├── .circleci └── config.yml ├── .gitignore ├── 01_data_cleaning.ipynb ├── 02_data_cleaning.ipynb ├── 03_depression_detector.ipynb ├── README.md └── config.yml /.circleci/config.yml: -------------------------------------------------------------------------------- 1 | # Use the latest 2.1 version of CircleCI pipeline process engine. See: https://circleci.com/docs/2.0/configuration-reference 2 | version: 2.1 3 | # Use a package of configuration called an orb. 4 | orbs: 5 | # Declare a dependency on the welcome-orb 6 | welcome: circleci/welcome-orb@0.4.1 7 | # Orchestrate or schedule a set of jobs 8 | workflows: 9 | # Name the workflow "welcome" 10 | welcome: 11 | # Run the welcome/run job in its own container 12 | jobs: 13 | - welcome/run 14 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | pip-wheel-metadata/ 24 | share/python-wheels/ 25 | *.egg-info/ 26 | .installed.cfg 27 | *.egg 28 | MANIFEST 29 | 30 | # PyInstaller 31 | # Usually these files are written by a python script from a template 32 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 33 | *.manifest 34 | *.spec 35 | 36 | # Installer logs 37 | pip-log.txt 38 | pip-delete-this-directory.txt 39 | 40 | # Unit test / coverage reports 41 | htmlcov/ 42 | .tox/ 43 | .nox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *.cover 50 | *.py,cover 51 | .hypothesis/ 52 | .pytest_cache/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | target/ 76 | 77 | # Jupyter Notebook 78 | .ipynb_checkpoints 79 | 80 | # IPython 81 | profile_default/ 82 | ipython_config.py 83 | 84 | # pyenv 85 | .python-version 86 | 87 | # pipenv 88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 91 | # install all needed dependencies. 92 | #Pipfile.lock 93 | 94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 95 | __pypackages__/ 96 | 97 | # Celery stuff 98 | celerybeat-schedule 99 | celerybeat.pid 100 | 101 | # SageMath parsed files 102 | *.sage.py 103 | 104 | # Environments 105 | .env 106 | .venv 107 | env/ 108 | venv/ 109 | ENV/ 110 | env.bak/ 111 | venv.bak/ 112 | 113 | # Spyder project settings 114 | .spyderproject 115 | .spyproject 116 | 117 | # Rope project settings 118 | .ropeproject 119 | 120 | # mkdocs documentation 121 | /site 122 | 123 | # mypy 124 | .mypy_cache/ 125 | .dmypy.json 126 | dmypy.json 127 | 128 | # Pyre type checker 129 | .pyre/ 130 | -------------------------------------------------------------------------------- /01_data_cleaning.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import pandas as pd\n", 10 | "import numpy as np\n", 11 | "\n", 12 | "import pandas as pd \n", 13 | "import numpy as np\n", 14 | "import matplotlib.pyplot as plt\n", 15 | "plt.style.use('fivethirtyeight')\n", 16 | "\n", 17 | "%matplotlib inline\n", 18 | "%config InlineBackend.figure_format = 'retina'\n", 19 | "import re\n", 20 | "from bs4 import BeautifulSoup\n", 21 | "from nltk.tokenize import WordPunctTokenizer\n", 22 | "tok = WordPunctTokenizer()" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": 2, 28 | "metadata": {}, 29 | "outputs": [], 30 | "source": [ 31 | "depressive_tweets_df = pd.read_csv('depression/depressive_unigram_tweets.csv')" 32 | ] 33 | }, 34 | { 35 | "cell_type": "code", 36 | "execution_count": 3, 37 | "metadata": {}, 38 | "outputs": [ 39 | { 40 | "output_type": "execute_result", 41 | "data": { 42 | "text/plain": [ 43 | " Unnamed: 0 id time \\\n", 44 | "0 0 1.15135E+18 21:25:13 \n", 45 | "1 1 1.15135E+18 21:25:07 \n", 46 | "2 2 1.15135E+18 21:25:06 \n", 47 | "3 3 1.15135E+18 21:24:55 \n", 48 | "4 4 1.15135E+18 21:24:51 \n", 49 | "\n", 50 | " tweet \\\n", 51 | "0 Wow, my dad yday: “you don’t take those stupid... \n", 52 | "1 what part of this was really harmfult of a lot... \n", 53 | "2 one of the ways I got through my #depression i... \n", 54 | "3 see i wanna do one of them but they all say th... \n", 55 | "4 IS IT clinical depression or is it the palpabl... \n", 56 | "\n", 57 | " hashtags cashtags \n", 58 | "0 [] [] \n", 59 | "1 [] [] \n", 60 | "2 ['#depression', '#uncoveringthenewu', '#change... [] \n", 61 | "3 [] [] \n", 62 | "4 [] [] " 63 | ], 64 | "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0idtimetweethashtagscashtags
001.15135E+1821:25:13Wow, my dad yday: “you don’t take those stupid...[][]
111.15135E+1821:25:07what part of this was really harmfult of a lot...[][]
221.15135E+1821:25:06one of the ways I got through my #depression i...['#depression', '#uncoveringthenewu', '#change...[]
331.15135E+1821:24:55see i wanna do one of them but they all say th...[][]
441.15135E+1821:24:51IS IT clinical depression or is it the palpabl...[][]
\n
" 65 | }, 66 | "metadata": {}, 67 | "execution_count": 3 68 | } 69 | ], 70 | "source": [ 71 | "depressive_tweets_df.head()" 72 | ] 73 | }, 74 | { 75 | "cell_type": "code", 76 | "execution_count": null, 77 | "metadata": {}, 78 | "outputs": [], 79 | "source": [ 80 | "#depression_tweets_df = pd.read_csv('depression/depressive_unigram_tweets.csv')" 81 | ] 82 | }, 83 | { 84 | "cell_type": "code", 85 | "execution_count": 4, 86 | "metadata": {}, 87 | "outputs": [ 88 | { 89 | "data": { 90 | "text/html": [ 91 | "
\n", 92 | "\n", 105 | "\n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | "
idconversation_idcreated_atdatetimetimezoneuser_idusernamenameplace...likes_counthashtagscashtagslinkretweetquote_urlvideouser_rt_idneargeo
01151347096966041603115134709696604160315633375130002019-07-1621:25:13PDT68141680paulsonmyheartwit ☾ h♥️NaN...0[][]https://twitter.com/PaulsonMyHeart/status/1151...NaNNaN0NaNNaNNaN
11151347069627576320115098063824723148915633375070002019-07-1621:25:07PDT1125157678957907970gaymiyasrobinNaN...0[][]https://twitter.com/gaymiyas/status/1151347069...NaNNaN0NaNNaNNaN
21151347066255396865115134706625539686515633375060002019-07-1621:25:06PDT988965488918253568authornesiewingAuthor Nesi EwingNaN...0['#depression', '#uncoveringthenewu', '#change...[]https://twitter.com/AuthorNesiEwing/status/115...NaNNaN0NaNNaNNaN
31151347022789611520115134397726789222515633374950002019-07-1621:24:55PDT794267753179992064sebsmishandaluna 🌙NaN...0[][]https://twitter.com/sebsmish/status/1151347022...NaNNaN0NaNNaNNaN
41151347006406893568115134700640689356815633374910002019-07-1621:24:51PDT1121246242401660928gbrrantsfemme brulee 2NaN...0[][]https://twitter.com/gbrrants/status/1151347006...NaNNaN0NaNNaNNaN
\n", 255 | "

5 rows × 26 columns

\n", 256 | "
" 257 | ], 258 | "text/plain": [ 259 | " id conversation_id created_at date \\\n", 260 | "0 1151347096966041603 1151347096966041603 1563337513000 2019-07-16 \n", 261 | "1 1151347069627576320 1150980638247231489 1563337507000 2019-07-16 \n", 262 | "2 1151347066255396865 1151347066255396865 1563337506000 2019-07-16 \n", 263 | "3 1151347022789611520 1151343977267892225 1563337495000 2019-07-16 \n", 264 | "4 1151347006406893568 1151347006406893568 1563337491000 2019-07-16 \n", 265 | "\n", 266 | " time timezone user_id username name \\\n", 267 | "0 21:25:13 PDT 68141680 paulsonmyheart wit ☾ h♥️ \n", 268 | "1 21:25:07 PDT 1125157678957907970 gaymiyas robin \n", 269 | "2 21:25:06 PDT 988965488918253568 authornesiewing Author Nesi Ewing \n", 270 | "3 21:24:55 PDT 794267753179992064 sebsmish andaluna 🌙 \n", 271 | "4 21:24:51 PDT 1121246242401660928 gbrrants femme brulee 2 \n", 272 | "\n", 273 | " place ... likes_count hashtags \\\n", 274 | "0 NaN ... 0 [] \n", 275 | "1 NaN ... 0 [] \n", 276 | "2 NaN ... 0 ['#depression', '#uncoveringthenewu', '#change... \n", 277 | "3 NaN ... 0 [] \n", 278 | "4 NaN ... 0 [] \n", 279 | "\n", 280 | " cashtags link retweet \\\n", 281 | "0 [] https://twitter.com/PaulsonMyHeart/status/1151... NaN \n", 282 | "1 [] https://twitter.com/gaymiyas/status/1151347069... NaN \n", 283 | "2 [] https://twitter.com/AuthorNesiEwing/status/115... NaN \n", 284 | "3 [] https://twitter.com/sebsmish/status/1151347022... NaN \n", 285 | "4 [] https://twitter.com/gbrrants/status/1151347006... NaN \n", 286 | "\n", 287 | " quote_url video user_rt_id near geo \n", 288 | "0 NaN 0 NaN NaN NaN \n", 289 | "1 NaN 0 NaN NaN NaN \n", 290 | "2 NaN 0 NaN NaN NaN \n", 291 | "3 NaN 0 NaN NaN NaN \n", 292 | "4 NaN 0 NaN NaN NaN \n", 293 | "\n", 294 | "[5 rows x 26 columns]" 295 | ] 296 | }, 297 | "execution_count": 4, 298 | "metadata": {}, 299 | "output_type": "execute_result" 300 | } 301 | ], 302 | "source": [ 303 | "#depression_tweets_df.head()" 304 | ] 305 | }, 306 | { 307 | "cell_type": "code", 308 | "execution_count": 6, 309 | "metadata": {}, 310 | "outputs": [], 311 | "source": [ 312 | "#depression_tweets_df.drop(['date', 'timezone', 'username', 'name', 'conversation_id', 'created_at', 'user_id', 'place', 'likes_count', 'link', 'retweet', 'quote_url', 'video', 'user_rt_id', 'near', 'geo', 'mentions', 'urls', 'photos', 'replies_count', 'retweets_count'], axis = 1, inplace = True)" 313 | ] 314 | }, 315 | { 316 | "cell_type": "code", 317 | "execution_count": 7, 318 | "metadata": {}, 319 | "outputs": [ 320 | { 321 | "data": { 322 | "text/html": [ 323 | "
\n", 324 | "\n", 337 | "\n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | "
idtimetweethashtagscashtags
0115134709696604160321:25:13Wow, my dad yday: “you don’t take those stupid...[][]
1115134706962757632021:25:07what part of this was really harmfult of a lot...[][]
2115134706625539686521:25:06one of the ways I got through my #depression i...['#depression', '#uncoveringthenewu', '#change...[]
3115134702278961152021:24:55see i wanna do one of them but they all say th...[][]
4115134700640689356821:24:51IS IT clinical depression or is it the palpabl...[][]
\n", 391 | "
" 392 | ], 393 | "text/plain": [ 394 | " id time \\\n", 395 | "0 1151347096966041603 21:25:13 \n", 396 | "1 1151347069627576320 21:25:07 \n", 397 | "2 1151347066255396865 21:25:06 \n", 398 | "3 1151347022789611520 21:24:55 \n", 399 | "4 1151347006406893568 21:24:51 \n", 400 | "\n", 401 | " tweet \\\n", 402 | "0 Wow, my dad yday: “you don’t take those stupid... \n", 403 | "1 what part of this was really harmfult of a lot... \n", 404 | "2 one of the ways I got through my #depression i... \n", 405 | "3 see i wanna do one of them but they all say th... \n", 406 | "4 IS IT clinical depression or is it the palpabl... \n", 407 | "\n", 408 | " hashtags cashtags \n", 409 | "0 [] [] \n", 410 | "1 [] [] \n", 411 | "2 ['#depression', '#uncoveringthenewu', '#change... [] \n", 412 | "3 [] [] \n", 413 | "4 [] [] " 414 | ] 415 | }, 416 | "execution_count": 7, 417 | "metadata": {}, 418 | "output_type": "execute_result" 419 | } 420 | ], 421 | "source": [ 422 | "#depression_tweets_df.head()" 423 | ] 424 | }, 425 | { 426 | "cell_type": "code", 427 | "execution_count": null, 428 | "metadata": {}, 429 | "outputs": [], 430 | "source": [] 431 | }, 432 | { 433 | "cell_type": "code", 434 | "execution_count": 8, 435 | "metadata": {}, 436 | "outputs": [], 437 | "source": [ 438 | "#depressed_tweets_df = pd.read_csv('depressed/tweets.csv')" 439 | ] 440 | }, 441 | { 442 | "cell_type": "code", 443 | "execution_count": 9, 444 | "metadata": {}, 445 | "outputs": [ 446 | { 447 | "data": { 448 | "text/html": [ 449 | "
\n", 450 | "\n", 463 | "\n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | "
idconversation_idcreated_atdatetimetimezoneuser_idusernamenameplace...likes_counthashtagscashtagslinkretweetquote_urlvideouser_rt_idneargeo
01151315262748205057115131308652511642115633299230002019-07-1619:18:43PDT930813312786366464keytodepressCupidNaN...0[][]https://twitter.com/KeytoDepress/status/115131...NaNNaN0NaNNaNNaN
11151315254615400448115131471609198592015633299210002019-07-1619:18:41PDT771371705063370752_ron_247MCKAY SEASON SZN (52-39)NaN...0[][]https://twitter.com/_ron_247/status/1151315254...NaNNaN0NaNNaNNaN
21151315222692429825115131522269242982515633299140002019-07-1619:18:34PDT1020503873369194496jan550nelizabethNaN...0[][]https://twitter.com/jan550n/status/11513152226...NaNNaN0NaNNaNNaN
31151315218011549696115131521801154969615633299130002019-07-1619:18:33PDT2812237658ran_engbotRan YakumoNaN...0[][]https://twitter.com/ran_engbot/status/11513152...NaNNaN0NaNNaNNaN
41151315209413386240115131520941338624015633299100002019-07-1619:18:30PDT4833251469sasstelligenceStressed, Depressed EspressosNaN...1[][]https://twitter.com/Sasstelligence/status/1151...NaNNaN0NaNNaNNaN
\n", 613 | "

