├── .gitignore
├── LICENSE
├── README.md
├── docs
├── Makefile
├── make.bat
├── requirements.txt
└── source
│ ├── _static
│ └── css
│ │ ├── custom.css
│ │ └── env_pages.css
│ ├── _templates
│ ├── base.html
│ └── page.html
│ ├── api.rst
│ ├── conf.py
│ ├── index.rst
│ └── usage.rst
├── examples
├── Inference_Barrier_Drone.ipynb
├── Inference_Barrier_Drone_Decompose.ipynb
├── Inference_Barrier_Dubins.ipynb
├── Inference_Barrier_Dubins_Decompose.ipynb
├── Inference_Barrier_Dubins_old.ipynb
├── Inference_Barrier_MultiPoint.ipynb
├── Inference_Barrier_Point.ipynb
├── Inference_Barrier_PointEnv.ipynb
├── Inference_Barrier_UR5Env.ipynb
├── Inference_DynamicDubins.ipynb
├── Train_Barrier_Dubins.ipynb
├── Train_Barrier_MultiPoint-FixObstacle.ipynb
├── Train_Barrier_MultiPoint.ipynb
├── arm_env.py
├── arm_env2.py
├── core.py
├── drone_env.py
├── drone_v0.py
├── drone_v20.py
├── drone_v23.py
├── drone_v24.py
├── drone_v28.py
├── drone_v34.py
├── dynamic_dubins.py
├── evaluate.ipynb
├── evaluate_ur5.ipynb
├── filter_best_dubins.ipynb
├── generate_dataset.py
├── generate_result_data.ipynb
├── gym_dubins_car.py
├── gym_multi_point-Copy1.py
├── gym_multi_point.py
├── gym_point.py
├── infer_multi_single.py
├── inference.py
├── inference_drone.py
├── inference_multi_dynamic_dubins.py
├── inference_ur5.py
├── models.py
├── modern.py
├── point_env.py
├── point_env2.py
├── point_env_buffer_update.py
├── potential_field.py
├── test.ipynb
├── test_drone.ipynb
├── train_barrier_dubins.py
├── train_barrier_multi_point.py
├── train_barrier_point.py
├── train_barrier_swimmer.py
├── train_dubins.py
├── train_dubins_no_obstacle.py
├── train_dubins_no_obstacle_old.py
├── train_dubins_no_obstacle_origin_arch.py
├── train_dubins_no_obstacle_v1.py
├── train_dubins_no_obstacle_v14.py
├── train_dubins_no_obstacle_v15.py
├── train_dubins_no_obstacle_v16.py
├── train_dubins_no_obstacle_v17.py
├── train_dubins_no_obstacle_v18.py
├── train_dubins_no_obstacle_v19.py
├── train_dubins_no_obstacle_v2.py
├── train_dubins_no_obstacle_v20.py
├── train_dubins_no_obstacle_v21.py
├── train_dubins_no_obstacle_v3.py
├── train_dubins_no_obstacle_v4.py
├── train_dubins_random_dataset.py
├── train_dubins_with_obstacle_clf.py
├── train_dubins_with_obstacle_reproduce.py
├── train_dubins_with_obstacle_v10.py
├── train_dubins_with_obstacle_v11.py
├── train_dubins_with_obstacle_v12.py
├── train_dubins_with_obstacle_v13.py
├── train_dubins_with_obstacle_v22.py
├── train_dubins_with_obstacle_v23.py
├── train_dubins_with_obstacle_v24.py
├── train_dubins_with_obstacle_v26.py
├── train_dubins_with_obstacle_v5.py
├── train_dubins_with_obstacle_v6.py
├── train_dubins_with_obstacle_v7.py
├── train_dubins_with_obstacle_v8.py
├── train_dubins_with_obstacle_v9.py
├── train_multi_fix_start.py
├── train_multi_no_obstacle.py
├── train_multi_single_fix_obstacle.py
├── train_multi_single_random_dataset.py
├── train_multi_single_random_dataset_clbf.py
├── train_multi_single_random_dataset_good.py
├── train_multi_single_random_dataset_v2.py
├── train_multi_single_random_dataset_v3.py
├── train_multi_single_random_dataset_v4.py
├── v0_multi_dynamic_dubins.py
├── v109.py
├── v124.py
├── v31.py
├── v78.py
├── v79.py
├── visualize.ipynb
├── visualize_all_envs.ipynb
├── visualize_chasing.ipynb
├── visualize_drone.ipynb
└── visualize_landscape.ipynb
├── pyg_multiagent
├── __init__.py
├── baselines
│ ├── __init__.py
│ ├── ddpg.py
│ ├── ddpg_config_drone.py
│ ├── ddpg_config_dubins_car.py
│ ├── ddpg_config_multi_dynamic_dubins.py
│ ├── ddpg_config_ur5.py
│ ├── gpg.py
│ ├── gpg_config.py
│ ├── inference-baselines.py
│ ├── macbf.py
│ ├── macbf_config_drone.py
│ ├── macbf_config_dubins_car.py
│ ├── macbf_config_multi_dynamic_dubins.py
│ ├── macbf_config_ur5.py
│ ├── ppo.py
│ └── ppo_config.py
├── configs
│ ├── drone
│ │ ├── v0.py
│ │ ├── v1.py
│ │ ├── v10.py
│ │ ├── v11.py
│ │ ├── v12.py
│ │ ├── v13.py
│ │ ├── v14.py
│ │ ├── v15.py
│ │ ├── v16.py
│ │ ├── v17.py
│ │ ├── v18.py
│ │ ├── v19.py
│ │ ├── v2.py
│ │ ├── v20.py
│ │ ├── v21.py
│ │ ├── v22.py
│ │ ├── v23.py
│ │ ├── v24.py
│ │ ├── v25.py
│ │ ├── v26.py
│ │ ├── v27.py
│ │ ├── v28.py
│ │ ├── v29.py
│ │ ├── v3.py
│ │ ├── v30.py
│ │ ├── v31.py
│ │ ├── v32.py
│ │ ├── v33.py
│ │ ├── v34.py
│ │ ├── v35.py
│ │ ├── v36.py
│ │ ├── v37.py
│ │ ├── v38.py
│ │ ├── v39.py
│ │ ├── v4.py
│ │ ├── v40.py
│ │ ├── v41.py
│ │ ├── v42.py
│ │ ├── v43.py
│ │ ├── v44.py
│ │ ├── v45.py
│ │ ├── v46.py
│ │ ├── v47.py
│ │ ├── v48.py
│ │ ├── v49.py
│ │ ├── v5.py
│ │ ├── v6.py
│ │ ├── v7.py
│ │ ├── v8.py
│ │ └── v9.py
│ ├── dubins
│ │ ├── v100.py
│ │ ├── v101.py
│ │ ├── v102.py
│ │ ├── v103.py
│ │ ├── v104.py
│ │ ├── v105.py
│ │ ├── v106.py
│ │ ├── v107.py
│ │ ├── v108.py
│ │ ├── v109.py
│ │ ├── v110.py
│ │ ├── v111.py
│ │ ├── v112.py
│ │ ├── v113.py
│ │ ├── v114.py
│ │ ├── v114_infer.py
│ │ ├── v115.py
│ │ ├── v115_infer.py
│ │ ├── v116.py
│ │ ├── v116_infer.py
│ │ ├── v117.py
│ │ ├── v118.py
│ │ ├── v119.py
│ │ ├── v120.py
│ │ ├── v121.py
│ │ ├── v122.py
│ │ ├── v123.py
│ │ ├── v124.py
│ │ ├── v125.py
│ │ ├── v29.py
│ │ ├── v30.py
│ │ ├── v31.py
│ │ ├── v32.py
│ │ ├── v33.py
│ │ ├── v34.py
│ │ ├── v35.py
│ │ ├── v36.py
│ │ ├── v37.py
│ │ ├── v38.py
│ │ ├── v39.py
│ │ ├── v40.py
│ │ ├── v41.py
│ │ ├── v42.py
│ │ ├── v43.py
│ │ ├── v44.py
│ │ ├── v45.py
│ │ ├── v46.py
│ │ ├── v47.py
│ │ ├── v48.py
│ │ ├── v49.py
│ │ ├── v50.py
│ │ ├── v51.py
│ │ ├── v52.py
│ │ ├── v53.py
│ │ ├── v54.py
│ │ ├── v55.py
│ │ ├── v56.py
│ │ ├── v57.py
│ │ ├── v58.py
│ │ ├── v59.py
│ │ ├── v60.py
│ │ ├── v61.py
│ │ ├── v62.py
│ │ ├── v63.py
│ │ ├── v64.py
│ │ ├── v65.py
│ │ ├── v66.py
│ │ ├── v67.py
│ │ ├── v68.py
│ │ ├── v69.py
│ │ ├── v70.py
│ │ ├── v71.py
│ │ ├── v72.py
│ │ ├── v73.py
│ │ ├── v74.py
│ │ ├── v75.py
│ │ ├── v76.py
│ │ ├── v77.py
│ │ ├── v79.py
│ │ ├── v80.py
│ │ ├── v81.py
│ │ ├── v82.py
│ │ ├── v83.py
│ │ ├── v84.py
│ │ ├── v85.py
│ │ ├── v86.py
│ │ ├── v87.py
│ │ ├── v88.py
│ │ ├── v89.py
│ │ ├── v90.py
│ │ ├── v91.py
│ │ ├── v92.py
│ │ ├── v93.py
│ │ ├── v94.py
│ │ ├── v95.py
│ │ ├── v96.py
│ │ ├── v97.py
│ │ ├── v98.py
│ │ └── v99.py
│ ├── dynamic_dubins
│ │ ├── v0.py
│ │ ├── v1.py
│ │ ├── v2.py
│ │ ├── v3.py
│ │ ├── v4.py
│ │ ├── v5.py
│ │ ├── v6.py
│ │ └── v7.py
│ ├── multi_dynamic_dubins
│ │ ├── v0.py
│ │ ├── v1.py
│ │ ├── v2.py
│ │ └── v3.py
│ ├── point
│ │ ├── v0.py
│ │ ├── v1.py
│ │ ├── v2.py
│ │ └── v3.py
│ └── ur5
│ │ ├── v0.py
│ │ ├── v1.py
│ │ ├── v10.py
│ │ ├── v11.py
│ │ ├── v2.py
│ │ ├── v3.py
│ │ ├── v4.py
│ │ ├── v5.py
│ │ ├── v6.py
│ │ ├── v7.py
│ │ ├── v8.py
│ │ └── v9.py
└── environments
│ ├── __init__.py
│ ├── control_affine_system.py
│ ├── gym_abstract.py
│ ├── gym_drone.py
│ ├── gym_dubins_car.py
│ ├── gym_dynamic_dubins.py
│ ├── gym_dynamic_dubins_multi.py
│ ├── gym_point.py
│ ├── gym_single_integrator.py
│ ├── gym_ur5.py
│ ├── quad3d.py
│ ├── ur5
│ ├── collision
│ │ ├── base.stl
│ │ ├── forearm.stl
│ │ ├── shoulder.stl
│ │ ├── upperarm.stl
│ │ ├── wrist1.stl
│ │ ├── wrist2.stl
│ │ └── wrist3.stl
│ ├── gripper
│ │ ├── README.md
│ │ ├── robotiq-2f-base.mtl
│ │ ├── robotiq-2f-base.obj
│ │ ├── robotiq-2f-base.stl
│ │ ├── robotiq-2f-coupler.mtl
│ │ ├── robotiq-2f-coupler.obj
│ │ ├── robotiq-2f-coupler.stl
│ │ ├── robotiq-2f-driver.mtl
│ │ ├── robotiq-2f-driver.obj
│ │ ├── robotiq-2f-driver.stl
│ │ ├── robotiq-2f-follower.mtl
│ │ ├── robotiq-2f-follower.obj
│ │ ├── robotiq-2f-follower.stl
│ │ ├── robotiq-2f-pad.stl
│ │ ├── robotiq-2f-spring_link.mtl
│ │ ├── robotiq-2f-spring_link.obj
│ │ ├── robotiq-2f-spring_link.stl
│ │ ├── robotiq_2f_85.urdf
│ │ └── textures
│ │ │ ├── gripper-2f_BaseColor.jpg
│ │ │ ├── gripper-2f_Metallic.jpg
│ │ │ ├── gripper-2f_Normal.jpg
│ │ │ └── gripper-2f_Roughness.jpg
│ ├── plane.obj
│ ├── spatula
│ │ ├── base.obj
│ │ └── spatula-base.urdf
│ ├── suction
│ │ ├── base.obj
│ │ ├── head.obj
│ │ ├── mid.obj
│ │ ├── suction-base.urdf
│ │ ├── suction-head.urdf
│ │ └── tip.obj
│ ├── ur5.urdf
│ ├── visual
│ │ ├── base.stl
│ │ ├── forearm.stl
│ │ ├── shoulder.stl
│ │ ├── upperarm.stl
│ │ ├── wrist1.stl
│ │ ├── wrist2.stl
│ │ └── wrist3.stl
│ └── workspace.urdf
│ └── utils.py
├── readthedocs.yaml
└── setup.py
/.gitignore:
--------------------------------------------------------------------------------
1 | pyproject.toml
2 | .ipynb_checkpoints
3 | __pycache__/
4 | pygma.egg-info
5 | PyGma.egg-info
6 | *.egg-info
7 | dist
8 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2022 Chenning Yu
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | 
2 |
3 | -----------------------
4 |
5 | **[Documentation](https://pytorch-geometric-multiagent.readthedocs.io/)**
6 |
7 | The official repo for the CoRL 2022 paper 'Learning Control Admissibility Models with Graph Neural Networks for Multi-Agent Navigation' [[project page](https://rainorangelemon.github.io/CoRL2022/)]
8 |
9 |
10 |
11 | The ultimate goal is to provide a benchmark and a handy tool for GNN researchers to conduct evaluations properly and fairly for multi-agent tasks.
12 |
13 | **Note: The current repo is actively under maintenance.**
14 |
15 | ## Installation
16 |
17 | ```bash
18 | conda create -n pygma python=3.8
19 | conda activate pygma
20 | # install pytorch, modify the following line according to your environment
21 | conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
22 | # install torch geometric, refer to https://github.com/pyg-team/pytorch_geometric
23 | conda install pyg -c pyg
24 | # install pyg_multiagent
25 | pip install pyg_multiagent
26 | ```
27 |
--------------------------------------------------------------------------------
/docs/Makefile:
--------------------------------------------------------------------------------
1 | # Minimal makefile for Sphinx documentation
2 | #
3 |
4 | # You can set these variables from the command line, and also
5 | # from the environment for the first two.
6 | SPHINXBUILD = sphinx-build
7 | SPHINXPROJ = pytorch_geometric_multiagent
8 | SOURCEDIR = source
9 | BUILDDIR = build
10 |
11 | # Put it first so that "make" without argument is like "make help".
12 | help:
13 | @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
14 |
15 | .PHONY: help Makefile
16 |
17 | # Catch-all target: route all unknown targets to Sphinx using the new
18 | # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
19 | %: Makefile
20 | @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
21 |
--------------------------------------------------------------------------------
/docs/make.bat:
--------------------------------------------------------------------------------
1 | @ECHO OFF
2 |
3 | pushd %~dp0
4 |
5 | REM Command file for Sphinx documentation
6 |
7 | if "%SPHINXBUILD%" == "" (
8 | set SPHINXBUILD=sphinx-build
9 | )
10 | set SOURCEDIR=source
11 | set BUILDDIR=build
12 |
13 | if "%1" == "" goto help
14 |
15 | %SPHINXBUILD% >NUL 2>NUL
16 | if errorlevel 9009 (
17 | echo.
18 | echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
19 | echo.installed, then set the SPHINXBUILD environment variable to point
20 | echo.to the full path of the 'sphinx-build' executable. Alternatively you
21 | echo.may add the Sphinx directory to PATH.
22 | echo.
23 | echo.If you don't have Sphinx installed, grab it from
24 | echo.http://sphinx-doc.org/
25 | exit /b 1
26 | )
27 |
28 | %SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
29 | goto end
30 |
31 | :help
32 | %SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
33 |
34 | :end
35 | popd
36 |
--------------------------------------------------------------------------------
/docs/requirements.txt:
--------------------------------------------------------------------------------
1 | # https://files.pythonhosted.org/packages/0c/d3/4f8809d5d15363173d2eec59ec09d738d64baee46a6f298957e2c3ca9711/pyg_multiagent-0.0.1-py3-none-any.whl
2 | https://download.pytorch.org/whl/cpu/torch-1.9.0%2Bcpu-cp38-cp38-linux_x86_64.whl
3 | https://data.pyg.org/whl/torch-1.9.0%2Bcpu/torch_scatter-2.0.7-cp38-cp38-linux_x86_64.whl
4 | https://data.pyg.org/whl/torch-1.9.0%2Bcpu/torch_sparse-0.6.12-cp38-cp38-linux_x86_64.whl
5 | https://data.pyg.org/whl/torch-1.9.0%2Bcpu/torch_cluster-1.5.9-cp38-cp38-linux_x86_64.whl
6 | https://data.pyg.org/whl/torch-1.9.0%2Bcpu/torch_spline_conv-1.2.1-cp38-cp38-linux_x86_64.whl
7 | pybullet
8 | torch_geometric
9 | myst-parser
10 | sphinx-copybutton
11 | sphinx-design
12 | sphinx-inline-tabs
13 | sphinx-tabs
14 | pyg-multiagent
15 | furo
16 | # git+https://github.com/rainorangelemon/pygma_sphinx_theme.git
--------------------------------------------------------------------------------
/docs/source/_static/css/custom.css:
--------------------------------------------------------------------------------
1 | @import 'theme.css';
2 |
3 | h1 {
4 | font-size: 2.25rem;
5 | }
6 |
7 | h2 {
8 | font-size: 1.75rem;
9 | }
10 |
11 | h3 {
12 | font-size: 1.45rem;
13 | }
14 |
15 | /* Remove elements */
16 | #furo-sidebar-ad-placement .ethical-sidebar{
17 | display: none !important;
18 | }
19 |
20 | #furo-readthedocs-versions{
21 | display: none !important;
22 | }
--------------------------------------------------------------------------------
/docs/source/_static/css/env_pages.css:
--------------------------------------------------------------------------------
1 | .env-grid {
2 | display: flex;
3 | flex-wrap: wrap;
4 | justify-content: center;
5 | width: 100%;
6 | box-sizing: border-box;
7 | }
8 | .env-grid__cell {
9 | display: flex;
10 | flex-direction: column;
11 | width: 180px;
12 | height: 180px;
13 | padding: 10px;
14 | }
15 | .cell__image-container {
16 | display: flex;
17 | height: 148px;
18 | justify-content: center;
19 | }
20 | .cell__image-container img {
21 | max-height: 100%;
22 | }
23 | .cell__title {
24 | display: flex;
25 | justify-content: center;
26 | text-align: center;
27 | align-items: flex-end;
28 | height: 32px;
29 | line-height: 16px;
30 | }
31 | .more-btn {
32 | width: 240px;
33 | margin: 12px auto;
34 | display: block;
35 | }
--------------------------------------------------------------------------------
/docs/source/_templates/base.html:
--------------------------------------------------------------------------------
1 | {% extends "furo/base.html" %}
2 |
3 | {%- block regular_scripts -%}
4 | {{ super() }}
5 |
6 | {%- endblock regular_scripts -%}
--------------------------------------------------------------------------------
/docs/source/api.rst:
--------------------------------------------------------------------------------
1 | API
2 | ===
3 |
4 | .. autosummary::
5 | :toctree: generated
6 |
7 | pyg_multiagent
8 |
--------------------------------------------------------------------------------
/docs/source/index.rst:
--------------------------------------------------------------------------------
1 | :github_url: https://github.com/rainorangelemon/pytorch_geometric_multiagent
2 |
3 | PyG Documentation
4 | =================
5 |
6 | **PyTorch Geometric Multi-Agent** (pyg_multiagent) is a Python library for Multi-Agent .
7 |
8 | .. It consists of various methods for deep learning on graphs and other irregular structures, also known as `geometric deep learning `_, from a variety of published papers.
9 | .. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, `multi GPU-support `_, `DataPipe support `_, distributed graph learning via `Quiver `_, a large number of common benchmark datasets (based on simple interfaces to create your own), the `GraphGym `_ experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.
