├── .gitignore
├── 3-layer-band_gap.txt
├── 3-layer-band_structure.txt
├── Bandstructure
├── Strucuture1.png
├── Strucuture10.png
├── Strucuture11.png
├── Strucuture12.png
├── Strucuture13.png
├── Strucuture14.png
├── Strucuture15.png
├── Strucuture16.png
├── Strucuture17.png
├── Strucuture18.png
├── Strucuture19.png
├── Strucuture2.png
├── Strucuture20.png
├── Strucuture21.png
├── Strucuture22.png
├── Strucuture23.png
├── Strucuture24.png
├── Strucuture25.png
├── Strucuture26.png
├── Strucuture27.png
├── Strucuture28.png
├── Strucuture29.png
├── Strucuture3.png
├── Strucuture30.png
├── Strucuture31.png
├── Strucuture32.png
├── Strucuture33.png
├── Strucuture34.png
├── Strucuture35.png
├── Strucuture36.png
├── Strucuture37.png
├── Strucuture38.png
├── Strucuture39.png
├── Strucuture4.png
├── Strucuture40.png
├── Strucuture5.png
├── Strucuture6.png
├── Strucuture7.png
├── Strucuture8.png
└── Strucuture9.png
├── Bayesian_opt.py
├── Highlight_Figure.png
├── LICENSE
├── N_doped_EFF_max.txt
├── P_doped_EFF_max.txt
├── README.md
├── create-2layers.sh
├── create-3layers.sh
├── create-4layers.sh
├── predict_maxval.py
├── predict_structure.py
├── snl_prep.py
└── xaxisvalue.txt
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | env/
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | eggs/
17 | .eggs/
18 | lib/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *.cover
47 | .hypothesis/
48 |
49 | # Translations
50 | *.mo
51 | *.pot
52 |
53 | # Django stuff:
54 | *.log
55 | local_settings.py
56 |
57 | # Flask stuff:
58 | instance/
59 | .webassets-cache
60 |
61 | # Scrapy stuff:
62 | .scrapy
63 |
64 | # Sphinx documentation
65 | docs/_build/
66 |
67 | # PyBuilder
68 | target/
69 |
70 | # Jupyter Notebook
71 | .ipynb_checkpoints
72 |
73 | # pyenv
74 | .python-version
75 |
76 | # celery beat schedule file
77 | celerybeat-schedule
78 |
79 | # SageMath parsed files
80 | *.sage.py
81 |
82 | # dotenv
83 | .env
84 |
85 | # virtualenv
86 | .venv
87 | venv/
88 | ENV/
89 |
90 | # Spyder project settings
91 | .spyderproject
92 | .spyproject
93 |
94 | # Rope project settings
95 | .ropeproject
96 |
97 | # mkdocs documentation
98 | /site
99 |
100 | # mypy
101 | .mypy_cache/
102 |
--------------------------------------------------------------------------------
/3-layer-band_gap.txt:
--------------------------------------------------------------------------------
1 | 177
2 | Mo S Mo S Mo S 1.3958
3 | Mo S Mo S Mo Se 0.7432
4 | Mo S Mo S Mo Te 0.0
5 | Mo S Mo S W S 1.3541
6 | Mo S Mo S W Se 0.5214
7 | Mo S Mo S W Te 0.2659
8 | Mo S Mo Se Mo S 0.7526
9 | Mo S Mo Se Mo Se 0.5699
10 | Mo S Mo Se Mo Te 0.0
11 | Mo S Mo Se W S 0.5244
12 | Mo S Mo Se W Se 0.3602
13 | Mo S Mo Se W Te 0.0
14 | Mo S Mo Te Mo S 0.0
15 | Mo S Mo Te Mo Se 0.0
16 | Mo S Mo Te Mo Te 0.0
17 | Mo S Mo Te W S 0.0
18 | Mo S Mo Te W Se 0.0
19 | Mo S W S Mo S 1.3
20 | Mo S W S Mo Se 0.7327
21 | Mo S W S Mo Te 0.0
22 | Mo S W S W S 1.2705
23 | Mo S W S W Se 0.5124
24 | Mo S W Se Mo S 0.5292
25 | Mo S W Se Mo Se 0.3667
26 | Mo S W Se Mo Te 0.0
27 | Mo S W Se W S 0.5343
28 | Mo S W Se W Se 0.3379
29 | Mo S W Se W Te 0.0
30 | Mo S W Te Mo S 0.0
31 | Mo S W Te Mo Se 0.0
32 | Mo S W Te Mo Te 0.1609
33 | Mo S W Te W Se 0.0
34 | Mo S W Te W Te 0.0049
35 | Mo Se Mo S Mo S 0.7416
36 | Mo Se Mo S Mo Se 0.5882
37 | Mo Se Mo S Mo Te 0.0
38 | Mo Se Mo S W S 0.7444
39 | Mo Se Mo S W Se 0.3661
40 | Mo Se Mo S W Te 0.0
41 | Mo Se Mo Se Mo S 0.5713
42 | Mo Se Mo Se Mo Se 1.4193
43 | Mo Se Mo Se Mo Te 0.4862
44 | Mo Se Mo Se W S 0.9022
45 | Mo Se Mo Se W Se 1.2145
46 | Mo Se Mo Se W Te 0.404
47 | Mo Se Mo Te Mo S 0.0
48 | Mo Se Mo Te Mo Se 0.4903
49 | Mo Se Mo Te Mo Te 0.3239
50 | Mo Se Mo Te W S 0.0
51 | Mo Se Mo Te W Se 0.489
52 | Mo Se Mo Te W Te 0.1743
53 | Mo Se W S Mo S 0.7306
54 | Mo Se W S Mo Se 0.9197
55 | Mo Se W S Mo Te 0.0
56 | Mo Se W S W S 1.0952
57 | Mo Se W S W Te 0.0
58 | Mo Se W Se Mo S 0.3636
59 | Mo Se W Se Mo Se 1.2195
60 | Mo Se W Se Mo Te 0.4531
61 | Mo Se W Se W S 0.6912
62 | Mo Se W Se W Se 1.2001
63 | Mo Se W Se W Te 0.3835
64 | Mo Se W Te Mo S 0.0
65 | Mo Se W Te Mo Se 0.4189
66 | Mo Se W Te Mo Te 0.1732
67 | Mo Se W Te W S 0.0
68 | Mo Te Mo S Mo S 0.0
69 | Mo Te Mo S Mo Se 0.0
70 | Mo Te Mo S Mo Te 0.0
71 | Mo Te Mo S W S 0.0
72 | Mo Te Mo S W Se 0.0
73 | Mo Te Mo Se Mo S 0.0
74 | Mo Te Mo Se Mo Se 0.4817
75 | Mo Te Mo Se Mo Te 0.3603
76 | Mo Te Mo Se W S 0.0
77 | Mo Te Mo Se W Se 0.4904
78 | Mo Te Mo Se W Te 0.1915
79 | Mo Te Mo Te Mo S 0.2379
80 | Mo Te Mo Te Mo Se 0.3196
81 | Mo Te Mo Te Mo Te 1.0214
82 | Mo Te Mo Te W S 0.0
83 | Mo Te Mo Te W Se 0.5538
84 | Mo Te Mo Te W Te 0.8885
85 | Mo Te W S Mo S 0.0
86 | Mo Te W S Mo Se 0.0
87 | Mo Te W S W Se 0.0
88 | Mo Te W S W Te 0.0
89 | Mo Te W Se Mo S 0.0
90 | Mo Te W Se Mo Se 0.4531
91 | Mo Te W Se Mo Te 0.5861
92 | Mo Te W Se W Se 0.7345
93 | Mo Te W Se W Te 0.4032
94 | Mo Te W Te Mo S 0.0
95 | Mo Te W Te Mo Se 0.1683
96 | Mo Te W Te Mo Te 0.8947
97 | Mo Te W Te W S 0.0
98 | Mo Te W Te W Se 0.3982
99 | Mo Te W Te W Te 0.8605
100 | W S Mo S Mo S 1.3541
101 | W S Mo S Mo Se 0.7444
102 | W S Mo S Mo Te 0.0
103 | W S Mo S W S 1.3019
104 | W S Mo Se Mo S 0.7419
105 | W S Mo Se Mo Se 0.9022
106 | W S Mo Se Mo Te 0.0
107 | W S Mo Se W S 1.0953
108 | W S Mo Se W Se 0.6938
109 | W S Mo Te Mo S 0.0
110 | W S Mo Te Mo Se 0.0
111 | W S Mo Te Mo Te 0.0
112 | W S Mo Te W S 0.0
113 | W S Mo Te W Te 0.0
114 | W S W S Mo S 1.2736
115 | W S W S Mo Se 1.093
116 | W S W S W S 1.5627
117 | W S W S W Se 0.8662
118 | W S W Se Mo S 0.5343
119 | W S W Se Mo Se 0.6912
120 | W S W Se W Se 0.6675
121 | W S W Te Mo Se 0.0
122 | W S W Te Mo Te 0.0
123 | W S W Te W S 0.0
124 | W S W Te W Te 0.0
125 | W Se Mo S Mo S 0.5214
126 | W Se Mo S Mo Se 0.3661
127 | W Se Mo S Mo Te 0.0
128 | W Se Mo S W Se 0.3653
129 | W Se Mo Se Mo S 0.3594
130 | W Se Mo Se Mo Se 1.2145
131 | W Se Mo Se Mo Te 0.4912
132 | W Se Mo Se W S 0.6883
133 | W Se Mo Se W Se 1.2145
134 | W Se Mo Se W Te 0.4156
135 | W Se Mo Te Mo S 0.0
136 | W Se Mo Te Mo Se 0.4868
137 | W Se Mo Te Mo Te 0.5568
138 | W Se Mo Te W Se 0.7411
139 | W Se Mo Te W Te 0.401
140 | W Se W S Mo S 0.5122
141 | W Se W S Mo Te 0.0
142 | W Se W S W S 0.8662
143 | W Se W S W Se 0.6888
144 | W Se W Se Mo S 0.3379
145 | W Se W Se Mo Se 1.2001
146 | W Se W Se Mo Te 0.7372
147 | W Se W Se W S 0.6675
148 | W Se W Se W Se 1.5149
149 | W Se W Se W Te 0.6618
150 | W Se W Te Mo S 0.0
151 | W Se W Te Mo Te 0.3982
152 | W Se W Te W Se 0.6685
153 | W Se W Te W Te 0.359
154 | W Te Mo S Mo S 0.2659
155 | W Te Mo S Mo Se 0.0
156 | W Te Mo S W Te 0.0
157 | W Te Mo Se Mo S 0.0
158 | W Te Mo Se Mo Se 0.4137
159 | W Te Mo Se Mo Te 0.1915
160 | W Te Mo Se W Se 0.4171
161 | W Te Mo Se W Te 0.1833
162 | W Te Mo Te Mo Se 0.1715
163 | W Te Mo Te Mo Te 0.8876
164 | W Te Mo Te W S 0.0
165 | W Te Mo Te W Se 0.401
166 | W Te Mo Te W Te 0.8795
167 | W Te W S Mo Se 0.0
168 | W Te W S Mo Te 0.0
169 | W Te W S W Te 0.0
170 | W Te W Se Mo S 0.0
171 | W Te W Se Mo Se 0.3801
172 | W Te W Se Mo Te 0.4058
173 | W Te W Se W Se 0.6625
174 | W Te W Te Mo S 0.0049
175 | W Te W Te Mo Te 0.8607
176 | W Te W Te W S 0.0
177 | W Te W Te W Se 0.359
178 | W Te W Te W Te 1.0028
179 |
--------------------------------------------------------------------------------
/3-layer-band_structure.txt:
--------------------------------------------------------------------------------
1 | 99
2 | Mo S Mo S Mo S 2.4949 2.4266 2.2568 1.9331 1.7677 1.7913 1.9379 1.9293 1.9563 1.9728 1.9728 1.9818 1.9806 1.9548 1.8916 1.7923 1.6687 1.5408 1.4377 1.3958 1.3958 1.5523 1.7951 1.7336 1.5463 1.5782 1.7946 2.1477 2.4029 2.4949 0.0 -0.0416 -0.183 -0.4451 -0.7871 -1.0792 -1.1912 -1.1041 -0.9465 -0.8828 -0.8828 -0.8176 -0.7261 -0.6545 -0.5935 -0.529 -0.453 -0.3686 -0.2942 -0.2615 -0.2615 -0.4037 -0.7001 -0.9471 -1.0605 -0.9413 -0.5871 -0.2492 -0.0562 0.0
3 | Mo S Mo S Mo Se 1.9154 1.8507 1.7248 1.5005 1.3626 1.3775 1.3732 1.3359 1.3371 1.3431 1.3431 1.3533 1.3586 1.3353 1.2678 1.1609 1.0297 0.8953 0.7872 0.7432 0.7432 0.9159 1.2363 1.3153 1.1437 1.1779 1.3776 1.6508 1.8289 1.9154 -0.3666 -0.4017 -0.508 -0.6576 -0.8507 -1.0239 -0.7705 -0.5826 -0.4751 -0.4414 -0.4414 -0.3917 -0.3272 -0.2826 -0.2457 -0.2026 -0.1469 -0.0823 -0.0249 0.0 0.0 -0.1098 -0.3421 -0.5253 -0.6468 -0.772 -0.711 -0.5473 -0.4136 -0.3666
4 | Mo S Mo S Mo Te 1.1448292 1.0915292 0.9837292 0.8993292 0.8061292 0.7439292 0.6186292 0.5447292 0.5129292 0.5053292 0.5053292 0.5134292 0.5160292 0.4840292 0.4070292 0.2936292 0.1587292 0.0218292 1.2777292 1.2428292 1.2428292 0.0555292 0.4204292 0.6927292 0.5581292 0.6120292 0.7905292 0.9243292 1.0726292 1.1448292 -0.4016708 -0.4218708 -0.5279708 -0.8258708 -0.5573708 -0.2565708 0.0147292 0.2039292 0.2958292 0.3197292 0.3197292 0.2361292 0.0573292 -0.0961708 -0.1767708 -0.1972708 -0.1786708 -0.1391708 -0.0871708 -0.0813708 -0.0813708 0.0507292 -0.3042708 -0.3237708 -0.2676708 -0.4416708 -0.6263708 -0.4916708 -0.4216708 -0.4016708
5 | Mo S Mo S W S 1.6944 1.6945 1.6945 1.6944 1.6942 1.6939 1.6938 1.6938 1.6937 1.6937 1.6937 1.6937 1.6938 1.6938 1.6939 1.694 1.6304 1.5006 1.3963 1.3541 1.3541 1.5151 1.6939 1.6935 1.5595 1.587 1.6943 1.6945 1.6945 1.6944 0.0 -0.0376 -0.1664 -0.4107 -0.7469 -1.0739 -1.2324 -1.1506 -0.9902 -0.9206 -0.9206 -0.8574 -0.7553 -0.6466 -0.5497 -0.4499 -0.3379 -0.2173 -0.1121 -0.0663 -0.0663 -0.2488 -0.5863 -0.8334 -0.9393 -0.8469 -0.5354 -0.2267 -0.0508 0.0
6 | Mo S Mo S W Se 1.6966 1.6328 1.5094 1.2906 1.159 1.1772 1.1574 1.1187 1.1182 1.1235 1.1235 1.1324 1.1401 1.1172 1.0495 0.9421 0.8103 0.6751 0.5661 0.5214 0.5214 0.6969 1.0214 1.1168 0.9456 0.9758 1.17 1.4368 1.6108 1.6966 -0.5173 -0.5411 -0.6125 -0.7407 -0.9543 -1.1791 -0.95 -0.7938 -0.7113 -0.6867 -0.6867 -0.6229 -0.5343 -0.4627 -0.3957 -0.3195 -0.2276 -0.1261 -0.0379 0.0 0.0 -0.1518 -0.4321 -0.6137 -0.7105 -0.8247 -0.7827 -0.6408 -0.5489 -0.5173
7 | Mo S Mo S W Te 1.5548 1.5026 1.406 1.3703 1.2427 1.0995 1.0317 0.954 0.9189 0.91 0.91 0.9172 0.9214 0.8903 0.8123 0.6973 0.5611 0.4233 0.3122 0.2659 0.2659 0.4541 0.8355 0.947 0.7358 1.014 1.2568 1.3514 1.4849 1.5548 -0.2928 -0.3351 -0.4905 -0.7745 -0.7338 -0.4392 -0.2005 -0.0622 -0.0103 0.0 0.0 -0.0933 -0.2814 -0.4245 -0.4808 -0.4703 -0.4161 -0.3392 -0.2678 -0.2366 -0.2366 -0.3602 -0.55 -0.552 -0.4493 -0.6011 -0.8266 -0.5448 -0.3494 -0.2928
8 | Mo S Mo Se Mo S 1.9241 1.8614 1.7565 1.572 1.4194 1.4246 1.3879 1.3489 1.3486 1.354 1.354 1.3623 1.3724 1.3525 1.2847 1.1759 1.0426 0.9064 0.7972 0.7526 0.7526 0.9297 1.2673 1.3557 1.1781 1.2222 1.4435 1.6985 1.8408 1.9241 -0.3426 -0.3719 -0.4681 -0.6319 -0.8425 -1.0264 -0.7728 -0.5844 -0.4766 -0.4427 -0.4427 -0.3932 -0.3287 -0.2839 -0.2466 -0.2032 -0.1472 -0.0824 -0.0249 0.0 0.0 -0.1099 -0.3423 -0.5255 -0.6469 -0.7693 -0.6961 -0.51 -0.382 -0.3426
9 | Mo S Mo Se Mo Se 1.816 1.7577 1.6602 1.5881 1.4658 1.4055 1.2878 1.2238 1.2009 1.1971 1.1971 1.2052 1.213 1.1873 1.1133 1.0001 0.8642 0.7263 0.6155 0.5699 0.5699 0.7533 1.1233 1.3796 1.2198 1.2615 1.469 1.6064 1.7389 1.816 -0.1934 -0.218 -0.3028 -0.4769 -0.7289 -0.957 -0.9141 -0.72 -0.6031 -0.565 -0.565 -0.4731 -0.3779 -0.3143 -0.2647 -0.2135 -0.1527 -0.0851 -0.0258 0.0 0.0 -0.1135 -0.3541 -0.5531 -0.683 -0.7393 -0.5569 -0.3416 -0.2265 -0.1934
10 | Mo S Mo Se Mo Te 1.05999704 1.00809704 0.91979704 0.92919704 0.86179704 0.68209704 0.53909704 0.44269704 0.39089704 0.37519704 0.37519704 0.37949704 0.37529704 0.33469704 0.25119704 0.13499704 -0.00010296 0.81809704 0.73409704 0.69939704 0.69939704 0.83649704 1.05569704 0.60589704 0.57569704 0.64189704 0.83369704 0.86879704 0.99059704 1.05999704 -0.51100296 -0.50430296 -0.55980296 -0.79360296 -0.68150296 -0.39730296 -0.13570296 0.05649704 0.15909704 0.18859704 0.18859704 0.12519704 -0.00790296 -0.11810296 -0.17260296 -0.18060296 -0.15640296 -0.11430296 -0.07300296 -0.05450296 -0.05450296 -0.10420296 0.28039704 -0.33240296 -0.32530296 -0.51380296 -0.63520296 -0.52440296 -0.49770296 -0.51100296
11 | Mo S Mo Se W S 1.6994 1.6379 1.5137 1.2935 1.1605 1.1779 1.1598 1.1213 1.1211 1.1264 1.1264 1.1357 1.1427 1.1195 1.0517 0.9445 0.8129 0.6779 0.569 0.5244 0.5244 0.6995 1.023 1.1156 0.9452 0.9767 1.1721 1.4409 1.6171 1.6994 -0.5063 -0.5315 -0.6066 -0.738 -0.953 -1.1814 -0.9523 -0.796 -0.7135 -0.6889 -0.6889 -0.6244 -0.535 -0.463 -0.3958 -0.3195 -0.2276 -0.1261 -0.0379 0.0 0.0 -0.1522 -0.433 -0.6147 -0.7115 -0.8249 -0.7808 -0.636 -0.5398 -0.5063
12 | Mo S Mo Se W Se 1.6088 1.5503 1.453 1.3861 1.2684 1.2001 1.0817 1.0167 0.9929 0.9887 0.9887 0.9968 1.0044 0.9783 0.904 0.7906 0.6546 0.5167 0.4058 0.3602 0.3602 0.5438 0.9149 1.1823 1.0234 1.0631 1.2681 1.3989 1.5307 1.6088 -0.3373 -0.3571 -0.432 -0.5982 -0.8542 -1.1175 -1.106 -0.9323 -0.82 -0.7829 -0.7829 -0.6843 -0.5741 -0.4851 -0.4073 -0.3253 -0.2308 -0.128 -0.0386 0.0 0.0 -0.1543 -0.4381 -0.6335 -0.744 -0.8097 -0.6692 -0.4679 -0.3642 -0.3373
13 | Mo S Mo Se W Te 0.98226186 0.93016186 0.84226186 0.85206186 0.78526186 0.60506186 0.46116186 0.36346186 0.31056186 0.29446186 0.29446186 0.29846186 0.29366186 0.25236186 0.16866186 0.05246186 -0.08233814 -0.09023814 -0.01733814 0.01446186 0.01446186 -0.11073814 0.19786186 0.52276186 0.49976186 0.56776186 0.75806186 0.79166186 0.91266186 0.98226186 -0.33893814 -0.37583814 -0.52663814 -0.84633814 -0.65033814 -0.36963814 -0.13363814 0.01566186 0.08176186 0.09806186 0.09806186 0.02606186 -0.11573814 -0.21743814 -0.25003814 -0.22853814 -0.16933814 -0.21783814 -0.32713814 -0.37283814 -0.37283814 -0.18613814 -0.30463814 -0.33193814 -0.28273814 -0.45773814 -0.67993814 -0.49423814 -0.37873814 -0.33893814
14 | Mo S Mo Te Mo S -0.41913105 -0.42823105 1.00736895 1.00346895 0.89186895 0.75936895 0.63256895 0.55656895 0.52286895 0.51456895 0.51456895 0.52146895 0.52566895 0.49516895 0.41776895 0.30306895 0.16686895 0.02916895 1.24926895 1.21466895 1.21466895 0.05766895 0.43216895 0.69606895 0.56416895 0.65786895 0.88146895 0.95606895 1.08106895 -0.41913105 -0.41913105 -0.48553105 -0.52203105 -0.81883105 -0.56703105 -0.26633105 0.00566895 0.19596895 0.28906895 0.31356895 0.31356895 0.22916895 0.04816895 -0.10763105 -0.18923105 -0.20993105 -0.19103105 -0.15133105 -0.08093105 -0.09333105 -0.09333105 0.05716895 -0.31373105 -0.33213105 -0.27603105 -0.44763105 -0.62763105 -0.48643105 -0.42713105 -0.41913105