5 rows × 26 columns

\n", 614 | "
" 615 | ], 616 | "text/plain": [ 617 | " id conversation_id created_at date \\\n", 618 | "0 1151315262748205057 1151313086525116421 1563329923000 2019-07-16 \n", 619 | "1 1151315254615400448 1151314716091985920 1563329921000 2019-07-16 \n", 620 | "2 1151315222692429825 1151315222692429825 1563329914000 2019-07-16 \n", 621 | "3 1151315218011549696 1151315218011549696 1563329913000 2019-07-16 \n", 622 | "4 1151315209413386240 1151315209413386240 1563329910000 2019-07-16 \n", 623 | "\n", 624 | " time timezone user_id username \\\n", 625 | "0 19:18:43 PDT 930813312786366464 keytodepress \n", 626 | "1 19:18:41 PDT 771371705063370752 _ron_247 \n", 627 | "2 19:18:34 PDT 1020503873369194496 jan550n \n", 628 | "3 19:18:33 PDT 2812237658 ran_engbot \n", 629 | "4 19:18:30 PDT 4833251469 sasstelligence \n", 630 | "\n", 631 | " name place ... likes_count hashtags cashtags \\\n", 632 | "0 Cupid NaN ... 0 [] [] \n", 633 | "1 MCKAY SEASON SZN (52-39) NaN ... 0 [] [] \n", 634 | "2 elizabeth NaN ... 0 [] [] \n", 635 | "3 Ran Yakumo NaN ... 0 [] [] \n", 636 | "4 Stressed, Depressed Espressos NaN ... 1 [] [] \n", 637 | "\n", 638 | " link retweet quote_url \\\n", 639 | "0 https://twitter.com/KeytoDepress/status/115131... NaN NaN \n", 640 | "1 https://twitter.com/_ron_247/status/1151315254... NaN NaN \n", 641 | "2 https://twitter.com/jan550n/status/11513152226... NaN NaN \n", 642 | "3 https://twitter.com/ran_engbot/status/11513152... NaN NaN \n", 643 | "4 https://twitter.com/Sasstelligence/status/1151... NaN NaN \n", 644 | "\n", 645 | " video user_rt_id near geo \n", 646 | "0 0 NaN NaN NaN \n", 647 | "1 0 NaN NaN NaN \n", 648 | "2 0 NaN NaN NaN \n", 649 | "3 0 NaN NaN NaN \n", 650 | "4 0 NaN NaN NaN \n", 651 | "\n", 652 | "[5 rows x 26 columns]" 653 | ] 654 | }, 655 | "execution_count": 9, 656 | "metadata": {}, 657 | "output_type": "execute_result" 658 | } 659 | ], 660 | "source": [ 661 | "#depressed_tweets_df.head()" 662 | ] 663 | }, 664 | { 665 | "cell_type": "code", 666 | "execution_count": 10, 667 | "metadata": {}, 668 | "outputs": [], 669 | "source": [ 670 | "#depressed_tweets_df.drop(['date', 'timezone', 'username', 'name', 'conversation_id', 'created_at', 'user_id', 'place', 'likes_count', 'link', 'retweet', 'quote_url', 'video', 'user_rt_id', 'near', 'geo', 'mentions', 'urls', 'photos', 'replies_count', 'retweets_count'], axis = 1, inplace = True)" 671 | ] 672 | }, 673 | { 674 | "cell_type": "code", 675 | "execution_count": 11, 676 | "metadata": {}, 677 | "outputs": [ 678 | { 679 | "data": { 680 | "text/html": [ 681 | "
\n", 682 | "\n", 695 | "\n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | "
idtimetweethashtagscashtags
0115131526274820505719:18:43Listen!! IM SORRY!! With her elder spirits g...[][]
1115131525461540044819:18:41Im so pissed and depressed at the same time[][]
2115131522269242982519:18:34I’m just a hot mess that’s stressed, depressed...[][]
3115131521801154969619:18:33Chen's probably depressed too since she's no l...[][]
4115131520941338624019:18:30Do you like it when I shake it for ya, daddy? ...[][]
\n", 749 | "
" 750 | ], 751 | "text/plain": [ 752 | " id time \\\n", 753 | "0 1151315262748205057 19:18:43 \n", 754 | "1 1151315254615400448 19:18:41 \n", 755 | "2 1151315222692429825 19:18:34 \n", 756 | "3 1151315218011549696 19:18:33 \n", 757 | "4 1151315209413386240 19:18:30 \n", 758 | "\n", 759 | " tweet hashtags cashtags \n", 760 | "0 Listen!! IM SORRY!! With her elder spirits g... [] [] \n", 761 | "1 Im so pissed and depressed at the same time [] [] \n", 762 | "2 I’m just a hot mess that’s stressed, depressed... [] [] \n", 763 | "3 Chen's probably depressed too since she's no l... [] [] \n", 764 | "4 Do you like it when I shake it for ya, daddy? ... [] [] " 765 | ] 766 | }, 767 | "execution_count": 11, 768 | "metadata": {}, 769 | "output_type": "execute_result" 770 | } 771 | ], 772 | "source": [ 773 | "#depressed_tweets_df.head()" 774 | ] 775 | }, 776 | { 777 | "cell_type": "code", 778 | "execution_count": null, 779 | "metadata": {}, 780 | "outputs": [], 781 | "source": [] 782 | }, 783 | { 784 | "cell_type": "code", 785 | "execution_count": 9, 786 | "metadata": {}, 787 | "outputs": [], 788 | "source": [ 789 | "hopeless_tweets_df = pd.read_csv('hopeless/tweets.csv')" 790 | ] 791 | }, 792 | { 793 | "cell_type": "code", 794 | "execution_count": 10, 795 | "metadata": {}, 796 | "outputs": [ 797 | { 798 | "data": { 799 | "text/html": [ 800 | "
\n", 801 | "\n", 814 | "\n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 853 | " \n", 854 | " \n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | " \n", 867 | " \n", 868 | " \n", 869 | " \n", 870 | " \n", 871 | " \n", 872 | " \n", 873 | " \n", 874 | " \n", 875 | " \n", 876 | " \n", 877 | " \n", 878 | " \n", 879 | " \n", 880 | " \n", 881 | " \n", 882 | " \n", 883 | " \n", 884 | " \n", 885 | " \n", 886 | " \n", 887 | " \n", 888 | " \n", 889 | " \n", 890 | " \n", 891 | " \n", 892 | " \n", 893 | " \n", 894 | " \n", 895 | " \n", 896 | " \n", 897 | " \n", 898 | " \n", 899 | " \n", 900 | " \n", 901 | " \n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | " \n", 907 | " \n", 908 | " \n", 909 | " \n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | " \n", 943 | " \n", 944 | " \n", 945 | " \n", 946 | " \n", 947 | " \n", 948 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | " \n", 956 | " \n", 957 | " \n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | "
idconversation_idcreated_atdatetimetimezoneuser_idusernamenameplace...likes_counthashtagscashtagslinkretweetquote_urlvideouser_rt_idneargeo
01151526536471728134115152653647172813415633802950002019-07-1709:18:15PDT1070085811650117633greesybotgreesybotNaN...0[][]https://twitter.com/greesybot/status/115152653...NaNNaN0NaNNaNNaN
11151526442922139649115152400245788262415633802720002019-07-1709:17:52PDT853583752483807232umutsuz_vakayimHopelessNaN...0[][]https://twitter.com/umutsuz_vakayim/status/115...NaNNaN0NaNNaNNaN
21151526396210110464115152639621011046415633802610002019-07-1709:17:41PDT1120246244075626496hopeless95𐂂NaN...1[][]https://twitter.com/hopeless95/status/11515263...NaNNaN0NaNNaNNaN
31151526283890683904115152575399072563215633802350002019-07-1709:17:15PDT1147135129489301505hopehopexxHopelessNaN...0[][]https://twitter.com/Hopehopexx/status/11515262...NaNNaN0NaNNaNNaN
41151526267738628097115152626773862809715633802310002019-07-1709:17:11PDT1120246244075626496hopeless95𐂂NaN...1[][]https://twitter.com/hopeless95/status/11515262...NaNNaN0NaNNaNNaN
\n", 964 | "

5 rows × 26 columns

\n", 965 | "
" 966 | ], 967 | "text/plain": [ 968 | " id conversation_id created_at date \\\n", 969 | "0 1151526536471728134 1151526536471728134 1563380295000 2019-07-17 \n", 970 | "1 1151526442922139649 1151524002457882624 1563380272000 2019-07-17 \n", 971 | "2 1151526396210110464 1151526396210110464 1563380261000 2019-07-17 \n", 972 | "3 1151526283890683904 1151525753990725632 1563380235000 2019-07-17 \n", 973 | "4 1151526267738628097 1151526267738628097 1563380231000 2019-07-17 \n", 974 | "\n", 975 | " time timezone user_id username name place \\\n", 976 | "0 09:18:15 PDT 1070085811650117633 greesybot greesybot NaN \n", 977 | "1 09:17:52 PDT 853583752483807232 umutsuz_vakayim Hopeless NaN \n", 978 | "2 09:17:41 PDT 1120246244075626496 hopeless95 𐂂 NaN \n", 979 | "3 09:17:15 PDT 1147135129489301505 hopehopexx Hopeless NaN \n", 980 | "4 09:17:11 PDT 1120246244075626496 hopeless95 𐂂 NaN \n", 981 | "\n", 982 | " ... likes_count hashtags cashtags \\\n", 983 | "0 ... 0 [] [] \n", 984 | "1 ... 0 [] [] \n", 985 | "2 ... 1 [] [] \n", 986 | "3 ... 0 [] [] \n", 987 | "4 ... 1 [] [] \n", 988 | "\n", 989 | " link retweet quote_url \\\n", 990 | "0 https://twitter.com/greesybot/status/115152653... NaN NaN \n", 991 | "1 https://twitter.com/umutsuz_vakayim/status/115... NaN NaN \n", 992 | "2 https://twitter.com/hopeless95/status/11515263... NaN NaN \n", 993 | "3 https://twitter.com/Hopehopexx/status/11515262... NaN NaN \n", 994 | "4 https://twitter.com/hopeless95/status/11515262... NaN NaN \n", 995 | "\n", 996 | " video user_rt_id near geo \n", 997 | "0 0 NaN NaN NaN \n", 998 | "1 0 NaN NaN NaN \n", 999 | "2 0 NaN NaN NaN \n", 1000 | "3 0 NaN NaN NaN \n", 1001 | "4 0 NaN NaN NaN \n", 1002 | "\n", 1003 | "[5 rows x 26 columns]" 1004 | ] 1005 | }, 1006 | "execution_count": 10, 1007 | "metadata": {}, 1008 | "output_type": "execute_result" 1009 | } 1010 | ], 1011 | "source": [ 1012 | "hopeless_tweets_df.head()" 1013 | ] 1014 | }, 1015 | { 1016 | "cell_type": "code", 1017 | "execution_count": 11, 1018 | "metadata": {}, 1019 | "outputs": [], 1020 | "source": [ 1021 | "hopeless_tweets_df.drop(['date', 'timezone', 'username', 'name', 'conversation_id', 'created_at', 'user_id', 'place', 'likes_count', 'link', 'retweet', 'quote_url', 'video', 'user_rt_id', 'near', 'geo', 'mentions', 'urls', 'photos', 'replies_count', 'retweets_count'], axis = 1, inplace = True)" 1022 | ] 1023 | }, 1024 | { 1025 | "cell_type": "code", 1026 | "execution_count": 12, 1027 | "metadata": {}, 1028 | "outputs": [ 1029 | { 1030 | "data": { 1031 | "text/html": [ 1032 | "
\n", 1033 | "\n", 1046 | "\n", 1047 | " \n", 1048 | " \n", 1049 | " \n", 1050 | " \n", 1051 | " \n", 1052 | " \n", 1053 | " \n", 1054 | " \n", 1055 | " \n", 1056 | " \n", 1057 | " \n", 1058 | " \n", 1059 | " \n", 1060 | " \n", 1061 | " \n", 1062 | " \n", 1063 | " \n", 1064 | " \n", 1065 | " \n", 1066 | " \n", 1067 | " \n", 1068 | " \n", 1069 | " \n", 1070 | " \n", 1071 | " \n", 1072 | " \n", 1073 | " \n", 1074 | " \n", 1075 | " \n", 1076 | " \n", 1077 | " \n", 1078 | " \n", 1079 | " \n", 1080 | " \n", 1081 | " \n", 1082 | " \n", 1083 | " \n", 1084 | " \n", 1085 | " \n", 1086 | " \n", 1087 | " \n", 1088 | " \n", 1089 | " \n", 1090 | " \n", 1091 | " \n", 1092 | " \n", 1093 | " \n", 1094 | " \n", 1095 | " \n", 1096 | " \n", 1097 | " \n", 1098 | " \n", 1099 | "
idtimetweethashtagscashtags
0115152653647172813409:18:15Hopeless, crazed, and dispossessed, I walked o...[][]
1115152644292213964909:17:52KAP haberini beklerken serSERİn olmuştuk[][]
2115152639621011046409:17:4117-july-2019. 🦉💛.[][]
3115152628389068390409:17:15เป็นไรสาวน้อย[][]
4115152626773862809709:17:11انا قاعده اعيش اسعد ايام حياتي💛.[][]
\n", 1100 | "
" 1101 | ], 1102 | "text/plain": [ 1103 | " id time \\\n", 1104 | "0 1151526536471728134 09:18:15 \n", 1105 | "1 1151526442922139649 09:17:52 \n", 1106 | "2 1151526396210110464 09:17:41 \n", 1107 | "3 1151526283890683904 09:17:15 \n", 1108 | "4 1151526267738628097 09:17:11 \n", 1109 | "\n", 1110 | " tweet hashtags cashtags \n", 1111 | "0 Hopeless, crazed, and dispossessed, I walked o... [] [] \n", 1112 | "1 KAP haberini beklerken serSERİn olmuştuk [] [] \n", 1113 | "2 17-july-2019. 🦉💛. [] [] \n", 1114 | "3 เป็นไรสาวน้อย [] [] \n", 1115 | "4 انا قاعده اعيش اسعد ايام حياتي💛. [] [] " 1116 | ] 1117 | }, 1118 | "execution_count": 12, 1119 | "metadata": {}, 1120 | "output_type": "execute_result" 1121 | } 1122 | ], 1123 | "source": [ 1124 | "hopeless_tweets_df.head()" 1125 | ] 1126 | }, 1127 | { 1128 | "cell_type": "code", 1129 | "execution_count": null, 1130 | "metadata": {}, 1131 | "outputs": [], 1132 | "source": [] 1133 | }, 1134 | { 1135 | "cell_type": "code", 1136 | "execution_count": 13, 1137 | "metadata": {}, 1138 | "outputs": [], 1139 | "source": [ 1140 | "lonely_tweets_df = pd.read_csv('lonely/tweets.csv')" 1141 | ] 1142 | }, 1143 | { 1144 | "cell_type": "code", 1145 | "execution_count": 14, 1146 | "metadata": {}, 1147 | "outputs": [ 1148 | { 1149 | "data": { 1150 | "text/html": [ 1151 | "
\n", 1152 | "\n", 1165 | "\n", 1166 | " \n", 1167 | " \n", 1168 | " \n", 1169 | " \n", 1170 | " \n", 1171 | " \n", 1172 | " \n", 1173 | " \n", 1174 | " \n", 1175 | " \n", 1176 | " \n", 1177 | " \n", 1178 | " \n", 1179 | " \n", 1180 | " \n", 1181 | " \n", 1182 | " \n", 1183 | " \n", 1184 | " \n", 1185 | " \n", 1186 | " \n", 1187 | " \n", 1188 | " \n", 1189 | " \n", 1190 | " \n", 1191 | " \n", 1192 | " \n", 1193 | " \n", 1194 | " \n", 1195 | " \n", 1196 | " \n", 1197 | " \n", 1198 | " \n", 1199 | " \n", 1200 | " \n", 1201 | " \n", 1202 | " \n", 1203 | " \n", 1204 | " \n", 1205 | " \n", 1206 | " \n", 1207 | " \n", 1208 | " \n", 1209 | " \n", 1210 | " \n", 1211 | " \n", 1212 | " \n", 1213 | " \n", 1214 | " \n", 1215 | " \n", 1216 | " \n", 1217 | " \n", 1218 | " \n", 1219 | " \n", 1220 | " \n", 1221 | " \n", 1222 | " \n", 1223 | " \n", 1224 | " \n", 1225 | " \n", 1226 | " \n", 1227 | " \n", 1228 | " \n", 1229 | " \n", 1230 | " \n", 1231 | " \n", 1232 | " \n", 1233 | " \n", 1234 | " \n", 1235 | " \n", 1236 | " \n", 1237 | " \n", 1238 | " \n", 1239 | " \n", 1240 | " \n", 1241 | " \n", 1242 | " \n", 1243 | " \n", 1244 | " \n", 1245 | " \n", 1246 | " \n", 1247 | " \n", 1248 | " \n", 1249 | " \n", 1250 | " \n", 1251 | " \n", 1252 | " \n", 1253 | " \n", 1254 | " \n", 1255 | " \n", 1256 | " \n", 1257 | " \n", 1258 | " \n", 1259 | " \n", 1260 | " \n", 1261 | " \n", 1262 | " \n", 1263 | " \n", 1264 | " \n", 1265 | " \n", 1266 | " \n", 1267 | " \n", 1268 | " \n", 1269 | " \n", 1270 | " \n", 1271 | " \n", 1272 | " \n", 1273 | " \n", 1274 | " \n", 1275 | " \n", 1276 | " \n", 1277 | " \n", 1278 | " \n", 1279 | " \n", 1280 | " \n", 1281 | " \n", 1282 | " \n", 1283 | " \n", 1284 | " \n", 1285 | " \n", 1286 | " \n", 1287 | " \n", 1288 | " \n", 1289 | " \n", 1290 | " \n", 1291 | " \n", 1292 | " \n", 1293 | " \n", 1294 | " \n", 1295 | " \n", 1296 | " \n", 1297 | " \n", 1298 | " \n", 1299 | " \n", 1300 | " \n", 1301 | " \n", 1302 | " \n", 1303 | " \n", 1304 | " \n", 1305 | " \n", 1306 | " \n", 1307 | " \n", 1308 | " \n", 1309 | " \n", 1310 | " \n", 1311 | " \n", 1312 | " \n", 1313 | " \n", 1314 | "
idconversation_idcreated_atdatetimetimezoneuser_idusernamenameplace...likes_counthashtagscashtagslinkretweetquote_urlvideouser_rt_idneargeo
01152982582843326466115298258284332646615637274430002019-07-2109:44:03PDT1151002890573701120monbebe93제시카NaN...0[][]https://twitter.com/monbebe93/status/115298258...NaNhttps://twitter.com/OI_IO999/status/1152978766...0NaNNaNNaN
11152982578741284865115291642058767564815637274420002019-07-2109:44:02PDT1065697539259854849sugarplum_skzlonely wolfNaN...0[][]https://twitter.com/sugarplum_skz/status/11529...NaNNaN0NaNNaNNaN
21152982577181024259115297619178104832215637274420002019-07-2109:44:02PDT704212959950667776lonely_walshElizabethNaN...0[][]https://twitter.com/lonely_walsh/status/115298...NaNNaN0NaNNaNNaN
31152982576153239552115298257615323955215637274420002019-07-2109:44:02PDT284959188lonelyoakradioLonely Oak radioNaN...0['#nowplaying'][]https://twitter.com/LonelyOakRadio/status/1152...NaNNaN0NaNNaNNaN
41152982566263296000115298256626329600015637274390002019-07-2109:43:59PDT144328187noelle_amorYaYa🌹NaN...0[][]https://twitter.com/Noelle_Amor/status/1152982...NaNNaN0NaNNaNNaN
\n", 1315 | "

