Seg-class.RdSegment Class
44 |datadata.table of segment file containing CNA information.
sample.inofdata.frame of sample information per patient.
ref.buildhuman reference genome version. Default 'hg19'. Optional: 'hg18' or 'hg38'.
alleleIndicate whether this is allele-specific CNAs. Default: TRUE.
set.colors.RdColor setting
44 |getKaKs.RdgetKaKs compares Ka/Ks between different groups
44 |data. Six columns are required to calculate the Ka/Ks, 55 | including "Tumor_Sample_Barcode","Chromosome","Start_Position", 56 | "Reference_Allele","Tumor_Seq_Allele2" and "VAF".
VAF cutoff. Removing mutations with low variant allele frequency (VAF).
plotCNAProfile.RdThis function plots the allele-specific CNAs of multiple-samples.
46 | See readCNAProfile() for examples.
MPTevol-package.RdProvides a practical computation framework for dissecting the evolution of multiple primary tumors (MPT), reducing analysis complexity with modular design.
44 |Maintainer: Qinjian Chen chenqingjian2010@163.com (ORCID)
50 |Authors:
Shixiang Wang w_shixiang@163.com (ORCID)
tree2timescape.RdThis function generates the input of timescape to visual the fisher plot of
46 | clonal evolution by using the results of inferClonalTree().
readCNAProfile.RdWe used a CNAqc object, containing a set of mutations, CNA calls and tumor purity values.
46 | The CNAqc was used to deal with the allele-specific CNAs.
Maf or MafList object generated by readMaf() function
seg or seglist.
Patient_ID: select the specific patients. 62 | IF not indicate, the input is Maf and seg, or the input is MafList and segList.
purity information for each samples.
human reference genome version. Default 'hg19'. Optional: 'hg18' or 'hg38'.
calKaKs()
54 | calRoutines()
59 | getClinSites()
64 | getKaKs()
69 | inferClonalTrees()
74 | plotCNAProfile()
79 | plotCNAtree()
84 | plotMutTree()
89 | plotVafCluster()
94 | readCNAProfile()
99 | Seg-class
104 | set.colors()
109 | splitSegment()
114 | tree2timescape()
119 | viewTrees()
124 | write.fasta()
129 |