15 | Mo S Mo Te Mo Se 1.07473779 1.02213779 0.93713779 0.95383779 0.87873779 0.69913779 0.55623779 0.45973779 0.40783779 0.39203779 0.39203779 0.39593779 0.39123779 0.35033779 0.26693779 0.15083779 0.01603779 0.81503779 0.73103779 0.69663779 0.69663779 0.83233779 1.06583779 0.61333779 0.58373779 0.66263779 0.86783779 0.88923779 1.00463779 1.07473779 -0.53036221 -0.51576221 -0.56426221 -0.80116221 -0.69206221 -0.40766221 -0.14506221 0.04873779 0.15303779 0.18323779 0.18323779 0.11923779 -0.01566221 -0.12776221 -0.18326221 -0.19156221 -0.16726221 -0.11816221 -0.08346221 -0.06516221 -0.06516221 -0.08996221 0.29053779 -0.33936221 -0.33336221 -0.52106221 -0.64026221 -0.52746221 -0.50926221 -0.53036221
16 | Mo S Mo Te Mo Te 1.30898909 1.26038909 1.18148909 1.19678909 1.14738909 0.95538909 0.79158909 0.66898909 0.59418909 0.56908909 0.56908909 0.56508909 0.54118909 0.48398909 0.39438909 0.27988909 0.15088909 0.02258909 1.19208909 1.17338909 1.17338909 1.22728909 0.42098909 0.73938909 0.78538909 0.95828909 1.11778909 1.13778909 1.24478909 1.30898909 -0.32611091 -0.37581091 -0.52191091 -0.68041091 -0.84251091 -0.58061091 -0.33161091 -0.13541091 -0.01781091 0.01978909 0.01978909 -0.01491091 -0.08401091 -0.13611091 -0.15591091 -0.14621091 -0.11301091 -0.06621091 -0.02211091 -0.00271091 -0.00271091 0.05188909 -0.24831091 -0.33191091 -0.38391091 -0.56321091 -0.56741091 -0.50881091 -0.39231091 -0.32611091
17 | Mo S Mo Te W S 0.2672196 0.1102196 0.4324196 0.2544196 -0.1640804 -0.2130804 0.0853196 -0.0024804 -0.1046804 -0.1392804 -0.1392804 -0.1350804 -0.1213804 -0.0222804 -0.0527804 -0.0028804 0.0691196 0.1297196 0.1807196 0.2017196 0.2017196 0.1232196 0.0201196 0.4159196 0.7700196 0.8541196 0.5572196 0.4776196 0.1052196 -0.0891804 -0.0891804 -0.3701804 -0.1826804 -0.6157804 -0.5303804 -0.5695804 -0.9228804 -1.0442804 -0.9655804 -0.8996804 -0.8996804 -0.9387804 -1.0053804 -0.0967804 -0.1321804 -0.1691804 -0.1293804 -0.1309804 -0.0961804 -0.0800804 -0.0800804 -0.1522804 -0.1350804 -0.1372804 -0.0899804 0.1219196 0.1655196 -0.3075804 -0.3698804 -0.3550804
18 | Mo S Mo Te W Se -0.52884685 -0.50524685 0.93505315 0.95165315 0.87655315 0.69665315 0.55345315 0.45675315 0.40465315 0.38885315 0.38885315 0.39275315 0.38795315 0.34695315 0.26355315 0.14735315 0.01245315 1.16325315 1.03215315 0.97835315 0.97835315 1.17975315 1.16875315 0.61075315 0.58285315 0.66105315 0.86545315 0.88745315 1.00345315 -0.52884685 -0.52884685 -0.59374685 -0.55294685 -0.78614685 -0.69084685 -0.40644685 -0.14384685 0.04995315 0.15425315 0.18445315 0.18445315 0.12055315 -0.01404685 -0.12564685 -0.18084685 -0.18894685 -0.16444685 -0.11954685 -0.08044685 -0.06194685 -0.06194685 -0.09354685 0.28755315 -0.33744685 -0.33164685 -0.52024685 -0.64014685 -0.52274685 -0.49904685 -0.52884685
19 | Mo S W S Mo S 1.6409 1.641 1.641 1.6409 1.6406 1.6404 1.6403 1.6402 1.6402 1.6402 1.6402 1.6402 1.6402 1.6403 1.6404 1.6404 1.581 1.4488 1.343 1.3 1.3 1.4672 1.6404 1.6399 1.5612 1.5843 1.6408 1.641 1.641 1.6409 0.0 -0.0408 -0.1803 -0.4418 -0.7923 -1.1224 -1.2842 -1.2126 -1.0512 -0.9744 -0.9744 -0.9118 -0.8063 -0.6991 -0.6025 -0.503 -0.3912 -0.2709 -0.1659 -0.1201 -0.1201 -0.3024 -0.6396 -0.8866 -0.9923 -0.8973 -0.5738 -0.245 -0.0551 0.0
20 | Mo S W S Mo Se 1.1826 1.1826 1.1826 1.1824 1.182 1.1818 1.1816 1.1816 1.1816 1.1816 1.1816 1.1816 1.1816 1.1817 1.1817 1.1564 1.023 0.8867 0.7774 0.7327 0.7327 0.9102 1.1817 1.1814 1.1806 1.1814 1.1822 1.1825 1.1826 1.1826 -0.2657 -0.3068 -0.4421 -0.6485 -0.8509 -1.0247 -0.7712 -0.5832 -0.4756 -0.4418 -0.4418 -0.392 -0.3273 -0.2827 -0.2457 -0.2026 -0.1469 -0.0822 -0.0249 0.0 0.0 -0.1098 -0.3422 -0.5254 -0.6469 -0.7721 -0.71 -0.4989 -0.3209 -0.2657
21 | Mo S W S Mo Te 1.12774479 1.08374479 0.98474479 0.93894479 0.84794479 0.73484479 0.25844479 0.25844479 0.25854479 0.25854479 0.25854479 0.25854479 0.25854479 0.25854479 0.25854479 0.25854479 0.14664479 0.00824479 0.05894479 -0.00785521 -0.00785521 0.04294479 0.25844479 0.25824479 0.25804479 0.25854479 0.25924479 0.25974479 0.26014479 0.26024479 0.26024479 0.26014479 0.25984479 0.25944479 0.25894479 0.25864479 -0.15775521 0.02864479 0.11804479 0.14094479 0.14094479 0.05904479 -0.11535521 -0.26385521 -0.34105521 -0.35995521 -0.34075521 -0.30125521 -0.10365521 -0.15085521 -0.15085521 -0.32535521 -0.47255521 -0.49405521 -0.43715521 -0.61145521 -0.78595521 -0.64775521 -0.57305521 -0.55285521
22 | Mo S W S W S 1.6081 1.6081 1.6082 1.6081 1.6078 1.6075 1.6074 1.6074 1.6073 1.6073 1.6073 1.6073 1.6074 1.6075 1.6075 1.6076 1.551 1.419 1.3134 1.2705 1.2705 1.4374 1.6075 1.6071 1.5515 1.5748 1.6079 1.6081 1.6081 1.6081 0.0 -0.0416 -0.1836 -0.4506 -0.8097 -1.1446 -1.3165 -1.2477 -1.084 -1.0052 -1.0052 -0.943 -0.8319 -0.7198 -0.6213 -0.521 -0.4094 -0.2899 -0.1856 -0.14 -0.14 -0.3231 -0.6641 -0.9149 -1.0206 -0.9202 -0.5857 -0.2497 -0.0561 0.0
23 | Mo S W S W Se 0.9667 0.9667 0.9667 0.9665 0.9661 0.9659 0.9658 0.9657 0.9657 0.9657 0.9657 0.9657 0.9658 0.9658 0.9659 0.937 0.8033 0.6667 0.5572 0.5124 0.5124 0.6905 0.9658 0.9655 0.9649 0.9656 0.9663 0.9666 0.9667 0.9667 -0.4438 -0.4793 -0.5868 -0.7391 -0.9547 -1.1801 -0.9508 -0.7945 -0.7119 -0.6872 -0.6872 -0.6233 -0.5346 -0.4629 -0.3959 -0.3196 -0.2277 -0.1261 -0.0379 0.0 0.0 -0.1519 -0.4324 -0.614 -0.7109 -0.8251 -0.7831 -0.6262 -0.4913 -0.4438
24 | Mo S W Se Mo S 1.7027 1.6408 1.5354 1.3624 1.2322 1.2494 1.1688 1.1285 1.1271 1.132 1.132 1.1403 1.1506 1.1306 1.0625 0.9533 0.8197 0.6833 0.5739 0.5292 0.5292 0.7069 1.0491 1.1854 1.0056 1.0367 1.2419 1.4773 1.6194 1.7027 -0.481 -0.5038 -0.5803 -0.7256 -0.9501 -1.1795 -0.9502 -0.7937 -0.7111 -0.6864 -0.6864 -0.6231 -0.5348 -0.4632 -0.3962 -0.3198 -0.2278 -0.1262 -0.0379 0.0 0.0 -0.1518 -0.432 -0.6134 -0.7102 -0.8232 -0.774 -0.6137 -0.5116 -0.481
25 | Mo S W Se Mo Se 1.6155 1.5565 1.4591 1.3944 1.286 1.2052 1.087 1.0224 0.999 0.9949 0.9949 1.003 1.0108 0.9849 0.9108 0.7974 0.6613 0.5232 0.4124 0.3667 0.3667 0.5503 0.9217 1.1991 1.0383 1.0758 1.2789 1.4054 1.5376 1.6155 -0.3001 -0.3243 -0.411 -0.5894 -0.8525 -1.1176 -1.1013 -0.923 -0.8097 -0.7726 -0.7726 -0.6758 -0.5706 -0.4841 -0.407 -0.3251 -0.2307 -0.128 -0.0386 0.0 0.0 -0.1542 -0.4378 -0.6328 -0.7432 -0.809 -0.6643 -0.451 -0.3329 -0.3001
26 | Mo S W Se Mo Te 1.06204779 1.00984779 0.92244779 0.93474779 0.86724779 0.68634779 0.54184779 0.44364779 0.39034779 0.37404779 0.37404779 0.37864779 0.37514779 0.33524779 0.25234779 0.13634779 0.00154779 1.16984779 1.03944779 0.98644779 0.98644779 1.18274779 1.18424779 0.59524779 0.57804779 0.64974779 0.84944779 0.87624779 0.99374779 1.06204779 -0.51435221 -0.49445221 -0.55375221 -0.78635221 -0.67535221 -0.39185221 -0.13095221 0.06064779 0.16294779 0.19234779 0.19234779 0.12754779 -0.00895221 -0.12205221 -0.17765221 -0.18525221 -0.16015221 -0.11705221 -0.07525221 -0.05695221 -0.05695221 -0.10675221 0.27304779 -0.32975221 -0.32245221 -0.50905221 -0.64925221 -0.53095221 -0.49295221 -0.51435221
27 | Mo S W Se W S 0.9765 0.9766 0.9766 0.9764 0.976 0.9758 0.9756 0.9756 0.9756 0.9756 0.9756 0.9756 0.9757 0.9757 0.9757 0.9582 0.8247 0.6883 0.579 0.5343 0.5343 0.712 0.9757 0.9754 0.9751 0.9756 0.9762 0.9765 0.9766 0.9765 -0.418 -0.4489 -0.5488 -0.7167 -0.9484 -1.18 -0.9508 -0.7945 -0.7119 -0.6873 -0.6873 -0.624 -0.5356 -0.4638 -0.3965 -0.3199 -0.2278 -0.1262 -0.0379 0.0 0.0 -0.1519 -0.4323 -0.614 -0.7111 -0.8237 -0.7704 -0.5906 -0.4595 -0.418
28 | Mo S W Se W Se 1.5874 1.5306 1.4331 1.3711 1.2646 1.1792 1.0603 0.9949 0.9708 0.9664 0.9664 0.9744 0.9821 0.956 0.8817 0.7683 0.6323 0.4943 0.3835 0.3379 0.3379 0.5215 0.8935 1.1755 1.0162 1.0539 1.2564 1.3799 1.5123 1.5874 -0.2839 -0.3071 -0.3929 -0.5746 -0.8479 -1.1211 -1.1195 -0.9542 -0.8614 -0.8323 -0.8323 -0.7127 -0.5847 -0.4896 -0.4086 -0.3248 -0.2299 -0.1275 -0.0385 0.0 0.0 -0.1556 -0.4441 -0.6444 -0.7547 -0.811 -0.6532 -0.4334 -0.3154 -0.2839
29 | Mo S W Se W Te 0.9743002 0.9225002 0.8342002 0.8459002 0.7776002 0.5974002 0.4535002 0.3560002 0.3032002 0.2872002 0.2872002 0.2913002 0.2865002 0.2453002 0.1616002 0.0453002 -0.0896998 -0.0897998 -0.0168998 0.0150002 0.0150002 -0.1105998 0.1919002 0.5179002 0.4965002 0.5647002 0.7543002 0.7833002 0.9049002 0.9743002 -0.3375998 -0.3750998 -0.5262998 -0.8377998 -0.6513998 -0.3700998 -0.1333998 0.0164002 0.0828002 0.0992002 0.0992002 0.0271002 -0.1147998 -0.2166998 -0.2494998 -0.2280998 -0.1689998 -0.2253998 -0.3348998 -0.3807998 -0.3807998 -0.1931998 -0.3052998 -0.3324998 -0.2830998 -0.4599998 -0.6838998 -0.4965998 -0.3781998 -0.3375998
30 | Mo S W Te Mo S 1.1278184 1.0763184 0.9843184 0.9859184 0.8751184 0.7324184 0.6054184 0.5291184 0.4950184 0.4865184 0.4865184 0.4934184 0.4976184 0.4670184 0.3895184 0.2748184 0.1388184 0.0012184 -0.0296816 0.0014184 0.0014184 0.0322184 0.4112184 0.7044184 0.5679184 0.6407184 0.8611184 0.9311184 1.0587184 1.1278184 -0.1766816 -0.2260816 -0.4174816 -0.7722816 -0.4837816 -0.1881816 0.0513184 0.1900184 0.2421184 0.2526184 0.2526184 0.1565184 -0.0375816 -0.1858816 -0.2444816 -0.2341816 -0.1794816 -0.1020816 -0.1084816 -0.1546816 -0.1546816 -0.1233816 -0.3112816 -0.3098816 -0.2072816 -0.3613816 -0.6167816 -0.3864816 -0.2319816 -0.1766816
31 | Mo S W Te Mo Se 0.75002063 0.71432063 0.59162063 0.36192063 0.13342063 0.27542063 0.28122063 0.06152063 0.08062063 0.08962063 0.08962063 0.08812063 0.08362063 0.00862063 0.06072063 0.04612063 0.02502063 0.06042063 0.13152063 0.16382063 0.16382063 0.02732063 0.02242063 -0.04357937 0.07552063 0.11402063 0.14962063 0.15792063 0.15972063 0.15982063 0.15982063 0.15982063 0.15872063 0.15332063 0.05962063 0.08252063 0.05222063 0.03422063 -0.14337937 -0.13437937 -0.13437937 -0.13797937 -0.10057937 -0.14137937 -0.12177937 -0.08037937 -0.01787937 -0.00617937 0.00762063 -0.01527937 -0.01527937 -0.00867937 -0.23117937 -0.41137937 -0.09217937 -0.12247937 -0.56887937 -0.65597937 -0.87207937 -1.07087937
32 | Mo S W Te Mo Te 1.5802 1.5317 1.4521 1.461 1.0349 0.8474 0.8899 0.9514 0.8787 0.8545 0.8545 0.85 0.8256 0.7681 0.6785 0.5641 0.4352 0.3071 0.2039 0.1609 0.1609 0.3361 0.7039 0.6845 0.5632 0.8075 1.2979 1.4082 1.5162 1.5802 -0.0686 -0.1219 -0.29 -0.5692 -0.8974 -0.6591 -0.427 -0.2627 -0.1757 -0.1502 -0.1502 -0.1874 -0.2543 -0.2929 -0.2911 -0.2542 -0.189 -0.1075 -0.0327 0.0 0.0 -0.1273 -0.3291 -0.3958 -0.414 -0.5874 -0.6967 -0.363 -0.14 -0.0686
33 | Mo S W Te W Se 0.5850666 0.5513666 0.4370666 0.2382666 0.3114666 0.5349666 0.4143666 0.3596666 0.4015666 0.4283666 0.4283666 0.4397666 0.4383666 0.2869666 0.3634666 0.3593666 0.3422666 0.3283666 0.3123666 0.3008666 0.3008666 0.3512666 0.5258666 0.3765666 0.8633666 0.4419666 0.2670666 0.3968666 0.5417666 0.5850666 -0.1970334 -0.1566334 -0.1416334 0.0622666 -0.0200334 -0.3144334 -0.2077334 0.0125666 0.0894666 0.0945666 0.0945666 0.1010666 0.1073666 0.0672666 0.0540666 0.1341666 -0.2508334 -0.4192334 -0.4583334 -0.4553334 -0.4553334 -0.4783334 -0.2991334 -0.3919334 -0.1640334 -0.0585334 0.1789666 -0.0655334 -0.1460334 -0.1970334
34 | Mo S W Te W Te 1.3903 1.3432 1.2648 1.2787 1.236 1.0454 0.883 0.7615 0.6875 0.6628 0.6628 0.6572 0.6303 0.5709 0.4802 0.3653 0.2363 0.1081 0.0049 0.0331 0.0331 0.137 0.5053 0.8245 0.8455 1.0448 1.1998 1.2218 1.3281 1.3903 -0.2364 -0.2885 -0.4532 -0.7079 -0.9006 -0.641 -0.4108 -0.2479 -0.1617 -0.1365 -0.1365 -0.1715 -0.2333 -0.2673 -0.2623 -0.2235 -0.1572 -0.075 0.0 -0.0382 -0.0382 -0.0953 -0.2997 -0.3697 -0.3891 -0.5592 -0.6816 -0.5172 -0.3061 -0.2364
35 | Mo Se Mo S Mo Se 1.8332 1.777 1.6819 1.6031 1.4652 1.4233 1.3058 1.2421 1.2194 1.2157 1.2157 1.2236 1.2312 1.2054 1.1315 1.0184 0.8825 0.7446 0.6338 0.5882 0.5882 0.7715 1.1396 1.3767 1.2195 1.264 1.4779 1.6275 1.7588 1.8332 -0.2153 -0.252 -0.3679 -0.5447 -0.7525 -0.9638 -0.9045 -0.7128 -0.598 -0.5608 -0.5608 -0.4658 -0.3716 -0.3104 -0.2631 -0.2134 -0.1532 -0.0854 -0.0259 0.0 0.0 -0.1131 -0.3505 -0.5451 -0.6754 -0.7473 -0.6118 -0.416 -0.2646 -0.2153
36 | Mo Se Mo S Mo Te 1.0796986 1.0288986 0.9481986 0.9587986 0.8822986 0.7029986 0.5606986 0.4649986 0.4137986 0.3982986 0.3982986 0.4019986 0.3970986 0.3563986 0.2731986 0.1570986 0.0222986 0.8250986 0.7408986 0.7063986 0.7063986 0.8432986 1.0797986 0.6174986 0.5756986 0.6552986 0.8615986 0.9003986 1.0123986 1.0796986 -0.5345014 -0.5334014 -0.6054014 -0.8565014 -0.6962014 -0.4117014 -0.1491014 0.0445986 0.1487986 0.1788986 0.1788986 0.1153986 -0.0186014 -0.1302014 -0.1858014 -0.1945014 -0.1705014 -0.1125014 -0.0870014 -0.0687014 -0.0687014 -0.0838014 0.2957986 -0.3435014 -0.3378014 -0.5291014 -0.6685014 -0.5662014 -0.5305014 -0.5345014
37 | Mo Se Mo S W S 1.1869 1.1869 1.1869 1.1867 1.1864 1.1861 1.186 1.186 1.186 1.186 1.186 1.186 1.186 1.1861 1.1861 1.1679 1.0346 0.8983 0.7891 0.7444 0.7444 0.9215 1.1861 1.1858 1.1823 1.1858 1.1866 1.1869 1.1869 1.1869 -0.2938 -0.3375 -0.4783 -0.653 -0.8482 -1.027 -0.7736 -0.5854 -0.4776 -0.4438 -0.4438 -0.3934 -0.3283 -0.2833 -0.2461 -0.2029 -0.147 -0.0823 -0.0249 0.0 0.0 -0.1098 -0.3422 -0.5256 -0.6472 -0.7711 -0.7075 -0.5326 -0.3525 -0.2938
38 | Mo Se Mo S W Se 1.614 1.5571 1.4629 1.3926 1.2603 1.2042 1.0862 1.0218 0.9985 0.9945 0.9945 1.0024 1.0098 0.9838 0.9097 0.7964 0.6604 0.5225 0.4117 0.3661 0.3661 0.5494 0.9184 1.167 1.0099 1.054 1.2672 1.4087 1.5386 1.614 -0.3523 -0.3833 -0.4755 -0.63 -0.866 -1.1245 -1.1048 -0.9403 -0.8249 -0.7874 -0.7874 -0.69 -0.5796 -0.488 -0.4094 -0.3268 -0.2317 -0.1285 -0.0388 0.0 0.0 -0.1547 -0.4383 -0.633 -0.7435 -0.8135 -0.6933 -0.5124 -0.3937 -0.3523
39 | Mo Se Mo S W Te 1.04839262 0.99979262 0.90549262 0.66469262 0.47709262 0.44979262 0.51339262 0.42049262 0.37989262 0.37019262 0.37019262 0.38099262 0.37689262 0.33719262 0.25529262 0.14019262 0.00609262 -0.03120738 -0.01770738 -0.05280738 -0.05280738 -0.05070738 0.27899262 0.38509262 0.23419262 0.30799262 0.53589262 0.83819262 0.98299262 1.04839262 -0.27820738 -0.32420738 -0.49970738 -0.85950738 -0.59290738 -0.31730738 -0.08870738 0.05279262 0.11359262 0.12809262 0.12809262 0.05849262 -0.07720738 -0.17190738 -0.19930738 -0.17410738 -0.11240738 -0.12920738 -0.23800738 -0.28360738 -0.28360738 -0.09830738 -0.24820738 -0.27870738 -0.23080738 -0.40610738 -0.65910738 -0.46540738 -0.32940738 -0.27820738
40 | Mo Se Mo Se Mo Se 2.7941 2.6637 2.3468 1.9251 1.6859 1.6579 1.7747 1.8629 1.8382 1.8352 1.8352 1.8451 1.848 1.8335 1.7901 1.7177 1.6252 1.5281 1.45 1.4193 1.4193 1.5349 1.7034 1.5924 1.4342 1.5083 1.7681 2.2084 2.6202 2.7941 -0.0229 -0.0514 -0.1531 -0.3547 -0.6283 -0.8655 -0.9577 -0.8435 -0.72 -0.6787 -0.6787 -0.5193 -0.4077 -0.3344 -0.278 -0.2219 -0.1579 -0.0879 -0.0267 0.0 0.0 -0.1166 -0.3613 -0.5684 -0.6972 -0.6959 -0.4583 -0.2017 -0.0614 -0.0229
41 | Mo Se Mo Se Mo Te 1.9285 1.8104 1.56 1.2768 1.0825 1.0316 1.0972 1.0073 0.9525 0.9368 0.9368 0.9482 0.9603 0.9479 0.8988 0.8168 0.7145 0.6083 0.5219 0.4862 0.4862 0.6271 0.8926 0.9205 0.7979 0.9131 1.1413 1.4558 1.7724 1.9285 -0.509 -0.5332 -0.6145 -0.8133 -0.8669 -0.5981 -0.3449 -0.1492 -0.0354 0.0 0.0 -0.0433 -0.1312 -0.2003 -0.2306 -0.2266 -0.1965 -0.1512 -0.108 -0.0888 -0.0888 -0.172 -0.3295 -0.4018 -0.4398 -0.6338 -0.7061 -0.6088 -0.5404 -0.509