5 rows × 26 columns

\n", 1316 | "
" 1317 | ], 1318 | "text/plain": [ 1319 | " id conversation_id created_at date \\\n", 1320 | "0 1152982582843326466 1152982582843326466 1563727443000 2019-07-21 \n", 1321 | "1 1152982578741284865 1152916420587675648 1563727442000 2019-07-21 \n", 1322 | "2 1152982577181024259 1152976191781048322 1563727442000 2019-07-21 \n", 1323 | "3 1152982576153239552 1152982576153239552 1563727442000 2019-07-21 \n", 1324 | "4 1152982566263296000 1152982566263296000 1563727439000 2019-07-21 \n", 1325 | "\n", 1326 | " time timezone user_id username name \\\n", 1327 | "0 09:44:03 PDT 1151002890573701120 monbebe93 제시카 \n", 1328 | "1 09:44:02 PDT 1065697539259854849 sugarplum_skz lonely wolf \n", 1329 | "2 09:44:02 PDT 704212959950667776 lonely_walsh Elizabeth \n", 1330 | "3 09:44:02 PDT 284959188 lonelyoakradio Lonely Oak radio \n", 1331 | "4 09:43:59 PDT 144328187 noelle_amor YaYa🌹 \n", 1332 | "\n", 1333 | " place ... likes_count hashtags cashtags \\\n", 1334 | "0 NaN ... 0 [] [] \n", 1335 | "1 NaN ... 0 [] [] \n", 1336 | "2 NaN ... 0 [] [] \n", 1337 | "3 NaN ... 0 ['#nowplaying'] [] \n", 1338 | "4 NaN ... 0 [] [] \n", 1339 | "\n", 1340 | " link retweet \\\n", 1341 | "0 https://twitter.com/monbebe93/status/115298258... NaN \n", 1342 | "1 https://twitter.com/sugarplum_skz/status/11529... NaN \n", 1343 | "2 https://twitter.com/lonely_walsh/status/115298... NaN \n", 1344 | "3 https://twitter.com/LonelyOakRadio/status/1152... NaN \n", 1345 | "4 https://twitter.com/Noelle_Amor/status/1152982... NaN \n", 1346 | "\n", 1347 | " quote_url video user_rt_id near \\\n", 1348 | "0 https://twitter.com/OI_IO999/status/1152978766... 0 NaN NaN \n", 1349 | "1 NaN 0 NaN NaN \n", 1350 | "2 NaN 0 NaN NaN \n", 1351 | "3 NaN 0 NaN NaN \n", 1352 | "4 NaN 0 NaN NaN \n", 1353 | "\n", 1354 | " geo \n", 1355 | "0 NaN \n", 1356 | "1 NaN \n", 1357 | "2 NaN \n", 1358 | "3 NaN \n", 1359 | "4 NaN \n", 1360 | "\n", 1361 | "[5 rows x 26 columns]" 1362 | ] 1363 | }, 1364 | "execution_count": 14, 1365 | "metadata": {}, 1366 | "output_type": "execute_result" 1367 | } 1368 | ], 1369 | "source": [ 1370 | "lonely_tweets_df.head()" 1371 | ] 1372 | }, 1373 | { 1374 | "cell_type": "code", 1375 | "execution_count": 15, 1376 | "metadata": {}, 1377 | "outputs": [], 1378 | "source": [ 1379 | "lonely_tweets_df.drop(['date', 'timezone', 'username', 'name', 'conversation_id', 'created_at', 'user_id', 'place', 'likes_count', 'link', 'retweet', 'quote_url', 'video', 'user_rt_id', 'near', 'geo', 'mentions', 'urls', 'photos', 'replies_count', 'retweets_count'], axis = 1, inplace = True)" 1380 | ] 1381 | }, 1382 | { 1383 | "cell_type": "code", 1384 | "execution_count": 16, 1385 | "metadata": {}, 1386 | "outputs": [ 1387 | { 1388 | "data": { 1389 | "text/html": [ 1390 | "
\n", 1391 | "\n", 1404 | "\n", 1405 | " \n", 1406 | " \n", 1407 | " \n", 1408 | " \n", 1409 | " \n", 1410 | " \n", 1411 | " \n", 1412 | " \n", 1413 | " \n", 1414 | " \n", 1415 | " \n", 1416 | " \n", 1417 | " \n", 1418 | " \n", 1419 | " \n", 1420 | " \n", 1421 | " \n", 1422 | " \n", 1423 | " \n", 1424 | " \n", 1425 | " \n", 1426 | " \n", 1427 | " \n", 1428 | " \n", 1429 | " \n", 1430 | " \n", 1431 | " \n", 1432 | " \n", 1433 | " \n", 1434 | " \n", 1435 | " \n", 1436 | " \n", 1437 | " \n", 1438 | " \n", 1439 | " \n", 1440 | " \n", 1441 | " \n", 1442 | " \n", 1443 | " \n", 1444 | " \n", 1445 | " \n", 1446 | " \n", 1447 | " \n", 1448 | " \n", 1449 | " \n", 1450 | " \n", 1451 | " \n", 1452 | " \n", 1453 | " \n", 1454 | " \n", 1455 | " \n", 1456 | " \n", 1457 | "
idtimetweethashtagscashtags
0115298258284332646609:44:03i dont know why but he looks so lonely in this...[][]
1115298257874128486509:44:02Я после того как увидела их начала отращивать ...[][]
2115298257718102425909:44:02Even follow you on all social networks[][]
3115298257615323955209:44:02#Nowplaying: Garmonsway, Gibbon and Harrington...['#nowplaying'][]
4115298256626329600009:43:59Laying in this hammock every Sunday alone is g...[][]
\n", 1458 | "
" 1459 | ], 1460 | "text/plain": [ 1461 | " id time \\\n", 1462 | "0 1152982582843326466 09:44:03 \n", 1463 | "1 1152982578741284865 09:44:02 \n", 1464 | "2 1152982577181024259 09:44:02 \n", 1465 | "3 1152982576153239552 09:44:02 \n", 1466 | "4 1152982566263296000 09:43:59 \n", 1467 | "\n", 1468 | " tweet hashtags cashtags \n", 1469 | "0 i dont know why but he looks so lonely in this... [] [] \n", 1470 | "1 Я после того как увидела их начала отращивать ... [] [] \n", 1471 | "2 Even follow you on all social networks [] [] \n", 1472 | "3 #Nowplaying: Garmonsway, Gibbon and Harrington... ['#nowplaying'] [] \n", 1473 | "4 Laying in this hammock every Sunday alone is g... [] [] " 1474 | ] 1475 | }, 1476 | "execution_count": 16, 1477 | "metadata": {}, 1478 | "output_type": "execute_result" 1479 | } 1480 | ], 1481 | "source": [ 1482 | "lonely_tweets_df.head()" 1483 | ] 1484 | }, 1485 | { 1486 | "cell_type": "code", 1487 | "execution_count": null, 1488 | "metadata": {}, 1489 | "outputs": [], 1490 | "source": [] 1491 | }, 1492 | { 1493 | "cell_type": "code", 1494 | "execution_count": 17, 1495 | "metadata": {}, 1496 | "outputs": [], 1497 | "source": [ 1498 | "antidepressant_tweets_df = pd.read_csv('antidepressant/tweets.csv')" 1499 | ] 1500 | }, 1501 | { 1502 | "cell_type": "code", 1503 | "execution_count": 18, 1504 | "metadata": {}, 1505 | "outputs": [ 1506 | { 1507 | "data": { 1508 | "text/html": [ 1509 | "
\n", 1510 | "\n", 1523 | "\n", 1524 | " \n", 1525 | " \n", 1526 | " \n", 1527 | " \n", 1528 | " \n", 1529 | " \n", 1530 | " \n", 1531 | " \n", 1532 | " \n", 1533 | " \n", 1534 | " \n", 1535 | " \n", 1536 | " \n", 1537 | " \n", 1538 | " \n", 1539 | " \n", 1540 | " \n", 1541 | " \n", 1542 | " \n", 1543 | " \n", 1544 | " \n", 1545 | " \n", 1546 | " \n", 1547 | " \n", 1548 | " \n", 1549 | " \n", 1550 | " \n", 1551 | " \n", 1552 | " \n", 1553 | " \n", 1554 | " \n", 1555 | " \n", 1556 | " \n", 1557 | " \n", 1558 | " \n", 1559 | " \n", 1560 | " \n", 1561 | " \n", 1562 | " \n", 1563 | " \n", 1564 | " \n", 1565 | " \n", 1566 | " \n", 1567 | " \n", 1568 | " \n", 1569 | " \n", 1570 | " \n", 1571 | " \n", 1572 | " \n", 1573 | " \n", 1574 | " \n", 1575 | " \n", 1576 | " \n", 1577 | " \n", 1578 | " \n", 1579 | " \n", 1580 | " \n", 1581 | " \n", 1582 | " \n", 1583 | " \n", 1584 | " \n", 1585 | " \n", 1586 | " \n", 1587 | " \n", 1588 | " \n", 1589 | " \n", 1590 | " \n", 1591 | " \n", 1592 | " \n", 1593 | " \n", 1594 | " \n", 1595 | " \n", 1596 | " \n", 1597 | " \n", 1598 | " \n", 1599 | " \n", 1600 | " \n", 1601 | " \n", 1602 | " \n", 1603 | " \n", 1604 | " \n", 1605 | " \n", 1606 | " \n", 1607 | " \n", 1608 | " \n", 1609 | " \n", 1610 | " \n", 1611 | " \n", 1612 | " \n", 1613 | " \n", 1614 | " \n", 1615 | " \n", 1616 | " \n", 1617 | " \n", 1618 | " \n", 1619 | " \n", 1620 | " \n", 1621 | " \n", 1622 | " \n", 1623 | " \n", 1624 | " \n", 1625 | " \n", 1626 | " \n", 1627 | " \n", 1628 | " \n", 1629 | " \n", 1630 | " \n", 1631 | " \n", 1632 | " \n", 1633 | " \n", 1634 | " \n", 1635 | " \n", 1636 | " \n", 1637 | " \n", 1638 | " \n", 1639 | " \n", 1640 | " \n", 1641 | " \n", 1642 | " \n", 1643 | " \n", 1644 | " \n", 1645 | " \n", 1646 | " \n", 1647 | " \n", 1648 | " \n", 1649 | " \n", 1650 | " \n", 1651 | " \n", 1652 | " \n", 1653 | " \n", 1654 | " \n", 1655 | " \n", 1656 | " \n", 1657 | " \n", 1658 | " \n", 1659 | " \n", 1660 | " \n", 1661 | " \n", 1662 | " \n", 1663 | " \n", 1664 | " \n", 1665 | " \n", 1666 | " \n", 1667 | " \n", 1668 | " \n", 1669 | " \n", 1670 | " \n", 1671 | " \n", 1672 | "
idconversation_idcreated_atdatetimetimezoneuser_idusernamenameplace...likes_counthashtagscashtagslinkretweetquote_urlvideouser_rt_idneargeo
01152991919137538048115299190839173939215637296690002019-07-2110:21:09PDT794617098106441728harlequimsyDarnielle 🤦🏻‍♀️NaN...0[][]https://twitter.com/harlequimsy/status/1152991...NaNNaN0NaNNaNNaN
11152991631722913793115299163172291379315637296010002019-07-2110:20:01PDT959487925992947714aspiringapolloAnthonyNaN...0[][]https://twitter.com/AspiringApollo/status/1152...NaNNaN0NaNNaNNaN
21152991531789406209115298602344773222415637295770002019-07-2110:19:37PDT2391838146al_pal_22brogramNaN...0[][]https://twitter.com/al_pal_22/status/115299153...NaNNaN0NaNNaNNaN
31152991116733628416115299111673362841615637294780002019-07-2110:17:58PDT510205955icebergedIceberg SelfHelpNaN...0['#medication', '#antidepressants', '#eatingdi...[]https://twitter.com/IcebergED/status/115299111...NaNNaN0NaNNaNNaN
41152990783420751872115286267945279078515637293980002019-07-2110:16:38PDT34530161matchlessmarieAmanda [matchless] MarieNaN...1[][]https://twitter.com/MatchlessMarie/status/1152...NaNNaN0NaNNaNNaN
\n", 1673 | "

5 rows × 26 columns

\n", 1674 | "
" 1675 | ], 1676 | "text/plain": [ 1677 | " id conversation_id created_at date \\\n", 1678 | "0 1152991919137538048 1152991908391739392 1563729669000 2019-07-21 \n", 1679 | "1 1152991631722913793 1152991631722913793 1563729601000 2019-07-21 \n", 1680 | "2 1152991531789406209 1152986023447732224 1563729577000 2019-07-21 \n", 1681 | "3 1152991116733628416 1152991116733628416 1563729478000 2019-07-21 \n", 1682 | "4 1152990783420751872 1152862679452790785 1563729398000 2019-07-21 \n", 1683 | "\n", 1684 | " time timezone user_id username \\\n", 1685 | "0 10:21:09 PDT 794617098106441728 harlequimsy \n", 1686 | "1 10:20:01 PDT 959487925992947714 aspiringapollo \n", 1687 | "2 10:19:37 PDT 2391838146 al_pal_22 \n", 1688 | "3 10:17:58 PDT 510205955 iceberged \n", 1689 | "4 10:16:38 PDT 34530161 matchlessmarie \n", 1690 | "\n", 1691 | " name place ... likes_count \\\n", 1692 | "0 Darnielle 🤦🏻‍♀️ NaN ... 0 \n", 1693 | "1 Anthony NaN ... 0 \n", 1694 | "2 brogram NaN ... 0 \n", 1695 | "3 Iceberg SelfHelp NaN ... 0 \n", 1696 | "4 Amanda [matchless] Marie NaN ... 1 \n", 1697 | "\n", 1698 | " hashtags cashtags \\\n", 1699 | "0 [] [] \n", 1700 | "1 [] [] \n", 1701 | "2 [] [] \n", 1702 | "3 ['#medication', '#antidepressants', '#eatingdi... [] \n", 1703 | "4 [] [] \n", 1704 | "\n", 1705 | " link retweet quote_url \\\n", 1706 | "0 https://twitter.com/harlequimsy/status/1152991... NaN NaN \n", 1707 | "1 https://twitter.com/AspiringApollo/status/1152... NaN NaN \n", 1708 | "2 https://twitter.com/al_pal_22/status/115299153... NaN NaN \n", 1709 | "3 https://twitter.com/IcebergED/status/115299111... NaN NaN \n", 1710 | "4 https://twitter.com/MatchlessMarie/status/1152... NaN NaN \n", 1711 | "\n", 1712 | " video user_rt_id near geo \n", 1713 | "0 0 NaN NaN NaN \n", 1714 | "1 0 NaN NaN NaN \n", 1715 | "2 0 NaN NaN NaN \n", 1716 | "3 0 NaN NaN NaN \n", 1717 | "4 0 NaN NaN NaN \n", 1718 | "\n", 1719 | "[5 rows x 26 columns]" 1720 | ] 1721 | }, 1722 | "execution_count": 18, 1723 | "metadata": {}, 1724 | "output_type": "execute_result" 1725 | } 1726 | ], 1727 | "source": [ 1728 | "antidepressant_tweets_df.head()" 1729 | ] 1730 | }, 1731 | { 1732 | "cell_type": "code", 1733 | "execution_count": 19, 1734 | "metadata": {}, 1735 | "outputs": [], 1736 | "source": [ 1737 | "antidepressant_tweets_df.drop(['date', 'timezone', 'username', 'name', 'conversation_id', 'created_at', 'user_id', 'place', 'likes_count', 'link', 'retweet', 'quote_url', 'video', 'user_rt_id', 'near', 'geo', 'mentions', 'urls', 'photos', 'replies_count', 'retweets_count'], axis = 1, inplace = True)" 1738 | ] 1739 | }, 1740 | { 1741 | "cell_type": "code", 1742 | "execution_count": 20, 1743 | "metadata": {}, 1744 | "outputs": [ 1745 | { 1746 | "data": { 1747 | "text/html": [ 1748 | "
\n", 1749 | "\n", 1762 | "\n", 1763 | " \n", 1764 | " \n", 1765 | " \n", 1766 | " \n", 1767 | " \n", 1768 | " \n", 1769 | " \n", 1770 | " \n", 1771 | " \n", 1772 | " \n", 1773 | " \n", 1774 | " \n", 1775 | " \n", 1776 | " \n", 1777 | " \n", 1778 | " \n", 1779 | " \n", 1780 | " \n", 1781 | " \n", 1782 | " \n", 1783 | " \n", 1784 | " \n", 1785 | " \n", 1786 | " \n", 1787 | " \n", 1788 | " \n", 1789 | " \n", 1790 | " \n", 1791 | " \n", 1792 | " \n", 1793 | " \n", 1794 | " \n", 1795 | " \n", 1796 | " \n", 1797 | " \n", 1798 | " \n", 1799 | " \n", 1800 | " \n", 1801 | " \n", 1802 | " \n", 1803 | " \n", 1804 | " \n", 1805 | " \n", 1806 | " \n", 1807 | " \n", 1808 | " \n", 1809 | " \n", 1810 | " \n", 1811 | " \n", 1812 | " \n", 1813 | " \n", 1814 | " \n", 1815 | "
idtimetweethashtagscashtags
0115299191913753804810:21:09I hate that the antidepressants made me feel w...[][]
1115299163172291379310:20:01Your beliefs ultimately are manifested in your...[][]
2115299153178940620910:19:37I think current trends lead to a world where e...[][]
3115299111673362841610:17:58Anti-Depressants and Recovery https://www.mar...['#medication', '#antidepressants', '#eatingdi...[]
4115299078342075187210:16:38Have you thought about getting a sleep study d...[][]
\n", 1816 | "
" 1817 | ], 1818 | "text/plain": [ 1819 | " id time \\\n", 1820 | "0 1152991919137538048 10:21:09 \n", 1821 | "1 1152991631722913793 10:20:01 \n", 1822 | "2 1152991531789406209 10:19:37 \n", 1823 | "3 1152991116733628416 10:17:58 \n", 1824 | "4 1152990783420751872 10:16:38 \n", 1825 | "\n", 1826 | " tweet \\\n", 1827 | "0 I hate that the antidepressants made me feel w... \n", 1828 | "1 Your beliefs ultimately are manifested in your... \n", 1829 | "2 I think current trends lead to a world where e... \n", 1830 | "3 Anti-Depressants and Recovery https://www.mar... \n", 1831 | "4 Have you thought about getting a sleep study d... \n", 1832 | "\n", 1833 | " hashtags cashtags \n", 1834 | "0 [] [] \n", 1835 | "1 [] [] \n", 1836 | "2 [] [] \n", 1837 | "3 ['#medication', '#antidepressants', '#eatingdi... [] \n", 1838 | "4 [] [] " 1839 | ] 1840 | }, 1841 | "execution_count": 20, 1842 | "metadata": {}, 1843 | "output_type": "execute_result" 1844 | } 1845 | ], 1846 | "source": [ 1847 | "antidepressant_tweets_df.head()" 1848 | ] 1849 | }, 1850 | { 1851 | "cell_type": "code", 1852 | "execution_count": null, 1853 | "metadata": {}, 1854 | "outputs": [], 1855 | "source": [] 1856 | }, 1857 | { 1858 | "cell_type": "code", 1859 | "execution_count": 21, 1860 | "metadata": {}, 1861 | "outputs": [], 1862 | "source": [ 1863 | "antidepressants_tweets_df = pd.read_csv('antidepressants/tweets.csv')" 1864 | ] 1865 | }, 1866 | { 1867 | "cell_type": "code", 1868 | "execution_count": 22, 1869 | "metadata": {}, 1870 | "outputs": [ 1871 | { 1872 | "data": { 1873 | "text/html": [ 1874 | "
\n", 1875 | "\n", 1888 | "\n", 1889 | " \n", 1890 | " \n", 1891 | " \n", 1892 | " \n", 1893 | " \n", 1894 | " \n", 1895 | " \n", 1896 | " \n", 1897 | " \n", 1898 | " \n", 1899 | " \n", 1900 | " \n", 1901 | " \n", 1902 | " \n", 1903 | " \n", 1904 | " \n", 1905 | " \n", 1906 | " \n", 1907 | " \n", 1908 | " \n", 1909 | " \n", 1910 | " \n", 1911 | " \n", 1912 | " \n", 1913 | " \n", 1914 | " \n", 1915 | " \n", 1916 | " \n", 1917 | " \n", 1918 | " \n", 1919 | " \n", 1920 | " \n", 1921 | " \n", 1922 | " \n", 1923 | " \n", 1924 | " \n", 1925 | " \n", 1926 | " \n", 1927 | " \n", 1928 | " \n", 1929 | " \n", 1930 | " \n", 1931 | " \n", 1932 | " \n", 1933 | " \n", 1934 | " \n", 1935 | " \n", 1936 | " \n", 1937 | " \n", 1938 | " \n", 1939 | " \n", 1940 | " \n", 1941 | " \n", 1942 | " \n", 1943 | " \n", 1944 | " \n", 1945 | " \n", 1946 | " \n", 1947 | " \n", 1948 | " \n", 1949 | " \n", 1950 | " \n", 1951 | " \n", 1952 | " \n", 1953 | " \n", 1954 | " \n", 1955 | " \n", 1956 | " \n", 1957 | " \n", 1958 | " \n", 1959 | " \n", 1960 | " \n", 1961 | " \n", 1962 | " \n", 1963 | " \n", 1964 | " \n", 1965 | " \n", 1966 | " \n", 1967 | " \n", 1968 | " \n", 1969 | " \n", 1970 | " \n", 1971 | " \n", 1972 | " \n", 1973 | " \n", 1974 | " \n", 1975 | " \n", 1976 | " \n", 1977 | " \n", 1978 | " \n", 1979 | " \n", 1980 | " \n", 1981 | " \n", 1982 | " \n", 1983 | " \n", 1984 | " \n", 1985 | " \n", 1986 | " \n", 1987 | " \n", 1988 | " \n", 1989 | " \n", 1990 | " \n", 1991 | " \n", 1992 | " \n", 1993 | " \n", 1994 | " \n", 1995 | " \n", 1996 | " \n", 1997 | " \n", 1998 | " \n", 1999 | " \n", 2000 | " \n", 2001 | " \n", 2002 | " \n", 2003 | " \n", 2004 | " \n", 2005 | " \n", 2006 | " \n", 2007 | " \n", 2008 | " \n", 2009 | " \n", 2010 | " \n", 2011 | " \n", 2012 | " \n", 2013 | " \n", 2014 | " \n", 2015 | " \n", 2016 | " \n", 2017 | " \n", 2018 | " \n", 2019 | " \n", 2020 | " \n", 2021 | " \n", 2022 | " \n", 2023 | " \n", 2024 | " \n", 2025 | " \n", 2026 | " \n", 2027 | " \n", 2028 | " \n", 2029 | " \n", 2030 | " \n", 2031 | " \n", 2032 | " \n", 2033 | " \n", 2034 | " \n", 2035 | " \n", 2036 | " \n", 2037 | "
idconversation_idcreated_atdatetimetimezoneuser_idusernamenameplace...likes_counthashtagscashtagslinkretweetquote_urlvideouser_rt_idneargeo
01152995178359218176115299517835921817615637304460002019-07-2110:34:06PDT1134809541818929152neumnelo🍓⚢NaN...0[][]https://twitter.com/neumnelo/status/1152995178...NaNNaN0NaNNaNNaN
11152994945537576960115299494553757696015637303910002019-07-2110:33:11PDT709759485162598400csevern5C SevernNaN...0[][]https://twitter.com/csevern5/status/1152994945...NaNNaN0NaNNaNNaN
21152994834359209985115299414570063462515637303640002019-07-2110:32:44PDT969718541703368704healingaprioriA Kid That Knows NothingNaN...0[][]https://twitter.com/healingapriori/status/1152...NaNNaN0NaNNaNNaN
31152994452606033920115299445260603392015637302730002019-07-2110:31:13PDT864470942159953920liferenewedjaxLife Renewed CounselingNaN...0[][]https://twitter.com/liferenewedjax/status/1152...NaNNaN0NaNNaNNaN
41152994432188370949115299443218837094915637302680002019-07-2110:31:08PDT1029517541608108033glitterfairy420𝕵𝖊𝖓𝖓𝖎𝖋𝖊𝖗★NaN...0[][]https://twitter.com/Glitterfairy420/status/115...NaNNaN0NaNNaNNaN
\n", 2038 | "