10 | .. `Click here to join our Slack community! `_
11 |
12 | .. .. toctree::
13 | .. :glob:
14 | .. :maxdepth: 1
15 | .. :caption: Notes
16 |
17 | .. notes/installation
18 | .. notes/introduction
19 | .. notes/create_gnn
20 | .. notes/create_dataset
21 | .. notes/heterogeneous
22 | .. notes/load_csv
23 | .. notes/graphgym
24 | .. notes/batching
25 | .. notes/sparse_tensor
26 | .. notes/jit
27 | .. notes/cheatsheet
28 | .. notes/data_cheatsheet
29 | .. notes/colabs
30 | .. notes/resources
31 |
32 | .. .. toctree::
33 | .. :glob:
34 | .. :maxdepth: 1
35 | .. :caption: Package Reference
36 |
37 | .. modules/root
38 | .. modules/nn
39 | .. modules/data
40 | .. modules/loader
41 | .. modules/sampler
42 | .. modules/datasets
43 | .. modules/transforms
44 | .. modules/utils
45 | .. modules/graphgym
46 | .. modules/profile
47 |
48 | .. Indices and Tables
49 | .. ==================
50 |
51 | .. * :ref:`genindex`
52 | .. * :ref:`modindex`
53 |
--------------------------------------------------------------------------------
/docs/source/usage.rst:
--------------------------------------------------------------------------------
1 | Usage
2 | =====
3 |
4 | .. _installation:
5 |
6 | Installation
7 | ------------
8 |
9 | To use PyG-MA, clone it via GitHub
10 |
11 | .. code-block:: console
12 |
13 | $ pip install pyg-multiagent
14 |
15 |
--------------------------------------------------------------------------------
/examples/infer_multi_single.py:
--------------------------------------------------------------------------------
1 | from tqdm import tqdm
2 | import gc
3 | from copy import deepcopy
4 | from gym_multi_point import MultiPointEnv
5 | import torch
6 | import numpy as np
7 | from torch import nn
8 | import math
9 | from models import *
10 | from train_multi_single_random_dataset_v2 import *
11 | from core import generate_default_model_name
12 |
13 |
14 |
15 |
--------------------------------------------------------------------------------
/examples/inference.py:
--------------------------------------------------------------------------------
1 | from tqdm import tqdm
2 | import gc
3 | from copy import deepcopy
4 | import torch
5 | import numpy as np
6 | from torch import nn
7 | import math
8 | from models import *
9 | from v109 import *
10 | from core import generate_default_model_name
11 | import pickle as pkl
12 | import os
13 | os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
14 |
15 | SAVE_GIF = False
16 | ONLY_SHOW_COLLIDE = True
17 | VERBOSE = True
18 |
19 | for NUM_AGENTS in [1,2,4]:#,8,16,32,64,128,256,512,1024,2048]:
20 |
21 | with open(f'dataset/{project_name}_{NUM_AGENTS}.pkl', 'rb') as f:
22 | valid_dataset = pkl.load(f)
23 |
24 | bnn = create_network()
25 | print(bnn.load_state_dict(torch.load(BMODEL_PATH, map_location=device)))
26 | bnn.eval();
27 |
28 | import copy
29 |
30 | collideds = []
31 | dones = []
32 | lengths = []
33 | paths = []
34 | neighbor_a = []
35 | neighbor_o = []
36 |
37 | path = f'gifs/0512/{project_name}_{version_name}/{NUM_AGENTS}'
38 | os.makedirs(path, exist_ok=True)
39 |
40 | for v_idx in tqdm(range(len(valid_dataset))):
41 | data = valid_dataset[v_idx]
42 | env = create_env(num_agents=NUM_AGENTS, size=max(int((NUM_AGENTS*2)**0.5), 4), max_dist=1, density=0)
43 | env.world.obstacles, env.world.agent_goals, env.world.agents = deepcopy(data)
44 | if SAVE_GIF:
45 | gif_file = f'gifs/0512/{project_name}_{version_name}/{NUM_AGENTS}/'+str(v_idx)+f'_decompose_lie.gif'
46 | else:
47 | gif_file = None
48 | collided, done, path = infer(env,bnn,verbose=VERBOSE,n_action=2000,
49 | spatial_prop=False,lie_derive_safe=False,decompose='random',
50 | stop_at_collision=False,need_gif=gif_file,only_show_collide=ONLY_SHOW_COLLIDE)
51 | collideds.append(collided)
52 | dones.append(done)
53 | lengths.append(len(path))
54 | paths.append(path)
55 |
56 | # for agent in path:
57 | # env.world.agents = agent.copy()
58 |
59 | print(NUM_AGENTS, np.any(collideds, axis=-1).mean(), np.mean(collideds), np.mean(dones), np.mean(lengths))
60 |
61 | with open(f'dataset/results/{project_name}_{version_name}_{NUM_AGENTS}.pkl', 'wb') as f:
62 | pkl.dump({'collideds': collideds,
63 | 'dones': dones,
64 | 'lengths': lengths,
65 | 'paths': paths}, f)
--------------------------------------------------------------------------------
/examples/inference_multi_dynamic_dubins.py:
--------------------------------------------------------------------------------
1 | from tqdm import tqdm
2 | import gc
3 | from copy import deepcopy
4 | import torch
5 | import numpy as np
6 | from torch import nn
7 | import math
8 | from models import *
9 | from v0_multi_dynamic_dubins import *
10 | from core import generate_default_model_name
11 | import pickle as pkl
12 | import os
13 | from potential_field import infer_p
14 | os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
15 |
16 | SAVE_GIF = True
17 | ONLY_SHOW_COLLIDE = False
18 | VERBOSE = True
19 | decompose = 'random'
20 | NUM_AGENTS = 3
21 |
22 |
23 | bnn = create_network()
24 | print(bnn.load_state_dict(torch.load(BMODEL_PATH, map_location=device)))
25 | bnn.eval();
26 |
27 | import copy
28 |
29 | collideds = []
30 | dones = []
31 | lengths = []
32 | paths = []
33 | neighbor_a = []
34 | neighbor_o = []
35 |
36 | path = f'gifs/0820/{project_name}_{version_name}/{NUM_AGENTS}'
37 | os.makedirs(path, exist_ok=True)
38 |
39 | env = create_env(num_agents=NUM_AGENTS, size=max(int((NUM_AGENTS*2)**0.5), 2), density=30, max_dist=6)
40 | if SAVE_GIF:
41 | gif_file = f'gifs/0820/{project_name}_{version_name}/{NUM_AGENTS}.mp4'
42 | else:
43 | gif_file = None
44 | collided, done, path = infer(env,bnn=bnn,verbose=VERBOSE,n_action=10000,
45 | spatial_prop=False,lie_derive_safe=False,decompose=decompose,
46 | stop_at_collision=False, stop_at_done=False,
47 | max_episode_length=512,
48 | need_gif=gif_file,only_show_collide=ONLY_SHOW_COLLIDE)
49 | collideds.append(collided)
50 | dones.append(done)
51 | lengths.append(len(path))
52 | paths.append(path)
--------------------------------------------------------------------------------
/examples/inference_ur5.py:
--------------------------------------------------------------------------------
1 | from tqdm import tqdm
2 | import gc
3 | from copy import deepcopy
4 | import torch
5 | import numpy as np
6 | from torch import nn
7 | import math
8 | from models import *
9 | from arm_env2 import *
10 | from core import generate_default_model_name
11 | import pickle as pkl
12 | import os
13 | os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
14 |
15 | SAVE_GIF = True
16 |
17 | bnn = create_network()
18 | print(bnn.load_state_dict(torch.load(BMODEL_PATH, map_location=device)))
19 | bnn.eval();
20 |
21 | import copy
22 |
23 | collideds = []
24 | dones = []
25 | lengths = []
26 | paths = []
27 | neighbor_a = []
28 | neighbor_o = []
29 |
30 | path = f'gifs/0530/{version_name}'
31 | os.makedirs(path, exist_ok=True)
32 |
33 | arm_ids = [0,1,2]
34 | ids_str = ''
35 | for id_ in arm_ids:
36 | ids_str = ids_str + str(id_)
37 | if SAVE_GIF:
38 | gif_file = f'gifs/0530/{version_name}/'+ids_str+'.mp4'
39 | else:
40 | gif_file = None
41 | env = create_env(num_agents=len(arm_ids), arm_ids=arm_ids, randomize=False)
42 | print(env.world.arm_ids)
43 | # print(env.world.get_status())
44 | # assert False
45 | collided, done, path = infer(env,bnn,verbose=True,n_action=20000,
46 | spatial_prop=False,
47 | lie_derive_safe=False,
48 | seed=0,
49 | decompose='random',
50 | stop_at_collision=False,need_gif=gif_file)
51 | collideds.append(collided)
52 | dones.append(done)
53 | lengths.append(len(path))
54 | paths.append(path)
55 |
56 | # for agent in path:
57 | # env.world.agents = agent.copy()
58 |
59 | print(np.any(collideds, axis=-1).mean(), np.mean(collideds), np.mean(dones), np.mean(lengths))
60 |
61 | # with open(f'dataset/results/{project_name}.pkl', 'wb') as f:
62 | # pkl.dump({'collideds': collideds,
63 | # 'dones': dones,
64 | # 'lengths': lengths,
65 | # 'paths': paths}, f)
66 |
--------------------------------------------------------------------------------
/examples/potential_field.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import random
3 | import numpy as np
4 | from copy import deepcopy
5 |
6 | def infer_p(env, n_action=2000, max_episode_length=256, ignore_agent=True, need_gif=None,
7 | verbose=False, seed=0, K1=1e-1, K2=-3e-2, **kwargs):
8 | torch.manual_seed(seed)
9 | random.seed(seed)
10 | np.random.seed(seed)
11 |
12 | paths = [deepcopy(env.world.agents)]
13 | total_trans=0; n_danger=0; no_feasible=0; collided=np.zeros(env.num_agents).astype(bool)
14 |
15 | while True:
16 | o = env._get_obs()
17 | a_all = np.random.uniform(-1, 1, size=(env.num_agents, n_action, env.action_dim))
18 | dists = env.potential_field(a_all, K1=K1, K2=K2, ignore_agent=ignore_agent)
19 |
20 | v = np.zeros(env.num_agents)
21 | a = np.zeros((env.num_agents, env.action_dim))
22 | for agent_id, a_refine, dist in zip(np.arange(env.num_agents), a_all, dists):
23 | a[agent_id] = a_refine[np.argmin(dist)]
24 | v[agent_id] = dist[np.argmin(dist)]
25 |
26 | next_o, rw, done, info = env.step(a)
27 |
28 | prev_danger = info['prev_danger'].data.cpu().numpy().astype(bool)
29 | next_danger = info['next_danger'].data.cpu().numpy().astype(bool)
30 | if np.any(next_danger):
31 | collided = collided | next_danger
32 | if verbose:
33 | print(env.world.agents, dist.min(axis=-1), dist.max(axis=-1), v, next_danger)
34 |
35 | total_trans += 1
36 | paths.append(deepcopy(env.world.agents))
37 |
38 | if done or (total_trans >= max_episode_length):
39 | break
40 |
41 | if need_gif is not None:
42 | env.save_fig(paths, env.world.agent_goals, env.world.obstacles, need_gif[:-4]+'_'+str(np.any(collided))+'_'+str(done)+need_gif[-4:])
43 |
44 | return collided, done, paths
--------------------------------------------------------------------------------
/pyg_multiagent/__init__.py:
--------------------------------------------------------------------------------
1 | from . import baselines
2 | from . import environments
3 | # TODO: add version information here
4 |
5 | __all__ = ['baselines', 'environments']
--------------------------------------------------------------------------------
/pyg_multiagent/baselines/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/baselines/__init__.py
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v0.py:
--------------------------------------------------------------------------------
1 | version_name = 'v0'
2 |
3 | # explore
4 | DECAY_EXPLORE_RATE = 0.9
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.0
7 | MAX_EXPLORE_EPS = 0.5
8 | EXPLORE_WAY = 'exponential'
9 | NOMINAL_WAY = 'exponential'
10 |
11 | # training
12 | LR = 3e-4
13 | MIN_LR = 1e-8
14 | PATIENCE = 2
15 | BATCH = 256
16 | USE_SCHEDULER = True
17 | OPTIMIZER = 'Adam'
18 | CLIP_NORM = True
19 | ALL_LIE = False
20 |
21 | # algorithm
22 | POTENTIAL_OBS = False
23 | VARIABLE_AGENT = False
24 | CBUF_BEFORE_RELABEL = True
25 | THRESHOLD = 2e-2
26 | SPATIAL_PROP = False
27 | n_candidates = 2000
28 |
29 | # dataset
30 | TRAIN_ON_HARD = False
31 | N_DATASET = 10
32 | N_VALID_DATASET = 50
33 | MAX_VISIT_TIME = 1000
34 |
35 | # relabel
36 | RELABEL = True
37 | DECAY_RELABEL = False
38 | REFINE_EPS = 1.0
39 | RELABEL_ONLY_AGENT = False
40 | ONLY_BOUNDARY = False
41 | DANGER_THRESHOLD = 0
42 | DYNAMIC_RELABEL = False
43 |
44 | # buffer size
45 | N_TRAJ = N_EPOCH = 1000000000
46 | N_BUFFER = 0
47 | N_DYNAMIC_BUFFER = 10000
48 | N_TRAJ_BUFFER = 60000
49 | N_CBUF = 60000
50 |
51 | # training speed & validation
52 | UPDATE_FREQ = 4
53 | N_EVALUATE = 400
54 | N_VALID = 400
55 | N_ITER = 50
56 | N_TRAJ_PER_EPOCH = 10
57 | N_WARMUP = 0
58 |
59 | # model
60 | MODEL = 'OriginGNNv8'
61 | PE_DIM = None
62 | HIDDEN_SIZE = 128
63 |
64 | # environment
65 | ENV_CONFIG = {
66 | 'num_agents': 8,
67 | 'SIZE': (4,4),
68 | 'agent_top_k': 6,
69 | 'obstacle_top_k': 2,
70 | 'PROB': (0.2,1.0),
71 | 'simple': False,
72 | }
73 | FIX_ENV = False
74 |
75 | # target network
76 | POLYAK = 0.
77 |
78 | # not important
79 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v1.py:
--------------------------------------------------------------------------------
1 | version_name = 'v1'
2 |
3 | # explore
4 | DECAY_EXPLORE_RATE = 0.025
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.0
7 | MAX_EXPLORE_EPS = 0.5
8 | ALL_EXPLORE = False
9 | EXPLORE_WAY = 'linear'
10 | NOMINAL_WAY = 'exponential'
11 |
12 | # training
13 | LR = 1e-3
14 | MIN_LR = 1e-5
15 | PATIENCE = 3
16 | BATCH = 2048
17 | USE_SCHEDULER = True
18 | OPTIMIZER = 'Adam'
19 | CLIP_NORM = True
20 | ALL_LIE = False
21 | # UPDATE_FREQ = 16
22 |
23 | # algorithm
24 | POTENTIAL_OBS = False
25 | VARIABLE_AGENT = False
26 | CBUF_BEFORE_RELABEL = True
27 | THRESHOLD = 2e-2
28 | SPATIAL_PROP = False
29 | n_candidates = 2000
30 |
31 | # dataset
32 | TRAIN_ON_HARD = False
33 | N_DATASET = 10
34 | N_VALID_DATASET = 50
35 | MAX_VISIT_TIME = 1000
36 |
37 | # relabel
38 | RELABEL = True
39 | DECAY_RELABEL = False
40 | REFINE_EPS = 1.0
41 | RELABEL_ONLY_AGENT = False
42 | ONLY_BOUNDARY = False
43 | DANGER_THRESHOLD = 0
44 | DYNAMIC_RELABEL = False
45 |
46 | # buffer size
47 | N_TRAJ = N_EPOCH = 1000000000
48 | N_BUFFER = 0
49 | N_DYNAMIC_BUFFER = 10000
50 | N_TRAJ_BUFFER = 60000
51 | N_CBUF = 60000
52 |
53 | # training speed & validation
54 | N_EVALUATE = 400
55 | N_VALID = 400
56 | N_TRAJ_PER_UPDATE = 10
57 | N_ITER = 50
58 | N_WARMUP = 0
59 |
60 | # model
61 | MODEL = 'OriginGNNv8'
62 | PE_DIM = None
63 | HIDDEN_SIZE = 128
64 |
65 | # environment
66 | ENV_CONFIG = {
67 | 'num_agents': 8,
68 | 'SIZE': (4,4),
69 | 'agent_top_k': 6,
70 | 'obstacle_top_k': 2,
71 | 'PROB': (0.2,1.0),
72 | 'simple': False,
73 | }
74 | FIX_ENV = False
75 |
76 | # target network
77 | POLYAK = 0.
78 |
79 | # not important
80 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v2.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v2'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.5
10 | ALL_EXPLORE = False
11 | EXPLORE_WAY = 'exponential'
12 | NOMINAL_WAY = 'exponential'
13 |
14 | # training
15 | LR = 1e-3
16 | MIN_LR = 1e-5
17 | PATIENCE = 3
18 | BATCH = 256
19 | USE_SCHEDULER = True
20 | OPTIMIZER = 'Adam'
21 | CLIP_NORM = True
22 | ALL_LIE = False
23 | UPDATE_FREQ = 4
24 |
25 | # algorithm
26 | POTENTIAL_OBS = False
27 | VARIABLE_AGENT = False
28 | CBUF_BEFORE_RELABEL = True
29 | THRESHOLD = 2e-2
30 | SPATIAL_PROP = False
31 | n_candidates = 2000
32 |
33 | # dataset
34 | TRAIN_ON_HARD = False
35 | N_DATASET = 10
36 | N_VALID_DATASET = 50
37 | MAX_VISIT_TIME = 1000
38 |
39 | # relabel
40 | RELABEL = True
41 | DECAY_RELABEL = False
42 | REFINE_EPS = 1.0
43 | RELABEL_ONLY_AGENT = False
44 | ONLY_BOUNDARY = False
45 | DANGER_THRESHOLD = 0
46 | DYNAMIC_RELABEL = False
47 |
48 | # buffer size
49 | N_TRAJ = N_EPOCH = 1000000000
50 | N_BUFFER = 0
51 | N_DYNAMIC_BUFFER = 10000
52 | N_TRAJ_BUFFER = 60000
53 | N_CBUF = 60000
54 |
55 | # training speed & validation
56 | N_EVALUATE = 800
57 | N_VALID = 800
58 | N_TRAJ_PER_EPOCH = 20
59 | N_ITER = 50
60 | N_WARMUP = 0
61 |
62 | # model
63 | MODEL = 'OriginGNNv10'
64 | PE_DIM = None
65 | HIDDEN_SIZE = 128
66 |
67 | # environment
68 | ENV_CONFIG = {
69 | 'num_agents': 3,
70 | 'SIZE': (3,3),
71 | 'agent_top_k': 2,
72 | 'obstacle_top_k': 1,
73 | 'PROB': (0.2,1.0),
74 | 'angle_embed': True,
75 | 'simple': False,
76 | }
77 | FIX_ENV = False
78 |
79 | # target network
80 | POLYAK = 0.
81 |
82 | # not important
83 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v20.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v20'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 0 # 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 12000
59 | N_TRAJ_BUFFER = 240000
60 | N_CBUF = 400000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v21.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v21'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 | SHUFFLE_WHEN_EXCEED = False
46 | SHARE_SAMPLE_ACROSS_UPDATE = False
47 |
48 | # relabel
49 | RELABEL = True
50 | DECAY_RELABEL = False
51 | REFINE_EPS = 1.0
52 | RELABEL_ONLY_AGENT = False
53 | ONLY_BOUNDARY = False
54 | DANGER_THRESHOLD = 0 # 2e-2
55 | DYNAMIC_RELABEL = False
56 |
57 | # buffer size
58 | N_TRAJ = N_EPOCH = 1000000000
59 | N_BUFFER = 0
60 | N_DYNAMIC_BUFFER = 3000
61 | N_TRAJ_BUFFER = 240000
62 | N_CBUF = 400000
63 |
64 | # training speed & validation
65 | N_EVALUATE = 400
66 | N_VALID = 400
67 | N_WARMUP = 0
68 |
69 | # model
70 | MODEL = 'OriginGNNv11'
71 | PE_DIM = None
72 | HIDDEN_SIZE = 128
73 |
74 | # environment
75 | ENV_CONFIG = {
76 | 'hetero': True,
77 | 'num_agents': 3,
78 | 'SIZE': (3,3),
79 | 'agent_top_k': 2,
80 | 'obstacle_top_k': 2,
81 | 'agent_obs_radius': 1.5,
82 | 'obstacle_obs_radius': 1.5,
83 | 'PROB': (0.,30),
84 | 'angle_embed': True,
85 | 'simple': False,
86 | 'min_dist': 2,
87 | }
88 | OBS_CONFIG = {
89 | 'share_weight': True,
90 | 'rgraph_a': True,
91 | 'rgraph_o': True,
92 | 'has_goal': False,
93 | }
94 |
95 | OBS_CONFIG_DECOMPOSE = {
96 | 'share_weight': True,
97 | 'rgraph_a': True,
98 | 'rgraph_o': True,
99 | 'n_sub_o': (1,9),
100 | 'n_sub_a': (0,2),
101 | 'has_goal': False,
102 | 'iteration': 1,
103 | }
104 |
105 | FIX_ENV = False
106 |
107 | # target network
108 | POLYAK = 0.
109 |
110 | # not important
111 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v23.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v23'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 12000
59 | N_TRAJ_BUFFER = 240000
60 | N_CBUF = 1000000 # TODO: change to 200000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v24.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v24'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-4
19 | PATIENCE = 4
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 12000
59 | N_TRAJ_BUFFER = 240000
60 | N_CBUF = 80000 # TODO: change to 200000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v25.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v25'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 0.1
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.01
9 | MAX_EXPLORE_EPS = 0.01
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 12000
59 | N_TRAJ_BUFFER = 240000
60 | N_CBUF = 80000 # TODO: change to 200000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v26.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v26'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 0.9
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.5
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 3e-4
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = False
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 12000
59 | N_TRAJ_BUFFER = 240000
60 | N_CBUF = 80000 # TODO: change to 200000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v27.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v27'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-8
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 12000
59 | N_TRAJ_BUFFER = 12000
60 | N_CBUF = 200000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v28.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v28'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = True
14 | DANGER_EXPLORE = False
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-8
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 12000
59 | N_TRAJ_BUFFER = 12000
60 | N_CBUF = 200000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v29.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v29'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 3e-4
18 | MIN_LR = 5e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = False
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 12000
59 | N_TRAJ_BUFFER = 12000
60 | N_CBUF = 200000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v3.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v3'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 0.9
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.5
10 | ALL_EXPLORE = True
11 | EXPLORE_WAY = 'exponential'
12 | NOMINAL_WAY = 'exponential'
13 |
14 | # training
15 | LR = 1e-3
16 | MIN_LR = 1e-5
17 | PATIENCE = 3
18 | BATCH = 256
19 | USE_SCHEDULER = True
20 | OPTIMIZER = 'Adam'
21 | CLIP_NORM = True
22 | ALL_LIE = False
23 | UPDATE_FREQ = 4
24 |
25 | # algorithm
26 | POTENTIAL_OBS = False
27 | VARIABLE_AGENT = False
28 | CBUF_BEFORE_RELABEL = True
29 | THRESHOLD = 5e-2
30 | SPATIAL_PROP = False
31 | n_candidates = 2000
32 |
33 | # dataset
34 | TRAIN_ON_HARD = False
35 | N_DATASET = 10
36 | N_VALID_DATASET = 50
37 | MAX_VISIT_TIME = 1000
38 |
39 | # relabel
40 | RELABEL = True
41 | DECAY_RELABEL = False
42 | REFINE_EPS = 1.0
43 | RELABEL_ONLY_AGENT = False
44 | ONLY_BOUNDARY = False
45 | DANGER_THRESHOLD = 1e-2
46 | DYNAMIC_RELABEL = False
47 |
48 | # buffer size
49 | N_TRAJ = N_EPOCH = 1000000000
50 | N_BUFFER = 0
51 | N_DYNAMIC_BUFFER = 3000
52 | N_TRAJ_BUFFER = 60000
53 | N_CBUF = 60000
54 |
55 | # training speed & validation
56 | N_EVALUATE = 800
57 | N_VALID = 800
58 | N_TRAJ_PER_EPOCH = 20
59 | N_ITER = 50
60 | N_WARMUP = 0
61 |
62 | # model
63 | MODEL = 'OriginGNNv10'
64 | PE_DIM = None
65 | HIDDEN_SIZE = 128
66 |
67 | # environment
68 | ENV_CONFIG = {
69 | 'num_agents': 3,
70 | 'SIZE': (3,3),
71 | 'agent_top_k': 2,
72 | 'obstacle_top_k': 1,
73 | 'PROB': (0.2,1.0),
74 | 'angle_embed': True,
75 | 'simple': False,
76 | }
77 | FIX_ENV = False
78 |
79 | # target network
80 | POLYAK = 0.
81 |
82 | # not important
83 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v30.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v30'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 3e-4
18 | MIN_LR = 5e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = False
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 40
28 | N_TRAJ_PER_UPDATE = 40
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 3000
59 | N_TRAJ_BUFFER = 24000
60 | N_CBUF = 800000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v31.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v31'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 3e-4
18 | MIN_LR = 5e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = False
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 40
28 | N_TRAJ_PER_UPDATE = 40
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 3000
59 | N_TRAJ_BUFFER = 24000
60 | N_CBUF = 800000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 512
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v32.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v32'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = False
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 | SHARE_SAMPLE_ACROSS_UPDATE = False
31 |
32 | # algorithm
33 | POTENTIAL_OBS = False
34 | VARIABLE_AGENT = False
35 | CBUF_BEFORE_RELABEL = True
36 | THRESHOLD = 2e-2
37 | LIE_DERIVE_SAFE = False
38 | SPATIAL_PROP = False
39 | n_candidates = 200
40 |
41 | # dataset
42 | TRAIN_ON_HARD = False
43 | N_DATASET = 10
44 | N_VALID_DATASET = 50
45 | MAX_VISIT_TIME = 1000
46 |
47 | # relabel
48 | RELABEL = True
49 | DECAY_RELABEL = False
50 | REFINE_EPS = 1.0
51 | RELABEL_ONLY_AGENT = False
52 | ONLY_BOUNDARY = False
53 | DANGER_THRESHOLD = 2e-2
54 | DYNAMIC_RELABEL = False
55 |
56 | # buffer size
57 | N_TRAJ = N_EPOCH = 1000000000
58 | N_BUFFER = 0
59 | N_DYNAMIC_BUFFER = 25600
60 | N_TRAJ_BUFFER = 240000
61 | N_CBUF = 800000
62 |
63 | # training speed & validation
64 | N_EVALUATE = 400
65 | N_VALID = 400
66 | N_WARMUP = 0
67 |
68 | # model
69 | MODEL = 'OriginGNNv11'
70 | PE_DIM = None
71 | HIDDEN_SIZE = 128
72 |
73 | # environment
74 | ENV_CONFIG = {
75 | 'hetero': True,
76 | 'num_agents': 3,
77 | 'SIZE': (3,3),
78 | 'agent_top_k': 2,
79 | 'obstacle_top_k': 2,
80 | 'agent_obs_radius': 1.5,
81 | 'obstacle_obs_radius': 1.5,
82 | 'PROB': (0.,30),
83 | 'angle_embed': True,
84 | 'simple': False,
85 | 'min_dist': 2,
86 | }
87 | OBS_CONFIG = {
88 | 'share_weight': True,
89 | 'rgraph_a': True,
90 | 'rgraph_o': True,
91 | 'has_goal': False,
92 | }
93 |
94 | OBS_CONFIG_DECOMPOSE = {
95 | 'share_weight': True,
96 | 'rgraph_a': True,
97 | 'rgraph_o': True,
98 | 'n_sub_o': (1,9),
99 | 'n_sub_a': (0,2),
100 | 'has_goal': False,
101 | 'iteration': 1,
102 | }
103 |
104 | FIX_ENV = False
105 |
106 | # target network
107 | POLYAK = 0.
108 |
109 | # not important
110 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v33.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v33'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 0.99
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.5
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 | SHARE_SAMPLE_ACROSS_UPDATE = True
31 |
32 | # algorithm
33 | POTENTIAL_OBS = False
34 | VARIABLE_AGENT = False
35 | CBUF_BEFORE_RELABEL = True
36 | THRESHOLD = 2e-2
37 | LIE_DERIVE_SAFE = False
38 | SPATIAL_PROP = False
39 | n_candidates = 200
40 |
41 | # dataset
42 | TRAIN_ON_HARD = False
43 | N_DATASET = 10
44 | N_VALID_DATASET = 50
45 | MAX_VISIT_TIME = 1000
46 |
47 | # relabel
48 | RELABEL = True
49 | DECAY_RELABEL = False
50 | REFINE_EPS = 1.0
51 | RELABEL_ONLY_AGENT = False
52 | ONLY_BOUNDARY = False
53 | DANGER_THRESHOLD = 2e-2
54 | DYNAMIC_RELABEL = False
55 |
56 | # buffer size
57 | N_TRAJ = N_EPOCH = 1000000000
58 | N_BUFFER = 0
59 | N_DYNAMIC_BUFFER = 12000
60 | N_TRAJ_BUFFER = 240000
61 | N_CBUF = 800000
62 |
63 | # training speed & validation
64 | N_EVALUATE = 400
65 | N_VALID = 400
66 | N_WARMUP = 0
67 |
68 | # model
69 | MODEL = 'OriginGNNv11'
70 | PE_DIM = None
71 | HIDDEN_SIZE = 128
72 |
73 | # environment
74 | ENV_CONFIG = {
75 | 'hetero': True,
76 | 'num_agents': 3,
77 | 'SIZE': (3,3),
78 | 'agent_top_k': 2,
79 | 'obstacle_top_k': 2,
80 | 'agent_obs_radius': 1.5,
81 | 'obstacle_obs_radius': 1.5,
82 | 'PROB': (0.,30),
83 | 'angle_embed': True,
84 | 'simple': False,
85 | 'min_dist': 1,
86 | }
87 | OBS_CONFIG = {
88 | 'share_weight': True,
89 | 'rgraph_a': True,
90 | 'rgraph_o': True,
91 | 'has_goal': False,
92 | }
93 |
94 | OBS_CONFIG_DECOMPOSE = {
95 | 'share_weight': True,
96 | 'rgraph_a': True,
97 | 'rgraph_o': True,
98 | 'n_sub_o': (1,9),
99 | 'n_sub_a': (0,2),
100 | 'has_goal': False,
101 | 'iteration': 1,
102 | }
103 |
104 | FIX_ENV = False
105 |
106 | # target network
107 | POLYAK = 0.
