├── 1. Data Manipulation with Python Pandas.ipynb
├── 1. Label Encoder.ipynb
├── 2. One Hot Encoding.ipynb
├── 3. Binary Encoder.ipynb
├── 4. Ordinal Encoder.ipynb
├── Bias Variance.ipynb
├── Boxplot using Python.ipynb
├── CNN Basic Overview .ipynb
├── Churn Modelling with Decision Tree.ipynb
├── Churn Modelling with Random Forest.ipynb
├── Confusion Matrix.ipynb
├── Cross Validation.ipynb
├── Datasets
├── Churn_Modelling.csv
├── car data.csv
├── linear_data.csv
└── nonlinear_data.csv
├── Decision Tree Classifier.ipynb
├── Docs
├── Machine Learning with TensorFlow.pdf
├── PyTorch Cheatsheet.pdf
├── Readme.md
└── 𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲, 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐢𝐨𝐧.pdf
├── Fit, Transforn and fit_transform.ipynb
├── Importing data from google sheet using pandas and python.ipynb
├── Linear Relationship.ipynb
├── Neural Network.pdf
├── PROJECT on Linear Regression.ipynb
├── Papers
├── A Proficient Approach to Detect Osteosarcoma Through Deep Learning.pdf
└── read.txt
├── Plot accuracy in seaborn.ipynb
├── Polynomial Regression.ipynb
├── README.md
├── Random Forest & HyperparameterTuning.ipynb
├── SVM in ML.ipynb
├── Save ML Models.ipynb
├── Screen Time Data.csv
├── The Normal or Gaussian Distribution.ipynb
├── home data.csv
├── shoe.csv
├── shop data.csv
└── weight-height.csv
/1. Label Encoder.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "21070538",
6 | "metadata": {},
7 | "source": [
8 | "# 1. Label Encoder"
9 | ]
10 | },
11 | {
12 | "cell_type": "code",
13 | "execution_count": 1,
14 | "id": "5122882e",
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "classes = ['ClassA', 'ClassB', 'ClassC', 'ClassD']\n",
19 | "\n",
20 | "instances = ['ClassA', 'ClassB', 'ClassC', 'ClassD', 'ClassA', 'ClassB', 'ClassC', 'ClassD', 'ClassA', 'ClassB']"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 2,
26 | "id": "0790c5cf",
27 | "metadata": {},
28 | "outputs": [
29 | {
30 | "name": "stdout",
31 | "output_type": "stream",
32 | "text": [
33 | "Encoded labels: [0, 1, 2, 3, 0, 1, 2, 3, 0, 1]\n"
34 | ]
35 | }
36 | ],
37 | "source": [
38 | "label_to_int = {label: index for index, label in enumerate(classes)} #60 Days of Python ; Day 25\n",
39 | "encoded_labels = [label_to_int[label] for label in instances]\n",
40 | "\n",
41 | "print(\"Encoded labels:\", encoded_labels)"
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": 3,
47 | "id": "9bdaf4f3",
48 | "metadata": {},
49 | "outputs": [
50 | {
51 | "name": "stdout",
52 | "output_type": "stream",
53 | "text": [
54 | "Encoded labels: [0, 1, 2, 3, 0, 1, 2, 3, 0, 1]\n",
55 | "Decoded labels: ['ClassA', 'ClassB', 'ClassC', 'ClassD', 'ClassA', 'ClassB', 'ClassC', 'ClassD', 'ClassA', 'ClassB']\n"
56 | ]
57 | }
58 | ],
59 | "source": [
60 | "int_to_label = {index: label for label, index in label_to_int.items()}\n",
61 | "decoded_labels = [int_to_label[index] for index in encoded_labels]\n",
62 | "\n",
63 | "print(\"Encoded labels:\", encoded_labels)\n",
64 | "print(\"Decoded labels:\", decoded_labels)"
65 | ]
66 | },
67 | {
68 | "cell_type": "markdown",
69 | "id": "63ee1325",
70 | "metadata": {},
71 | "source": [
72 | "# Sklearn - Label Encoder"
73 | ]
74 | },
75 | {
76 | "cell_type": "code",
77 | "execution_count": 4,
78 | "id": "60a20a81",
79 | "metadata": {},
80 | "outputs": [],
81 | "source": [
82 | "from sklearn.preprocessing import LabelEncoder"
83 | ]
84 | },
85 | {
86 | "cell_type": "code",
87 | "execution_count": 5,
88 | "id": "ad2970f2",
89 | "metadata": {},
90 | "outputs": [
91 | {
92 | "name": "stdout",
93 | "output_type": "stream",
94 | "text": [
95 | "Encoded labels: [0 1 2 3 0 1 2 3 0 1]\n"
96 | ]
97 | }
98 | ],
99 | "source": [
100 | "label_encoder = LabelEncoder()\n",
101 | "encoded_labels = label_encoder.fit_transform(instances)\n",
102 | "\n",
103 | "print(\"Encoded labels:\", encoded_labels)"
104 | ]
105 | },
106 | {
107 | "cell_type": "code",
108 | "execution_count": 6,
109 | "id": "5fd9dabe",
110 | "metadata": {},
111 | "outputs": [
112 | {
113 | "name": "stdout",
114 | "output_type": "stream",
115 | "text": [
116 | "Encoded labels: [0 1 2 3 0 1 2 3 0 1]\n",
117 | "Original labels: ['ClassA' 'ClassB' 'ClassC' 'ClassD' 'ClassA' 'ClassB' 'ClassC' 'ClassD'\n",
118 | " 'ClassA' 'ClassB']\n"
119 | ]
120 | }
121 | ],
122 | "source": [
123 | "original_labels = label_encoder.inverse_transform(encoded_labels)\n",
124 | "\n",
125 | "print(\"Encoded labels:\", encoded_labels)\n",
126 | "print(\"Original labels:\", original_labels)"
127 | ]
128 | },
129 | {
130 | "cell_type": "code",
131 | "execution_count": null,
132 | "id": "e932d2b3",
133 | "metadata": {},
134 | "outputs": [],
135 | "source": []
136 | }
137 | ],
138 | "metadata": {
139 | "kernelspec": {
140 | "display_name": "Python 3 (ipykernel)",
141 | "language": "python",
142 | "name": "python3"
143 | },
144 | "language_info": {
145 | "codemirror_mode": {
146 | "name": "ipython",
147 | "version": 3
148 | },
149 | "file_extension": ".py",
150 | "mimetype": "text/x-python",
151 | "name": "python",
152 | "nbconvert_exporter": "python",
153 | "pygments_lexer": "ipython3",
154 | "version": "3.9.13"
155 | }
156 | },
157 | "nbformat": 4,
158 | "nbformat_minor": 5
159 | }
160 |
--------------------------------------------------------------------------------
/2. One Hot Encoding.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "79afcd9b",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import pandas as pd"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 2,
16 | "id": "a31b20f7",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "data = {'Category': ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C']}"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 3,
26 | "id": "6c33a2f7",
27 | "metadata": {},
28 | "outputs": [
29 | {
30 | "data": {
31 | "text/html": [
32 | "
\n",
33 | "\n",
46 | "
\n",
47 | " \n",
48 | " \n",
49 | " | \n",
50 | " Category | \n",
51 | "
\n",
52 | " \n",
53 | " \n",
54 | " \n",
55 | " 0 | \n",
56 | " A | \n",
57 | "
\n",
58 | " \n",
59 | " 1 | \n",
60 | " B | \n",
61 | "
\n",
62 | " \n",
63 | " 2 | \n",
64 | " C | \n",
65 | "
\n",
66 | " \n",
67 | " 3 | \n",
68 | " A | \n",
69 | "
\n",
70 | " \n",
71 | " 4 | \n",
72 | " B | \n",
73 | "
\n",
74 | " \n",
75 | "
\n",
76 | "
"
77 | ],
78 | "text/plain": [
79 | " Category\n",
80 | "0 A\n",
81 | "1 B\n",
82 | "2 C\n",
83 | "3 A\n",
84 | "4 B"
85 | ]
86 | },
87 | "execution_count": 3,
88 | "metadata": {},
89 | "output_type": "execute_result"
90 | }
91 | ],
92 | "source": [
93 | "df = pd.DataFrame(data)\n",
94 | "df.head()"
95 | ]
96 | },
97 | {
98 | "cell_type": "code",
99 | "execution_count": 4,
100 | "id": "d5674ea5",
101 | "metadata": {},
102 | "outputs": [
103 | {
104 | "data": {
105 | "text/html": [
106 | "\n",
107 | "\n",
120 | "
\n",
121 | " \n",
122 | " \n",
123 | " | \n",
124 | " Category_A | \n",
125 | " Category_B | \n",
126 | " Category_C | \n",
127 | "
\n",
128 | " \n",
129 | " \n",
130 | " \n",
131 | " 0 | \n",
132 | " 1 | \n",
133 | " 0 | \n",
134 | " 0 | \n",
135 | "
\n",
136 | " \n",
137 | " 1 | \n",
138 | " 0 | \n",
139 | " 1 | \n",
140 | " 0 | \n",
141 | "
\n",
142 | " \n",
143 | " 2 | \n",
144 | " 0 | \n",
145 | " 0 | \n",
146 | " 1 | \n",
147 | "
\n",
148 | " \n",
149 | " 3 | \n",
150 | " 1 | \n",
151 | " 0 | \n",
152 | " 0 | \n",
153 | "
\n",
154 | " \n",
155 | " 4 | \n",
156 | " 0 | \n",
157 | " 1 | \n",
158 | " 0 | \n",
159 | "
\n",
160 | " \n",
161 | " 5 | \n",
162 | " 0 | \n",
163 | " 0 | \n",
164 | " 1 | \n",
165 | "
\n",
166 | " \n",
167 | " 6 | \n",
168 | " 1 | \n",
169 | " 0 | \n",
170 | " 0 | \n",
171 | "
\n",
172 | " \n",
173 | " 7 | \n",
174 | " 0 | \n",
175 | " 1 | \n",
176 | " 0 | \n",
177 | "
\n",
178 | " \n",
179 | " 8 | \n",
180 | " 0 | \n",
181 | " 0 | \n",
182 | " 1 | \n",
183 | "
\n",
184 | " \n",
185 | "
\n",
186 | "
"
187 | ],
188 | "text/plain": [
189 | " Category_A Category_B Category_C\n",
190 | "0 1 0 0\n",
191 | "1 0 1 0\n",
192 | "2 0 0 1\n",
193 | "3 1 0 0\n",
194 | "4 0 1 0\n",
195 | "5 0 0 1\n",
196 | "6 1 0 0\n",
197 | "7 0 1 0\n",
198 | "8 0 0 1"
199 | ]
200 | },
201 | "execution_count": 4,
202 | "metadata": {},
203 | "output_type": "execute_result"
204 | }
205 | ],
206 | "source": [
207 | "one_hot_encoded_df = pd.get_dummies(df, columns=['Category'])\n",
208 | "one_hot_encoded_df"
209 | ]
210 | },
211 | {
212 | "cell_type": "code",
213 | "execution_count": 5,
214 | "id": "e16d27ac",
215 | "metadata": {},
216 | "outputs": [
217 | {
218 | "data": {
219 | "text/html": [
220 | "\n",
221 | "\n",
234 | "
\n",
235 | " \n",
236 | " \n",
237 | " | \n",
238 | " Dummy_A | \n",
239 | " Dummy_B | \n",
240 | " Dummy_C | \n",
241 | "
\n",
242 | " \n",
243 | " \n",
244 | " \n",
245 | " 0 | \n",
246 | " 1 | \n",
247 | " 0 | \n",
248 | " 0 | \n",
249 | "
\n",
250 | " \n",
251 | " 1 | \n",
252 | " 0 | \n",
253 | " 1 | \n",
254 | " 0 | \n",
255 | "
\n",
256 | " \n",
257 | " 2 | \n",
258 | " 0 | \n",
259 | " 0 | \n",
260 | " 1 | \n",
261 | "
\n",
262 | " \n",
263 | " 3 | \n",
264 | " 1 | \n",
265 | " 0 | \n",
266 | " 0 | \n",
267 | "
\n",
268 | " \n",
269 | " 4 | \n",
270 | " 0 | \n",
271 | " 1 | \n",
272 | " 0 | \n",
273 | "
\n",
274 | " \n",
275 | " 5 | \n",
276 | " 0 | \n",
277 | " 0 | \n",
278 | " 1 | \n",
279 | "
\n",
280 | " \n",
281 | " 6 | \n",
282 | " 1 | \n",
283 | " 0 | \n",
284 | " 0 | \n",
285 | "
\n",
286 | " \n",
287 | " 7 | \n",
288 | " 0 | \n",
289 | " 1 | \n",
290 | " 0 | \n",
291 | "
\n",
292 | " \n",
293 | " 8 | \n",
294 | " 0 | \n",
295 | " 0 | \n",
296 | " 1 | \n",
297 | "
\n",
298 | " \n",
299 | "
\n",
300 | "
"
301 | ],
302 | "text/plain": [
303 | " Dummy_A Dummy_B Dummy_C\n",
304 | "0 1 0 0\n",
305 | "1 0 1 0\n",
306 | "2 0 0 1\n",
307 | "3 1 0 0\n",
308 | "4 0 1 0\n",
309 | "5 0 0 1\n",
310 | "6 1 0 0\n",
311 | "7 0 1 0\n",
312 | "8 0 0 1"
313 | ]
314 | },
315 | "execution_count": 5,
316 | "metadata": {},
317 | "output_type": "execute_result"
318 | }
319 | ],
320 | "source": [
321 | "one_hot_encoded_df = pd.get_dummies(df, columns=['Category'], prefix='Dummy')\n",
322 | "one_hot_encoded_df"
323 | ]
324 | },
325 | {
326 | "cell_type": "code",
327 | "execution_count": 6,
328 | "id": "2e8cfc1d",
329 | "metadata": {},
330 | "outputs": [
331 | {
332 | "data": {
333 | "text/html": [
334 | "\n",
335 | "\n",
348 | "
\n",
349 | " \n",
350 | " \n",
351 | " | \n",
352 | " Dummy_B | \n",
353 | " Dummy_C | \n",
354 | "
\n",
355 | " \n",
356 | " \n",
357 | " \n",
358 | " 0 | \n",
359 | " 0 | \n",
360 | " 0 | \n",
361 | "
\n",
362 | " \n",
363 | " 1 | \n",
364 | " 1 | \n",
365 | " 0 | \n",
366 | "
\n",
367 | " \n",
368 | " 2 | \n",
369 | " 0 | \n",
370 | " 1 | \n",
371 | "
\n",
372 | " \n",
373 | " 3 | \n",
374 | " 0 | \n",
375 | " 0 | \n",
376 | "
\n",
377 | " \n",
378 | " 4 | \n",
379 | " 1 | \n",
380 | " 0 | \n",
381 | "
\n",
382 | " \n",
383 | " 5 | \n",
384 | " 0 | \n",
385 | " 1 | \n",
386 | "
\n",
387 | " \n",
388 | " 6 | \n",
389 | " 0 | \n",
390 | " 0 | \n",
391 | "
\n",
392 | " \n",
393 | " 7 | \n",
394 | " 1 | \n",
395 | " 0 | \n",
396 | "
\n",
397 | " \n",
398 | " 8 | \n",
399 | " 0 | \n",
400 | " 1 | \n",
401 | "
\n",
402 | " \n",
403 | "
\n",
404 | "
"
405 | ],
406 | "text/plain": [
407 | " Dummy_B Dummy_C\n",
408 | "0 0 0\n",
409 | "1 1 0\n",
410 | "2 0 1\n",
411 | "3 0 0\n",
412 | "4 1 0\n",
413 | "5 0 1\n",
414 | "6 0 0\n",
415 | "7 1 0\n",
416 | "8 0 1"
417 | ]
418 | },
419 | "execution_count": 6,
420 | "metadata": {},
421 | "output_type": "execute_result"
422 | }
423 | ],
424 | "source": [
425 | "one_hot_encoded_df = pd.get_dummies(df, columns=['Category'], prefix='Dummy',drop_first=True )\n",
426 | "one_hot_encoded_df"
427 | ]
428 | },
429 | {
430 | "cell_type": "code",
431 | "execution_count": 7,
432 | "id": "287f4418",
433 | "metadata": {},
434 | "outputs": [
435 | {
436 | "data": {
437 | "text/html": [
438 | "\n",
439 | "\n",
452 | "
\n",
453 | " \n",
454 | " \n",
455 | " | \n",
456 | " Category | \n",
457 | "
\n",
458 | " \n",
459 | " \n",
460 | " \n",
461 | " 0 | \n",
462 | " A | \n",
463 | "
\n",
464 | " \n",
465 | " 1 | \n",
466 | " B | \n",
467 | "
\n",
468 | " \n",
469 | " 2 | \n",
470 | " C | \n",
471 | "
\n",
472 | " \n",
473 | " 3 | \n",
474 | " A | \n",
475 | "
\n",
476 | " \n",
477 | " 4 | \n",
478 | " B | \n",
479 | "
\n",
480 | " \n",
481 | "
\n",
482 | "
"
483 | ],
484 | "text/plain": [
485 | " Category\n",
486 | "0 A\n",
487 | "1 B\n",
488 | "2 C\n",
489 | "3 A\n",
490 | "4 B"
491 | ]
492 | },
493 | "execution_count": 7,
494 | "metadata": {},
495 | "output_type": "execute_result"
496 | }
497 | ],
498 | "source": [
499 | "df.head()"
500 | ]
501 | },
502 | {
503 | "cell_type": "code",
504 | "execution_count": null,
505 | "id": "cb821849",
506 | "metadata": {},
507 | "outputs": [],
508 | "source": []
509 | }
510 | ],
511 | "metadata": {
512 | "kernelspec": {
513 | "display_name": "Python 3 (ipykernel)",
514 | "language": "python",
515 | "name": "python3"
516 | },
517 | "language_info": {
518 | "codemirror_mode": {
519 | "name": "ipython",
520 | "version": 3
521 | },
522 | "file_extension": ".py",
523 | "mimetype": "text/x-python",
524 | "name": "python",
525 | "nbconvert_exporter": "python",
526 | "pygments_lexer": "ipython3",
527 | "version": "3.9.13"
528 | }
529 | },
530 | "nbformat": 4,
531 | "nbformat_minor": 5
532 | }
533 |
--------------------------------------------------------------------------------
/3. Binary Encoder.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "adfe09d4",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import pandas as pd\n",
11 | "import category_encoders as ce"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 2,
17 | "id": "56986103",
18 | "metadata": {},
19 | "outputs": [],
20 | "source": [
21 | "data = {'Category': ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C']}\n",
22 | "df = pd.DataFrame(data)"
23 | ]
24 | },
25 | {
26 | "cell_type": "code",
27 | "execution_count": 3,
28 | "id": "b5813023",