5 rows × 26 columns

\n", 2039 | "
" 2040 | ], 2041 | "text/plain": [ 2042 | " id conversation_id created_at date \\\n", 2043 | "0 1152995178359218176 1152995178359218176 1563730446000 2019-07-21 \n", 2044 | "1 1152994945537576960 1152994945537576960 1563730391000 2019-07-21 \n", 2045 | "2 1152994834359209985 1152994145700634625 1563730364000 2019-07-21 \n", 2046 | "3 1152994452606033920 1152994452606033920 1563730273000 2019-07-21 \n", 2047 | "4 1152994432188370949 1152994432188370949 1563730268000 2019-07-21 \n", 2048 | "\n", 2049 | " time timezone user_id username \\\n", 2050 | "0 10:34:06 PDT 1134809541818929152 neumnelo \n", 2051 | "1 10:33:11 PDT 709759485162598400 csevern5 \n", 2052 | "2 10:32:44 PDT 969718541703368704 healingapriori \n", 2053 | "3 10:31:13 PDT 864470942159953920 liferenewedjax \n", 2054 | "4 10:31:08 PDT 1029517541608108033 glitterfairy420 \n", 2055 | "\n", 2056 | " name place ... likes_count hashtags cashtags \\\n", 2057 | "0 🍓⚢ NaN ... 0 [] [] \n", 2058 | "1 C Severn NaN ... 0 [] [] \n", 2059 | "2 A Kid That Knows Nothing NaN ... 0 [] [] \n", 2060 | "3 Life Renewed Counseling NaN ... 0 [] [] \n", 2061 | "4 𝕵𝖊𝖓𝖓𝖎𝖋𝖊𝖗★ NaN ... 0 [] [] \n", 2062 | "\n", 2063 | " link retweet quote_url \\\n", 2064 | "0 https://twitter.com/neumnelo/status/1152995178... NaN NaN \n", 2065 | "1 https://twitter.com/csevern5/status/1152994945... NaN NaN \n", 2066 | "2 https://twitter.com/healingapriori/status/1152... NaN NaN \n", 2067 | "3 https://twitter.com/liferenewedjax/status/1152... NaN NaN \n", 2068 | "4 https://twitter.com/Glitterfairy420/status/115... NaN NaN \n", 2069 | "\n", 2070 | " video user_rt_id near geo \n", 2071 | "0 0 NaN NaN NaN \n", 2072 | "1 0 NaN NaN NaN \n", 2073 | "2 0 NaN NaN NaN \n", 2074 | "3 0 NaN NaN NaN \n", 2075 | "4 0 NaN NaN NaN \n", 2076 | "\n", 2077 | "[5 rows x 26 columns]" 2078 | ] 2079 | }, 2080 | "execution_count": 22, 2081 | "metadata": {}, 2082 | "output_type": "execute_result" 2083 | } 2084 | ], 2085 | "source": [ 2086 | "antidepressants_tweets_df.head()" 2087 | ] 2088 | }, 2089 | { 2090 | "cell_type": "code", 2091 | "execution_count": 23, 2092 | "metadata": {}, 2093 | "outputs": [], 2094 | "source": [ 2095 | "antidepressants_tweets_df.drop(['date', 'timezone', 'username', 'name', 'conversation_id', 'created_at', 'user_id', 'place', 'likes_count', 'link', 'retweet', 'quote_url', 'video', 'user_rt_id', 'near', 'geo', 'mentions', 'urls', 'photos', 'replies_count', 'retweets_count'], axis = 1, inplace = True)" 2096 | ] 2097 | }, 2098 | { 2099 | "cell_type": "code", 2100 | "execution_count": 24, 2101 | "metadata": {}, 2102 | "outputs": [ 2103 | { 2104 | "data": { 2105 | "text/html": [ 2106 | "
\n", 2107 | "\n", 2120 | "\n", 2121 | " \n", 2122 | " \n", 2123 | " \n", 2124 | " \n", 2125 | " \n", 2126 | " \n", 2127 | " \n", 2128 | " \n", 2129 | " \n", 2130 | " \n", 2131 | " \n", 2132 | " \n", 2133 | " \n", 2134 | " \n", 2135 | " \n", 2136 | " \n", 2137 | " \n", 2138 | " \n", 2139 | " \n", 2140 | " \n", 2141 | " \n", 2142 | " \n", 2143 | " \n", 2144 | " \n", 2145 | " \n", 2146 | " \n", 2147 | " \n", 2148 | " \n", 2149 | " \n", 2150 | " \n", 2151 | " \n", 2152 | " \n", 2153 | " \n", 2154 | " \n", 2155 | " \n", 2156 | " \n", 2157 | " \n", 2158 | " \n", 2159 | " \n", 2160 | " \n", 2161 | " \n", 2162 | " \n", 2163 | " \n", 2164 | " \n", 2165 | " \n", 2166 | " \n", 2167 | " \n", 2168 | " \n", 2169 | " \n", 2170 | " \n", 2171 | " \n", 2172 | " \n", 2173 | "
idtimetweethashtagscashtags
0115299517835921817610:34:06i can't think logically and all of shit i say ...[][]
1115299494553757696010:33:11Recently moved to Australia and was ASTOUNDED ...[][]
2115299483435920998510:32:44Maybe I should go back on my antidepressants. ...[][]
3115299445260603392010:31:13What It’s Like to Know You’ll Be on Antidepres...[][]
4115299443218837094910:31:08Do antidepressants work? :/[][]
\n", 2174 | "
" 2175 | ], 2176 | "text/plain": [ 2177 | " id time \\\n", 2178 | "0 1152995178359218176 10:34:06 \n", 2179 | "1 1152994945537576960 10:33:11 \n", 2180 | "2 1152994834359209985 10:32:44 \n", 2181 | "3 1152994452606033920 10:31:13 \n", 2182 | "4 1152994432188370949 10:31:08 \n", 2183 | "\n", 2184 | " tweet hashtags cashtags \n", 2185 | "0 i can't think logically and all of shit i say ... [] [] \n", 2186 | "1 Recently moved to Australia and was ASTOUNDED ... [] [] \n", 2187 | "2 Maybe I should go back on my antidepressants. ... [] [] \n", 2188 | "3 What It’s Like to Know You’ll Be on Antidepres... [] [] \n", 2189 | "4 Do antidepressants work? :/ [] [] " 2190 | ] 2191 | }, 2192 | "execution_count": 24, 2193 | "metadata": {}, 2194 | "output_type": "execute_result" 2195 | } 2196 | ], 2197 | "source": [ 2198 | "antidepressants_tweets_df.head()" 2199 | ] 2200 | }, 2201 | { 2202 | "cell_type": "code", 2203 | "execution_count": null, 2204 | "metadata": {}, 2205 | "outputs": [], 2206 | "source": [] 2207 | }, 2208 | { 2209 | "cell_type": "code", 2210 | "execution_count": 25, 2211 | "metadata": {}, 2212 | "outputs": [], 2213 | "source": [ 2214 | "suicide_tweets_df = pd.read_csv('suicide/tweets.csv')" 2215 | ] 2216 | }, 2217 | { 2218 | "cell_type": "code", 2219 | "execution_count": 26, 2220 | "metadata": {}, 2221 | "outputs": [ 2222 | { 2223 | "data": { 2224 | "text/html": [ 2225 | "
\n", 2226 | "\n", 2239 | "\n", 2240 | " \n", 2241 | " \n", 2242 | " \n", 2243 | " \n", 2244 | " \n", 2245 | " \n", 2246 | " \n", 2247 | " \n", 2248 | " \n", 2249 | " \n", 2250 | " \n", 2251 | " \n", 2252 | " \n", 2253 | " \n", 2254 | " \n", 2255 | " \n", 2256 | " \n", 2257 | " \n", 2258 | " \n", 2259 | " \n", 2260 | " \n", 2261 | " \n", 2262 | " \n", 2263 | " \n", 2264 | " \n", 2265 | " \n", 2266 | " \n", 2267 | " \n", 2268 | " \n", 2269 | " \n", 2270 | " \n", 2271 | " \n", 2272 | " \n", 2273 | " \n", 2274 | " \n", 2275 | " \n", 2276 | " \n", 2277 | " \n", 2278 | " \n", 2279 | " \n", 2280 | " \n", 2281 | " \n", 2282 | " \n", 2283 | " \n", 2284 | " \n", 2285 | " \n", 2286 | " \n", 2287 | " \n", 2288 | " \n", 2289 | " \n", 2290 | " \n", 2291 | " \n", 2292 | " \n", 2293 | " \n", 2294 | " \n", 2295 | " \n", 2296 | " \n", 2297 | " \n", 2298 | " \n", 2299 | " \n", 2300 | " \n", 2301 | " \n", 2302 | " \n", 2303 | " \n", 2304 | " \n", 2305 | " \n", 2306 | " \n", 2307 | " \n", 2308 | " \n", 2309 | " \n", 2310 | " \n", 2311 | " \n", 2312 | " \n", 2313 | " \n", 2314 | " \n", 2315 | " \n", 2316 | " \n", 2317 | " \n", 2318 | " \n", 2319 | " \n", 2320 | " \n", 2321 | " \n", 2322 | " \n", 2323 | " \n", 2324 | " \n", 2325 | " \n", 2326 | " \n", 2327 | " \n", 2328 | " \n", 2329 | " \n", 2330 | " \n", 2331 | " \n", 2332 | " \n", 2333 | " \n", 2334 | " \n", 2335 | " \n", 2336 | " \n", 2337 | " \n", 2338 | " \n", 2339 | " \n", 2340 | " \n", 2341 | " \n", 2342 | " \n", 2343 | " \n", 2344 | " \n", 2345 | " \n", 2346 | " \n", 2347 | " \n", 2348 | " \n", 2349 | " \n", 2350 | " \n", 2351 | " \n", 2352 | " \n", 2353 | " \n", 2354 | " \n", 2355 | " \n", 2356 | " \n", 2357 | " \n", 2358 | " \n", 2359 | " \n", 2360 | " \n", 2361 | " \n", 2362 | " \n", 2363 | " \n", 2364 | " \n", 2365 | " \n", 2366 | " \n", 2367 | " \n", 2368 | " \n", 2369 | " \n", 2370 | " \n", 2371 | " \n", 2372 | " \n", 2373 | " \n", 2374 | " \n", 2375 | " \n", 2376 | " \n", 2377 | " \n", 2378 | " \n", 2379 | " \n", 2380 | " \n", 2381 | " \n", 2382 | " \n", 2383 | " \n", 2384 | " \n", 2385 | " \n", 2386 | " \n", 2387 | " \n", 2388 | "
idconversation_idcreated_atdatetimetimezoneuser_idusernamenameplace...likes_counthashtagscashtagslinkretweetquote_urlvideouser_rt_idneargeo
01152996044604682241115299604460468224115637306530002019-07-2110:37:33PDT2958699552imonlyljMisunderśtøød x Mìdaś ㊗️️NaN...0[][]https://twitter.com/ImonlyLj/status/1152996044...NaNNaN0NaNNaNNaN
11152995993148899329115299599314889932915637306410002019-07-2110:37:21PDT29907109_kingnealKing.NaN...0[][]https://twitter.com/_kingneal/status/115299599...NaNNaN0NaNNaNNaN
21152995985053900800115299598505390080015637306390002019-07-2110:37:19PDT1152971452846694401ventingbrokenVenting (More people are broken than it seems)NaN...0[][]https://twitter.com/VentingBroken/status/11529...NaNNaN0NaNNaNNaN
31152995984642887683115299598464288768315637306390002019-07-2110:37:19PDT2561945708awesome_thebestJust meNaN...0[][]https://twitter.com/awesome_thebest/status/115...NaNNaN0NaNNaNNaN
41152995955559620608115299595555962060815637306320002019-07-2110:37:12PDT891371293563596800drmo7ogDr.mo7ogNaN...0['#sam', '#suicide'][]https://twitter.com/DrMo7oG/status/11529959555...NaNNaN0NaNNaNNaN
\n", 2389 | "