42 | Mo Se Mo Se W S 1.1207 1.1207 1.1206 1.1203 1.1199 1.1195 1.1194 1.1194 1.1194 1.1194 1.1194 1.1194 1.1195 1.1195 1.1195 1.1195 1.1195 1.116 0.9674 0.9022 0.9022 1.1185 1.1194 1.1192 1.119 1.1194 1.1201 1.1205 1.1207 1.1207 -0.1636 -0.2 -0.3082 -0.4858 -0.7333 -0.9598 -0.9099 -0.7162 -0.5997 -0.5618 -0.5618 -0.4711 -0.3765 -0.3134 -0.2641 -0.2131 -0.1525 -0.085 -0.0257 0.0 0.0 -0.1133 -0.3536 -0.5522 -0.682 -0.7408 -0.5648 -0.3511 -0.2122 -0.1636
43 | Mo Se Mo Se W Se 1.7899 1.7899 1.79 1.7417 1.5083 1.4823 1.5971 1.6595 1.6339 1.6306 1.6306 1.6401 1.6456 1.6334 1.5903 1.517 1.4231 1.3249 1.2457 1.2145 1.2145 1.3339 1.5156 1.4166 1.2577 1.3316 1.588 1.79 1.7899 1.7899 -0.1739 -0.2015 -0.2996 -0.4932 -0.7652 -1.0339 -1.1654 -1.052 -0.9296 -0.8886 -0.8886 -0.7275 -0.603 -0.5017 -0.4163 -0.3301 -0.2337 -0.1299 -0.0394 0.0 0.0 -0.1566 -0.4415 -0.6451 -0.7592 -0.7768 -0.5821 -0.3456 -0.2112 -0.1739
44 | Mo Se Mo Se W Te 1.8501 1.7321 1.4841 1.2052 1.0156 0.9762 1.0387 0.9292 0.873 0.8566 0.8566 0.8676 0.8806 0.8684 0.8189 0.7365 0.6335 0.5267 0.4399 0.404 0.404 0.5464 0.8169 0.8904 0.7635 0.8515 1.0702 1.3806 1.6945 1.8501 -0.5309 -0.5283 -0.6258 -0.838 -0.8471 -0.5806 -0.3482 -0.1892 -0.1093 -0.0869 -0.0869 -0.1344 -0.2227 -0.2787 -0.2861 -0.2531 -0.1891 -0.1075 -0.0327 0.0 0.0 -0.127 -0.327 -0.3828 -0.3842 -0.5686 -0.7589 -0.6095 -0.5288 -0.5309
45 | Mo Se Mo Te Mo Se 1.9312 1.8144 1.5873 1.3682 1.1484 1.0558 1.1178 1.0153 0.9583 0.9419 0.9419 0.9517 0.9676 0.9594 0.9099 0.8258 0.7212 0.6134 0.5262 0.4903 0.4903 0.6352 0.9147 0.9106 0.7884 0.9538 1.2404 1.4988 1.779 1.9312 -0.5828 -0.6004 -0.6189 -0.819 -0.8647 -0.5961 -0.3433 -0.1482 -0.0351 0.0 0.0 -0.044 -0.1333 -0.2033 -0.2338 -0.2296 -0.1993 -0.154 -0.1107 -0.0916 -0.0916 -0.1747 -0.3318 -0.4034 -0.4403 -0.6315 -0.692 -0.5929 -0.5919 -0.5828
46 | Mo Se Mo Te Mo Te 1.83 1.7246 1.5234 1.4266 1.2637 1.1725 1.0555 0.9202 0.8402 0.814 0.814 0.8221 0.8309 0.8113 0.7529 0.664 0.5574 0.4488 0.3606 0.3239 0.3239 0.4737 0.7837 1.0173 0.9238 1.0798 1.3103 1.4434 1.6925 1.83 -0.3439 -0.3669 -0.4024 -0.5159 -0.7425 -0.7434 -0.4994 -0.2984 -0.17 -0.1267 -0.1267 -0.1403 -0.1652 -0.1801 -0.1776 -0.156 -0.1169 -0.0668 -0.0205 0.0 0.0 -0.0892 -0.2633 -0.3744 -0.4519 -0.58 -0.4767 -0.393 -0.3735 -0.3439
47 | Mo Se Mo Te W Se 1.1998 1.1999 1.2 1.1998 1.1699 1.0834 1.1236 1.0129 0.9563 0.94 0.94 0.9498 0.9658 0.9576 0.9084 0.8245 0.7199 0.612 0.5249 0.489 0.489 0.6339 0.9187 0.9422 0.8166 0.981 1.1996 1.1999 1.1999 1.1998 -0.5072 -0.5252 -0.5919 -0.799 -0.8656 -0.5966 -0.3434 -0.1482 -0.0351 0.0 0.0 -0.0444 -0.1345 -0.2052 -0.236 -0.232 -0.2017 -0.1563 -0.113 -0.0938 -0.0938 -0.177 -0.3343 -0.4056 -0.4417 -0.6335 -0.6961 -0.5854 -0.5303 -0.5072
48 | Mo Se Mo Te W Te 1.6814 1.5755 1.375 1.2783 1.122 1.0376 0.9075 0.7719 0.6915 0.6652 0.6652 0.6732 0.6817 0.6618 0.6032 0.5143 0.4078 0.2991 0.211 0.1743 0.1743 0.3243 0.6345 0.8884 0.8002 0.9399 1.163 1.2947 1.5428 1.6814 -0.4586 -0.4691 -0.4937 -0.6177 -0.8443 -0.846 -0.619 -0.4418 -0.3272 -0.2878 -0.2878 -0.2984 -0.3149 -0.3178 -0.2992 -0.2567 -0.1909 -0.1094 -0.0338 0.0 0.0 -0.131 -0.342 -0.4393 -0.4937 -0.6368 -0.6006 -0.493 -0.4708 -0.4586
49 | Mo Se W S Mo Se 1.1379 1.1379 1.1377 1.1374 1.137 1.1367 1.1366 1.1365 1.1366 1.1366 1.1366 1.1366 1.1366 1.1366 1.1367 1.1366 1.1366 1.1332 0.9848 0.9197 0.9197 1.1356 1.1365 1.1363 1.1361 1.1365 1.1372 1.1377 1.1379 1.1379 -0.0989 -0.1456 -0.2966 -0.5303 -0.7546 -0.9658 -0.9022 -0.7105 -0.5957 -0.5585 -0.5585 -0.4648 -0.3711 -0.3102 -0.2631 -0.2133 -0.1531 -0.0854 -0.0258 0.0 0.0 -0.1131 -0.3507 -0.5451 -0.6751 -0.7479 -0.6143 -0.361 -0.1617 -0.0989
50 | Mo Se W S Mo Te 1.19943718 1.15813718 1.10393718 1.08063718 0.95233718 0.92753718 0.86583718 0.23343718 0.23353718 0.23353718 0.23353718 0.23353718 0.23353718 0.23343718 0.23343718 0.23313718 0.22463718 0.04913718 -0.10176282 0.23403718 0.23403718 0.08243718 0.23313718 0.23323718 0.23313718 0.23353718 0.23423718 0.23493718 0.23553718 0.23563718 0.23563718 0.23553718 0.23513718 0.23453718 0.23393718 0.23353718 0.23343718 -0.07716282 0.02673718 0.05663718 0.05663718 -0.00806282 -0.14446282 -0.25836282 -0.31546282 -0.32496282 -0.30126282 -0.25936282 -0.21806282 -0.16486282 -0.16486282 -0.27976282 -0.42866282 -0.47296282 -0.46516282 -0.65716282 -0.80396282 -0.70436282 -0.66246282 -0.65926282
51 | Mo Se W S W S 1.1811 1.1811 1.1811 1.181 1.1806 1.1803 1.1802 1.1802 1.1802 1.1802 1.1802 1.1802 1.1802 1.1803 1.1803 1.1804 1.1804 1.1804 1.16 1.0952 1.0952 1.1804 1.1803 1.18 1.1797 1.1801 1.1808 1.1811 1.1811 1.1811 -0.2278 -0.2734 -0.4226 -0.6465 -0.8516 -1.0237 -0.7701 -0.582 -0.4744 -0.4406 -0.4406 -0.3913 -0.327 -0.2825 -0.2457 -0.2026 -0.1469 -0.0822 -0.0249 0.0 0.0 -0.1097 -0.3421 -0.5252 -0.6465 -0.7719 -0.7094 -0.4856 -0.2891 -0.2278
52 | Mo Se W S W Te 1.19497289 1.15437289 1.10107289 1.08067289 0.95477289 0.92457289 0.23277289 0.23277289 0.23287289 0.23287289 0.23287289 0.23287289 0.23287289 0.23277289 0.23267289 0.23237289 0.21837289 0.03887289 0.23347289 0.23337289 0.23337289 0.23387289 0.23247289 0.23257289 0.23247289 0.23287289 0.23357289 0.23427289 0.23487289 0.23507289 0.23507289 0.23497289 0.23447289 0.23387289 0.23327289 0.23287289 -0.18772711 -0.03642711 0.03087289 0.04747289 0.04747289 -0.02642711 -0.17292711 -0.27942711 -0.31512711 -0.29512711 -0.23642711 -0.15722711 -0.08402711 -0.05232711 -0.05232711 0.07237289 -0.36842711 -0.39342711 -0.34292711 -0.52192711 -0.76632711 -0.58202711 -0.45382711 -0.40632711
53 | Mo Se W Se Mo Se 1.7894 1.7894 1.7895 1.7826 1.5607 1.5445 1.6632 1.6702 1.642 1.6376 1.6376 1.6456 1.6588 1.6521 1.6091 1.533 1.4357 1.3345 1.2528 1.2195 1.2195 1.3491 1.5611 1.4824 1.3152 1.385 1.6354 1.7895 1.7895 1.7894 -0.1143 -0.1447 -0.2529 -0.4653 -0.7557 -1.0285 -1.1614 -1.05 -0.9303 -0.8901 -0.8901 -0.7241 -0.5976 -0.4985 -0.4139 -0.3283 -0.2324 -0.1293 -0.0392 0.0 0.0 -0.1559 -0.4405 -0.6443 -0.7585 -0.7734 -0.5628 -0.3033 -0.1554 -0.1143
54 | Mo Se W Se Mo Te 1.1897 1.1898 1.1898 1.1896 1.1267 1.0953 1.0901 0.9787 0.9215 0.9049 0.9049 0.915 0.9313 0.9232 0.8738 0.7895 0.6846 0.5765 0.4891 0.4531 0.4531 0.5987 0.8896 1.0122 0.872 0.9664 1.1841 1.1898 1.1898 1.1897 -0.4605 -0.4887 -0.589 -0.8062 -0.8658 -0.5967 -0.3434 -0.1481 -0.035 0.0 0.0 -0.0441 -0.1337 -0.2044 -0.2356 -0.2321 -0.2021 -0.1569 -0.1137 -0.0945 -0.0945 -0.1776 -0.3349 -0.4063 -0.4425 -0.6377 -0.721 -0.6069 -0.4982 -0.4605
55 | Mo Se W Se W S 0.9128 0.9128 0.9127 0.9124 0.912 0.9117 0.9115 0.9115 0.9115 0.9116 0.9116 0.9116 0.9116 0.9116 0.9116 0.9116 0.9116 0.907 0.7564 0.6912 0.6912 0.9105 0.9115 0.9113 0.9111 0.9116 0.9122 0.9126 0.9128 0.9128 -0.2894 -0.3196 -0.4158 -0.5955 -0.856 -1.1202 -1.0988 -0.921 -0.8079 -0.7709 -0.7709 -0.6754 -0.5709 -0.4844 -0.4072 -0.3253 -0.2308 -0.128 -0.0386 0.0 0.0 -0.1543 -0.4379 -0.6328 -0.743 -0.8102 -0.6693 -0.4574 -0.3298 -0.2894
56 | Mo Se W Se W Te 1.1267 1.1268 1.1267 1.1266 1.0658 1.0358 1.0244 0.9121 0.8539 0.837 0.837 0.847 0.8632 0.8548 0.8051 0.7205 0.6154 0.5071 0.4196 0.3835 0.3835 0.5294 0.8212 0.9627 0.8231 0.9029 1.1214 1.1267 1.1268 1.1267 -0.4775 -0.491 -0.5989 -0.8273 -0.8433 -0.5763 -0.3436 -0.1847 -0.105 -0.0828 -0.0828 -0.1309 -0.2208 -0.278 -0.286 -0.2532 -0.1892 -0.1076 -0.0327 0.0 0.0 -0.1271 -0.3274 -0.3826 -0.3825 -0.5677 -0.7635 -0.6025 -0.4965 -0.4775
57 | Mo Se W Te Mo Se 1.8627 1.7458 1.5195 1.3048 1.102 1.0447 1.0586 0.9466 0.8887 0.8718 0.8718 0.8816 0.8976 0.8892 0.8396 0.7552 0.6503 0.5423 0.4549 0.4189 0.4189 0.5644 0.851 0.9349 0.8027 0.9266 1.1813 1.4311 1.7104 1.8627 -0.5273 -0.5299 -0.6223 -0.8277 -0.8442 -0.5776 -0.3452 -0.1864 -0.1066 -0.0843 -0.0843 -0.1324 -0.2221 -0.2788 -0.2863 -0.2531 -0.189 -0.1074 -0.0326 0.0 0.0 -0.1268 -0.3266 -0.3818 -0.3826 -0.5643 -0.7527 -0.5938 -0.5278 -0.5273
58 | Mo Se W Te Mo Te 1.6826 1.5768 1.3759 1.2803 1.1373 1.0714 0.9084 0.7723 0.6915 0.665 0.665 0.673 0.6815 0.6614 0.6027 0.5136 0.4069 0.2981 0.2099 0.1732 0.1732 0.3232 0.6345 0.8986 0.8365 0.9624 1.1663 1.296 1.5446 1.6826 -0.4257 -0.4426 -0.4877 -0.6155 -0.8406 -0.8414 -0.6139 -0.4332 -0.3151 -0.2749 -0.2749 -0.286 -0.3043 -0.31 -0.2943 -0.254 -0.1896 -0.1089 -0.0336 0.0 0.0 -0.1303 -0.3403 -0.4374 -0.4913 -0.6328 -0.6029 -0.4943 -0.4476 -0.4257
59 | Mo Se W Te W S 1.20043245 1.15883245 1.10383245 1.15023245 1.04593245 0.92993245 0.23573245 0.23573245 0.23583245 0.23593245 0.23593245 0.23593245 0.23583245 0.23583245 0.23573245 0.23543245 0.22373245 0.04573245 0.23643245 0.23643245 0.23643245 0.23693245 0.23553245 0.23553245 0.23553245 0.23593245 0.23663245 0.23723245 0.23783245 0.23793245 0.23793245 0.23783245 0.23743245 0.23683245 0.23623245 0.23593245 -0.18846755 -0.03706755 0.03023245 0.04683245 0.04683245 -0.02766755 -0.17526755 -0.28246755 -0.31816755 -0.29796755 -0.23916755 -0.15986755 -0.08676755 -0.05506755 -0.05506755 0.07933245 -0.37066755 -0.39516755 -0.34426755 -0.51996755 -0.74916755 -0.56126755 -0.44546755 -0.40686755
60 | Mo Te Mo S Mo Te 1.02451516 0.97901516 0.91001516 0.93401516 0.86391516 0.67241516 0.50941516 0.38771516 0.31371516 0.01881516 0.01881516 0.28411516 0.25901516 0.20121516 0.11121516 -0.00348484 1.32911516 1.42911516 1.41471516 1.39921516 1.39921516 1.41031516 1.10341516 0.45681516 0.55071516 0.67591516 0.85401516 0.86861516 0.96431516 1.02451516 -0.47528484 -0.50948484 -0.61108484 -0.77038484 -0.84248484 -0.58048484 -0.33148484 -0.13558484 -0.01848484 0.01731516 0.01731516 -0.01508484 -0.08248484 -0.13378484 -0.15388484 -0.14488484 -0.11168484 -0.06528484 -0.02098484 -0.00138484 -0.00138484 -0.08608484 0.13701516 -0.33128484 -0.38528484 -0.57568484 -0.63718484 -0.58918484 -0.51918484 -0.47528484
61 | Mo Te Mo S W S 0.75653157 0.69593157 0.59593157 0.39593157 0.33493157 0.38243157 0.25633157 0.18163157 0.02983157 0.00483157 0.00483157 0.04403157 0.12253157 0.08803157 0.01223157 0.06563157 0.04113157 0.01953157 0.00403157 -0.00096843 -0.00096843 -0.02226843 -0.01856843 0.03193157 -0.01386843 0.18163157 0.14683157 0.54063157 0.67663157 0.75453157 0.75453157 -0.65576843 -0.49506843 -0.48076843 -0.20516843 0.01033157 -0.18606843 -0.18636843 -0.06676843 -0.73606843 -0.73606843 -0.83436843 -1.01306843 -1.02546843 -1.04736843 -0.10326843 -0.02816843 -0.22716843 -0.34076843 -0.37656843 -0.37656843 -0.26396843 -0.25946843 -0.62886843 -0.52786843 -0.40836843 -0.37606843 -0.43666843 -0.61986843 -0.87286843
62 | Mo Te Mo S W Se 1.09704216 1.04524216 0.96304216 0.97854216 0.90004216 0.72024216 0.57724216 0.48074216 0.42884216 0.41314216 0.41314216 0.41694216 0.41214216 0.37134216 0.28794216 0.17184216 0.03694216 1.30944216 1.17794216 1.12384216 1.12384216 1.32734216 0.31134216 0.63414216 0.60044216 0.67984216 0.88864216 0.91524216 1.02854216 1.09704216 -0.48065784 -0.50975784 -0.60805784 -0.78625784 -0.70385784 -0.41935784 -0.15665784 0.03724216 0.14154216 0.17164216 0.17164216 0.10814216 -0.02575784 -0.13735784 -0.19305784 -0.20195784 -0.17805784 -0.09845784 -0.09475784 -0.07645784 -0.07645784 -0.06925784 -0.30575784 -0.35125784 -0.34565784 -0.53745784 -0.67765784 -0.57775784 -0.51925784 -0.48065784
63 | Mo Te Mo Se Mo Te 1.8641 1.7617 1.5712 1.4794 1.2856 1.1809 1.0905 0.9563 0.877 0.8511 0.8511 0.8588 0.8671 0.8473 0.789 0.7002 0.5937 0.485 0.3969 0.3603 0.3603 0.5096 0.8163 1.0378 0.9421 1.0892 1.3509 1.4925 1.7305 1.8641 -0.2392 -0.2745 -0.3959 -0.6159 -0.7909 -0.7265 -0.4868 -0.2912 -0.1679 -0.1267 -0.1267 -0.1396 -0.1633 -0.1784 -0.1771 -0.1566 -0.1178 -0.0674 -0.0207 0.0 0.0 -0.0887 -0.2589 -0.3653 -0.4482 -0.6109 -0.5894 -0.4438 -0.2867 -0.2392
64 | Mo Te Mo Se W S 1.21572465 1.17392465 1.11632465 1.10152465 0.97482465 0.92982465 0.88212465 0.24752465 0.24762465 0.24772465 0.24772465 0.24772465 0.24772465 0.24762465 0.24752465 0.24732465 0.23862465 0.06302465 -0.08797535 -0.15117535 -0.15117535 0.09672465 0.24732465 0.24732465 0.24732465 0.24772465 0.24842465 0.24912465 0.24962465 0.24972465 0.24972465 0.24962465 0.24922465 0.24862465 0.24812465 0.24772465 0.24752465 -0.07887535 0.02472465 0.05452465 0.05452465 -0.01027535 -0.14697535 -0.26077535 -0.31757535 -0.32667535 -0.30277535 -0.26077535 -0.21947535 -0.20107535 -0.20107535 -0.28127535 -0.43007535 -0.47437535 -0.46617535 -0.65507535 -0.78527535 -0.67847535 -0.65107535 -0.65937535
65 | Mo Te Mo Se W Se 1.214 1.214 1.2141 1.2139 1.1485 1.0723 1.1242 1.0142 0.9579 0.9417 0.9417 0.9513 0.9668 0.9585 0.9093 0.8255 0.721 0.6133 0.5263 0.4904 0.4904 0.6347 0.9141 0.9359 0.8126 0.9616 1.2137 1.2141 1.214 1.214 -0.4553 -0.4903 -0.6048 -0.8194 -0.8656 -0.5966 -0.3435 -0.1482 -0.0351 0.0 0.0 -0.044 -0.1334 -0.2038 -0.2348 -0.2312 -0.2013 -0.1561 -0.1129 -0.0938 -0.0938 -0.1768 -0.3339 -0.4054 -0.4418 -0.6356 -0.711 -0.6127 -0.5021 -0.4553
66 | Mo Te Mo Te Mo Te 2.9738 2.789 2.4143 1.8531 1.4507 1.2832 1.3002 1.4149 1.3731 1.3426 1.3426 1.3579 1.3615 1.3488 1.316 1.2615 1.1905 1.1147 1.0529 1.0297 1.0297 1.116 1.2296 1.0932 1.0214 1.2321 1.6485 2.2503 2.7396 2.9738 -0.1087 -0.1257 -0.197 -0.366 -0.6157 -0.8337 -0.7051 -0.5041 -0.3676 -0.3192 -0.3192 -0.2985 -0.2652 -0.2372 -0.2094 -0.1739 -0.127 -0.0721 -0.0222 0.0 0.0 -0.0958 -0.2831 -0.4227 -0.5253 -0.5665 -0.3609 -0.2306 -0.132 -0.1087
67 | Mo Te Mo Te W S 1.23354743 1.19444743 1.14374743 1.19484743 1.12094743 0.98444743 0.88934743 0.31854743 0.31864743 0.02984743 0.02984743 0.31874743 0.31864743 0.31844743 0.31784743 0.30534743 0.14284743 0.31954743 0.31944743 0.31934743 0.31934743 0.31964743 0.31734743 0.31824743 0.31834743 0.31884743 0.31954743 0.32054743 0.32164743 0.32204743 0.32204743 0.32174743 0.32084743 0.31994743 0.31914743 0.31874743 0.31854743 -0.13065257 -0.00905257 -0.02665257 -0.02665257 -0.00565257 -0.07755257 -0.13305257 -0.15455257 -0.14545257 -0.11275257 -0.02955257 -0.02305257 -0.00375257 -0.00375257 0.00554743 -0.25245257 -0.33825257 -0.38125257 -0.54035257 -0.50615257 -0.44795257 -0.51875257 -0.51655257
68 | Mo Te Mo Te W Se 1.1833 1.1833 1.1832 1.1828 1.182 1.1813 1.1811 1.1813 1.1815 1.1816 1.1816 1.1816 1.1815 1.1813 1.1751 1.0492 0.8938 0.7367 0.608 0.5538 0.5538 0.7669 1.1678 1.0637 0.9665 1.1788 1.1825 1.1831 1.1833 1.1833 -0.2676 -0.3031 -0.4115 -0.5262 -0.7494 -0.7351 -0.4908 -0.2899 -0.162 -0.119 -0.119 -0.1338 -0.1608 -0.1776 -0.1762 -0.1552 -0.1164 -0.0665 -0.0204 0.0 0.0 -0.0889 -0.2625 -0.3723 -0.4484 -0.5799 -0.4832 -0.4037 -0.3154 -0.2676