29 | "metadata": {},
30 | "outputs": [
31 | {
32 | "data": {
33 | "text/html": [
34 | "\n",
35 | "\n",
48 | "
\n",
49 | " \n",
50 | " \n",
51 | " | \n",
52 | " Category | \n",
53 | "
\n",
54 | " \n",
55 | " \n",
56 | " \n",
57 | " 0 | \n",
58 | " A | \n",
59 | "
\n",
60 | " \n",
61 | " 1 | \n",
62 | " B | \n",
63 | "
\n",
64 | " \n",
65 | " 2 | \n",
66 | " C | \n",
67 | "
\n",
68 | " \n",
69 | " 3 | \n",
70 | " A | \n",
71 | "
\n",
72 | " \n",
73 | " 4 | \n",
74 | " B | \n",
75 | "
\n",
76 | " \n",
77 | "
\n",
78 | "
"
79 | ],
80 | "text/plain": [
81 | " Category\n",
82 | "0 A\n",
83 | "1 B\n",
84 | "2 C\n",
85 | "3 A\n",
86 | "4 B"
87 | ]
88 | },
89 | "execution_count": 3,
90 | "metadata": {},
91 | "output_type": "execute_result"
92 | }
93 | ],
94 | "source": [
95 | "df.head()"
96 | ]
97 | },
98 | {
99 | "cell_type": "code",
100 | "execution_count": 4,
101 | "id": "9390c11f",
102 | "metadata": {},
103 | "outputs": [
104 | {
105 | "data": {
106 | "text/plain": [
107 | "(9, 1)"
108 | ]
109 | },
110 | "execution_count": 4,
111 | "metadata": {},
112 | "output_type": "execute_result"
113 | }
114 | ],
115 | "source": [
116 | "df.shape"
117 | ]
118 | },
119 | {
120 | "cell_type": "code",
121 | "execution_count": 5,
122 | "id": "ec81a1c2",
123 | "metadata": {},
124 | "outputs": [],
125 | "source": [
126 | "encoder = ce.BinaryEncoder(cols=['Category'], return_df=True)"
127 | ]
128 | },
129 | {
130 | "cell_type": "code",
131 | "execution_count": 6,
132 | "id": "d5fe35de",
133 | "metadata": {},
134 | "outputs": [
135 | {
136 | "data": {
137 | "text/html": [
138 | "\n",
139 | "\n",
152 | "
\n",
153 | " \n",
154 | " \n",
155 | " | \n",
156 | " Category_0 | \n",
157 | " Category_1 | \n",
158 | "
\n",
159 | " \n",
160 | " \n",
161 | " \n",
162 | " 0 | \n",
163 | " 0 | \n",
164 | " 1 | \n",
165 | "
\n",
166 | " \n",
167 | " 1 | \n",
168 | " 1 | \n",
169 | " 0 | \n",
170 | "
\n",
171 | " \n",
172 | " 2 | \n",
173 | " 1 | \n",
174 | " 1 | \n",
175 | "
\n",
176 | " \n",
177 | " 3 | \n",
178 | " 0 | \n",
179 | " 1 | \n",
180 | "
\n",
181 | " \n",
182 | " 4 | \n",
183 | " 1 | \n",
184 | " 0 | \n",
185 | "
\n",
186 | " \n",
187 | " 5 | \n",
188 | " 1 | \n",
189 | " 1 | \n",
190 | "
\n",
191 | " \n",
192 | " 6 | \n",
193 | " 0 | \n",
194 | " 1 | \n",
195 | "
\n",
196 | " \n",
197 | " 7 | \n",
198 | " 1 | \n",
199 | " 0 | \n",
200 | "
\n",
201 | " \n",
202 | " 8 | \n",
203 | " 1 | \n",
204 | " 1 | \n",
205 | "
\n",
206 | " \n",
207 | "
\n",
208 | "
"
209 | ],
210 | "text/plain": [
211 | " Category_0 Category_1\n",
212 | "0 0 1\n",
213 | "1 1 0\n",
214 | "2 1 1\n",
215 | "3 0 1\n",
216 | "4 1 0\n",
217 | "5 1 1\n",
218 | "6 0 1\n",
219 | "7 1 0\n",
220 | "8 1 1"
221 | ]
222 | },
223 | "execution_count": 6,
224 | "metadata": {},
225 | "output_type": "execute_result"
226 | }
227 | ],
228 | "source": [
229 | "df_binary_encoded = encoder.fit_transform(df)\n",
230 | "df_binary_encoded"
231 | ]
232 | },
233 | {
234 | "cell_type": "code",
235 | "execution_count": null,
236 | "id": "201a7fa5",
237 | "metadata": {},
238 | "outputs": [],
239 | "source": []
240 | }
241 | ],
242 | "metadata": {
243 | "kernelspec": {
244 | "display_name": "Python 3 (ipykernel)",
245 | "language": "python",
246 | "name": "python3"
247 | },
248 | "language_info": {
249 | "codemirror_mode": {
250 | "name": "ipython",
251 | "version": 3
252 | },
253 | "file_extension": ".py",
254 | "mimetype": "text/x-python",
255 | "name": "python",
256 | "nbconvert_exporter": "python",
257 | "pygments_lexer": "ipython3",
258 | "version": "3.9.13"
259 | }
260 | },
261 | "nbformat": 4,
262 | "nbformat_minor": 5
263 | }
264 |
--------------------------------------------------------------------------------
/4. Ordinal Encoder.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "b78c029d",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import pandas as pd\n",
11 | "from sklearn.preprocessing import OrdinalEncoder"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 2,
17 | "id": "c146e9da",
18 | "metadata": {},
19 | "outputs": [],
20 | "source": [
21 | "data = [\n",
22 | " ['good'], ['bad'], ['excellent'], ['average'], \n",
23 | " ['good'], ['average'], ['excellent'], ['bad'], \n",
24 | " ['average'], ['good']\n",
25 | "]"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": 3,
31 | "id": "3ad7f2c7",
32 | "metadata": {},
33 | "outputs": [
34 | {
35 | "data": {
36 | "text/html": [
37 | "\n",
38 | "\n",
51 | "
\n",
52 | " \n",
53 | " \n",
54 | " | \n",
55 | " reviews | \n",
56 | "
\n",
57 | " \n",
58 | " \n",
59 | " \n",
60 | " 0 | \n",
61 | " good | \n",
62 | "
\n",
63 | " \n",
64 | " 1 | \n",
65 | " bad | \n",
66 | "
\n",
67 | " \n",
68 | " 2 | \n",
69 | " excellent | \n",
70 | "
\n",
71 | " \n",
72 | " 3 | \n",
73 | " average | \n",
74 | "
\n",
75 | " \n",
76 | " 4 | \n",
77 | " good | \n",
78 | "
\n",
79 | " \n",
80 | "
\n",
81 | "
"
82 | ],
83 | "text/plain": [
84 | " reviews\n",
85 | "0 good\n",
86 | "1 bad\n",
87 | "2 excellent\n",
88 | "3 average\n",
89 | "4 good"
90 | ]
91 | },
92 | "execution_count": 3,
93 | "metadata": {},
94 | "output_type": "execute_result"
95 | }
96 | ],
97 | "source": [
98 | "data = pd.DataFrame(data=data, columns=['reviews'])\n",
99 | "data.head()"
100 | ]
101 | },
102 | {
103 | "cell_type": "code",
104 | "execution_count": 4,
105 | "id": "14b89f09",
106 | "metadata": {},
107 | "outputs": [
108 | {
109 | "data": {
110 | "text/plain": [
111 | "(10, 1)"
112 | ]
113 | },
114 | "execution_count": 4,
115 | "metadata": {},
116 | "output_type": "execute_result"
117 | }
118 | ],
119 | "source": [
120 | "data.shape"
121 | ]
122 | },
123 | {
124 | "cell_type": "code",
125 | "execution_count": 5,
126 | "id": "3e569b99",
127 | "metadata": {},
128 | "outputs": [],
129 | "source": [
130 | "categories = [['bad', 'average', 'good', 'excellent']]"
131 | ]
132 | },
133 | {
134 | "cell_type": "code",
135 | "execution_count": 6,
136 | "id": "eee41b3c",
137 | "metadata": {},
138 | "outputs": [
139 | {
140 | "data": {
141 | "text/plain": [
142 | "[['bad', 'average', 'good', 'excellent']]"
143 | ]
144 | },
145 | "execution_count": 6,
146 | "metadata": {},
147 | "output_type": "execute_result"
148 | }
149 | ],
150 | "source": [
151 | "categories"
152 | ]
153 | },
154 | {
155 | "cell_type": "code",
156 | "execution_count": 7,
157 | "id": "b3a1d73e",
158 | "metadata": {},
159 | "outputs": [],
160 | "source": [
161 | "encoder = OrdinalEncoder(categories=categories)"
162 | ]
163 | },
164 | {
165 | "cell_type": "code",
166 | "execution_count": 8,
167 | "id": "74286b79",
168 | "metadata": {},
169 | "outputs": [
170 | {
171 | "data": {
172 | "text/plain": [
173 | "array([[2.],\n",
174 | " [0.],\n",
175 | " [3.],\n",
176 | " [1.],\n",
177 | " [2.],\n",
178 | " [1.],\n",
179 | " [3.],\n",
180 | " [0.],\n",
181 | " [1.],\n",
182 | " [2.]])"
183 | ]
184 | },
185 | "execution_count": 8,
186 | "metadata": {},
187 | "output_type": "execute_result"
188 | }
189 | ],
190 | "source": [
191 | "encoded_data = encoder.fit_transform(data)\n",
192 | "encoded_data"
193 | ]
194 | },
195 | {
196 | "cell_type": "code",
197 | "execution_count": 9,
198 | "id": "b4fa6545",
199 | "metadata": {},
200 | "outputs": [
201 | {
202 | "data": {
203 | "text/plain": [
204 | "array([['good'],\n",
205 | " ['bad'],\n",
206 | " ['excellent'],\n",
207 | " ['average'],\n",
208 | " ['good'],\n",
209 | " ['average'],\n",
210 | " ['excellent'],\n",
211 | " ['bad'],\n",
212 | " ['average'],\n",
213 | " ['good']], dtype=object)"
214 | ]
215 | },
216 | "execution_count": 9,
217 | "metadata": {},
218 | "output_type": "execute_result"
219 | }
220 | ],
221 | "source": [
222 | "decoded_data = encoder.inverse_transform(encoded_data)\n",
223 | "decoded_data"
224 | ]
225 | },
226 | {
227 | "cell_type": "code",
228 | "execution_count": null,
229 | "id": "525a8f59",
230 | "metadata": {},
231 | "outputs": [],
232 | "source": []
233 | }
234 | ],
235 | "metadata": {
236 | "kernelspec": {
237 | "display_name": "Python 3 (ipykernel)",
238 | "language": "python",
239 | "name": "python3"
240 | },
241 | "language_info": {
242 | "codemirror_mode": {
243 | "name": "ipython",
244 | "version": 3
245 | },
246 | "file_extension": ".py",
247 | "mimetype": "text/x-python",
248 | "name": "python",
249 | "nbconvert_exporter": "python",
250 | "pygments_lexer": "ipython3",
251 | "version": "3.9.13"
252 | }
253 | },
254 | "nbformat": 4,
255 | "nbformat_minor": 5
256 | }
257 |
--------------------------------------------------------------------------------
/Bias Variance.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "b1a8e3b3",
7 | "metadata": {},
8 | "outputs": [
9 | {
10 | "name": "stdout",
11 | "output_type": "stream",
12 | "text": [
13 | "MSE (Mean Squared Error): 0.9388721228182039\n",
14 | "Bias^2: 0.9178184739745323\n",
15 | "Variance: 0.021053648843671263\n"
16 | ]
17 | }
18 | ],
19 | "source": [
20 | "import numpy as np\n",
21 | "from sklearn.model_selection import train_test_split\n",
22 | "from sklearn.linear_model import LinearRegression\n",
23 | "from mlxtend.evaluate import bias_variance_decomp\n",
24 | "\n",
25 | "np.random.seed(0)\n",
26 | "X = np.random.rand(100, 1) * 10\n",
27 | "y = 2 * X.squeeze() + np.random.randn(100) # True relationship is y = 2X + noise\n",
28 | "\n",
29 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
30 | "model = LinearRegression()\n",
31 | "model.fit(X_train, y_train)\n",
32 | "\n",
33 | "# Calculate bias and variance using the bias_variance_decomp function\n",
34 | "mse, bias, variance = bias_variance_decomp(model, X_train, y_train, X_test, y_test, loss='mse')\n",
35 | "\n",
36 | "print(\"MSE (Mean Squared Error):\", mse)\n",
37 | "print(\"Bias^2:\", bias)\n",
38 | "print(\"Variance:\", variance)"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": null,
44 | "id": "6c73e239",
45 | "metadata": {},
46 | "outputs": [],
47 | "source": []
48 | }
49 | ],
50 | "metadata": {
51 | "kernelspec": {
52 | "display_name": "Python 3 (ipykernel)",
53 | "language": "python",
54 | "name": "python3"
55 | },
56 | "language_info": {
57 | "codemirror_mode": {
58 | "name": "ipython",
59 | "version": 3
60 | },
61 | "file_extension": ".py",
62 | "mimetype": "text/x-python",
63 | "name": "python",
64 | "nbconvert_exporter": "python",
65 | "pygments_lexer": "ipython3",
66 | "version": "3.9.13"
67 | }
68 | },
69 | "nbformat": 4,
70 | "nbformat_minor": 5
71 | }
72 |
--------------------------------------------------------------------------------
/Cross Validation.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "e8f71325",
6 | "metadata": {},
7 | "source": [
8 | "# Import Libraries"
9 | ]
10 | },
11 | {
12 | "cell_type": "code",
13 | "execution_count": null,
14 | "id": "be1ca00c",
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "import numpy as np\n",
19 | "import xgboost as xgb\n",
20 | "from sklearn.datasets import make_classification\n",
21 | "from sklearn.model_selection import train_test_split, KFold, StratifiedKFold, cross_val_score\n",
22 | "import warnings\n",
23 | "warnings.filterwarnings('ignore')"
24 | ]
25 | },
26 | {
27 | "cell_type": "markdown",
28 | "id": "8169bc95",
29 | "metadata": {},
30 | "source": [
31 | "# Generating synthetic data & splitting into train-test"
32 | ]
33 | },
34 | {
35 | "cell_type": "code",
36 | "execution_count": null,
37 | "id": "d78b72e8",
38 | "metadata": {},
39 | "outputs": [],
40 | "source": [
41 | "X, y = make_classification(n_samples=1000, n_features=20, n_informative=2, n_redundant=10, random_state=42)\n",
42 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)"
43 | ]
44 | },
45 | {
46 | "cell_type": "markdown",
47 | "id": "74140325",
48 | "metadata": {},
49 | "source": [
50 | "# XGBoost Classifier"
51 | ]
52 | },
53 | {
54 | "cell_type": "code",
55 | "execution_count": null,
56 | "id": "02b08163",
57 | "metadata": {},
58 | "outputs": [],
59 | "source": [
60 | "clf = xgb.XGBClassifier(use_label_encoder=False, eval_metric='logloss')\n",
61 | "clf.fit(X_train, y_train)"
62 | ]
63 | },
64 | {
65 | "cell_type": "code",
66 | "execution_count": null,
67 | "id": "88846ffc",
68 | "metadata": {},
69 | "outputs": [],
70 | "source": [
71 | "clf.score(X_test,y_test)"
72 | ]
73 | },
74 | {
75 | "cell_type": "markdown",
76 | "id": "828a0d8f",
77 | "metadata": {},
78 | "source": [
79 | "# Perform k-Fold Cross-Validation"
80 | ]
81 | },
82 | {
83 | "cell_type": "code",
84 | "execution_count": null,
85 | "id": "40209a32",
86 | "metadata": {},
87 | "outputs": [],
88 | "source": [
89 | "kf = KFold(n_splits=5, random_state=42, shuffle=True)\n",
90 | "kf_scores = cross_val_score(clf, X, y, cv=kf)"
91 | ]
92 | },
93 | {
94 | "cell_type": "code",
95 | "execution_count": null,
96 | "id": "7f1faafa",
97 | "metadata": {},
98 | "outputs": [],
99 | "source": [
100 | "kf_scores"
101 | ]
102 | },
103 | {
104 | "cell_type": "markdown",
105 | "id": "ebe2b712",
106 | "metadata": {},
107 | "source": [
108 | "# Perform Stratified k-Fold Cross-Validation"
109 | ]
110 | },
111 | {
112 | "cell_type": "code",
113 | "execution_count": null,
114 | "id": "975f881f",
115 | "metadata": {},
116 | "outputs": [],
117 | "source": [
118 | "skf = StratifiedKFold(n_splits=5, random_state=42, shuffle=True)\n",
119 | "skf_scores = cross_val_score(clf, X, y, cv=skf)"
120 | ]
121 | },
122 | {
123 | "cell_type": "code",
124 | "execution_count": null,
125 | "id": "038c6ded",
126 | "metadata": {},
127 | "outputs": [],
128 | "source": [
129 | "skf_scores"
130 | ]
131 | },
132 | {
133 | "cell_type": "code",
134 | "execution_count": null,
135 | "id": "25f4fdd9",
136 | "metadata": {},
137 | "outputs": [],
138 | "source": []
139 | }
140 | ],
141 | "metadata": {
142 | "kernelspec": {
143 | "display_name": "Python 3 (ipykernel)",
144 | "language": "python",
145 | "name": "python3"
146 | },
147 | "language_info": {
148 | "codemirror_mode": {
149 | "name": "ipython",
150 | "version": 3
151 | },
152 | "file_extension": ".py",
153 | "mimetype": "text/x-python",