5 rows × 26 columns

\n", 2390 | "
" 2391 | ], 2392 | "text/plain": [ 2393 | " id conversation_id created_at date \\\n", 2394 | "0 1152996044604682241 1152996044604682241 1563730653000 2019-07-21 \n", 2395 | "1 1152995993148899329 1152995993148899329 1563730641000 2019-07-21 \n", 2396 | "2 1152995985053900800 1152995985053900800 1563730639000 2019-07-21 \n", 2397 | "3 1152995984642887683 1152995984642887683 1563730639000 2019-07-21 \n", 2398 | "4 1152995955559620608 1152995955559620608 1563730632000 2019-07-21 \n", 2399 | "\n", 2400 | " time timezone user_id username \\\n", 2401 | "0 10:37:33 PDT 2958699552 imonlylj \n", 2402 | "1 10:37:21 PDT 29907109 _kingneal \n", 2403 | "2 10:37:19 PDT 1152971452846694401 ventingbroken \n", 2404 | "3 10:37:19 PDT 2561945708 awesome_thebest \n", 2405 | "4 10:37:12 PDT 891371293563596800 drmo7og \n", 2406 | "\n", 2407 | " name place ... likes_count \\\n", 2408 | "0 Misunderśtøød x Mìdaś ㊗️️ NaN ... 0 \n", 2409 | "1 King. NaN ... 0 \n", 2410 | "2 Venting (More people are broken than it seems) NaN ... 0 \n", 2411 | "3 Just me NaN ... 0 \n", 2412 | "4 Dr.mo7og NaN ... 0 \n", 2413 | "\n", 2414 | " hashtags cashtags \\\n", 2415 | "0 [] [] \n", 2416 | "1 [] [] \n", 2417 | "2 [] [] \n", 2418 | "3 [] [] \n", 2419 | "4 ['#sam', '#suicide'] [] \n", 2420 | "\n", 2421 | " link retweet quote_url \\\n", 2422 | "0 https://twitter.com/ImonlyLj/status/1152996044... NaN NaN \n", 2423 | "1 https://twitter.com/_kingneal/status/115299599... NaN NaN \n", 2424 | "2 https://twitter.com/VentingBroken/status/11529... NaN NaN \n", 2425 | "3 https://twitter.com/awesome_thebest/status/115... NaN NaN \n", 2426 | "4 https://twitter.com/DrMo7oG/status/11529959555... NaN NaN \n", 2427 | "\n", 2428 | " video user_rt_id near geo \n", 2429 | "0 0 NaN NaN NaN \n", 2430 | "1 0 NaN NaN NaN \n", 2431 | "2 0 NaN NaN NaN \n", 2432 | "3 0 NaN NaN NaN \n", 2433 | "4 0 NaN NaN NaN \n", 2434 | "\n", 2435 | "[5 rows x 26 columns]" 2436 | ] 2437 | }, 2438 | "execution_count": 26, 2439 | "metadata": {}, 2440 | "output_type": "execute_result" 2441 | } 2442 | ], 2443 | "source": [ 2444 | "suicide_tweets_df.head()" 2445 | ] 2446 | }, 2447 | { 2448 | "cell_type": "code", 2449 | "execution_count": 27, 2450 | "metadata": {}, 2451 | "outputs": [], 2452 | "source": [ 2453 | "suicide_tweets_df.drop(['date', 'timezone', 'username', 'name', 'conversation_id', 'created_at', 'user_id', 'place', 'likes_count', 'link', 'retweet', 'quote_url', 'video', 'user_rt_id', 'near', 'geo', 'mentions', 'urls', 'photos', 'replies_count', 'retweets_count'], axis = 1, inplace = True)" 2454 | ] 2455 | }, 2456 | { 2457 | "cell_type": "code", 2458 | "execution_count": 28, 2459 | "metadata": {}, 2460 | "outputs": [ 2461 | { 2462 | "data": { 2463 | "text/html": [ 2464 | "
\n", 2465 | "\n", 2478 | "\n", 2479 | " \n", 2480 | " \n", 2481 | " \n", 2482 | " \n", 2483 | " \n", 2484 | " \n", 2485 | " \n", 2486 | " \n", 2487 | " \n", 2488 | " \n", 2489 | " \n", 2490 | " \n", 2491 | " \n", 2492 | " \n", 2493 | " \n", 2494 | " \n", 2495 | " \n", 2496 | " \n", 2497 | " \n", 2498 | " \n", 2499 | " \n", 2500 | " \n", 2501 | " \n", 2502 | " \n", 2503 | " \n", 2504 | " \n", 2505 | " \n", 2506 | " \n", 2507 | " \n", 2508 | " \n", 2509 | " \n", 2510 | " \n", 2511 | " \n", 2512 | " \n", 2513 | " \n", 2514 | " \n", 2515 | " \n", 2516 | " \n", 2517 | " \n", 2518 | " \n", 2519 | " \n", 2520 | " \n", 2521 | " \n", 2522 | " \n", 2523 | " \n", 2524 | " \n", 2525 | " \n", 2526 | " \n", 2527 | " \n", 2528 | " \n", 2529 | " \n", 2530 | " \n", 2531 | "
idtimetweethashtagscashtags
0115299604460468224110:37:33Suicide Thoughts ....[][]
1115299599314889932910:37:21If I wake up as a white person in my next life...[][]
2115299598505390080010:37:19I fixed my bio (Cant add a banner because Twit...[][]
3115299598464288768310:37:19Weaponizign Suicide disturbs me a lot Cardi B ...[][]
4115299595555962060810:37:12#sam harcelé par ses camarades de classe se #s...['#sam', '#suicide'][]
\n", 2532 | "
" 2533 | ], 2534 | "text/plain": [ 2535 | " id time \\\n", 2536 | "0 1152996044604682241 10:37:33 \n", 2537 | "1 1152995993148899329 10:37:21 \n", 2538 | "2 1152995985053900800 10:37:19 \n", 2539 | "3 1152995984642887683 10:37:19 \n", 2540 | "4 1152995955559620608 10:37:12 \n", 2541 | "\n", 2542 | " tweet hashtags \\\n", 2543 | "0 Suicide Thoughts .... [] \n", 2544 | "1 If I wake up as a white person in my next life... [] \n", 2545 | "2 I fixed my bio (Cant add a banner because Twit... [] \n", 2546 | "3 Weaponizign Suicide disturbs me a lot Cardi B ... [] \n", 2547 | "4 #sam harcelé par ses camarades de classe se #s... ['#sam', '#suicide'] \n", 2548 | "\n", 2549 | " cashtags \n", 2550 | "0 [] \n", 2551 | "1 [] \n", 2552 | "2 [] \n", 2553 | "3 [] \n", 2554 | "4 [] " 2555 | ] 2556 | }, 2557 | "execution_count": 28, 2558 | "metadata": {}, 2559 | "output_type": "execute_result" 2560 | } 2561 | ], 2562 | "source": [ 2563 | "suicide_tweets_df.head()" 2564 | ] 2565 | }, 2566 | { 2567 | "cell_type": "code", 2568 | "execution_count": null, 2569 | "metadata": {}, 2570 | "outputs": [], 2571 | "source": [] 2572 | }, 2573 | { 2574 | "cell_type": "code", 2575 | "execution_count": 30, 2576 | "metadata": { 2577 | "scrolled": true 2578 | }, 2579 | "outputs": [ 2580 | { 2581 | "name": "stderr", 2582 | "output_type": "stream", 2583 | "text": [ 2584 | "/Users/anneb/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version\n", 2585 | "of pandas will change to not sort by default.\n", 2586 | "\n", 2587 | "To accept the future behavior, pass 'sort=False'.\n", 2588 | "\n", 2589 | "To retain the current behavior and silence the warning, pass 'sort=True'.\n", 2590 | "\n", 2591 | " \"\"\"Entry point for launching an IPython kernel.\n" 2592 | ] 2593 | }, 2594 | { 2595 | "data": { 2596 | "text/html": [ 2597 | "
\n", 2598 | "\n", 2611 | "\n", 2612 | " \n", 2613 | " \n", 2614 | " \n", 2615 | " \n", 2616 | " \n", 2617 | " \n", 2618 | " \n", 2619 | " \n", 2620 | " \n", 2621 | " \n", 2622 | " \n", 2623 | " \n", 2624 | " \n", 2625 | " \n", 2626 | " \n", 2627 | " \n", 2628 | " \n", 2629 | " \n", 2630 | " \n", 2631 | " \n", 2632 | " \n", 2633 | " \n", 2634 | " \n", 2635 | " \n", 2636 | " \n", 2637 | " \n", 2638 | " \n", 2639 | " \n", 2640 | " \n", 2641 | " \n", 2642 | " \n", 2643 | " \n", 2644 | " \n", 2645 | " \n", 2646 | " \n", 2647 | " \n", 2648 | " \n", 2649 | " \n", 2650 | " \n", 2651 | " \n", 2652 | " \n", 2653 | " \n", 2654 | " \n", 2655 | " \n", 2656 | " \n", 2657 | " \n", 2658 | " \n", 2659 | " \n", 2660 | " \n", 2661 | " \n", 2662 | " \n", 2663 | " \n", 2664 | " \n", 2665 | " \n", 2666 | " \n", 2667 | " \n", 2668 | " \n", 2669 | " \n", 2670 | " \n", 2671 | " \n", 2672 | " \n", 2673 | " \n", 2674 | " \n", 2675 | " \n", 2676 | " \n", 2677 | " \n", 2678 | " \n", 2679 | " \n", 2680 | " \n", 2681 | " \n", 2682 | " \n", 2683 | " \n", 2684 | " \n", 2685 | " \n", 2686 | " \n", 2687 | " \n", 2688 | " \n", 2689 | " \n", 2690 | " \n", 2691 | " \n", 2692 | " \n", 2693 | " \n", 2694 | " \n", 2695 | " \n", 2696 | " \n", 2697 | " \n", 2698 | " \n", 2699 | " \n", 2700 | " \n", 2701 | " \n", 2702 | " \n", 2703 | " \n", 2704 | " \n", 2705 | " \n", 2706 | " \n", 2707 | " \n", 2708 | " \n", 2709 | " \n", 2710 | " \n", 2711 | " \n", 2712 | " \n", 2713 | " \n", 2714 | " \n", 2715 | " \n", 2716 | " \n", 2717 | " \n", 2718 | " \n", 2719 | " \n", 2720 | " \n", 2721 | " \n", 2722 | " \n", 2723 | " \n", 2724 | " \n", 2725 | " \n", 2726 | " \n", 2727 | " \n", 2728 | " \n", 2729 | " \n", 2730 | " \n", 2731 | " \n", 2732 | " \n", 2733 | " \n", 2734 | " \n", 2735 | " \n", 2736 | " \n", 2737 | " \n", 2738 | " \n", 2739 | " \n", 2740 | " \n", 2741 | " \n", 2742 | " \n", 2743 | " \n", 2744 | " \n", 2745 | " \n", 2746 | " \n", 2747 | " \n", 2748 | " \n", 2749 | " \n", 2750 | " \n", 2751 | " \n", 2752 | " \n", 2753 | " \n", 2754 | " \n", 2755 | " \n", 2756 | " \n", 2757 | " \n", 2758 | " \n", 2759 | " \n", 2760 | " \n", 2761 | " \n", 2762 | " \n", 2763 | " \n", 2764 | " \n", 2765 | " \n", 2766 | " \n", 2767 | " \n", 2768 | " \n", 2769 | " \n", 2770 | " \n", 2771 | " \n", 2772 | " \n", 2773 | " \n", 2774 | " \n", 2775 | " \n", 2776 | " \n", 2777 | " \n", 2778 | " \n", 2779 | " \n", 2780 | " \n", 2781 | " \n", 2782 | " \n", 2783 | " \n", 2784 | " \n", 2785 | " \n", 2786 | " \n", 2787 | " \n", 2788 | " \n", 2789 | " \n", 2790 | " \n", 2791 | " \n", 2792 | " \n", 2793 | " \n", 2794 | " \n", 2795 | " \n", 2796 | " \n", 2797 | " \n", 2798 | " \n", 2799 | " \n", 2800 | " \n", 2801 | " \n", 2802 | " \n", 2803 | " \n", 2804 | " \n", 2805 | " \n", 2806 | " \n", 2807 | " \n", 2808 | " \n", 2809 | " \n", 2810 | " \n", 2811 | " \n", 2812 | " \n", 2813 | " \n", 2814 | " \n", 2815 | " \n", 2816 | " \n", 2817 | " \n", 2818 | " \n", 2819 | " \n", 2820 | " \n", 2821 | " \n", 2822 | " \n", 2823 | " \n", 2824 | " \n", 2825 | " \n", 2826 | " \n", 2827 | " \n", 2828 | " \n", 2829 | " \n", 2830 | " \n", 2831 | " \n", 2832 | " \n", 2833 | " \n", 2834 | " \n", 2835 | " \n", 2836 | " \n", 2837 | " \n", 2838 | " \n", 2839 | " \n", 2840 | " \n", 2841 | " \n", 2842 | " \n", 2843 | " \n", 2844 | " \n", 2845 | " \n", 2846 | " \n", 2847 | " \n", 2848 | " \n", 2849 | " \n", 2850 | " \n", 2851 | " \n", 2852 | " \n", 2853 | " \n", 2854 | " \n", 2855 | " \n", 2856 | " \n", 2857 | " \n", 2858 | " \n", 2859 | " \n", 2860 | " \n", 2861 | " \n", 2862 | " \n", 2863 | " \n", 2864 | " \n", 2865 | " \n", 2866 | " \n", 2867 | " \n", 2868 | " \n", 2869 | " \n", 2870 | " \n", 2871 | " \n", 2872 | " \n", 2873 | " \n", 2874 | " \n", 2875 | " \n", 2876 | " \n", 2877 | " \n", 2878 | " \n", 2879 | " \n", 2880 | " \n", 2881 | " \n", 2882 | " \n", 2883 | " \n", 2884 | " \n", 2885 | " \n", 2886 | " \n", 2887 | " \n", 2888 | " \n", 2889 | " \n", 2890 | " \n", 2891 | " \n", 2892 | " \n", 2893 | " \n", 2894 | " \n", 2895 | " \n", 2896 | " \n", 2897 | " \n", 2898 | " \n", 2899 | " \n", 2900 | " \n", 2901 | " \n", 2902 | " \n", 2903 | " \n", 2904 | " \n", 2905 | " \n", 2906 | " \n", 2907 | " \n", 2908 | " \n", 2909 | " \n", 2910 | " \n", 2911 | " \n", 2912 | " \n", 2913 | " \n", 2914 | " \n", 2915 | " \n", 2916 | " \n", 2917 | " \n", 2918 | " \n", 2919 | " \n", 2920 | " \n", 2921 | " \n", 2922 | " \n", 2923 | " \n", 2924 | " \n", 2925 | " \n", 2926 | " \n", 2927 | " \n", 2928 | " \n", 2929 | " \n", 2930 | " \n", 2931 | " \n", 2932 | " \n", 2933 | " \n", 2934 | " \n", 2935 | " \n", 2936 | " \n", 2937 | " \n", 2938 | " \n", 2939 | " \n", 2940 | " \n", 2941 | " \n", 2942 | " \n", 2943 | " \n", 2944 | " \n", 2945 | " \n", 2946 | " \n", 2947 | " \n", 2948 | " \n", 2949 | " \n", 2950 | " \n", 2951 | " \n", 2952 | " \n", 2953 | " \n", 2954 | " \n", 2955 | " \n", 2956 | " \n", 2957 | " \n", 2958 | " \n", 2959 | " \n", 2960 | " \n", 2961 | " \n", 2962 | " \n", 2963 | " \n", 2964 | " \n", 2965 | " \n", 2966 | " \n", 2967 | " \n", 2968 | " \n", 2969 | " \n", 2970 | " \n", 2971 | " \n", 2972 | " \n", 2973 | " \n", 2974 | " \n", 2975 | " \n", 2976 | " \n", 2977 | " \n", 2978 | " \n", 2979 | " \n", 2980 | " \n", 2981 | " \n", 2982 | " \n", 2983 | " \n", 2984 | " \n", 2985 | " \n", 2986 | " \n", 2987 | " \n", 2988 | " \n", 2989 | " \n", 2990 | " \n", 2991 | " \n", 2992 | " \n", 2993 | " \n", 2994 | " \n", 2995 | " \n", 2996 | " \n", 2997 | " \n", 2998 | " \n", 2999 | " \n", 3000 | " \n", 3001 | " \n", 3002 | " \n", 3003 | " \n", 3004 | " \n", 3005 | " \n", 3006 | " \n", 3007 | " \n", 3008 | " \n", 3009 | " \n", 3010 | " \n", 3011 | " \n", 3012 | " \n", 3013 | " \n", 3014 | " \n", 3015 | " \n", 3016 | " \n", 3017 | " \n", 3018 | " \n", 3019 | " \n", 3020 | " \n", 3021 | " \n", 3022 | " \n", 3023 | " \n", 3024 | " \n", 3025 | " \n", 3026 | " \n", 3027 | " \n", 3028 | " \n", 3029 | " \n", 3030 | " \n", 3031 | " \n", 3032 | " \n", 3033 | " \n", 3034 | " \n", 3035 | " \n", 3036 | " \n", 3037 | " \n", 3038 | " \n", 3039 | " \n", 3040 | " \n", 3041 | " \n", 3042 | " \n", 3043 | " \n", 3044 | " \n", 3045 | " \n", 3046 | " \n", 3047 | " \n", 3048 | " \n", 3049 | " \n", 3050 | " \n", 3051 | " \n", 3052 | " \n", 3053 | " \n", 3054 | " \n", 3055 | " \n", 3056 | " \n", 3057 | " \n", 3058 | " \n", 3059 | " \n", 3060 | " \n", 3061 | " \n", 3062 | " \n", 3063 | " \n", 3064 | " \n", 3065 | " \n", 3066 | " \n", 3067 | " \n", 3068 | " \n", 3069 | " \n", 3070 | " \n", 3071 | " \n", 3072 | " \n", 3073 | " \n", 3074 | " \n", 3075 | " \n", 3076 | " \n", 3077 | " \n", 3078 | " \n", 3079 | " \n", 3080 | " \n", 3081 | " \n", 3082 | " \n", 3083 | " \n", 3084 | " \n", 3085 | " \n", 3086 | " \n", 3087 | " \n", 3088 | " \n", 3089 | " \n", 3090 | " \n", 3091 | " \n", 3092 | " \n", 3093 | " \n", 3094 | " \n", 3095 | " \n", 3096 | " \n", 3097 | " \n", 3098 | " \n", 3099 | " \n", 3100 | " \n", 3101 | " \n", 3102 | " \n", 3103 | " \n", 3104 | " \n", 3105 | " \n", 3106 | " \n", 3107 | " \n", 3108 | " \n", 3109 | " \n", 3110 | " \n", 3111 | " \n", 3112 | " \n", 3113 | " \n", 3114 | " \n", 3115 | " \n", 3116 | " \n", 3117 | " \n", 3118 | " \n", 3119 | " \n", 3120 | " \n", 3121 | " \n", 3122 | " \n", 3123 | " \n", 3124 | " \n", 3125 | " \n", 3126 | " \n", 3127 | " \n", 3128 | " \n", 3129 | " \n", 3130 | " \n", 3131 | " \n", 3132 | " \n", 3133 | " \n", 3134 | " \n", 3135 | " \n", 3136 | " \n", 3137 | " \n", 3138 | " \n", 3139 | " \n", 3140 | " \n", 3141 | " \n", 3142 | " \n", 3143 | " \n", 3144 | " \n", 3145 | " \n", 3146 | " \n", 3147 | " \n", 3148 | " \n", 3149 | " \n", 3150 | " \n", 3151 | " \n", 3152 | " \n", 3153 | " \n", 3154 | " \n", 3155 | " \n", 3156 | " \n", 3157 | " \n", 3158 | " \n", 3159 | " \n", 3160 | " \n", 3161 | " \n", 3162 | " \n", 3163 | " \n", 3164 | " \n", 3165 | " \n", 3166 | " \n", 3167 | " \n", 3168 | " \n", 3169 | " \n", 3170 | " \n", 3171 | " \n", 3172 | " \n", 3173 | " \n", 3174 | "
Unnamed: 0cashtagshashtagsidtimetweet
00[][]1.15135E+1821:25:13Wow, my dad yday: “you don’t take those stupid...
11[][]1.15135E+1821:25:07what part of this was really harmfult of a lot...
22[]['#depression', '#uncoveringthenewu', '#change...1.15135E+1821:25:06one of the ways I got through my #depression i...
33[][]1.15135E+1821:24:55see i wanna do one of them but they all say th...
44[][]1.15135E+1821:24:51IS IT clinical depression or is it the palpabl...
55[][]1.15135E+1821:24:46My new mantra for dealing with my anxiety/depr...
66[][]1.15135E+1821:24:41Can I get a woot woot for 3 months depression ...
77[][]1.15135E+1821:24:37Hope it's working for you. I was on sertralin...
88[][]1.15135E+1821:24:22When my depression and anxiety strike at the s...
99[][]1.15135E+1821:24:20I want to leave, but I'm still waiting for you...
1010[][]1.15135E+1821:24:07lrt i have FUCKING DEPRESSION
1111[][]1.15135E+1821:24:07If you’re a new mother who is tired from postp...
1212[][]1.15135E+1821:24:04Currently 5:23 and I’ve got depression Ranger...
1313[][]1.15135E+1821:24:01omg wish I could swim cause I'm gonna drown in...
1414[][]1.15135E+1821:24:00I don’t talk about it much at all unless you’r...
1515[][]1.15135E+1821:23:55🚨🚨🚨 If someone can help me by suggesting me ho...
1616[][]1.15135E+1821:23:39luv 2 just start crying bc you're thinking of ...
1717[][]1.15135E+1821:23:33yOu cAnT hUrT mE DePrEsSiOn GoT mE AlReAdY
1818[][]1.15135E+1821:23:32The free market cab cure your depression, just...
1919[][]1.15135E+1821:23:31I’m not steeped enough in the research to have...
2020[]['#triggerwarning']1.15135E+1821:23:28I feel like I can’t work for more than two to ...
2121[][]1.15135E+1821:23:28dvdRadio 102 Still looking for a title. (That...
2222[][]1.15135E+1821:23:27Do you recommend this for every kind of depres...
2323[][]1.15135E+1821:23:26I was having a bad day and was all depressed. ...
2424[][]1.15135E+1821:23:25but it completely makes sense tho it a surviva...
2525[][]1.15135E+1821:23:23For example a top has to know how to deal with...
2626[][]1.15135E+1821:23:17So. Here is the short and skinny about me here...
2727[][]1.15135E+1821:23:12me when someone points out my crippling anxiet...
2828[][]1.15135E+1821:23:05No one: Literally no one: Clair Boucher/ム尺ノᄊ...
2929[][]1.15135E+1821:22:52As a platoon leader I have to deal with that m...
.....................
225147NaN[][]115236812525133824217:02:25Suicide by oyster is a noble way to go https:...
225148NaN[][]115236812172396544017:02:24floors are covered in water, so obviously a cl...
225149NaN[][]115236808926420582517:02:17That's a depressingly relatable perspective. ...
225150NaN[][]115236808334612070517:02:15@glitterndior https://twitter.com/DankNeme/sta...
225151NaN[][]115236807583387238417:02:13TW for suicide and fatphobia. My mom has seve...
225152NaN[][]115236803164286976217:02:03« Le professeur meurt et Tokyo se suicide » jl...
225153NaN[][]115236802601398272017:02:02Telling a gay youth is choices are suicide, ex...
225154NaN[][]115236802519205888017:02:01Tokyo tue professor et se suicide
225155NaN[][]115236801858598092817:02:00suicide's time :))
225156NaN[][]115236800964379852817:01:58For Those Considering Suicide https://youtu.b...
225157NaN[][]115236799497630924817:01:54Tf suicide isn’t no joke https://twitter.com/...
225158NaN[][]115236798819412377617:01:53It always brings to mind the “body in the bag ...
225159NaN[]['#suicidesilence', '#youonlyliveonce', '#lege...115236795879606272117:01:45You only live once so just go fucking nuts!Go!...
225160NaN[][]115236793604634624117:01:40i cant wait to entrap a woman into a web of vi...
225161NaN[][]115236785628302950617:01:21고마웠었어 #€
225162NaN[][]115236782732154470717:01:14The “Clinton Suicide Squad “ is gearing up as ...
225163NaN[][]115236782634853171217:01:14Last Monday a I had to tell a client his benef...
225164NaN[][]115236780270517452817:01:08http://bit.ly/MurderOfTalent  Why is the publ...
225165NaN[][]115236777529101926417:01:02戸塚:電車の車内でケータイが鳴った一八木さんが「いま電話の中だから電車切るぞ」って言ってケー...
225166NaN[][]115236774383392358417:00:54y'a pas d'incruste ti é la famille
225167NaN[]['#mentalhealth', '#suicideprevention']115236773544513126417:00:52A study will use CCTV from certain locations t...
225168NaN[][]115236768943363686617:00:41Since I was reminded of her today, everyone pl...
225169NaN[][]115236766419247104017:00:35Mariko was a quick favorite for me. I'm glad s...
225170NaN[][]115236760691923763517:00:22pic.twitter.com/sm9tNmrEQJ
225171NaN[][]115236758996173209617:00:18https://youtu.be/WJ0OkkIDZug  Deathnote is r...
225172NaN[][]115236758903039180917:00:17えっ?!オニィ結構なお歳……(今知った) 変な声でちゃった(笑)
225173NaN[]['#physicianfriday', '#suicide', '#physicians'...115236756548376166417:00:12#PhysicianFriday \"Let's empower doctors to tak...
225174NaN[]['#aztrauma', '#traumatraining', '#suicide', '...115236751928336793617:00:01A spike in suicides among teenage boys in the ...
225175NaN[][]115236751608320409617:00:00Need some support? Check out the following res...
225176NaN[][]115236751597842432117:00:00You can improve the quality of life for a frie...
\n", 3175 | "

