84 | cookie = Path('cookie') # gdrive cookie
85 | print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
86 | file.unlink(missing_ok=True) # remove existing file
87 | cookie.unlink(missing_ok=True) # remove existing cookie
88 |
89 | # Attempt file download
90 | out = "NUL" if platform.system() == "Windows" else "/dev/null"
91 | os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
92 | if os.path.exists('cookie'): # large file
93 | s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
94 | else: # small file
95 | s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
96 | r = os.system(s) # execute, capture return
97 | cookie.unlink(missing_ok=True) # remove existing cookie
98 |
99 | # Error check
100 | if r != 0:
101 | file.unlink(missing_ok=True) # remove partial
102 | print('Download error ') # raise Exception('Download error')
103 | return r
104 |
105 | # Unzip if archive
106 | if file.suffix == '.zip':
107 | print('unzipping... ', end='')
108 | ZipFile(file).extractall(path=file.parent) # unzip
109 | file.unlink() # remove zip
110 |
111 | print(f'Done ({time.time() - t:.1f}s)')
112 | return r
113 |
114 |
115 | def get_token(cookie="./cookie"):
116 | with open(cookie) as f:
117 | for line in f:
118 | if "download" in line:
119 | return line.split()[-1]
120 | return ""
121 |
122 | # Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
123 | #
124 | #
125 | # def upload_blob(bucket_name, source_file_name, destination_blob_name):
126 | # # Uploads a file to a bucket
127 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
128 | #
129 | # storage_client = storage.Client()
130 | # bucket = storage_client.get_bucket(bucket_name)
131 | # blob = bucket.blob(destination_blob_name)
132 | #
133 | # blob.upload_from_filename(source_file_name)
134 | #
135 | # print('File {} uploaded to {}.'.format(
136 | # source_file_name,
137 | # destination_blob_name))
138 | #
139 | #
140 | # def download_blob(bucket_name, source_blob_name, destination_file_name):
141 | # # Uploads a blob from a bucket
142 | # storage_client = storage.Client()
143 | # bucket = storage_client.get_bucket(bucket_name)
144 | # blob = bucket.blob(source_blob_name)
145 | #
146 | # blob.download_to_filename(destination_file_name)
147 | #
148 | # print('Blob {} downloaded to {}.'.format(
149 | # source_blob_name,
150 | # destination_file_name))
151 |
--------------------------------------------------------------------------------
/utils/flask_rest_api/README.md:
--------------------------------------------------------------------------------
1 | # Flask REST API
2 |
3 | [REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are
4 | commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API
5 | created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
6 |
7 | ## Requirements
8 |
9 | [Flask](https://palletsprojects.com/p/flask/) is required. Install with:
10 |
11 | ```shell
12 | $ pip install Flask
13 | ```
14 |
15 | ## Run
16 |
17 | After Flask installation run:
18 |
19 | ```shell
20 | $ python3 restapi.py --port 5000
21 | ```
22 |
23 | Then use [curl](https://curl.se/) to perform a request:
24 |
25 | ```shell
26 | $ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'
27 | ```
28 |
29 | The model inference results are returned as a JSON response:
30 |
31 | ```json
32 | [
33 | {
34 | "class": 0,
35 | "confidence": 0.8900438547,
36 | "height": 0.9318675399,
37 | "name": "person",
38 | "width": 0.3264600933,
39 | "xcenter": 0.7438579798,
40 | "ycenter": 0.5207948685
41 | },
42 | {
43 | "class": 0,
44 | "confidence": 0.8440024257,
45 | "height": 0.7155083418,
46 | "name": "person",
47 | "width": 0.6546785235,
48 | "xcenter": 0.427829951,
49 | "ycenter": 0.6334488392
50 | },
51 | {
52 | "class": 27,
53 | "confidence": 0.3771208823,
54 | "height": 0.3902671337,
55 | "name": "tie",
56 | "width": 0.0696444362,
57 | "xcenter": 0.3675483763,
58 | "ycenter": 0.7991207838
59 | },
60 | {
61 | "class": 27,
62 | "confidence": 0.3527112305,
63 | "height": 0.1540903747,
64 | "name": "tie",
65 | "width": 0.0336618312,
66 | "xcenter": 0.7814827561,
67 | "ycenter": 0.5065554976
68 | }
69 | ]
70 | ```
71 |
72 | An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given
73 | in `example_request.py`
74 |
--------------------------------------------------------------------------------
/utils/flask_rest_api/example_request.py:
--------------------------------------------------------------------------------
1 | """Perform test request"""
2 | import pprint
3 |
4 | import requests
5 |
6 | DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s"
7 | TEST_IMAGE = "zidane.jpg"
8 |
9 | image_data = open(TEST_IMAGE, "rb").read()
10 |
11 | response = requests.post(DETECTION_URL, files={"image": image_data}).json()