69 | Mo Te Mo Te W Te 2.001 2.001 2.001 1.7256 1.3335 1.1734 1.192 1.3034 1.2367 1.2045 1.2045 1.2174 1.2247 1.2169 1.1853 1.1291 1.0556 0.9773 0.9134 0.8885 0.8885 0.9833 1.1209 0.9985 0.9215 1.1259 1.5298 2.001 2.001 2.001 -0.2534 -0.2695 -0.3368 -0.4934 -0.7336 -0.9665 -0.845 -0.6517 -0.5192 -0.4723 -0.4723 -0.4487 -0.409 -0.3703 -0.3269 -0.2714 -0.1995 -0.1147 -0.0358 0.0 0.0 -0.1371 -0.3559 -0.4809 -0.5673 -0.6545 -0.5123 -0.3661 -0.2755 -0.2534
70 | Mo Te W S W Te 1.21073843 1.17393843 1.12843843 1.18093843 1.09923843 0.96253843 0.86723843 0.30243843 0.30263843 0.30273843 0.30273843 0.30273843 0.30263843 0.30233843 0.30173843 0.28443843 0.11903843 0.30353843 0.30333843 0.10673843 0.10673843 0.30353843 0.30123843 0.30223843 0.30233843 0.30273843 0.30353843 0.30453843 0.30573843 0.30633843 0.30633843 0.30593843 0.30493843 0.30383843 0.30313843 0.30263843 0.30243843 -0.14786157 -0.06396157 -0.02936157 -0.02936157 -0.06456157 -0.13456157 -0.18776157 -0.18696157 -0.15026157 -0.08456157 -0.00196157 0.07363843 -0.05856157 -0.05856157 -0.01486157 -0.22466157 -0.29016157 -0.30666157 -0.49306157 -0.69296157 -0.57666157 -0.48786157 -0.47436157
71 | Mo Te W Se Mo Te 1.214 1.214 1.2138 1.2134 1.2126 1.2118 1.2116 1.2118 1.2121 1.2122 1.2122 1.2122 1.2121 1.2119 1.2061 1.0811 0.9258 0.7688 0.6403 0.5861 0.5861 0.7982 1.1923 1.1713 1.056 1.209 1.2131 1.2137 1.214 1.214 -0.18 -0.2193 -0.3517 -0.5913 -0.8075 -0.7144 -0.474 -0.2785 -0.1558 -0.115 -0.115 -0.1298 -0.1573 -0.1753 -0.1755 -0.1557 -0.1173 -0.0671 -0.0205 0.0 0.0 -0.0885 -0.2582 -0.3629 -0.4434 -0.6105 -0.6145 -0.4062 -0.2329 -0.18
72 | Mo Te W Se W Se 1.1896 1.1897 1.1898 1.1896 1.189 1.1859 1.1884 1.1885 1.1886 1.1886 1.1886 1.1886 1.1887 1.1887 1.1888 1.1887 1.0846 0.9221 0.7895 0.7345 0.7345 0.9446 1.1884 1.0373 0.8984 1.1046 1.1894 1.1897 1.1897 1.1896 -0.4149 -0.4496 -0.5657 -0.7929 -0.8663 -0.5972 -0.3439 -0.1484 -0.0351 0.0 0.0 -0.044 -0.1335 -0.204 -0.2351 -0.2314 -0.2014 -0.1562 -0.1129 -0.0937 -0.0937 -0.1769 -0.3342 -0.4058 -0.4421 -0.6369 -0.7167 -0.5938 -0.4613 -0.4149
73 | Mo Te W Se W Te 1.0384 1.0384 1.0382 1.0377 1.037 1.0362 1.0361 1.0362 1.0365 1.0366 1.0366 1.0366 1.0365 1.0362 1.0266 0.8975 0.7423 0.5856 0.4573 0.4032 0.4032 0.6153 1.0155 1.0239 0.9126 1.0351 1.0374 1.0381 1.0384 1.0384 -0.3378 -0.3768 -0.5086 -0.7241 -0.9026 -0.8328 -0.6082 -0.4419 -0.3396 -0.2985 -0.2985 -0.312 -0.3369 -0.3396 -0.3153 -0.2674 -0.197 -0.1121 -0.0344 0.0 0.0 -0.1327 -0.3434 -0.4359 -0.49 -0.656 -0.7395 -0.5619 -0.3902 -0.3378
74 | Mo Te W Te Mo Te 2.0024 2.0024 2.0023 1.7534 1.3714 1.2221 1.2493 1.3586 1.2506 1.2158 1.2158 1.2246 1.2416 1.2423 1.2105 1.1503 1.0723 0.99 0.9226 0.8947 0.8947 1.0034 1.1713 1.0522 0.9666 1.1691 1.5657 2.0022 2.0024 2.0024 -0.1832 -0.2016 -0.2775 -0.4533 -0.7139 -0.957 -0.8386 -0.6478 -0.5195 -0.4744 -0.4744 -0.447 -0.4016 -0.3602 -0.3171 -0.2634 -0.194 -0.1119 -0.0351 0.0 0.0 -0.1353 -0.354 -0.4816 -0.567 -0.6449 -0.5135 -0.3128 -0.2085 -0.1832
75 | Mo Te W Te W S 1.19143286 1.15243286 1.10143286 1.15223286 1.07983286 0.94263286 0.84653286 0.27703286 0.27713286 0.27733286 0.27733286 0.27723286 0.27713286 0.27693286 0.27633286 0.26103286 0.09683286 0.27803286 0.27793286 0.09813286 0.09813286 0.27813286 0.27583286 0.27673286 0.27693286 0.27733286 0.27803286 0.27913286 0.28013286 0.28063286 0.28063286 0.28023286 0.27943286 0.27843286 0.27763286 0.27723286 0.27703286 -0.14686714 -0.04216714 -0.00726714 -0.00726714 -0.04186714 -0.10976714 -0.15786714 -0.16836714 -0.14196714 -0.08416714 -0.00676714 0.06593286 -0.06086714 -0.06086714 -0.02606714 -0.22846714 -0.29816714 -0.31206714 -0.47686714 -0.53206714 -0.45646714 -0.47206714 -0.48936714
76 | Mo Te W Te W Se 1.0347 1.0347 1.0347 1.0342 1.0335 1.0328 1.0326 1.0327 1.0329 1.0331 1.0331 1.033 1.033 1.0326 1.0229 0.8935 0.738 0.5811 0.4525 0.3982 0.3982 0.6115 1.0187 1.0198 0.9123 1.0323 1.0339 1.0346 1.0347 1.0347 -0.3785 -0.41 -0.4895 -0.6208 -0.8453 -0.8342 -0.6067 -0.4274 -0.3104 -0.2705 -0.2705 -0.2826 -0.3028 -0.3098 -0.2947 -0.2544 -0.1897 -0.1089 -0.0336 0.0 0.0 -0.1303 -0.3402 -0.4362 -0.4885 -0.6317 -0.6059 -0.4992 -0.4203 -0.3785
77 | Mo Te W Te W Te 1.9695 1.9695 1.9695 1.741 1.3687 1.2226 1.2438 1.3256 1.2171 1.182 1.182 1.1909 1.208 1.2092 1.178 1.1178 1.0392 0.9563 0.8885 0.8605 0.8605 0.9709 1.1565 1.0632 0.9745 1.1736 1.5608 1.9694 1.9695 1.9695 -0.2111 -0.2299 -0.3067 -0.4811 -0.738 -0.9831 -0.8699 -0.6867 -0.562 -0.5177 -0.5177 -0.4881 -0.4349 -0.3836 -0.3327 -0.2731 -0.1995 -0.1147 -0.036 0.0 0.0 -0.1408 -0.3679 -0.4989 -0.5829 -0.6636 -0.5422 -0.3425 -0.2368 -0.2111
78 | W S Mo S W S 1.6407 1.6407 1.6408 1.6407 1.6404 1.6402 1.64 1.64 1.6399 1.6399 1.6399 1.64 1.64 1.6401 1.6401 1.6402 1.583 1.4508 1.3449 1.3019 1.3019 1.4689 1.6401 1.6397 1.5596 1.5867 1.6405 1.6408 1.6407 1.6407 0.0 -0.0418 -0.1835 -0.4457 -0.794 -1.1209 -1.2779 -1.206 -1.0473 -0.973 -0.973 -0.9096 -0.8026 -0.696 -0.5998 -0.5004 -0.3888 -0.2685 -0.1634 -0.1177 -0.1177 -0.3 -0.6374 -0.8842 -0.9896 -0.8949 -0.5787 -0.2491 -0.0564 0.0
79 | W S Mo Se W S 1.1852 1.1852 1.1852 1.185 1.1847 1.1844 1.1843 1.1843 1.1843 1.1843 1.1843 1.1843 1.1843 1.1844 1.1844 1.1845 1.1845 1.1845 1.1603 1.0953 1.0953 1.1845 1.1844 1.1841 1.1837 1.1842 1.1849 1.1852 1.1852 1.1852 -0.2711 -0.3072 -0.4275 -0.6262 -0.8446 -1.0268 -0.7732 -0.585 -0.4772 -0.4433 -0.4433 -0.3936 -0.3289 -0.284 -0.2466 -0.2032 -0.1472 -0.0824 -0.0249 0.0 0.0 -0.11 -0.3426 -0.526 -0.6477 -0.7709 -0.6977 -0.4806 -0.3198 -0.2711
80 | W S Mo Se W Se 0.9142 0.9142 0.9141 0.9138 0.9133 0.913 0.9129 0.9129 0.9129 0.9129 0.9129 0.9129 0.9129 0.913 0.913 0.913 0.9129 0.9088 0.7589 0.6938 0.6938 0.9119 0.9129 0.9127 0.9125 0.9129 0.9136 0.914 0.9142 0.9142 -0.3312 -0.3576 -0.4391 -0.6043 -0.8587 -1.1217 -1.1 -0.9279 -0.8164 -0.7794 -0.7794 -0.6832 -0.5733 -0.4846 -0.4071 -0.3253 -0.2308 -0.128 -0.0386 0.0 0.0 -0.1543 -0.438 -0.6329 -0.7431 -0.811 -0.6741 -0.4751 -0.3663 -0.3312
81 | W S Mo Te W S 0.22860724 0.22850724 0.22840724 0.22800724 0.22750724 0.22720724 0.22600724 0.22600724 0.22610724 0.22610724 0.22610724 0.22610724 0.22610724 0.22610724 0.22610724 0.22610724 0.22580724 0.16390724 0.00810724 -0.05569276 -0.05569276 0.19340724 0.22600724 0.22580724 0.22570724 0.22610724 0.22680724 0.22730724 0.22750724 0.22760724 0.22760724 0.22750724 0.22740724 0.22700724 0.22650724 0.22620724 -0.17389276 0.01640724 0.10870724 0.13260724 0.13260724 0.04640724 -0.13829276 -0.29759276 -0.38129276 -0.40279276 -0.38419276 -0.34449276 -0.30449276 -0.05659276 -0.05659276 -0.36479276 -0.50669276 -0.52349276 -0.46339276 -0.63439276 -0.82199276 -0.68119276 -0.61469276 -0.60169276
82 | W S W S W S 1.5646 1.5647 1.5648 1.5647 1.5645 1.5642 1.5641 1.5641 1.564 1.564 1.564 1.564 1.5641 1.5641 1.5642 1.5643 1.5643 1.5643 1.5643 1.5642 1.5642 1.5643 1.5642 1.5638 1.5627 1.5636 1.5646 1.5648 1.5647 1.5646 0.0 -0.0449 -0.1962 -0.4758 -0.846 -1.1835 -1.3585 -1.3218 -1.1781 -1.1103 -1.1103 -1.0099 -0.8719 -0.7581 -0.6587 -0.5581 -0.4467 -0.3277 -0.2238 -0.1784 -0.1784 -0.362 -0.7056 -0.9599 -1.0661 -0.9616 -0.6165 -0.2659 -0.0605 0.0
83 | W S W S W Se 0.9622 0.9622 0.9623 0.9621 0.9617 0.9615 0.9613 0.9613 0.9613 0.9613 0.9613 0.9613 0.9613 0.9614 0.9614 0.9615 0.9615 0.9615 0.9308 0.8662 0.8662 0.9615 0.9614 0.9611 0.9608 0.9612 0.9619 0.9622 0.9623 0.9622 -0.4285 -0.4688 -0.5871 -0.74 -0.9545 -1.1816 -0.9526 -0.7964 -0.7139 -0.6893 -0.6893 -0.6248 -0.5354 -0.4634 -0.3962 -0.3198 -0.2278 -0.1262 -0.0379 0.0 0.0 -0.152 -0.4327 -0.6147 -0.7119 -0.826 -0.7837 -0.6281 -0.4824 -0.4285
84 | W S W Se W Se 0.8924 0.8923 0.8922 0.8919 0.8915 0.8912 0.8911 0.891 0.8911 0.8911 0.8911 0.8911 0.8911 0.8911 0.8912 0.8912 0.8911 0.8849 0.7326 0.6675 0.6675 0.8898 0.8911 0.8909 0.8907 0.8911 0.8917 0.8922 0.8923 0.8924 -0.2685 -0.2966 -0.3905 -0.576 -0.8503 -1.1237 -1.1152 -0.95 -0.8573 -0.8284 -0.8284 -0.7109 -0.5838 -0.4891 -0.4082 -0.3246 -0.2297 -0.1273 -0.0385 0.0 0.0 -0.1555 -0.4441 -0.6443 -0.7543 -0.8116 -0.6546 -0.4326 -0.3063 -0.2685
85 | W S W Te W S 0.22953647 0.22943647 0.22923647 0.22883647 0.22833647 0.22803647 0.22783647 0.22783647 0.22793647 0.22793647 0.22793647 0.22793647 0.22793647 0.22793647 0.22793647 0.22793647 0.22763647 0.15623647 0.00083647 -0.06366353 -0.06366353 0.18633647 0.22783647 0.22763647 0.22753647 0.22793647 0.22863647 0.22913647 0.22943647 0.22943647 0.22943647 0.22943647 -0.56436353 -0.90506353 -0.61426353 -0.31546353 -0.07196353 0.07013647 0.12393647 0.13483647 0.13483647 0.03543647 -0.16636353 -0.32266353 -0.38626353 -0.37846353 -0.32446353 -0.24696353 -0.17516353 -0.06386353 -0.06386353 -0.26576353 -0.45136353 -0.44666353 -0.34056353 -0.49536353 -0.75936353 -0.53216353 -0.37576353 -0.31806353
86 | W S W Te W Te 0.29090036 0.29040036 0.28940036 0.28840036 0.28780036 0.28740036 0.28720036 0.28720036 0.28740036 0.28740036 0.28740036 0.28740036 0.28740036 0.28720036 0.28680036 0.28390036 0.14260036 -0.04949964 -0.20549964 -0.27119964 -0.27119964 -0.01199964 0.28630036 0.28690036 0.28700036 0.28750036 0.28810036 -0.06099964 0.13460036 0.17060036 0.17060036 0.14500036 0.00090036 -0.37849964 -0.89759964 -1.32119964 -1.40689964 -1.07489964 -0.84509964 -0.76289964 -0.76289964 -0.77709964 -0.80399964 -0.82129964 -0.81759964 -0.78649964 -0.72409964 -0.63379964 -0.53709964 -0.48849964 -0.48849964 -0.67809964 -0.93199964 -1.02229964 -1.10139964 -0.84319964 -0.45799964 -0.78539964 -0.53499964 -0.45259964
87 | W Se Mo S W Se 1.6137 1.5582 1.4642 1.4016 1.2796 1.2054 1.087 1.022 0.9982 0.994 0.994 1.0019 1.0092 0.9831 0.9089 0.7955 0.6596 0.5217 0.4109 0.3653 0.3653 0.5488 0.9188 1.1837 1.026 1.068 1.2785 1.4104 1.5401 1.6137 -0.3195 -0.3534 -0.4583 -0.6242 -0.8603 -1.1209 -1.1103 -0.9467 -0.8552 -0.8266 -0.8266 -0.7067 -0.5812 -0.489 -0.4101 -0.3273 -0.2321 -0.1287 -0.0388 0.0 0.0 -0.155 -0.439 -0.6342 -0.7451 -0.8121 -0.6865 -0.5014 -0.3649 -0.3195
88 | W Se Mo Se W Se 1.7859 1.7859 1.786 1.7851 1.5657 1.5446 1.6589 1.6654 1.6373 1.633 1.633 1.6408 1.6534 1.6464 1.6036 1.5277 1.4305 1.3293 1.2478 1.2145 1.2145 1.3436 1.5528 1.4723 1.3096 1.3851 1.642 1.786 1.7859 1.7859 -0.1322 -0.1632 -0.2718 -0.4809 -0.7641 -1.0325 -1.1628 -1.0552 -0.9358 -0.8958 -0.8958 -0.7292 -0.5995 -0.4994 -0.4147 -0.329 -0.233 -0.1297 -0.0393 0.0 0.0 -0.1564 -0.4417 -0.6456 -0.7597 -0.7755 -0.5789 -0.3226 -0.1741 -0.1322
89 | W Se Mo Se W Te 1.1441 1.1441 1.1442 1.1441 1.0933 1.0461 1.0534 0.9421 0.8848 0.8682 0.8682 0.8778 0.8934 0.885 0.8357 0.7515 0.6467 0.5388 0.4515 0.4156 0.4156 0.5605 0.8463 0.9444 0.8136 0.9208 1.1438 1.1442 1.1442 1.1441 -0.5182 -0.5255 -0.6313 -0.8477 -0.8423 -0.5755 -0.343 -0.1843 -0.1047 -0.0826 -0.0826 -0.1306 -0.2204 -0.2775 -0.2857 -0.253 -0.1891 -0.1075 -0.0327 0.0 0.0 -0.1269 -0.3269 -0.382 -0.3822 -0.5671 -0.7617 -0.6136 -0.5282 -0.5182
90 | W Se Mo Te W Se 1.191 1.1911 1.1911 1.191 1.1904 1.1612 1.1896 1.1898 1.1899 1.19 1.19 1.19 1.19 1.1901 1.1902 1.1901 1.0916 0.9284 0.7961 0.7411 0.7411 0.9526 1.1897 1.0003 0.8639 1.0811 1.1908 1.1911 1.1911 1.191 -0.513 -0.5417 -0.5955 -0.806 -0.8655 -0.596 -0.3425 -0.1474 -0.0348 0.0 0.0 -0.0453 -0.1376 -0.2103 -0.2422 -0.2387 -0.2087 -0.1634 -0.1202 -0.1011 -0.1011 -0.1841 -0.3409 -0.4111 -0.4453 -0.6376 -0.7062 -0.5893 -0.5455 -0.513
91 | W Se W S W Se 0.9176 0.9176 0.9174 0.9171 0.9166 0.9163 0.9162 0.9162 0.9162 0.9162 0.9162 0.9162 0.9163 0.9163 0.9163 0.9163 0.9162 0.9077 0.7539 0.6888 0.6888 0.9147 0.9162 0.916 0.9158 0.9162 0.9169 0.9173 0.9176 0.9176 -0.2434 -0.2881 -0.4255 -0.626 -0.8632 -1.1232 -1.106 -0.9427 -0.8514 -0.823 -0.823 -0.705 -0.5803 -0.4885 -0.4099 -0.3271 -0.2319 -0.1286 -0.0388 0.0 0.0 -0.1548 -0.4388 -0.6335 -0.7439 -0.8122 -0.6898 -0.4802 -0.3033 -0.2434
92 | W Se W Se W Se 1.7712 1.7712 1.7713 1.7714 1.7525 1.7681 1.7705 1.7705 1.7705 1.7704 1.7704 1.7705 1.7706 1.7707 1.7708 1.7708 1.7707 1.6959 1.5678 1.5149 1.5149 1.7027 1.7708 1.7265 1.525 1.5772 1.7713 1.7714 1.7712 1.7712 -0.136 -0.1641 -0.2651 -0.4687 -0.758 -1.0365 -1.189 -1.0898 -0.9896 -0.9573 -0.9573 -0.7597 -0.6115 -0.5046 -0.4163 -0.3288 -0.2322 -0.1292 -0.0393 0.0 0.0 -0.1579 -0.4479 -0.657 -0.771 -0.7785 -0.5649 -0.3131 -0.174 -0.136
93 | W Se W Se W Te 1.1209 1.121 1.1211 1.121 1.1204 1.1197 1.1197 1.1198 1.1199 1.1199 1.1199 1.1199 1.12 1.1201 1.1201 1.12 1.0119 0.8492 0.7168 0.6618 0.6618 0.8725 1.1197 1.1167 0.9814 1.0939 1.1207 1.1211 1.121 1.1209 -0.4688 -0.4893 -0.6011 -0.8309 -0.8417 -0.5744 -0.3414 -0.1823 -0.1025 -0.0802 -0.0802 -0.1287 -0.2192 -0.2771 -0.2856 -0.253 -0.1891 -0.1075 -0.0327 0.0 0.0 -0.1269 -0.327 -0.3818 -0.3813 -0.5667 -0.7652 -0.6052 -0.4961 -0.4688
94 | W Se W Te W Se 1.1288 1.1288 1.1289 1.1287 1.1282 1.1275 1.1275 1.1276 1.1276 1.1277 1.1277 1.1277 1.1278 1.1278 1.1279 1.1278 1.0191 0.8559 0.7235 0.6685 0.6685 0.8807 1.1275 1.118 0.965 1.1178 1.1285 1.1289 1.1288 1.1288 -0.524 -0.5161 -0.6068 -0.8224 -0.84 -0.5726 -0.3398 -0.1808 -0.1012 -0.079 -0.079 -0.128 -0.2195 -0.2778 -0.2861 -0.2532 -0.1891 -0.1074 -0.0326 0.0 0.0 -0.1269 -0.3268 -0.3813 -0.3802 -0.563 -0.7571 -0.5896 -0.5141 -0.524
95 | W Se W Te W Te 0.9981 0.9981 0.998 0.9975 0.9968 0.9961 0.9959 0.996 0.9962 0.9964 0.9964 0.9964 0.9963 0.9959 0.9838 0.8533 0.6981 0.5415 0.4131 0.359 0.359 0.5718 0.98 0.9951 0.9827 0.9957 0.9972 0.9979 0.9981 0.9981 -0.4073 -0.4359 -0.503 -0.6363 -0.8597 -0.8648 -0.6359 -0.4642 -0.3657 -0.335 -0.335 -0.3416 -0.3484 -0.3407 -0.3132 -0.2642 -0.1943 -0.1108 -0.0342 0.0 0.0 -0.1349 -0.354 -0.4542 -0.5029 -0.6402 -0.6329 -0.5137 -0.4447 -0.4073
96 | W Te Mo S W Te 0.97457145 0.92937145 0.86007145 0.88247145 0.81587145 0.62407145 0.46027145 0.33747145 0.26237145 0.23717145 0.23717145 0.23177145 0.20557145 0.14677145 0.05667145 -0.05772855 -0.09602855 -0.01302855 0.06067145 0.09377145 0.09377145 -0.03272855 0.08257145 0.40197145 0.50267145 0.63077145 0.80387145 0.81857145 0.91457145 0.97457145 -0.48872855 -0.49272855 -0.60982855 -0.74472855 -0.83822855 -0.57862855 -0.34872855 -0.18642855 -0.10102855 -0.07612855 -0.07612855 -0.11042855 -0.17122855 -0.20502855 -0.20072855 -0.16242855 -0.09732855 -0.01482855 -0.41722855 -0.46002855 -0.46002855 -0.03462855 -0.23732855 -0.30672855 -0.32892855 -0.51082855 -0.68462855 -0.58532855 -0.49712855 -0.48872855
97 | W Te Mo Se W Te 1.6866 1.5844 1.3938 1.3037 1.1425 1.0645 0.9144 0.7798 0.7 0.6739 0.6739 0.6815 0.6896 0.6698 0.6115 0.5228 0.4163 0.3079 0.2199 0.1833 0.1833 0.3326 0.6409 0.9032 0.8234 0.9531 1.1809 1.3153 1.5533 1.6866 -0.3776 -0.4113 -0.5306 -0.7093 -0.8836 -0.8488 -0.6247 -0.458 -0.3634 -0.3341 -0.3341 -0.3416 -0.3501 -0.3441 -0.3181 -0.2695 -0.1984 -0.1129 -0.0347 0.0 0.0 -0.1337 -0.3456 -0.4401 -0.4965 -0.6551 -0.71 -0.5771 -0.4232 -0.3776