225177 rows × 6 columns

\n", 3176 | "
" 3177 | ], 3178 | "text/plain": [ 3179 | " Unnamed: 0 cashtags hashtags \\\n", 3180 | "0 0 [] [] \n", 3181 | "1 1 [] [] \n", 3182 | "2 2 [] ['#depression', '#uncoveringthenewu', '#change... \n", 3183 | "3 3 [] [] \n", 3184 | "4 4 [] [] \n", 3185 | "5 5 [] [] \n", 3186 | "6 6 [] [] \n", 3187 | "7 7 [] [] \n", 3188 | "8 8 [] [] \n", 3189 | "9 9 [] [] \n", 3190 | "10 10 [] [] \n", 3191 | "11 11 [] [] \n", 3192 | "12 12 [] [] \n", 3193 | "13 13 [] [] \n", 3194 | "14 14 [] [] \n", 3195 | "15 15 [] [] \n", 3196 | "16 16 [] [] \n", 3197 | "17 17 [] [] \n", 3198 | "18 18 [] [] \n", 3199 | "19 19 [] [] \n", 3200 | "20 20 [] ['#triggerwarning'] \n", 3201 | "21 21 [] [] \n", 3202 | "22 22 [] [] \n", 3203 | "23 23 [] [] \n", 3204 | "24 24 [] [] \n", 3205 | "25 25 [] [] \n", 3206 | "26 26 [] [] \n", 3207 | "27 27 [] [] \n", 3208 | "28 28 [] [] \n", 3209 | "29 29 [] [] \n", 3210 | "... ... ... ... \n", 3211 | "225147 NaN [] [] \n", 3212 | "225148 NaN [] [] \n", 3213 | "225149 NaN [] [] \n", 3214 | "225150 NaN [] [] \n", 3215 | "225151 NaN [] [] \n", 3216 | "225152 NaN [] [] \n", 3217 | "225153 NaN [] [] \n", 3218 | "225154 NaN [] [] \n", 3219 | "225155 NaN [] [] \n", 3220 | "225156 NaN [] [] \n", 3221 | "225157 NaN [] [] \n", 3222 | "225158 NaN [] [] \n", 3223 | "225159 NaN [] ['#suicidesilence', '#youonlyliveonce', '#lege... \n", 3224 | "225160 NaN [] [] \n", 3225 | "225161 NaN [] [] \n", 3226 | "225162 NaN [] [] \n", 3227 | "225163 NaN [] [] \n", 3228 | "225164 NaN [] [] \n", 3229 | "225165 NaN [] [] \n", 3230 | "225166 NaN [] [] \n", 3231 | "225167 NaN [] ['#mentalhealth', '#suicideprevention'] \n", 3232 | "225168 NaN [] [] \n", 3233 | "225169 NaN [] [] \n", 3234 | "225170 NaN [] [] \n", 3235 | "225171 NaN [] [] \n", 3236 | "225172 NaN [] [] \n", 3237 | "225173 NaN [] ['#physicianfriday', '#suicide', '#physicians'... \n", 3238 | "225174 NaN [] ['#aztrauma', '#traumatraining', '#suicide', '... \n", 3239 | "225175 NaN [] [] \n", 3240 | "225176 NaN [] [] \n", 3241 | "\n", 3242 | " id time \\\n", 3243 | "0 1.15135E+18 21:25:13 \n", 3244 | "1 1.15135E+18 21:25:07 \n", 3245 | "2 1.15135E+18 21:25:06 \n", 3246 | "3 1.15135E+18 21:24:55 \n", 3247 | "4 1.15135E+18 21:24:51 \n", 3248 | "5 1.15135E+18 21:24:46 \n", 3249 | "6 1.15135E+18 21:24:41 \n", 3250 | "7 1.15135E+18 21:24:37 \n", 3251 | "8 1.15135E+18 21:24:22 \n", 3252 | "9 1.15135E+18 21:24:20 \n", 3253 | "10 1.15135E+18 21:24:07 \n", 3254 | "11 1.15135E+18 21:24:07 \n", 3255 | "12 1.15135E+18 21:24:04 \n", 3256 | "13 1.15135E+18 21:24:01 \n", 3257 | "14 1.15135E+18 21:24:00 \n", 3258 | "15 1.15135E+18 21:23:55 \n", 3259 | "16 1.15135E+18 21:23:39 \n", 3260 | "17 1.15135E+18 21:23:33 \n", 3261 | "18 1.15135E+18 21:23:32 \n", 3262 | "19 1.15135E+18 21:23:31 \n", 3263 | "20 1.15135E+18 21:23:28 \n", 3264 | "21 1.15135E+18 21:23:28 \n", 3265 | "22 1.15135E+18 21:23:27 \n", 3266 | "23 1.15135E+18 21:23:26 \n", 3267 | "24 1.15135E+18 21:23:25 \n", 3268 | "25 1.15135E+18 21:23:23 \n", 3269 | "26 1.15135E+18 21:23:17 \n", 3270 | "27 1.15135E+18 21:23:12 \n", 3271 | "28 1.15135E+18 21:23:05 \n", 3272 | "29 1.15135E+18 21:22:52 \n", 3273 | "... ... ... \n", 3274 | "225147 1152368125251338242 17:02:25 \n", 3275 | "225148 1152368121723965440 17:02:24 \n", 3276 | "225149 1152368089264205825 17:02:17 \n", 3277 | "225150 1152368083346120705 17:02:15 \n", 3278 | "225151 1152368075833872384 17:02:13 \n", 3279 | "225152 1152368031642869762 17:02:03 \n", 3280 | "225153 1152368026013982720 17:02:02 \n", 3281 | "225154 1152368025192058880 17:02:01 \n", 3282 | "225155 1152368018585980928 17:02:00 \n", 3283 | "225156 1152368009643798528 17:01:58 \n", 3284 | "225157 1152367994976309248 17:01:54 \n", 3285 | "225158 1152367988194123776 17:01:53 \n", 3286 | "225159 1152367958796062721 17:01:45 \n", 3287 | "225160 1152367936046346241 17:01:40 \n", 3288 | "225161 1152367856283029506 17:01:21 \n", 3289 | "225162 1152367827321544707 17:01:14 \n", 3290 | "225163 1152367826348531712 17:01:14 \n", 3291 | "225164 1152367802705174528 17:01:08 \n", 3292 | "225165 1152367775291019264 17:01:02 \n", 3293 | "225166 1152367743833923584 17:00:54 \n", 3294 | "225167 1152367735445131264 17:00:52 \n", 3295 | "225168 1152367689433636866 17:00:41 \n", 3296 | "225169 1152367664192471040 17:00:35 \n", 3297 | "225170 1152367606919237635 17:00:22 \n", 3298 | "225171 1152367589961732096 17:00:18 \n", 3299 | "225172 1152367589030391809 17:00:17 \n", 3300 | "225173 1152367565483761664 17:00:12 \n", 3301 | "225174 1152367519283367936 17:00:01 \n", 3302 | "225175 1152367516083204096 17:00:00 \n", 3303 | "225176 1152367515978424321 17:00:00 \n", 3304 | "\n", 3305 | " tweet \n", 3306 | "0 Wow, my dad yday: “you don’t take those stupid... \n", 3307 | "1 what part of this was really harmfult of a lot... \n", 3308 | "2 one of the ways I got through my #depression i... \n", 3309 | "3 see i wanna do one of them but they all say th... \n", 3310 | "4 IS IT clinical depression or is it the palpabl... \n", 3311 | "5 My new mantra for dealing with my anxiety/depr... \n", 3312 | "6 Can I get a woot woot for 3 months depression ... \n", 3313 | "7 Hope it's working for you. I was on sertralin... \n", 3314 | "8 When my depression and anxiety strike at the s... \n", 3315 | "9 I want to leave, but I'm still waiting for you... \n", 3316 | "10 lrt i have FUCKING DEPRESSION \n", 3317 | "11 If you’re a new mother who is tired from postp... \n", 3318 | "12 Currently 5:23 and I’ve got depression Ranger... \n", 3319 | "13 omg wish I could swim cause I'm gonna drown in... \n", 3320 | "14 I don’t talk about it much at all unless you’r... \n", 3321 | "15 🚨🚨🚨 If someone can help me by suggesting me ho... \n", 3322 | "16 luv 2 just start crying bc you're thinking of ... \n", 3323 | "17 yOu cAnT hUrT mE DePrEsSiOn GoT mE AlReAdY \n", 3324 | "18 The free market cab cure your depression, just... \n", 3325 | "19 I’m not steeped enough in the research to have... \n", 3326 | "20 I feel like I can’t work for more than two to ... \n", 3327 | "21 dvdRadio 102 Still looking for a title. (That... \n", 3328 | "22 Do you recommend this for every kind of depres... \n", 3329 | "23 I was having a bad day and was all depressed. ... \n", 3330 | "24 but it completely makes sense tho it a surviva... \n", 3331 | "25 For example a top has to know how to deal with... \n", 3332 | "26 So. Here is the short and skinny about me here... \n", 3333 | "27 me when someone points out my crippling anxiet... \n", 3334 | "28 No one: Literally no one: Clair Boucher/ム尺ノᄊ... \n", 3335 | "29 As a platoon leader I have to deal with that m... \n", 3336 | "... ... \n", 3337 | "225147 Suicide by oyster is a noble way to go https:... \n", 3338 | "225148 floors are covered in water, so obviously a cl... \n", 3339 | "225149 That's a depressingly relatable perspective. ... \n", 3340 | "225150 @glitterndior https://twitter.com/DankNeme/sta... \n", 3341 | "225151 TW for suicide and fatphobia. My mom has seve... \n", 3342 | "225152 « Le professeur meurt et Tokyo se suicide » jl... \n", 3343 | "225153 Telling a gay youth is choices are suicide, ex... \n", 3344 | "225154 Tokyo tue professor et se suicide \n", 3345 | "225155 suicide's time :)) \n", 3346 | "225156 For Those Considering Suicide https://youtu.b... \n", 3347 | "225157 Tf suicide isn’t no joke https://twitter.com/... \n", 3348 | "225158 It always brings to mind the “body in the bag ... \n", 3349 | "225159 You only live once so just go fucking nuts!Go!... \n", 3350 | "225160 i cant wait to entrap a woman into a web of vi... \n", 3351 | "225161 고마웠었어 #€ \n", 3352 | "225162 The “Clinton Suicide Squad “ is gearing up as ... \n", 3353 | "225163 Last Monday a I had to tell a client his benef... \n", 3354 | "225164 http://bit.ly/MurderOfTalent  Why is the publ... \n", 3355 | "225165 戸塚:電車の車内でケータイが鳴った一八木さんが「いま電話の中だから電車切るぞ」って言ってケー... \n", 3356 | "225166 y'a pas d'incruste ti é la famille \n", 3357 | "225167 A study will use CCTV from certain locations t... \n", 3358 | "225168 Since I was reminded of her today, everyone pl... \n", 3359 | "225169 Mariko was a quick favorite for me. I'm glad s... \n", 3360 | "225170 pic.twitter.com/sm9tNmrEQJ \n", 3361 | "225171 https://youtu.be/WJ0OkkIDZug  Deathnote is r... \n", 3362 | "225172 えっ?!オニィ結構なお歳……(今知った) 変な声でちゃった(笑) \n", 3363 | "225173 #PhysicianFriday \"Let's empower doctors to tak... \n", 3364 | "225174 A spike in suicides among teenage boys in the ... \n", 3365 | "225175 Need some support? Check out the following res... \n", 3366 | "225176 You can improve the quality of life for a frie... \n", 3367 | "\n", 3368 | "[225177 rows x 6 columns]" 3369 | ] 3370 | }, 3371 | "execution_count": 30, 3372 | "metadata": {}, 3373 | "output_type": "execute_result" 3374 | } 3375 | ], 3376 | "source": [ 3377 | "df_row_reindex = pd.concat([depression_tweets_df, hopeless_tweets_df, lonely_tweets_df, antidepressant_tweets_df, antidepressants_tweets_df, suicide_tweets_df], ignore_index=True)\n", 3378 | "\n", 3379 | "df_row_reindex" 3380 | ] 3381 | }, 3382 | { 3383 | "cell_type": "code", 3384 | "execution_count": 36, 3385 | "metadata": {}, 3386 | "outputs": [], 3387 | "source": [ 3388 | "df = df_row_reindex" 3389 | ] 3390 | }, 3391 | { 3392 | "cell_type": "code", 3393 | "execution_count": 42, 3394 | "metadata": {}, 3395 | "outputs": [ 3396 | { 3397 | "data": { 3398 | "text/html": [ 3399 | "
\n", 3400 | "\n", 3413 | "\n", 3414 | " \n", 3415 | " \n", 3416 | " \n", 3417 | " \n", 3418 | " \n", 3419 | " \n", 3420 | " \n", 3421 | " \n", 3422 | " \n", 3423 | " \n", 3424 | " \n", 3425 | " \n", 3426 | " \n", 3427 | " \n", 3428 | " \n", 3429 | " \n", 3430 | " \n", 3431 | " \n", 3432 | " \n", 3433 | " \n", 3434 | " \n", 3435 | " \n", 3436 | " \n", 3437 | " \n", 3438 | " \n", 3439 | " \n", 3440 | " \n", 3441 | " \n", 3442 | " \n", 3443 | " \n", 3444 | " \n", 3445 | " \n", 3446 | " \n", 3447 | " \n", 3448 | " \n", 3449 | " \n", 3450 | " \n", 3451 | " \n", 3452 | " \n", 3453 | " \n", 3454 | " \n", 3455 | " \n", 3456 | " \n", 3457 | " \n", 3458 | " \n", 3459 | " \n", 3460 | " \n", 3461 | " \n", 3462 | " \n", 3463 | " \n", 3464 | " \n", 3465 | " \n", 3466 | " \n", 3467 | " \n", 3468 | " \n", 3469 | " \n", 3470 | " \n", 3471 | " \n", 3472 | "
Unnamed: 0cashtagshashtagsidtimetweet
00[][]1.15135E+1821:25:13Wow, my dad yday: “you don’t take those stupid...
11[][]1.15135E+1821:25:07what part of this was really harmfult of a lot...
22[]['#depression', '#uncoveringthenewu', '#change...1.15135E+1821:25:06one of the ways I got through my #depression i...
33[][]1.15135E+1821:24:55see i wanna do one of them but they all say th...
44[][]1.15135E+1821:24:51IS IT clinical depression or is it the palpabl...
\n", 3473 | "
" 3474 | ], 3475 | "text/plain": [ 3476 | " Unnamed: 0 cashtags hashtags \\\n", 3477 | "0 0 [] [] \n", 3478 | "1 1 [] [] \n", 3479 | "2 2 [] ['#depression', '#uncoveringthenewu', '#change... \n", 3480 | "3 3 [] [] \n", 3481 | "4 4 [] [] \n", 3482 | "\n", 3483 | " id time tweet \n", 3484 | "0 1.15135E+18 21:25:13 Wow, my dad yday: “you don’t take those stupid... \n", 3485 | "1 1.15135E+18 21:25:07 what part of this was really harmfult of a lot... \n", 3486 | "2 1.15135E+18 21:25:06 one of the ways I got through my #depression i... \n", 3487 | "3 1.15135E+18 21:24:55 see i wanna do one of them but they all say th... \n", 3488 | "4 1.15135E+18 21:24:51 IS IT clinical depression or is it the palpabl... " 3489 | ] 3490 | }, 3491 | "execution_count": 42, 3492 | "metadata": {}, 3493 | "output_type": "execute_result" 3494 | } 3495 | ], 3496 | "source": [ 3497 | "depressive_twint_tweets_df = df_row_reindex\n", 3498 | "depressive_twint_tweets_df.head()" 3499 | ] 3500 | }, 3501 | { 3502 | "cell_type": "code", 3503 | "execution_count": 44, 3504 | "metadata": {}, 3505 | "outputs": [], 3506 | "source": [ 3507 | "depressive_twint_tweets_df = df.drop_duplicates()\n" 3508 | ] 3509 | }, 3510 | { 3511 | "cell_type": "code", 3512 | "execution_count": 48, 3513 | "metadata": {}, 3514 | "outputs": [ 3515 | { 3516 | "data": { 3517 | "text/html": [ 3518 | "
