├── .gitignore
├── LICENSE.txt
├── README.md
├── explanation.html
├── install.py
├── javascript
└── promptgen.js
├── requirements.txt
├── screenshot.png
├── scripts
└── promptgen.py
└── style.css
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__
2 | /models
3 |
--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2023 AUTOMATIC1111
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Prompt generator
2 | An extension for [webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) that lets you generate prompts.
3 |
4 | 
5 |
--------------------------------------------------------------------------------
/explanation.html:
--------------------------------------------------------------------------------
1 |
6 |
7 |
8 |
9 |
10 | | Name |
11 | Description |
12 |
13 |
14 |
15 |
16 | | Top K |
17 | When appending a word to the prompt, pick out of K most likely candidates. |
18 |
19 |
20 | | Sampling mode |
21 | When appending a word to the prompt, pick out of most likely candidates whose total probability is reater than P. |
22 |
23 |
24 | | Number of beams |
25 | Track multiple copies of each prompt as it's being generated, and when done pick one with most likelihood. |
26 |
27 |
28 | | Temperature |
29 | When appending a word to the prompt, the greater temperature is, the more chance to pick an unlikely candidate. At 0, all generated prompts are the same. |
30 |
31 |
32 | | Repetition penalty |
33 | The greater the value is, the less likely repeated tearms are to appear in prompt. |
34 |
35 |
36 | | Length preference |
37 | Negative values tend to produce shorter prompt, positive - longer. Only works with Number of beams > 0. |
38 |
39 |
40 | | Min length |
41 | Minimum length of generated prompt in tokens. |
42 |
43 |
44 | | Max length |
45 | Maximum length of generated prompt in tokens. |
46 |
47 |
48 |
49 |
50 |
--------------------------------------------------------------------------------
/install.py:
--------------------------------------------------------------------------------
1 | import launch
2 | import os
3 |
4 | current_dir = os.path.dirname(os.path.realpath(__file__))
5 | req_file = os.path.join(current_dir, "requirements.txt")
6 |
7 | with open(req_file) as file:
8 | for lib in file:
9 | lib = lib.strip()
10 | if not launch.is_installed(lib):
11 | launch.run_pip(
12 | f"install {lib}",
13 | f"danbooru-tag-gen requirement: {lib}")
14 |
--------------------------------------------------------------------------------
/javascript/promptgen.js:
--------------------------------------------------------------------------------
1 |
2 | function promptgen_send_to(where, text){
3 | textarea = gradioApp().querySelector('#promptgen_selected_text textarea')
4 | textarea.value = text
5 | updateInput(textarea)
6 |
7 | gradioApp().querySelector('#promptgen_send_to_'+where).click()
8 |
9 | where == 'txt2img' ? switch_to_txt2img() : switch_to_img2img()
10 | }
11 |
12 | function promptgen_send_to_txt2img(text){ promptgen_send_to('txt2img', text) }
13 | function promptgen_send_to_img2img(text){ promptgen_send_to('img2img', text) }
14 |
15 | function submit_promptgen(){
16 | var id = randomId()
17 | requestProgress(id, gradioApp().getElementById('promptgen_results_column'), null, function(){})
18 |
19 | var res = create_submit_args(arguments)
20 | res[0] = id
21 | return res
22 | }
23 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | transformers==4.30.1
2 | auto_gptq==0.2.2
3 |
--------------------------------------------------------------------------------