108 |
109 | # not important
110 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v34.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v34'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 3e-4
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = False
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 | SHARE_SAMPLE_ACROSS_UPDATE = True
31 |
32 | # algorithm
33 | POTENTIAL_OBS = False
34 | VARIABLE_AGENT = False
35 | CBUF_BEFORE_RELABEL = True
36 | THRESHOLD = 2e-2
37 | LIE_DERIVE_SAFE = False
38 | SPATIAL_PROP = False
39 | n_candidates = 200
40 |
41 | # dataset
42 | TRAIN_ON_HARD = False
43 | N_DATASET = 10
44 | N_VALID_DATASET = 50
45 | MAX_VISIT_TIME = 1000
46 |
47 | # relabel
48 | RELABEL = True
49 | DECAY_RELABEL = False
50 | REFINE_EPS = 1.0
51 | RELABEL_ONLY_AGENT = False
52 | ONLY_BOUNDARY = False
53 | DANGER_THRESHOLD = 2e-2
54 | DYNAMIC_RELABEL = False
55 |
56 | # buffer size
57 | N_TRAJ = N_EPOCH = 1000000000
58 | N_BUFFER = 0
59 | N_DYNAMIC_BUFFER = 12000
60 | N_TRAJ_BUFFER = 240000
61 | N_CBUF = 800000
62 |
63 | # training speed & validation
64 | N_EVALUATE = 400
65 | N_VALID = 400
66 | N_WARMUP = 0
67 |
68 | # model
69 | MODEL = 'OriginGNNv11'
70 | PE_DIM = None
71 | HIDDEN_SIZE = 128
72 |
73 | # environment
74 | ENV_CONFIG = {
75 | 'hetero': True,
76 | 'num_agents': 3,
77 | 'SIZE': (3,3),
78 | 'agent_top_k': 2,
79 | 'obstacle_top_k': 2,
80 | 'agent_obs_radius': 1.5,
81 | 'obstacle_obs_radius': 1.5,
82 | 'PROB': (0.,30),
83 | 'angle_embed': True,
84 | 'simple': False,
85 | 'min_dist': 1,
86 | }
87 | OBS_CONFIG = {
88 | 'share_weight': True,
89 | 'rgraph_a': True,
90 | 'rgraph_o': True,
91 | 'has_goal': False,
92 | }
93 |
94 | OBS_CONFIG_DECOMPOSE = {
95 | 'share_weight': True,
96 | 'rgraph_a': True,
97 | 'rgraph_o': True,
98 | 'n_sub_o': (1,9),
99 | 'n_sub_a': (0,2),
100 | 'has_goal': False,
101 | 'iteration': 1,
102 | }
103 |
104 | FIX_ENV = True
105 |
106 | # target network
107 | POLYAK = 0.
108 |
109 | # not important
110 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v35.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v35'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = True
14 | DANGER_EXPLORE = False
15 |
16 | # training
17 | LR = 3e-4
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = False
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 | SHARE_SAMPLE_ACROSS_UPDATE = True
31 |
32 | # algorithm
33 | POTENTIAL_OBS = False
34 | VARIABLE_AGENT = False
35 | CBUF_BEFORE_RELABEL = True
36 | THRESHOLD = 2e-2
37 | LIE_DERIVE_SAFE = False
38 | SPATIAL_PROP = False
39 | n_candidates = 200
40 |
41 | # dataset
42 | TRAIN_ON_HARD = False
43 | N_DATASET = 10
44 | N_VALID_DATASET = 50
45 | MAX_VISIT_TIME = 1000
46 |
47 | # relabel
48 | RELABEL = True
49 | DECAY_RELABEL = False
50 | REFINE_EPS = 1.0
51 | RELABEL_ONLY_AGENT = False
52 | ONLY_BOUNDARY = False
53 | DANGER_THRESHOLD = 2e-2
54 | DYNAMIC_RELABEL = False
55 |
56 | # buffer size
57 | N_TRAJ = N_EPOCH = 1000000000
58 | N_BUFFER = 0
59 | N_DYNAMIC_BUFFER = 1024
60 | N_TRAJ_BUFFER = 10000
61 | N_CBUF = 10000
62 |
63 | # training speed & validation
64 | N_EVALUATE = 400
65 | N_VALID = 400
66 | N_WARMUP = 0
67 |
68 | # model
69 | MODEL = 'OriginGNNv11'
70 | PE_DIM = None
71 | HIDDEN_SIZE = 128
72 |
73 | # environment
74 | ENV_CONFIG = {
75 | 'hetero': True,
76 | 'num_agents': 3,
77 | 'SIZE': (3,3),
78 | 'agent_top_k': 2,
79 | 'obstacle_top_k': 2,
80 | 'agent_obs_radius': 1.5,
81 | 'obstacle_obs_radius': 1.5,
82 | 'PROB': (0.,30),
83 | 'angle_embed': True,
84 | 'simple': False,
85 | 'min_dist': 1,
86 | }
87 | OBS_CONFIG = {
88 | 'share_weight': True,
89 | 'rgraph_a': True,
90 | 'rgraph_o': True,
91 | 'has_goal': False,
92 | }
93 |
94 | OBS_CONFIG_DECOMPOSE = {
95 | 'share_weight': True,
96 | 'rgraph_a': True,
97 | 'rgraph_o': True,
98 | 'n_sub_o': (1,9),
99 | 'n_sub_a': (0,2),
100 | 'has_goal': False,
101 | 'iteration': 1,
102 | }
103 |
104 | FIX_ENV = True
105 |
106 | # target network
107 | POLYAK = 0.
108 |
109 | # not important
110 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v36.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v36'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = True
14 | DANGER_EXPLORE = False
15 |
16 | # training
17 | LR = 3e-4
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = False
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 | SHARE_SAMPLE_ACROSS_UPDATE = True
31 |
32 | # algorithm
33 | POTENTIAL_OBS = False
34 | VARIABLE_AGENT = False
35 | CBUF_BEFORE_RELABEL = True
36 | THRESHOLD = 2e-2
37 | LIE_DERIVE_SAFE = False
38 | SPATIAL_PROP = False
39 | n_candidates = 10000
40 |
41 | # dataset
42 | TRAIN_ON_HARD = False
43 | N_DATASET = 10
44 | N_VALID_DATASET = 50
45 | MAX_VISIT_TIME = 1000
46 |
47 | # relabel
48 | RELABEL = True
49 | DECAY_RELABEL = False
50 | REFINE_EPS = 1.0
51 | RELABEL_ONLY_AGENT = False
52 | ONLY_BOUNDARY = False
53 | DANGER_THRESHOLD = 2e-2
54 | DYNAMIC_RELABEL = False
55 |
56 | # buffer size
57 | N_TRAJ = N_EPOCH = 1000000000
58 | N_BUFFER = 0
59 | N_DYNAMIC_BUFFER = 1024
60 | N_TRAJ_BUFFER = 10000
61 | N_CBUF = 10000
62 |
63 | # training speed & validation
64 | N_EVALUATE = 400
65 | N_VALID = 400
66 | N_WARMUP = 0
67 |
68 | # model
69 | MODEL = 'OriginGNNv11'
70 | PE_DIM = None
71 | HIDDEN_SIZE = 128
72 |
73 | # environment
74 | ENV_CONFIG = {
75 | 'hetero': True,
76 | 'num_agents': 3,
77 | 'SIZE': (3,3),
78 | 'agent_top_k': 2,
79 | 'obstacle_top_k': 2,
80 | 'agent_obs_radius': 1.5,
81 | 'obstacle_obs_radius': 1.5,
82 | 'PROB': (0.,30),
83 | 'angle_embed': True,
84 | 'simple': False,
85 | 'min_dist': 1,
86 | }
87 | OBS_CONFIG = {
88 | 'share_weight': True,
89 | 'rgraph_a': True,
90 | 'rgraph_o': True,
91 | 'has_goal': False,
92 | }
93 |
94 | OBS_CONFIG_DECOMPOSE = {
95 | 'share_weight': True,
96 | 'rgraph_a': True,
97 | 'rgraph_o': True,
98 | 'n_sub_o': (1,9),
99 | 'n_sub_a': (0,2),
100 | 'has_goal': False,
101 | 'iteration': 1,
102 | }
103 |
104 | FIX_ENV = True
105 |
106 | # target network
107 | POLYAK = 0.
108 |
109 | # not important
110 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v37.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v37'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = True
14 | DANGER_EXPLORE = False
15 |
16 | # training
17 | LR = 3e-4
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = False
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 80
29 | UPDATE_FREQ = 4
30 | SHARE_SAMPLE_ACROSS_UPDATE = True
31 |
32 | # algorithm
33 | POTENTIAL_OBS = False
34 | VARIABLE_AGENT = False
35 | CBUF_BEFORE_RELABEL = True
36 | THRESHOLD = 2e-2
37 | LIE_DERIVE_SAFE = False
38 | SPATIAL_PROP = False
39 | n_candidates = 10000
40 |
41 | # dataset
42 | TRAIN_ON_HARD = False
43 | N_DATASET = 10
44 | N_VALID_DATASET = 50
45 | MAX_VISIT_TIME = 1000
46 |
47 | # relabel
48 | RELABEL = True
49 | DECAY_RELABEL = False
50 | REFINE_EPS = 1.0
51 | RELABEL_ONLY_AGENT = False
52 | ONLY_BOUNDARY = False
53 | DANGER_THRESHOLD = 2e-2
54 | DYNAMIC_RELABEL = False
55 |
56 | # buffer size
57 | N_TRAJ = N_EPOCH = 1000000000
58 | N_BUFFER = 0
59 | N_DYNAMIC_BUFFER = 1024
60 | N_TRAJ_BUFFER = 10000
61 | N_CBUF = 10000
62 |
63 | # training speed & validation
64 | N_EVALUATE = 400
65 | N_VALID = 400
66 | N_WARMUP = 0
67 |
68 | # model
69 | MODEL = 'OriginGNNv11'
70 | PE_DIM = None
71 | HIDDEN_SIZE = 128
72 |
73 | # environment
74 | ENV_CONFIG = {
75 | 'hetero': True,
76 | 'num_agents': 3,
77 | 'SIZE': (3,3),
78 | 'agent_top_k': 2,
79 | 'obstacle_top_k': 2,
80 | 'agent_obs_radius': 1.5,
81 | 'obstacle_obs_radius': 1.5,
82 | 'PROB': (0.,30),
83 | 'angle_embed': True,
84 | 'simple': False,
85 | 'min_dist': 1,
86 | }
87 | OBS_CONFIG = {
88 | 'share_weight': True,
89 | 'rgraph_a': True,
90 | 'rgraph_o': True,
91 | 'has_goal': False,
92 | }
93 |
94 | OBS_CONFIG_DECOMPOSE = {
95 | 'share_weight': True,
96 | 'rgraph_a': True,
97 | 'rgraph_o': True,
98 | 'n_sub_o': (1,9),
99 | 'n_sub_a': (0,2),
100 | 'has_goal': False,
101 | 'iteration': 1,
102 | }
103 |
104 | FIX_ENV = True
105 |
106 | # target network
107 | POLYAK = 0.
108 |
109 | # not important
110 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v4.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v4'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 10
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 6000
59 | N_TRAJ_BUFFER = 120000
60 | N_CBUF = 20000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v5.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v5'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.2
9 | MAX_EXPLORE_EPS = 0.2
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 | SHARE_SAMPLE_ACROSS_UPDATE = True
31 |
32 | # algorithm
33 | POTENTIAL_OBS = False
34 | VARIABLE_AGENT = False
35 | CBUF_BEFORE_RELABEL = True
36 | THRESHOLD = 2e-2
37 | LIE_DERIVE_SAFE = False
38 | SPATIAL_PROP = False
39 | n_candidates = 200
40 |
41 | # dataset
42 | TRAIN_ON_HARD = False
43 | N_DATASET = 10
44 | N_VALID_DATASET = 50
45 | MAX_VISIT_TIME = 1000
46 |
47 | # relabel
48 | RELABEL = True
49 | DECAY_RELABEL = False
50 | REFINE_EPS = 1.0
51 | RELABEL_ONLY_AGENT = False
52 | ONLY_BOUNDARY = False
53 | DANGER_THRESHOLD = 2e-2
54 | DYNAMIC_RELABEL = False
55 |
56 | # buffer size
57 | N_TRAJ = N_EPOCH = 1000000000
58 | N_BUFFER = 0
59 | N_DYNAMIC_BUFFER = 12000
60 | N_TRAJ_BUFFER = 240000
61 | N_CBUF = 40000
62 |
63 | # training speed & validation
64 | N_EVALUATE = 400
65 | N_VALID = 400
66 | N_WARMUP = 0
67 |
68 | # model
69 | MODEL = 'OriginGNNv11'
70 | PE_DIM = None
71 | HIDDEN_SIZE = 128
72 |
73 | # environment
74 | ENV_CONFIG = {
75 | 'hetero': True,
76 | 'num_agents': 3,
77 | 'SIZE': (3,3),
78 | 'agent_top_k': 2,
79 | 'obstacle_top_k': 2,
80 | 'agent_obs_radius': 1.5,
81 | 'obstacle_obs_radius': 1.5,
82 | 'PROB': (0.,30),
83 | 'angle_embed': True,
84 | 'simple': False,
85 | 'min_dist': 2,
86 | }
87 | OBS_CONFIG = {
88 | 'share_weight': True,
89 | 'rgraph_a': True,
90 | 'rgraph_o': True,
91 | 'has_goal': False,
92 | }
93 |
94 | OBS_CONFIG_DECOMPOSE = {
95 | 'share_weight': True,
96 | 'rgraph_a': True,
97 | 'rgraph_o': True,
98 | 'n_sub_o': (1,9),
99 | 'n_sub_a': (0,2),
100 | 'has_goal': False,
101 | 'iteration': 1,
102 | }
103 |
104 | FIX_ENV = False
105 |
106 | # target network
107 | POLYAK = 0.
108 |
109 | # not important
110 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v6.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v6'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.2
9 | MAX_EXPLORE_EPS = 0.2
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 10
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 200
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 6000
59 | N_TRAJ_BUFFER = 120000
60 | N_CBUF = 20000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v7.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v7'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.2
9 | MAX_EXPLORE_EPS = 0.2
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 40
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 | SHARE_SAMPLE_ACROSS_UPDATE = True
31 |
32 | # algorithm
33 | POTENTIAL_OBS = False
34 | VARIABLE_AGENT = False
35 | CBUF_BEFORE_RELABEL = True
36 | THRESHOLD = 2e-2
37 | LIE_DERIVE_SAFE = False
38 | SPATIAL_PROP = False
39 | n_candidates = 200
40 |
41 | # dataset
42 | TRAIN_ON_HARD = False
43 | N_DATASET = 10
44 | N_VALID_DATASET = 50
45 | MAX_VISIT_TIME = 1000
46 |
47 | # relabel
48 | RELABEL = True
49 | DECAY_RELABEL = False
50 | REFINE_EPS = 1.0
51 | RELABEL_ONLY_AGENT = False
52 | ONLY_BOUNDARY = False
53 | DANGER_THRESHOLD = 2e-2
54 | DYNAMIC_RELABEL = False
55 |
56 | # buffer size
57 | N_TRAJ = N_EPOCH = 1000000000
58 | N_BUFFER = 0
59 | N_DYNAMIC_BUFFER = 12000
60 | N_TRAJ_BUFFER = 240000
61 | N_CBUF = 80000
62 |
63 | # training speed & validation
64 | N_EVALUATE = 400
65 | N_VALID = 400
66 | N_WARMUP = 0
67 |
68 | # model
69 | MODEL = 'OriginGNNv11'
70 | PE_DIM = None
71 | HIDDEN_SIZE = 128
72 |
73 | # environment
74 | ENV_CONFIG = {
75 | 'hetero': True,
76 | 'num_agents': 3,
77 | 'SIZE': (3,3),
78 | 'agent_top_k': 2,
79 | 'obstacle_top_k': 2,
80 | 'agent_obs_radius': 1.5,
81 | 'obstacle_obs_radius': 1.5,
82 | 'PROB': (0.,30),
83 | 'angle_embed': True,
84 | 'simple': False,
85 | 'min_dist': 2,
86 | }
87 | OBS_CONFIG = {
88 | 'share_weight': True,
89 | 'rgraph_a': True,
90 | 'rgraph_o': True,
91 | 'has_goal': False,
92 | }
93 |
94 | OBS_CONFIG_DECOMPOSE = {
95 | 'share_weight': True,
96 | 'rgraph_a': True,
97 | 'rgraph_o': True,
98 | 'n_sub_o': (1,9),
99 | 'n_sub_a': (0,2),
100 | 'has_goal': False,
101 | 'iteration': 1,
102 | }
103 |
104 | FIX_ENV = False
105 |
106 | # target network
107 | POLYAK = 0.
108 |
109 | # not important
110 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v8.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v8'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 0.9
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.5
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 | SHARE_SAMPLE_ACROSS_UPDATE = True
31 |
32 | # algorithm
33 | POTENTIAL_OBS = False
34 | VARIABLE_AGENT = False
35 | CBUF_BEFORE_RELABEL = True
36 | THRESHOLD = 2e-2
37 | LIE_DERIVE_SAFE = False
38 | SPATIAL_PROP = False
39 | n_candidates = 200
40 |
41 | # dataset
42 | TRAIN_ON_HARD = False
43 | N_DATASET = 10
44 | N_VALID_DATASET = 50
45 | MAX_VISIT_TIME = 1000
46 |
47 | # relabel
48 | RELABEL = True
49 | DECAY_RELABEL = False
50 | REFINE_EPS = 1.0
51 | RELABEL_ONLY_AGENT = False
52 | ONLY_BOUNDARY = False
53 | DANGER_THRESHOLD = 2e-2
54 | DYNAMIC_RELABEL = False
55 |
56 | # buffer size
57 | N_TRAJ = N_EPOCH = 1000000000
58 | N_BUFFER = 0
59 | N_DYNAMIC_BUFFER = 0
60 | N_TRAJ_BUFFER = 480000
61 | N_CBUF_OBSTACLE = 320000
62 | N_CBUF_AGENT = 320000
63 |
64 | # training speed & validation
65 | N_EVALUATE = 400
66 | N_VALID = 400
67 | N_WARMUP = 0
68 |
69 | # model
70 | MODEL = 'OriginGNNv11'
71 | PE_DIM = None
72 | HIDDEN_SIZE = 128
73 |
74 | # environment
75 | ENV_CONFIG = {
76 | 'hetero': True,
77 | 'num_agents': 3,
78 | 'SIZE': (3,3),
79 | 'agent_top_k': 2,
80 | 'obstacle_top_k': 2,
81 | 'agent_obs_radius': 1.5,
82 | 'obstacle_obs_radius': 1.5,
83 | 'PROB': (0.,30),
84 | 'angle_embed': True,
85 | 'simple': False,
86 | 'min_dist': 2,
87 | }
88 | OBS_CONFIG = {
89 | 'share_weight': True,
90 | 'rgraph_a': True,
91 | 'rgraph_o': True,
92 | 'has_goal': False,
93 | }
94 |
95 | OBS_CONFIG_DECOMPOSE = {
96 | 'share_weight': True,
97 | 'rgraph_a': True,
98 | 'rgraph_o': True,
99 | 'n_sub_o': (1,9),
100 | 'n_sub_a': (0,2),
101 | 'has_goal': False,
102 | 'iteration': 1,
103 | }
104 |
105 | FIX_ENV = False
106 |
107 | # target network
108 | POLYAK = 0.
109 |
110 | # not important
111 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/drone/v9.py:
--------------------------------------------------------------------------------
1 | project_name = 'drone'
2 | env_name = 'DroneEnv'
3 | version_name = 'v9'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 0.9
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.5
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 20
29 | UPDATE_FREQ = 4
30 | SHARE_SAMPLE_ACROSS_UPDATE = True
31 |
32 | # algorithm
33 | POTENTIAL_OBS = False
34 | VARIABLE_AGENT = False
35 | CBUF_BEFORE_RELABEL = True
36 | THRESHOLD = 2e-2
37 | LIE_DERIVE_SAFE = False
38 | SPATIAL_PROP = False
39 | n_candidates = 200
40 |
41 | # dataset
42 | TRAIN_ON_HARD = False
43 | N_DATASET = 10
44 | N_VALID_DATASET = 50
45 | MAX_VISIT_TIME = 1000
46 |
47 | # relabel
48 | RELABEL = True
49 | DECAY_RELABEL = False
50 | REFINE_EPS = 1.0
51 | RELABEL_ONLY_AGENT = False
52 | ONLY_BOUNDARY = False
53 | DANGER_THRESHOLD = 2e-2
54 | DYNAMIC_RELABEL = False
55 |
56 | # buffer size
57 | N_TRAJ = N_EPOCH = 1000000000
58 | N_BUFFER = 0
59 | N_DYNAMIC_BUFFER = 3000
60 | N_TRAJ_BUFFER = 480000
61 | N_CBUF_OBSTACLE = 320000
62 | N_CBUF_AGENT = 320000
63 |
64 | # training speed & validation
65 | N_EVALUATE = 400
66 | N_VALID = 400
67 | N_WARMUP = 0
68 |
69 | # model
70 | MODEL = 'OriginGNNv11'
71 | PE_DIM = None
72 | HIDDEN_SIZE = 128
73 |
74 | # environment
75 | ENV_CONFIG = {
76 | 'hetero': True,
77 | 'num_agents': 3,
78 | 'SIZE': (3,3),
79 | 'agent_top_k': 2,
80 | 'obstacle_top_k': 2,
81 | 'agent_obs_radius': 1.5,
82 | 'obstacle_obs_radius': 1.5,
83 | 'PROB': (0.,30),
84 | 'angle_embed': True,
85 | 'simple': False,
86 | 'min_dist': 2,
87 | }
88 | OBS_CONFIG = {
89 | 'share_weight': True,
90 | 'rgraph_a': True,
91 | 'rgraph_o': True,
92 | 'has_goal': False,
93 | }
94 |
95 | OBS_CONFIG_DECOMPOSE = {
96 | 'share_weight': True,
97 | 'rgraph_a': True,
98 | 'rgraph_o': True,
99 | 'n_sub_o': (1,9),
100 | 'n_sub_a': (0,2),
101 | 'has_goal': False,
102 | 'iteration': 1,
103 | }
104 |
105 | FIX_ENV = False
106 |
107 | # target network
108 | POLYAK = 0.