12 |
13 | pprint.pprint(response)
14 |
--------------------------------------------------------------------------------
/utils/flask_rest_api/restapi.py:
--------------------------------------------------------------------------------
1 | """
2 | Run a rest API exposing the yolov5s object detection model
3 | """
4 | import argparse
5 | import io
6 |
7 | import torch
8 | from PIL import Image
9 | from flask import Flask, request
10 |
11 | app = Flask(__name__)
12 |
13 | DETECTION_URL = "/v1/object-detection/yolov5s"
14 |
15 |
16 | @app.route(DETECTION_URL, methods=["POST"])
17 | def predict():
18 | if not request.method == "POST":
19 | return
20 |
21 | if request.files.get("image"):
22 | image_file = request.files["image"]
23 | image_bytes = image_file.read()
24 |
25 | img = Image.open(io.BytesIO(image_bytes))
26 |
27 | results = model(img, size=640) # reduce size=320 for faster inference
28 | return results.pandas().xyxy[0].to_json(orient="records")
29 |
30 |
31 | if __name__ == "__main__":
32 | parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
33 | parser.add_argument("--port", default=5000, type=int, help="port number")
34 | args = parser.parse_args()
35 |
36 | model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True) # force_reload to recache
37 | app.run(host="0.0.0.0", port=args.port) # debug=True causes Restarting with stat
38 |
--------------------------------------------------------------------------------
/utils/google_app_engine/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM gcr.io/google-appengine/python
2 |
3 | # Create a virtualenv for dependencies. This isolates these packages from
4 | # system-level packages.
5 | # Use -p python3 or -p python3.7 to select python version. Default is version 2.
6 | RUN virtualenv /env -p python3
7 |
8 | # Setting these environment variables are the same as running
9 | # source /env/bin/activate.
10 | ENV VIRTUAL_ENV /env
11 | ENV PATH /env/bin:$PATH
12 |
13 | RUN apt-get update && apt-get install -y python-opencv
14 |
15 | # Copy the application's requirements.txt and run pip to install all
16 | # dependencies into the virtualenv.
17 | ADD requirements.txt /app/requirements.txt
18 | RUN pip install -r /app/requirements.txt
19 |
20 | # Add the application source code.
21 | ADD . /app
22 |
23 | # Run a WSGI server to serve the application. gunicorn must be declared as
24 | # a dependency in requirements.txt.
25 | CMD gunicorn -b :$PORT main:app
26 |
--------------------------------------------------------------------------------
/utils/google_app_engine/additional_requirements.txt:
--------------------------------------------------------------------------------
1 | # add these requirements in your app on top of the existing ones
2 | pip==19.2
3 | Flask==1.0.2
4 | gunicorn==19.9.0
5 |
--------------------------------------------------------------------------------
/utils/google_app_engine/app.yaml:
--------------------------------------------------------------------------------
1 | runtime: custom
2 | env: flex
3 |
4 | service: yolov5app
5 |
6 | liveness_check:
7 | initial_delay_sec: 600
8 |
9 | manual_scaling:
10 | instances: 1
11 | resources:
12 | cpu: 1
13 | memory_gb: 4
14 | disk_size_gb: 20
--------------------------------------------------------------------------------
/utils/google_utils.py:
--------------------------------------------------------------------------------
1 | # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2 |
3 | import os
4 | import platform
5 | import subprocess
6 | import time
7 | from pathlib import Path
8 |
9 | import requests
10 | import torch
11 |
12 |
13 | def gsutil_getsize(url=''):
14 | # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15 | s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16 | return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17 |
18 |
19 | def attempt_download(file, repo='ultralytics/yolov5'):
20 | # Attempt file download if does not exist
21 | file = Path(str(file).strip().replace("'", '').lower())
22 |
23 | if not file.exists():
24 | try:
25 | response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
26 | assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
27 | tag = response['tag_name'] # i.e. 'v1.0'
28 | except: # fallback plan
29 | assets = ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']
30 | tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
31 |
32 | name = file.name
33 | if name in assets:
34 | msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
35 | redundant = False # second download option
36 | try: # GitHub
37 | url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
38 | print(f'Downloading {url} to {file}...')