\n", 3519 | "\n", 3532 | "\n", 3533 | " \n", 3534 | " \n", 3535 | " \n", 3536 | " \n", 3537 | " \n", 3538 | " \n", 3539 | " \n", 3540 | " \n", 3541 | " \n", 3542 | " \n", 3543 | " \n", 3544 | " \n", 3545 | " \n", 3546 | " \n", 3547 | " \n", 3548 | " \n", 3549 | " \n", 3550 | " \n", 3551 | " \n", 3552 | " \n", 3553 | " \n", 3554 | " \n", 3555 | " \n", 3556 | " \n", 3557 | " \n", 3558 | " \n", 3559 | " \n", 3560 | " \n", 3561 | " \n", 3562 | " \n", 3563 | " \n", 3564 | " \n", 3565 | " \n", 3566 | " \n", 3567 | " \n", 3568 | " \n", 3569 | " \n", 3570 | " \n", 3571 | " \n", 3572 | " \n", 3573 | " \n", 3574 | " \n", 3575 | " \n", 3576 | " \n", 3577 | " \n", 3578 | " \n", 3579 | " \n", 3580 | " \n", 3581 | " \n", 3582 | " \n", 3583 | " \n", 3584 | " \n", 3585 | " \n", 3586 | " \n", 3587 | " \n", 3588 | " \n", 3589 | " \n", 3590 | " \n", 3591 | " \n", 3592 | " \n", 3593 | " \n", 3594 | " \n", 3595 | " \n", 3596 | " \n", 3597 | " \n", 3598 | " \n", 3599 | " \n", 3600 | " \n", 3601 | " \n", 3602 | " \n", 3603 | " \n", 3604 | " \n", 3605 | " \n", 3606 | " \n", 3607 | " \n", 3608 | " \n", 3609 | " \n", 3610 | " \n", 3611 | " \n", 3612 | " \n", 3613 | " \n", 3614 | " \n", 3615 | " \n", 3616 | " \n", 3617 | " \n", 3618 | " \n", 3619 | " \n", 3620 | " \n", 3621 | " \n", 3622 | " \n", 3623 | " \n", 3624 | " \n", 3625 | " \n", 3626 | " \n", 3627 | " \n", 3628 | " \n", 3629 | " \n", 3630 | " \n", 3631 | " \n", 3632 | " \n", 3633 | " \n", 3634 | " \n", 3635 | " \n", 3636 | " \n", 3637 | " \n", 3638 | " \n", 3639 | " \n", 3640 | " \n", 3641 | " \n", 3642 | " \n", 3643 | " \n", 3644 | " \n", 3645 | " \n", 3646 | " \n", 3647 | " \n", 3648 | " \n", 3649 | " \n", 3650 | " \n", 3651 | " \n", 3652 | " \n", 3653 | " \n", 3654 | " \n", 3655 | " \n", 3656 | " \n", 3657 | " \n", 3658 | " \n", 3659 | " \n", 3660 | " \n", 3661 | " \n", 3662 | " \n", 3663 | " \n", 3664 | " \n", 3665 | " \n", 3666 | " \n", 3667 | " \n", 3668 | " \n", 3669 | " \n", 3670 | " \n", 3671 | " \n", 3672 | " \n", 3673 | " \n", 3674 | " \n", 3675 | " \n", 3676 | " \n", 3677 | " \n", 3678 | " \n", 3679 | " \n", 3680 | " \n", 3681 | " \n", 3682 | " \n", 3683 | " \n", 3684 | " \n", 3685 | " \n", 3686 | " \n", 3687 | " \n", 3688 | " \n", 3689 | " \n", 3690 | " \n", 3691 | " \n", 3692 | " \n", 3693 | " \n", 3694 | " \n", 3695 | " \n", 3696 | " \n", 3697 | " \n", 3698 | " \n", 3699 | " \n", 3700 | " \n", 3701 | " \n", 3702 | " \n", 3703 | " \n", 3704 | " \n", 3705 | " \n", 3706 | " \n", 3707 | " \n", 3708 | " \n", 3709 | " \n", 3710 | " \n", 3711 | " \n", 3712 | " \n", 3713 | " \n", 3714 | " \n", 3715 | " \n", 3716 | " \n", 3717 | " \n", 3718 | " \n", 3719 | " \n", 3720 | " \n", 3721 | " \n", 3722 | " \n", 3723 | " \n", 3724 | " \n", 3725 | " \n", 3726 | " \n", 3727 | " \n", 3728 | " \n", 3729 | " \n", 3730 | " \n", 3731 | " \n", 3732 | " \n", 3733 | " \n", 3734 | " \n", 3735 | " \n", 3736 | " \n", 3737 | " \n", 3738 | " \n", 3739 | " \n", 3740 | " \n", 3741 | " \n", 3742 | " \n", 3743 | " \n", 3744 | " \n", 3745 | " \n", 3746 | " \n", 3747 | " \n", 3748 | " \n", 3749 | " \n", 3750 | " \n", 3751 | " \n", 3752 | " \n", 3753 | " \n", 3754 | " \n", 3755 | " \n", 3756 | " \n", 3757 | " \n", 3758 | " \n", 3759 | " \n", 3760 | " \n", 3761 | " \n", 3762 | " \n", 3763 | " \n", 3764 | " \n", 3765 | " \n", 3766 | " \n", 3767 | " \n", 3768 | " \n", 3769 | " \n", 3770 | " \n", 3771 | " \n", 3772 | " \n", 3773 | " \n", 3774 | " \n", 3775 | " \n", 3776 | " \n", 3777 | " \n", 3778 | " \n", 3779 | " \n", 3780 | " \n", 3781 | " \n", 3782 | " \n", 3783 | " \n", 3784 | " \n", 3785 | " \n", 3786 | " \n", 3787 | " \n", 3788 | " \n", 3789 | " \n", 3790 | " \n", 3791 | " \n", 3792 | " \n", 3793 | " \n", 3794 | " \n", 3795 | " \n", 3796 | " \n", 3797 | " \n", 3798 | " \n", 3799 | " \n", 3800 | " \n", 3801 | " \n", 3802 | " \n", 3803 | " \n", 3804 | " \n", 3805 | " \n", 3806 | " \n", 3807 | " \n", 3808 | " \n", 3809 | " \n", 3810 | " \n", 3811 | " \n", 3812 | " \n", 3813 | " \n", 3814 | " \n", 3815 | " \n", 3816 | " \n", 3817 | " \n", 3818 | " \n", 3819 | " \n", 3820 | " \n", 3821 | " \n", 3822 | " \n", 3823 | " \n", 3824 | " \n", 3825 | " \n", 3826 | " \n", 3827 | " \n", 3828 | " \n", 3829 | " \n", 3830 | " \n", 3831 | " \n", 3832 | " \n", 3833 | " \n", 3834 | " \n", 3835 | " \n", 3836 | " \n", 3837 | " \n", 3838 | " \n", 3839 | " \n", 3840 | " \n", 3841 | " \n", 3842 | " \n", 3843 | " \n", 3844 | " \n", 3845 | " \n", 3846 | " \n", 3847 | " \n", 3848 | " \n", 3849 | " \n", 3850 | " \n", 3851 | " \n", 3852 | " \n", 3853 | " \n", 3854 | " \n", 3855 | " \n", 3856 | " \n", 3857 | " \n", 3858 | " \n", 3859 | " \n", 3860 | " \n", 3861 | " \n", 3862 | " \n", 3863 | " \n", 3864 | " \n", 3865 | " \n", 3866 | " \n", 3867 | " \n", 3868 | " \n", 3869 | " \n", 3870 | " \n", 3871 | " \n", 3872 | " \n", 3873 | " \n", 3874 | " \n", 3875 | " \n", 3876 | " \n", 3877 | " \n", 3878 | " \n", 3879 | " \n", 3880 | " \n", 3881 | " \n", 3882 | " \n", 3883 | " \n", 3884 | " \n", 3885 | " \n", 3886 | " \n", 3887 | " \n", 3888 | " \n", 3889 | " \n", 3890 | " \n", 3891 | " \n", 3892 | " \n", 3893 | " \n", 3894 | " \n", 3895 | " \n", 3896 | " \n", 3897 | " \n", 3898 | " \n", 3899 | " \n", 3900 | " \n", 3901 | " \n", 3902 | " \n", 3903 | " \n", 3904 | " \n", 3905 | " \n", 3906 | " \n", 3907 | " \n", 3908 | " \n", 3909 | " \n", 3910 | " \n", 3911 | " \n", 3912 | " \n", 3913 | " \n", 3914 | " \n", 3915 | " \n", 3916 | " \n", 3917 | " \n", 3918 | " \n", 3919 | " \n", 3920 | " \n", 3921 | " \n", 3922 | " \n", 3923 | " \n", 3924 | " \n", 3925 | " \n", 3926 | " \n", 3927 | " \n", 3928 | " \n", 3929 | " \n", 3930 | " \n", 3931 | " \n", 3932 | " \n", 3933 | " \n", 3934 | " \n", 3935 | " \n", 3936 | " \n", 3937 | " \n", 3938 | " \n", 3939 | " \n", 3940 | " \n", 3941 | " \n", 3942 | " \n", 3943 | " \n", 3944 | " \n", 3945 | " \n", 3946 | " \n", 3947 | " \n", 3948 | " \n", 3949 | " \n", 3950 | " \n", 3951 | " \n", 3952 | " \n", 3953 | " \n", 3954 | " \n", 3955 | " \n", 3956 | " \n", 3957 | " \n", 3958 | " \n", 3959 | " \n", 3960 | " \n", 3961 | " \n", 3962 | " \n", 3963 | " \n", 3964 | " \n", 3965 | " \n", 3966 | " \n", 3967 | " \n", 3968 | " \n", 3969 | " \n", 3970 | " \n", 3971 | " \n", 3972 | " \n", 3973 | " \n", 3974 | " \n", 3975 | " \n", 3976 | " \n", 3977 | " \n", 3978 | " \n", 3979 | " \n", 3980 | " \n", 3981 | " \n", 3982 | " \n", 3983 | " \n", 3984 | " \n", 3985 | " \n", 3986 | " \n", 3987 | " \n", 3988 | " \n", 3989 | " \n", 3990 | " \n", 3991 | " \n", 3992 | " \n", 3993 | " \n", 3994 | " \n", 3995 | " \n", 3996 | " \n", 3997 | " \n", 3998 | " \n", 3999 | " \n", 4000 | " \n", 4001 | " \n", 4002 | " \n", 4003 | " \n", 4004 | " \n", 4005 | " \n", 4006 | " \n", 4007 | " \n", 4008 | " \n", 4009 | " \n", 4010 | " \n", 4011 | " \n", 4012 | " \n", 4013 | " \n", 4014 | " \n", 4015 | " \n", 4016 | " \n", 4017 | " \n", 4018 | " \n", 4019 | " \n", 4020 | " \n", 4021 | " \n", 4022 | " \n", 4023 | " \n", 4024 | " \n", 4025 | " \n", 4026 | " \n", 4027 | " \n", 4028 | " \n", 4029 | " \n", 4030 | " \n", 4031 | " \n", 4032 | " \n", 4033 | " \n", 4034 | " \n", 4035 | " \n", 4036 | " \n", 4037 | " \n", 4038 | " \n", 4039 | " \n", 4040 | " \n", 4041 | " \n", 4042 | " \n", 4043 | " \n", 4044 | " \n", 4045 | " \n", 4046 | " \n", 4047 | " \n", 4048 | " \n", 4049 | " \n", 4050 | " \n", 4051 | " \n", 4052 | " \n", 4053 | " \n", 4054 | " \n", 4055 | " \n", 4056 | " \n", 4057 | " \n", 4058 | " \n", 4059 | " \n", 4060 | " \n", 4061 | " \n", 4062 | " \n", 4063 | " \n", 4064 | " \n", 4065 | " \n", 4066 | " \n", 4067 | " \n", 4068 | " \n", 4069 | " \n", 4070 | " \n", 4071 | " \n", 4072 | " \n", 4073 | " \n", 4074 | " \n", 4075 | " \n", 4076 | " \n", 4077 | " \n", 4078 | " \n", 4079 | " \n", 4080 | " \n", 4081 | " \n", 4082 | " \n", 4083 | " \n", 4084 | " \n", 4085 | " \n", 4086 | " \n", 4087 | " \n", 4088 | " \n", 4089 | " \n", 4090 | " \n", 4091 | " \n", 4092 | " \n", 4093 | " \n", 4094 | " \n", 4095 | "
Unnamed: 0cashtagshashtagsidtimetweet
00[][]1.15135E+1821:25:13Wow, my dad yday: “you don’t take those stupid...
11[][]1.15135E+1821:25:07what part of this was really harmfult of a lot...
22[]['#depression', '#uncoveringthenewu', '#change...1.15135E+1821:25:06one of the ways I got through my #depression i...
33[][]1.15135E+1821:24:55see i wanna do one of them but they all say th...
44[][]1.15135E+1821:24:51IS IT clinical depression or is it the palpabl...
55[][]1.15135E+1821:24:46My new mantra for dealing with my anxiety/depr...
66[][]1.15135E+1821:24:41Can I get a woot woot for 3 months depression ...
77[][]1.15135E+1821:24:37Hope it's working for you. I was on sertralin...
88[][]1.15135E+1821:24:22When my depression and anxiety strike at the s...
99[][]1.15135E+1821:24:20I want to leave, but I'm still waiting for you...
1010[][]1.15135E+1821:24:07lrt i have FUCKING DEPRESSION
1111[][]1.15135E+1821:24:07If you’re a new mother who is tired from postp...
1212[][]1.15135E+1821:24:04Currently 5:23 and I’ve got depression Ranger...
1313[][]1.15135E+1821:24:01omg wish I could swim cause I'm gonna drown in...
1414[][]1.15135E+1821:24:00I don’t talk about it much at all unless you’r...
1515[][]1.15135E+1821:23:55🚨🚨🚨 If someone can help me by suggesting me ho...
1616[][]1.15135E+1821:23:39luv 2 just start crying bc you're thinking of ...
1717[][]1.15135E+1821:23:33yOu cAnT hUrT mE DePrEsSiOn GoT mE AlReAdY
1818[][]1.15135E+1821:23:32The free market cab cure your depression, just...
1919[][]1.15135E+1821:23:31I’m not steeped enough in the research to have...
2020[]['#triggerwarning']1.15135E+1821:23:28I feel like I can’t work for more than two to ...
2121[][]1.15135E+1821:23:28dvdRadio 102 Still looking for a title. (That...
2222[][]1.15135E+1821:23:27Do you recommend this for every kind of depres...
2323[][]1.15135E+1821:23:26I was having a bad day and was all depressed. ...
2424[][]1.15135E+1821:23:25but it completely makes sense tho it a surviva...
2525[][]1.15135E+1821:23:23For example a top has to know how to deal with...
2626[][]1.15135E+1821:23:17So. Here is the short and skinny about me here...
2727[][]1.15135E+1821:23:12me when someone points out my crippling anxiet...
2828[][]1.15135E+1821:23:05No one: Literally no one: Clair Boucher/ム尺ノᄊ...
2929[][]1.15135E+1821:22:52As a platoon leader I have to deal with that m...
.....................
225147NaN[][]115236812525133824217:02:25Suicide by oyster is a noble way to go https:...
225148NaN[][]115236812172396544017:02:24floors are covered in water, so obviously a cl...
225149NaN[][]115236808926420582517:02:17That's a depressingly relatable perspective. ...
225150NaN[][]115236808334612070517:02:15@glitterndior https://twitter.com/DankNeme/sta...
225151NaN[][]115236807583387238417:02:13TW for suicide and fatphobia. My mom has seve...
225152NaN[][]115236803164286976217:02:03« Le professeur meurt et Tokyo se suicide » jl...
225153NaN[][]115236802601398272017:02:02Telling a gay youth is choices are suicide, ex...
225154NaN[][]115236802519205888017:02:01Tokyo tue professor et se suicide
225155NaN[][]115236801858598092817:02:00suicide's time :))
225156NaN[][]115236800964379852817:01:58For Those Considering Suicide https://youtu.b...
225157NaN[][]115236799497630924817:01:54Tf suicide isn’t no joke https://twitter.com/...
225158NaN[][]115236798819412377617:01:53It always brings to mind the “body in the bag ...
225159NaN[]['#suicidesilence', '#youonlyliveonce', '#lege...115236795879606272117:01:45You only live once so just go fucking nuts!Go!...
225160NaN[][]115236793604634624117:01:40i cant wait to entrap a woman into a web of vi...
225161NaN[][]115236785628302950617:01:21고마웠었어 #€
225162NaN[][]115236782732154470717:01:14The “Clinton Suicide Squad “ is gearing up as ...
225163NaN[][]115236782634853171217:01:14Last Monday a I had to tell a client his benef...
225164NaN[][]115236780270517452817:01:08http://bit.ly/MurderOfTalent  Why is the publ...
225165NaN[][]115236777529101926417:01:02戸塚:電車の車内でケータイが鳴った一八木さんが「いま電話の中だから電車切るぞ」って言ってケー...
225166NaN[][]115236774383392358417:00:54y'a pas d'incruste ti é la famille
225167NaN[]['#mentalhealth', '#suicideprevention']115236773544513126417:00:52A study will use CCTV from certain locations t...
225168NaN[][]115236768943363686617:00:41Since I was reminded of her today, everyone pl...
225169NaN[][]115236766419247104017:00:35Mariko was a quick favorite for me. I'm glad s...
225170NaN[][]115236760691923763517:00:22pic.twitter.com/sm9tNmrEQJ
225171NaN[][]115236758996173209617:00:18https://youtu.be/WJ0OkkIDZug  Deathnote is r...
225172NaN[][]115236758903039180917:00:17えっ?!オニィ結構なお歳……(今知った) 変な声でちゃった(笑)
225173NaN[]['#physicianfriday', '#suicide', '#physicians'...115236756548376166417:00:12#PhysicianFriday \"Let's empower doctors to tak...
225174NaN[]['#aztrauma', '#traumatraining', '#suicide', '...115236751928336793617:00:01A spike in suicides among teenage boys in the ...
225175NaN[][]115236751608320409617:00:00Need some support? Check out the following res...
225176NaN[][]115236751597842432117:00:00You can improve the quality of life for a frie...
\n", 4096 | "