109 |
110 | # not important
111 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v100.py:
--------------------------------------------------------------------------------
1 | version_name = 'v100'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 8,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 6,
7 | 'obstacle_top_k': 2,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = False
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0
19 | MAX_EXPLORE_EPS = 0.5
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = False
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = False
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 |
30 |
31 | PE_DIM = 40
32 | N_TRAJ = N_EPOCH = 1000000000
33 | N_BUFFER = 20
34 | N_CBUF = 1000
35 |
36 | POLYAK = 0.99
37 | SPATIAL_PROP = False
38 | n_candidates = 2000
39 | BATCH = 1024
40 | N_ITER = 100
41 | N_TRAJ_PER_EPOCH = 10
42 | N_EVALUATE = 100
43 | N_VALID = 100
44 | N_WARMUP = 0
45 | N_DATASET = 10
46 | N_VALID_DATASET = 50
47 | THRESHOLD = 1e-2
48 | HIDDEN_SIZE = 128
49 | RELABEL = True
50 | EXPLORE_WAY = 'exponential'
51 | NOMINAL_WAY = 'exponential'
52 | DECAY_RELABEL = False
53 | USE_SCHEDULER = True
54 | OPTIMIZER = 'Adam'
55 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v101.py:
--------------------------------------------------------------------------------
1 | version_name = 'v101'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = True
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.01
19 | MAX_EXPLORE_EPS = 0.1
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = False
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = True
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 |
30 | MODEL = 'OriginGNNv6'
31 |
32 |
33 | PE_DIM = None
34 | N_TRAJ = N_EPOCH = 1000000000
35 | N_BUFFER = 20
36 | N_CBUF = 1000
37 |
38 | POLYAK = 0.99
39 | SPATIAL_PROP = False
40 | n_candidates = 2000
41 | BATCH = 1024
42 | N_ITER = 100
43 | N_TRAJ_PER_EPOCH = 10
44 | N_EVALUATE = 100
45 | N_VALID = 100
46 | N_WARMUP = 10
47 | N_DATASET = 10
48 | N_VALID_DATASET = 50
49 | THRESHOLD = 1e-2
50 | HIDDEN_SIZE = 128
51 | RELABEL = True
52 | EXPLORE_WAY = 'exponential'
53 | NOMINAL_WAY = 'exponential'
54 | DECAY_RELABEL = False
55 | USE_SCHEDULER = True
56 | OPTIMIZER = 'Adam'
57 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v102.py:
--------------------------------------------------------------------------------
1 | version_name = 'v102'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = True
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.01
19 | MAX_EXPLORE_EPS = 0.1
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = False
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = True
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 |
30 | MODEL = 'OriginGNNv5'
31 |
32 |
33 | PE_DIM = None
34 | N_TRAJ = N_EPOCH = 1000000000
35 | N_BUFFER = 20
36 | N_CBUF = 1000
37 |
38 | POLYAK = 0.99
39 | SPATIAL_PROP = False
40 | n_candidates = 2000
41 | BATCH = 1024
42 | N_ITER = 100
43 | N_TRAJ_PER_EPOCH = 10
44 | N_EVALUATE = 100
45 | N_VALID = 100
46 | N_WARMUP = 10
47 | N_DATASET = 10
48 | N_VALID_DATASET = 50
49 | THRESHOLD = 1e-2
50 | HIDDEN_SIZE = 128
51 | RELABEL = True
52 | EXPLORE_WAY = 'exponential'
53 | NOMINAL_WAY = 'exponential'
54 | DECAY_RELABEL = False
55 | USE_SCHEDULER = True
56 | OPTIMIZER = 'Adam'
57 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v103.py:
--------------------------------------------------------------------------------
1 | version_name = 'v103'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = True
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.01
19 | MAX_EXPLORE_EPS = 0.1
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = False
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = True
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 |
30 | MODEL = 'OriginGNNv8'
31 |
32 |
33 | PE_DIM = None
34 | N_TRAJ = N_EPOCH = 1000000000
35 | N_BUFFER = 20
36 | N_CBUF = 1000
37 |
38 | POLYAK = 0.99
39 | SPATIAL_PROP = False
40 | n_candidates = 2000
41 | BATCH = 1024
42 | N_ITER = 100
43 | N_TRAJ_PER_EPOCH = 10
44 | N_EVALUATE = 100
45 | N_VALID = 100
46 | N_WARMUP = 10
47 | N_DATASET = 10
48 | N_VALID_DATASET = 50
49 | THRESHOLD = 1e-2
50 | HIDDEN_SIZE = 128
51 | RELABEL = True
52 | EXPLORE_WAY = 'exponential'
53 | NOMINAL_WAY = 'exponential'
54 | DECAY_RELABEL = False
55 | USE_SCHEDULER = True
56 | OPTIMIZER = 'Adam'
57 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v104.py:
--------------------------------------------------------------------------------
1 | version_name = 'v104'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = False
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.8
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.2
19 | MAX_EXPLORE_EPS = 1.0
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = False
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = True
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 |
30 | MODEL = 'OriginGNNv8'
31 |
32 |
33 | PE_DIM = None
34 | N_TRAJ = N_EPOCH = 1000000000
35 | N_BUFFER = 20
36 | N_CBUF = 1000
37 |
38 | POLYAK = 0.99
39 | SPATIAL_PROP = False
40 | n_candidates = 2000
41 | BATCH = 1024
42 | N_ITER = 100
43 | N_TRAJ_PER_EPOCH = 10
44 | N_EVALUATE = 100
45 | N_VALID = 100
46 | N_WARMUP = 10
47 | N_DATASET = 10
48 | N_VALID_DATASET = 50
49 | THRESHOLD = 1e-2
50 | HIDDEN_SIZE = 128
51 | RELABEL = True
52 | EXPLORE_WAY = 'exponential'
53 | NOMINAL_WAY = 'exponential'
54 | DECAY_RELABEL = False
55 | USE_SCHEDULER = True
56 | OPTIMIZER = 'Adam'
57 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v105.py:
--------------------------------------------------------------------------------
1 | version_name = 'v105'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = False
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.1
19 | MAX_EXPLORE_EPS = 1.0
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = False
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = False
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 |
30 | MODEL = 'OriginGNNv6'
31 |
32 |
33 | PE_DIM = 40
34 | N_TRAJ = N_EPOCH = 1000000000
35 | N_BUFFER = 10000
36 | N_CBUF = 1000
37 |
38 | POLYAK = 0.99
39 | SPATIAL_PROP = False
40 | n_candidates = 2000
41 | BATCH = 256
42 | N_ITER = 20
43 | N_TRAJ_PER_EPOCH = 10
44 | N_EVALUATE = 100
45 | N_VALID = 100
46 | N_WARMUP = 10
47 | N_DATASET = 10
48 | N_VALID_DATASET = 50
49 | THRESHOLD = 1e-2
50 | HIDDEN_SIZE = 128
51 | RELABEL = True
52 | EXPLORE_WAY = 'exponential'
53 | NOMINAL_WAY = 'exponential'
54 | DECAY_RELABEL = False
55 | USE_SCHEDULER = False
56 | OPTIMIZER = 'Adam'
57 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v106.py:
--------------------------------------------------------------------------------
1 | version_name = 'v106'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = False
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.01
19 | MAX_EXPLORE_EPS = 0.1
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = True
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = True
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 |
30 | MODEL = 'OriginGNNv8'
31 |
32 |
33 | PE_DIM = None
34 | N_TRAJ = N_EPOCH = 1000000000
35 | N_BUFFER = 20
36 | N_CBUF = 1000
37 | MAX_VISIT_TIME = 1000
38 |
39 | POLYAK = 0.99
40 | SPATIAL_PROP = False
41 | n_candidates = 2000
42 | BATCH = 256
43 | N_ITER = 50
44 | N_TRAJ_PER_EPOCH = 10
45 | N_EVALUATE = 100
46 | N_VALID = 100
47 | N_WARMUP = 10
48 | N_DATASET = 10
49 | N_VALID_DATASET = 50
50 | THRESHOLD = 1e-2
51 | HIDDEN_SIZE = 128
52 | RELABEL = True
53 | EXPLORE_WAY = 'exponential'
54 | NOMINAL_WAY = 'exponential'
55 | DECAY_RELABEL = False
56 | USE_SCHEDULER = True
57 | OPTIMIZER = 'Adam'
58 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v107.py:
--------------------------------------------------------------------------------
1 | version_name = 'v107'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = False
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.01
19 | MAX_EXPLORE_EPS = 0.1
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = True
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = True
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 | CLIP_NORM = True
30 |
31 | MODEL = 'OriginGNNv6'
32 |
33 |
34 | PE_DIM = 40
35 | N_TRAJ = N_EPOCH = 1000000000
36 | N_BUFFER = 20
37 | N_CBUF = 1000
38 | MAX_VISIT_TIME = 1000
39 |
40 | POLYAK = 0.99
41 | SPATIAL_PROP = False
42 | n_candidates = 2000
43 | BATCH = 1024
44 | N_ITER = 50
45 | N_TRAJ_PER_EPOCH = 10
46 | N_EVALUATE = 100
47 | N_VALID = 100
48 | N_WARMUP = 10
49 | N_DATASET = 10
50 | N_VALID_DATASET = 50
51 | THRESHOLD = 1e-2
52 | HIDDEN_SIZE = 256
53 | RELABEL = True
54 | EXPLORE_WAY = 'exponential'
55 | NOMINAL_WAY = 'exponential'
56 | DECAY_RELABEL = False
57 | USE_SCHEDULER = True
58 | OPTIMIZER = 'Adam'
59 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v108.py:
--------------------------------------------------------------------------------
1 | version_name = 'v108'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 8,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 6,
7 | 'obstacle_top_k': 2,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = False
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.01
19 | MAX_EXPLORE_EPS = 1.0
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = True
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = True
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 | CLIP_NORM = True
30 |
31 | MODEL = 'OriginGNNv6'
32 |
33 |
34 | PE_DIM = 40
35 | N_TRAJ = N_EPOCH = 1000000000
36 | N_BUFFER = 10000
37 | N_CBUF = 0
38 | MAX_VISIT_TIME = 1000
39 |
40 | POLYAK = 0.99
41 | SPATIAL_PROP = False
42 | n_candidates = 200
43 | BATCH = 128
44 | N_ITER = 50
45 | N_TRAJ_PER_EPOCH = 10
46 | N_EVALUATE = 100
47 | N_VALID = 100
48 | N_WARMUP = 0
49 | N_DATASET = 10
50 | N_VALID_DATASET = 50
51 | THRESHOLD = 1e-2
52 | HIDDEN_SIZE = 256
53 | RELABEL = True
54 | EXPLORE_WAY = 'exponential'
55 | NOMINAL_WAY = 'exponential'
56 | DECAY_RELABEL = True
57 | USE_SCHEDULER = True
58 | OPTIMIZER = 'Adam'
59 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v109.py:
--------------------------------------------------------------------------------
1 | version_name = 'v109'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.5,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = False
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.01
19 | MAX_EXPLORE_EPS = 0.1
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = True
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = False
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 | DYNAMIC_RELABEL = True
30 | CLIP_NORM = True
31 |
32 | MODEL = 'OriginGNNv8'
33 |
34 |
35 | PE_DIM = None
36 | N_TRAJ = N_EPOCH = 1000000000
37 | N_BUFFER = 10000
38 | N_CBUF = 0
39 | MAX_VISIT_TIME = 1000
40 |
41 | POLYAK = 0.99
42 | SPATIAL_PROP = False
43 | n_candidates = 2000
44 | BATCH = 256
45 | N_ITER = 50
46 | N_TRAJ_PER_EPOCH = 10
47 | N_EVALUATE = 100
48 | N_VALID = 100
49 | N_WARMUP = 10
50 | N_DATASET = 10
51 | N_VALID_DATASET = 50
52 | THRESHOLD = 1e-2
53 | HIDDEN_SIZE = 128
54 | RELABEL = True
55 | EXPLORE_WAY = 'exponential'
56 | NOMINAL_WAY = 'exponential'
57 | DECAY_RELABEL = False
58 | USE_SCHEDULER = True
59 | OPTIMIZER = 'Adam'
60 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v110.py:
--------------------------------------------------------------------------------
1 | version_name = 'v110'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.5,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = False
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.01
19 | MAX_EXPLORE_EPS = 0.1
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = True
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = False
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 | DYNAMIC_RELABEL = False
30 | CLIP_NORM = True
31 |
32 | MODEL = 'OriginGNNv8'
33 |
34 |
35 | PE_DIM = None
36 | N_TRAJ = N_EPOCH = 1000000000
37 | N_BUFFER = 1000000000
38 | N_DYNAMIC_BUFFER = 3000
39 | N_TRAJ_BUFFER = 60000
40 | N_CBUF = 60000
41 | MAX_VISIT_TIME = 1000
42 |
43 | POLYAK = 0.
44 | SPATIAL_PROP = False
45 | n_candidates = 2000
46 | BATCH = 64
47 | N_ITER = 50
48 | N_TRAJ_PER_EPOCH = 10
49 | N_EVALUATE = 100
50 | N_VALID = 100
51 | N_WARMUP = 0
52 | N_DATASET = 10
53 | N_VALID_DATASET = 50
54 | THRESHOLD = 1e-2
55 | HIDDEN_SIZE = 128
56 | RELABEL = True
57 | EXPLORE_WAY = 'exponential'
58 | NOMINAL_WAY = 'exponential'
59 | DECAY_RELABEL = False
60 | USE_SCHEDULER = True
61 | OPTIMIZER = 'Adam'
62 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v111.py:
--------------------------------------------------------------------------------
1 | version_name = 'v111'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 8,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 6,
7 | 'obstacle_top_k': 2,
8 | 'PROB': (0.2,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = False
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.01
19 | MAX_EXPLORE_EPS = 1.0
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = True
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = False
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 | DYNAMIC_RELABEL = False
30 | CLIP_NORM = True
31 |
32 | MODEL = 'OriginGNNv8'
33 |
34 |
35 | PE_DIM = None
36 | N_TRAJ = N_EPOCH = 1000000000
37 | N_BUFFER = 1000000000
38 | N_DYNAMIC_BUFFER = 3000
39 | N_TRAJ_BUFFER = 60000
40 | N_CBUF = 60000
41 | MAX_VISIT_TIME = 1000
42 |
43 | POLYAK = 0.
44 | SPATIAL_PROP = False
45 | n_candidates = 2000
46 | BATCH = 64
47 | N_ITER = 50
48 | N_TRAJ_PER_EPOCH = 10
49 | N_EVALUATE = 100
50 | N_VALID = 100
51 | N_WARMUP = 0
52 | N_DATASET = 10
53 | N_VALID_DATASET = 50
54 | THRESHOLD = 1e-2
55 | HIDDEN_SIZE = 128
56 | RELABEL = True
57 | EXPLORE_WAY = 'exponential'
58 | NOMINAL_WAY = 'exponential'
59 | DECAY_RELABEL = False
60 | USE_SCHEDULER = True
61 | OPTIMIZER = 'Adam'
62 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v112.py:
--------------------------------------------------------------------------------
1 | version_name = 'v112'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.2,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = False
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.01
19 | MAX_EXPLORE_EPS = 0.5
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = False
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = False
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 | DYNAMIC_RELABEL = False
30 | CLIP_NORM = True
31 |
32 | MODEL = 'OriginGNNv8'
33 |
34 |
35 | PE_DIM = None
36 | N_TRAJ = N_EPOCH = 1000000000
37 | N_BUFFER = 1000000000
38 | N_DYNAMIC_BUFFER = 10000
39 | N_TRAJ_BUFFER = 60000
40 | N_CBUF = 60000
41 | MAX_VISIT_TIME = 1000
42 |
43 | POLYAK = 0.
44 | SPATIAL_PROP = False
45 | n_candidates = 2000
46 | BATCH = 64
47 | N_ITER = 50
48 | N_TRAJ_PER_EPOCH = 10
49 | N_EVALUATE = 100
50 | N_VALID = 100
51 | N_WARMUP = 0
52 | N_DATASET = 10
53 | N_VALID_DATASET = 50
54 | THRESHOLD = 5e-2
55 | HIDDEN_SIZE = 128
56 | RELABEL = True
57 | EXPLORE_WAY = 'exponential'
58 | NOMINAL_WAY = 'exponential'
59 | DECAY_RELABEL = False
60 | USE_SCHEDULER = True
61 | OPTIMIZER = 'Adam'
62 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v113.py:
--------------------------------------------------------------------------------
1 | version_name = 'v113'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.2,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = False
13 |
14 | LR = 5e-3
15 | MIN_LR = 1e-5
16 | PATIENCE = 2
17 | DECAY_EXPLORE_RATE = 0.9
18 | DECAY_NOMINAL_RATE = 0.
19 | MIN_EXPLORE_EPS = 0.01
20 | MAX_EXPLORE_EPS = 0.5
21 | UPDATE_FREQ = 16
22 |
23 | POTENTIAL_OBS = False
24 | TRAIN_ON_HARD = False
25 | VARIABLE_AGENT = False
26 | CBUF_BEFORE_RELABEL = True
27 | REFINE_EPS = 1.0
28 | RELABEL_ONLY_AGENT = False
29 | ALL_LIE = False
30 | ONLY_BOUNDARY = False
31 | DANGER_THRESHOLD = 0
32 | DYNAMIC_RELABEL = False
33 | CLIP_NORM = True
34 |
35 | MODEL = 'OriginGNNv8'
36 |
37 |
38 | PE_DIM = None
39 | N_TRAJ = N_EPOCH = 1000000000
40 | N_BUFFER = 1000000000
41 | N_DYNAMIC_BUFFER = 2000
42 | N_TRAJ_BUFFER = 60000
43 | N_CBUF = 5000
44 | MAX_VISIT_TIME = 1000
45 |
46 | POLYAK = 0.
47 | SPATIAL_PROP = False
48 | n_candidates = 2000
49 | BATCH = 64
50 | N_ITER = 50
51 | N_TRAJ_PER_EPOCH = 10
52 | N_EVALUATE = 100
53 | N_VALID = 100
54 | N_WARMUP = 0
55 | N_DATASET = 10
56 | N_VALID_DATASET = 50
57 | THRESHOLD = 2e-2
58 | HIDDEN_SIZE = 128
59 | RELABEL = True
60 | EXPLORE_WAY = 'exponential'
61 | NOMINAL_WAY = 'exponential'
62 | DECAY_RELABEL = False
63 | USE_SCHEDULER = True
64 | OPTIMIZER = 'Adam'
65 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v114.py:
--------------------------------------------------------------------------------
1 | version_name = 'v114'
2 |
3 | # explore
4 | DECAY_EXPLORE_RATE = 0.9
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.01
7 | MAX_EXPLORE_EPS = 0.5
8 | EXPLORE_WAY = 'exponential'
9 | NOMINAL_WAY = 'exponential'
10 |
11 | # training
12 | LR = 3e-4
13 | MIN_LR = 1e-8
14 | PATIENCE = 2
15 | BATCH = 256
16 | USE_SCHEDULER = True
17 | OPTIMIZER = 'Adam'
18 | CLIP_NORM = True
19 | ALL_LIE = False
20 |
21 | # algorithm
22 | POTENTIAL_OBS = False
23 | VARIABLE_AGENT = False
24 | CBUF_BEFORE_RELABEL = True
25 | THRESHOLD = 2e-2
26 | SPATIAL_PROP = False
27 | n_candidates = 2000
28 |
29 | # dataset
30 | TRAIN_ON_HARD = False
31 | N_DATASET = 10
32 | N_VALID_DATASET = 50
33 | MAX_VISIT_TIME = 1000
34 |
35 | # relabel
36 | RELABEL = True
37 | DECAY_RELABEL = False
38 | REFINE_EPS = 1.0
39 | RELABEL_ONLY_AGENT = False
40 | ONLY_BOUNDARY = False
41 | DANGER_THRESHOLD = 0
42 | DYNAMIC_RELABEL = False
43 |
44 | # buffer size
45 | N_TRAJ = N_EPOCH = 1000000000
46 | N_BUFFER = 1000000000
47 | N_DYNAMIC_BUFFER = 10000
48 | N_TRAJ_BUFFER = 60000
49 | N_CBUF = 60000
50 |
51 | # training speed & validation
52 | UPDATE_FREQ = 4
53 | N_EVALUATE = 400
54 | N_VALID = 400
55 | N_ITER = 50
56 | N_TRAJ_PER_EPOCH = 10
57 | N_WARMUP = 0
58 |
59 | # model
60 | MODEL = 'OriginGNNv8'
61 | PE_DIM = None
62 | HIDDEN_SIZE = 128
63 |
64 | # environment
65 | ENV_CONFIG = {
66 | 'num_agents': 3,
67 | 'SIZE': (3,3),
68 | 'agent_top_k': 2,
69 | 'obstacle_top_k': 1,
70 | 'PROB': (0.2,1.0),
71 | 'simple': False,
72 | }
73 | FIX_ENV = False
74 |
75 | # target network
76 | POLYAK = 0.
77 |
78 | # not important
79 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v114_infer.py:
--------------------------------------------------------------------------------
1 | version_name = 'v114'
2 |
3 | # explore
4 | DECAY_EXPLORE_RATE = 0.9
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.01
7 | MAX_EXPLORE_EPS = 0.5
8 | EXPLORE_WAY = 'exponential'
9 | NOMINAL_WAY = 'exponential'
10 |
11 | # training
12 | LR = 3e-4
13 | MIN_LR = 1e-8
14 | PATIENCE = 2
15 | BATCH = 256
16 | USE_SCHEDULER = True
17 | OPTIMIZER = 'Adam'
18 | CLIP_NORM = True
19 | ALL_LIE = False
20 |
21 | # algorithm
22 | POTENTIAL_OBS = False
23 | VARIABLE_AGENT = False
24 | CBUF_BEFORE_RELABEL = True
25 | THRESHOLD = 2e-2
26 | SPATIAL_PROP = False
27 | n_candidates = 2000
28 |
29 | # dataset
30 | TRAIN_ON_HARD = False
31 | N_DATASET = 10
32 | N_VALID_DATASET = 50
33 | MAX_VISIT_TIME = 1000
34 |
35 | # relabel
36 | RELABEL = True
37 | DECAY_RELABEL = False
38 | REFINE_EPS = 1.0
39 | RELABEL_ONLY_AGENT = False
40 | ONLY_BOUNDARY = False
41 | DANGER_THRESHOLD = 0
42 | DYNAMIC_RELABEL = False
43 |
44 | # buffer size
45 | N_TRAJ = N_EPOCH = 1000000000
46 | N_BUFFER = 1000000000
47 | N_DYNAMIC_BUFFER = 10000
48 | N_TRAJ_BUFFER = 60000
49 | N_CBUF = 60000
50 |
51 | # training speed & validation
52 | UPDATE_FREQ = 4
53 | N_EVALUATE = 400
54 | N_VALID = 400
55 | N_ITER = 50
56 | N_TRAJ_PER_EPOCH = 10
57 | N_WARMUP = 0
58 |
59 | # model
60 | MODEL = 'OriginGNNv8'
61 | PE_DIM = None
62 | HIDDEN_SIZE = 128
63 |
64 | # environment
65 | ENV_CONFIG = {
66 | 'num_agents': 3,
67 | 'SIZE': (3,3),
68 | 'agent_top_k': 2,
69 | 'obstacle_top_k': 1,
70 | 'PROB': (0.2,1.0),
71 | 'simple': False,
72 | }
73 | FIX_ENV = False
74 |
75 | # target network
76 | POLYAK = 0.
77 |
78 | # not important
79 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v115.py:
--------------------------------------------------------------------------------
1 | version_name = 'v115'
2 |
3 | # explore
4 | DECAY_EXPLORE_RATE = 0.9
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.0
7 | MAX_EXPLORE_EPS = 0.5
8 | EXPLORE_WAY = 'exponential'
9 | NOMINAL_WAY = 'exponential'
10 |
11 | # training
12 | LR = 3e-4
13 | MIN_LR = 1e-8
14 | PATIENCE = 2
15 | BATCH = 256
16 | USE_SCHEDULER = True
17 | OPTIMIZER = 'Adam'
18 | CLIP_NORM = True
19 | ALL_LIE = False
20 |
21 | # algorithm
22 | POTENTIAL_OBS = False
23 | VARIABLE_AGENT = False
24 | CBUF_BEFORE_RELABEL = True
25 | THRESHOLD = 2e-2
26 | SPATIAL_PROP = False
27 | n_candidates = 2000
28 |
29 | # dataset
30 | TRAIN_ON_HARD = False
31 | N_DATASET = 10
32 | N_VALID_DATASET = 50
33 | MAX_VISIT_TIME = 1000
34 |
35 | # relabel
36 | RELABEL = True
37 | DECAY_RELABEL = False
38 | REFINE_EPS = 1.0
39 | RELABEL_ONLY_AGENT = False
40 | ONLY_BOUNDARY = False
41 | DANGER_THRESHOLD = 0
42 | DYNAMIC_RELABEL = False
43 |
44 | # buffer size
45 | N_TRAJ = N_EPOCH = 1000000000
46 | N_BUFFER = 0
47 | N_DYNAMIC_BUFFER = 10000
48 | N_TRAJ_BUFFER = 60000
49 | N_CBUF = 60000
50 |
51 | # training speed & validation
52 | UPDATE_FREQ = 4
53 | N_EVALUATE = 400
54 | N_VALID = 400
55 | N_ITER = 50
56 | N_TRAJ_PER_EPOCH = 10
57 | N_WARMUP = 0
58 |
59 | # model
60 | MODEL = 'OriginGNNv8'
61 | PE_DIM = None
62 | HIDDEN_SIZE = 128
63 |
64 | # environment
65 | ENV_CONFIG = {
66 | 'num_agents': 8,
67 | 'SIZE': (4,4),
68 | 'agent_top_k': 6,
69 | 'obstacle_top_k': 2,
70 | 'PROB': (0.2,1.0),
71 | 'simple': False,
72 | }
73 | FIX_ENV = False
74 |
75 | # target network
76 | POLYAK = 0.
77 |
78 | # not important
79 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v115_infer.py:
--------------------------------------------------------------------------------
1 | version_name = 'v115'
2 |
3 | # explore
4 | DECAY_EXPLORE_RATE = 0.9
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.0
7 | MAX_EXPLORE_EPS = 0.5
8 | EXPLORE_WAY = 'exponential'
9 | NOMINAL_WAY = 'exponential'
10 |
11 | # training
12 | LR = 3e-4
13 | MIN_LR = 1e-8
14 | PATIENCE = 2
15 | BATCH = 256
16 | USE_SCHEDULER = True
17 | OPTIMIZER = 'Adam'
18 | CLIP_NORM = True
19 | ALL_LIE = False
20 |
21 | # algorithm
22 | POTENTIAL_OBS = False
23 | VARIABLE_AGENT = False
24 | CBUF_BEFORE_RELABEL = True
25 | THRESHOLD = 2e-2
26 | SPATIAL_PROP = False
27 | n_candidates = 2000
28 |
29 | # dataset
30 | TRAIN_ON_HARD = False
31 | N_DATASET = 10
32 | N_VALID_DATASET = 50
33 | MAX_VISIT_TIME = 1000
34 |
35 | # relabel
36 | RELABEL = True
37 | DECAY_RELABEL = False
38 | REFINE_EPS = 1.0
39 | RELABEL_ONLY_AGENT = False
40 | ONLY_BOUNDARY = False
41 | DANGER_THRESHOLD = 0
42 | DYNAMIC_RELABEL = False
43 |
44 | # buffer size
45 | N_TRAJ = N_EPOCH = 1000000000
46 | N_BUFFER = 0
47 | N_DYNAMIC_BUFFER = 10000
48 | N_TRAJ_BUFFER = 60000
49 | N_CBUF = 60000
50 |
51 | # training speed & validation
52 | UPDATE_FREQ = 4
53 | N_EVALUATE = 400
54 | N_VALID = 400
55 | N_ITER = 50
56 | N_TRAJ_PER_EPOCH = 10
57 | N_WARMUP = 0
58 |
59 | # model
60 | MODEL = 'OriginGNNv8'
61 | PE_DIM = None
62 | HIDDEN_SIZE = 128
63 |
64 | # environment
65 | ENV_CONFIG = {
66 | 'num_agents': 8,
67 | 'SIZE': (4,4),
68 | 'agent_top_k': 6,
69 | 'obstacle_top_k': 2,
70 | 'PROB': (0.2,1.0),
71 | 'simple': False,
72 | }
73 | FIX_ENV = False
74 |
75 | # target network
76 | POLYAK = 0.