154 | "name": "python",
155 | "nbconvert_exporter": "python",
156 | "pygments_lexer": "ipython3",
157 | "version": "3.9.13"
158 | }
159 | },
160 | "nbformat": 4,
161 | "nbformat_minor": 5
162 | }
163 |
--------------------------------------------------------------------------------
/Datasets/car data.csv:
--------------------------------------------------------------------------------
1 | speed,car_age,experience,risk
2 | 172,22,8.104041735628343,42
3 | 94,17,11.429460504100213,36
4 | 186,20,14.819477218213366,45
5 | 151,10,15.343897062171434,38
6 | 100,6,16.455807037533862,47
7 | 182,15,14.88423313886596,66
8 | 154,11,4.750129425849399,64
9 | 167,28,8.004457857440496,42
10 | 196,5,9.554297817604551,77
11 | 179,1,1.6578264338670845,95
12 | 183,8,10.567402425944184,75
13 | 210,21,8.726716632131119,19
14 | 132,28,16.04218498053468,14
15 | 81,12,19.558013375085416,83
16 | 167,12,11.120100772851693,47
17 | 117,5,6.453727765551673,22
18 | 209,7,0.8680156659634553,40
19 | 100,4,18.49286660447192,56
20 | 168,20,13.90822246213295,65
21 | 128,15,1.508690941795385,24
22 | 138,3,3.3243086381850584,38
23 | 94,23,4.336182131729824,17
24 | 130,8,5.889878936788597,14
25 | 187,20,19.916627500587413,38
26 | 134,16,13.938501117276296,56
27 | 143,13,7.6840366275843985,77
28 | 210,18,14.742014116860386,85
29 | 130,28,18.305086833382127,54
30 | 214,10,19.174048148156924,11
31 | 100,19,1.157277955154148,36
32 | 152,17,7.890435972162598,45
33 | 97,24,2.135121318717688,45
34 | 211,19,6.713201295939264,35
35 | 168,28,3.39359807791131,52
36 | 139,26,12.936967233374476,36
37 | 93,23,7.765367679797444,78
38 | 88,26,4.587894914098993,29
39 | 169,5,5.31875849928478,20
40 | 132,26,7.206901904105365,83
41 | 209,21,5.198997257085254,47
42 | 163,23,9.06481693657662,15
43 | 171,9,0.6463190221930093,81
44 | 190,12,5.595270143378914,32
45 | 87,21,8.224134417443725,56
46 | 114,1,12.05563764046597,99
47 | 160,26,5.419152850302598,55
48 | 183,1,1.524007591983263,99
49 | 211,15,18.81063654270767,22
50 | 81,2,8.332781154769584,71
51 | 213,22,11.623252423616526,91
52 | 133,16,18.38353103671119,98
53 | 185,25,1.6549684007061227,69
54 | 83,8,17.533229718515855,52
55 | 133,13,11.0317574508814,85
56 | 123,21,3.296685222740019,77
57 | 93,1,8.225102331707381,14
58 | 174,16,15.55204567470451,46
59 | 127,29,9.607401637327094,81
60 | 94,7,19.70572101331009,40
61 | 119,5,7.534779398758815,18
62 | 161,22,14.99156599952144,60
63 | 190,29,7.859788979577182,38
64 | 132,23,16.58328441413029,87
65 | 103,3,11.381629383314952,49
66 | 203,12,1.270236591800027,50
67 | 120,26,0.7364373527198276,95
68 | 94,16,2.677042376012664,20
69 | 124,19,0.2734392965399457,32
70 | 144,5,1.5071812070492463,10
71 | 168,22,13.83428794337824,55
72 | 150,25,10.68692550058926,30
73 | 88,29,14.998214989399436,99
74 | 167,14,18.263315045152854,45
75 | 208,28,11.70299064650944,63
76 | 215,5,14.52241688143696,96
77 | 142,15,15.141624040849118,66
78 | 218,17,7.557010985515729,10
79 | 215,20,4.100906570130498,63
80 | 112,5,5.028848790235969,64
81 | 202,12,5.494635940518176,49
82 | 84,16,4.144552980161129,24
83 | 120,26,17.564413349583845,30
84 | 107,26,15.139982643444574,56
85 | 214,16,0.9379293558243984,82
86 | 151,21,5.373449640506147,62
87 | 91,7,0.4436948406060326,18
88 | 112,4,9.963303732917858,83
89 | 127,1,9.524213935780285,61
90 | 141,5,16.627429801250024,66
91 | 116,23,6.1555447954209885,35
92 | 178,26,16.327714704261247,50
93 | 183,10,19.359475308796465,44
94 | 114,22,1.7681644673129315,72
95 | 180,5,15.836356789392658,34
96 | 210,4,11.79911794275272,99
97 | 80,2,9.600919340369504,84
98 | 84,20,8.410715573301502,47
99 | 182,10,15.69336527888619,11
100 | 106,26,12.787227139484846,16
101 | 216,19,16.10089335038724,91
102 | 94,26,18.06302117353253,43
103 | 169,1,12.34527424194584,26
104 | 121,24,19.60925450184756,52
105 | 203,5,12.161756990837704,68
106 | 142,13,12.732886432445651,60
107 | 175,4,11.096312170844511,63
108 | 131,16,1.8200418210266056,33
109 | 211,16,10.94892613798223,80
110 | 108,23,9.018208948322089,61
111 | 115,2,18.20942556806546,79
112 | 92,17,5.95918903083901,97
113 | 150,28,10.472045520300224,42
114 | 165,27,13.952837429869266,58
115 | 107,20,15.929435513477546,38
116 | 145,24,9.186936158923448,72
117 | 124,12,16.841828300374193,31
118 | 141,18,15.37835482630795,35
119 | 213,3,1.3247195570373171,37
120 | 107,28,0.917225328092659,94
121 | 107,1,12.416113688441826,58
122 | 187,1,6.948268164508285,80
123 | 123,29,4.182615821570284,90
124 | 109,11,6.8312642091309,58
125 | 207,12,9.20238317967144,95
126 | 171,3,11.695322118983071,72
127 | 208,1,8.006009778205627,70
128 | 200,1,13.953351473938636,58
129 | 106,8,3.6013454469859707,80
130 | 200,10,13.93002932454158,10
131 | 195,11,8.233224287150563,22
132 | 82,12,17.486352097088343,96
133 | 182,29,10.304721097284215,60
134 | 216,13,19.462206985402087,65
135 | 141,12,12.038707910819204,92
136 | 130,14,4.476981318126412,71
137 | 138,2,16.435812736888984,41
138 | 197,29,6.901652556447735,39
139 | 175,19,6.95238428965367,38
140 | 192,18,0.6360936297033026,58
141 | 141,3,10.974306184148173,54
142 | 131,23,10.68847007465046,39
143 | 91,17,7.119829685439722,25
144 | 118,26,17.884345257918515,49
145 | 209,8,2.574967965992878,28
146 | 210,29,6.601990266203108,27
147 | 192,26,6.43165529360058,10
148 | 180,10,1.8458117245749217,87
149 | 192,26,9.622907881125863,56
150 | 160,2,13.75569434192166,75
151 | 192,19,10.233140270945224,47
152 | 81,9,3.1395536543238745,60
153 | 209,7,7.545719304841452,72
154 | 133,4,0.0519004876729312,13
155 | 166,26,17.366022140711735,10
156 | 208,21,1.6903401536136389,17
157 | 205,18,11.945561645108612,38
158 | 132,11,10.73181291974665,12
159 | 147,29,18.480835182148663,41
160 | 202,24,4.722330662348087,19
161 | 117,4,15.199108178751713,83
162 | 103,25,10.62531507947068,92
163 | 148,21,14.410321227829296,43
164 | 195,29,1.246827250224829,96
165 | 177,25,2.954781838124534,64
166 | 218,4,2.662338571749565,41
167 | 176,10,13.743310108066622,59
168 | 203,5,16.888813452672576,16
169 | 149,9,14.992324640171748,17
170 | 82,3,17.344299621494464,66
171 | 175,3,7.94327665008165,97
172 | 131,16,2.097383330649618,96
173 | 207,4,14.748104121876382,68
174 | 118,18,3.645677569519161,81
175 | 161,17,11.279301840376728,63
176 | 183,7,16.814199717558623,76
177 | 208,24,1.7840865742411238,60
178 | 90,23,10.70671128031047,17
179 | 178,12,6.858537285565205,44
180 | 86,17,9.479398828611124,97
181 | 169,23,7.102086065586095,87
182 | 191,13,12.97645680583152,41
183 | 139,23,9.591642035085004,55
184 | 192,25,11.683989694283383,25
185 | 81,3,14.736449507898255,77
186 | 208,9,11.154845319008748,46
187 | 127,17,11.73070869321518,63
188 | 219,17,11.289170850452823,94
189 | 116,20,7.575452519025787,23
190 | 88,16,6.748936677438362,64
191 | 178,25,17.992947942900244,57
192 | 127,22,12.151104445871455,91
193 | 210,13,4.8870631092930905,16
194 | 133,27,9.964953956978803,83
195 | 199,19,6.60696962561828,16
196 | 195,17,18.67383647519749,42
197 | 192,12,4.506655954250565,94
198 | 183,29,7.307136393481153,28
199 | 163,9,9.75619601617476,28
200 | 191,19,17.016350356722924,45
201 | 178,12,1.7577524908028774,38
202 | 172,9,16.11729773482287,69
203 | 207,7,1.1130697871395068,91
204 | 189,28,16.846280705963633,11
205 | 161,14,1.0327095574902567,10
206 | 133,20,0.3648496285672209,56
207 | 147,19,13.93922924732843,78
208 | 112,26,19.945110695367887,29
209 | 100,15,17.932205259480416,20
210 | 127,16,11.5199683561132,11
211 | 207,21,18.347912261710636,76
212 | 215,5,0.1060001279521083,96
213 | 214,3,19.50134325890285,21
214 | 207,12,9.81497558517569,29
215 | 112,25,14.457921932435514,14
216 | 194,20,16.417229463067052,46
217 | 198,27,14.369145416731072,47
218 | 101,21,10.700734640898212,18
219 | 117,4,9.53238968252824,62
220 | 188,21,16.771651174052494,53
221 | 87,16,19.359881330084686,33
222 | 106,25,14.219049576734966,90
223 | 100,13,14.724943673969763,39
224 | 109,21,10.596800463622332,68
225 | 176,10,14.14460191288889,96
226 | 107,26,15.355590028856776,90
227 | 190,7,1.7458035917935089,90
228 | 140,14,10.12207912718694,23
229 | 127,26,18.64028684513868,18
230 | 83,5,6.412843843190286,49
231 | 114,3,11.877661951157975,75
232 | 128,23,7.384609630197922,34
233 | 96,29,9.085359444381991,82
234 | 125,11,10.972062358763065,31
235 | 196,11,10.978439597779545,13
236 | 85,18,4.034609246604717,35
237 | 178,15,13.691430957596666,67
238 | 203,12,1.7573622248531362,38
239 | 116,9,2.7764954688404075,96
240 | 172,26,2.3339212828336264,84
241 | 125,12,9.463324021037844,79
242 | 174,17,12.122037621116773,27
243 | 195,6,2.133985002268721,51
244 | 146,7,17.014549200329093,50
245 | 207,14,14.919490510974365,47
246 | 97,13,8.170365858718338,43
247 | 104,8,18.65876134199909,26
248 | 137,9,4.100036201064745,34
249 | 146,18,7.584571699276008,85
250 | 183,27,18.52898847179422,96
251 | 103,26,14.431931015025544,95
252 | 193,2,0.9618928792817538,94
253 | 111,5,15.630289635028298,36
254 | 165,29,16.558817743549838,66
255 | 206,5,15.01003849530627,40
256 | 209,6,15.990742618390312,15
257 | 96,19,16.502653533855945,49
258 | 183,8,3.728099735762882,21
259 | 216,16,4.713834921299995,62
260 | 122,13,12.675171274403546,80
261 | 118,1,18.15732260925032,19
262 | 105,22,6.323931645929893,54
263 | 178,20,11.766133515901132,26
264 | 129,17,13.659641268342648,35
265 | 92,7,9.038972025980785,94
266 | 139,25,14.27564909710652,71
267 | 214,13,17.99334890584346,55
268 | 136,4,12.482030883636751,73
269 | 99,6,8.77489350776678,63
270 | 144,28,11.549725418122511,74
271 | 87,19,7.107249036367918,60
272 | 194,29,7.829642204030039,62
273 | 171,12,10.63714959376348,45
274 | 177,22,1.3323822478163394,35
275 | 145,7,4.580507818495927,38
276 | 111,27,10.85698621226818,30
277 | 165,10,8.630562862728851,20
278 | 130,26,6.656315718249686,49
279 | 142,19,14.61098273618603,20
280 | 204,7,13.87435214806677,45
281 | 137,3,3.334615199867663,68
282 |
--------------------------------------------------------------------------------
/Datasets/linear_data.csv:
--------------------------------------------------------------------------------
1 | x,y
2 | 0.0,4.4476917012367645
3 | 0.02004008016032064,5.024612031683661
4 | 0.04008016032064128,5.869592917849527
5 | 0.06012024048096192,4.722490205935278
6 | 0.08016032064128256,4.877100714416455
7 | 0.1002004008016032,5.046555162919705
8 | 0.12024048096192384,5.3749929985119715
9 | 0.1402805611222445,5.54302005406743
10 | 0.16032064128256512,5.954347109974459
11 | 0.18036072144288576,5.610470559620101
12 | 0.2004008016032064,5.369775040307245
13 | 0.22044088176352705,6.070465328332461
14 | 0.24048096192384769,5.833017434918486
15 | 0.2605210420841683,4.773202326039828
16 | 0.280561122244489,6.824306364666977
17 | 0.3006012024048096,6.486163098907986
18 | 0.32064128256513025,5.557175453746723
19 | 0.3406813627254509,5.87031777632014
20 | 0.3607214428857715,6.383622260769463
21 | 0.3807615230460922,5.675422649743743
22 | 0.4008016032064128,6.166779101601335
23 | 0.42084168336673344,6.393972603519205
24 | 0.4408817635270541,5.374350573186888
25 | 0.4609218436873747,5.620677760583318
26 | 0.48096192384769537,6.422628046600681
27 | 0.501002004008016,6.232411246590447
28 | 0.5210420841683366,6.503982448493647
29 | 0.5410821643286573,6.015880321330456
30 | 0.561122244488978,5.97774188350084
31 | 0.5811623246492986,5.163004911506911
32 | 0.6012024048096192,5.629404596365517
33 | 0.6212424849699398,6.266018017269126
34 | 0.6412825651302605,6.694843740042638
35 | 0.6613226452905812,6.58823447384901
36 | 0.6813627254509018,6.298604463887953
37 | 0.7014028056112224,6.266919827977096
38 | 0.721442885771543,6.5514755878622255
39 | 0.7414829659318637,6.522071522409804
40 | 0.7615230460921844,7.225318849654224
41 | 0.781563126252505,6.636346637744135
42 | 0.8016032064128256,5.862583431727002
43 | 0.8216432865731462,6.007007505630135
44 | 0.8416833667334669,7.442746401948724
45 | 0.8617234468937875,6.1378666630625345
46 | 0.8817635270541082,7.145775780624983
47 | 0.9018036072144289,6.669420846824168
48 | 0.9218436873747494,6.758808227798256
49 | 0.9418837675350701,6.81670114368593
50 | 0.9619238476953907,7.534540175120381
51 | 0.9819639278557114,6.86750694143944
52 | 1.002004008016032,6.987348374609487
53 | 1.0220440881763526,6.278686427652959
54 | 1.0420841683366733,7.187513592527349
55 | 1.062124248496994,7.389769750483017
56 | 1.0821643286573146,7.283901447641522
57 | 1.1022044088176353,7.903356948178638
58 | 1.122244488977956,7.272074655346028
59 | 1.1422845691382766,7.434057866336062
60 | 1.1623246492985972,8.148901303731284
61 | 1.1823647294589177,6.589722364238762
62 | 1.2024048096192383,7.176896945338792
63 | 1.222444889779559,8.15796915556875
64 | 1.2424849699398797,7.9530345140353
65 | 1.2625250501002003,7.8642401496206364
66 | 1.282565130260521,7.981455630253281
67 | 1.3026052104208417,7.7687435254021935
68 | 1.3226452905811623,8.46108929492846
69 | 1.342685370741483,7.874250326348325
70 | 1.3627254509018036,7.845384454751247
71 | 1.3827655310621243,7.845010399187069
72 | 1.4028056112224447,7.902043200220083
73 | 1.4228456913827654,7.267182742357597
74 | 1.442885771543086,8.271108070317844
75 | 1.4629258517034067,7.86063183651515
76 | 1.4829659318637274,8.876889412657658
77 | 1.503006012024048,7.9681867887538855
78 | 1.5230460921843687,8.256551326456565
79 | 1.5430861723446894,8.209473437820046
80 | 1.56312625250501,7.813473987455394
81 | 1.5831663326653307,8.662401079589914
82 | 1.6032064128256511,9.15894464593131
83 | 1.6232464929859718,8.239104376142022
84 | 1.6432865731462925,8.136333753499875
85 | 1.6633266533066131,8.149138941085539
86 | 1.6833667334669338,7.420552520275197
87 | 1.7034068136272544,8.317907055403003
88 | 1.723446893787575,8.572392845579312
89 | 1.7434869739478958,9.014352910485933
90 | 1.7635270541082164,9.007077978791397
91 | 1.783567134268537,8.358884727318728
92 | 1.8036072144288577,8.468802931470773
93 | 1.8236472945891782,9.209247241985576
94 | 1.8436873747494988,8.600642800962559
95 | 1.8637274549098195,8.47244013994183