39 | torch.hub.download_url_to_file(url, file)
40 | assert file.exists() and file.stat().st_size > 1E6 # check
41 | except Exception as e: # GCP
42 | print(f'Download error: {e}')
43 | assert redundant, 'No secondary mirror'
44 | url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
45 | print(f'Downloading {url} to {file}...')
46 | os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
47 | finally:
48 | if not file.exists() or file.stat().st_size < 1E6: # check
49 | file.unlink(missing_ok=True) # remove partial downloads
50 | print(f'ERROR: Download failure: {msg}')
51 | print('')
52 | return
53 |
54 |
55 | def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
56 | # Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download()
57 | t = time.time()
58 | file = Path(file)
59 | cookie = Path('cookie') # gdrive cookie
60 | print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
61 | file.unlink(missing_ok=True) # remove existing file
62 | cookie.unlink(missing_ok=True) # remove existing cookie
63 |
64 | # Attempt file download
65 | out = "NUL" if platform.system() == "Windows" else "/dev/null"
66 | os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
67 | if os.path.exists('cookie'): # large file
68 | s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
69 | else: # small file
70 | s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
71 | r = os.system(s) # execute, capture return
72 | cookie.unlink(missing_ok=True) # remove existing cookie
73 |
74 | # Error check
75 | if r != 0:
76 | file.unlink(missing_ok=True) # remove partial
77 | print('Download error ') # raise Exception('Download error')
78 | return r
79 |
80 | # Unzip if archive
81 | if file.suffix == '.zip':
82 | print('unzipping... ', end='')
83 | os.system(f'unzip -q {file}') # unzip
84 | file.unlink() # remove zip to free space
85 |
86 | print(f'Done ({time.time() - t:.1f}s)')
87 | return r
88 |
89 |
90 | def get_token(cookie="./cookie"):
91 | with open(cookie) as f:
92 | for line in f:
93 | if "download" in line:
94 | return line.split()[-1]
95 | return ""
96 |
97 | # def upload_blob(bucket_name, source_file_name, destination_blob_name):
98 | # # Uploads a file to a bucket
99 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
100 | #
101 | # storage_client = storage.Client()
102 | # bucket = storage_client.get_bucket(bucket_name)
103 | # blob = bucket.blob(destination_blob_name)
104 | #
105 | # blob.upload_from_filename(source_file_name)
106 | #
107 | # print('File {} uploaded to {}.'.format(
108 | # source_file_name,
109 | # destination_blob_name))
110 | #
111 | #
112 | # def download_blob(bucket_name, source_blob_name, destination_file_name):
113 | # # Uploads a blob from a bucket
114 | # storage_client = storage.Client()
115 | # bucket = storage_client.get_bucket(bucket_name)
116 | # blob = bucket.blob(source_blob_name)
117 | #
118 | # blob.download_to_filename(destination_file_name)
119 | #
120 | # print('Blob {} downloaded to {}.'.format(
121 | # source_blob_name,
122 | # destination_file_name))
123 |
--------------------------------------------------------------------------------
/utils/loggers/__init__.py:
--------------------------------------------------------------------------------
1 | # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2 | """
3 | Logging utils
4 | """
5 |
6 | import warnings
7 | from threading import Thread
8 |
9 | import torch
10 | from torch.utils.tensorboard import SummaryWriter
11 |
12 | from utils.general import colorstr, emojis
13 | from utils.loggers.wandb.wandb_utils import WandbLogger
14 | from utils.plots import plot_images, plot_results
15 | from utils.torch_utils import de_parallel
16 |
17 | LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases
18 |
19 | try:
20 | import wandb
21 |
22 | assert hasattr(wandb, '__version__') # verify package import not local dir
23 | except (ImportError, AssertionError):
24 | wandb = None
25 |
26 |
27 | class Loggers():
28 | # YOLOv5 Loggers class
29 | def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
30 | self.save_dir = save_dir
31 | self.weights = weights
32 | self.opt = opt
33 | self.hyp = hyp
34 | self.logger = logger # for printing results to console
35 | self.include = include
36 | self.keys = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
37 | 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics
38 | 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
39 | 'x/lr0', 'x/lr1', 'x/lr2'] # params
40 | self.x_keys = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', 'train/l1_loss', # train loss
41 | 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics
42 | 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
43 | 'x/lr0', 'x/lr1', 'x/lr2'] # params
44 | for k in LOGGERS:
45 | setattr(self, k, None) # init empty logger dictionary
46 | self.csv = True # always log to csv
47 |
48 | # Message
49 | if not wandb:
50 | prefix = colorstr('Weights & Biases: ')
51 | s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)"
52 | print(emojis(s))
53 |
54 | # TensorBoard
55 | s = self.save_dir
56 | if 'tb' in self.include and not self.opt.evolve:
57 | prefix = colorstr('TensorBoard: ')
58 | self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
59 | self.tb = SummaryWriter(str(s))
60 |
61 | # W&B
62 | if wandb and 'wandb' in self.include:
63 | wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
64 | run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
65 | self.opt.hyp = self.hyp # add hyperparameters
66 | self.wandb = WandbLogger(self.opt, run_id)
67 | else:
68 | self.wandb = None
69 |
70 | def on_pretrain_routine_end(self):
71 | # Callback runs on pre-train routine end
72 | paths = self.save_dir.glob('*labels*.jpg') # training labels
73 | if self.wandb:
74 | self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
75 |
76 | def on_train_batch_end(self, ni, model, imgs, targets, paths, plots, sync_bn):
77 | # Callback runs on train batch end
78 | if plots:
79 | if ni == 0:
80 | if not sync_bn: # tb.add_graph() --sync known issue https://github.com/ultralytics/yolov5/issues/3754
81 | with warnings.catch_warnings():
82 | warnings.simplefilter('ignore') # suppress jit trace warning
83 | self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
84 | if ni < 3:
85 | f = self.save_dir / f'train_batch{ni}.jpg' # filename
86 | Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
87 | if self.wandb and ni == 10:
88 | files = sorted(self.save_dir.glob('train*.jpg'))
89 | self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
90 |
91 | def on_train_epoch_end(self, epoch):
92 | # Callback runs on train epoch end
93 | if self.wandb:
94 | self.wandb.current_epoch = epoch + 1
95 |
96 | def on_val_image_end(self, pred, predn, path, names, im):
97 | # Callback runs on val image end
98 | if self.wandb:
99 | self.wandb.val_one_image(pred, predn, path, names, im)
100 |
101 | def on_val_end(self):
102 | # Callback runs on val end
103 | if self.wandb:
104 | files = sorted(self.save_dir.glob('val*.jpg'))
105 | self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
106 |
107 | def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
108 | # Callback runs at the end of each fit (train+val) epoch
109 | if len(self.x_keys) == len(vals):
110 | keys = self.x_keys
111 | else:
112 | keys = self.keys
113 | x = {k: v for k, v in zip(keys, vals)} # dict
114 | if self.csv:
115 | file = self.save_dir / 'results.csv'
116 | n = len(x) + 1 # number of cols
117 | s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # add header
118 | with open(file, 'a') as f:
119 | f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
120 |
121 | if self.tb:
122 | for k, v in x.items():
123 | self.tb.add_scalar(k, v, epoch)
124 |
125 | if self.wandb:
126 | self.wandb.log(x)
127 | self.wandb.end_epoch(best_result=best_fitness == fi)
128 |
129 | def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
130 | # Callback runs on model save event
131 | if self.wandb:
132 | if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
133 | self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
134 |
135 | def on_train_end(self, last, best, plots, epoch):
136 | # Callback runs on training end
137 | if plots:
138 | plot_results(file=self.save_dir / 'results.csv') # save results.png
139 | files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
140 | files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
141 |
142 | if self.tb:
143 | import cv2
144 | for f in files:
145 | self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
146 |
147 | if self.wandb:
148 | self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
149 | # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
150 | if not self.opt.evolve:
151 | wandb.log_artifact(str(best if best.exists() else last), type='model',
152 | name='run_' + self.wandb.wandb_run.id + '_model',
153 | aliases=['latest', 'best', 'stripped'])
154 | self.wandb.finish_run()
155 | else:
156 | self.wandb.finish_run()
157 | self.wandb = WandbLogger(self.opt)
158 |
--------------------------------------------------------------------------------
/utils/loggers/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/loggers/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/loggers/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/loggers/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/loggers/wandb/README.md:
--------------------------------------------------------------------------------
1 | 📚 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 🚀. UPDATED 29 September 2021.