77 |
78 | # not important
79 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v116.py:
--------------------------------------------------------------------------------
1 | version_name = 'v116'
2 |
3 | # explore
4 | DECAY_EXPLORE_RATE = 0.9
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.1
7 | MAX_EXPLORE_EPS = 0.5
8 | EXPLORE_WAY = 'exponential'
9 | NOMINAL_WAY = 'exponential'
10 |
11 | # training
12 | LR = 3e-4
13 | MIN_LR = 1e-8
14 | PATIENCE = 2
15 | BATCH = 256
16 | USE_SCHEDULER = True
17 | OPTIMIZER = 'Adam'
18 | CLIP_NORM = True
19 | ALL_LIE = False
20 |
21 | # algorithm
22 | POTENTIAL_OBS = False
23 | VARIABLE_AGENT = False
24 | CBUF_BEFORE_RELABEL = True
25 | THRESHOLD = 2e-2
26 | SPATIAL_PROP = False
27 | n_candidates = 2000
28 |
29 | # dataset
30 | TRAIN_ON_HARD = False
31 | N_DATASET = 10
32 | N_VALID_DATASET = 50
33 | MAX_VISIT_TIME = 1000
34 |
35 | # relabel
36 | RELABEL = True
37 | DECAY_RELABEL = False
38 | REFINE_EPS = 1.0
39 | RELABEL_ONLY_AGENT = False
40 | ONLY_BOUNDARY = False
41 | DANGER_THRESHOLD = 0
42 | DYNAMIC_RELABEL = False
43 |
44 | # buffer size
45 | N_TRAJ = N_EPOCH = 1000000000
46 | N_BUFFER = 0
47 | N_DYNAMIC_BUFFER = 10000
48 | N_TRAJ_BUFFER = 60000
49 | N_CBUF = 60000
50 |
51 | # training speed & validation
52 | UPDATE_FREQ = 4
53 | N_EVALUATE = 400
54 | N_VALID = 400
55 | N_ITER = 50
56 | N_TRAJ_PER_EPOCH = 10
57 | N_WARMUP = 0
58 |
59 | # model
60 | MODEL = 'OriginGNNv9'
61 | PE_DIM = None
62 | HIDDEN_SIZE = 128
63 |
64 | # environment
65 | ENV_CONFIG = {
66 | 'num_agents': 8,
67 | 'SIZE': (4,4),
68 | 'agent_top_k': 6,
69 | 'obstacle_top_k': 2,
70 | 'PROB': (0.2,1.0),
71 | 'simple': False,
72 | }
73 | FIX_ENV = False
74 |
75 | # target network
76 | POLYAK = 0.
77 |
78 | # not important
79 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v116_infer.py:
--------------------------------------------------------------------------------
1 | version_name = 'v116'
2 |
3 | # explore
4 | DECAY_EXPLORE_RATE = 0.9
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.1
7 | MAX_EXPLORE_EPS = 0.5
8 | EXPLORE_WAY = 'exponential'
9 | NOMINAL_WAY = 'exponential'
10 |
11 | # training
12 | LR = 3e-4
13 | MIN_LR = 1e-8
14 | PATIENCE = 2
15 | BATCH = 256
16 | USE_SCHEDULER = True
17 | OPTIMIZER = 'Adam'
18 | CLIP_NORM = True
19 | ALL_LIE = False
20 |
21 | # algorithm
22 | POTENTIAL_OBS = False
23 | VARIABLE_AGENT = False
24 | CBUF_BEFORE_RELABEL = True
25 | THRESHOLD = 2e-2
26 | SPATIAL_PROP = False
27 | n_candidates = 2000
28 |
29 | # dataset
30 | TRAIN_ON_HARD = False
31 | N_DATASET = 10
32 | N_VALID_DATASET = 50
33 | MAX_VISIT_TIME = 1000
34 |
35 | # relabel
36 | RELABEL = True
37 | DECAY_RELABEL = False
38 | REFINE_EPS = 1.0
39 | RELABEL_ONLY_AGENT = False
40 | ONLY_BOUNDARY = False
41 | DANGER_THRESHOLD = 0
42 | DYNAMIC_RELABEL = False
43 |
44 | # buffer size
45 | N_TRAJ = N_EPOCH = 1000000000
46 | N_BUFFER = 0
47 | N_DYNAMIC_BUFFER = 10000
48 | N_TRAJ_BUFFER = 60000
49 | N_CBUF = 60000
50 |
51 | # training speed & validation
52 | UPDATE_FREQ = 4
53 | N_EVALUATE = 400
54 | N_VALID = 400
55 | N_ITER = 50
56 | N_TRAJ_PER_EPOCH = 10
57 | N_WARMUP = 0
58 |
59 | # model
60 | MODEL = 'OriginGNNv9'
61 | PE_DIM = None
62 | HIDDEN_SIZE = 128
63 |
64 | # environment
65 | ENV_CONFIG = {
66 | 'num_agents': 8,
67 | 'SIZE': (4,4),
68 | 'agent_top_k': 6,
69 | 'obstacle_top_k': 2,
70 | 'PROB': (0.2,1.0),
71 | 'simple': False,
72 | }
73 | FIX_ENV = False
74 |
75 | # target network
76 | POLYAK = 0.
77 |
78 | # not important
79 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v117.py:
--------------------------------------------------------------------------------
1 | version_name = 'v117'
2 |
3 | # explore
4 | DECAY_EXPLORE_RATE = 0.9
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.1
7 | MAX_EXPLORE_EPS = 0.5
8 | EXPLORE_WAY = 'exponential'
9 | NOMINAL_WAY = 'exponential'
10 |
11 | # training
12 | LR = 1e-3
13 | MIN_LR = 1e-5
14 | PATIENCE = 3
15 | BATCH = 256
16 | USE_SCHEDULER = True
17 | OPTIMIZER = 'Adam'
18 | CLIP_NORM = True
19 | ALL_LIE = False
20 |
21 | # algorithm
22 | POTENTIAL_OBS = False
23 | VARIABLE_AGENT = False
24 | CBUF_BEFORE_RELABEL = True
25 | THRESHOLD = 2e-2
26 | SPATIAL_PROP = False
27 | n_candidates = 2000
28 |
29 | # dataset
30 | TRAIN_ON_HARD = False
31 | N_DATASET = 10
32 | N_VALID_DATASET = 50
33 | MAX_VISIT_TIME = 1000
34 |
35 | # relabel
36 | RELABEL = True
37 | DECAY_RELABEL = False
38 | REFINE_EPS = 1.0
39 | RELABEL_ONLY_AGENT = False
40 | ONLY_BOUNDARY = False
41 | DANGER_THRESHOLD = 0
42 | DYNAMIC_RELABEL = False
43 |
44 | # buffer size
45 | N_TRAJ = N_EPOCH = 1000000000
46 | N_BUFFER = 0
47 | N_DYNAMIC_BUFFER = 10000
48 | N_TRAJ_BUFFER = 60000
49 | N_CBUF = 60000
50 |
51 | # training speed & validation
52 | UPDATE_FREQ = 4
53 | N_EVALUATE = 400
54 | N_VALID = 400
55 | N_ITER = 50
56 | N_TRAJ_PER_EPOCH = 10
57 | N_WARMUP = 0
58 |
59 | # model
60 | MODEL = 'OriginGNNv10'
61 | PE_DIM = None
62 | HIDDEN_SIZE = 128
63 |
64 | # environment
65 | ENV_CONFIG = {
66 | 'num_agents': 3,
67 | 'SIZE': (3,3),
68 | 'agent_top_k': 2,
69 | 'obstacle_top_k': 2,
70 | 'PROB': (0.,30),
71 | 'angle_embed': True,
72 | 'simple': False,
73 | }
74 | FIX_ENV = False
75 |
76 | # target network
77 | POLYAK = 0.
78 |
79 | # not important
80 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v118.py:
--------------------------------------------------------------------------------
1 | project_name = 'dubins'
2 | env_name = 'DubinsCarEnv'
3 | version_name = 'v118'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 0.9
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.5
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 |
13 | # training
14 | LR = 1e-3
15 | MIN_LR = 1e-5
16 | PATIENCE = 3
17 | BATCH = 256
18 | USE_SCHEDULER = True
19 | OPTIMIZER = 'Adam'
20 | CLIP_NORM = True
21 | ALL_LIE = False
22 |
23 | # algorithm
24 | POTENTIAL_OBS = False
25 | VARIABLE_AGENT = False
26 | CBUF_BEFORE_RELABEL = True
27 | THRESHOLD = 5e-2
28 | SPATIAL_PROP = False
29 | n_candidates = 2000
30 |
31 | # dataset
32 | TRAIN_ON_HARD = False
33 | N_DATASET = 10
34 | N_VALID_DATASET = 50
35 | MAX_VISIT_TIME = 1000
36 |
37 | # relabel
38 | RELABEL = True
39 | DECAY_RELABEL = False
40 | REFINE_EPS = 1.0
41 | RELABEL_ONLY_AGENT = False
42 | ONLY_BOUNDARY = False
43 | DANGER_THRESHOLD = 0
44 | DYNAMIC_RELABEL = False
45 |
46 | # buffer size
47 | N_TRAJ = N_EPOCH = 1000000000
48 | N_BUFFER = 0
49 | N_DYNAMIC_BUFFER = 10000
50 | N_TRAJ_BUFFER = 60000
51 | N_CBUF = 60000
52 |
53 | # training speed & validation
54 | UPDATE_FREQ = 4
55 | N_EVALUATE = 400
56 | N_VALID = 400
57 | N_ITER = 50
58 | N_TRAJ_PER_EPOCH = 10
59 | N_WARMUP = 0
60 |
61 | # model
62 | MODEL = 'OriginGNNv10'
63 | PE_DIM = None
64 | HIDDEN_SIZE = 128
65 |
66 | # environment
67 | ENV_CONFIG = {
68 | 'num_agents': 3,
69 | 'SIZE': (3,3),
70 | 'agent_top_k': 2,
71 | 'obstacle_top_k': 2,
72 | 'PROB': (0.,30),
73 | 'angle_embed': True,
74 | 'simple': False,
75 | }
76 | FIX_ENV = False
77 |
78 | # target network
79 | POLYAK = 0.
80 |
81 | # not important
82 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v119.py:
--------------------------------------------------------------------------------
1 | project_name = 'dubins_car'
2 | env_name = 'DubinsCarEnv'
3 | version_name = 'v119'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = False
13 | ALL_EXPLORE = True
14 |
15 | # training
16 | LR = 1e-3
17 | MIN_LR = 1e-5
18 | PATIENCE = 3
19 | BATCH = 256
20 | USE_SCHEDULER = True
21 | OPTIMIZER = 'Adam'
22 | CLIP_NORM = True
23 | ALL_LIE = False
24 |
25 | # training freq
26 | N_ITER = 20
27 | N_TRAJ_PER_UPDATE = 10
28 | UPDATE_FREQ = 4
29 |
30 | # algorithm
31 | POTENTIAL_OBS = False
32 | VARIABLE_AGENT = False
33 | CBUF_BEFORE_RELABEL = True
34 | THRESHOLD = 2e-2
35 | SPATIAL_PROP = False
36 | n_candidates = 2000
37 |
38 | # dataset
39 | TRAIN_ON_HARD = False
40 | N_DATASET = 10
41 | N_VALID_DATASET = 50
42 | MAX_VISIT_TIME = 1000
43 |
44 | # relabel
45 | RELABEL = True
46 | DECAY_RELABEL = False
47 | REFINE_EPS = 1.0
48 | RELABEL_ONLY_AGENT = False
49 | ONLY_BOUNDARY = False
50 | DANGER_THRESHOLD = 2e-2
51 | DYNAMIC_RELABEL = False
52 |
53 | # buffer size
54 | N_TRAJ = N_EPOCH = 1000000000
55 | N_BUFFER = 0
56 | N_DYNAMIC_BUFFER = 3000
57 | N_TRAJ_BUFFER = 60000
58 | N_CBUF = 10000
59 |
60 | # training speed & validation
61 | N_EVALUATE = 400
62 | N_VALID = 400
63 | N_WARMUP = 0
64 |
65 | # model
66 | MODEL = 'OriginGNNv10'
67 | PE_DIM = None
68 | HIDDEN_SIZE = 128
69 |
70 | # environment
71 | ENV_CONFIG = {
72 | 'num_agents': 3,
73 | 'SIZE': (3,3),
74 | 'agent_top_k': 2,
75 | 'obstacle_top_k': 2,
76 | 'PROB': (0.,30),
77 | 'angle_embed': True,
78 | 'simple': False,
79 | }
80 | FIX_ENV = False
81 |
82 | # target network
83 | POLYAK = 0.
84 |
85 | # not important
86 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v120.py:
--------------------------------------------------------------------------------
1 | project_name = 'dubins_car'
2 | env_name = 'DubinsCarEnv'
3 | version_name = 'v120'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 10
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | SPATIAL_PROP = False
37 | n_candidates = 2000
38 |
39 | # dataset
40 | TRAIN_ON_HARD = False
41 | N_DATASET = 10
42 | N_VALID_DATASET = 50
43 | MAX_VISIT_TIME = 1000
44 |
45 | # relabel
46 | RELABEL = True
47 | DECAY_RELABEL = False
48 | REFINE_EPS = 1.0
49 | RELABEL_ONLY_AGENT = False
50 | ONLY_BOUNDARY = False
51 | DANGER_THRESHOLD = 2e-2
52 | DYNAMIC_RELABEL = False
53 |
54 | # buffer size
55 | N_TRAJ = N_EPOCH = 1000000000
56 | N_BUFFER = 0
57 | N_DYNAMIC_BUFFER = 3000
58 | N_TRAJ_BUFFER = 60000
59 | N_CBUF = 10000
60 |
61 | # training speed & validation
62 | N_EVALUATE = 400
63 | N_VALID = 400
64 | N_WARMUP = 0
65 |
66 | # model
67 | MODEL = 'OriginGNNv10'
68 | PE_DIM = None
69 | HIDDEN_SIZE = 128
70 |
71 | # environment
72 | ENV_CONFIG = {
73 | 'num_agents': 3,
74 | 'SIZE': (3,3),
75 | 'agent_top_k': 2,
76 | 'obstacle_top_k': 2,
77 | 'PROB': (0.,30),
78 | 'angle_embed': True,
79 | 'simple': False,
80 | 'min_dist': 2,
81 | }
82 | FIX_ENV = False
83 |
84 | # target network
85 | POLYAK = 0.
86 |
87 | # not important
88 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v121.py:
--------------------------------------------------------------------------------
1 | project_name = 'dubins_car'
2 | env_name = 'DubinsCarEnv'
3 | version_name = 'v121'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 10
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 1e-1
36 | LIE_DERIVE_SAFE = True
37 | SPATIAL_PROP = False
38 | n_candidates = 2000
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 0
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 3000
59 | N_TRAJ_BUFFER = 60000
60 | N_CBUF = 10000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv10'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'num_agents': 3,
75 | 'SIZE': (3,3),
76 | 'agent_top_k': 2,
77 | 'obstacle_top_k': 2,
78 | 'PROB': (0.,30),
79 | 'angle_embed': True,
80 | 'simple': False,
81 | 'min_dist': 2,
82 | }
83 | OBS_CONFIG = {
84 | 'share_weight': False,
85 | 'rgraph_a': False,
86 | 'rgraph_o': False,
87 | }
88 | FIX_ENV = False
89 |
90 | # target network
91 | POLYAK = 0.
92 |
93 | # not important
94 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v122.py:
--------------------------------------------------------------------------------
1 | project_name = 'dubins_car'
2 | env_name = 'DubinsCarEnv'
3 | version_name = 'v122'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 10
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 2000
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 3000
59 | N_TRAJ_BUFFER = 60000
60 | N_CBUF = 10000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'num_agents': 3,
75 | 'SIZE': (3,3),
76 | 'agent_top_k': 2,
77 | 'obstacle_top_k': 2,
78 | 'PROB': (0.,30),
79 | 'angle_embed': True,
80 | 'simple': False,
81 | 'min_dist': 2,
82 | }
83 | OBS_CONFIG = {
84 | 'share_weight': True,
85 | 'rgraph_a': True,
86 | 'rgraph_o': True,
87 | }
88 |
89 | OBS_CONFIG_DECOMPOSE = {
90 | 'share_weight': True,
91 | 'rgraph_a': True,
92 | 'rgraph_o': True,
93 | 'n_sub_o': 10,
94 | 'n_sub_a': 2,
95 | }
96 |
97 | FIX_ENV = False
98 |
99 | # target network
100 | POLYAK = 0.
101 |
102 | # not important
103 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v123.py:
--------------------------------------------------------------------------------
1 | project_name = 'dubins_car'
2 | env_name = 'DubinsCarEnv'
3 | version_name = 'v123'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 10
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 1e-1
36 | LIE_DERIVE_SAFE = True
37 | SPATIAL_PROP = False
38 | n_candidates = 2000
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 0
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 3000
59 | N_TRAJ_BUFFER = 60000
60 | N_CBUF = 10000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'num_agents': 3,
75 | 'SIZE': (3,3),
76 | 'agent_top_k': 2,
77 | 'obstacle_top_k': 2,
78 | 'PROB': (0.,30),
79 | 'angle_embed': True,
80 | 'simple': False,
81 | 'min_dist': 2,
82 | }
83 | OBS_CONFIG = {
84 | 'share_weight': True,
85 | 'rgraph_a': True,
86 | 'rgraph_o': True,
87 | }
88 | FIX_ENV = False
89 |
90 | # target network
91 | POLYAK = 0.
92 |
93 | # not important
94 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v124.py:
--------------------------------------------------------------------------------
1 | project_name = 'dubins_car'
2 | env_name = 'DubinsCarEnv'
3 | version_name = 'v124'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 10
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = True
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 2000
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 3000
59 | N_TRAJ_BUFFER = 60000
60 | N_CBUF = 10000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv12'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': False,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': [0, 0.1, 0.3, 1, 2, 5, 10, 15, 20, 25, 30],
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': 10,
98 | 'n_sub_a': 2,
99 | 'has_goal': False,
100 | }
101 |
102 | FIX_ENV = False
103 |
104 | # target network
105 | POLYAK = 0.
106 |
107 | # not important
108 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v125.py:
--------------------------------------------------------------------------------
1 | project_name = 'dubins_car'
2 | env_name = 'DubinsCarEnv'
3 | version_name = 'v125'
4 |
5 | # explore
6 | DECAY_EXPLORE_RATE = 1.0
7 | DECAY_NOMINAL_RATE = 0.
8 | MIN_EXPLORE_EPS = 0.1
9 | MAX_EXPLORE_EPS = 0.1
10 | EXPLORE_WAY = 'exponential'
11 | NOMINAL_WAY = 'exponential'
12 | SAFE_EXPLORE = True
13 | ALL_EXPLORE = False
14 | DANGER_EXPLORE = True
15 |
16 | # training
17 | LR = 1e-3
18 | MIN_LR = 1e-5
19 | PATIENCE = 3
20 | BATCH = 256
21 | USE_SCHEDULER = True
22 | OPTIMIZER = 'Adam'
23 | CLIP_NORM = True
24 | ALL_LIE = False
25 |
26 | # training freq
27 | N_ITER = 20
28 | N_TRAJ_PER_UPDATE = 10
29 | UPDATE_FREQ = 4
30 |
31 | # algorithm
32 | POTENTIAL_OBS = False
33 | VARIABLE_AGENT = False
34 | CBUF_BEFORE_RELABEL = True
35 | THRESHOLD = 2e-2
36 | LIE_DERIVE_SAFE = False
37 | SPATIAL_PROP = False
38 | n_candidates = 2000
39 |
40 | # dataset
41 | TRAIN_ON_HARD = False
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | MAX_VISIT_TIME = 1000
45 |
46 | # relabel
47 | RELABEL = True
48 | DECAY_RELABEL = False
49 | REFINE_EPS = 1.0
50 | RELABEL_ONLY_AGENT = False
51 | ONLY_BOUNDARY = False
52 | DANGER_THRESHOLD = 2e-2
53 | DYNAMIC_RELABEL = False
54 |
55 | # buffer size
56 | N_TRAJ = N_EPOCH = 1000000000
57 | N_BUFFER = 0
58 | N_DYNAMIC_BUFFER = 3000
59 | N_TRAJ_BUFFER = 60000
60 | N_CBUF = 10000
61 |
62 | # training speed & validation
63 | N_EVALUATE = 400
64 | N_VALID = 400
65 | N_WARMUP = 0
66 |
67 | # model
68 | MODEL = 'OriginGNNv11'
69 | PE_DIM = None
70 | HIDDEN_SIZE = 128
71 |
72 | # environment
73 | ENV_CONFIG = {
74 | 'hetero': True,
75 | 'num_agents': 3,
76 | 'SIZE': (3,3),
77 | 'agent_top_k': 2,
78 | 'obstacle_top_k': 2,
79 | 'agent_obs_radius': 1.5,
80 | 'obstacle_obs_radius': 1.5,
81 | 'PROB': (0.,30),
82 | 'angle_embed': True,
83 | 'simple': False,
84 | 'min_dist': 2,
85 | }
86 | OBS_CONFIG = {
87 | 'share_weight': True,
88 | 'rgraph_a': True,
89 | 'rgraph_o': True,
90 | 'has_goal': False,
91 | }
92 |
93 | OBS_CONFIG_DECOMPOSE = {
94 | 'share_weight': True,
95 | 'rgraph_a': True,
96 | 'rgraph_o': True,
97 | 'n_sub_o': (1,9),
98 | 'n_sub_a': (0,2),
99 | 'has_goal': False,
100 | 'iteration': 1,
101 | }
102 |
103 | FIX_ENV = False
104 |
105 | # target network
106 | POLYAK = 0.