96 | 1.8837675350701402,9.463794294857417
97 | 1.9038076152304608,9.32640806398624
98 | 1.9238476953907815,8.857091286668693
99 | 1.9438877755511021,8.590886827212872
100 | 1.9639278557114228,7.921915551800491
101 | 1.9839679358717435,9.262787674530848
102 | 2.004008016032064,8.559831170788037
103 | 2.024048096192385,8.066730187814393
104 | 2.0440881763527052,9.880586616379919
105 | 2.064128256513026,9.452240408530997
106 | 2.0841683366733466,8.598832576788212
107 | 2.1042084168336674,8.601216142187706
108 | 2.124248496993988,9.683977885073785
109 | 2.1442885771543083,8.849591846040681
110 | 2.164328657314629,9.9767322483932
111 | 2.1843687374749496,9.676967131262977
112 | 2.2044088176352705,9.677115895553953
113 | 2.224448897795591,9.651245523398334
114 | 2.244488977955912,9.58470339192378
115 | 2.2645290581162323,9.96931371582102
116 | 2.284569138276553,9.342098095295304
117 | 2.3046092184368736,9.652194423590938
118 | 2.3246492985971945,10.025271891032986
119 | 2.344689378757515,9.970873616808094
120 | 2.3647294589178354,9.131965515201342
121 | 2.3847695390781563,9.519334244504181
122 | 2.4048096192384767,9.936020991186531
123 | 2.4248496993987976,9.645692044277647
124 | 2.444889779559118,10.777108839604901
125 | 2.464929859719439,9.73328312206182
126 | 2.4849699398797593,9.888830655971173
127 | 2.50501002004008,10.394735129168811
128 | 2.5250501002004007,10.21536657201826
129 | 2.5450901803607215,10.017543132119059
130 | 2.565130260521042,9.752013756601709
131 | 2.5851703406813624,10.321097710061107
132 | 2.6052104208416833,10.729969061872563
133 | 2.6252505010020037,10.490048614053121
134 | 2.6452905811623246,9.901489401596589
135 | 2.665330661322645,11.199048801133646
136 | 2.685370741482966,9.647452537947986
137 | 2.7054108216432864,9.619478822385178
138 | 2.7254509018036073,10.93118041583583
139 | 2.7454909819639277,10.6039022032292
140 | 2.7655310621242486,10.256312851096476
141 | 2.785571142284569,10.021856920791473
142 | 2.8056112224448895,11.771622364529929
143 | 2.8256513026052104,10.709848041288142
144 | 2.845691382765531,10.958483350953948
145 | 2.8657314629258517,10.890405474470795
146 | 2.885771543086172,10.988947065037923
147 | 2.905811623246493,11.081670476755388
148 | 2.9258517034068134,11.217915411691065
149 | 2.9458917835671343,10.704172366753932
150 | 2.9659318637274548,10.786042734278988
151 | 2.9859719438877756,10.101432483596101
152 | 3.006012024048096,10.621871844845423
153 | 3.0260521042084165,11.18766060664019
154 | 3.0460921843687374,11.61469605648882
155 | 3.066132264529058,11.431784292246208
156 | 3.0861723446893787,11.001998517439793
157 | 3.106212424849699,10.580838393656823
158 | 3.12625250501002,9.863825437306325
159 | 3.1462925851703405,11.868452157731081
160 | 3.1663326653306614,11.038050837406248
161 | 3.186372745490982,11.148512987879933
162 | 3.2064128256513023,11.478612635256638
163 | 3.226452905811623,10.750125787927301
164 | 3.2464929859719436,11.31809488188812
165 | 3.2665330661322645,12.544802107149517
166 | 3.286573146292585,11.82583976187384
167 | 3.306613226452906,11.79285103116254
168 | 3.3266533066132262,10.862059374235573
169 | 3.346693386773547,12.815187720838413
170 | 3.3667334669338675,11.022069479554563
171 | 3.3867735470941884,12.734709471910577
172 | 3.406813627254509,10.756099246915115
173 | 3.4268537074148293,12.556390134191869
174 | 3.44689378757515,12.702814709650413
175 | 3.4669338677354706,11.521663174807022
176 | 3.4869739478957915,12.185238081928023
177 | 3.507014028056112,12.287768342164556
178 | 3.527054108216433,11.647210974817213
179 | 3.5470941883767533,11.369629571385042
180 | 3.567134268537074,11.475409865503767
181 | 3.5871743486973946,12.444852807374692
182 | 3.6072144288577155,12.171871056455728
183 | 3.627254509018036,11.97235850138499
184 | 3.6472945891783564,12.777973183939944
185 | 3.6673346693386772,12.588703293373094
186 | 3.6873747494989977,11.99701813581518
187 | 3.7074148296593186,11.814228899809944
188 | 3.727454909819639,12.716540688983317
189 | 3.74749498997996,12.22619829568089
190 | 3.7675350701402803,12.58467257154631
191 | 3.787575150300601,13.36329978691506
192 | 3.8076152304609217,12.866394580959232
193 | 3.8276553106212425,12.224177121365866
194 | 3.847695390781563,12.775721376473014
195 | 3.8677354709418834,12.259148465476073
196 | 3.8877755511022043,13.57981218017877
197 | 3.9078156312625247,12.534841887723438
198 | 3.9278557114228456,12.9593467963325
199 | 3.947895791583166,13.049657870506048
200 | 3.967935871743487,13.015496977673825
201 | 3.9879759519038074,11.996677426239346
202 | 4.008016032064128,12.29282153213659
203 | 4.028056112224449,12.829937086664351
204 | 4.04809619238477,13.255908301435305
205 | 4.06813627254509,13.067382937947293
206 | 4.0881763527054105,12.697778968835312
207 | 4.108216432865731,12.542220706170612
208 | 4.128256513026052,13.055734253802433
209 | 4.148296593186372,13.062355164032883
210 | 4.168336673346693,13.593091575489765
211 | 4.188376753507014,13.213594275934868
212 | 4.208416833667335,13.718187495549335
213 | 4.228456913827655,13.159588942795107
214 | 4.248496993987976,13.369015153368817
215 | 4.268537074148297,13.363050958475284
216 | 4.288577154308617,13.185970825166189
217 | 4.3086172344689375,13.92979379715474
218 | 4.328657314629258,13.250516630711264
219 | 4.348697394789579,13.43657403459385
220 | 4.368737474949899,13.7009151269257
221 | 4.38877755511022,13.12886528224207
222 | 4.408817635270541,13.655167791380833
223 | 4.428857715430862,13.50206225099033
224 | 4.448897795591182,13.703718494941239
225 | 4.468937875751503,13.907911750167461
226 | 4.488977955911824,13.577999100253315
227 | 4.509018036072144,13.90799818223411
228 | 4.529058116232465,14.712450608641019
229 | 4.5490981963927855,14.085297113658328
230 | 4.569138276553106,14.710907639615826
231 | 4.589178356713426,14.351603934430234
232 | 4.609218436873747,14.605517178656903
233 | 4.629258517034068,13.871287549682723
234 | 4.649298597194389,14.351050776931535
235 | 4.669338677354709,14.405633816017156
236 | 4.68937875751503,14.072444645592592
237 | 4.709418837675351,14.00742351320356
238 | 4.729458917835671,13.713785141717693
239 | 4.749498997995992,15.2470678144678
240 | 4.7695390781563125,14.052876711636376
241 | 4.789579158316633,15.252268853244416
242 | 4.809619238476953,14.38549189012498
243 | 4.829659318637274,14.228071987412182
244 | 4.849699398797595,15.01065836774769
245 | 4.869739478957916,14.423882987042404
246 | 4.889779559118236,15.063788577698611
247 | 4.909819639278557,14.653233396131009
248 | 4.929859719438878,15.09993168693665
249 | 4.949899799599198,14.415706567244843
250 | 4.969939879759519,15.355555288511422
251 | 4.98997995991984,15.223946261171182
252 | 5.01002004008016,14.56021473512899
253 | 5.03006012024048,16.38158810098833
254 | 5.050100200400801,15.37026191400185
255 | 5.070140280561122,16.285514096387512
256 | 5.090180360721443,15.980494630817265
257 | 5.110220440881763,15.126023491654633
258 | 5.130260521042084,15.054385164781896
259 | 5.150300601202405,15.09887161069441
260 | 5.170340681362725,14.425667087511545
261 | 5.190380761523046,15.032843963371318
262 | 5.210420841683367,15.544224695356718
263 | 5.2304609218436875,16.22390062412978
264 | 5.2505010020040075,15.114616062518914
265 | 5.270541082164328,15.982110464010162
266 | 5.290581162324649,14.954865653897638
267 | 5.31062124248497,15.328082472364374
268 | 5.33066132264529,15.432502348145817
269 | 5.350701402805611,15.88730834635997
270 | 5.370741482965932,15.97013778929227
271 | 5.390781563126252,16.262733998659677
272 | 5.410821643286573,16.207061766775613
273 | 5.430861723446894,15.983307554595033
274 | 5.4509018036072145,16.09698607896874
275 | 5.4709418837675345,16.736149113083837
276 | 5.490981963927855,15.726500837239579
277 | 5.511022044088176,16.409408247709933
278 | 5.531062124248497,15.158052285247868
279 | 5.551102204408817,16.30787153026644
280 | 5.571142284569138,15.900659797898722
281 | 5.591182364729459,16.183650320674673
282 | 5.611222444889779,16.74248801230641
283 | 5.6312625250501,16.3448469548634
284 | 5.651302605210421,16.745198981025307
285 | 5.671342685370742,17.079567778310686
286 | 5.691382765531062,16.577312515494985
287 | 5.7114228456913825,17.00836622369301
288 | 5.731462925851703,16.299645362863803
289 | 5.751503006012024,16.498901070889243
290 | 5.771543086172344,16.281776464145448
291 | 5.791583166332665,17.104655129988515
292 | 5.811623246492986,16.830292169882767
293 | 5.831663326653306,16.40970942235915
294 | 5.851703406813627,16.78074123045042
295 | 5.871743486973948,17.264271168357187
296 | 5.891783567134269,16.76393313874956
297 | 5.911823647294589,16.3491808891643
298 | 5.9318637274549095,16.929683332803528
299 | 5.95190380761523,15.913524819695994
300 | 5.971943887775551,17.32827309775084
301 | 5.991983967935871,16.7733041422094
302 | 6.012024048096192,16.78939272805283
303 | 6.032064128256513,17.50197609590278
304 | 6.052104208416833,16.42162697822108
305 | 6.072144288577154,18.117837898564485
306 | 6.092184368737475,16.944247716605837
307 | 6.112224448897796,16.962823426103142
308 | 6.132264529058116,17.77514142969981
309 | 6.152304609218437,17.658956854992088
310 | 6.1723446893787575,18.57030423829505
311 | 6.192384769539078,17.279166547262395
312 | 6.212424849699398,17.364646380066592
313 | 6.232464929859719,16.725271869737814
314 | 6.25250501002004,17.33895888136567
315 | 6.27254509018036,17.184374532574843
316 | 6.292585170340681,17.36078683412861
317 | 6.312625250501002,16.753156622725026
318 | 6.332665330661323,18.495634441269903
319 | 6.352705410821643,16.997109080430462
320 | 6.372745490981964,16.34438958276807
321 | 6.3927855711422845,17.191358931493056
322 | 6.4128256513026045,17.523731526207133
323 | 6.432865731462925,17.29095443129729
324 | 6.452905811623246,18.454963393612747
325 | 6.472945891783567,17.876972194269086
326 | 6.492985971943887,17.998664746091006
327 | 6.513026052104208,18.331247986361124
328 | 6.533066132264529,18.20913852801812
329 | 6.55310621242485,18.595496073572722
330 | 6.57314629258517,17.591553808352266
331 | 6.593186372745491,17.912613695151265
332 | 6.613226452905812,18.559436478846393
333 | 6.633266533066132,16.999255835090146
334 | 6.6533066132264524,17.619020986794283
335 | 6.673346693386773,18.597189502863518
336 | 6.693386773547094,18.146649029596723
337 | 6.713426853707414,18.894907482469677
338 | 6.733466933867735,18.871524016162052
339 | 6.753507014028056,17.90796758796059
340 | 6.773547094188377,18.750422732110195
341 | 6.793587174348697,19.188023276531148
342 | 6.813627254509018,18.70097170984352
343 | 6.833667334669339,18.178602230715743
344 | 6.853707414829659,19.147109800616
345 | 6.8737474949899795,19.065207253256958
346 | 6.8937875751503,19.058880542049998
347 | 6.913827655310621,19.18562475733974
348 | 6.933867735470941,17.37042904082807
349 | 6.953907815631262,19.348284411803007
350 | 6.973947895791583,19.851961696872653
351 | 6.993987975951904,19.20629518921845
352 | 7.014028056112224,19.12442061047431
353 | 7.034068136272545,19.41635560924081
354 | 7.054108216432866,19.27732916970829
355 | 7.074148296593186,19.47418722403668
356 | 7.0941883767535066,19.18911225362972
357 | 7.114228456913827,18.845104486559208
358 | 7.134268537074148,18.76637571804099
359 | 7.154308617234468,18.809521370353004
360 | 7.174348697394789,18.662176119314132
361 | 7.19438877755511,18.854906549600667
362 | 7.214428857715431,20.309490779140795
363 | 7.234468937875751,19.845985707579622
364 | 7.254509018036072,19.196504340729806
365 | 7.274549098196393,19.353901849400028
366 | 7.294589178356713,19.645457122166654
367 | 7.314629258517034,19.301486002291888
368 | 7.3346693386773545,19.703097105941872
369 | 7.354709418837675,20.098220906626807
370 | 7.374749498997995,19.731627631221905
371 | 7.394789579158316,19.95758702964763
372 | 7.414829659318637,20.272905088317085
373 | 7.434869739478958,19.733673600948812
374 | 7.454909819639278,20.052214938845736
375 | 7.474949899799599,19.79521100315752
376 | 7.49498997995992,19.97571552500263
377 | 7.51503006012024,19.867694987698997
378 | 7.535070140280561,19.80570535378306
379 | 7.5551102204408815,20.197076367375274
380 | 7.575150300601202,20.43357325911151
381 | 7.595190380761522,20.263532984523568
382 | 7.615230460921843,20.479824400999654
383 | 7.635270541082164,19.901575192043712
384 | 7.655310621242485,19.70875364638508
385 | 7.675350701402805,20.559223154289413
386 | 7.695390781563126,20.73472225871363
387 | 7.715430861723447,20.455790356746807
388 | 7.735470941883767,21.144959773979892
389 | 7.755511022044088,20.964871443082124
390 | 7.775551102204409,21.891387624793317
391 | 7.7955911823647295,20.490778107731625
392 | 7.8156312625250495,20.131838127002414
393 | 7.83567134268537,20.301274290000983
394 | 7.855711422845691,20.42867394250405
395 | 7.875751503006012,20.98951869773108
396 | 7.895791583166332,19.712548884352035
397 | 7.915831663326653,21.490938835698724
398 | 7.935871743486974,20.752095191402777
399 | 7.955911823647294,20.788426868400215
400 | 7.975951903807615,20.412232224602732
401 | 7.995991983967936,20.93487119221078
402 | 8.016032064128256,21.03868401209028
403 | 8.036072144288577,21.011171824777016
404 | 8.056112224448897,21.28175407686901
405 | 8.076152304609218,20.857488588242923
406 | 8.09619238476954,20.744476889333665
407 | 8.11623246492986,21.50662899510871
408 | 8.13627254509018,21.321878817088255
409 | 8.1563126252505,21.411215778099685
410 | 8.176352705410821,21.882219038042624
411 | 8.196392785571142,20.88150337551194
412 | 8.216432865731463,21.005245502837493
413 | 8.236472945891784,22.101555717198064
414 | 8.256513026052104,20.77158437331719
415 | 8.276553106212425,20.898400139259344
416 | 8.296593186372744,22.00211728833799
417 | 8.316633266533065,21.75236662907715
418 | 8.336673346693386,21.72596276191641
419 | 8.356713426853707,21.667597149657222
420 | 8.376753507014028,21.76914078754184
421 | 8.396793587174349,21.74753111700272