98 | W Te Mo Te W Te 1.9922 1.9923 1.9922 1.7635 1.3821 1.2291 1.2494 1.3422 1.2351 1.2004 1.2004 1.2089 1.2253 1.2263 1.1953 1.1354 1.0573 0.9748 0.9073 0.8795 0.8795 0.9878 1.1566 1.0447 0.9648 1.1729 1.5733 1.9922 1.9923 1.9922 -0.2119 -0.2313 -0.3099 -0.4818 -0.7298 -0.965 -0.8533 -0.6638 -0.5365 -0.4918 -0.4918 -0.4626 -0.4135 -0.3688 -0.3236 -0.2684 -0.1976 -0.114 -0.0357 0.0 0.0 -0.1376 -0.3589 -0.4875 -0.5756 -0.651 -0.4954 -0.3469 -0.2384 -0.2119
99 | W Te W S W Te 1.15067253 1.11437253 1.06947253 1.12207253 1.03937253 0.90257253 0.80677253 0.24497253 0.24517253 0.24527253 0.24527253 0.24527253 0.24517253 0.24487253 0.24427253 0.22357253 0.05717253 0.24607253 0.01487253 0.04567253 0.04567253 -0.07332747 0.24367253 0.24477253 0.24487253 0.24527253 0.24607253 0.24707253 0.24837253 0.24887253 0.24887253 0.24847253 0.24747253 0.24637253 0.24567253 0.24517253 0.24497253 -0.21572747 -0.13142747 -0.10712747 -0.10712747 -0.14412747 -0.21072747 -0.24902747 -0.24702747 -0.20972747 -0.14372747 -0.06092747 0.01247253 -0.31182747 -0.31182747 -0.08222747 -0.28432747 -0.35112747 -0.36942747 -0.55342747 -0.74382747 -0.63652747 -0.53442747 -0.50992747
100 | W Te W Te W Te 1.9593 1.9593 1.9593 1.833 1.4811 1.3683 1.4376 1.6055 1.6602 1.6534 1.6534 1.6601 1.6457 1.6067 1.5358 1.4328 1.3052 1.1686 1.0521 1.0028 1.0028 1.1773 1.3759 1.1779 1.0732 1.277 1.6577 1.9593 1.9593 1.9593 -0.2134 -0.233 -0.3119 -0.4869 -0.7432 -0.9893 -0.8847 -0.7082 -0.5982 -0.5616 -0.5616 -0.5164 -0.4477 -0.3903 -0.3365 -0.2753 -0.2008 -0.1155 -0.0363 0.0 0.0 -0.1429 -0.3736 -0.507 -0.591 -0.6711 -0.5511 -0.3487 -0.2401 -0.2134
101 |
--------------------------------------------------------------------------------
/Bandstructure/Strucuture1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture1.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture10.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture11.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture12.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture13.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture14.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture15.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture16.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture16.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture17.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture17.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture18.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture18.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture19.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture19.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture2.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture20.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture20.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture21.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture21.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture22.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture22.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture23.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture23.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture24.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture24.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture25.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture25.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture26.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture26.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture27.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture27.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture28.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture28.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture29.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture29.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture3.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture30.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture30.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture31.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture31.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture32.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture32.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture33.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture33.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture34.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture34.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture35.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture35.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture36.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture36.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture37.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture37.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture38.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture38.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture39.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture39.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture4.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture40.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture40.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture5.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture6.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture7.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture8.png
--------------------------------------------------------------------------------
/Bandstructure/Strucuture9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Bandstructure/Strucuture9.png
--------------------------------------------------------------------------------
/Bayesian_opt.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import numpy as np
3 | from matplotlib import pyplot as plt
4 | from sklearn.gaussian_process import GaussianProcessRegressor
5 | from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C ,WhiteKernel as Wht,Matern as matk
6 | from sklearn.gaussian_process.kernels import RationalQuadratic as expker
7 | from sklearn.metrics import mean_squared_error as MSError
8 | from scipy.stats import norm
9 |
10 | inputmap=dict()
11 | ninputmap=dict()
12 | totfea_atom=2 #total number of atoms per layer
13 | n_3layer_atoms=6 # number of atoms in 3 layer
14 | natom_layer=n_3layer_atoms*totfea_atom #total number of features
15 | Niteration = 30 # number of iteration in a given Bayesian Optimization
16 | #input parameters
17 | train_test_split=0.10 # initial sampled data in a given Bayesian Optimization run
18 | Nruns = 1 # total number of Bayesian Optimization runs
19 |
20 |
21 | #create input feature vector of the given n-layer heterostructure
22 | def createinputmap(inputmap,ninputmap,totfea_atom):
23 | #define the eletronegetivity and ionization potential of each atoms
24 | inputmap['Mo'] = [2.16,684.3,190.0]
25 | inputmap['W'] = [2.36,770.0,193.0]
26 | inputmap['S'] = [2.58,999.6,88.8]
27 | inputmap['Se'] = [2.55,941.0,103.0]
28 | inputmap['Te'] = [2.10,869.3,123.0]
29 |
30 | #normalize the input features by (tt-xmax)/(xmax-xmin)
31 | Xmax = np.empty(totfea_atom,dtype=float)
32 | Xmin = np.empty(totfea_atom, dtype=float)
33 | Xmean= np.empty(totfea_atom,dtype=float)
34 | Xstd = np.empty(totfea_atom,dtype=float)
35 | Xmax.fill(0.0)
36 | Xmin.fill(10000.0)
37 | Xmean.fill(0.0)
38 | Xstd.fill(0.0)
39 | nfeatures=0
40 | for keys in inputmap:
41 | nfeatures+=1
42 | for ii in range(0,totfea_atom):
43 | if Xmax[ii] < inputmap[keys][ii]: Xmax[ii]=inputmap[keys][ii]
44 | if Xmin[ii] > inputmap[keys][ii]: Xmin[ii]=inputmap[keys][ii]
45 | Xmean[ii]+=inputmap[keys][ii]
46 | for ii in range(0,totfea_atom):
47 | Xmean[ii]=Xmean[ii]/float(nfeatures)
48 | for keys in inputmap:
49 | for ii in range(0, totfea_atom):
50 | Xstd[ii]+=(inputmap[keys][ii]- Xmean[ii])*(inputmap[keys][ii]- Xmean[ii])
51 | for ii in range(0, totfea_atom):
52 | Xstd[ii]=np.sqrt(Xstd[ii]/float(nfeatures))
53 | print("Xmax and Xmin: ",Xmax,Xmin)
54 | print("Xmean and Xstd: ",Xmean,Xstd)
55 | for keys in inputmap:
56 | ninputmap[keys]=list()
57 | for ii in range(0, totfea_atom):
58 | ninputmap[keys].append((inputmap[keys][ii]-Xmin[ii])/(Xmax[ii]-Xmin[ii])) # normalized by by (tt-xmax)/(xmax-xmin)
59 | # ninputmap[keys].append((inputmap[keys][ii]-Xmean[ii])/Xstd[ii])
60 | #print the final keys:
61 | for keys in inputmap:
62 | print("key :", keys,inputmap[keys])
63 | for keys in ninputmap:
64 | print("nkey :", keys, ninputmap[keys])
65 |
66 | #read input data
67 | def readinput(filename,natom_layer):
68 | inputfile=open(filename,'r')
69 | dataset=list()
70 | itag=0
71 | count=-1
72 | ndata=0
73 | for lines in inputfile:
74 | if itag==0:
75 | ndata=int(lines)
76 | Xdata = np.ndarray(shape=(ndata, natom_layer), dtype=float)
77 | Xinfo = np.chararray(ndata, itemsize=20)
78 | Ydata = np.empty(ndata,dtype=float)
79 | itag=1
80 | else :
81 | lines = lines.replace("\n", "").split()
82 | structname=str()
83 | count+=1
84 | for ii in range(0,lines.__len__()-1):
85 | jj=lines[ii]
86 | if (ii > 0) : structname = structname + '-' + jj
87 | else: structname=jj
88 | # print(3*ii,3*ii+1,3*ii+2,jj,inputmap[jj][0],inputmap[jj][1],inputmap[jj][2])
89 | Xdata[count][2 * ii] = ninputmap[jj][0]
90 | Xdata[count][2 * ii + 1] = ninputmap[jj][1]
91 | Xinfo[count]=structname
92 | Ydata[count] = float(lines[lines.__len__() - 1])
93 | print("structname: ",structname,lines,lines.__len__())
94 | #print the entire dataset
95 | # for ii in range(0,ndata):
96 | # print("data: ",ii,Xdata[ii][:],Ydata[ii])
97 | return Xdata,Ydata,Xinfo,ndata
98 |
99 | #building a gaussian process regression model
100 | def gpregression(Xtrain,Ytrain,Nfeature):
101 | cmean=[1.0]*Nfeature
102 | cbound=[[1e-3, 1000]]*Nfeature
103 | kernel = C(1.0, (1e-3, 1e3)) * matk(cmean, cbound, 1.5)
104 |
105 | gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=40, normalize_y=False)
106 | gp.fit(Xtrain, Ytrain)
107 | return gp
108 |
109 | #predict result using GP regression model
110 | def gprediction(gpnetwork,xtest):
111 | y_pred, sigma = gpnetwork.predict(xtest, return_std=True)
112 | return y_pred, sigma
113 |
114 | #compute expected improvement
115 | def expectedimprovement(xdata,gpnetwork,ybest,itag,epsilon):
116 | ye_pred, esigma = gprediction(gpnetwork, xdata)
117 | expI = np.empty(ye_pred.size, dtype=float)
118 | for ii in range(0,ye_pred.size):
119 | if esigma[ii] > 0:
120 | zzval=itag*(ye_pred[ii]-ybest)/float(esigma[ii])
121 | expI[ii]=itag*(ye_pred[ii]-ybest-epsilon)*norm.cdf(zzval)+esigma[ii]*norm.pdf(zzval)
122 | else:
123 | expI[ii]=0.0
124 | return expI
125 |
126 | #Bayesian optimization run
127 | def numberofopt(Xdata,Ydata,Xinfo,ndata,natom_layer,totfea_atom):
128 | itag = 1
129 | epsilon = 0.1
130 | ntrain = int(train_test_split * ndata)
131 | nremain = ndata - ntrain
132 | dataset = np.random.permutation(ndata)
133 | a1data = np.empty(ntrain, dtype=int)
134 | a2data = np.empty(nremain, dtype=int)
135 | a1data[:] = dataset[0:ntrain]
136 | a2data[:] = dataset[ntrain:ndata]
137 | # info for the initial training set
138 | Xtrain = np.ndarray(shape=(ntrain, natom_layer), dtype=float)
139 | Xtraininfo = np.chararray(ntrain, itemsize=20)
140 | Ytrain = np.empty(ntrain, dtype=float)
141 | Xtrain[0:ntrain, :] = Xdata[a1data, :]
142 | Xtraininfo[0:ntrain] = Xinfo[a1data]
143 | Ytrain[0:ntrain] = Ydata[a1data]
144 | yopttval = np.max(Ytrain)
145 | xoptval = Xtraininfo[np.argmax(Ytrain)]
146 | yoptstep=0
147 | yopinit = yopttval
148 | xoptint = xoptval
149 | # info for the remaining data set
150 | Xremain = np.ndarray(shape=(nremain, natom_layer), dtype=float)
151 | Xremaininfo = np.chararray(nremain, itemsize=20)
152 | Yremain = np.empty(nremain, dtype=float)
153 | Xremain[0:nremain, :] = Xdata[a2data, :]
154 | Xremaininfo[0:nremain] = Xinfo[a2data]
155 | Yremain[0:nremain] = Ydata[a2data]
156 | print("Xremain: ", Xremain.shape)
157 | print("Yremain:", Yremain.shape)
158 | print("Xremaininfo: ", Xremaininfo.shape)
159 | print("Initial max value 0th run : ", xoptval, yopttval)
160 | print("Total number of inital training points: ", ntrain)
161 | # print("Xtrain: ",Xtrain)
162 | for ii in range(0, Niteration):
163 | if ii > int(0.5*Niteration):
164 | epsilon=0.01
165 | print("updated epsilon: ",epsilon)
166 | gpnetwork = gpregression(Xtrain, Ytrain, natom_layer)
167 | yt_pred, tsigma = gprediction(gpnetwork, Xtrain)
168 | ybest = np.max(yt_pred)
169 | ybestloc = np.argmax(yt_pred)
170 | print("current Best in iteration ii", ii + 1, " is ", ybest, "for the structure: ", Xtraininfo[ybestloc])
171 | if yopttval < ybest:
172 | yopttval = ybest
173 | xoptval = Xtraininfo[ybestloc]
174 | print("Best Strucutre so far", yopttval, "for the structure: ", xoptval)
175 | expI = expectedimprovement(Xremain, gpnetwork, ybest, itag, epsilon)
176 | expImax = np.max(expI)
177 | expimaxloc = np.argmax(expI)
178 | print("Next Structure to evaluate has expI ", expImax, "for the structure: ", Xremaininfo[expimaxloc],
179 | "has Y: ", Yremain[expimaxloc])
180 | xnew = np.append(Xtrain, Xremain[expimaxloc]).reshape(-1, natom_layer)
181 | xnewinfo = np.append(Xtraininfo, Xremaininfo[expimaxloc])
182 | ynew = np.append(Ytrain, Yremain[expimaxloc])
183 | xrnew = np.delete(Xremain, expimaxloc, 0)
184 | xrnewinfo = np.delete(Xremaininfo, expimaxloc)
185 | yrnew = np.delete(Yremain, expimaxloc)
186 | if ii==0:
187 | Xexplored=Xremaininfo[expimaxloc]
188 | Yexplored=Yremain[expimaxloc]
189 | else:
190 | Xexploredtemp=np.append(Xexplored, Xremaininfo[expimaxloc])
191 | Yexploredtemp=np.append(Yexplored, Yremain[expimaxloc])
192 | del Xexplored,Yexplored
193 | Xexplored=Xexploredtemp
194 | Yexplored=Yexploredtemp
195 | # print("Xremain info: ",xrnew.shape,yrnew.shape,xrnewinfo.shape)
196 | del Xtrain, Ytrain, Xremaininfo, gpnetwork
197 | Xtrain = xnew
198 | Xtraininfo = xnewinfo
199 | Ytrain = ynew
200 | Xremain = xrnew
201 | Xremaininfo = xrnewinfo
202 | Yremain = yrnew
203 | del xnew, xnewinfo, ynew, xrnew, xrnewinfo, yrnew
204 |
205 | if not yopinit==yopttval:
206 | yoptstep=np.argmax(Yexplored)+1
207 | else:
208 | yoptstep=0
209 | dataorder = np.argsort(Yexplored)
210 | Yexploredtemp=Yexplored[dataorder]
211 | Xexploredtemp = Xexplored[dataorder]
212 | print(Yexplored)
213 | Xbest=Xexploredtemp[Niteration-3:Niteration]
214 | Ybest=Yexploredtemp[Niteration - 3:Niteration]
215 | print("\n")
216 | print("Initial Best Strucuture: ", xoptint, "has value: ", yopinit)