107 |
108 | # not important
109 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v29.py:
--------------------------------------------------------------------------------
1 | version_name = 'v29'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.99
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 1.0
9 | POTENTIAL_OBS = False
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = True
12 |
13 |
14 | N_TRAJ = N_EPOCH = 1000000
15 | N_CBUF = 0
16 |
17 | NUM_AGENTS = 8
18 | MAP_SIZE = 4
19 |
20 | n_candidates = 2000
21 | BATCH = 1024
22 | N_ITER = 100
23 | N_TRAJ_PER_EPOCH = 10
24 | N_BUFFER = 20
25 | N_EVALUATE = 100
26 | N_VALID = 100
27 | N_WARMUP = 100
28 | N_DATASET = 10
29 | N_VALID_DATASET = 20
30 | THRESHOLD = 1.5e-2
31 | HIDDEN_SIZE = 128
32 | RELABEL = True
33 | CYCLIC = False
34 | DECAY_RELABEL = False
35 | USE_SCHEDULER = True
36 | OPTIMIZER = 'Adam'
37 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v30.py:
--------------------------------------------------------------------------------
1 | version_name = 'v30'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.08
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 |
13 |
14 | N_TRAJ = N_EPOCH = 1000000
15 | N_CBUF = 1000000
16 |
17 | NUM_AGENTS = 8
18 | MAP_SIZE = 4
19 |
20 | n_candidates = 2000
21 | BATCH = 1024
22 | N_ITER = 100
23 | N_TRAJ_PER_EPOCH = 10
24 | N_BUFFER = 20
25 | N_EVALUATE = 100
26 | N_VALID = 100
27 | N_WARMUP = 100
28 | N_DATASET = 10
29 | N_VALID_DATASET = 20
30 | THRESHOLD = 1.5e-2
31 | HIDDEN_SIZE = 128
32 | RELABEL = True
33 | CYCLIC = False
34 | DECAY_RELABEL = False
35 | USE_SCHEDULER = True
36 | OPTIMIZER = 'Adam'
37 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v31.py:
--------------------------------------------------------------------------------
1 | version_name = 'v31'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 |
14 |
15 | N_TRAJ = N_EPOCH = 1000000
16 | N_CBUF = 1000
17 |
18 | NUM_AGENTS = 8
19 | MAP_SIZE = 4
20 |
21 | n_candidates = 2000
22 | BATCH = 1024
23 | N_ITER = 100
24 | N_TRAJ_PER_EPOCH = 10
25 | N_BUFFER = 20
26 | N_EVALUATE = 100
27 | N_VALID = 100
28 | N_WARMUP = 100
29 | N_DATASET = 10
30 | N_VALID_DATASET = 20
31 | THRESHOLD = 1.5e-2
32 | HIDDEN_SIZE = 128
33 | RELABEL = True
34 | CYCLIC = False
35 | DECAY_RELABEL = False
36 | USE_SCHEDULER = True
37 | OPTIMIZER = 'Adam'
38 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v32.py:
--------------------------------------------------------------------------------
1 | version_name = 'v32'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 1e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 |
14 |
15 | N_TRAJ = N_EPOCH = 1000000
16 | N_CBUF = 1000
17 |
18 | NUM_AGENTS = 8
19 | MAP_SIZE = 4
20 |
21 | n_candidates = 2000
22 | BATCH = 1024
23 | N_ITER = 100
24 | N_TRAJ_PER_EPOCH = 10
25 | N_BUFFER = 20
26 | N_EVALUATE = 100
27 | N_VALID = 100
28 | N_WARMUP = 100
29 | N_DATASET = 10
30 | N_VALID_DATASET = 20
31 | THRESHOLD = 1.5e-2
32 | HIDDEN_SIZE = 128
33 | RELABEL = True
34 | CYCLIC = False
35 | DECAY_RELABEL = False
36 | USE_SCHEDULER = False
37 | OPTIMIZER = 'Adam'
38 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v33.py:
--------------------------------------------------------------------------------
1 | version_name = 'v33'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 1.0
9 | POTENTIAL_OBS = False
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 |
14 |
15 | N_TRAJ = N_EPOCH = 1000000
16 | N_CBUF = 1000
17 |
18 | NUM_AGENTS = 8
19 | MAP_SIZE = 4
20 |
21 | n_candidates = 2000
22 | BATCH = 1024
23 | N_ITER = 100
24 | N_TRAJ_PER_EPOCH = 10
25 | N_BUFFER = 20
26 | N_EVALUATE = 100
27 | N_VALID = 100
28 | N_WARMUP = 100
29 | N_DATASET = 10
30 | N_VALID_DATASET = 20
31 | THRESHOLD = 1.5e-2
32 | HIDDEN_SIZE = 128
33 | RELABEL = True
34 | CYCLIC = False
35 | DECAY_RELABEL = False
36 | USE_SCHEDULER = True
37 | OPTIMIZER = 'Adam'
38 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v34.py:
--------------------------------------------------------------------------------
1 | version_name = 'v34'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.9
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 1.0
9 | POTENTIAL_OBS = True
10 | PREFERENCE_OBS = False
11 | TRAIN_ON_HARD = False
12 | VARIABLE_AGENT = False
13 | CBUF_BEFORE_RELABEL = True
14 |
15 |
16 | N_TRAJ = N_EPOCH = 1000000
17 | N_CBUF = 1000
18 |
19 | NUM_AGENTS = 8
20 | MAP_SIZE = 4
21 |
22 | n_candidates = 2000
23 | BATCH = 1024
24 | N_ITER = 100
25 | N_TRAJ_PER_EPOCH = 10
26 | N_BUFFER = 20
27 | N_EVALUATE = 100
28 | N_VALID = 100
29 | N_WARMUP = 100
30 | N_DATASET = 10
31 | N_VALID_DATASET = 20
32 | THRESHOLD = 1.5e-2
33 | HIDDEN_SIZE = 128
34 | RELABEL = True
35 | CYCLIC = False
36 | DECAY_RELABEL = False
37 | USE_SCHEDULER = True
38 | OPTIMIZER = 'Adam'
39 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v35.py:
--------------------------------------------------------------------------------
1 | version_name = 'v35'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | PREFERENCE_OBS = True
11 | TRAIN_ON_HARD = False
12 | VARIABLE_AGENT = False
13 | CBUF_BEFORE_RELABEL = True
14 | PER_STEP_EXPLORE = False
15 |
16 |
17 | N_TRAJ = N_EPOCH = 1000000
18 | N_CBUF = 1000
19 |
20 | NUM_AGENTS = 8
21 | MAP_SIZE = 4
22 |
23 | n_candidates = 2000
24 | BATCH = 1024
25 | N_ITER = 100
26 | N_TRAJ_PER_EPOCH = 10
27 | N_BUFFER = 20
28 | N_EVALUATE = 100
29 | N_VALID = 100
30 | N_WARMUP = 100
31 | N_DATASET = 10
32 | N_VALID_DATASET = 20
33 | THRESHOLD = 1.5e-2
34 | HIDDEN_SIZE = 128
35 | RELABEL = True
36 | CYCLIC = False
37 | DECAY_RELABEL = False
38 | USE_SCHEDULER = True
39 | OPTIMIZER = 'Adam'
40 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v36.py:
--------------------------------------------------------------------------------
1 | version_name = 'v36'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 1.0
9 | POTENTIAL_OBS = False
10 | PREFERENCE_OBS = False
11 | TRAIN_ON_HARD = False
12 | VARIABLE_AGENT = False
13 | CBUF_BEFORE_RELABEL = True
14 | PER_STEP_EXPLORE = False
15 |
16 |
17 | N_TRAJ = N_EPOCH = 1000000
18 | N_CBUF = 0
19 |
20 | NUM_AGENTS = 8
21 | MAP_SIZE = 4
22 |
23 | n_candidates = 2000
24 | BATCH = 1024
25 | N_ITER = 100
26 | N_TRAJ_PER_EPOCH = 10
27 | N_BUFFER = 20
28 | N_EVALUATE = 100
29 | N_VALID = 100
30 | N_WARMUP = 100
31 | N_DATASET = 10
32 | N_VALID_DATASET = 20
33 | THRESHOLD = 1.5e-2
34 | HIDDEN_SIZE = 128
35 | RELABEL = True
36 | CYCLIC = False
37 | DECAY_RELABEL = False
38 | USE_SCHEDULER = True
39 | OPTIMIZER = 'Adam'
40 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v37.py:
--------------------------------------------------------------------------------
1 | version_name = 'v37'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 1e-3
4 | MIN_LR = 1e-5
5 | PATIENCE = 2
6 | OPTIMIZER = 'SGD'
7 | DECAY_EXPLORE_RATE = 0.97
8 | DECAY_NOMINAL_RATE = 0.8
9 | MIN_EXPLORE_EPS = 0.
10 | MAX_EXPLORE_EPS = 0.5
11 | POTENTIAL_OBS = True
12 | PREFERENCE_OBS = True
13 | TRAIN_ON_HARD = False
14 | VARIABLE_AGENT = False
15 | CBUF_BEFORE_RELABEL = True
16 | PER_STEP_EXPLORE = False
17 | CBUF_ONLY_BOUNDARY = True
18 |
19 | N_TRAJ = N_EPOCH = 1000000
20 | N_CBUF = 300
21 |
22 | NUM_AGENTS = 8
23 | MAP_SIZE = 4
24 |
25 | n_candidates = 2000
26 | BATCH = 1024
27 | N_ITER = 100
28 | N_TRAJ_PER_EPOCH = 10
29 | N_BUFFER = 20
30 | N_EVALUATE = 100
31 | N_VALID = 100
32 | N_WARMUP = 100
33 | N_DATASET = 10
34 | N_VALID_DATASET = 20
35 | THRESHOLD = 1.5e-2
36 | HIDDEN_SIZE = 128
37 | RELABEL = True
38 | CYCLIC = False
39 | DECAY_RELABEL = False
40 | USE_SCHEDULER = True
41 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v38.py:
--------------------------------------------------------------------------------
1 | version_name = 'v38'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | MIN_LR = 1e-5
5 | PATIENCE = 2
6 | DECAY_EXPLORE_RATE = 0.97
7 | DECAY_NOMINAL_RATE = 0.8
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = True
11 | PREFERENCE_OBS = True
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = True
15 | PER_STEP_EXPLORE = False
16 | CBUF_ONLY_BOUNDARY = True
17 |
18 |
19 | N_TRAJ = N_EPOCH = 1000000
20 | N_CBUF = 0
21 |
22 | NUM_AGENTS = 8
23 | MAP_SIZE = 4
24 |
25 | n_candidates = 2000
26 | BATCH = 1024
27 | N_ITER = 100
28 | N_TRAJ_PER_EPOCH = 10
29 | N_BUFFER = 20
30 | N_EVALUATE = 100
31 | N_VALID = 100
32 | N_WARMUP = 100
33 | N_DATASET = 10
34 | N_VALID_DATASET = 20
35 | THRESHOLD = 1.5e-2
36 | HIDDEN_SIZE = 128
37 | RELABEL = True
38 | CYCLIC = False
39 | DECAY_RELABEL = False
40 | USE_SCHEDULER = True
41 | OPTIMIZER = 'Adam'
42 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v39.py:
--------------------------------------------------------------------------------
1 | version_name = 'v39'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | MIN_LR = 7e-5
5 | PATIENCE = 2
6 | DECAY_EXPLORE_RATE = 0.97
7 | DECAY_NOMINAL_RATE = 0.8
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = True
11 | PREFERENCE_OBS = True
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = True
15 | PER_STEP_EXPLORE = False
16 | CBUF_ONLY_BOUNDARY = False
17 | OUTDATE = 3
18 |
19 |
20 | N_TRAJ = N_EPOCH = 1000000
21 | N_CBUF = 1000000
22 |
23 | NUM_AGENTS = 8
24 | MAP_SIZE = 4
25 |
26 | n_candidates = 2000
27 | BATCH = 1024
28 | N_ITER = 100
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1.5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v40.py:
--------------------------------------------------------------------------------
1 | version_name = 'v40'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | MIN_LR = 1e-6
5 | PATIENCE = 2
6 | DECAY_EXPLORE_RATE = 0.97
7 | DECAY_NOMINAL_RATE = 0.8
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = True
11 | PREFERENCE_OBS = True
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = False
15 | PER_STEP_EXPLORE = False
16 | CBUF_ONLY_BOUNDARY = False
17 | OUTDATE = 0
18 |
19 |
20 | N_TRAJ = N_EPOCH = 1000000
21 | N_CBUF = 1000000
22 |
23 | NUM_AGENTS = 8
24 | MAP_SIZE = 4
25 |
26 | n_candidates = 2000
27 | BATCH = 1024
28 | N_ITER = 100
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 200
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1.5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v41.py:
--------------------------------------------------------------------------------
1 | version_name = 'v41'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 1e-3
4 | MIN_LR = 1e-8
5 | PATIENCE = 2
6 | DECAY_EXPLORE_RATE = 0.97
7 | DECAY_NOMINAL_RATE = 0.8
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = True
11 | PREFERENCE_OBS = True
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = False
15 | PER_STEP_EXPLORE = True
16 | CBUF_ONLY_BOUNDARY = False
17 | OUTDATE = 0
18 |
19 |
20 | N_TRAJ = N_EPOCH = 1000000
21 | N_CBUF = 0
22 |
23 | NUM_AGENTS = 8
24 | MAP_SIZE = 4
25 |
26 | n_candidates = 2000
27 | BATCH = 1024
28 | N_ITER = 500
29 | N_TRAJ_PER_EPOCH = 100
30 | N_BUFFER = 200
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1.5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'SGD'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v42.py:
--------------------------------------------------------------------------------
1 | version_name = 'v42'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 1e-3
4 | MIN_LR = 1e-6
5 | PATIENCE = 10
6 | DECAY_EXPLORE_RATE = 0.97
7 | DECAY_NOMINAL_RATE = 0.8
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = True
11 | PREFERENCE_OBS = True
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = False
15 | PER_STEP_EXPLORE = True
16 | CBUF_ONLY_BOUNDARY = False
17 | OUTDATE = 0
18 |
19 |
20 | N_TRAJ = N_EPOCH = 1000000
21 | N_CBUF = 0
22 |
23 | NUM_AGENTS = 8
24 | MAP_SIZE = 4
25 |
26 | n_candidates = 2000
27 | BATCH = 1024
28 | N_ITER = 200
29 | N_TRAJ_PER_EPOCH = 100
30 | N_BUFFER = 200
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1.5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v43.py:
--------------------------------------------------------------------------------
1 | version_name = 'v43'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 1e-3
4 | MIN_LR = 1e-6
5 | PATIENCE = 2
6 | DECAY_EXPLORE_RATE = 0.97
7 | DECAY_NOMINAL_RATE = 0.8
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = True
11 | PREFERENCE_OBS = True
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = False
15 | PER_STEP_EXPLORE = True
16 | CBUF_ONLY_BOUNDARY = False
17 | OUTDATE = 0
18 |
19 |
20 | N_TRAJ = N_EPOCH = 1000000
21 | N_CBUF = 0
22 |
23 | NUM_AGENTS = 8
24 | MAP_SIZE = 4
25 |
26 | n_candidates = 2000
27 | BATCH = 1024
28 | N_ITER = 200
29 | N_TRAJ_PER_EPOCH = 100
30 | N_BUFFER = 100
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1.5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v44.py:
--------------------------------------------------------------------------------
1 | version_name = 'v44'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | MIN_LR = 1e-8
5 | PATIENCE = 2
6 | DECAY_EXPLORE_RATE = 0.97
7 | DECAY_NOMINAL_RATE = 0.2
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = True
11 | PREFERENCE_OBS = True
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = False
15 | PER_STEP_EXPLORE = True
16 | CBUF_ONLY_BOUNDARY = False
17 | OUTDATE = float('inf')
18 |
19 |
20 | N_TRAJ = N_EPOCH = 1000000
21 | N_CBUF = 100000
22 |
23 | NUM_AGENTS = 8
24 | MAP_SIZE = 4
25 |
26 | n_candidates = 2000
27 | BATCH = 1024
28 | N_ITER = 50
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1.5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v45.py:
--------------------------------------------------------------------------------
1 | version_name = 'v45'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | MIN_LR = 1e-8
5 | PATIENCE = 2
6 | DECAY_EXPLORE_RATE = 0.97
7 | DECAY_NOMINAL_RATE = 0.2
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = True
11 | PREFERENCE_OBS = True
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = False
15 | PER_STEP_EXPLORE = True
16 | CBUF_ONLY_BOUNDARY = False
17 | OUTDATE = float('inf')
18 |
19 |
20 | N_TRAJ = N_EPOCH = 1000000
21 | N_CBUF = 0
22 |
23 | NUM_AGENTS = 8
24 | MAP_SIZE = 4
25 |
26 | n_candidates = 2000
27 | BATCH = 64
28 | N_ITER = 50
29 | N_TRAJ_PER_EPOCH = 100
30 | N_BUFFER = 200
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1.5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = False
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
44 | MAX_GRAD_NORM = 0.5
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v46.py:
--------------------------------------------------------------------------------
1 | version_name = 'v46'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | MIN_LR = 1e-8
5 | PATIENCE = 2
6 | DECAY_EXPLORE_RATE = 0.97
7 | DECAY_NOMINAL_RATE = 1.0
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = True
11 | PREFERENCE_OBS = True
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = False
15 | PER_STEP_EXPLORE = True
16 | CBUF_ONLY_BOUNDARY = False
17 | OUTDATE = float('inf')
18 |
19 |
20 | N_TRAJ = N_EPOCH = 1000000
21 | N_CBUF = 100000
22 |
23 | NUM_AGENTS = 8
24 | MAP_SIZE = 4
25 |
26 | n_candidates = 2000
27 | BATCH = 64
28 | N_ITER = 50
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1.5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v47.py:
--------------------------------------------------------------------------------
1 | version_name = 'v47'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | MIN_LR = 1e-8
5 | PATIENCE = 2
6 | DECAY_EXPLORE_RATE = 0.025
7 | DECAY_NOMINAL_RATE = 1.0
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = True
11 | PREFERENCE_OBS = True
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = False
15 | PER_STEP_EXPLORE = True
16 | CBUF_ONLY_BOUNDARY = False
17 | OUTDATE = 100
18 |
19 |
20 | N_TRAJ = N_EPOCH = 1000000
21 | N_CBUF = 100000
22 |
23 | NUM_AGENTS = 8
24 | MAP_SIZE = 4
25 |
26 | n_candidates = 2000
27 | BATCH = 64
28 | N_ITER = 50
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1.5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v48.py:
--------------------------------------------------------------------------------
1 | version_name = 'v48'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | MIN_LR = 1e-8
5 | PATIENCE = 2
6 | DECAY_EXPLORE_RATE = 0.01
7 | DECAY_NOMINAL_RATE = 1.0
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = False
11 | PREFERENCE_OBS = False
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = False
15 | PER_STEP_EXPLORE = False
16 | CBUF_ONLY_BOUNDARY = False
17 | OUTDATE = 100
18 |
19 |
20 | N_TRAJ = N_EPOCH = 1000000
21 | N_CBUF = 0
22 |
23 | NUM_AGENTS = 8
24 | MAP_SIZE = 4
25 |
26 | n_candidates = 2000
27 | BATCH = 64
28 | N_ITER = 50
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1.5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v49.py:
--------------------------------------------------------------------------------
1 | version_name = 'v49'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 |
14 |
15 | N_TRAJ = N_EPOCH = 1000000
16 | N_CBUF = 1000
17 |
18 | NUM_AGENTS = 8
19 | MAP_SIZE = 4
20 |
21 | n_candidates = 2000
22 | BATCH = 1024
23 | N_ITER = 100
24 | N_TRAJ_PER_EPOCH = 10
25 | N_BUFFER = 20
26 | N_EVALUATE = 100
27 | N_VALID = 100
28 | N_WARMUP = 100
29 | N_DATASET = 10
30 | N_VALID_DATASET = 20
31 | THRESHOLD = 1.5e-2
32 | HIDDEN_SIZE = 128
33 | RELABEL = True
34 | CYCLIC = False
35 | DECAY_RELABEL = False
36 | USE_SCHEDULER = True
37 | OPTIMIZER = 'Adam'
38 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v50.py:
--------------------------------------------------------------------------------
1 | version_name = 'v50'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 |
14 |
15 | N_TRAJ = N_EPOCH = 1000000
16 | N_CBUF = 1000
17 |
18 | NUM_AGENTS = 8
19 | MAP_SIZE = 4
20 |
21 | n_candidates = 2000
22 | BATCH = 1024
23 | N_ITER = 100
24 | N_TRAJ_PER_EPOCH = 10
25 | N_BUFFER = 100
26 | N_EVALUATE = 100
27 | N_VALID = 100
28 | N_WARMUP = 100
29 | N_DATASET = 10
30 | N_VALID_DATASET = 20
31 | THRESHOLD = 1.5e-2
32 | HIDDEN_SIZE = 128
33 | RELABEL = True
34 | CYCLIC = False
35 | DECAY_RELABEL = False
36 | USE_SCHEDULER = True
37 | OPTIMIZER = 'Adam'
38 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v51.py:
--------------------------------------------------------------------------------
1 | version_name = 'v51'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 |
14 |
15 | N_TRAJ = N_EPOCH = 1000000
16 | N_CBUF = 0
17 |
18 | NUM_AGENTS = 8
19 | MAP_SIZE = 4
20 |
21 | n_candidates = 2000
22 | BATCH = 1024
23 | N_ITER = 100
24 | N_TRAJ_PER_EPOCH = 10
25 | N_BUFFER = 10
26 | N_EVALUATE = 100
27 | N_VALID = 100
28 | N_WARMUP = 100
29 | N_DATASET = 10
30 | N_VALID_DATASET = 20
31 | THRESHOLD = 1.5e-2
32 | HIDDEN_SIZE = 128
33 | RELABEL = True
34 | CYCLIC = False
35 | DECAY_RELABEL = False
36 | USE_SCHEDULER = True
37 | OPTIMIZER = 'Adam'
38 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v52.py:
--------------------------------------------------------------------------------
1 | version_name = 'v52'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 |
14 |
15 | N_TRAJ = N_EPOCH = 1000000
16 | N_CBUF = 0
17 |
18 | NUM_AGENTS = 8
19 | MAP_SIZE = 4
20 |
21 | n_candidates = 2000
22 | BATCH = 128
23 | N_ITER = 10
24 | N_TRAJ_PER_EPOCH = 100
25 | N_BUFFER = 100
26 | N_EVALUATE = 100
27 | N_VALID = 100
28 | N_WARMUP = 100
29 | N_DATASET = 10
30 | N_VALID_DATASET = 20
31 | THRESHOLD = 1.5e-2
32 | HIDDEN_SIZE = 128
33 | RELABEL = True
34 | CYCLIC = False
35 | DECAY_RELABEL = False
36 | USE_SCHEDULER = True
37 | OPTIMIZER = 'Adam'
38 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v53.py:
--------------------------------------------------------------------------------
1 | version_name = 'v53'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 |
14 |
15 | N_TRAJ = N_EPOCH = 1000000
16 | N_CBUF = 0
17 |
18 | NUM_AGENTS = 8
19 | MAP_SIZE = 4
20 |
21 | n_candidates = 2000
22 | BATCH = 128
23 | N_ITER = 100
24 | N_TRAJ_PER_EPOCH = 100
25 | N_BUFFER = 100
26 | N_EVALUATE = 100
27 | N_VALID = 100
28 | N_WARMUP = 100
29 | N_DATASET = 10
30 | N_VALID_DATASET = 20
31 | THRESHOLD = 1e-2
32 | HIDDEN_SIZE = 1024
33 | RELABEL = True
34 | CYCLIC = False
35 | DECAY_RELABEL = False
36 | USE_SCHEDULER = True
37 | OPTIMIZER = 'Adam'
38 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v54.py:
--------------------------------------------------------------------------------
1 | version_name = 'v54'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | MIN_LR = 1e-8
5 | PATIENCE = 2
6 | DECAY_EXPLORE_RATE = 0.01
7 | DECAY_NOMINAL_RATE = 1.0
8 | MIN_EXPLORE_EPS = 0.
9 | MAX_EXPLORE_EPS = 0.5
10 | POTENTIAL_OBS = True
11 | PREFERENCE_OBS = True
12 | TRAIN_ON_HARD = False
13 | VARIABLE_AGENT = False
14 | CBUF_BEFORE_RELABEL = False
15 | PER_STEP_EXPLORE = False
16 | CBUF_ONLY_BOUNDARY = False
17 | RELABEL_IF_EXPLORE = False
18 | OUTDATE = 100
19 |
20 |
21 | N_TRAJ = N_EPOCH = 1000000
22 | N_CBUF = 0
23 |
24 | NUM_AGENTS = 8
25 | MAP_SIZE = 4
26 |
27 | n_candidates = 2000
28 | BATCH = 128
29 | N_ITER = 100
30 | N_TRAJ_PER_EPOCH = 100
31 | N_BUFFER = 100
32 | N_EVALUATE = 100
33 | N_VALID = 100
34 | N_WARMUP = 100
35 | N_DATASET = 10
36 | N_VALID_DATASET = 20
37 | THRESHOLD = 1e-2
38 | HIDDEN_SIZE = 512
39 | RELABEL = True
40 | CYCLIC = False
41 | DECAY_RELABEL = False
42 | USE_SCHEDULER = True
43 | OPTIMIZER = 'Adam'
44 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v55.py:
--------------------------------------------------------------------------------
1 | version_name = 'v55'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 |
14 |
15 | N_TRAJ = N_EPOCH = 1000000
16 | N_CBUF = 0
17 |
18 | NUM_AGENTS = 8
19 | MAP_SIZE = 4
20 |
21 | n_candidates = 2000
22 | BATCH = 128
23 | N_ITER = 100
24 | N_TRAJ_PER_EPOCH = 50
25 | N_BUFFER = 100
26 | N_EVALUATE = 50
27 | N_VALID = 50
28 | N_WARMUP = 50
29 | N_DATASET = 10
30 | N_VALID_DATASET = 20
31 | THRESHOLD = 1e-2
32 | HIDDEN_SIZE = 256
33 | RELABEL = True
34 | CYCLIC = False
35 | DECAY_RELABEL = False
36 | USE_SCHEDULER = True
37 | OPTIMIZER = 'Adam'
38 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v56.py:
--------------------------------------------------------------------------------
1 | version_name = 'v56'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 |
14 |
15 | N_TRAJ = N_EPOCH = 1000000
16 | N_CBUF = 0
17 |
18 | NUM_AGENTS = 8
19 | MAP_SIZE = 4
20 |
21 | n_candidates = 2000
22 | BATCH = 128
23 | N_ITER = 100
24 | N_TRAJ_PER_EPOCH = 100
25 | N_BUFFER = 200
26 | N_EVALUATE = 100
27 | N_VALID = 100
28 | N_WARMUP = 100
29 | N_DATASET = 10
30 | N_VALID_DATASET = 20
31 | THRESHOLD = 1e-2
32 | HIDDEN_SIZE = 1024
33 | RELABEL = True
34 | CYCLIC = False
35 | DECAY_RELABEL = False
36 | USE_SCHEDULER = True
37 | OPTIMIZER = 'Adam'
38 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v57.py:
--------------------------------------------------------------------------------
1 | version_name = 'v57'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 |
14 |
15 | N_TRAJ = N_EPOCH = 1000000
16 | N_CBUF = 0
17 |
18 | NUM_AGENTS = 8
19 | MAP_SIZE = 4
20 |
21 | n_candidates = 2000
22 | BATCH = 1024
23 | N_ITER = 100
24 | N_TRAJ_PER_EPOCH = 10
25 | N_BUFFER = 20
26 | N_EVALUATE = 100
27 | N_VALID = 100
28 | N_WARMUP = 100
29 | N_DATASET = 10
30 | N_VALID_DATASET = 20
31 | THRESHOLD = 1e-2
32 | HIDDEN_SIZE = 128
33 | RELABEL = True
34 | CYCLIC = False
35 | DECAY_RELABEL = False
36 | USE_SCHEDULER = True
37 | OPTIMIZER = 'Adam'
38 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v58.py:
--------------------------------------------------------------------------------
1 | version_name = 'v58'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 0.9
14 |
15 |
16 | N_TRAJ = N_EPOCH = 1000000
17 | N_CBUF = 0
18 |
19 | NUM_AGENTS = 8
20 | MAP_SIZE = 4
21 |
22 | n_candidates = 2000
23 | BATCH = 1024
24 | N_ITER = 100
25 | N_TRAJ_PER_EPOCH = 10
26 | N_BUFFER = 20
27 | N_EVALUATE = 100
28 | N_VALID = 100
29 | N_WARMUP = 100
30 | N_DATASET = 10
31 | N_VALID_DATASET = 20
32 | THRESHOLD = 1e-2
33 | HIDDEN_SIZE = 128
34 | RELABEL = True
35 | CYCLIC = False
36 | DECAY_RELABEL = False
37 | USE_SCHEDULER = True
38 | OPTIMIZER = 'Adam'
39 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v59.py:
--------------------------------------------------------------------------------
1 | version_name = 'v59'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 8,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 6,
7 | 'obstacle_top_k': 2,
8 | 'PROB': (0.,1.),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.97
15 | DECAY_NOMINAL_RATE = 0.8
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = True
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = True
24 | ALL_LIE = False
25 |
26 |
27 | N_TRAJ = N_EPOCH = 1000000
28 | N_CBUF = 0
29 |
30 | n_candidates = 2000
31 | BATCH = 1024
32 | N_ITER = 100
33 | N_TRAJ_PER_EPOCH = 10
34 | N_BUFFER = 20
35 | N_EVALUATE = 100
36 | N_VALID = 100
37 | N_WARMUP = 100
38 | N_DATASET = 10
39 | N_VALID_DATASET = 20
40 | THRESHOLD = 1e-2
41 | HIDDEN_SIZE = 128
42 | RELABEL = True
43 | CYCLIC = False
44 | DECAY_RELABEL = False
45 | USE_SCHEDULER = True
46 | OPTIMIZER = 'Adam'
47 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v60.py:
--------------------------------------------------------------------------------
1 | version_name = 'v60'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = True
16 |
17 |
18 | N_TRAJ = N_EPOCH = 1000000
19 | N_CBUF = 0
20 |
21 | NUM_AGENTS = 8
22 | MAP_SIZE = 4
23 |
24 | n_candidates = 2000
25 | BATCH = 1024
26 | N_ITER = 100
27 | N_TRAJ_PER_EPOCH = 10
28 | N_BUFFER = 20
29 | N_EVALUATE = 100
30 | N_VALID = 100
31 | N_WARMUP = 100
32 | N_DATASET = 10
33 | N_VALID_DATASET = 20
34 | THRESHOLD = 1e-2
35 | HIDDEN_SIZE = 128
36 | RELABEL = True
37 | CYCLIC = False
38 | DECAY_RELABEL = False
39 | USE_SCHEDULER = True
40 | OPTIMIZER = 'Adam'
41 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v61.py:
--------------------------------------------------------------------------------
1 | version_name = 'v61'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = False
16 |
17 |
18 | N_TRAJ = N_EPOCH = 1000000
19 | N_CBUF = 0
20 |
21 | NUM_AGENTS = 8
22 | MAP_SIZE = 4
23 |
24 | n_candidates = 2000
25 | BATCH = 1024
26 | N_ITER = 100
27 | N_TRAJ_PER_EPOCH = 10
28 | N_BUFFER = 20
29 | N_EVALUATE = 100
30 | N_VALID = 100
31 | N_WARMUP = 100
32 | N_DATASET = 10
33 | N_VALID_DATASET = 20
34 | THRESHOLD = 1e-2
35 | HIDDEN_SIZE = 128
36 | RELABEL = True
37 | CYCLIC = True
38 | DECAY_RELABEL = False
39 | USE_SCHEDULER = True
40 | OPTIMIZER = 'Adam'
41 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v62.py:
--------------------------------------------------------------------------------
1 | version_name = 'v62'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.1
9 | POTENTIAL_OBS = False
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = False
16 |
17 |
18 | N_TRAJ = N_EPOCH = 1000000
19 | N_CBUF = 0
20 |
21 | NUM_AGENTS = 8
22 | MAP_SIZE = 4
23 |
24 | n_candidates = 2000
25 | BATCH = 1024
26 | N_ITER = 100
27 | N_TRAJ_PER_EPOCH = 10
28 | N_BUFFER = 20
29 | N_EVALUATE = 100
30 | N_VALID = 100
31 | N_WARMUP = 100
32 | N_DATASET = 10
33 | N_VALID_DATASET = 20
34 | THRESHOLD = 1e-2
35 | HIDDEN_SIZE = 128
36 | RELABEL = True
37 | CYCLIC = True
38 | DECAY_RELABEL = False
39 | USE_SCHEDULER = True
40 | OPTIMIZER = 'Adam'
41 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v63.py:
--------------------------------------------------------------------------------
1 | version_name = 'v63'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.