422 | 8.41683366733467,22.511388685966548
423 | 8.436873747494989,21.67467343061494
424 | 8.45691382765531,21.83314088717173
425 | 8.47695390781563,22.851132218243798
426 | 8.496993987975952,22.007742826966822
427 | 8.517034068136272,23.150076331035134
428 | 8.537074148296593,22.02165844608371
429 | 8.557114228456914,22.79793594814391
430 | 8.577154308617233,21.326636598079627
431 | 8.597194388777554,22.27121100796294
432 | 8.617234468937875,21.442232156300282
433 | 8.637274549098196,22.696776251498687
434 | 8.657314629258517,21.70819535041252
435 | 8.677354709418838,22.49659419602935
436 | 8.697394789579159,22.2536916408131
437 | 8.71743486973948,21.855768146886945
438 | 8.737474949899799,21.665269908350826
439 | 8.75751503006012,22.259509828330184
440 | 8.77755511022044,23.425424943388546
441 | 8.797595190380761,22.448447853316832
442 | 8.817635270541082,23.09388131214009
443 | 8.837675350701403,22.64682926757171
444 | 8.857715430861724,23.153794248568673
445 | 8.877755511022043,21.842055332891828
446 | 8.897795591182364,22.59399702893996
447 | 8.917835671342685,23.310374104581978
448 | 8.937875751503006,22.794124028589422
449 | 8.957915831663327,22.872604021971128
450 | 8.977955911823647,22.7406808677044
451 | 8.997995991983968,23.5706816756515
452 | 9.018036072144287,23.184829321266047
453 | 9.038076152304608,23.09816344269689
454 | 9.05811623246493,23.437759737599503
455 | 9.07815631262525,23.450425089809467
456 | 9.098196392785571,23.30268630878991
457 | 9.118236472945892,24.009988694387207
458 | 9.138276553106213,23.246409339392866
459 | 9.158316633266534,23.45567379051704
460 | 9.178356713426853,23.03523715017726
461 | 9.198396793587174,23.471851200677413
462 | 9.218436873747494,24.23075450936767
463 | 9.238476953907815,23.15532510692126
464 | 9.258517034068136,22.950237655317043
465 | 9.278557114228457,24.055494049866823
466 | 9.298597194388778,23.522811312660718
467 | 9.318637274549097,23.68527665158308
468 | 9.338677354709418,23.65479805757217
469 | 9.358717434869739,23.756995731704244
470 | 9.37875751503006,24.18278037182184
471 | 9.39879759519038,23.378033095081125
472 | 9.418837675350701,23.331788308648658
473 | 9.438877755511022,23.920239579540898
474 | 9.458917835671341,23.114615826617765
475 | 9.478957915831662,23.27138906364236
476 | 9.498997995991983,24.93133756614978
477 | 9.519038076152304,24.41681031733531
478 | 9.539078156312625,24.073128076690743
479 | 9.559118236472946,24.73723994092511
480 | 9.579158316633267,23.638017018223962
481 | 9.599198396793588,24.040595231894248
482 | 9.619238476953907,24.550203758620004
483 | 9.639278557114228,24.72389295494415
484 | 9.659318637274549,24.575095697962986
485 | 9.67935871743487,23.088098031025627
486 | 9.69939879759519,23.91475653635809
487 | 9.719438877755511,24.677411801689455
488 | 9.739478957915832,24.30098216930826
489 | 9.759519038076151,25.78915388653189
490 | 9.779559118236472,25.02239738695649
491 | 9.799599198396793,24.87823933710292
492 | 9.819639278557114,24.080803780240867
493 | 9.839679358717435,24.661710347633413
494 | 9.859719438877756,24.840040859864988
495 | 9.879759519038076,25.323410853140054
496 | 9.899799599198396,25.240164746946608
497 | 9.919839679358716,25.356173955977404
498 | 9.939879759519037,24.417803511133073
499 | 9.959919839679358,25.62591552850803
500 | 9.97995991983968,24.269704463525724
501 | 10.0,24.73204271916692
502 |
--------------------------------------------------------------------------------
/Datasets/nonlinear_data.csv:
--------------------------------------------------------------------------------
1 | x,y
2 | 0.0,-0.1550429345083481
3 | 0.02004008016032064,0.08180935974681355
4 | 0.04008016032064128,-0.014297988564421674
5 | 0.06012024048096192,0.1439783751006325
6 | 0.08016032064128256,0.01955271003373421
7 | 0.1002004008016032,0.14105986395931544
8 | 0.12024048096192384,0.22885297029506865
9 | 0.1402805611222445,0.11357186933250851
10 | 0.16032064128256512,0.33078427579666553
11 | 0.18036072144288576,0.3208541542858158
12 | 0.2004008016032064,0.22388863438483758
13 | 0.22044088176352705,0.30699543908083504
14 | 0.24048096192384769,0.5368515594022353
15 | 0.2605210420841683,0.6047236921970546
16 | 0.280561122244489,0.5405988852500472
17 | 0.3006012024048096,0.6326651888327594
18 | 0.32064128256513025,0.6527348043643274
19 | 0.3406813627254509,0.7012210433485702
20 | 0.3607214428857715,0.8344970759999568
21 | 0.3807615230460922,0.5925552828087919
22 | 0.4008016032064128,0.8479591583598756
23 | 0.42084168336673344,0.7788567850566092
24 | 0.4408817635270541,0.8310482593645548
25 | 0.4609218436873747,0.8593229040631473
26 | 0.48096192384769537,0.8877496550086097
27 | 0.501002004008016,0.8379896588756035
28 | 0.5210420841683366,1.0139023369604454
29 | 0.5410821643286573,1.1972220476073598
30 | 0.561122244488978,1.0586600791627163
31 | 0.5811623246492986,1.0978531108053506
32 | 0.6012024048096192,1.0625390012747948
33 | 0.6212424849699398,1.152344432428056
34 | 0.6412825651302605,1.243064022494059
35 | 0.6613226452905812,1.1912981456956242
36 | 0.6813627254509018,1.2143237118619112
37 | 0.7014028056112224,1.330906409879643
38 | 0.721442885771543,1.2291370330018552
39 | 0.7414829659318637,1.3760142497042984
40 | 0.7615230460921844,1.46208138833122
41 | 0.781563126252505,1.5447744685257239
42 | 0.8016032064128256,1.4279060656439315
43 | 0.8216432865731462,1.601291577946044
44 | 0.8416833667334669,1.5949722868500014
45 | 0.8617234468937875,1.4183104923000833
46 | 0.8817635270541082,1.4219287750158618
47 | 0.9018036072144289,1.5383971865395532
48 | 0.9218436873747494,1.6963279696201543
49 | 0.9418837675350701,1.610106680124518
50 | 0.9619238476953907,1.5805210776992267
51 | 0.9819639278557114,1.8184037585362305
52 | 1.002004008016032,1.7137945778838801
53 | 1.0220440881763526,1.4742926667766783
54 | 1.0420841683366733,1.7586308659777274
55 | 1.062124248496994,1.7987880597122246
56 | 1.0821643286573146,1.7885125652256482
57 | 1.1022044088176353,1.8293814203582959
58 | 1.122244488977956,1.7954245562539277
59 | 1.1422845691382766,1.6873307082507454
60 | 1.1623246492985972,1.7983875098665425
61 | 1.1823647294589177,1.756446841545052
62 | 1.2024048096192383,1.7725414919210414
63 | 1.222444889779559,1.7535666145492845
64 | 1.2424849699398797,1.9384252842238592
65 | 1.2625250501002003,1.9155086317027792
66 | 1.282565130260521,1.872679802779411
67 | 1.3026052104208417,1.8635698181738913
68 | 1.3226452905811623,1.9363941019322874
69 | 1.342685370741483,2.056110106916444
70 | 1.3627254509018036,1.75644090767547
71 | 1.3827655310621243,2.002436117341837
72 | 1.4028056112224447,1.9172742278536223
73 | 1.4228456913827654,1.7896919246454688
74 | 1.442885771543086,1.7890908765370983
75 | 1.4629258517034067,1.8970968899322924
76 | 1.4829659318637274,2.014241735076086
77 | 1.503006012024048,2.0347125262572403
78 | 1.5230460921843687,1.9038221910262003
79 | 1.5430861723446894,2.100934295613555
80 | 1.56312625250501,2.142239519900412
81 | 1.5831663326653307,2.0394556434015962
82 | 1.6032064128256511,1.939809411486857
83 | 1.6232464929859718,2.109691529135625
84 | 1.6432865731462925,2.0702870344555087
85 | 1.6633266533066131,2.0781849868570843
86 | 1.6833667334669338,1.921694912229008
87 | 1.7034068136272544,1.6989847640911548
88 | 1.723446893787575,2.1884221207728154
89 | 1.7434869739478958,1.8091641393433944
90 | 1.7635270541082164,1.959392897369658
91 | 1.783567134268537,2.1929736528471646
92 | 1.8036072144288577,1.9791011359023967
93 | 1.8236472945891782,2.0313309359164413
94 | 1.8436873747494988,1.77575181584901
95 | 1.8637274549098195,1.7370364999814392
96 | 1.8837675350701402,1.8495756704811979
97 | 1.9038076152304608,1.9991995108304037
98 | 1.9238476953907815,1.8420191226229021
99 | 1.9438877755511021,1.7829463212144907
100 | 1.9639278557114228,1.8672246404808763
101 | 1.9839679358717435,1.93989748038832
102 | 2.004008016032064,1.6707503891807893
103 | 2.024048096192385,1.677001573729698
104 | 2.0440881763527052,1.7012783280191188
105 | 2.064128256513026,1.8709835802937382
106 | 2.0841683366733466,1.7656689736387114
107 | 2.1042084168336674,1.9353695931256178
108 | 2.124248496993988,1.7950746533867166
109 | 2.1442885771543083,1.6765131122103463
110 | 2.164328657314629,1.7844482802061659
111 | 2.1843687374749496,1.656342249571021
112 | 2.2044088176352705,1.5412957857278977
113 | 2.224448897795591,1.6557334979606348
114 | 2.244488977955912,1.493413819622692
115 | 2.2645290581162323,1.5086895404179306
116 | 2.284569138276553,1.6445727467834268
117 | 2.3046092184368736,1.4751244316362044
118 | 2.3246492985971945,1.3778000799719168
119 | 2.344689378757515,1.3839565219203482
120 | 2.3647294589178354,1.5042709895804174
121 | 2.3847695390781563,1.3179764356146118
122 | 2.4048096192384767,1.3051305126835464
123 | 2.4248496993987976,1.2628357522642886
124 | 2.444889779559118,1.3017773676615918
125 | 2.464929859719439,1.2138402379193414
126 | 2.4849699398797593,1.0607070560856826
127 | 2.50501002004008,1.1001837146682778
128 | 2.5250501002004007,1.0631565998628272
129 | 2.5450901803607215,1.2478367230984377
130 | 2.565130260521042,1.1713902796748257
131 | 2.5851703406813624,1.115029120273178
132 | 2.6052104208416833,0.9715234552312824
133 | 2.6252505010020037,0.9058257871910538
134 | 2.6452905811623246,0.9016023023518387
135 | 2.665330661322645,0.8117327162144812
136 | 2.685370741482966,1.1308392021274276
137 | 2.7054108216432864,0.6204315847766939
138 | 2.7254509018036073,0.8648698596144211
139 | 2.7454909819639277,0.643194358623227
140 | 2.7655310621242486,0.7240859337711637
141 | 2.785571142284569,0.5982958061608836
142 | 2.8056112224448895,0.5416288739120655
143 | 2.8256513026052104,0.5074031037709246
144 | 2.845691382765531,0.7587027549341389
145 | 2.8657314629258517,0.5314524932736454
146 | 2.885771543086172,0.4295095445649847
147 | 2.905811623246493,0.5227836516622559
148 | 2.9258517034068134,0.42917745247256656
149 | 2.9458917835671343,0.46091152436943866
150 | 2.9659318637274548,0.16709192810373055
151 | 2.9859719438877756,0.3403470661557953
152 | 3.006012024048096,0.3476007534573682
153 | 3.0260521042084165,0.06440747196756744
154 | 3.0460921843687374,0.23553026701435945
155 | 3.066132264529058,0.32039574556060035
156 | 3.0861723446893787,0.10929811666945405
157 | 3.106212424849699,0.15288628958131578
158 | 3.12625250501002,0.0977361389227303
159 | 3.1462925851703405,-0.08015039830603513
160 | 3.1663326653306614,-0.0454983026528951
161 | 3.186372745490982,-0.24622972603071128
162 | 3.2064128256513023,-0.1746798829098487
163 | 3.226452905811623,-0.14294807996470393
164 | 3.2464929859719436,-0.13710604983380065
165 | 3.2665330661322645,-0.2467700087303436
166 | 3.286573146292585,-0.2169478811801639
167 | 3.306613226452906,-0.43883587010657
168 | 3.3266533066132262,-0.37818202994568123
169 | 3.346693386773547,-0.40540362715240297
170 | 3.3667334669338675,-0.261528123206779
171 | 3.3867735470941884,-0.5068802903391166
172 | 3.406813627254509,-0.5741467073595528
173 | 3.4268537074148293,-0.5606808077302485
174 | 3.44689378757515,-0.6930721391342413
175 | 3.4669338677354706,-0.6199888532847664
176 | 3.4869739478957915,-0.7136164803871653
177 | 3.507014028056112,-0.8938185121586724
178 | 3.527054108216433,-0.7578321994557699
179 | 3.5470941883767533,-0.8207136546354942
180 | 3.567134268537074,-0.9888706370830798
181 | 3.5871743486973946,-0.8686791187666261
182 | 3.6072144288577155,-0.7490213455368011
183 | 3.627254509018036,-0.8814571935950923
184 | 3.6472945891783564,-0.9076505551150326
185 | 3.6673346693386772,-1.1378595738116617
186 | 3.6873747494989977,-0.9904836099895311
187 | 3.7074148296593186,-1.0573751128727402
188 | 3.727454909819639,-1.0529315769763847
189 | 3.74749498997996,-1.0967451742005678
190 | 3.7675350701402803,-1.307700628682865
191 | 3.787575150300601,-1.2081066033798356
192 | 3.8076152304609217,-1.3115140717900342
193 | 3.8276553106212425,-1.2719996014032664
194 | 3.847695390781563,-1.3874866781605326
195 | 3.8677354709418834,-1.1967337784194294
196 | 3.8877755511022043,-1.4435789780029715
197 | 3.9078156312625247,-1.4767316455570836
198 | 3.9278557114228456,-1.4079775380612882
199 | 3.947895791583166,-1.5511764075034926
200 | 3.967935871743487,-1.513383468960745
201 | 3.9879759519038074,-1.5807735289930824
202 | 4.008016032064128,-1.3829182990232531
203 | 4.028056112224449,-1.4711015193917043
204 | 4.04809619238477,-1.580452911702012
205 | 4.06813627254509,-1.6382193345258587
206 | 4.0881763527054105,-1.5287553534922533
207 | 4.108216432865731,-1.6054244711585715
208 | 4.128256513026052,-1.618576405700615
209 | 4.148296593186372,-1.6927676292062654
210 | 4.168336673346693,-1.8800594185340818
211 | 4.188376753507014,-1.7428838065171566
212 | 4.208416833667335,-1.8045915821232736
213 | 4.228456913827655,-1.705839120723068
214 | 4.248496993987976,-1.687451507499352
215 | 4.268537074148297,-1.872003657318579
216 | 4.288577154308617,-1.7762174736867327
217 | 4.3086172344689375,-1.6655834180578601
218 | 4.328657314629258,-1.9213193152617358
219 | 4.348697394789579,-1.7009878240816203
220 | 4.368737474949899,-1.968319891129414
221 | 4.38877755511022,-1.8938904180004705
222 | 4.408817635270541,-1.9096645497981046
223 | 4.428857715430862,-1.9189972364702015
224 | 4.448897795591182,-2.014740953971418
225 | 4.468937875751503,-2.0001420213230467
226 | 4.488977955911824,-2.017066802372436
227 | 4.509018036072144,-1.9260863554310232
228 | 4.529058116232465,-1.9334803145566815
229 | 4.5490981963927855,-1.750800880931491
230 | 4.569138276553106,-1.8424154030411792
231 | 4.589178356713426,-2.0358226615830652
232 | 4.609218436873747,-1.9568783155364764
233 | 4.629258517034068,-1.8933815068518034
234 | 4.649298597194389,-1.9929607412362105
235 | 4.669338677354709,-2.0051111154716104
236 | 4.68937875751503,-1.9943130587276592
237 | 4.709418837675351,-1.9132635153779285
238 | 4.729458917835671,-2.0845406765912005
239 | 4.749498997995992,-2.0311899515136105