217 | print("Final Optimal Strucuture: ", xoptval, "has value: ", yopttval,"in step: ",yoptstep)
218 | print("Final Best Structure 1st: ",Xbest[2],"has value: ", Ybest[2])
219 | print("Final Best Structure 2st: ", Xbest[1],"has value: ", Ybest[1])
220 | print("Final Best Structure 2st: ", Xbest[0],"has value: ", Ybest[0])
221 | return xoptint,yopinit,xoptval,yopttval
222 |
223 |
224 | #------- Program Starts from here -------------
225 | createinputmap(inputmap,ninputmap,totfea_atom)
226 | in_file=sys.argv[1]
227 | Xdata,Ydata,Xinfo,ndata=readinput(in_file,natom_layer)
228 | print("Original Training X and Y :",np.shape(Xdata),np.shape(Xdata))
229 |
230 | Xinitguess = np.chararray(Nruns, itemsize=20)
231 | Yinitguess = np.empty(Nruns, dtype=float)
232 | Xoptimal = np.chararray(Nruns, itemsize=20)
233 | Yoptimal = np.empty(Nruns, dtype=float)
234 |
235 | for ii in range(0,Nruns):
236 | Xinitguess[ii], Yinitguess[ii], Xoptimal[ii], Yoptimal[ii] =numberofopt(Xdata, Ydata, Xinfo, ndata, natom_layer, totfea_atom)
237 |
238 | print("\n-----Final Result------\n")
239 | for ii in range(0,Nruns):
240 | print("Initial Best Strucuture: ", Xinitguess[ii], " has value: ", Yinitguess[ii]," Final Optimal Strucuture: ", Xoptimal[ii], " has value: ", Yoptimal[ii])
241 |
--------------------------------------------------------------------------------
/Highlight_Figure.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rajak7/Bayesian_Optimization_Material_design/146233e4c5efa4cfcbf915f32cb8926147f98b2d/Highlight_Figure.png
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/N_doped_EFF_max.txt:
--------------------------------------------------------------------------------
1 | W S W S W S 4.09561322387
2 | W Se W Se W Se 3.49571991673
3 | W Te W Te W Te 18.3464572843
4 | W Se Mo Te W Se 17.4152205082
5 | W Se Mo Se W Se 9.95439008829
6 | W S W S W Se 26710.04729
7 | W S W Se W Te 3.83864338846
8 | W Se Mo Se W Te 11.3368388874
9 | W S W Se W S 17.5737884116
10 | W Te Mo Se W Te 8.1469178951
11 | W S W S W Te 4.89555065683
12 | W S W Te W Te 3.61381125152
13 | W Se W S W Se 14.5767934642
14 | W Se Mo S W Se 11.1413429064
15 | W Se Mo Te W Te 15.3084855619
16 | W S W Se W Se 17.8819083261
17 | Mo Te Mo Se W Te 11.1488276974
18 | W S W Te W Se 2.38673190187
19 | Mo Te W S W S 4.82654367093
20 | Mo Te W Te Mo Te 10.7927946411
21 | W Se Mo S W Te 1.24393997841
22 | Mo Te W S Mo Te 1.46809299801
23 | W S Mo Se W Se 16.8404337904
24 | Mo Te Mo Te W S 2.01981487991
25 | W S Mo Se W S 17.3994847622
26 | Mo Te Mo Te W Se 15.8706087721
27 | Mo Te Mo Se W Se 11.7740758821
28 | Mo Te W Se Mo Te 12.8387134309
29 | Mo Te W Te W Te 12.6208456623
30 | Mo Te W Se W Te 16.3482079291
31 | Mo Te Mo Se Mo Te 10.3759971846
32 | W S Mo S W S 9.76404421185
33 | W S W Te W S 3.71647048618
34 | Mo Te W S W Se 2.66196193956
35 | Mo Te W Se W Se 20.3089988911
36 | Mo Se W Te W Se 11.5441782833
37 | Mo Te W S W Te 2.50932937955
38 | W S Mo S W Se 12.8173848343
39 | Mo Se Mo Te Mo Se 12.0613378438
40 | Mo Se W Te W Te 9.90996614914
41 | Mo Te Mo S W Se 1.02775249888
42 | Mo Te W Te W Se 15.6303729872
43 | Mo Se Mo Te Mo Te 12.3736286281
44 | Mo Se W S W Se 17.9228102182
45 | Mo Te W Se W S 3.02222603106
46 | Mo Se W S Mo Se 14.30618128
47 | Mo Se Mo Te W Te 12.2371562268
48 | Mo Se Mo Te W Se 11.5436541074
49 | W S Mo Te W Se 2.58558501877
50 | Mo Te Mo S Mo Te 0.574209398469
51 | Mo Te Mo Se W S 3.72654875064
52 | Mo Se W Te Mo Se 12.0728615362
53 | Mo Se Mo Te W S 2.57823750168
54 | Mo Se W Se Mo Te 11.4380564512
55 | Mo Se W Te Mo Te 10.5289788465
56 | Mo Se W Se W Se 11.5354699766
57 | W S Mo S W Te 1.67070075494
58 | Mo Se W S Mo Te 2.86550791496
59 | Mo Se W Se Mo Se 11.3372928344
60 | Mo Se W Se W S 17.4712770774
61 | Mo Se Mo S Mo Se 10.9727569793
62 | Mo Se W S W S 21.2177304137
63 | Mo Se W Se W Te 946.467219472
64 | Mo S W Se W Te 1.88340663598
65 | Mo S W Te Mo S 0.895757291453
66 | Mo Se Mo S W Se 13.340713038
67 | Mo S W Te W S 2.04915311075
68 | Mo Se Mo S Mo Te 1.06509034723
69 | Mo Se W Te W S 2.45477113295
70 | Mo S W Se Mo Se 13.2491361948
71 | Mo S W Se W Se 13.1809884748
72 | Mo S Mo S Mo S 5.70169932932
73 | Mo Se Mo Se Mo Te 14.0879612246
74 | Mo Se Mo Se W S 16.4224040902
75 | Mo Se Mo S W Te 1.12799153732
76 | Mo Se Mo Se W Te 13.6356435303
77 | Mo S W Te Mo Te 2.84122300532
78 | Mo Se W S W Te 2.57902195291
79 | Mo S W Se Mo S 13.5517394094
80 | Mo S W S W Te 3.85227042959
81 | Mo Se Mo Se W Se 16.5625937753
82 | Mo S Mo Se Mo Se 13.0066215751
83 | Mo S Mo Te W Te 2.60047654696
84 | Mo S W S Mo S 12.2280570077
85 | Mo S W Se W S 12.96289253
86 | Mo S W S W Se 12.9231549584
87 | W S Mo Te W Te 2.3892817052
88 | Mo S Mo S W S 16.0009856669
89 | Mo S W Te W Te 4.72061679744
90 | Mo S Mo Se Mo S 13.531777181
91 | Mo Te Mo S W S 1.64643779702
92 | Mo S Mo Te Mo Se 1.1950865518
93 | Mo S Mo Te W S 2.47251132738
94 | Mo S W Se Mo Te 1.70127513891
95 | Mo S Mo S W Se 16.4507133063
96 | Mo S Mo Te Mo Te 1.1973077205
97 | Mo S W S Mo Se 12.8421725402
98 | Mo S Mo Se W Se 13.7557807249
99 | Mo S Mo Se W S 13.0208606641
100 | Mo S W Te Mo Se 1.13312167355
101 | Mo S Mo Te Mo S 0.887002502813
102 | Mo S Mo S Mo Se 16.2253967378
103 | Mo S Mo Se Mo Te 2.09989804283
104 | Mo S Mo S W Te 2.24214604223
105 | Mo S Mo S Mo Te 2.22794788605
106 | Mo Se Mo S W S 12.731492264
107 | Mo S Mo Se W Te 2.16751396262
108 | Mo S W S W S 12.3191489485
109 | W Se W S W Te 2.5580871884
110 | W Se W Se W Te 19.7825593726
111 | W Se W Te W Se 20.0255248599
112 | W Se W Te W Te 16.1016127323
113 | W Te Mo Te W Te 14.305081592
114 | W Te Mo S W Te 0.642227377998
115 | W Te W Se W Te 13.2954737073
116 | W Te W S W Te 1.44218942484
117 |
--------------------------------------------------------------------------------
/P_doped_EFF_max.txt:
--------------------------------------------------------------------------------
1 | 115
2 | W S W S W S 4.95564804923
3 | W Se W Se W Se 5.12864556538
4 | W Te W Te W Te 12.3313584777
5 | W Se Mo Te W Se 9.14200623134
6 | W Se Mo Se W Se 13.6847155111
7 | W S W Se W Te 5.76556112746
8 | W Se Mo Se W Te 11.9344980347
9 | W S W Se W S 10.4527790356
10 | W Te Mo Se W Te 10.4738226581
11 | W S W S W Te 5.19070846257
12 | W S W Te W Te 2.67992512669
13 | W Se W S W Se 13.4288606349
14 | W Se Mo S W Se 13.2462517722
15 | W Se Mo Te W Te 10.9162720605
16 | W S W Se W Se 13.0056967745
17 | Mo Te Mo Se W Te 10.1336431523
18 | W S W Te W Se 4.01842632646
19 | Mo Te W S W S 4.44748774095
20 | Mo Te W Te Mo Te 10.2410669509
21 | W Se Mo S W Te 2.42647722982
22 | Mo Te W S Mo Te 2.7419301144
23 | W S Mo Se W Se 11.5849921365
24 | Mo Te Mo Te W S 2.79085061483
25 | W S Mo Se W S 8.05617571993
26 | Mo Te Mo Te W Se 8.16791543225
27 | Mo Te Mo Se W Se 11.3622805847
28 | Mo Te W Se Mo Te 8.92611691825
29 | Mo Te W Te W Te 12.8972923655
30 | Mo Te W Se W Te 11.0485456726
31 | Mo Te Mo Se Mo Te 8.86094822085
32 | W S Mo S W S 5.96694258632
33 | W S W Te W S 2.18969285389
34 | Mo Te W Te W S 5.01027927749
35 | Mo Te W S W Se 3.07977293833
36 | Mo Te W Se W Se 11.6657777129
37 | Mo Se W Te W Se 11.5360825163
38 | Mo Te W S W Te 3.85434066673
39 | W S Mo S W Se 11.36368101
40 | Mo Se Mo Te Mo Se 8.87124116077
41 | Mo Se W Te W Te 9.43411216381
42 | Mo Te Mo S W Se 1.39326932281
43 | Mo Te W Te W Se 10.9851834212
44 | Mo Se Mo Te Mo Te 7.94289899181
45 | Mo Se W S W Se 12.5722553622
46 | Mo Te Mo S W Te 3.17650687134
47 | Mo Te W Se W S 5.04502013597
48 | Mo Se W S Mo Se 11.1141482738
49 | Mo Se Mo Te W Te 10.2502717667
50 | Mo Se Mo Te W Se 11.6463008798
51 | W S Mo Te W Se 3.39605805441
52 | Mo Te Mo S Mo Te 1.65734875596
53 | Mo Te Mo Se W S 4.7750899854
54 | Mo Se W Te Mo Se 9.60739727576
55 | Mo Se Mo Te W S 3.03384250208
56 | Mo Se W Se Mo Te 11.6184813884
57 | Mo Se W Te Mo Te 9.14822715597
58 | Mo Se W Se W Se 13.6952331226
59 | W S Mo S W Te 3.08994868069
60 | Mo Se W S Mo Te 3.41008138717
61 | Mo Se W Se Mo Se 10.8803589647
62 | Mo Se W Se W S 11.7535920004
63 | Mo Se Mo S Mo Se 10.6270936992
64 | Mo Se W S W S 8.67823365484
65 | Mo S W Se W Te 4.34918163648
66 | Mo Se Mo S W Se 11.7045972926
67 | Mo S W Te W S 2.14065827778
68 | Mo Se Mo S Mo Te 1.50827796399
69 | Mo Se W Te W S 3.87154040365
70 | Mo S W Se Mo Se 12.4229866527
71 | Mo S W Se W Se 13.0485869761
72 | Mo S Mo S Mo S 4.634630125
73 | Mo Se Mo Se Mo Te 11.5720718389
74 | Mo Se Mo Se W S 10.229769044
75 | Mo Se Mo S W Te 2.21085252835
76 | Mo Se Mo Se W Te 11.4140048685
77 | Mo S W Te Mo Te 4.369467438
78 | Mo Se W S W Te 4.1335319728
79 | Mo S W Se Mo S 10.4017902227
80 | Mo S W S W Te 5.06536061334
81 | Mo Se Mo Se W Se 12.0355114509
82 | Mo S Mo Se Mo Se 10.2633990221
83 | Mo S Mo Te W Te 3.22016362489
84 | Mo S W S Mo S 5.76220096775
85 | Mo S W Se W S 12.2109622027
86 | Mo S W S W Se 11.452835788
87 | W S Mo Te W Te 3.03321195825
88 | Mo S Mo S W S 5.63268967816
89 | Mo S W Te W Te 5.55545790452
90 | Mo S Mo Se Mo S 8.06469455265
91 | Mo Te Mo S W S 2.03829388143
92 | Mo S Mo Te Mo Se 1.43421839049
93 | Mo S Mo Te W S 2.3301063013
94 | Mo S W Se Mo Te 2.70862645565
95 | Mo S Mo S W Se 11.4426061588
96 | Mo S Mo Te Mo Te 1.94549825402
97 | Mo S W S Mo Se 8.40981688236
98 | Mo S Mo Se W Se 11.8136170115
99 | Mo S Mo Se W S 8.70079649785
100 | Mo S W Te Mo Se 2.30606742134
101 | Mo S Mo Te Mo S 0.622048532473
102 | Mo S Mo S Mo Se 8.68722345333
103 | Mo S Mo Se Mo Te 3.44812826807
104 | Mo S Mo S W Te 2.92875343096
105 | Mo S Mo S Mo Te 1.99487076172
106 | Mo Se Mo S W S 8.71734774607
107 | Mo S Mo Se W Te 5.40152117902
108 | Mo S W S W S 5.9995020822
109 | W Se W S W Te 4.11849695486
110 | W Se W Se W Te 12.5179577841
111 | W Se W Te W Se 11.4812604886
112 | W Se W Te W Te 11.424019865
113 | W Te Mo Te W Te 14.5392077246
114 | W Te Mo S W Te 1.58443956628
115 | W Te W Se W Te 11.9869880946
116 | W Te W S W Te 1.98858033426
117 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Active Learning for Accelerated Design of Layered Materials
2 | Bassman, L., Rajak, P., et al., *npj Computational Materials* **4**, 74 (2018).
3 |
4 |
5 |
6 |
7 | Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for thermoelectric devices of the future. Discovery of the optimal layered material for specific applications necessitates the estimation of key material properties, however, screening of properties via brute force ab initio calculations of the entire material structure space exceeds the limits of current computing resources. Moreover, the functional dependence of material properties on the structures is often complicated, making simplistic statistical procedures for prediction difficult to employ without large amounts of data collection. This repository includes Gaussian process regression code (predict_maxval.py, predict_structure.py) for prediction of band gap, conduction band minimum dispersion curve, valance band maximum dispersion curve, and Thermoelectic EFF vs. dopant concentration curve. It also includes Bayesian optimization code (Bayesian_opt.py) to predict the best thermoelectric material using the fewest structure calculations. Data sets for all codes are also included. Desciptions of these codes and datasets, as well as how to run the code, are given below. Python code (snl_prep.py) is also included for automatically generating a structure file for a given layered material and uploading it to the Materials Project Database, along with bash scripts (create-[X]layers.sh) for automatically generating and uploading all **unique** 2-, 3-, and 4-layered materials using 'snl_prep.py'.
8 |
9 |
10 |
11 | #### 1 ```predict_maxval.py:```
12 | *A Gaussian Process Regression model to predict band gap.*
13 |
14 | predict_maxval.py: creates a gaussian process regression model using x% of data from 3-layer-band_gap.txt. After buiding the model predcits the band gap of the remaining (1-x%) data as test set.
15 |
16 | *Dataset*
17 | ```3-layer-band_gap.txt``` CBM and VBM 3-layer heretero-structure
18 | ```xaxisvalue.txt``` Contains the value of the wave vector
19 |
20 | *Input Paramaters:*
21 | inputfile_name="3-layer-band_gap.txt" * ###file name of the input data *
22 | train_test_split=0.60 * ###split between training and test set*
23 | Nrun = 1
24 |
25 | To run the program: ```predict_maxval.py ```
26 |
27 | #### 2 ```predict_structure.py:```
28 | *A Gaussian Process Regression model to predict conduction band maxima, valance band minima and Thermoelectic EFF function.*
29 |
30 | predict_structure.py build a gaussian process (GP) regression model for condunction band minima and valance band maximum. It takes 3-layer-band_structure.txt as inout data and split in into training and test set. GP model is build using training set and the images of prediced condunction band minima and valance band maximum of the test set is saved in folder Bandstructure.
31 |
32 | *Dataset*
33 | ```"3-layer-band_structure.txt``` Band gap for 3-layer heretero-structure
34 |
35 | *Input Paramaters:*
36 | inputfile_name="3-layer-band_structure.txt" * ###file name of the input data *
37 | train_test_split=0.60 * ###split between training and test set*
38 | Nrun = 1
39 |
40 | To run the program: ```predict_structure.py ```
41 |
42 | #### 3 ```Bayesian_opt.py:```
43 | *An active learning model, based on Bayesian Optimization, to discover material with optimal property witn minimum structure evalulation*
44 |
45 | *Dataset*
46 | ```N_doped_EFF_max.txt ``` EFF (Electronic fitness function) maximum value for n-doped 3-layer heretero-structure
47 | ```P_doped_EFF_max.txt ``` EFF (Electronic fitness function) maximum value for p-doped 3-layer heretero-structure
48 | ```3-layer-band_gap.txt ``` Maximum Band gap for 3-layer heretero-structure
49 |
50 | *Input Paramaters:*
51 | Inside the code Bayesian_opt.py, we have
52 | Nruns = 1 * ### total number of Bayesian Optimization runs*
53 | train_test_split=0.10 * ### initial sampled data in a given Bayesian Optimization run*
54 |
55 |
56 | *To find n-doped 3-ayer hetero-structure with optimal EFF value*
57 | Run ```python3.6 Bayesian_opt.py N_doped_EFF_max ```
58 | *To find p-doped 3-ayer hetero-structure with optimal EFF value*
59 | Run ```python3.6 Bayesian_opt.py P_doped_EFF_max ```
60 | *To find maximum band gap*
61 | Run ```python3.6 Bayesian_opt.py 3-layer-band_gap.txt```
62 |
63 |
64 | #### 4 ```snl_prep.py:```
65 | *Given a layered crystal structure as a string, the python script generates a structure file and uploads it to the Materials Project Database*
66 |
67 | For example, for the 4-layered heterostructure MoTe2-MoS2-WS2-WTe2, type:
68 |
69 | python snl_prep.py -s MoTe2-MoS2-WS2-WTe2 -d .