9 | POTENTIAL_OBS = False
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = False
16 |
17 |
18 | N_TRAJ = N_EPOCH = 1000000
19 | N_CBUF = 0
20 |
21 | NUM_AGENTS = 8
22 | MAP_SIZE = 4
23 |
24 | n_candidates = 2000
25 | BATCH = 1024
26 | N_ITER = 100
27 | N_TRAJ_PER_EPOCH = 10
28 | N_BUFFER = 20
29 | N_EVALUATE = 100
30 | N_VALID = 100
31 | N_WARMUP = 100
32 | N_DATASET = 10
33 | N_VALID_DATASET = 20
34 | THRESHOLD = 1e-2
35 | HIDDEN_SIZE = 128
36 | RELABEL = True
37 | CYCLIC = False
38 | DECAY_RELABEL = False
39 | USE_SCHEDULER = True
40 | OPTIMIZER = 'Adam'
41 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v64.py:
--------------------------------------------------------------------------------
1 | version_name = 'v64'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = False
16 |
17 |
18 | N_TRAJ = N_EPOCH = 1000000
19 | N_CBUF = 0
20 |
21 | NUM_AGENTS = 8
22 | MAP_SIZE = 4
23 |
24 | n_candidates = 2000
25 | BATCH = 128
26 | N_ITER = 3
27 | N_STEP_PER_EPOCH = 1024
28 | N_BUFFER = 20
29 | N_EVALUATE = N_VALID = 10
30 | N_WARMUP = 10
31 | N_DATASET = 10
32 | N_VALID_DATASET = 20
33 | THRESHOLD = 1e-2
34 | HIDDEN_SIZE = 128
35 | RELABEL = True
36 | CYCLIC = False
37 | DECAY_RELABEL = False
38 | USE_SCHEDULER = True
39 | OPTIMIZER = 'Adam'
40 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v65.py:
--------------------------------------------------------------------------------
1 | version_name = 'v65'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.1
9 | POTENTIAL_OBS = False
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = False
16 |
17 |
18 | N_TRAJ = N_EPOCH = 1000000
19 | N_CBUF = 0
20 |
21 | NUM_AGENTS = 8
22 | MAP_SIZE = 4
23 |
24 | n_candidates = 2000
25 | BATCH = 128
26 | N_ITER = 3
27 | N_STEP_PER_EPOCH = 1024
28 | N_BUFFER = 20
29 | N_EVALUATE = N_VALID = 10
30 | N_WARMUP = 10
31 | N_DATASET = 10
32 | N_VALID_DATASET = 20
33 | THRESHOLD = 1e-2
34 | HIDDEN_SIZE = 128
35 | RELABEL = True
36 | CYCLIC = True
37 | DECAY_RELABEL = False
38 | USE_SCHEDULER = True
39 | OPTIMIZER = 'Adam'
40 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v66.py:
--------------------------------------------------------------------------------
1 | version_name = 'v66'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = False
16 | USE_CLOSS = True
17 |
18 |
19 | N_TRAJ = N_EPOCH = 1000000
20 | N_CBUF = 0
21 |
22 | NUM_AGENTS = 8
23 | MAP_SIZE = 4
24 |
25 | n_candidates = 2000
26 | BATCH = 128
27 | N_ITER = 3
28 | N_STEP_PER_EPOCH = 1024
29 | N_BUFFER = 20
30 | N_EVALUATE = N_VALID = 10
31 | N_WARMUP = 10
32 | N_DATASET = 10
33 | N_VALID_DATASET = 20
34 | THRESHOLD = 1e-2
35 | HIDDEN_SIZE = 128
36 | RELABEL = True
37 | CYCLIC = False
38 | DECAY_RELABEL = False
39 | USE_SCHEDULER = True
40 | OPTIMIZER = 'Adam'
41 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v67.py:
--------------------------------------------------------------------------------
1 | version_name = 'v67'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = False
16 | USE_CLOSS = False
17 |
18 |
19 | N_TRAJ = N_EPOCH = 1000000
20 | N_CBUF = 0
21 |
22 | NUM_AGENTS = 8
23 | MAP_SIZE = 4
24 |
25 | n_candidates = 2000
26 | BATCH = 256
27 | N_ITER = 20
28 | N_STEP_PER_EPOCH = 1024
29 | N_BUFFER = 20
30 | N_EVALUATE = N_VALID = 10
31 | N_WARMUP = 10
32 | N_DATASET = 10
33 | N_VALID_DATASET = 20
34 | THRESHOLD = 1e-2
35 | HIDDEN_SIZE = 128
36 | RELABEL = True
37 | CYCLIC = False
38 | DECAY_RELABEL = False
39 | USE_SCHEDULER = True
40 | OPTIMIZER = 'Adam'
41 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v68.py:
--------------------------------------------------------------------------------
1 | version_name = 'v68'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = False
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = False
16 | USE_CLOSS = False
17 |
18 |
19 | N_TRAJ = N_EPOCH = 1000000
20 | N_CBUF = 0
21 |
22 | NUM_AGENTS = 8
23 | MAP_SIZE = 4
24 |
25 | n_candidates = 2000
26 | BATCH = 256
27 | N_ITER = 20
28 | N_STEP_PER_EPOCH = 1024
29 | N_BUFFER = 20
30 | N_EVALUATE = N_VALID = 10
31 | N_WARMUP = 10
32 | N_DATASET = 10
33 | N_VALID_DATASET = 20
34 | THRESHOLD = 1e-2
35 | HIDDEN_SIZE = 128
36 | RELABEL = True
37 | CYCLIC = False
38 | DECAY_RELABEL = False
39 | USE_SCHEDULER = True
40 | OPTIMIZER = 'Adam'
41 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v69.py:
--------------------------------------------------------------------------------
1 | version_name = 'v69'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = False
16 |
17 |
18 | N_TRAJ = N_EPOCH = 1000000
19 | N_CBUF = 10000000
20 |
21 | NUM_AGENTS = 8
22 | MAP_SIZE = 4
23 |
24 | n_candidates = 2000
25 | BATCH = 1024
26 | N_ITER = 100
27 | N_TRAJ_PER_EPOCH = 10
28 | N_BUFFER = 20
29 | N_EVALUATE = 100
30 | N_VALID = 100
31 | N_WARMUP = 100
32 | N_DATASET = 10
33 | N_VALID_DATASET = 20
34 | THRESHOLD = 1e-2
35 | HIDDEN_SIZE = 128
36 | RELABEL = True
37 | CYCLIC = False
38 | DECAY_RELABEL = False
39 | USE_SCHEDULER = True
40 | OPTIMIZER = 'Adam'
41 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v70.py:
--------------------------------------------------------------------------------
1 | version_name = 'v70'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = False
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = False
16 |
17 |
18 | N_TRAJ = N_EPOCH = 1000000
19 | N_CBUF = 10000000
20 |
21 | NUM_AGENTS = 8
22 | MAP_SIZE = 4
23 |
24 | n_candidates = 2000
25 | BATCH = 1024
26 | N_ITER = 100
27 | N_TRAJ_PER_EPOCH = 10
28 | N_BUFFER = 20
29 | N_EVALUATE = 100
30 | N_VALID = 100
31 | N_WARMUP = 100
32 | N_DATASET = 10
33 | N_VALID_DATASET = 20
34 | THRESHOLD = 1e-2
35 | HIDDEN_SIZE = 128
36 | RELABEL = True
37 | CYCLIC = False
38 | DECAY_RELABEL = False
39 | USE_SCHEDULER = True
40 | OPTIMIZER = 'Adam'
41 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v71.py:
--------------------------------------------------------------------------------
1 | version_name = 'v71'
2 | OBSTACLE_DENSITY = 1.0
3 | LR = 3e-4
4 | PATIENCE = 2
5 | DECAY_EXPLORE_RATE = 0.97
6 | DECAY_NOMINAL_RATE = 0.8
7 | MIN_EXPLORE_EPS = 0.
8 | MAX_EXPLORE_EPS = 0.5
9 | POTENTIAL_OBS = True
10 | TRAIN_ON_HARD = False
11 | VARIABLE_AGENT = False
12 | CBUF_BEFORE_RELABEL = True
13 | REFINE_EPS = 1.0
14 | RELABEL_ONLY_AGENT = False
15 | ALL_LIE = False
16 |
17 |
18 | N_TRAJ = N_EPOCH = 1000000
19 | N_CBUF = 10000000
20 |
21 | NUM_AGENTS = 8
22 | MAP_SIZE = 4
23 | AGENT_TOP_K = 6
24 | OBSTACLE_TOP_K = 2
25 |
26 | n_candidates = 2000
27 | BATCH = 1024
28 | N_ITER = 100
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 2e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v72.py:
--------------------------------------------------------------------------------
1 | version_name = 'v72'
2 | LR = 3e-4
3 | PATIENCE = 2
4 | DECAY_EXPLORE_RATE = 0.97
5 | DECAY_NOMINAL_RATE = 0.8
6 | MIN_EXPLORE_EPS = 0.
7 | MAX_EXPLORE_EPS = 0.5
8 | POTENTIAL_OBS = False
9 | TRAIN_ON_HARD = False
10 | VARIABLE_AGENT = False
11 | CBUF_BEFORE_RELABEL = True
12 | REFINE_EPS = 1.0
13 | RELABEL_ONLY_AGENT = False
14 | ALL_LIE = False
15 |
16 |
17 | N_TRAJ = N_EPOCH = 1000000
18 | N_CBUF = 10000000
19 |
20 | NUM_AGENTS = 3
21 | MAP_SIZE = 3
22 | AGENT_TOP_K = 2
23 | OBSTACLE_TOP_K = 1
24 | OBSTACLE_DENSITY = 0.3
25 |
26 | n_candidates = 2000
27 | BATCH = 128
28 | N_ITER = 20
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 2e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v73.py:
--------------------------------------------------------------------------------
1 | version_name = 'v73'
2 | LR = 3e-4
3 | PATIENCE = 2
4 | DECAY_EXPLORE_RATE = 0.97
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.
7 | MAX_EXPLORE_EPS = 0.5
8 | POTENTIAL_OBS = False
9 | TRAIN_ON_HARD = False
10 | VARIABLE_AGENT = False
11 | CBUF_BEFORE_RELABEL = True
12 | REFINE_EPS = 1.0
13 | RELABEL_ONLY_AGENT = False
14 | ALL_LIE = False
15 |
16 |
17 | N_TRAJ = N_EPOCH = 1000000
18 | N_CBUF = 10000000
19 |
20 | NUM_AGENTS = 3
21 | MAP_SIZE = 3
22 | AGENT_TOP_K = 2
23 | OBSTACLE_TOP_K = 1
24 | OBSTACLE_DENSITY = 0.3
25 |
26 | n_candidates = 2000
27 | BATCH = 128
28 | N_ITER = 100
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = False
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v74.py:
--------------------------------------------------------------------------------
1 | version_name = 'v74'
2 | LR = 3e-4
3 | PATIENCE = 2
4 | DECAY_EXPLORE_RATE = 0.97
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.
7 | MAX_EXPLORE_EPS = 0.5
8 | POTENTIAL_OBS = False
9 | TRAIN_ON_HARD = False
10 | VARIABLE_AGENT = False
11 | CBUF_BEFORE_RELABEL = True
12 | REFINE_EPS = 1.0
13 | RELABEL_ONLY_AGENT = False
14 | ALL_LIE = False
15 |
16 |
17 | N_TRAJ = N_EPOCH = 1000000
18 | N_CBUF = 10000000
19 |
20 | NUM_AGENTS = 3
21 | MAP_SIZE = 3
22 | AGENT_TOP_K = 2
23 | OBSTACLE_TOP_K = 1
24 | OBSTACLE_DENSITY = 0.3
25 |
26 | n_candidates = 2000
27 | BATCH = 128
28 | N_ITER = 100
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v75.py:
--------------------------------------------------------------------------------
1 | version_name = 'v75'
2 | LR = 3e-4
3 | PATIENCE = 2
4 | DECAY_EXPLORE_RATE = 0.97
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.
7 | MAX_EXPLORE_EPS = 0.5
8 | POTENTIAL_OBS = False
9 | TRAIN_ON_HARD = False
10 | VARIABLE_AGENT = False
11 | CBUF_BEFORE_RELABEL = True
12 | REFINE_EPS = 1.0
13 | RELABEL_ONLY_AGENT = False
14 | ALL_LIE = False
15 |
16 |
17 | N_TRAJ = N_EPOCH = 1000000
18 | N_CBUF = 10000000
19 |
20 | NUM_AGENTS = 3
21 | MAP_SIZE = 3
22 | AGENT_TOP_K = 2
23 | OBSTACLE_TOP_K = 1
24 | OBSTACLE_DENSITY = 0.
25 |
26 | n_candidates = 2000
27 | BATCH = 128
28 | N_ITER = 100
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 100
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 1e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'Adam'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v76.py:
--------------------------------------------------------------------------------
1 | version_name = 'v76'
2 | LR = 1e-2
3 | PATIENCE = 2
4 | DECAY_EXPLORE_RATE = 0.97
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.
7 | MAX_EXPLORE_EPS = 0.5
8 | POTENTIAL_OBS = False
9 | TRAIN_ON_HARD = False
10 | VARIABLE_AGENT = False
11 | CBUF_BEFORE_RELABEL = True
12 | REFINE_EPS = 1.0
13 | RELABEL_ONLY_AGENT = False
14 | ALL_LIE = False
15 |
16 |
17 | N_TRAJ = N_EPOCH = 1000000
18 | N_CBUF = 0
19 |
20 | NUM_AGENTS = 3
21 | MAP_SIZE = 4
22 | AGENT_TOP_K = 2
23 | OBSTACLE_TOP_K = 1
24 | OBSTACLE_DENSITY = 0.
25 |
26 | n_candidates = 2000
27 | BATCH = 256
28 | N_ITER = 100
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 10
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'SGD'
43 | SAVE_GIF = False
44 |
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v77.py:
--------------------------------------------------------------------------------
1 | version_name = 'v77'
2 | LR = 1e-2
3 | PATIENCE = 2
4 | DECAY_EXPLORE_RATE = 0.9
5 | DECAY_NOMINAL_RATE = 0.
6 | MIN_EXPLORE_EPS = 0.
7 | MAX_EXPLORE_EPS = 0.5
8 | POTENTIAL_OBS = False
9 | TRAIN_ON_HARD = False
10 | VARIABLE_AGENT = False
11 | CBUF_BEFORE_RELABEL = True
12 | REFINE_EPS = 1.0
13 | RELABEL_ONLY_AGENT = False
14 | ALL_LIE = False
15 |
16 |
17 | N_TRAJ = N_EPOCH = 1000000
18 | N_CBUF = 1000000000
19 |
20 | NUM_AGENTS = 3
21 | MAP_SIZE = 4
22 | AGENT_TOP_K = 2
23 | OBSTACLE_TOP_K = 1
24 | OBSTACLE_DENSITY = 0.1
25 |
26 | n_candidates = 2000
27 | BATCH = 256
28 | N_ITER = 100
29 | N_TRAJ_PER_EPOCH = 10
30 | N_BUFFER = 20
31 | N_EVALUATE = 100
32 | N_VALID = 100
33 | N_WARMUP = 10
34 | N_DATASET = 10
35 | N_VALID_DATASET = 20
36 | THRESHOLD = 5e-2
37 | HIDDEN_SIZE = 128
38 | RELABEL = True
39 | CYCLIC = False
40 | DECAY_RELABEL = False
41 | USE_SCHEDULER = True
42 | OPTIMIZER = 'SGD'
43 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v79.py:
--------------------------------------------------------------------------------
1 | version_name = 'v79'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.),
9 | 'simple': True,
10 | }
11 |
12 | LR = 1e-2
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 |
27 |
28 | N_TRAJ = N_EPOCH = 4000
29 | N_CBUF = 1000
30 |
31 | n_candidates = 2000
32 | BATCH = 256
33 | N_ITER = 100
34 | N_TRAJ_PER_EPOCH = 10
35 | N_BUFFER = 20
36 | N_EVALUATE = 100
37 | N_VALID = 100
38 | N_WARMUP = 10
39 | N_DATASET = 10
40 | N_VALID_DATASET = 50
41 | THRESHOLD = 5e-2
42 | HIDDEN_SIZE = 128
43 | RELABEL = True
44 | EXPLORE_WAY = 'linear'
45 | DECAY_RELABEL = False
46 | USE_SCHEDULER = True
47 | OPTIMIZER = 'SGD'
48 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v80.py:
--------------------------------------------------------------------------------
1 | version_name = 'v80'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 8,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 6,
7 | 'obstacle_top_k': 2,
8 | 'PROB': (0.,1.),
9 | 'simple': True,
10 | }
11 |
12 | LR = 1e-2
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 |
27 |
28 | N_TRAJ = N_EPOCH = 4000
29 | N_CBUF = 1000
30 |
31 | n_candidates = 2000
32 | BATCH = 256
33 | N_ITER = 100
34 | N_TRAJ_PER_EPOCH = 10
35 | N_BUFFER = 20
36 | N_EVALUATE = 100
37 | N_VALID = 100
38 | N_WARMUP = 10
39 | N_DATASET = 10
40 | N_VALID_DATASET = 50
41 | THRESHOLD = 5e-2
42 | HIDDEN_SIZE = 128
43 | RELABEL = True
44 | EXPLORE_WAY = 'linear'
45 | DECAY_RELABEL = False
46 | USE_SCHEDULER = True
47 | OPTIMIZER = 'SGD'
48 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v81.py:
--------------------------------------------------------------------------------
1 | version_name = 'v81'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.1),
9 | 'simple': True,
10 | }
11 |
12 | LR = 1e-2
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 |
27 |
28 | N_TRAJ = N_EPOCH = 4000
29 | N_CBUF = 1000
30 |
31 | n_candidates = 2000
32 | BATCH = 256
33 | N_ITER = 100
34 | N_TRAJ_PER_EPOCH = 10
35 | N_BUFFER = 20
36 | N_EVALUATE = 100
37 | N_VALID = 100
38 | N_WARMUP = 10
39 | N_DATASET = 10
40 | N_VALID_DATASET = 50
41 | THRESHOLD = 5e-2
42 | HIDDEN_SIZE = 128
43 | RELABEL = True
44 | EXPLORE_WAY = 'linear'
45 | DECAY_RELABEL = False
46 | USE_SCHEDULER = True
47 | OPTIMIZER = 'SGD'
48 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v82.py:
--------------------------------------------------------------------------------
1 | version_name = 'v82'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 8,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 6,
7 | 'obstacle_top_k': 2,
8 | 'PROB': (0.,1.0),
9 | 'simple': True,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 |
27 |
28 | N_TRAJ = N_EPOCH = 4000
29 | N_CBUF = 1000
30 |
31 | n_candidates = 2000
32 | BATCH = 256
33 | N_ITER = 100
34 | N_TRAJ_PER_EPOCH = 10
35 | N_BUFFER = 20
36 | N_EVALUATE = 100
37 | N_VALID = 100
38 | N_WARMUP = 10
39 | N_DATASET = 10
40 | N_VALID_DATASET = 50
41 | THRESHOLD = 5e-2
42 | HIDDEN_SIZE = 128
43 | RELABEL = True
44 | EXPLORE_WAY = 'linear'
45 | DECAY_RELABEL = False
46 | USE_SCHEDULER = True
47 | OPTIMIZER = 'Adam'
48 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v83.py:
--------------------------------------------------------------------------------
1 | version_name = 'v83'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 8,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 6,
7 | 'obstacle_top_k': 2,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 |
27 |
28 | N_TRAJ = N_EPOCH = 4000
29 | N_CBUF = 1000
30 |
31 | SPATIAL_PROP = True
32 | n_candidates = 2000
33 | BATCH = 256
34 | N_ITER = 100
35 | N_TRAJ_PER_EPOCH = 10
36 | N_BUFFER = 20
37 | N_EVALUATE = 100
38 | N_VALID = 100
39 | N_WARMUP = 10
40 | N_DATASET = 10
41 | N_VALID_DATASET = 50
42 | THRESHOLD = 5e-2
43 | HIDDEN_SIZE = 128
44 | RELABEL = True
45 | EXPLORE_WAY = 'linear'
46 | DECAY_RELABEL = False
47 | USE_SCHEDULER = True
48 | OPTIMIZER = 'Adam'
49 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v84.py:
--------------------------------------------------------------------------------
1 | version_name = 'v84'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.1),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.97
15 | DECAY_NOMINAL_RATE = 0.8
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 |
27 |
28 | N_TRAJ = N_EPOCH = 10000000
29 | N_CBUF = 1000
30 |
31 | SPATIAL_PROP = True
32 | n_candidates = 2000
33 | BATCH = 256
34 | N_ITER = 100
35 | N_TRAJ_PER_EPOCH = 10
36 | N_BUFFER = 20
37 | N_EVALUATE = 100
38 | N_VALID = 100
39 | N_WARMUP = 10
40 | N_DATASET = 10
41 | N_VALID_DATASET = 50
42 | THRESHOLD = 1e-2
43 | HIDDEN_SIZE = 128
44 | RELABEL = True
45 | EXPLORE_WAY = 'exponential'
46 | DECAY_RELABEL = False
47 | USE_SCHEDULER = True
48 | OPTIMIZER = 'Adam'
49 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v85.py:
--------------------------------------------------------------------------------
1 | version_name = 'v85'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.1),
9 | 'simple': True,
10 | }
11 |
12 | LR = 1e-2
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 |
27 |
28 | N_TRAJ = N_EPOCH = 4000
29 | N_CBUF = 1000
30 |
31 | SPATIAL_PROP = True
32 | n_candidates = 2000
33 | BATCH = 256
34 | N_ITER = 100
35 | N_TRAJ_PER_EPOCH = 10
36 | N_BUFFER = 20
37 | N_EVALUATE = 100
38 | N_VALID = 100
39 | N_WARMUP = 10
40 | N_DATASET = 10
41 | N_VALID_DATASET = 50
42 | THRESHOLD = 1e-2
43 | HIDDEN_SIZE = 128
44 | RELABEL = True
45 | EXPLORE_WAY = 'linear'
46 | DECAY_RELABEL = False
47 | USE_SCHEDULER = True
48 | OPTIMIZER = 'SGD'
49 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v86.py:
--------------------------------------------------------------------------------
1 | version_name = 'v86'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.1),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.97
15 | DECAY_NOMINAL_RATE = 0.8
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 |
27 |
28 | N_TRAJ = N_EPOCH = 10000000
29 | N_CBUF = 1000
30 |
31 | SPATIAL_PROP = True
32 | n_candidates = 2000
33 | BATCH = 256
34 | N_ITER = 100
35 | N_TRAJ_PER_EPOCH = 10
36 | N_BUFFER = 20
37 | N_EVALUATE = 100
38 | N_VALID = 100
39 | N_WARMUP = 10
40 | N_DATASET = 10
41 | N_VALID_DATASET = 50
42 | THRESHOLD = 1e-2
43 | HIDDEN_SIZE = 128
44 | RELABEL = True
45 | EXPLORE_WAY = 'exponential'
46 | DECAY_RELABEL = False
47 | USE_SCHEDULER = True
48 | OPTIMIZER = 'Adam'
49 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v87.py:
--------------------------------------------------------------------------------
1 | version_name = 'v87'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 8,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 6,
7 | 'obstacle_top_k': 2,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.97
15 | DECAY_NOMINAL_RATE = 0.8
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = True
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 |
27 |
28 | N_TRAJ = N_EPOCH = 10000000
29 | N_CBUF = 1000
30 |
31 | POLYAK = 0.9
32 | SPATIAL_PROP = False
33 | n_candidates = 2000
34 | BATCH = 256
35 | N_ITER = 100
36 | N_TRAJ_PER_EPOCH = 10
37 | N_BUFFER = 20
38 | N_EVALUATE = 100
39 | N_VALID = 100
40 | N_WARMUP = 10
41 | N_DATASET = 10
42 | N_VALID_DATASET = 50
43 | THRESHOLD = 1e-2
44 | HIDDEN_SIZE = 128
45 | RELABEL = True
46 | EXPLORE_WAY = 'exponential'
47 | DECAY_RELABEL = False
48 | USE_SCHEDULER = True
49 | OPTIMIZER = 'Adam'
50 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v88.py:
--------------------------------------------------------------------------------
1 | version_name = 'v88'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 8,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 6,
7 | 'obstacle_top_k': 2,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.97
15 | DECAY_NOMINAL_RATE = 0.8
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = True
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = False
26 |
27 |
28 | N_TRAJ = N_EPOCH = 10000000
29 | N_CBUF = 0
30 |
31 | POLYAK = 0.