240 | 4.7695390781563125,-1.9496914407123673
241 | 4.789579158316633,-1.9628999271562109
242 | 4.809619238476953,-1.966595446319126
243 | 4.829659318637274,-2.0232435377269558
244 | 4.849699398797595,-1.8839218747207533
245 | 4.869739478957916,-1.7619050384834432
246 | 4.889779559118236,-1.9279734632347807
247 | 4.909819639278557,-1.9804652533511007
248 | 4.929859719438878,-1.8773185449508127
249 | 4.949899799599198,-1.9977665633506891
250 | 4.969939879759519,-2.0090024252662926
251 | 4.98997995991984,-1.9201559160314194
252 | 5.01002004008016,-2.1703474184658864
253 | 5.03006012024048,-2.0153258859961283
254 | 5.050100200400801,-1.9218271338475332
255 | 5.070140280561122,-2.0087121173463256
256 | 5.090180360721443,-1.9622274944696612
257 | 5.110220440881763,-1.8874814271985851
258 | 5.130260521042084,-1.9922060751577346
259 | 5.150300601202405,-1.8518856050792838
260 | 5.170340681362725,-1.8474469277663976
261 | 5.190380761523046,-1.7733004535751264
262 | 5.210420841683367,-1.6416304720505261
263 | 5.2304609218436875,-1.7203007184676815
264 | 5.2505010020040075,-1.7152494574446635
265 | 5.270541082164328,-1.6865250381213386
266 | 5.290581162324649,-1.652164742647872
267 | 5.31062124248497,-1.7543387943523145
268 | 5.33066132264529,-1.6412396753224925
269 | 5.350701402805611,-1.5753297336000702
270 | 5.370741482965932,-1.7190785329630405
271 | 5.390781563126252,-1.4705996007829778
272 | 5.410821643286573,-1.423564303987994
273 | 5.430861723446894,-1.5687614023767704
274 | 5.4509018036072145,-1.5030748332454666
275 | 5.4709418837675345,-1.5394834089817615
276 | 5.490981963927855,-1.353866671053958
277 | 5.511022044088176,-1.5014955051779084
278 | 5.531062124248497,-1.3886291646089874
279 | 5.551102204408817,-1.4227329145095542
280 | 5.571142284569138,-1.3016680923904056
281 | 5.591182364729459,-1.4555842586477183
282 | 5.611222444889779,-1.1124004832887717
283 | 5.6312625250501,-1.3098926059805842
284 | 5.651302605210421,-1.1753405074752938
285 | 5.671342685370742,-1.1700058805645919
286 | 5.691382765531062,-1.1919272980551936
287 | 5.7114228456913825,-1.1710080694436833
288 | 5.731462925851703,-0.9546697960885535
289 | 5.751503006012024,-1.0665323123064012
290 | 5.771543086172344,-0.952102636182517
291 | 5.791583166332665,-1.0242274986706594
292 | 5.811623246492986,-0.9732749752974768
293 | 5.831663326653306,-0.825446270500215
294 | 5.851703406813627,-0.7433938321553948
295 | 5.871743486973948,-0.8173941133048775
296 | 5.891783567134269,-0.9051610336735347
297 | 5.911823647294589,-0.5259736101852628
298 | 5.9318637274549095,-0.7739328579780327
299 | 5.95190380761523,-0.8046689696387276
300 | 5.971943887775551,-0.35303883411572695
301 | 5.991983967935871,-0.6146096182956018
302 | 6.012024048096192,-0.681874157422806
303 | 6.032064128256513,-0.5653242321066019
304 | 6.052104208416833,-0.4213055496737062
305 | 6.072144288577154,-0.39992471440488725
306 | 6.092184368737475,-0.46485637171508193
307 | 6.112224448897796,-0.15798619620377752
308 | 6.132264529058116,-0.35285498334217524
309 | 6.152304609218437,-0.37948337658308434
310 | 6.1723446893787575,-0.12515825843630016
311 | 6.192384769539078,-0.04844535127401098
312 | 6.212424849699398,-0.22315215408284353
313 | 6.232464929859719,-0.24153199585606877
314 | 6.25250501002004,0.04169285822594594
315 | 6.27254509018036,-0.22601239376524038
316 | 6.292585170340681,-0.10386271646549187
317 | 6.312625250501002,0.15561599671609092
318 | 6.332665330661323,0.09338441690674525
319 | 6.352705410821643,0.1125345015609039
320 | 6.372745490981964,0.21416266939966105
321 | 6.3927855711422845,0.2034845016559189
322 | 6.4128256513026045,0.12868635414504473
323 | 6.432865731462925,0.4258518098449712
324 | 6.452905811623246,0.4703151570882038
325 | 6.472945891783567,0.3977808216442616
326 | 6.492985971943887,0.4210432809091094
327 | 6.513026052104208,0.6896073992614267
328 | 6.533066132264529,0.46693369038310334
329 | 6.55310621242485,0.50735271508041
330 | 6.57314629258517,0.608277803706171
331 | 6.593186372745491,0.7572514980491376
332 | 6.613226452905812,0.8074409828813962
333 | 6.633266533066132,0.6600909522435346
334 | 6.6533066132264524,0.754290177093437
335 | 6.673346693386773,0.6228670087667453
336 | 6.693386773547094,0.7663905669971686
337 | 6.713426853707414,0.7501516560255053
338 | 6.733466933867735,0.7697550383577565
339 | 6.753507014028056,1.074503842751756
340 | 6.773547094188377,0.8626614816789757
341 | 6.793587174348697,0.9238952788358095
342 | 6.813627254509018,1.0484140929983332
343 | 6.833667334669339,1.175978743590853
344 | 6.853707414829659,1.128254588844602
345 | 6.8737474949899795,1.3895916707796576
346 | 6.8937875751503,1.139255210018654
347 | 6.913827655310621,1.2051989866680342
348 | 6.933867735470941,1.239019137158622
349 | 6.953907815631262,1.3866092240437666
350 | 6.973947895791583,1.3249741761243559
351 | 6.993987975951904,1.293261578703992
352 | 7.014028056112224,1.2402459266044772
353 | 7.034068136272545,1.3890132466553908
354 | 7.054108216432866,1.5337295000546711
355 | 7.074148296593186,1.3810232976904107
356 | 7.0941883767535066,1.5028512114082628
357 | 7.114228456913827,1.5018847107842468
358 | 7.134268537074148,1.590341721243575
359 | 7.154308617234468,1.4496302155212728
360 | 7.174348697394789,1.7902716496135778
361 | 7.19438877755511,1.4525674745052544
362 | 7.214428857715431,1.5681704062844741
363 | 7.234468937875751,1.722132255526509
364 | 7.254509018036072,1.6809398843692411
365 | 7.274549098196393,1.7565456143048117
366 | 7.294589178356713,1.6455451142393254
367 | 7.314629258517034,1.70860243884781
368 | 7.3346693386773545,1.7375445608559885
369 | 7.354709418837675,1.9127884576429364
370 | 7.374749498997995,1.843741393095164
371 | 7.394789579158316,1.8724889923582457
372 | 7.414829659318637,1.7444324813731715
373 | 7.434869739478958,1.9237896928095923
374 | 7.454909819639278,1.86540226578437
375 | 7.474949899799599,1.9969612311783367
376 | 7.49498997995992,2.0739091397612226
377 | 7.51503006012024,1.8555309902258648
378 | 7.535070140280561,1.8585242136573092
379 | 7.5551102204408815,1.8249343023919056
380 | 7.575150300601202,1.9083975479582742
381 | 7.595190380761522,1.895197489842799
382 | 7.615230460921843,1.9792185735293737
383 | 7.635270541082164,1.9378991509964827
384 | 7.655310621242485,1.9244995544708656
385 | 7.675350701402805,2.0746342620884275
386 | 7.695390781563126,1.8811135888870072
387 | 7.715430861723447,2.0241451673949267
388 | 7.735470941883767,1.9453774734444513
389 | 7.755511022044088,2.0627482216547217
390 | 7.775551102204409,2.132377958969171
391 | 7.7955911823647295,1.966281698401161
392 | 7.8156312625250495,2.0426327199872087
393 | 7.83567134268537,2.0175440291731053
394 | 7.855711422845691,1.9200547678768973
395 | 7.875751503006012,2.023604842493498
396 | 7.895791583166332,2.0271642333078854
397 | 7.915831663326653,2.037462875248685
398 | 7.935871743486974,1.973457866969629
399 | 7.955911823647294,1.9990384589483667
400 | 7.975951903807615,1.8703805927819102
401 | 7.995991983967936,1.94405552229236
402 | 8.016032064128256,2.0293933429077726
403 | 8.036072144288577,2.056181948890078
404 | 8.056112224448897,1.9170506590149456
405 | 8.076152304609218,1.9613142948371043
406 | 8.09619238476954,1.9644255331980438
407 | 8.11623246492986,1.95176576622672
408 | 8.13627254509018,1.9749169799249768
409 | 8.1563126252505,1.7274823155753782
410 | 8.176352705410821,1.8920413743946485
411 | 8.196392785571142,1.9077990360253247
412 | 8.216432865731463,1.7700279792464326
413 | 8.236472945891784,2.022873922714745
414 | 8.256513026052104,1.85630047371615
415 | 8.276553106212425,1.9804152302997036
416 | 8.296593186372744,1.7282201297333017
417 | 8.316633266533065,1.6990143108675015
418 | 8.336673346693386,1.7939226903409637
419 | 8.356713426853707,1.58467035908628
420 | 8.376753507014028,1.754373676935718
421 | 8.396793587174349,1.722241055077264
422 | 8.41683366733467,1.7930399411264826
423 | 8.436873747494989,1.7398525470546613
424 | 8.45691382765531,1.6056051213586833
425 | 8.47695390781563,1.5145460715846637
426 | 8.496993987975952,1.7718168367561646
427 | 8.517034068136272,1.4970226084706109
428 | 8.537074148296593,1.4466964487056793
429 | 8.557114228456914,1.4171551241754052
430 | 8.577154308617233,1.6111504032294273
431 | 8.597194388777554,1.420706838703299
432 | 8.617234468937875,1.3698120178039788
433 | 8.637274549098196,1.4309566794792619
434 | 8.657314629258517,1.367929327947836
435 | 8.677354709418838,1.2916926957022827
436 | 8.697394789579159,1.4052338668849362
437 | 8.71743486973948,1.4061646976526216
438 | 8.737474949899799,1.3674414061327462
439 | 8.75751503006012,1.314368545830818
440 | 8.77755511022044,1.246209015367652
441 | 8.797595190380761,0.996143247953506
442 | 8.817635270541082,1.3079713536183704
443 | 8.837675350701403,1.1381011847085876
444 | 8.857715430861724,1.135128973134417
445 | 8.877755511022043,1.1517891944058019
446 | 8.897795591182364,1.1491900714575352
447 | 8.917835671342685,1.0128525387403835
448 | 8.937875751503006,0.9793353196411695
449 | 8.957915831663327,0.8402504406106313
450 | 8.977955911823647,0.8675125064578089
451 | 8.997995991983968,0.7424710115675756
452 | 9.018036072144287,0.7192442184080388
453 | 9.038076152304608,0.6649142109005665
454 | 9.05811623246493,0.7013997325544158
455 | 9.07815631262525,0.784353969102201
456 | 9.098196392785571,0.9587117971856334
457 | 9.118236472945892,0.6224762863825104
458 | 9.138276553106213,0.4303546456589809
459 | 9.158316633266534,0.6531369414080328
460 | 9.178356713426853,0.4577913812410666
461 | 9.198396793587174,0.3828441456671511
462 | 9.218436873747494,0.43074491265624126
463 | 9.238476953907815,0.24638790864072269
464 | 9.258517034068136,0.35323831905765685
465 | 9.278557114228457,0.2825631608647057
466 | 9.298597194388778,0.2615301903816453
467 | 9.318637274549097,0.25002463414025744
468 | 9.338677354709418,0.17873775307438408
469 | 9.358717434869739,0.13365878528380684
470 | 9.37875751503006,0.12043985820286288
471 | 9.39879759519038,0.09349494856856527
472 | 9.418837675350701,-0.09126774506564513
473 | 9.438877755511022,-0.17119778099492475
474 | 9.458917835671341,-0.07443029209924415
475 | 9.478957915831662,-0.2515804523989187
476 | 9.498997995991983,-0.13955067771883878
477 | 9.519038076152304,-0.09436650111172341
478 | 9.539078156312625,-0.16739178931997983
479 | 9.559118236472946,-0.3726901608463903
480 | 9.579158316633267,-0.39356195347787715
481 | 9.599198396793588,-0.3142446632131576
482 | 9.619238476953907,-0.42660427541533075
483 | 9.639278557114228,-0.4573845217731056
484 | 9.659318637274549,-0.4051018764346206
485 | 9.67935871743487,-0.6024080695288476
486 | 9.69939879759519,-0.5824874734962593
487 | 9.719438877755511,-0.6608390437315119
488 | 9.739478957915832,-0.7233772829079065
489 | 9.759519038076151,-0.7427570780576205
490 | 9.779559118236472,-0.6270241030282162
491 | 9.799599198396793,-0.7270303280206188
492 | 9.819639278557114,-0.8572764266889769
493 | 9.839679358717435,-0.8293095529169475
494 | 9.859719438877756,-1.0065953885016579
495 | 9.879759519038076,-0.9522227772435712
496 | 9.899799599198396,-0.6997579264519058
497 | 9.919839679358716,-0.9591963065537876
498 | 9.939879759519037,-0.9120809896866726
499 | 9.959919839679358,-1.0264750140589323
500 | 9.97995991983968,-1.0193789536220121
501 | 10.0,-1.021716412810822
502 |
--------------------------------------------------------------------------------
/Decision Tree Classifier.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pandas as pd\n",
10 | "import matplotlib.pyplot as plt\n",
11 | "import numpy as np"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 2,
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "df = pd.read_csv('shop data.csv')"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 3,
26 | "metadata": {},
27 | "outputs": [
28 | {
29 | "data": {
30 | "text/html": [
31 | "\n",
32 | "\n",
45 | "
\n",
46 | " \n",
47 | " \n",
48 | " | \n",
49 | " age | \n",
50 | " income | \n",
51 | " gender | \n",
52 | " m_status | \n",
53 | " buys | \n",
54 | "
\n",
55 | " \n",
56 | " \n",
57 | " \n",
58 | " 0 | \n",
59 | " <25 | \n",
60 | " high | \n",
61 | " male | \n",
62 | " single | \n",
63 | " no | \n",
64 | "
\n",
65 | " \n",
66 | " 1 | \n",
67 | " <25 | \n",
68 | " high | \n",
69 | " male | \n",
70 | " married | \n",
71 | " no | \n",
72 | "
\n",
73 | " \n",
74 | " 2 | \n",
75 | " 25-35 | \n",
76 | " high | \n",
77 | " male | \n",
78 | " single | \n",
79 | " yes | \n",
80 | "
\n",
81 | " \n",
82 | " 3 | \n",
83 | " >35 | \n",
84 | " medium | \n",
85 | " male | \n",
86 | " single | \n",
87 | " yes | \n",
88 | "
\n",
89 | " \n",
90 | " 4 | \n",
91 | " >35 | \n",
92 | " low | \n",
93 | " female | \n",
94 | " single | \n",
95 | " yes | \n",
96 | "
\n",
97 | " \n",
98 | " 5 | \n",
99 | " >35 | \n",
100 | " low | \n",
101 | " female | \n",
102 | " single | \n",
103 | " no | \n",
104 | "
\n",
105 | " \n",
106 | " 6 | \n",
107 | " 25-35 | \n",
108 | " low | \n",
109 | " female | \n",
110 | " married | \n",
111 | " yes | \n",
112 | "
\n",
113 | " \n",
114 | " 7 | \n",
115 | " <25 | \n",
116 | " medium | \n",
117 | " male | \n",
118 | " married | \n",
119 | " no | \n",
120 | "
\n",
121 | " \n",
122 | " 8 | \n",
123 | " <25 | \n",
124 | " low | \n",
125 | " female | \n",
126 | " single | \n",
127 | " yes | \n",
128 | "
\n",
129 | " \n",
130 | " 9 | \n",
131 | " >35 | \n",
132 | " medium | \n",
133 | " female | \n",
134 | " married | \n",
135 | " yes | \n",
136 | "
\n",
137 | " \n",
138 | " 10 | \n",
139 | " <25 | \n",
140 | " medium | \n",
141 | " female | \n",
142 | " single | \n",
143 | " yes | \n",
144 | "
\n",
145 | " \n",
146 | " 11 | \n",
147 | " 25-35 | \n",
148 | " medium | \n",
149 | " male | \n",
150 | " married | \n",
151 | " yes | \n",
152 | "
\n",
153 | " \n",
154 | " 12 | \n",
155 | " 25-35 | \n",
156 | " high | \n",
157 | " female | \n",
158 | " single | \n",
159 | " yes | \n",
160 | "
\n",
161 | " \n",