70 |
71 | The -s parameter is the structure of the layers encoded in a string. It must be formatted by the above way, but it could be any number of layers instead of just 4. The -d parameter specifies the base directory in which the newly created structure file should be placed, either absolute or relative to the pwd.
72 |
73 | #### 5 ```create-[X]layers.sh:```
74 | *Bash code for automatically generating all **unique** 2-, 3-, and 4-layered TMDC heterostructures and uploading them to MP Database by repeated use of the above python code, snl_prep.py. snl_prep.py is assumed to be in the same directory as the bash script*
75 |
76 | To run, type one of the following:
77 |
78 | bash create-2layers.sh
79 |
80 | bash create-3layers.sh
81 |
82 | bash create-4layers.sh
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
--------------------------------------------------------------------------------
/create-2layers.sh:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 |
3 | for M1 in Mo W
4 | do
5 | for X1 in S Se Te
6 | do
7 | for M2 in Mo W
8 | do
9 | for X2 in S Se Te
10 | do
11 | echo $M1${X1}2-$M2${X2}2
12 | python snl_prep.py -s $M1${X1}2-$M2${X2}2 -d .
13 | done
14 | done
15 | done
16 | done
17 |
--------------------------------------------------------------------------------
/create-3layers.sh:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 | i=0
3 | submitted=0
4 | for M1 in Mo W
5 | do
6 | for X1 in S Se Te
7 | do
8 | for M2 in Mo W
9 | do
10 | for X2 in S Se Te
11 | do
12 | for M3 in Mo W
13 | do
14 | for X3 in S Se Te
15 | do
16 | symm_index=0
17 | echo $M1${X1}2-$M2${X2}2-$M3${X3}2
18 | third=${M3}${X3}
19 | second=${M2}${X2}
20 | first=${M1}${X1}
21 | if [[ $first == MoS ]]
22 | then
23 | symm_index=$((symm_index+0))
24 | elif [[ $first == MoSe ]]
25 | then
26 | symm_index=$((symm_index+1))
27 | elif [[ $first == MoTe ]]
28 | then
29 | symm_index=$((symm_index+2))
30 | elif [[ $first == WS ]]
31 | then
32 | symm_index=$((symm_index+3))
33 | elif [[ $first == WSe ]]
34 | then
35 | symm_index=$((symm_index+4))
36 | else
37 | symm_index=$((symm_index+5))
38 | fi
39 | if [[ $second == MoS ]]
40 | then
41 | symm_index=$((symm_index+0))
42 | elif [[ $second == MoSe ]]
43 | then
44 | symm_index=$((symm_index+6))
45 | elif [[ $second == MoTe ]]
46 | then
47 | symm_index=$((symm_index+12))
48 | elif [[ $second == WS ]]
49 | then
50 | symm_index=$((symm_index+18))
51 | elif [[ $second == WSe ]]
52 | then
53 | symm_index=$((symm_index+24))
54 | else
55 | symm_index=$((symm_index+30))
56 | fi
57 | if [[ $third == MoS ]]
58 | then
59 | symm_index=$((symm_index+0))
60 | elif [[ $third == MoSe ]]
61 | then
62 | symm_index=$((symm_index+36))
63 | elif [[ $third == MoTe ]]
64 | then
65 | symm_index=$((symm_index+72))
66 | elif [[ $third == WS ]]
67 | then
68 | symm_index=$((symm_index+108))
69 | elif [[ $third == WSe ]]
70 | then
71 | symm_index=$((symm_index+144))
72 | else
73 | symm_index=$((symm_index+180))
74 | fi
75 | echo "i = "$i" symm_index = "$symm_index
76 | if (( $i > $symm_index ))
77 | then
78 | echo "already submitted "$M1${X1}2-$M2${X2}2-$M3${X3}2
79 | else
80 | echo "submitting "$M1${X1}2-$M2${X2}2-$M3${X3}2
81 | submitted=$((submitted+1))
82 | python snl_prep.py -s $M1${X1}2-$M2${X2}2-$M3${X3}2 -d .
83 | fi
84 | i=$((i+1))
85 | done
86 | done
87 | done
88 | done
89 | done
90 | done
91 | echo $submitted
92 |
--------------------------------------------------------------------------------
/create-4layers.sh:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 | i=0
3 | submitted=0
4 | for M1 in Mo W
5 | do
6 | for X1 in S Se Te
7 | do
8 | for M2 in Mo W
9 | do
10 | for X2 in S Se Te
11 | do
12 | for M3 in Mo W
13 | do
14 | for X3 in S Se Te
15 | do
16 | for M4 in Mo W
17 | do
18 | for X4 in S Se Te
19 | do
20 | symm_index=0
21 | fourth=${M4}${X4}
22 | third=${M3}${X3}
23 | second=${M2}${X2}
24 | first=${M1}${X1}
25 | if [[ $first == MoS ]]
26 | then
27 | symm_index=$((symm_index+0))
28 | elif [[ $first == MoSe ]]
29 | then
30 | symm_index=$((symm_index+1))
31 | elif [[ $first == MoTe ]]
32 | then
33 | symm_index=$((symm_index+2))
34 | elif [[ $first == WS ]]
35 | then
36 | symm_index=$((symm_index+3))
37 | elif [[ $first == WSe ]]
38 | then
39 | symm_index=$((symm_index+4))
40 | else
41 | symm_index=$((symm_index+5))
42 | fi
43 | if [[ $second == MoS ]]
44 | then
45 | symm_index=$((symm_index+0))
46 | elif [[ $second == MoSe ]]
47 | then
48 | symm_index=$((symm_index+6))
49 | elif [[ $second == MoTe ]]
50 | then
51 | symm_index=$((symm_index+12))
52 | elif [[ $second == WS ]]
53 | then
54 | symm_index=$((symm_index+18))
55 | elif [[ $second == WSe ]]
56 | then
57 | symm_index=$((symm_index+24))
58 | else
59 | symm_index=$((symm_index+30))
60 | fi
61 | if [[ $third == MoS ]]
62 | then
63 | symm_index=$((symm_index+0))
64 | elif [[ $third == MoSe ]]
65 | then
66 | symm_index=$((symm_index+36))
67 | elif [[ $third == MoTe ]]
68 | then
69 | symm_index=$((symm_index+72))
70 | elif [[ $third == WS ]]
71 | then
72 | symm_index=$((symm_index+108))
73 | elif [[ $third == WSe ]]
74 | then
75 | symm_index=$((symm_index+144))
76 | else
77 | symm_index=$((symm_index+180))
78 | fi
79 | if [[ $fourth == MoS ]]
80 | then
81 | symm_index=$((symm_index+0))
82 | elif [[ $fourth == MoSe ]]
83 | then
84 | symm_index=$((symm_index+216))
85 | elif [[ $fourth == MoTe ]]
86 | then
87 | symm_index=$((symm_index+432))
88 | elif [[ $fourth == WS ]]
89 | then
90 | symm_index=$((symm_index+648))
91 | elif [[ $fourth == WSe ]]
92 | then
93 | symm_index=$((symm_index+864))
94 | else
95 | symm_index=$((symm_index+1080))
96 | fi
97 | if (( $i > $symm_index ))
98 | then
99 | echo "already submitted "$M1${X1}2-$M2${X2}2-$M3${X3}2-$M4${X4}2
100 | else
101 | echo "submitting "$M1${X1}2-$M2${X2}2-$M3${X3}2-$M4${X4}2
102 | submitted=$((submitted+1))
103 | #python snl_prep.py -s $M1${X1}2-$M2${X2}2-$M3${X3}2-$M4${X4}2 -d .
104 | fi
105 | i=$((i+1))
106 | done
107 | done
108 | done
109 | done
110 | done
111 | done
112 | done
113 | done
114 | echo $submitted
115 |
--------------------------------------------------------------------------------
/predict_maxval.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from matplotlib import pyplot as plt
3 | from sklearn.gaussian_process import GaussianProcessRegressor
4 | from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C ,WhiteKernel as Wht,Matern as matk
5 | from sklearn.gaussian_process.kernels import RationalQuadratic as expker
6 | from sklearn.metrics import mean_squared_error as MSError
7 |
8 |
9 | inputmap=dict()
10 | ninputmap=dict()
11 | totfea_atom=2 #total number of atoms per layer
12 | n_3layer_atoms=6 # number of atoms in 3 layer
13 | natom_layer=n_3layer_atoms*totfea_atom #total number of features
14 |
15 | #input parameters
16 | inputfile_name="3-layer-band_gap.txt" #file name of the input data
17 | train_test_split=0.60 #split between training and test set
18 | Nrun = 1
19 |
20 | #create input feature vector of the given n-layer heterostructure
21 | def createinputmap(inputmap,ninputmap,totfea_atom):
22 | #define the eletronegetivity and ionization potential of each atoms
23 | inputmap['Mo'] = [2.16,684.3]
24 | inputmap['W'] = [2.36,770.0]
25 | inputmap['S'] = [2.58,999.6]
26 | inputmap['Se'] = [2.55,941.0]
27 | inputmap['Te'] = [2.10,869.3]
28 |
29 | #normalize the input features by (tt-xmax)/(xmax-xmin)
30 | Xmax = np.empty(totfea_atom,dtype=float)
31 | Xmin = np.empty(totfea_atom, dtype=float)
32 | Xmean= np.empty(totfea_atom,dtype=float)
33 | Xstd = np.empty(totfea_atom,dtype=float)
34 | Xmax.fill(0.0)
35 | Xmin.fill(10000.0)
36 | Xmean.fill(0.0)
37 | Xstd.fill(0.0)
38 | nfeatures=0
39 | for keys in inputmap:
40 | nfeatures+=1
41 | for ii in range(0,totfea_atom):
42 | if Xmax[ii] < inputmap[keys][ii]: Xmax[ii]=inputmap[keys][ii]
43 | if Xmin[ii] > inputmap[keys][ii]: Xmin[ii]=inputmap[keys][ii]
44 | Xmean[ii]+=inputmap[keys][ii]
45 | for ii in range(0,totfea_atom):
46 | Xmean[ii]=Xmean[ii]/float(nfeatures)
47 | for keys in inputmap:
48 | for ii in range(0, totfea_atom):
49 | Xstd[ii]+=(inputmap[keys][ii]- Xmean[ii])*(inputmap[keys][ii]- Xmean[ii])
50 | for ii in range(0, totfea_atom):
51 | Xstd[ii]=np.sqrt(Xstd[ii]/float(nfeatures))
52 | print("Xmax and Xmin: ",Xmax,Xmin)
53 | print("Xmean and Xstd: ",Xmean,Xstd)
54 | for keys in inputmap:
55 | ninputmap[keys]=list()
56 | for ii in range(0, totfea_atom):
57 | ninputmap[keys].append((inputmap[keys][ii]-Xmean[ii])/Xstd[ii])
58 | #print the final keys:
59 | # for keys in inputmap:
60 | # print("key :", keys,inputmap[keys])
61 | # for keys in ninputmap:
62 | # print("nkey :", keys, ninputmap[keys])
63 |
64 |
65 | #read input data
66 | def readinput(filename,natom_layer):
67 | inputfile=open(filename,'r')
68 | dataset=list()
69 | itag=0
70 | count=-1
71 | ndata=0
72 | for lines in inputfile:
73 | if itag==0:
74 | ndata=int(lines)
75 | Xdata = np.ndarray(shape=(ndata, natom_layer), dtype=float)
76 | Ydata = np.empty(ndata,dtype=float)
77 | itag=1
78 | else :
79 | lines = lines.replace("\n", "").split()
80 | count+=1
81 | for ii in range(0,lines.__len__()-1):
82 | jj=lines[ii]
83 | Xdata[count][2 * ii] = ninputmap[jj][0]
84 | Xdata[count][2 * ii + 1] = ninputmap[jj][1]
85 | Ydata[count] = float(lines[lines.__len__() - 1])
86 |
87 | #print the entire dataset
88 | # for ii in range(0,ndata):
89 | # print("data: ",ii,Xdata[ii][:],Ydata[ii])
90 | return Xdata,Ydata,ndata
91 |
92 | #building a gaussian process regression model
93 | def gpregression(Xtrain,Ytrain,Xtest,Ytest,ntrain,ntest):
94 | print("regression")
95 | cmean=[1.0]*12
96 | cbound=[[1e-3, 1000]]*12
97 | kernel = C(1.0, (1e-3, 1e3)) * matk(cmean, cbound, 1.5)+ Wht(1.0, (1e-3, 1e3))
98 | # kernel = C(1.0, (1e-3, 1e3)) * matk(1, (1e-05, 1000.0), 2.5) + Wht(1.0, (1e-3, 1e3))+ C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))
99 |
100 | gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=100, normalize_y=False)
101 | gp.fit(Xtrain, Ytrain)
102 | print("initial parameters:", kernel)
103 | print("optimal parameters:", gp.kernel_, "likelihood:", gp.log_marginal_likelihood(gp.kernel_.theta))
104 | y_pred, sigma = gp.predict(Xtest, return_std=True)
105 | dataorder=np.argsort(Ytest)
106 | tYest=Ytest[dataorder]
107 | ty_pred=y_pred[dataorder]
108 | tsigma=sigma[dataorder]
109 | del Ytest,y_pred,sigma
110 | Ytest=tYest
111 | y_pred=ty_pred
112 | sigma=tsigma
113 | toterr=0.0
114 | for val in range(0,ntest):
115 | # print("Prediction: ",Ytest[val]," ",y_pred[val]," ",sigma[val])
116 | toterr+=np.abs(Ytest[val]-y_pred[val])
117 | print("toterr prediction loss : ",toterr,toterr/float(ntest))
118 | fig = plt.figure(figsize=(14,10))
119 | plt.rc('xtick', labelsize=20)
120 | plt.rc('ytick', labelsize=20)
121 | plt.rc('font', weight='bold')
122 | xxdummy=range(ntest)
123 | plt.plot(xxdummy, Ytest, 'r-', linewidth=3.5, label=u'True Value')
124 | plt.plot(xxdummy, Ytest, 'r.', markersize=20)
125 | plt.plot(xxdummy, y_pred, 'b--', linewidth=3.5, label=u'Prediction')
126 | plt.plot(xxdummy, y_pred, 'b.', markersize=20)
127 | plt.fill(np.concatenate([xxdummy, xxdummy[::-1]]),np.concatenate([y_pred - 1.9600 * sigma,(y_pred + 1.9600 * sigma)[::-1]]),alpha=.5, fc='y', ec='None', label='95% confidence interval')
128 | plt.xlabel('tri-layer structure',fontsize=40, fontweight='bold')
129 | plt.ylabel('Band GAP',fontsize=40, fontweight='bold')
130 | plt.legend(loc='upper left', ncol=1, fancybox=True, shadow=True, prop={'size': 20})
131 | # plt.legend(loc='upper left')
132 | plt.title("TEST DATA",fontsize=40,fontweight='bold')
133 | #-----training set-----
134 | yt_pred, tsigma = gp.predict(Xtrain, return_std=True)
135 | # for val in range(0,ntrain):
136 | # print("Training set: ",Ytrain[val]," ",yt_pred[val]," ",tsigma[val])
137 | print("Total training errror: ",np.sqrt(MSError(Ytrain,yt_pred)))
138 | print("Total prediction errror: ", np.sqrt(MSError(Ytest,y_pred)))
139 | # xxtdummy=range(ntrain)
140 | # plt.plot(xxtdummy, Ytrain, 'r-', markersize=10, label=u'Observations')
141 | # plt.plot(xxtdummy, Ytrain, 'r.', markersize=10)
142 | # plt.plot(xxtdummy, yt_pred, 'b-', markersize=10, label=u'Prediction')
143 | # plt.plot(xxtdummy, yt_pred, 'b.', markersize=10)
144 | # plt.fill(np.concatenate([xxtdummy, xxtdummy[::-1]]),np.concatenate([yt_pred - 1.9600 * tsigma,(yt_pred + 1.9600 * tsigma)[::-1]]),alpha=.8, fc='b', ec='None', label='95% confidence interval')
145 | # plt.xlabel('$x$')
146 | # plt.ylabel('$f(x)$')
147 | # plt.legend(loc='upper left')
148 | # plt.title("Training data")
149 | plt.ylim(-0.6,1.6)
150 | plt.show()
151 | # plt.savefig('fig1a.png')
152 | # plt.close()
153 | return
154 |
155 |
156 |
157 | #------- Main Program -------------
158 |
159 | createinputmap(inputmap,ninputmap,totfea_atom)
160 | Xdata,Ydata,ndata=readinput(inputfile_name,natom_layer)
161 |
162 | print("Original Training and Y :",np.shape(Xdata),np.shape(Ydata))
163 | print("Transpose Training and Y : ",np.shape(np.transpose(Xdata)),np.shape(np.transpose(Ydata)))
164 | print("Original Training and Y :",np.shape(Xdata),np.shape(Ydata))
165 |
166 | ntrain=int(train_test_split*ndata)
167 | ntest=ndata-ntrain
168 | print("Total training and Test Data: ",ntrain,ntest)
169 | for ii in range(0,Nrun):
170 | dataset=np.random.permutation(ndata)
171 | a1data=np.empty(ntrain, dtype=int)
172 | a2data=np.empty(ntest, dtype=int)
173 | a1data[:]=dataset[0:ntrain]
174 | a2data[:]=dataset[ntrain:ndata]
175 | Xtrain=np.ndarray(shape=(ntrain, natom_layer), dtype=float)
176 | Ytrain = np.empty(ntrain, dtype=float)
177 | Xtest = np.ndarray(shape=(ntest, natom_layer), dtype=float)
178 | Ytest = np.empty(ntest, dtype=float)
179 | for itrain in range(0,ntrain):
180 | mm=a1data[itrain]
181 | Xtrain[itrain][:]=Xdata[mm][:]
182 | Ytrain[itrain]=Ydata[mm]
183 | for itest in range(0,ntest):
184 | mm = a2data[itest]
185 | Xtest[itest][:]=Xdata[mm][:]
186 | Ytest[itest]=Ydata[mm]
187 | gpregression(Xtrain,Ytrain,Xtest,Ytest,ntrain,ntest)
188 | del Xtrain,Ytrain
189 | del Xtest,Ytest
190 |
191 |
--------------------------------------------------------------------------------
/predict_structure.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from matplotlib import pyplot as plt
3 | from sklearn.gaussian_process import GaussianProcessRegressor
4 | from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C ,WhiteKernel as Wht,Matern as matk
5 | from sklearn.gaussian_process.kernels import RationalQuadratic as expker
6 | from sklearn.metrics import mean_squared_error as MSError
7 | from scipy.stats import norm
8 | from base64 import b16encode
9 | import warnings
10 | warnings.filterwarnings("ignore")
11 |
12 | inputmap=dict()
13 | ninputmap=dict()
14 | totfea_atom=2 #total number of atoms per layer
15 | Natomsinpayer=6 # number of atoms in 3 layer
16 | natom_layer=Natomsinpayer*totfea_atom #total number of features
17 | Nbandpoint=30 # number of points at which GP model is build
18 |
19 | #input paramters
20 | inputfile_name="3-layer-band_structure.txt" #file name of the input data
21 | train_test_split=0.60 #split between training and test set
22 | Nruns = 1
23 |
24 | #create input feature vector of the given n-layer heterostructure
25 | def createinputmap(inputmap,ninputmap,totfea_atom):
26 | #define the eletronegetivity and ionization potential of each atoms
27 | inputmap['Mo'] = [2.16,684.3,190.0]
28 | inputmap['W'] = [2.36,770.0,193.0]
29 | inputmap['S'] = [2.58,999.6,88.8]
30 | inputmap['Se'] = [2.55,941.0,103.0]
31 | inputmap['Te'] = [2.10,869.3,123.0]
32 |
33 | #normalize the input features by (tt-xmax)/(xmax-xmin)
34 | Xmax = np.empty(totfea_atom,dtype=float)
35 | Xmin = np.empty(totfea_atom, dtype=float)
36 | Xmean= np.empty(totfea_atom,dtype=float)
37 | Xstd = np.empty(totfea_atom,dtype=float)
38 | Xmax.fill(0.0)
39 | Xmin.fill(10000.0)
40 | Xmean.fill(0.0)
41 | Xstd.fill(0.0)
42 | nfeatures=0
43 | for keys in inputmap:
44 | nfeatures+=1
45 | for ii in range(0,totfea_atom):
46 | if Xmax[ii] < inputmap[keys][ii]: Xmax[ii]=inputmap[keys][ii]
47 | if Xmin[ii] > inputmap[keys][ii]: Xmin[ii]=inputmap[keys][ii]
48 | Xmean[ii]+=inputmap[keys][ii]
49 | for ii in range(0,totfea_atom):
50 | Xmean[ii]=Xmean[ii]/float(nfeatures)
51 | for keys in inputmap:
52 | for ii in range(0, totfea_atom):