32 | SPATIAL_PROP = False
33 | n_candidates = 2000
34 | BATCH = 256
35 | N_ITER = 100
36 | N_TRAJ_PER_EPOCH = 10
37 | N_BUFFER = 20
38 | N_EVALUATE = 100
39 | N_VALID = 100
40 | N_WARMUP = 10
41 | N_DATASET = 10
42 | N_VALID_DATASET = 50
43 | THRESHOLD = 1e-2
44 | HIDDEN_SIZE = 128
45 | RELABEL = True
46 | EXPLORE_WAY = 'exponential'
47 | DECAY_RELABEL = False
48 | USE_SCHEDULER = True
49 | OPTIMIZER = 'Adam'
50 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v89.py:
--------------------------------------------------------------------------------
1 | version_name = 'v89'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 8,
5 | 'SIZE': (4,4),
6 | 'agent_top_k': 6,
7 | 'obstacle_top_k': 2,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.97
15 | DECAY_NOMINAL_RATE = 0.2
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 1.0
18 | POTENTIAL_OBS = True
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = False
26 |
27 |
28 | N_TRAJ = N_EPOCH = 10000000
29 | N_CBUF = 0
30 |
31 | POLYAK = 0.9
32 | SPATIAL_PROP = False
33 | n_candidates = 2000
34 | BATCH = 256
35 | N_ITER = 100
36 | N_TRAJ_PER_EPOCH = 10
37 | N_BUFFER = 20
38 | N_EVALUATE = 100
39 | N_VALID = 100
40 | N_WARMUP = 10
41 | N_DATASET = 10
42 | N_VALID_DATASET = 50
43 | THRESHOLD = 1e-2
44 | HIDDEN_SIZE = 128
45 | RELABEL = True
46 | EXPLORE_WAY = 'exponential'
47 | NOMINAL_WAY = 'linear'
48 | DECAY_RELABEL = False
49 | USE_SCHEDULER = False
50 | OPTIMIZER = 'Adam'
51 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v90.py:
--------------------------------------------------------------------------------
1 | version_name = 'v90'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.2
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 1.0
18 | POTENTIAL_OBS = True
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = False
26 |
27 |
28 | PE_DIM = 40
29 | N_TRAJ = N_EPOCH = 10000000
30 | N_CBUF = 0
31 |
32 | POLYAK = 0.
33 | SPATIAL_PROP = False
34 | n_candidates = 2000
35 | BATCH = 256
36 | N_ITER = 100
37 | N_TRAJ_PER_EPOCH = 10
38 | N_BUFFER = 10
39 | N_EVALUATE = 100
40 | N_VALID = 100
41 | N_WARMUP = 10
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | THRESHOLD = 1e-2
45 | HIDDEN_SIZE = 128
46 | RELABEL = True
47 | EXPLORE_WAY = 'exponential'
48 | NOMINAL_WAY = 'linear'
49 | DECAY_RELABEL = False
50 | USE_SCHEDULER = False
51 | OPTIMIZER = 'Adam'
52 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v91.py:
--------------------------------------------------------------------------------
1 | version_name = 'v91'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 |
27 |
28 | PE_DIM = 40
29 | N_TRAJ = N_EPOCH = 4000
30 | N_CBUF = 1000
31 |
32 | POLYAK = 0.
33 | SPATIAL_PROP = False
34 | n_candidates = 2000
35 | BATCH = 4096
36 | N_ITER = 100
37 | N_TRAJ_PER_EPOCH = 10
38 | N_BUFFER = 10
39 | N_EVALUATE = 100
40 | N_VALID = 100
41 | N_WARMUP = 10
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | THRESHOLD = 1e-2
45 | HIDDEN_SIZE = 128
46 | RELABEL = True
47 | EXPLORE_WAY = 'linear'
48 | NOMINAL_WAY = 'exponential'
49 | DECAY_RELABEL = False
50 | USE_SCHEDULER = True
51 | OPTIMIZER = 'Adam'
52 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v92.py:
--------------------------------------------------------------------------------
1 | version_name = 'v92'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 | DANGER_THRESHOLD = 0
27 |
28 |
29 | PE_DIM = 40
30 | N_TRAJ = N_EPOCH = 4000
31 | N_BUFFER = 100000000000
32 |
33 | POLYAK = 0.99
34 | SPATIAL_PROP = False
35 | n_candidates = 2000
36 | BATCH = 64
37 | N_ITER = 100
38 | N_TRAJ_PER_EPOCH = 10
39 | N_EVALUATE = 100
40 | N_VALID = 100
41 | N_WARMUP = 10
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | THRESHOLD = 1e-2
45 | HIDDEN_SIZE = 128
46 | RELABEL = True
47 | EXPLORE_WAY = 'linear'
48 | NOMINAL_WAY = 'exponential'
49 | DECAY_RELABEL = False
50 | USE_SCHEDULER = False
51 | OPTIMIZER = 'Adam'
52 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v93.py:
--------------------------------------------------------------------------------
1 | version_name = 'v93'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.1),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.01
17 | MAX_EXPLORE_EPS = 0.5
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 | DANGER_THRESHOLD = 0
27 |
28 |
29 | PE_DIM = 40
30 | N_TRAJ = N_EPOCH = 1000000000
31 | N_BUFFER = 100000
32 |
33 | POLYAK = 0.99
34 | SPATIAL_PROP = False
35 | n_candidates = 2000
36 | BATCH = 64
37 | N_ITER = 100
38 | N_TRAJ_PER_EPOCH = 10
39 | N_EVALUATE = 100
40 | N_VALID = 100
41 | N_WARMUP = 10
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | THRESHOLD = 1e-2
45 | HIDDEN_SIZE = 128
46 | RELABEL = True
47 | EXPLORE_WAY = 'exponential'
48 | NOMINAL_WAY = 'exponential'
49 | DECAY_RELABEL = False
50 | USE_SCHEDULER = False
51 | OPTIMIZER = 'Adam'
52 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v94.py:
--------------------------------------------------------------------------------
1 | version_name = 'v94'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.1),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.01
17 | MAX_EXPLORE_EPS = 0.1
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 | DANGER_THRESHOLD = 0
27 |
28 |
29 | PE_DIM = 40
30 | N_TRAJ = N_EPOCH = 1000000000
31 | N_BUFFER = 100000
32 |
33 | POLYAK = 0.99
34 | SPATIAL_PROP = False
35 | n_candidates = 2000
36 | BATCH = 64
37 | N_ITER = 100
38 | N_TRAJ_PER_EPOCH = 10
39 | N_EVALUATE = 100
40 | N_VALID = 100
41 | N_WARMUP = 10
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | THRESHOLD = 1e-2
45 | HIDDEN_SIZE = 128
46 | RELABEL = True
47 | EXPLORE_WAY = 'exponential'
48 | NOMINAL_WAY = 'exponential'
49 | DECAY_RELABEL = False
50 | USE_SCHEDULER = False
51 | OPTIMIZER = 'Adam'
52 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v95.py:
--------------------------------------------------------------------------------
1 | version_name = 'v95'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.1),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.01
17 | MAX_EXPLORE_EPS = 0.1
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 | DANGER_THRESHOLD = 0
27 |
28 |
29 | PE_DIM = 40
30 | N_TRAJ = N_EPOCH = 1000000000
31 | N_BUFFER = 100000
32 |
33 | POLYAK = 0.99
34 | SPATIAL_PROP = False
35 | n_candidates = 2000
36 | BATCH = 64
37 | N_ITER = 100
38 | N_TRAJ_PER_EPOCH = 10
39 | N_EVALUATE = 100
40 | N_VALID = 100
41 | N_WARMUP = 10
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | THRESHOLD = 1e-2
45 | HIDDEN_SIZE = 128
46 | RELABEL = True
47 | EXPLORE_WAY = 'exponential'
48 | NOMINAL_WAY = 'exponential'
49 | DECAY_RELABEL = False
50 | USE_SCHEDULER = False
51 | OPTIMIZER = 'Adam'
52 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v96.py:
--------------------------------------------------------------------------------
1 | version_name = 'v96'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.1),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.01
17 | MAX_EXPLORE_EPS = 0.1
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 | DANGER_THRESHOLD = 1e-2
27 |
28 |
29 | PE_DIM = 40
30 | N_TRAJ = N_EPOCH = 1000000000
31 | N_BUFFER = 100000
32 |
33 | POLYAK = 0.99
34 | SPATIAL_PROP = False
35 | n_candidates = 2000
36 | BATCH = 64
37 | N_ITER = 100
38 | N_TRAJ_PER_EPOCH = 10
39 | N_EVALUATE = 100
40 | N_VALID = 100
41 | N_WARMUP = 10
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | THRESHOLD = 1e-2
45 | HIDDEN_SIZE = 128
46 | RELABEL = True
47 | EXPLORE_WAY = 'exponential'
48 | NOMINAL_WAY = 'exponential'
49 | DECAY_RELABEL = False
50 | USE_SCHEDULER = False
51 | OPTIMIZER = 'Adam'
52 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v97.py:
--------------------------------------------------------------------------------
1 | version_name = 'v97'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,0.1),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.01
17 | MAX_EXPLORE_EPS = 0.1
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 | DANGER_THRESHOLD = 0
27 |
28 |
29 | PE_DIM = 40
30 | N_TRAJ = N_EPOCH = 1000000000
31 | N_BUFFER = 10000
32 |
33 | POLYAK = 0.99
34 | SPATIAL_PROP = False
35 | n_candidates = 2000
36 | BATCH = 64
37 | N_ITER = 100
38 | N_TRAJ_PER_EPOCH = 10
39 | N_EVALUATE = 100
40 | N_VALID = 100
41 | N_WARMUP = 10
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | THRESHOLD = 1e-2
45 | HIDDEN_SIZE = 128
46 | RELABEL = True
47 | EXPLORE_WAY = 'exponential'
48 | NOMINAL_WAY = 'exponential'
49 | DECAY_RELABEL = False
50 | USE_SCHEDULER = False
51 | OPTIMIZER = 'Adam'
52 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v98.py:
--------------------------------------------------------------------------------
1 | version_name = 'v98'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | LR = 3e-4
13 | PATIENCE = 2
14 | DECAY_EXPLORE_RATE = 0.9
15 | DECAY_NOMINAL_RATE = 0.
16 | MIN_EXPLORE_EPS = 0.01
17 | MAX_EXPLORE_EPS = 0.1
18 | POTENTIAL_OBS = False
19 | TRAIN_ON_HARD = False
20 | VARIABLE_AGENT = False
21 | CBUF_BEFORE_RELABEL = True
22 | REFINE_EPS = 1.0
23 | RELABEL_ONLY_AGENT = False
24 | ALL_LIE = False
25 | ONLY_BOUNDARY = True
26 | DANGER_THRESHOLD = 0
27 |
28 |
29 | PE_DIM = 40
30 | N_TRAJ = N_EPOCH = 1000000000
31 | N_BUFFER = 10000
32 |
33 | POLYAK = 0.99
34 | SPATIAL_PROP = False
35 | n_candidates = 2000
36 | BATCH = 64
37 | N_ITER = 100
38 | N_TRAJ_PER_EPOCH = 10
39 | N_EVALUATE = 100
40 | N_VALID = 100
41 | N_WARMUP = 10
42 | N_DATASET = 10
43 | N_VALID_DATASET = 50
44 | THRESHOLD = 1e-2
45 | HIDDEN_SIZE = 128
46 | RELABEL = True
47 | EXPLORE_WAY = 'exponential'
48 | NOMINAL_WAY = 'exponential'
49 | DECAY_RELABEL = False
50 | USE_SCHEDULER = False
51 | OPTIMIZER = 'Adam'
52 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/configs/dubins/v99.py:
--------------------------------------------------------------------------------
1 | version_name = 'v99'
2 |
3 | ENV_CONFIG = {
4 | 'num_agents': 3,
5 | 'SIZE': (3,3),
6 | 'agent_top_k': 2,
7 | 'obstacle_top_k': 1,
8 | 'PROB': (0.,1.0),
9 | 'simple': False,
10 | }
11 |
12 | FIX_ENV = True
13 |
14 | LR = 3e-4
15 | PATIENCE = 2
16 | DECAY_EXPLORE_RATE = 0.9
17 | DECAY_NOMINAL_RATE = 0.
18 | MIN_EXPLORE_EPS = 0.01
19 | MAX_EXPLORE_EPS = 0.1
20 | POTENTIAL_OBS = False
21 | TRAIN_ON_HARD = False
22 | VARIABLE_AGENT = False
23 | CBUF_BEFORE_RELABEL = True
24 | REFINE_EPS = 1.0
25 | RELABEL_ONLY_AGENT = False
26 | ALL_LIE = False
27 | ONLY_BOUNDARY = False
28 | DANGER_THRESHOLD = 0
29 |
30 |
31 | PE_DIM = None
32 | N_TRAJ = N_EPOCH = 1000000000
33 | N_BUFFER = 20
34 | N_CBUF = 1000
35 |
36 | POLYAK = 0.99
37 | SPATIAL_PROP = False
38 | n_candidates = 2000
39 | BATCH = 1024
40 | N_ITER = 100
41 | N_TRAJ_PER_EPOCH = 1
42 | N_EVALUATE = 100
43 | N_VALID = 100
44 | N_WARMUP = 10
45 | N_DATASET = 10
46 | N_VALID_DATASET = 50
47 | THRESHOLD = 1e-2
48 | HIDDEN_SIZE = 128
49 | RELABEL = True
50 | EXPLORE_WAY = 'exponential'
51 | NOMINAL_WAY = 'exponential'
52 | DECAY_RELABEL = False
53 | USE_SCHEDULER = True
54 | OPTIMIZER = 'Adam'
55 | SAVE_GIF = False
--------------------------------------------------------------------------------
/pyg_multiagent/environments/__init__.py:
--------------------------------------------------------------------------------
1 | from .gym_abstract import AbstractEnv
2 | from .gym_drone import DroneEnv
3 | from .gym_dubins_car import DubinsCarEnv
4 | from .gym_dynamic_dubins import DynamicDubinsEnv
5 | from .gym_dynamic_dubins_multi import MultiDynamicDubinsEnv
6 | from .gym_point import PointEnv
7 | from .gym_ur5 import UR5Env
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/collision/base.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/collision/base.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/collision/forearm.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/collision/forearm.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/collision/shoulder.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/collision/shoulder.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/collision/upperarm.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/collision/upperarm.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/collision/wrist1.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/collision/wrist1.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/collision/wrist2.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/collision/wrist2.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/collision/wrist3.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/collision/wrist3.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/robotiq-2f-base.mtl:
--------------------------------------------------------------------------------
1 | # Blender MTL File: 'gripper-2f.blend'
2 | # Material Count: 1
3 |
4 | newmtl Default
5 | Ns 96.078431
6 | Ka 1.000000 1.000000 1.000000
7 | Kd 0.640000 0.640000 0.640000
8 | Ks 0.500000 0.500000 0.500000
9 | Ke 0.000000 0.000000 0.000000
10 | Ni 1.000000
11 | d 1.000000
12 | illum 2
13 | map_Kd textures/gripper-2f_BaseColor.jpg
14 |
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/robotiq-2f-base.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/gripper/robotiq-2f-base.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/robotiq-2f-coupler.mtl:
--------------------------------------------------------------------------------
1 | # Blender MTL File: 'gripper-2f.blend'
2 | # Material Count: 1
3 |
4 | newmtl Default
5 | Ns 96.078431
6 | Ka 1.000000 1.000000 1.000000
7 | Kd 0.640000 0.640000 0.640000
8 | Ks 0.500000 0.500000 0.500000
9 | Ke 0.000000 0.000000 0.000000
10 | Ni 1.000000
11 | d 1.000000
12 | illum 2
13 | map_Kd textures/gripper-2f_BaseColor.jpg
14 |
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/robotiq-2f-coupler.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/gripper/robotiq-2f-coupler.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/robotiq-2f-driver.mtl:
--------------------------------------------------------------------------------
1 | # Blender MTL File: 'gripper-2f.blend'
2 | # Material Count: 1
3 |
4 | newmtl Default
5 | Ns 96.078431
6 | Ka 1.000000 1.000000 1.000000
7 | Kd 0.640000 0.640000 0.640000
8 | Ks 0.500000 0.500000 0.500000
9 | Ke 0.000000 0.000000 0.000000
10 | Ni 1.000000
11 | d 1.000000
12 | illum 2
13 | map_Kd textures/gripper-2f_BaseColor.jpg
14 |
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/robotiq-2f-driver.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/gripper/robotiq-2f-driver.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/robotiq-2f-follower.mtl:
--------------------------------------------------------------------------------
1 | # Blender MTL File: 'gripper-2f.blend'
2 | # Material Count: 1
3 |
4 | newmtl Default
5 | Ns 96.078431
6 | Ka 1.000000 1.000000 1.000000
7 | Kd 0.640000 0.640000 0.640000
8 | Ks 0.500000 0.500000 0.500000
9 | Ke 0.000000 0.000000 0.000000
10 | Ni 1.000000
11 | d 1.000000
12 | illum 2
13 | map_Kd textures/gripper-2f_BaseColor.jpg
14 |
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/robotiq-2f-follower.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/gripper/robotiq-2f-follower.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/robotiq-2f-pad.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/gripper/robotiq-2f-pad.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/robotiq-2f-spring_link.mtl:
--------------------------------------------------------------------------------
1 | # Blender MTL File: 'gripper-2f.blend'
2 | # Material Count: 1
3 |
4 | newmtl Default
5 | Ns 96.078431
6 | Ka 1.000000 1.000000 1.000000
7 | Kd 0.640000 0.640000 0.640000
8 | Ks 0.500000 0.500000 0.500000
9 | Ke 0.000000 0.000000 0.000000
10 | Ni 1.000000
11 | d 1.000000
12 | illum 2
13 | map_Kd textures/gripper-2f_BaseColor.jpg
14 |
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/robotiq-2f-spring_link.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/gripper/robotiq-2f-spring_link.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/textures/gripper-2f_BaseColor.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/gripper/textures/gripper-2f_BaseColor.jpg
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/textures/gripper-2f_Metallic.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/gripper/textures/gripper-2f_Metallic.jpg
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/textures/gripper-2f_Normal.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/gripper/textures/gripper-2f_Normal.jpg
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/gripper/textures/gripper-2f_Roughness.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/gripper/textures/gripper-2f_Roughness.jpg
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/plane.obj:
--------------------------------------------------------------------------------
1 | # Blender v2.66 (sub 1) OBJ File: ''
2 | # www.blender.org
3 | mtllib plane.mtl
4 | o Plane
5 | v 15.000000 -15.000000 0.000000
6 | v 15.000000 15.000000 0.000000
7 | v -15.000000 15.000000 0.000000
8 | v -15.000000 -15.000000 0.000000
9 |
10 | vt 15.000000 0.000000
11 | vt 15.000000 15.000000
12 | vt 0.000000 15.000000
13 | vt 0.000000 0.000000
14 |
15 | usemtl Material
16 | s off
17 | f 1/1 2/2 3/3
18 | f 1/1 3/3 4/4
19 |
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/spatula/spatula-base.urdf:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/suction/suction-base.urdf:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/visual/base.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/visual/base.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/visual/forearm.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/visual/forearm.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/visual/shoulder.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/visual/shoulder.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/visual/upperarm.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/visual/upperarm.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/visual/wrist1.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/visual/wrist1.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/visual/wrist2.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/visual/wrist2.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/visual/wrist3.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rainorangelemon/pytorch_geometric_multiagent/e5afaaa7c0f8f42eb1925b58883a8dcac9be85e5/pyg_multiagent/environments/ur5/visual/wrist3.stl
--------------------------------------------------------------------------------
/pyg_multiagent/environments/ur5/workspace.urdf:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
28 |
29 |
30 |
31 |
--------------------------------------------------------------------------------
/readthedocs.yaml:
--------------------------------------------------------------------------------
1 | # .readthedocs.yaml
2 | # Read the Docs configuration file
3 | # See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
4 |
5 | # Required
6 | version: 2
7 |
8 | # Set the version of Python and other tools you might need
9 | build:
10 | os: ubuntu-20.04
11 | tools:
12 | python: "3.8"
13 | # You can also specify other tool versions:
14 | # nodejs: "16"
15 | # rust: "1.55"
16 | # golang: "1.17"
17 |
18 | # Build documentation in the docs/ directory with Sphinx
19 | sphinx:
20 | configuration: docs/source/conf.py
21 |
22 | # If using Sphinx, optionally build your docs in additional formats such as PDF
23 | # formats:
24 | # - pdf
25 |
26 | # Optionally declare the Python requirements required to build your docs
27 | python:
28 | install:
29 | - requirements: docs/requirements.txt
30 | - method: pip
31 | path: .
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import find_packages, setup
2 |
3 | __version__ = '0.0.5'
4 | URL = 'https://github.com/rainorangelemon/pytorch_geometric_multiagent'
5 |
6 | install_requires = [
7 | 'tqdm',
8 | 'numpy',
9 | 'matplotlib',
10 | 'scipy',
11 | 'cvxpy',
12 | 'pybullet'
13 | ]
14 |
15 | full_requires = install_requires
16 |
17 | benchmark_requires = [
18 | 'wandb',
19 | ]
20 |
21 | test_requires = [
22 | 'pytest',
23 | 'pytest-cov',
24 | ]
25 |
26 | dev_requires = test_requires + [
27 | 'pre-commit',
28 | ]
29 |
30 | setup(
31 | name='pyg_multiagent',
32 | version=__version__,
33 | description='Graph Neural Network Library for Multi-Agent',
34 | author='Chenning Yu',
35 | author_email='rainorangelemon@gmail.com',
36 | url=URL,
37 | download_url=f'{URL}/archive/{__version__}.tar.gz',
38 | keywords=[
39 | 'deep-learning',
40 | 'pytorch',
41 | 'geometric-deep-learning',
42 | 'graph-neural-networks',
43 | 'pytorch-geometric',
44 | 'multi-agent'
45 | ],
46 | python_requires='>=3.8',
47 | install_requires=install_requires,
48 | extras_require={
49 | 'full': full_requires,
50 | 'benchmark': benchmark_requires,
51 | 'test': test_requires,
52 | 'dev': dev_requires,
53 | },
54 | packages=find_packages(),
55 | include_package_data=True,
56 | )
57 |
--------------------------------------------------------------------------------