162 | " 13 | \n",
163 | " >35 | \n",
164 | " medium | \n",
165 | " male | \n",
166 | " married | \n",
167 | " no | \n",
168 | "
\n",
169 | " \n",
170 | " 14 | \n",
171 | " <25 | \n",
172 | " high | \n",
173 | " male | \n",
174 | " single | \n",
175 | " no | \n",
176 | "
\n",
177 | " \n",
178 | " 15 | \n",
179 | " <25 | \n",
180 | " high | \n",
181 | " female | \n",
182 | " married | \n",
183 | " yes | \n",
184 | "
\n",
185 | " \n",
186 | " 16 | \n",
187 | " >35 | \n",
188 | " medium | \n",
189 | " male | \n",
190 | " married | \n",
191 | " yes | \n",
192 | "
\n",
193 | " \n",
194 | " 17 | \n",
195 | " <25 | \n",
196 | " high | \n",
197 | " female | \n",
198 | " single | \n",
199 | " yes | \n",
200 | "
\n",
201 | " \n",
202 | " 18 | \n",
203 | " 25-35 | \n",
204 | " medium | \n",
205 | " female | \n",
206 | " married | \n",
207 | " yes | \n",
208 | "
\n",
209 | " \n",
210 | " 19 | \n",
211 | " 25-35 | \n",
212 | " high | \n",
213 | " male | \n",
214 | " single | \n",
215 | " yes | \n",
216 | "
\n",
217 | " \n",
218 | " 20 | \n",
219 | " >35 | \n",
220 | " medium | \n",
221 | " female | \n",
222 | " married | \n",
223 | " no | \n",
224 | "
\n",
225 | " \n",
226 | " 21 | \n",
227 | " <25 | \n",
228 | " low | \n",
229 | " male | \n",
230 | " single | \n",
231 | " yes | \n",
232 | "
\n",
233 | " \n",
234 | "
\n",
235 | "
"
236 | ],
237 | "text/plain": [
238 | " age income gender m_status buys\n",
239 | "0 <25 high male single no\n",
240 | "1 <25 high male married no\n",
241 | "2 25-35 high male single yes\n",
242 | "3 >35 medium male single yes\n",
243 | "4 >35 low female single yes\n",
244 | "5 >35 low female single no\n",
245 | "6 25-35 low female married yes\n",
246 | "7 <25 medium male married no\n",
247 | "8 <25 low female single yes\n",
248 | "9 >35 medium female married yes\n",
249 | "10 <25 medium female single yes\n",
250 | "11 25-35 medium male married yes\n",
251 | "12 25-35 high female single yes\n",
252 | "13 >35 medium male married no\n",
253 | "14 <25 high male single no\n",
254 | "15 <25 high female married yes\n",
255 | "16 >35 medium male married yes\n",
256 | "17 <25 high female single yes\n",
257 | "18 25-35 medium female married yes\n",
258 | "19 25-35 high male single yes\n",
259 | "20 >35 medium female married no\n",
260 | "21 <25 low male single yes"
261 | ]
262 | },
263 | "execution_count": 3,
264 | "metadata": {},
265 | "output_type": "execute_result"
266 | }
267 | ],
268 | "source": [
269 | "df"
270 | ]
271 | },
272 | {
273 | "cell_type": "code",
274 | "execution_count": 4,
275 | "metadata": {},
276 | "outputs": [],
277 | "source": [
278 | "x = df.iloc[:,:-1]"
279 | ]
280 | },
281 | {
282 | "cell_type": "code",
283 | "execution_count": 5,
284 | "metadata": {},
285 | "outputs": [
286 | {
287 | "data": {
288 | "text/html": [
289 | "\n",
290 | "\n",
303 | "
\n",
304 | " \n",
305 | " \n",
306 | " | \n",
307 | " age | \n",
308 | " income | \n",
309 | " gender | \n",
310 | " m_status | \n",
311 | "
\n",
312 | " \n",
313 | " \n",
314 | " \n",
315 | " 0 | \n",
316 | " <25 | \n",
317 | " high | \n",
318 | " male | \n",
319 | " single | \n",
320 | "
\n",
321 | " \n",
322 | " 1 | \n",
323 | " <25 | \n",
324 | " high | \n",
325 | " male | \n",
326 | " married | \n",
327 | "
\n",
328 | " \n",
329 | " 2 | \n",
330 | " 25-35 | \n",
331 | " high | \n",
332 | " male | \n",
333 | " single | \n",
334 | "
\n",
335 | " \n",
336 | " 3 | \n",
337 | " >35 | \n",
338 | " medium | \n",
339 | " male | \n",
340 | " single | \n",
341 | "
\n",
342 | " \n",
343 | " 4 | \n",
344 | " >35 | \n",
345 | " low | \n",
346 | " female | \n",
347 | " single | \n",
348 | "
\n",
349 | " \n",
350 | " 5 | \n",
351 | " >35 | \n",
352 | " low | \n",
353 | " female | \n",
354 | " single | \n",
355 | "
\n",
356 | " \n",
357 | " 6 | \n",
358 | " 25-35 | \n",
359 | " low | \n",
360 | " female | \n",
361 | " married | \n",
362 | "
\n",
363 | " \n",
364 | " 7 | \n",
365 | " <25 | \n",
366 | " medium | \n",
367 | " male | \n",
368 | " married | \n",
369 | "
\n",
370 | " \n",
371 | " 8 | \n",
372 | " <25 | \n",
373 | " low | \n",
374 | " female | \n",
375 | " single | \n",
376 | "
\n",
377 | " \n",
378 | " 9 | \n",
379 | " >35 | \n",
380 | " medium | \n",
381 | " female | \n",
382 | " married | \n",
383 | "
\n",
384 | " \n",
385 | " 10 | \n",
386 | " <25 | \n",
387 | " medium | \n",
388 | " female | \n",
389 | " single | \n",
390 | "
\n",
391 | " \n",
392 | " 11 | \n",
393 | " 25-35 | \n",
394 | " medium | \n",
395 | " male | \n",
396 | " married | \n",
397 | "
\n",
398 | " \n",
399 | " 12 | \n",
400 | " 25-35 | \n",
401 | " high | \n",
402 | " female | \n",
403 | " single | \n",
404 | "
\n",
405 | " \n",
406 | " 13 | \n",
407 | " >35 | \n",
408 | " medium | \n",
409 | " male | \n",
410 | " married | \n",
411 | "
\n",
412 | " \n",
413 | " 14 | \n",
414 | " <25 | \n",
415 | " high | \n",
416 | " male | \n",
417 | " single | \n",
418 | "
\n",
419 | " \n",
420 | " 15 | \n",
421 | " <25 | \n",
422 | " high | \n",
423 | " female | \n",
424 | " married | \n",
425 | "
\n",
426 | " \n",
427 | " 16 | \n",
428 | " >35 | \n",
429 | " medium | \n",
430 | " male | \n",
431 | " married | \n",
432 | "
\n",
433 | " \n",
434 | " 17 | \n",
435 | " <25 | \n",
436 | " high | \n",
437 | " female | \n",
438 | " single | \n",
439 | "
\n",
440 | " \n",
441 | " 18 | \n",
442 | " 25-35 | \n",
443 | " medium | \n",
444 | " female | \n",
445 | " married | \n",
446 | "
\n",
447 | " \n",
448 | " 19 | \n",
449 | " 25-35 | \n",
450 | " high | \n",
451 | " male | \n",
452 | " single | \n",
453 | "
\n",
454 | " \n",
455 | " 20 | \n",
456 | " >35 | \n",
457 | " medium | \n",
458 | " female | \n",
459 | " married | \n",
460 | "
\n",
461 | " \n",
462 | " 21 | \n",
463 | " <25 | \n",
464 | " low | \n",
465 | " male | \n",
466 | " single | \n",
467 | "
\n",
468 | " \n",
469 | "
\n",
470 | "
"
471 | ],
472 | "text/plain": [
473 | " age income gender m_status\n",
474 | "0 <25 high male single\n",
475 | "1 <25 high male married\n",
476 | "2 25-35 high male single\n",
477 | "3 >35 medium male single\n",
478 | "4 >35 low female single\n",
479 | "5 >35 low female single\n",
480 | "6 25-35 low female married\n",
481 | "7 <25 medium male married\n",
482 | "8 <25 low female single\n",
483 | "9 >35 medium female married\n",
484 | "10 <25 medium female single\n",
485 | "11 25-35 medium male married\n",
486 | "12 25-35 high female single\n",
487 | "13 >35 medium male married\n",
488 | "14 <25 high male single\n",
489 | "15 <25 high female married\n",
490 | "16 >35 medium male married\n",
491 | "17 <25 high female single\n",
492 | "18 25-35 medium female married\n",
493 | "19 25-35 high male single\n",
494 | "20 >35 medium female married\n",
495 | "21 <25 low male single"
496 | ]
497 | },
498 | "execution_count": 5,
499 | "metadata": {},
500 | "output_type": "execute_result"
501 | }
502 | ],
503 | "source": [
504 | "x"
505 | ]
506 | },
507 | {
508 | "cell_type": "code",
509 | "execution_count": 6,
510 | "metadata": {},
511 | "outputs": [],
512 | "source": [
513 | "y = df.iloc[:,4]"
514 | ]
515 | },
516 | {
517 | "cell_type": "code",
518 | "execution_count": 7,
519 | "metadata": {},
520 | "outputs": [
521 | {
522 | "data": {
523 | "text/plain": [
524 | "0 no\n",
525 | "1 no\n",
526 | "2 yes\n",
527 | "3 yes\n",
528 | "4 yes\n",
529 | "5 no\n",
530 | "6 yes\n",
531 | "7 no\n",
532 | "8 yes\n",
533 | "9 yes\n",
534 | "10 yes\n",
535 | "11 yes\n",
536 | "12 yes\n",
537 | "13 no\n",
538 | "14 no\n",
539 | "15 yes\n",
540 | "16 yes\n",
541 | "17 yes\n",
542 | "18 yes\n",
543 | "19 yes\n",
544 | "20 no\n",
545 | "21 yes\n",
546 | "Name: buys, dtype: object"
547 | ]
548 | },
549 | "execution_count": 7,
550 | "metadata": {},
551 | "output_type": "execute_result"
552 | }
553 | ],
554 | "source": [
555 | "y"
556 | ]
557 | },
558 | {
559 | "cell_type": "code",
560 | "execution_count": 8,
561 | "metadata": {},
562 | "outputs": [],
563 | "source": [
564 | "from sklearn.preprocessing import LabelEncoder"
565 | ]
566 | },
567 | {
568 | "cell_type": "code",
569 | "execution_count": 9,
570 | "metadata": {},
571 | "outputs": [],
572 | "source": [
573 | "le_x=LabelEncoder()\n",
574 | "x = x.apply(LabelEncoder().fit_transform)"
575 | ]
576 | },
577 | {
578 | "cell_type": "code",
579 | "execution_count": 10,
580 | "metadata": {},
581 | "outputs": [],
582 | "source": [
583 | "from sklearn.model_selection import train_test_split\n",
584 | "xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=.25,random_state=1)"
585 | ]
586 | },
587 | {
588 | "cell_type": "code",
589 | "execution_count": 11,
590 | "metadata": {},
591 | "outputs": [
592 | {
593 | "data": {
594 | "text/html": [
595 | "\n",
596 | "\n",
609 | "
\n",
610 | " \n",
611 | " \n",
612 | " | \n",
613 | " age | \n",
614 | " income | \n",
615 | " gender | \n",
616 | " m_status | \n",
617 | "
\n",
618 | " \n",
619 | " \n",
620 | " \n",
621 | " 10 | \n",
622 | " 1 | \n",
623 | " 2 | \n",
624 | " 0 | \n",
625 | " 1 | \n",
626 | "
\n",
627 | " \n",
628 | " 4 | \n",
629 | " 2 | \n",
630 | " 1 | \n",
631 | " 0 | \n",
632 | " 1 | \n",
633 | "
\n",
634 | " \n",
635 | " 2 | \n",
636 | " 0 | \n",
637 | " 0 | \n",
638 | " 1 | \n",
639 | " 1 | \n",
640 | "
\n",
641 | " \n",
642 | " 17 | \n",
643 | " 1 | \n",
644 | " 0 | \n",
645 | " 0 | \n",
646 | " 1 | \n",
647 | "
\n",
648 | " \n",
649 | " 6 | \n",
650 | " 0 | \n",
651 | " 1 | \n",
652 | " 0 | \n",
653 | " 0 | \n",
654 | "
\n",
655 | " \n",
656 | " 7 | \n",
657 | " 1 | \n",
658 | " 2 | \n",
659 | " 1 | \n",
660 | " 0 | \n",
661 | "
\n",
662 | " \n",
663 | " 1 | \n",
664 | " 1 | \n",
665 | " 0 | \n",
666 | " 1 | \n",
667 | " 0 | \n",
668 | "
\n",
669 | " \n",
670 | " 14 | \n",
671 | " 1 | \n",
672 | " 0 | \n",
673 | " 1 | \n",
674 | " 1 | \n",
675 | "
\n",
676 | " \n",
677 | " 0 | \n",
678 | " 1 | \n",
679 | " 0 | \n",
680 | " 1 | \n",
681 | " 1 | \n",
682 | "
\n",
683 | " \n",
684 | " 21 | \n",
685 | " 1 | \n",
686 | " 1 | \n",
687 | " 1 | \n",
688 | " 1 | \n",
689 | "
\n",
690 | " \n",
691 | " 20 | \n",
692 | " 2 | \n",
693 | " 2 | \n",
694 | " 0 | \n",
695 | " 0 | \n",
696 | "
\n",
697 | " \n",
698 | " 9 | \n",
699 | " 2 | \n",
700 | " 2 | \n",
701 | " 0 | \n",
702 | " 0 | \n",
703 | "
\n",
704 | " \n",
705 | " 8 | \n",
706 | " 1 | \n",
707 | " 1 | \n",
708 | " 0 | \n",
709 | " 1 | \n",
710 | "
\n",
711 | " \n",
712 | " 12 | \n",
713 | " 0 | \n",
714 | " 0 | \n",
715 | " 0 | \n",
716 | " 1 | \n",
717 | "
\n",
718 | " \n",
719 | " 11 | \n",
720 | " 0 | \n",
721 | " 2 | \n",
722 | " 1 | \n",
723 | " 0 | \n",
724 | "
\n",
725 | " \n",
726 | " 5 | \n",
727 | " 2 | \n",
728 | " 1 | \n",
729 | " 0 | \n",
730 | " 1 | \n",
731 | "
\n",
732 | " \n",
733 | "
\n",
734 | "
"
735 | ],
736 | "text/plain": [
737 | " age income gender m_status\n",
738 | "10 1 2 0 1\n",
739 | "4 2 1 0 1\n",
740 | "2 0 0 1 1\n",
741 | "17 1 0 0 1\n",
742 | "6 0 1 0 0\n",
743 | "7 1 2 1 0\n",
744 | "1 1 0 1 0\n",
745 | "14 1 0 1 1\n",
746 | "0 1 0 1 1\n",
747 | "21 1 1 1 1\n",
748 | "20 2 2 0 0\n",
749 | "9 2 2 0 0\n",
750 | "8 1 1 0 1\n",
751 | "12 0 0 0 1\n",
752 | "11 0 2 1 0\n",
753 | "5 2 1 0 1"
754 | ]
755 | },
756 | "execution_count": 11,
757 | "metadata": {},
758 | "output_type": "execute_result"
759 | }
760 | ],
761 | "source": [
762 | "xtrain"
763 | ]
764 | },
765 | {
766 | "cell_type": "code",
767 | "execution_count": 12,
768 | "metadata": {},
769 | "outputs": [
770 | {
771 | "data": {
772 | "text/html": [
773 | "\n",
774 | "\n",
787 | "
\n",
788 | " \n",
789 | " \n",
790 | " | \n",
791 | " age | \n",
792 | " income | \n",
793 | " gender | \n",
794 | " m_status | \n",
795 | "
\n",
796 | " \n",
797 | " \n",
798 | " \n",
799 | " 19 | \n",
800 | " 0 | \n",
801 | " 0 | \n",
802 | " 1 | \n",
803 | " 1 | \n",
804 | "
\n",
805 | " \n",
806 | " 16 | \n",
807 | " 2 | \n",
808 | " 2 | \n",
809 | " 1 | \n",
810 | " 0 | \n",
811 | "
\n",
812 | " \n",
813 | " 3 | \n",
814 | " 2 | \n",
815 | " 2 | \n",
816 | " 1 | \n",
817 | " 1 | \n",
818 | "
\n",
819 | " \n",
820 | " 13 | \n",
821 | " 2 | \n",
822 | " 2 | \n",
823 | " 1 | \n",
824 | " 0 | \n",
825 | "
\n",
826 | " \n",
827 | " 18 | \n",
828 | " 0 | \n",
829 | " 2 | \n",
830 | " 0 | \n",
831 | " 0 | \n",
832 | "
\n",
833 | " \n",
834 | " 15 | \n",
835 | " 1 | \n",
836 | " 0 | \n",
837 | " 0 | \n",
838 | " 0 | \n",
839 | "
\n",
840 | " \n",
841 | "
\n",
842 | "
"
843 | ],
844 | "text/plain": [
845 | " age income gender m_status\n",
846 | "19 0 0 1 1\n",
847 | "16 2 2 1 0\n",
848 | "3 2 2 1 1\n",
849 | "13 2 2 1 0\n",
850 | "18 0 2 0 0\n",
851 | "15 1 0 0 0"
852 | ]
853 | },
854 | "execution_count": 12,
855 | "metadata": {},
856 | "output_type": "execute_result"
857 | }
858 | ],
859 | "source": [
860 | "xtest"
861 | ]
862 | },
863 | {
864 | "cell_type": "code",
865 | "execution_count": 13,
866 | "metadata": {},
867 | "outputs": [],
868 | "source": [
869 | "from sklearn.tree import DecisionTreeClassifier"
870 | ]
871 | },
872 | {
873 | "cell_type": "code",
874 | "execution_count": 14,
875 | "metadata": {},
876 | "outputs": [],
877 | "source": [
878 | "dect = DecisionTreeClassifier()"
879 | ]
880 | },
881 | {
882 | "cell_type": "code",
883 | "execution_count": 15,
884 | "metadata": {},
885 | "outputs": [
886 | {
887 | "data": {
888 | "text/plain": [
889 | "DecisionTreeClassifier()"
890 | ]
891 | },
892 | "execution_count": 15,
893 | "metadata": {},
894 | "output_type": "execute_result"
895 | }
896 | ],
897 | "source": [
898 | "dect.fit(xtrain,ytrain)"
899 | ]
900 | },
901 | {
902 | "cell_type": "code",
903 | "execution_count": 16,
904 | "metadata": {},
905 | "outputs": [],
906 | "source": [
907 | "y_predict = dect.predict(xtest)"
908 | ]
909 | },
910 | {
911 | "cell_type": "code",
912 | "execution_count": 17,
913 | "metadata": {},
914 | "outputs": [],
915 | "source": [
916 | "from sklearn.metrics import confusion_matrix, accuracy_score\n",
917 | "cm = confusion_matrix(ytest,y_predict)"
918 | ]
919 | },
920 | {
921 | "cell_type": "code",
922 | "execution_count": 18,