2 | * [About Weights & Biases](#about-weights-&-biases)
3 | * [First-Time Setup](#first-time-setup)
4 | * [Viewing runs](#viewing-runs)
5 | * [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
6 | * [Reports: Share your work with the world!](#reports)
7 |
8 | ## About Weights & Biases
9 | Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models — architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
10 |
11 | Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
12 |
13 | * [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
14 | * [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
15 | * [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
16 | * [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
17 | * [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
18 | * [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
19 |
20 | ## First-Time Setup
21 |
22 | Toggle Details
23 | When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
24 |
25 | W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
26 |
27 | ```shell
28 | $ python train.py --project ... --name ...
29 | ```
30 |
31 | YOLOv5 notebook example:
32 |
33 |
34 |
35 |
36 |
37 | ## Viewing Runs
38 |
39 | Toggle Details
40 | Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in realtime . All important information is logged:
41 |
42 | * Training & Validation losses
43 | * Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
44 | * Learning Rate over time
45 | * A bounding box debugging panel, showing the training progress over time
46 | * GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
47 | * System: Disk I/0, CPU utilization, RAM memory usage
48 | * Your trained model as W&B Artifact
49 | * Environment: OS and Python types, Git repository and state, **training command**
50 |
51 | 
52 |
53 |
54 |
55 |
56 | ## Advanced Usage
57 | You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
58 |
59 | 1. Visualize and Version Datasets
60 | Log, visualize, dynamically query, and understand your data with W&B Tables. You can use the following command to log your dataset as a W&B Table. This will generate a {dataset}_wandb.yaml
file which can be used to train from dataset artifact.
61 |
62 | Usage
63 | Code $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data ..
64 |
65 | 
66 |
67 |
68 | 2: Train and Log Evaluation simultaneousy
69 | This is an extension of the previous section, but it'll also training after uploading the dataset. This also evaluation Table
70 | Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
71 | so no images will be uploaded from your system more than once.
72 |
73 | Usage
74 | Code $ python utils/logger/wandb/log_dataset.py --data .. --upload_data
75 |
76 | 
77 |
78 |
79 | 3: Train using dataset artifact
80 | When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
81 | can be used to train a model directly from the dataset artifact. This also logs evaluation
82 |
83 | Usage
84 | Code $ python utils/logger/wandb/log_dataset.py --data {data}_wandb.yaml
85 |
86 | 
87 |
88 |
89 | 4: Save model checkpoints as artifacts
90 | To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
91 | You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
92 |
93 |
94 | Usage
95 | Code $ python train.py --save_period 1
96 |
97 | 
98 |
99 |
100 |
101 |
102 | 5: Resume runs from checkpoint artifacts.
103 | Any run can be resumed using artifacts if the --resume
argument starts with wandb-artifact://
prefix followed by the run path, i.e, wandb-artifact://username/project/runid
. This doesn't require the model checkpoint to be present on the local system.
104 |
105 |
106 | Usage
107 | Code $ python train.py --resume wandb-artifact://{run_path}
108 |
109 | 
110 |
111 |
112 | 6: Resume runs from dataset artifact & checkpoint artifacts.
113 | Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device
114 | The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot --upload_dataset
or
115 | train from _wandb.yaml
file and set --save_period
116 |
117 |
118 | Usage
119 | Code $ python train.py --resume wandb-artifact://{run_path}
120 |
121 | 
122 |
123 |
124 |
125 |
126 |
127 | Reports
128 | W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)).