/screenshot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/qwopqwop200/stable-diffusion-webui-promptgen-danbooru/7aace7ffd8071190c8b1a4f31e3e37060d9615e1/screenshot.png
--------------------------------------------------------------------------------
/scripts/promptgen.py:
--------------------------------------------------------------------------------
1 | import html
2 | import os
3 | import time
4 |
5 | import torch
6 | import transformers
7 | from transformers import AutoTokenizer
8 | from auto_gptq import AutoGPTQForCausalLM
9 |
10 | from modules import shared, generation_parameters_copypaste
11 |
12 | from modules import scripts, script_callbacks, devices, ui
13 | import gradio as gr
14 |
15 | from modules.ui_components import FormRow
16 |
17 |
18 | class Model:
19 | name = None
20 | model = None
21 | tokenizer = None
22 |
23 |
24 | available_models = []
25 | current = Model()
26 |
27 | base_dir = scripts.basedir()
28 | models_dir = os.path.join(base_dir, "models")
29 |
30 |
31 | def device():
32 | return devices.cpu if shared.opts.promptgen_device == 'cpu' else devices.device
33 |
34 |
35 | def list_available_models():
36 | available_models.clear()
37 |
38 | os.makedirs(models_dir, exist_ok=True)
39 |
40 | for dirname in os.listdir(models_dir):
41 | if os.path.isdir(os.path.join(models_dir, dirname)):
42 | available_models.append(dirname)
43 |
44 | for name in [x.strip() for x in shared.opts.promptgen_names.split(",")]:
45 | if not name:
46 | continue
47 |
48 | available_models.append(name)
49 |
50 |
51 | def get_model_path(name):
52 | dirname = os.path.join(models_dir, name)
53 | if not os.path.isdir(dirname):
54 | return name
55 |
56 | return dirname
57 |
58 |
59 | def generate_batch(input_ids, min_length, max_length, num_beams, temperature, repetition_penalty, length_penalty, sampling_mode, top_k, top_p):
60 | top_p = float(top_p) if sampling_mode == 'Top P' else None
61 | top_k = int(top_k) if sampling_mode == 'Top K' else None
62 |
63 | outputs = current.model.generate(
64 | input_ids,
65 | do_sample=True,
66 | temperature=max(float(temperature), 1e-6),
67 | repetition_penalty=repetition_penalty,
68 | length_penalty=length_penalty,
69 | top_p=top_p,
70 | top_k=top_k,
71 | num_beams=int(num_beams),
72 | min_length=min_length,
73 | max_length=max_length,
74 | pad_token_id=current.tokenizer.pad_token_id or current.tokenizer.eos_token_id
75 | )
76 | texts = current.tokenizer.batch_decode(outputs, skip_special_tokens=True)
77 | return texts
78 |
79 |
80 | def model_selection_changed(model_name):
81 | if model_name == "None":
82 | current.tokenizer = None
83 | current.model = None
84 | current.name = None
85 |
86 | devices.torch_gc()
87 |
88 |
89 | def generate(id_task, model_name, batch_count, batch_size, text, *args):
90 | shared.state.textinfo = "Loading model..."
91 | shared.state.job_count = batch_count
92 | model_name = 'qwopqwop/danbooru-llama-gptq'
93 |
94 | if current.name != model_name:
95 | current.tokenizer = None
96 | current.model = None
97 | current.name = None
98 |
99 | if model_name != 'None':
100 | model = AutoGPTQForCausalLM.from_quantized("qwopqwop/danbooru-llama-gptq").model
101 | current.model = model
102 |
103 | DEFAULT_PAD_TOKEN = "[PAD]"
104 |
105 | tokenizer = AutoTokenizer.from_pretrained("pinkmanlove/llama-7b-hf", use_fast=False)
106 |
107 | def smart_tokenizer_and_embedding_resize(
108 | special_tokens_dict,
109 | tokenizer,
110 | model,
111 | ):
112 | """Resize tokenizer and embedding.