53 | Xstd[ii]+=(inputmap[keys][ii]- Xmean[ii])*(inputmap[keys][ii]- Xmean[ii])
54 | for ii in range(0, totfea_atom):
55 | Xstd[ii]=np.sqrt(Xstd[ii]/float(nfeatures))
56 | print("Xmax and Xmin: ",Xmax,Xmin)
57 | print("Xmean and Xstd: ",Xmean,Xstd)
58 | for keys in inputmap:
59 | ninputmap[keys]=list()
60 | for ii in range(0, totfea_atom):
61 | ninputmap[keys].append((inputmap[keys][ii]-Xmin[ii])/(Xmax[ii]-Xmin[ii])) # normalized by by (tt-xmax)/(xmax-xmin)
62 |
63 | #read input data
64 | def readinput(filename,natom_layer,Natomsinpayer,Nbandpoint):
65 | inputfile=open(filename,'r')
66 | itag=0
67 | count=-1
68 | ndata=0
69 | for lines in inputfile:
70 | if itag==0:
71 | ndata=int(lines)
72 | Xdata = np.ndarray(shape=(ndata, natom_layer), dtype=float)
73 | Xinfo = np.chararray(ndata, itemsize=20)
74 | Ytopdata = np.ndarray(shape=(ndata,Nbandpoint),dtype=float)
75 | Ybotdata = np.ndarray(shape=(ndata, Nbandpoint), dtype=float)
76 | itag=1
77 | else :
78 | lines = lines.replace("\n", "").split()
79 | structname=str()
80 | count+=1
81 | for ii in range(0,Natomsinpayer):
82 | jj=lines[ii]
83 | if (ii >0): structname = structname + '-' + jj
84 | if(ii==0): structname=jj
85 | Xdata[count][2 * ii] = ninputmap[jj][0]
86 | Xdata[count][2 * ii + 1] = ninputmap[jj][1]
87 | Xinfo[count]=structname
88 | for itop in range(Natomsinpayer,Natomsinpayer+Nbandpoint):
89 | Ytopdata[count][itop-Natomsinpayer]=float(lines[itop])
90 | for ibot in range(Natomsinpayer+Nbandpoint,Natomsinpayer+Nbandpoint+Nbandpoint):
91 | Ybotdata[count][ibot - Natomsinpayer-Nbandpoint] = float(lines[ibot])
92 | # print("structname: ",structname,lines)
93 | # print("datatop : ",lines[Natomsinpayer:Natomsinpayer+Nbandpoint])
94 | # print("databottom: ",lines[Natomsinpayer+Nbandpoint:lines.__len__()])
95 | return Xdata,Ytopdata,Ybotdata,Xinfo,ndata
96 |
97 | #read x-axis value of the 30 points at which gp model is build
98 | def readxaxisval(filename,Nbandpoint):
99 | inputfile = open(filename, 'r')
100 | Xdata = np.empty(Nbandpoint, dtype=float)
101 | count=-1
102 | # Xdata=range(0,Nbandpoint)
103 | for val in inputfile:
104 | count+=1
105 | Xdata[count]=float(val)
106 | return Xdata
107 |
108 | def plotbandstructure(XX,structure,YY1,YY2):
109 | fig = plt.figure(figsize=(7, 7))
110 | plt.rc('xtick', labelsize=20)
111 | plt.rc('ytick', labelsize=20)
112 | plt.rc('font', weight='bold')
113 | plt.plot(XX, YY1, 'b-', linewidth=3.5, label=u'HOMO')
114 | plt.plot(XX, YY2, 'r-', linewidth=3.5, label=u'LOMO')
115 | plt.title(structure, fontsize=20, fontweight='bold')
116 | plt.show()
117 |
118 | #make polt of the CBM/VBM for the test set inside a folder Bandstructure
119 | def plotbandtest(XX,structure,YY1true,YY2true,YY1predict,YY2predict,YY1sigma,YY2sigma,myid):
120 | fig = plt.figure(figsize=(10,10))
121 | plt.rc('xtick', labelsize=20)
122 | plt.rc('ytick', labelsize=20)
123 | plt.rc('font', weight='bold')
124 | plt.plot(XX, YY1true, 'b-', linewidth=3.5, label=u'CBM-Ground-Truth')
125 | plt.plot(XX, YY1predict, 'c--', linewidth=3.5)
126 | #plt.fill(np.concatenate([XX, XX[::-1]]),np.concatenate([YY1predict - 1.9600 * YY1sigma, (YY1predict + 1.9600 * YY1sigma)[::-1]]), alpha=.3, fc='y', ec='None',label='95% confidence interval')
127 | plt.plot(XX, YY2true, 'r-', linewidth=3.5, label=u'VBM-Ground-Truth')
128 | plt.plot(XX, YY2predict, 'm--', linewidth=3.5)
129 | #plt.fill(np.concatenate([XX, XX[::-1]]),np.concatenate([YY2predict - 1.9600 * YY2sigma, (YY2predict + 1.9600 * YY2sigma)[::-1]]), alpha=.3, fc='g',ec='None', label='95% confidence interval')
130 | plt.title(structure, fontsize=20, fontweight='bold')
131 | plt.legend(loc='upper right', bbox_to_anchor=(0.28, 1.16), ncol=1, fancybox=True, shadow=True, prop={'size': 14})
132 | plt.xlabel('Wave Vector',fontsize=20, fontweight='bold')
133 | plt.ylabel('Energy(eV)',fontsize=20, fontweight='bold')
134 | imagefile = "Bandstructure/Strucuture" + str(myid+1)
135 | plt.savefig(imagefile)
136 | # plt.show()
137 |
138 | #Build GP regression model
139 | def gpregression(Xtrain,Ytrain,Nfeature):
140 | cmean=[1.0]*Nfeature
141 | cbound=[[1e-3, 10000]]*Nfeature
142 | # kernel = C(1.0, [1e-3, 1e3]) * RBF(cmean, cbound)
143 | kernel = C(1.0, (1e-3, 1e3)) * matk(cmean, cbound, 2.5)+ Wht(1.0, (1e-3, 1e3))
144 |
145 | gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=50, normalize_y=False)
146 | gp.fit(Xtrain, Ytrain)
147 | print("initial parameters:", kernel)
148 | print("optimal parameters A:", gp.kernel_, "likelihood:", gp.log_marginal_likelihood(gp.kernel_.theta))
149 | # print("likelihood:", gp.log_marginal_likelihood(gp.kernel_.theta))
150 | return gp
151 |
152 | def gprediction(gpnetwork,xtest):
153 | y_pred, sigma = gpnetwork.predict(xtest, return_std=True)
154 | return y_pred, sigma
155 |
156 | #------- Program Starts from here -------------
157 | createinputmap(inputmap,ninputmap,totfea_atom)
158 | Xdata,Ytopdata,Ybotdata,Xinfo,ndata=readinput(inputfile_name,natom_layer,Natomsinpayer,Nbandpoint)
159 | xaxisval=readxaxisval("xaxisvalue.txt",Nbandpoint)
160 |
161 | for ii in range(0,ndata):
162 | materialname = Xinfo[ii].decode('utf-8')
163 | print("Xinfo: ",materialname)
164 | # plotbandstructure(xaxisval,materialname,Ytopdata[ii,:].ravel(),Ybotdata[ii,:].ravel())
165 |
166 | # Make a regression model for each of the 60 points
167 | ntrain=int(train_test_split*ndata)
168 | ntest=ndata-ntrain
169 | print("Total training and Test Data: ",ntrain,ntest)
170 | for ii in range(0,Nruns):
171 | dataset = np.random.permutation(ndata)
172 | a1data=np.empty(ntrain, dtype=int)
173 | a2data=np.empty(ntest, dtype=int)
174 | a1data[:]=dataset[0:ntrain]
175 | a2data[:]=dataset[ntrain:ndata]
176 | #create the training set
177 | Xtrain = np.ndarray(shape=(ntrain, natom_layer), dtype=float)
178 | Xtraininfo = np.chararray(ntrain, itemsize=20)
179 | Ytoptrain = np.ndarray(shape=(ntrain, Nbandpoint), dtype=float)
180 | Ybottrain = np.ndarray(shape=(ntrain, Nbandpoint), dtype=float)
181 | Xtrain[0:ntrain, :] = Xdata[a1data, :]
182 | Xtraininfo[0:ntrain] = Xinfo[a1data]
183 | Ytoptrain[0:ntrain,:] = Ytopdata[a1data,:]
184 | Ybottrain[0:ntrain, :] = Ybotdata[a1data, :]
185 | #create the test set
186 | Xtest = np.ndarray(shape=(ntest, natom_layer), dtype=float)
187 | Xtestinfo = np.chararray(ntest, itemsize=20)
188 | Ytoptest = np.ndarray(shape=(ntest, Nbandpoint), dtype=float)
189 | Ytoppredict = np.ndarray(shape=(ntest, Nbandpoint), dtype=float)
190 | Ytopsigma = np.ndarray(shape=(ntest, Nbandpoint), dtype=float)
191 | Ybottest = np.ndarray(shape=(ntest, Nbandpoint), dtype=float)
192 | Ybotpredict = np.ndarray(shape=(ntest, Nbandpoint), dtype=float)
193 | Ybotsigma = np.ndarray(shape=(ntest, Nbandpoint), dtype=float)
194 | Xtest[0:ntest, :] = Xdata[a2data, :]
195 | Xtestinfo[0:ntest] = Xinfo[a2data]
196 | Ytoptest[0:ntest,:] = Ytopdata[a2data,:]
197 | Ybottest[0:ntest, :] = Ybotdata[a2data, :]
198 | gptopmodel=list()
199 | gpbotmodel=list()
200 | for jj in range(0,Nbandpoint):
201 | Ytemp1=Ytoptrain[:,jj]
202 | Ytemp2 = Ybottrain[:, jj]
203 | print("Point number: ",jj)
204 | gptemp1 = gpregression(Xtrain,Ytemp1.ravel(),natom_layer)
205 | gptemp2 = gpregression(Xtrain, Ytemp2.ravel(), natom_layer)
206 | gptopmodel.append(gptemp1)
207 | gpbotmodel.append(gptemp2)
208 | del gptemp1,gptemp2
209 | #Test the Model
210 | for jj in range(0,Nbandpoint):
211 | Ytoppredict[:,jj], Ytopsigma[:,jj] = gprediction(gptopmodel[jj], Xtest)
212 | Ybotpredict[:,jj], Ybotsigma[:,jj] = gprediction(gpbotmodel[jj], Xtest)
213 | #Make plots of the all the test cases
214 | for kk in range(0,ntest):
215 | materialname = Xtestinfo[kk].decode('utf-8')
216 | plotbandtest(xaxisval, materialname, Ytoptest[kk, :].ravel(), Ybottest[kk, :].ravel(),Ytoppredict[kk, :].ravel(), Ybotpredict[kk, :].ravel(),Ytopsigma[kk, :].ravel(), Ybotsigma[kk, :].ravel(),kk)
217 |
--------------------------------------------------------------------------------
/snl_prep.py:
--------------------------------------------------------------------------------
1 | # 4/21/2017 Lindsay Bassman bassman@usc.edu
2 | import getopt, sys, os
3 | import shutil
4 | import numpy as np
5 | from pymatgen import Structure, Lattice
6 | from pymatgen.matproj.rest import MPRester
7 | from pymatgen.io.vasp.inputs import Poscar
8 | from pymatgen.transformations.site_transformations import RemoveSitesTransformation, ReplaceSiteSpeciesTransformation
9 | from pymatgen.transformations.standard_transformations import SupercellTransformation
10 | from pymatgen.matproj.snl import StructureNL
11 | from pymatgen import __version__ as pmgversion
12 |
13 | #elements in TMDCs
14 | elems = ["Mo", "W", "S", "Se", "Te"]
15 | elidx = {"Mo": 0, "W": 1, "S": 2, "Se": 3, "Te": 4}
16 | molec = ["MoS2", "MoSe2", "MoTe2", "WS2", "WSe2", "WTe2"]
17 | molidx = {"MoS2": 0, "MoSe2": 1, "MoTe2": 2, "WS2": 3, "WSe2": 4, "WTe2": 5}
18 |
19 | def invalid(reason):
20 | # Prints error message and exits.
21 | print("Invalid "+reason+".")
22 | sys.exit(2)
23 |
24 | # define the history node
25 | def history_node(t):
26 | pmg_github_url = 'https://github.com/materialsproject/pymatgen/tree/{}'
27 | return {'name': t.__module__ + "." + t.__class__.__name__,
28 | 'url': pmg_github_url.format(pmgversion),
29 | 'description': str(t)}
30 |
31 | #creat SNl for submission to MP database
32 | def create_SNL(dirbase, molecules, atoms, spc_present, num_each_spc, struct, s):
33 | layers = len(molecules)
34 | with MPRester("sm5RbuEp83T9Wo7P") as m:
35 | first_mol = struct[0]
36 | mono_or_homo = 0
37 | #if system is a monolayer or homogeneous use its proper .cif file, else use generic WTe2 for heterostructures
38 | if (layers == 1) or all(x==first_mol for x in struct):
39 | mono_or_homo = 1
40 | if (first_mol == molec[0]):
41 | structure = m.get_structure_by_material_id("mp-2815") #MoS2
42 | ref = m.get_materials_id_references("mp-2815")
43 | r1 = np.array([0,2,4])
44 | elif (first_mol == molec[1]):
45 | structure = m.get_structure_by_material_id("mp-1634") #MoSe2
46 | ref = m.get_materials_id_references("mp-1634")
47 | r1 = np.array([0,2,4])
48 | elif (first_mol == molec[2]):
49 | structure = m.get_structure_by_material_id("mp-602") #MoTe2
50 | ref = m.get_materials_id_references("mp-602")
51 | r1 = np.array([1,2,5])
52 | elif (first_mol == molec[3]):
53 | structure = m.get_structure_by_material_id("mp-224") #WS2
54 | ref = m.get_materials_id_references("mp-224")
55 | r1 = np.array([0,3,5])
56 | elif (first_mol == molec[4]):
57 | structure = m.get_structure_by_material_id("mp-1821") #WSe2
58 | ref = m.get_materials_id_references("mp-1821")
59 | r1 = np.array([0,2,4])
60 | elif (first_mol == molec[5]):
61 | structure = m.get_structure_by_material_id("mp-1019322") #WTe2
62 | ref = m.get_materials_id_references("mp-1019322")
63 | r1 = np.array([0,3,5])
64 | else:
65 | structure = m.get_structure_by_material_id("mp-1019322") #WTe2
66 | ref = m.get_materials_id_references("mp-1019322")
67 | r1 = np.array([0,3,5])
68 |
69 | # initialize history
70 | history = []
71 |
72 | #half the height of original unit cell...to be used for vacuum length calculation later
73 | halfz = (structure.lattice.c)/2
74 |
75 | #make supercell if necessary
76 | levels = layers
77 | if (levels%2 == 1): levels = levels+1
78 | tsuper = SupercellTransformation([[1,0,0],[0,1,0],[0,0,(levels)/2]])
79 | history.append(history_node(tsuper))
80 | supercell = tsuper.apply_transformation(structure)
81 |
82 | #make species replacements for heterostructures with more than one layer
83 | levels = layers
84 | if (levels%2 == 1): levels = levels+1
85 | #if heterostructure has more than one layer:
86 | if (mono_or_homo == 0):
87 | for i in range(0,len(molecules)):
88 | if (molecules[i] == 5):
89 | continue
90 | else:
91 | TMspc = elems[atoms[2*i]]
92 | TMloc = (levels*2) + (i%2)*(levels/2) + int(np.floor((i)/2))
93 | DCspc = elems[atoms[2*i+1]]
94 | DCloc1 = (levels - (levels/2)) - i%2*(levels/2) + int(np.floor((i)/2))
95 | DCloc2 = levels + i%2*(levels/2) + int(np.floor((i)/2))
96 | t1 = ReplaceSiteSpeciesTransformation({TMloc:TMspc})
97 | t2 = ReplaceSiteSpeciesTransformation({DCloc1:DCspc})
98 | t3 = ReplaceSiteSpeciesTransformation({DCloc2:DCspc})
99 | history.append(history_node(t1))
100 | history.append(history_node(t2))
101 | history.append(history_node(t3))
102 | supercell = t1.apply_transformation(supercell)
103 | supercell = t2.apply_transformation(supercell)
104 | supercell = t3.apply_transformation(supercell)
105 |
106 | #remove top layer of atom if necessary
107 | mult_factor = (layers+1)/2 -1
108 | r = r1 + (r1+1)*mult_factor
109 | tremove = RemoveSitesTransformation(r)
110 | if (layers%2 == 1):
111 | supercell = tremove.apply_transformation(supercell)
112 | history.append(history_node(tremove))
113 |
114 | #sort structure
115 | supercell = supercell.get_sorted_structure()
116 |
117 | #extend z-axis cell vector to add vaccuum to supercell
118 | vacuum = 10.0
119 | old_lattice = supercell.lattice
120 | if (layers%2 == 1):
121 | new_c = old_lattice.c - halfz + vacuum
122 | else:
123 | new_c = old_lattice.c + vacuum
124 | new_lattice = Lattice.from_parameters(old_lattice.a, old_lattice.b, new_c, old_lattice.alpha, old_lattice.beta, old_lattice.gamma)
125 | final_structure = Structure(new_lattice,supercell.species,supercell.frac_coords*np.array([1., 1., (old_lattice.c/new_lattice.c)]), coords_are_cartesian=False)
126 | hnode = {'name': 'add vaccuum', 'url': '','description': 'increase z-direction cell vector by 10 angstroms'}
127 | history.append(hnode)
128 |
129 | #creat final SNL
130 | authors = [{"name": "Lindsay Bassman", "email": "bassman@usc.edu"}]
131 | projects = ["TMDC-Heterostructures"]
132 | remarks = ["MAGICS calculation of band structures of 2D TMDC stacked heterostructures"]
133 | final_snl = StructureNL(final_structure, authors, projects=projects, remarks=remarks, references=ref, history=history)
134 |
135 | #optionally write POSCAR file
136 | poscar = Poscar(final_structure, s)
137 | poscar.write_file(dirbase+"POSCAR", direct=False)
138 |
139 | #submit snl
140 | #with MPRester("sm5RbuEp83T9Wo7P",endpoint="https://www.materialsproject.org/rest/v1") as m2:
141 | # m2.submit_snl(final_snl)
142 |
143 | def main():
144 | # Parse command line arguments.
145 | try:
146 | opts, args = getopt.getopt(sys.argv[1:], "s:d:")
147 | except getopt.GetoptError as err:
148 | invalid(err)
149 | force = True
150 | for o, a in opts:
151 | if (o == "-s"):
152 | s = a
153 | elif (o == "-d"):
154 | dirbase = a
155 | struct = s.split("-")
156 | if len(struct) == 0:
157 | print("Invalid structure.")
158 | sys.exit(2)
159 | molecules = [0]* (len(struct))
160 | atoms = [0]*(2*len(struct))
161 | for i, elem in enumerate(struct):
162 | if elem not in molec:
163 | print("Invalid structure.")
164 | for j, mol in enumerate(molec):
165 | if mol == elem:
166 | molecules[i] = j
167 | atoms[2*i] = int(np.floor(j/3))
168 | atoms[2*i+1] = j%3 + 2
169 | num_each_spc = [0]*5
170 | spc_present = []
171 | for i, idx in enumerate(atoms):
172 | # Double count for every other element.
173 | num_each_spc[idx] += 1+i%2
174 | for idx, contains in enumerate(num_each_spc):
175 | if contains > 0:
176 | spc_present.append(idx)
177 | # Create folders.
178 | dirbase = s+"/"
179 | if not os.path.exists(dirbase):
180 | os.makedirs(dirbase)
181 | #create structure SNL
182 | create_SNL(dirbase, molecules, atoms, spc_present, num_each_spc, struct, s)
183 |
184 | if __name__ == "__main__":
185 | main()
186 |
--------------------------------------------------------------------------------
/xaxisvalue.txt:
--------------------------------------------------------------------------------
1 | 0.0
2 | 0.1214651727
3 | 0.242930323536
4 | 0.364395496236
5 | 0.485860647072
6 | 0.607325819771
7 | 0.728790970607
8 | 0.850256143307
9 | 0.971721294143
10 | 1.09318646684
11 | 1.09318646684
12 | 1.16313733075
13 | 1.23308819465
14 | 1.30303905863
15 | 1.37298992253
16 | 1.44294078644
17 | 1.51289165034
18 | 1.58284251432
19 | 1.65279337823
20 | 1.72274424213
21 | 1.72274424213
22 | 1.8631142619
23 | 2.00348428166
24 | 2.14385428247
25 | 2.28422430224
26 | 2.42459432201
27 | 2.56496434178
28 | 2.70533434259
29 | 2.84570436235
30 | 2.98607438212
31 |
--------------------------------------------------------------------------------