129 |
130 |
131 |
132 |
133 | ## Environments
134 |
135 | YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
136 |
137 | - **Google Colab and Kaggle** notebooks with free GPU:
138 | - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
139 | - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
140 | - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart)
141 |
142 |
143 | ## Status
144 |
145 | 
146 |
147 | If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
148 |
--------------------------------------------------------------------------------
/utils/loggers/wandb/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/loggers/wandb/__init__.py
--------------------------------------------------------------------------------
/utils/loggers/wandb/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/loggers/wandb/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/loggers/wandb/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/loggers/wandb/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/loggers/wandb/__pycache__/wandb_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/loggers/wandb/__pycache__/wandb_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/loggers/wandb/__pycache__/wandb_utils.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/loggers/wandb/__pycache__/wandb_utils.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/loggers/wandb/log_dataset.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | from wandb_utils import WandbLogger
4 |
5 | WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
6 |
7 |
8 | def create_dataset_artifact(opt):
9 | logger = WandbLogger(opt, None, job_type='Dataset Creation') # TODO: return value unused
10 |
11 |
12 | if __name__ == '__main__':
13 | parser = argparse.ArgumentParser()
14 | parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
15 | parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
16 | parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
17 | parser.add_argument('--entity', default=None, help='W&B entity')
18 | parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run')
19 |
20 | opt = parser.parse_args()
21 | opt.resume = False # Explicitly disallow resume check for dataset upload job
22 |
23 | create_dataset_artifact(opt)
24 |
--------------------------------------------------------------------------------
/utils/loggers/wandb/sweep.py:
--------------------------------------------------------------------------------
1 | import sys
2 | from pathlib import Path
3 |
4 | import wandb
5 |
6 | FILE = Path(__file__).resolve()
7 | ROOT = FILE.parents[3] # YOLOv5 root directory
8 | if str(ROOT) not in sys.path:
9 | sys.path.append(str(ROOT)) # add ROOT to PATH
10 |
11 | from train import train, parse_opt
12 | from utils.general import increment_path
13 | from utils.torch_utils import select_device
14 | from utils.callbacks import Callbacks
15 |
16 |
17 | def sweep():
18 | wandb.init()
19 | # Get hyp dict from sweep agent
20 | hyp_dict = vars(wandb.config).get("_items")
21 |
22 | # Workaround: get necessary opt args
23 | opt = parse_opt(known=True)
24 | opt.batch_size = hyp_dict.get("batch_size")
25 | opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
26 | opt.epochs = hyp_dict.get("epochs")
27 | opt.nosave = True
28 | opt.data = hyp_dict.get("data")
29 | device = select_device(opt.device, batch_size=opt.batch_size)
30 |
31 | # train
32 | train(hyp_dict, opt, device, callbacks=Callbacks())
33 |
34 |
35 | if __name__ == "__main__":
36 | sweep()
37 |
--------------------------------------------------------------------------------
/utils/loggers/wandb/sweep.yaml:
--------------------------------------------------------------------------------
1 | # Hyperparameters for training
2 | # To set range-
3 | # Provide min and max values as:
4 | # parameter:
5 | #
6 | # min: scalar
7 | # max: scalar
8 | # OR
9 | #
10 | # Set a specific list of search space-
11 | # parameter:
12 | # values: [scalar1, scalar2, scalar3...]