113 |
114 | Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
115 | """
116 | num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
117 | model.resize_token_embeddings(len(tokenizer))
118 |
119 | if num_new_tokens > 0:
120 | input_embeddings = model.get_input_embeddings().weight.data
121 | output_embeddings = model.get_output_embeddings().weight.data
122 |
123 | input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
124 | output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
125 |
126 | input_embeddings[-num_new_tokens:] = input_embeddings_avg
127 | output_embeddings[-num_new_tokens:] = output_embeddings_avg
128 |
129 | if tokenizer._pad_token is None:
130 | smart_tokenizer_and_embedding_resize(
131 | special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
132 | tokenizer=tokenizer,
133 | model=model)
134 |
135 | tokenizer.add_special_tokens({"eos_token": tokenizer.convert_ids_to_tokens(model.config.eos_token_id),
136 | "bos_token": tokenizer.convert_ids_to_tokens(model.config.bos_token_id),
137 | "unk_token": tokenizer.convert_ids_to_tokens(model.config.pad_token_id if model.config.pad_token_id != -1 else tokenizer.pad_token_id),})
138 |
139 | current.tokenizer = tokenizer
140 | current.name = model_name
141 |
142 | assert current.model, 'No model available'
143 | assert current.tokenizer, 'No tokenizer available'
144 |
145 | current.model.to(device())
146 |
147 | shared.state.textinfo = ""
148 |
149 | input_ids = current.tokenizer(text, return_tensors="pt").input_ids
150 | if input_ids.shape[1] == 0:
151 | input_ids = torch.asarray([[current.tokenizer.bos_token_id]], dtype=torch.long)
152 | input_ids = input_ids.to(device())
153 | input_ids = input_ids.repeat((batch_size, 1))
154 |
155 | markup = ''
156 |
157 | index = 0
158 | for i in range(batch_count):
159 | texts = generate_batch(input_ids, *args)
160 | shared.state.nextjob()
161 | for generated_text in texts:
162 | index += 1
163 | markup += f"""
164 |
165 |
166 |
167 | {html.escape(generated_text)}
168 |
169 | |
170 |
171 | to txt2img
172 | to img2img
173 | |
174 |
175 | """
176 |
177 | markup += '
'
178 |
179 | return markup, ''
180 |
181 |
182 | def find_prompts(fields):
183 | field_prompt = [x for x in fields if x[1] == "Prompt"][0]
184 | field_negative_prompt = [x for x in fields if x[1] == "Negative prompt"][0]
185 | return [field_prompt[0], field_negative_prompt[0]]
186 |
187 |
188 | def send_prompts(text):
189 | params = generation_parameters_copypaste.parse_generation_parameters(text)
190 | negative_prompt = params.get("Negative prompt", "")
191 | return params.get("Prompt", ""), negative_prompt or gr.update()
192 |
193 |
194 | def add_tab():
195 | list_available_models()
196 |
197 | with gr.Blocks(analytics_enabled=False) as tab:
198 | with gr.Row():
199 | with gr.Column(scale=80):
200 | prompt = gr.Textbox(label="Prompt", elem_id="promptgen_prompt", show_label=False, lines=2, placeholder="Beginning of the prompt (press Ctrl+Enter or Alt+Enter to generate)").style(container=False)
201 | with gr.Column(scale=10):
202 | submit = gr.Button('Generate', elem_id="promptgen_generate", variant='primary')
203 |
204 | with gr.Row(elem_id="promptgen_main"):
205 | with gr.Column(variant="compact"):
206 | selected_text = gr.TextArea(elem_id='promptgen_selected_text', visible=False)
207 | send_to_txt2img = gr.Button(elem_id='promptgen_send_to_txt2img', visible=False)
208 | send_to_img2img = gr.Button(elem_id='promptgen_send_to_img2img', visible=False)
209 |
210 | with FormRow():
211 | model_selection = gr.Dropdown(label="Model", elem_id="promptgen_model", value=available_models[0], choices=["None"] + available_models)
212 |
213 | with FormRow():
214 | sampling_mode = gr.Radio(label="Sampling mode", elem_id="promptgen_sampling_mode", value="Top K", choices=["Top K", "Top P"])
215 | top_k = gr.Slider(label="Top K", elem_id="promptgen_top_k", value=12, minimum=1, maximum=50, step=1)
216 | top_p = gr.Slider(label="Top P", elem_id="promptgen_top_p", value=0.15, minimum=0, maximum=1, step=0.001)
217 |