224273 rows × 6 columns

\n", 4097 | "
" 4098 | ], 4099 | "text/plain": [ 4100 | " Unnamed: 0 cashtags hashtags \\\n", 4101 | "0 0 [] [] \n", 4102 | "1 1 [] [] \n", 4103 | "2 2 [] ['#depression', '#uncoveringthenewu', '#change... \n", 4104 | "3 3 [] [] \n", 4105 | "4 4 [] [] \n", 4106 | "5 5 [] [] \n", 4107 | "6 6 [] [] \n", 4108 | "7 7 [] [] \n", 4109 | "8 8 [] [] \n", 4110 | "9 9 [] [] \n", 4111 | "10 10 [] [] \n", 4112 | "11 11 [] [] \n", 4113 | "12 12 [] [] \n", 4114 | "13 13 [] [] \n", 4115 | "14 14 [] [] \n", 4116 | "15 15 [] [] \n", 4117 | "16 16 [] [] \n", 4118 | "17 17 [] [] \n", 4119 | "18 18 [] [] \n", 4120 | "19 19 [] [] \n", 4121 | "20 20 [] ['#triggerwarning'] \n", 4122 | "21 21 [] [] \n", 4123 | "22 22 [] [] \n", 4124 | "23 23 [] [] \n", 4125 | "24 24 [] [] \n", 4126 | "25 25 [] [] \n", 4127 | "26 26 [] [] \n", 4128 | "27 27 [] [] \n", 4129 | "28 28 [] [] \n", 4130 | "29 29 [] [] \n", 4131 | "... ... ... ... \n", 4132 | "225147 NaN [] [] \n", 4133 | "225148 NaN [] [] \n", 4134 | "225149 NaN [] [] \n", 4135 | "225150 NaN [] [] \n", 4136 | "225151 NaN [] [] \n", 4137 | "225152 NaN [] [] \n", 4138 | "225153 NaN [] [] \n", 4139 | "225154 NaN [] [] \n", 4140 | "225155 NaN [] [] \n", 4141 | "225156 NaN [] [] \n", 4142 | "225157 NaN [] [] \n", 4143 | "225158 NaN [] [] \n", 4144 | "225159 NaN [] ['#suicidesilence', '#youonlyliveonce', '#lege... \n", 4145 | "225160 NaN [] [] \n", 4146 | "225161 NaN [] [] \n", 4147 | "225162 NaN [] [] \n", 4148 | "225163 NaN [] [] \n", 4149 | "225164 NaN [] [] \n", 4150 | "225165 NaN [] [] \n", 4151 | "225166 NaN [] [] \n", 4152 | "225167 NaN [] ['#mentalhealth', '#suicideprevention'] \n", 4153 | "225168 NaN [] [] \n", 4154 | "225169 NaN [] [] \n", 4155 | "225170 NaN [] [] \n", 4156 | "225171 NaN [] [] \n", 4157 | "225172 NaN [] [] \n", 4158 | "225173 NaN [] ['#physicianfriday', '#suicide', '#physicians'... \n", 4159 | "225174 NaN [] ['#aztrauma', '#traumatraining', '#suicide', '... \n", 4160 | "225175 NaN [] [] \n", 4161 | "225176 NaN [] [] \n", 4162 | "\n", 4163 | " id time \\\n", 4164 | "0 1.15135E+18 21:25:13 \n", 4165 | "1 1.15135E+18 21:25:07 \n", 4166 | "2 1.15135E+18 21:25:06 \n", 4167 | "3 1.15135E+18 21:24:55 \n", 4168 | "4 1.15135E+18 21:24:51 \n", 4169 | "5 1.15135E+18 21:24:46 \n", 4170 | "6 1.15135E+18 21:24:41 \n", 4171 | "7 1.15135E+18 21:24:37 \n", 4172 | "8 1.15135E+18 21:24:22 \n", 4173 | "9 1.15135E+18 21:24:20 \n", 4174 | "10 1.15135E+18 21:24:07 \n", 4175 | "11 1.15135E+18 21:24:07 \n", 4176 | "12 1.15135E+18 21:24:04 \n", 4177 | "13 1.15135E+18 21:24:01 \n", 4178 | "14 1.15135E+18 21:24:00 \n", 4179 | "15 1.15135E+18 21:23:55 \n", 4180 | "16 1.15135E+18 21:23:39 \n", 4181 | "17 1.15135E+18 21:23:33 \n", 4182 | "18 1.15135E+18 21:23:32 \n", 4183 | "19 1.15135E+18 21:23:31 \n", 4184 | "20 1.15135E+18 21:23:28 \n", 4185 | "21 1.15135E+18 21:23:28 \n", 4186 | "22 1.15135E+18 21:23:27 \n", 4187 | "23 1.15135E+18 21:23:26 \n", 4188 | "24 1.15135E+18 21:23:25 \n", 4189 | "25 1.15135E+18 21:23:23 \n", 4190 | "26 1.15135E+18 21:23:17 \n", 4191 | "27 1.15135E+18 21:23:12 \n", 4192 | "28 1.15135E+18 21:23:05 \n", 4193 | "29 1.15135E+18 21:22:52 \n", 4194 | "... ... ... \n", 4195 | "225147 1152368125251338242 17:02:25 \n", 4196 | "225148 1152368121723965440 17:02:24 \n", 4197 | "225149 1152368089264205825 17:02:17 \n", 4198 | "225150 1152368083346120705 17:02:15 \n", 4199 | "225151 1152368075833872384 17:02:13 \n", 4200 | "225152 1152368031642869762 17:02:03 \n", 4201 | "225153 1152368026013982720 17:02:02 \n", 4202 | "225154 1152368025192058880 17:02:01 \n", 4203 | "225155 1152368018585980928 17:02:00 \n", 4204 | "225156 1152368009643798528 17:01:58 \n", 4205 | "225157 1152367994976309248 17:01:54 \n", 4206 | "225158 1152367988194123776 17:01:53 \n", 4207 | "225159 1152367958796062721 17:01:45 \n", 4208 | "225160 1152367936046346241 17:01:40 \n", 4209 | "225161 1152367856283029506 17:01:21 \n", 4210 | "225162 1152367827321544707 17:01:14 \n", 4211 | "225163 1152367826348531712 17:01:14 \n", 4212 | "225164 1152367802705174528 17:01:08 \n", 4213 | "225165 1152367775291019264 17:01:02 \n", 4214 | "225166 1152367743833923584 17:00:54 \n", 4215 | "225167 1152367735445131264 17:00:52 \n", 4216 | "225168 1152367689433636866 17:00:41 \n", 4217 | "225169 1152367664192471040 17:00:35 \n", 4218 | "225170 1152367606919237635 17:00:22 \n", 4219 | "225171 1152367589961732096 17:00:18 \n", 4220 | "225172 1152367589030391809 17:00:17 \n", 4221 | "225173 1152367565483761664 17:00:12 \n", 4222 | "225174 1152367519283367936 17:00:01 \n", 4223 | "225175 1152367516083204096 17:00:00 \n", 4224 | "225176 1152367515978424321 17:00:00 \n", 4225 | "\n", 4226 | " tweet \n", 4227 | "0 Wow, my dad yday: “you don’t take those stupid... \n", 4228 | "1 what part of this was really harmfult of a lot... \n", 4229 | "2 one of the ways I got through my #depression i... \n", 4230 | "3 see i wanna do one of them but they all say th... \n", 4231 | "4 IS IT clinical depression or is it the palpabl... \n", 4232 | "5 My new mantra for dealing with my anxiety/depr... \n", 4233 | "6 Can I get a woot woot for 3 months depression ... \n", 4234 | "7 Hope it's working for you. I was on sertralin... \n", 4235 | "8 When my depression and anxiety strike at the s... \n", 4236 | "9 I want to leave, but I'm still waiting for you... \n", 4237 | "10 lrt i have FUCKING DEPRESSION \n", 4238 | "11 If you’re a new mother who is tired from postp... \n", 4239 | "12 Currently 5:23 and I’ve got depression Ranger... \n", 4240 | "13 omg wish I could swim cause I'm gonna drown in... \n", 4241 | "14 I don’t talk about it much at all unless you’r... \n", 4242 | "15 🚨🚨🚨 If someone can help me by suggesting me ho... \n", 4243 | "16 luv 2 just start crying bc you're thinking of ... \n", 4244 | "17 yOu cAnT hUrT mE DePrEsSiOn GoT mE AlReAdY \n", 4245 | "18 The free market cab cure your depression, just... \n", 4246 | "19 I’m not steeped enough in the research to have... \n", 4247 | "20 I feel like I can’t work for more than two to ... \n", 4248 | "21 dvdRadio 102 Still looking for a title. (That... \n", 4249 | "22 Do you recommend this for every kind of depres... \n", 4250 | "23 I was having a bad day and was all depressed. ... \n", 4251 | "24 but it completely makes sense tho it a surviva... \n", 4252 | "25 For example a top has to know how to deal with... \n", 4253 | "26 So. Here is the short and skinny about me here... \n", 4254 | "27 me when someone points out my crippling anxiet... \n", 4255 | "28 No one: Literally no one: Clair Boucher/ム尺ノᄊ... \n", 4256 | "29 As a platoon leader I have to deal with that m... \n", 4257 | "... ... \n", 4258 | "225147 Suicide by oyster is a noble way to go https:... \n", 4259 | "225148 floors are covered in water, so obviously a cl... \n", 4260 | "225149 That's a depressingly relatable perspective. ... \n", 4261 | "225150 @glitterndior https://twitter.com/DankNeme/sta... \n", 4262 | "225151 TW for suicide and fatphobia. My mom has seve... \n", 4263 | "225152 « Le professeur meurt et Tokyo se suicide » jl... \n", 4264 | "225153 Telling a gay youth is choices are suicide, ex... \n", 4265 | "225154 Tokyo tue professor et se suicide \n", 4266 | "225155 suicide's time :)) \n", 4267 | "225156 For Those Considering Suicide https://youtu.b... \n", 4268 | "225157 Tf suicide isn’t no joke https://twitter.com/... \n", 4269 | "225158 It always brings to mind the “body in the bag ... \n", 4270 | "225159 You only live once so just go fucking nuts!Go!... \n", 4271 | "225160 i cant wait to entrap a woman into a web of vi... \n", 4272 | "225161 고마웠었어 #€ \n", 4273 | "225162 The “Clinton Suicide Squad “ is gearing up as ... \n", 4274 | "225163 Last Monday a I had to tell a client his benef... \n", 4275 | "225164 http://bit.ly/MurderOfTalent  Why is the publ... \n", 4276 | "225165 戸塚:電車の車内でケータイが鳴った一八木さんが「いま電話の中だから電車切るぞ」って言ってケー... \n", 4277 | "225166 y'a pas d'incruste ti é la famille \n", 4278 | "225167 A study will use CCTV from certain locations t... \n", 4279 | "225168 Since I was reminded of her today, everyone pl... \n", 4280 | "225169 Mariko was a quick favorite for me. I'm glad s... \n", 4281 | "225170 pic.twitter.com/sm9tNmrEQJ \n", 4282 | "225171 https://youtu.be/WJ0OkkIDZug  Deathnote is r... \n", 4283 | "225172 えっ?!オニィ結構なお歳……(今知った) 変な声でちゃった(笑) \n", 4284 | "225173 #PhysicianFriday \"Let's empower doctors to tak... \n", 4285 | "225174 A spike in suicides among teenage boys in the ... \n", 4286 | "225175 Need some support? Check out the following res... \n", 4287 | "225176 You can improve the quality of life for a frie... \n", 4288 | "\n", 4289 | "[224273 rows x 6 columns]" 4290 | ] 4291 | }, 4292 | "execution_count": 48, 4293 | "metadata": {}, 4294 | "output_type": "execute_result" 4295 | } 4296 | ], 4297 | "source": [ 4298 | "depressive_twint_tweets_df" 4299 | ] 4300 | }, 4301 | { 4302 | "cell_type": "code", 4303 | "execution_count": 49, 4304 | "metadata": {}, 4305 | "outputs": [], 4306 | "source": [ 4307 | "export_csv = depressive_twint_tweets_df.to_csv(r'depressive_unigram_tweets_final.csv')" 4308 | ] 4309 | }, 4310 | { 4311 | "cell_type": "code", 4312 | "execution_count": null, 4313 | "metadata": {}, 4314 | "outputs": [], 4315 | "source": [] 4316 | } 4317 | ], 4318 | "metadata": { 4319 | "kernelspec": { 4320 | "name": "Python 3.8.3 64-bit ('base': conda)", 4321 | "display_name": "Python 3.8.3 64-bit ('base': conda)", 4322 | "metadata": { 4323 | "interpreter": { 4324 | "hash": "49e8b44c8c86fbe7b3f3589e64730502565b20435433ce44148baa614a6d2e5f" 4325 | } 4326 | } 4327 | }, 4328 | "language_info": { 4329 | "codemirror_mode": { 4330 | "name": "ipython", 4331 | "version": 3 4332 | }, 4333 | "file_extension": ".py", 4334 | "mimetype": "text/x-python", 4335 | "name": "python", 4336 | "nbconvert_exporter": "python", 4337 | "pygments_lexer": "ipython3", 4338 | "version": "3.8.3-final" 4339 | } 4340 | }, 4341 | "nbformat": 4, 4342 | "nbformat_minor": 2 4343 | } -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Welcome ! 2 | 3 | ### Hi there, I'm tulasi ram - Data Scientist [codeLOVEr] 4 | 5 | * Know more about me [** Portfolio **](https://tulasiram-portfolio.netlify.app) 👋 6 | 7 | 8 | ## I'm a Data Science, Machine Learning, NLP, Deep Learning, Artificial Intelligence Enthusiast!! 9 | 10 | - 🔭 I am a recent Graduate : [Want to Become A Data Scientist!] 11 | - 🌱 I’m currently learning everything 🤣 12 | - 👯 I’m looking to collaborate with other developers 13 | - 🥅 2020 Goals: Improve and gain Knowledge on ML techniques 14 | - ⚡ Fun fact: I love to travel, play video games, reading and writing articles 15 | 16 | ### Connect with me: 17 | 18 | * Let's stay connected [linkedin](https://www.linkedin.com/in/tulasiram574) 19 | * Read my articles [Medium](https://www.tulasiram574.medium.com) 20 | * For Introducing [Skype](https://join.skype.com/invite/m73hqlTWoETf) 21 | * Let's get Connect [Instagram](https://www.instagram.com/ram_lucky574/) 22 | 23 | 24 | # Bussiness Objective 25 | 26 | ### Twitter has become a large platform to extract data and can be used to solve different kinds of bussiness objectives. 27 | 28 | * Customer behaviour analysis 29 | * sentiment analysis 30 | * AI chatbots 31 | * Recommendation system, etc 32 | 33 | In our case, we collect different kinds of tweets with these keywords Depressed, Depression, Hopeless, Lonely, Suicide, Antidepressant 34 | Antidepressants from twitter and analyse to depression prediction and it appears that this solution is significant enough to have solved the difficulty. 35 | 36 | 37 | ## Data Collection: 38 | 39 | Tweets collected on Linux system commands using Twint tool. This tool is a magical for developers to collect data for thier desired use cases. 40 | 41 | * Random tweets that do not necessarily indicate depression and tweets that demonstrate that the user may have depression and/or depressive 42 | symptoms. 43 | * A dataset of random tweets can be sourced from the Sentiment140 dataset available on Kaggle 44 | 45 | 46 | https://drive.google.com/drive/folders/1z-PrTTT6u3xciSUc0eZQRfQa4qn09urc?usp=sharing 47 | 48 | 49 | ## Data Exploration & Data visualisation 50 | 51 | * Words Frequency 52 | * Characters Frequency 53 | * Most common words 54 | * word cloud 55 | 56 | ## Model Evaluation and Validation 57 | 58 | Hence it is a binary classification model, Accuracy and loss are recorded and visualized and compared to a benchmark logistic regression model. 59 | 60 | Screen Shot 2021-09-29 at 17 41 43 61 | 62 | ## conclusion 63 | 64 | The final model proves to be far more accurate than the benchmark model. The benchmark model, run on the same data for the same number of epochs, shows an accuracy of approximately 64%, while the final model has an accuracy of approximately 97%. This proves to be a much more robust and effective model for depression prediction and it appears that this solution is significant enough to have solved the difficulty of effectively analyzing Tweets for depression. 65 | 66 | ### For more information get into my article on medium 67 | 68 | https://medium.com/swlh/detecting-depression-in-social-media-via-twitter-usage-2d8f3df9b313 69 | 70 | -------------------------------------------------------------------------------- /config.yml: -------------------------------------------------------------------------------- 1 | # Use the latest 2.1 version of CircleCI pipeline process engine. See: https://circleci.com/docs/2.0/configuration-reference 2 | version: 2.1 3 | # Use a package of configuration called an orb. 4 | orbs: 5 | # Declare a dependency on the welcome-orb 6 | welcome: circleci/welcome-orb@0.4.1 7 | # Orchestrate or schedule a set of jobs 8 | workflows: 9 | # Name the workflow "welcome" 10 | welcome: 11 | # Run the welcome/run job in its own container 12 | jobs: 13 | - welcome/run 14 | --------------------------------------------------------------------------------