13 | #
14 | # You can use grid, bayesian and hyperopt search strategy
15 | # For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration
16 |
17 | program: utils/loggers/wandb/sweep.py
18 | method: random
19 | metric:
20 | name: metrics/mAP_0.5
21 | goal: maximize
22 |
23 | parameters:
24 | # hyperparameters: set either min, max range or values list
25 | data:
26 | value: "data/coco128.yaml"
27 | batch_size:
28 | values: [64]
29 | epochs:
30 | values: [10]
31 |
32 | lr0:
33 | distribution: uniform
34 | min: 1e-5
35 | max: 1e-1
36 | lrf:
37 | distribution: uniform
38 | min: 0.01
39 | max: 1.0
40 | momentum:
41 | distribution: uniform
42 | min: 0.6
43 | max: 0.98
44 | weight_decay:
45 | distribution: uniform
46 | min: 0.0
47 | max: 0.001
48 | warmup_epochs:
49 | distribution: uniform
50 | min: 0.0
51 | max: 5.0
52 | warmup_momentum:
53 | distribution: uniform
54 | min: 0.0
55 | max: 0.95
56 | warmup_bias_lr:
57 | distribution: uniform
58 | min: 0.0
59 | max: 0.2
60 | box:
61 | distribution: uniform
62 | min: 0.02
63 | max: 0.2
64 | cls:
65 | distribution: uniform
66 | min: 0.2
67 | max: 4.0
68 | cls_pw:
69 | distribution: uniform
70 | min: 0.5
71 | max: 2.0
72 | obj:
73 | distribution: uniform
74 | min: 0.2
75 | max: 4.0
76 | obj_pw:
77 | distribution: uniform
78 | min: 0.5
79 | max: 2.0
80 | iou_t:
81 | distribution: uniform
82 | min: 0.1
83 | max: 0.7
84 | anchor_t:
85 | distribution: uniform
86 | min: 2.0
87 | max: 8.0
88 | fl_gamma:
89 | distribution: uniform
90 | min: 0.0
91 | max: 0.1
92 | hsv_h:
93 | distribution: uniform
94 | min: 0.0
95 | max: 0.1
96 | hsv_s:
97 | distribution: uniform
98 | min: 0.0
99 | max: 0.9
100 | hsv_v:
101 | distribution: uniform
102 | min: 0.0
103 | max: 0.9
104 | degrees:
105 | distribution: uniform
106 | min: 0.0
107 | max: 45.0
108 | translate:
109 | distribution: uniform
110 | min: 0.0
111 | max: 0.9
112 | scale:
113 | distribution: uniform
114 | min: 0.0
115 | max: 0.9
116 | shear:
117 | distribution: uniform
118 | min: 0.0
119 | max: 10.0
120 | perspective:
121 | distribution: uniform
122 | min: 0.0
123 | max: 0.001
124 | flipud:
125 | distribution: uniform
126 | min: 0.0
127 | max: 1.0
128 | fliplr:
129 | distribution: uniform
130 | min: 0.0
131 | max: 1.0
132 | mosaic:
133 | distribution: uniform
134 | min: 0.0
135 | max: 1.0
136 | mixup:
137 | distribution: uniform
138 | min: 0.0
139 | max: 1.0
140 | copy_paste:
141 | distribution: uniform
142 | min: 0.0
143 | max: 1.0
144 |
--------------------------------------------------------------------------------
/utils/wandb_logging/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/wandb_logging/__init__.py
--------------------------------------------------------------------------------
/utils/wandb_logging/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/wandb_logging/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/wandb_logging/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/wandb_logging/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/wandb_logging/__pycache__/wandb_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/wandb_logging/__pycache__/wandb_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/utils/wandb_logging/__pycache__/wandb_utils.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/utils/wandb_logging/__pycache__/wandb_utils.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/wandb_logging/log_dataset.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | import yaml
4 |
5 | from wandb_utils import WandbLogger
6 |
7 | WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
8 |
9 |
10 | def create_dataset_artifact(opt):
11 | with open(opt.data) as f:
12 | data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
13 | logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
14 |
15 |
16 | if __name__ == '__main__':
17 | parser = argparse.ArgumentParser()
18 | parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
19 | parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
20 | parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
21 | opt = parser.parse_args()
22 | opt.resume = False # Explicitly disallow resume check for dataset upload job
23 |
24 | create_dataset_artifact(opt)
25 |
--------------------------------------------------------------------------------
/weights/yolov5n.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/weights/yolov5n.pt
--------------------------------------------------------------------------------
/weights/yolov5n6.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/weights/yolov5n6.pt
--------------------------------------------------------------------------------
/weights/yolov5s.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/weights/yolov5s.pt
--------------------------------------------------------------------------------
/weights/yolov5s6.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qinggangwu/yolov5_v6_plate_heading/2c9f277bf07ec5c2a973dc44f7bf0b8a7e442ca4/weights/yolov5s6.pt
--------------------------------------------------------------------------------