218 | with gr.Row():
219 | num_beams = gr.Slider(label="Number of beams", elem_id="promptgen_num_beams", value=1, minimum=1, maximum=8, step=1)
220 | temperature = gr.Slider(label="Temperature", elem_id="promptgen_temperature", value=1, minimum=0, maximum=4, step=0.01)
221 | repetition_penalty = gr.Slider(label="Repetition penalty", elem_id="promptgen_repetition_penalty", value=1, minimum=1, maximum=4, step=0.01)
222 |
223 | with FormRow():
224 | length_penalty = gr.Slider(label="Length preference", elem_id="promptgen_length_preference", value=1, minimum=-10, maximum=10, step=0.1)
225 | min_length = gr.Slider(label="Min length", elem_id="promptgen_min_length", value=20, minimum=1, maximum=400, step=1)
226 | max_length = gr.Slider(label="Max length", elem_id="promptgen_max_length", value=150, minimum=1, maximum=400, step=1)
227 |
228 | with FormRow():
229 | batch_count = gr.Slider(label="Batch count", elem_id="promptgen_batch_count", value=1, minimum=1, maximum=100, step=1)
230 | batch_size = gr.Slider(label="Batch size", elem_id="promptgen_batch_size", value=10, minimum=1, maximum=100, step=1)
231 |
232 | with open(os.path.join(base_dir, "explanation.html"), encoding="utf8") as file:
233 | footer = file.read()
234 | gr.HTML(footer)
235 |
236 | with gr.Column():
237 | with gr.Group(elem_id="promptgen_results_column"):
238 | res = gr.HTML()
239 | res_info = gr.HTML()
240 |
241 | submit.click(
242 | fn=ui.wrap_gradio_gpu_call(generate, extra_outputs=['']),
243 | _js="submit_promptgen",
244 | inputs=[model_selection, model_selection, batch_count, batch_size, prompt, min_length, max_length, num_beams, temperature, repetition_penalty, length_penalty, sampling_mode, top_k, top_p, ],
245 | outputs=[res, res_info]
246 | )
247 |
248 | model_selection.change(
249 | fn=model_selection_changed,
250 | inputs=[model_selection],
251 | outputs=[],
252 | )
253 |
254 | send_to_txt2img.click(
255 | fn=send_prompts,
256 | inputs=[selected_text],
257 | outputs=find_prompts(ui.txt2img_paste_fields)
258 | )
259 |
260 | send_to_img2img.click(
261 | fn=send_prompts,
262 | inputs=[selected_text],
263 | outputs=find_prompts(ui.img2img_paste_fields)
264 | )
265 |
266 | return [(tab, "Promptgen", "promptgen")]
267 |
268 |
269 | def on_ui_settings():
270 | section = ("promptgen", "Promptgen")
271 |
272 | shared.opts.add_option("promptgen_names", shared.OptionInfo("qwopqwop/danbooru-llama-gptq", section=section))
273 | shared.opts.add_option("promptgen_device", shared.OptionInfo("gpu", "Device to use for text generation", gr.Radio, {"choices": ["gpu"]}, section=section))
274 |
275 | def on_unload():
276 | current.model = None
277 | current.tokenizer = None
278 |
279 |
280 | script_callbacks.on_ui_tabs(add_tab)
281 | script_callbacks.on_ui_settings(on_ui_settings)
282 | script_callbacks.on_script_unloaded(on_unload)
283 |
--------------------------------------------------------------------------------
/style.css:
--------------------------------------------------------------------------------
1 |
2 | #promptgen_generate{
3 | height: 100%
4 | }
5 |
6 | #promptgen_main{
7 | margin-top: 1em;
8 | }
9 |
10 | #tab_promptgen table tr{
11 | height: 1px;
12 | }
13 |
14 | #tab_promptgen table tr td{
15 | height: 100%;
16 | padding: 0.3em;
17 | }
18 |
19 | #tab_promptgen .prompt{
20 | border: 1px solid rgba(128, 128, 128, 0.2);
21 | height: 100%;
22 | }
23 |
24 | #tab_promptgen .prompt p{
25 | white-space: pre-line;
26 | }
27 |
28 | #tab_promptgen .sendto{
29 | width: 8em;
30 | }
31 |
32 | #tab_promptgen .sendto a{
33 | cursor: pointer;
34 | display: block;
35 | margin: 0.2em;
36 | padding: 0.4em;
37 | }
38 |
39 | #tab_promptgen .gr-form{
40 | border: none;
41 | padding-bottom: 0.5em;
42 | }
43 |
44 | #promptgen_explanation table{
45 | border-collapse: collapse;
46 | }
47 |
48 | #promptgen_explanation table td, #promptgen_explanation table th{
49 | border: 1px solid rgba(128,128,128,0.1);
50 | vertical-align: top;
51 |
52 | }
53 |
54 |
55 |
--------------------------------------------------------------------------------