923 | "metadata": {},
924 | "outputs": [
925 | {
926 | "data": {
927 | "text/plain": [
928 | "array([[1, 0],\n",
929 | " [1, 4]], dtype=int64)"
930 | ]
931 | },
932 | "execution_count": 18,
933 | "metadata": {},
934 | "output_type": "execute_result"
935 | }
936 | ],
937 | "source": [
938 | "cm"
939 | ]
940 | },
941 | {
942 | "cell_type": "code",
943 | "execution_count": 19,
944 | "metadata": {},
945 | "outputs": [],
946 | "source": [
947 | "xinput = np.array([1,0,0,1])"
948 | ]
949 | },
950 | {
951 | "cell_type": "code",
952 | "execution_count": null,
953 | "metadata": {},
954 | "outputs": [],
955 | "source": [
956 | "y_predict = dect.predict([xinput])"
957 | ]
958 | },
959 | {
960 | "cell_type": "code",
961 | "execution_count": null,
962 | "metadata": {},
963 | "outputs": [],
964 | "source": [
965 | "y_predict"
966 | ]
967 | },
968 | {
969 | "cell_type": "code",
970 | "execution_count": null,
971 | "metadata": {},
972 | "outputs": [],
973 | "source": [
974 | "import seaborn as sn\n",
975 | "plt.figure(figsize = (10,7))\n",
976 | "sn.heatmap(cm, annot=True)\n",
977 | "plt.xlabel('Predicted')\n",
978 | "plt.ylabel('Truth')"
979 | ]
980 | },
981 | {
982 | "cell_type": "code",
983 | "execution_count": null,
984 | "metadata": {},
985 | "outputs": [],
986 | "source": [
987 | "dect.score(xtest,ytest)"
988 | ]
989 | },
990 | {
991 | "cell_type": "code",
992 | "execution_count": null,
993 | "metadata": {},
994 | "outputs": [],
995 | "source": []
996 | }
997 | ],
998 | "metadata": {
999 | "kernelspec": {
1000 | "display_name": "Python 3",
1001 | "language": "python",
1002 | "name": "python3"
1003 | },
1004 | "language_info": {
1005 | "codemirror_mode": {
1006 | "name": "ipython",
1007 | "version": 3
1008 | },
1009 | "file_extension": ".py",
1010 | "mimetype": "text/x-python",
1011 | "name": "python",
1012 | "nbconvert_exporter": "python",
1013 | "pygments_lexer": "ipython3",
1014 | "version": "3.8.8"
1015 | }
1016 | },
1017 | "nbformat": 4,
1018 | "nbformat_minor": 2
1019 | }
1020 |
--------------------------------------------------------------------------------
/Docs/Machine Learning with TensorFlow.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rashakil-ds/Machine-Learning-with-Python/418124d517ff32f4e19c21ea3567fb106a222264/Docs/Machine Learning with TensorFlow.pdf
--------------------------------------------------------------------------------
/Docs/PyTorch Cheatsheet.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rashakil-ds/Machine-Learning-with-Python/418124d517ff32f4e19c21ea3567fb106a222264/Docs/PyTorch Cheatsheet.pdf
--------------------------------------------------------------------------------
/Docs/Readme.md:
--------------------------------------------------------------------------------
1 | Author info:
2 | KM Rashedul Alam
3 |
--------------------------------------------------------------------------------
/Docs/𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲, 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐢𝐨𝐧.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rashakil-ds/Machine-Learning-with-Python/418124d517ff32f4e19c21ea3567fb106a222264/Docs/𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲, 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐢𝐨𝐧.pdf
--------------------------------------------------------------------------------
/Fit, Transforn and fit_transform.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "8b4f83cb",
7 | "metadata": {},
8 | "outputs": [
9 | {
10 | "data": {
11 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAACdCAYAAAA+CuuEAAAgAElEQVR4Ae2dB7hsRZGAdd1dXCOgoiA555wVQQTJSBIlKwLPB0gWAUVJkpQMgiIgIklFREEkiEpOknNWQQHj5ryz39/yt3UPc++dd+/MvTPvVX/fTPfp011dXV1dVR3Pa1rpkgJJgaRAUiApkBRICrShwGvaxGVUUiApkBRICiQFkgJJgVYaCckESYGkQFIgKZAUSAq0pUAaCW3JkpFJgaRAUiApkBRICqSRkDyQFEgKJAWSAkmBpEBbCqSR0JYsGZkUSAokBZICSYGkQBoJyQNJgaRAUiApkBRICrSlQBoJbcmSkUmBpEBSICmQFEgKpJGQPJAUSAokBZICSYGkQFsKpJHQliwZmRRICiQFkgJJgaRAGgnJA0mBpEBSICmQFEgKtKVAGgltyZKRSYGkQFIgKZAUSAqkkZA8kBRICiQFkgJJgaRAWwqkkdCWLBmZFEgKJAWSAkmBpEAaCckDSYGkQFIgKZAUSAq0pUAaCW3JkpFJgaRAUiApkBRICqSRkDyQFBiBAv/5n//Z+t///d+a4r/+679a//d//9f693//9xoXA8T/z//8T4mK+WKaZvif//mfa/p/+7d/a76uz5Trr0ZmYOAp8K//+q+FZ+SX//7v/y51oq3lB/juX/7lX2o8AfmsHwjwH//xHxU3+gwOnKnLL3/5y9YiiyzS+ru/+7vWa17zmtb888/f+vWvf13eU2frHesRaUA8tIhuuP4X0zTD0ItfhGU54C+tjTvrrLNab33rW1t/+7d/W/DefffdK0jT1ojpOJBGwnTcuFm17lEAAY0gUYAI+U9/+lMJ/tM//VNL4UhEO8Fnnuj/8Y9/rI8KWmDhgBcFWk2YgemGAk0+aSofFG0zDc+R1/qBGOCpM6wRs/3221dFi5HwD//wD60HHnjA5MWX53kwnwlefvnlEmzSwnJMN5xPuibM2O+afRo4GCFnnnlmxfu1r31tMRh+8pOf1GKabVVfTGeBNBKmswbN6nSXAlF4qbAxGKLQUWA3RzfTIsTAWjiE//Ef/7FUhHKaSqK7NUxok00B+ASFg7KSxzQYwY14ecD3nfLWRNQNnMSL8mLfeO6551pvfvOby0gcRYuRsOuuu7aYPcHZZ6ifcfYDZ04iPML2jU7qBp3ETXjM3BlHuX/+858LKOKisc8AYNZZZ239zd/8Tet1r3tdwf0DH/hALVYYNWI6DaSRMJ02bFaruxRQSLs0oCBrN5pQ2LUboTSxQogJm3eEhc0zMKKQbObP58GmgLxCLU477bTWsssuW5QRynT55Zdv3XTTTUWhwQNR4fWTgpI/9SNu++23X1WwLjc8+uijpdGse0xPf4r8T0L7EentK/iGO+EA+y1pNbCcBRwuP3hMmTKlLpO84Q1vKG1z2223zVB9Mo2E4Tgk45MCr1DApYYtt9yy9fd///dViCPIp06dWlK99NJLlV6MAhWYNXKUANOvSy65ZIXNlOzSSy+dRsIodBv01yq6X/ziF63ZZputtj/r4CjV5ZZb7lVK09F3v9RdXlf5ihd7Ed7+9rdXI4E6rbTSSnX2gHQaCs6cfOYzn2nNOeeclQ70sZVXXrn1+9//fki+qPQtr50vXN4988wzrfe85z1lZgC49LG55567deutt5alRPMzU6FhgkHDDIizINRhp512Kkmbxoz5pzc/jYTprUWzPl2ngMLggx/8YBVeCD8EDcLj9NNPL2VGIRmF02gIIfDmm2++Au/1r399XQdlqhMBrCIZDU6+H1wK3HLLLZW34KtojFor+WtaeMu8vfLjLICK1bK++tWvFl5WwVKv7373u2352Rk5NguSjp8jd6b6t9tuO8FWAzyWXV+2CUi3Aw44oPXGN76x9i/LefDBB8tsTRN/lyfWWGONFv2S9OAy88wzt1hGmVFcGgkzSktnPcdEAackUdY333xzERbudlbIYDC8+OKLZVSkQkeANYXOcAicdNJJRQC96U1vqgIS2Oeff35dOx0ub8YPNgXgERQko1kMA5SYfMVMAuv5OpRWVIyO4H0/GX7ER94HL0b+q6+++hCFTN3ihkFnRKABcMjHqYclllii0oD9ABpM0Ahnn+ykvsDEyP/5z38+BBdoq/EhHvjsScAIi33329/+dpnVARfb5tBDD+2k+OkiTRoJ00UzZiV6SQGFCGXsu+++RVBEYY7w2GWXXYagoMAcEtnmgWUKRkwaHgrENddcsx55MxuC1J9x6Q82BVT099xzT1VA8gJKbI455hjCByqvfuED+Rx8dCjZp556qtYHxTrTTDO1Nttss7p0EjcEk8/ZOsLXXXddyUv9+amYF1tsMYsYYpDXyBEC6667boHDrIazAhxvfPLJJ0suyo91cGaDeJYfxIH+SX9fdNFF696GEYqdLl6lkTBdNGNWotcUUJg/++yzrQUXXLAKDYSHBsONN95Y0TB9jXjlrDfxCnreYVwAA+GDcnC0wuYoBXCEkeH2FEAxxWn4uGYNvYdrD6ANR2fXy5muVoFEgzHmo2zLIK1Kpj22f40VHnmOP/74cp8A/MCsEvsR7r///pLYskjnNLh8hG8YeM2yUXROuQMMPKNSBmbcFCh2xE+LizC33nrrqoztHz/4wQ9qudYH+DFseZwigA4aCRpOp5xyypC9CaSHHtKedpcWwCX+iiuuqP0VYwW4/E444QSLG9aHBtCTfQhNXJidkEeguzRu0n9Y4APyIo2EAWmoRHNyKICQQNiogBAG55xzThGAKHZH/ggfRiu4qFR8VnApQIDLiOktb3lLFVoKrz322KPAUfCVh/xrSwHbxZdRUUX6QW+eaYeolGIYGMCLcSpx3+EDi2lz29Sy8WP6WH5M0wwDh1/MCw7URWMnliXcGAdMlZTwNSZ4Bh4KzbymMQ+wqBeOkXNzpG/6pm8+4fIMbRhpy88YviybYGDjSBtx90gj5at0H3/88bKxMMIg/La3va3Q5Q9/+ENFxSOMLHHorC/v6KMsL/ADBkbLMsss09FRSmnyrW99q9ZHY2HPPfe0uEo7IsjjryYY4EAaCQPceIn6xFAAoaYQpEQE0MYbb1yFhsIH4YEBobAnD2lxUSgSj3D+0Ic+VIUWwovRIzvc3RQlnImp5eCWAo01vlSq1EalE9uOcGwL2ybGmca24xmFrcKIlNJIiUqB9BGPmL4Zjorcd+RvOnFp4hCNImkQ88Jn5jUenOGtZrzv9Tupg/iIB+W5XKCCx99ggw0EW/uS5ZNHOCSSpp/97Gdr/1AxA2vvvfcusGL/oP3EIdKP2RnxwFjQKL/66qsrPiMFhPXb3/62wIl4sBcJF/GgLjjqZv1KxAD/pZEwwI2XqE8MBRRgCACVyQ033FBGJAoNdjwjjFjnVPAPJ/wQHoxMmEKNMxHkx8jAKfAmpoaDW0qTxrSVcbYVtYPmCnxry3vbljiUE3mbztEt8YywVcbAI7/KAGURFWsMN2H6bPnwDPjIO7yXByyPONJQrmUKRx9ceScc01EOccIUPjhaZ2DzbB5hduKrKMm7zz77lL6g8Qxfc9IBF+sCLj5Tto54ZgCgNdc5ezrCPga8u+++2+S1TxIR6/3EE0+U/mUfIx+/j3zkI0PyVEDDBKwb91bE5Qpg3X777dWoIbsGju06DMiBik4jYaCaK5GdaArEzo4gi88HHnhgEToKH4XZ4YcfXtBUuUTBgQBkWnTeeecdIkjJyxlyheZE13N6KO93v/vdEAWHMkUBNpUebcg7frQpaVSU0IH0Kganwo2XTiojn6NPfmB34mK5pI/KUl6LaYRrOtIQFt9YpjgKx3fwYIRpfPTjKYQY3wwLG3jgwG+hhRYqvK0BDW+zfICzTxCO7WK9XOawPldeeWWBFQ0E+ptLe9YReNZJWMxe2DcxyDFaOFbM3QfgLe4FsRH+7JPObESY3Ougox34iYfxg+6nkTDoLZj495QCUZDEMMIAZf/Od76zCiKEECMN1jy5HEeH0IqC4+CDD655FKQIHo94KSA1LoSTfnsKNNeiSRWVB0qRs/BMPbMZUCE/zzzztNZbb73WBRdcUI6wQnfaCuUV28tSgckFQRdffHGZPkf5uaFurrnmKidfuO9A12n7UZaGhQqpHQ804ZHPehLWoIn0EBd8YN55550tju+xJg8dNGzf//73t4444ojW97///ao8xSHCaIajoofOjz32WIEbZxHe8Y53DDF+6Uf0n+h8VsHzzrhNNtmkthnLBfQZ4DvrRtpme11zzTUlD3shPM1AW5188snVOIllRVyaYeoIzsJ0ZgI8VlhhhQqPNPygw/Tk0kiYnloz69IzCigALMCNU95xwPqkJxMQSqusskpJqiBSiGE8cNOb99mrsNgEZRo/aGNZ6Q9PgWOOOabSEmX04Q9/uEz5omAQ1tCSEaB3UCDYXZeG9gr82WefvVyLbEmOeFVUKMyzzz67hTFgm+GrgNhLYhnbbrvtkPsAhNnOt815R10wXFTcnKKJRkdT+chbKDEu+nL5apZZZml98YtfLMW5qY+jfjvuuGM1aryoSD4kj4r9ox/9aDVY2+E8XBx9BBpJH+vB3hve6QiLu3EqYp6hvemhu8dDPSUh/He/+90t+mG87RSjiTZbYIEF6qkj0lM3jlA6Q9I0uMSj6WsE4bsvQcMQuODEcU+d/CL+xg+yn0bCILde4t5zCkTh1RRujrRWXXXVIhjjeiW7sLldDmGooEEhcFZcIaew4WpYhB2CS5iknZ4ETa8aipkA6YmPEaBDuTBzoCKE3hhoplfB+5547sHwsh4V+COPPFKOqgKbNOTTuOAZBStM2p0wa+lOsYtPO98yaPdNN9205LUc4GA4OLtgfnmEZ3nE8vWhi+6b3/xmUZC+k+98RoGq0DUeuBoZ+nXi4G/4HAX5sY99rMKyPxx33HEFDO/FlwgVtbMhwIl10ygi7rDDDiu0sf00yJmVw2FY2M+gme+pm+Gf/vSnJW0su0aMEFDxkwQjEfoJExoyw6DRo3EZ6zkC6IF4lUbCQDRTItnPFODzsSoNBTCKh5EOghCBwe+OO+6oygRFoGC+/PLLi3BUGCEUFZD9XO9+wG2jjTYqNFXhI7RxKDhmFlSE+tDcEXMMq9Dwzz333Fo1DAam5lEKtldMC9xYNs+kIz3fHMDR9hoDPKPMms/EMxtgGcJBwar85CN84eLDY6SPiospetJxWyDv5DfgN0fkKl7SRYOBi5xeeOGFUpbKjwf5VDzEj3csv0U8gEn/II+KlHTTyt8Y0XFpT2MG+Cxx4NjPwM/60E7Ulx+fq454WoeScYQ/8dTffPPNK3zp2tyXADjgS58RwA/EqzQSBqKZEsl+pgDCgEuRNBCcdsZQYA0Uh9BgQ5ejRBUVm6sUxCONGPu5/pOJG5fuRKUEzRkxqlBUJihyPtB17LHHtthYyoyOCtk2YVMbgp+ZAdb3marnI1u+5x153vWud5WRLVP6n/rUp+o+FMpQQTk74bQ/NEJJwSsqKH2V11iMBGCgwMAROlA+/MdMwje+8Y1SH/CWNzFm+RYBdDjjjDNa3MlBHvgxGgjOjrAMpnIHd8ryGUNH3KkfV5NDb2gUacbHy3DgquKMRlJ5Ocofyv/SSy8t9dHIsf2YgdFx6ZHtSL1pE4yF559/viSJMxXS37zD+eLMe3gHOmsoEoaeOmFGuvhuUP00Ega15RLvvqIA66II1qYAY1c2m+a43Q2hxU8BTPhnP/tZrYfCVwGjwKkJMvAqCqy11lpFYMfRPF/6g7Yq6ve9731lbZ/jfW7uAxDr9CxHoCRNSz4UHZsc11577aoMUEjsW7j22msrDioc4Oy11161fTVaaHsUlqNw29Npdn3beyxGgsjE+lMHZlEwZsDbkwEbbrhhVZaUraLmXo4vfelLxUgQd2CQF8PBq4spKxqy4C3uvGPGgHz8NIIxWOJRUGkg3p340om08X4ScHUGj6U9jEOMIQ0iFTkGkc7yI96+G86Peby9UdiWB44YExoU+sPBHKT4NBIGqbUS176jAMJBgcOVsQpJZxN4ZqoTgR2FJ2HOkytMEL6Go1Dsuwr3GUJM/0pzfZSbiuITn/hEHfmKOqNSFTfHJuMnmlGoKgAVHXBXXHHF1tNPP12ms4Fjfg07fDb82e4ai+RlmYn0tq9T1/KN/liNBJS9uFJ3ytQwkCbOaLH+T/1x4KwCBMb+++9fZyQwmqzD1772tcrj0tC6+Ix/2mmn1bZwJoG9GdFZ1xg3Ulj8TMMJINsHw4h2pixmfNZZZ51qNJiGz6/j2LAo3XmOxo6wR/LNe++999Y6akRBYz5MFWkyrfUcqezJfpdGwmS3QJY/8BRAOCgU3MSokkKAOeWNUFF4celSPNePMEQQObqDKDE88ETqUQXc7IegZlTJ6FLa77777qVdHPG78x1U3CxHmGl5lStwULjCwOcSHaarVRQo/KhoaXsMO87fq5TBBZi0PyPZOJpukkLeGauRAF4RX2jgzAgzGRwVbBqe8ha8Ky1Y91944YVLHeKMAkti0lDcpQXP4s9NiHFGg/pTJ5xGlYq0qfyF2/SFbX6eDzrooIKjhoizCbF/aayxqVBnPcUh1sE0w/nm4bSMvKJhRp/mOw4ajMCI4eFgDkp8GgmD0lKJZ99SICqMm266qSgqBZdKB9+d7wgXjk7qFNg+K5D0jU//1RRgKQHF1FRO7BWIjjZSMakcUDjEswSBIYewV/CrZJllcBaAdjKvsOMzinjnnXeuhgLKBGXLNL9OZRvbVkU4ViMB2JHfVPAYDmeddVYpmjKoB8pLBaZPAhQoOHFBmLR0hoVZiXZ4WyfpijGhcobfqf/UqVNLMhW0eWLZxg3nQ1dpBI4cRfQyMg0FFTfP0oL9CTiPPQrf/hbbznftfNPLB/KIdMbgP++884bwxrTUr12Z/RSXRkI/tUbiMnAUQHjxQ3gpSL2WFkGJwEIBKVCIY2oUpyBh6lMhSDxCqTnyGzjCTBDCKFZH0dCW/QUsDaBIHH16VwAoebyRsPsToD17G8jvj/bi7gv2k+BUKPq0HfAtw/Y68sgji6FBu4sXR1x1KlQVD/G2/ViMBPNSlorSZYIpU6ZYbOVNeFQaREPFhOwriLwqPdxc2y6PcfPNN1+ts/mOOuooQY/Z18CwHABh/GDU0d6UZd0xElDiGOTcX2AeDXny2gadIuTShP2b9rR+ls1yToRru3RaRj+nSyOhn1sncet7CqjoVR4gzNfuHM0gRByZEYcAv+qqq8rOedIqxAgDI8KJ7/qeEJOEoB/Jgs4qiHaKKdK1aYSh6JnZoZ0cmaJ02bgY25ewwl/favuOT3zHNjeMERENA40L8gtrLEYC+VFOlIPSxOeHor/55psLerHulhsVmiN160peftBAg4F6RUeeJn9GntdAYsOu9QO+xhSwLC/CbYZND77iLh1ZBmrWm2eMBO5PiHUUbsRZOL4bzhd/3gNzzTXXLOXCK9LcPR+kIb2/4WAOUnwaCYPUWolr31IAQeyIw7PpCmx8BIoClzPsUXAbJr9hKtoUNAorrs5lkxzCCoMDpzAljPBz5OTopyR65WreM888s8UmS45zsV7eyx/n/DkGSBnsoPdCGxREFNjiN60+d/hDX2mLz2U6uE7gmyZewCMsvw/QCU4qPJabHNVG33La4WW7jtVIIH/kNcMaCZ3gH/GK9GzCsh7iTD7DpLXO5vvyl79cjSPz4kc+Hwk/YTsbpOJnhkejREVNH8PQAwdmGFhmML++/cH2GqnsSBPTASd+E4Ky+G211ValrFhH8wy6n0bCoLdg4j+pFFDYKXzYjIiA4iIlBWW8BlgF9MMf/nDISEchaGWE57NKlfKEi3BkPdQRFmk1VAgrGIHtuizXQitc3VApvF741Bc8VR7e448wFT/rOBY/jYS/tHO7tusHI4GvnepUoDyr7H03kk8++D8awhjJ1NmlFfsVcfC3swmxLA0D+U5/tLLje/JEI0G6c6lXLCvWNeYfxHAaCYPYaolzX1EgKmaO3Ck4ou9mJ+IY8XBHf8zXnPpUoGEAaCBYaeGifIEV82q0mDYKVuLYhY0QJR+KG7+XP3HFx6DBxzXxEt9p9dNI6G8jwXtAVMhRecrjI7W5aczH82WXXVb4CL6VvwyzcVKDAd9lEvLZNzTAhTlS+c007YwElla41AuH8dPMMxL8QXiXRsIgtFLiOBAUYOqf6c5oECDE+OgQviN3ZxaYgscptBAwIylP0jFTsc0229Rb5ZjCx7m5izBGgwKxvHxl6h3hdeONN1bBqoDtpY/wZrSnEKcsHPiNdCxQvEfz00jobyOBOyJwKnuNBeKicTtcOzdnHJgRY0MpfISRzKwdvMVSjbMKvLMPbrHFFgV07FvCjLgMV35T4TeNBMoGD5b+cMJs5hsO/iDEp5EwCK2UOPYtBRAGCB0UOLvqvcQGIcVIhhEG19Wuv/76VTkjVPjxno8HIUCbAjMKGZSp7/U1LH7zm99U2jgzoaDyBfEaDb/61a9a7EKnfIQpQq6XP8pwZIdxxLRsrJs4jtVPI6G/jQRuqIQf5Ul92juGR2t/T2TwRU94yqOW8BYnGehHp556anlnHyQdP+7BiOVpsOiPVHaTV8E5LjfYd/jU9vTq0kiYXls26zUhFFCIsBkQgeQIxrCf+uWDQ+741icNsww4ZxBU5gpQ4VuZuP/APO3eEeeIybCGBbfD4YBNOb38lYJeOW6oEUMc9Wjib9pp8dNI6G8jgS9QytO0q3w9LW1sWvbToJQ9LUT/4ccV2jguvPK7DfRD+xl3Kvz+978XTJ3VqBEjBJr9D/yjkSAOnLLBgDe9/gigB+ZVGgkD01SJaD9SAEXHxkBGL3F0jiDzwzMIFk4bcCOd6/KMgBwNce+8jnQKGPIZRqmq9FW2vNNo4J1pTUd+BZdxlEP8RLm4IdNZEPHvBg5pJPS3kcDRUo0E+FPei7w9Gh/IQ3E2jv7Dj4+msQSnwXnhhRcWQ0LlrUFx6KGH1uUt+XC0cnlvnzIteLczEvhQljiQNvY38w6qn0bCoLZc4t03FPj4xz9eRzfuO0BIPfPMM1UoMop/4okniiHh6QLSEF5ggQVaXImrUzApUIk3DBwEEgKSUdXXv/51sxWfvFEIKqCF4RRrFGhDAPTgAYHpxUWAB8eI13iKTCOhv42Eo48+uipMDVbam7A8PVL7q2xR/i7hOVuH/53vfKcqZ/me7zVgHHiihhkFwlybjdNI7YQH7Yvi2DQS6IP0Y+7msHzSTmT/Erde+V0xEqIAMAwxFUgyA8/GWSFHQsZL6Ng4MgoCknS8s6GFk35SoJcUgAflw8irbAR0tOLRK4QG9xDAo/KxAomNhrxHyTsdyjOXzuAULvQL8prfujWFFPcQ2L9Mbx59806PfhoJk2skwGPy31xzzVVn05zu5wbKyIcxTD+yX+jDo1EHkIY9OWxQjBsT6TN8ERIX+yYzcbfffnvdJEw6jQqWBMTV2YmR+kTEFZzMS78FH40Qwocddlh9T1plxEjwB+XduI0ENmZBJBrDI1W77bbbkPpL3BgZGwAm0Fgg3nccX/GDI8CmcdhF6pnvyFgRdoaTAt2kgB0+Kn3gE89mRXg/Knw+VcwXA9s5NjHC045AyOsd+Q899FDJojHCg31BWPSlON2ZRkJepgRPwEfN30TdkwBvohj5CiM4YADj0yd22GGHYgiAI3zd5Gf52nj6GGnpWxrMBxxwwJD+5TdQ7rrrLrNXn7wYCrvuuusQemjIX3zxxdUIIe1oTrxiOvWc9MYIOffcc181iFBuxLyDGB63keA6EYSzISAea1EKOy1DCWTj0ABupuKdsxDEk4ZrN52aBT5wWcfFOEgDQWqm30sKaLx6xJCOL/9yfzw8qcKXV7lxUUMW3ODxKGyYIiVfnHngmZsYdfA3QjLm4x1lp5EglVqtnEmY3JkEeZJ+wlc3Y38gzAe4dJGX7UNNX8WqzvCaaxSx/Qy4zFDQR0xPGXF2GQOCTYzoJGcSyMcn2zkpwcA04kM4Pouz+PFMmLzA4YdOUi/xCWv1nXl8Ftag+uM2Eu6+++5KNAjHrAKbs/jREBJXq9BnfBrFeAlrPNO1Ngb+LLPMUp757Gm6pMBEUSDypWWi9Dly9c53vrNOr8qrm2++eUkGX0eDQj5nlINbY4016oiLvG5ovO666yxmyHKFkeCTRoLUSCMBSsAT8l/0J2omQWXI/gPLVzEvuOCCf22sELI/6ANDw8Bk9J9VVlllSB9jzw9HaTmtYLkONKPBAAyWAMQnDmK5Jrw5yNRIGMlQoBxOKQnTOvIcjyKLVztY1m2Q/HEbCRCC73vTCCpyicjtczIBDSjxJJACmAbzHQ3BblWutWW6itGWFiSCFWc+YQsv/aRALyjgCAU+VSBxVzt87tSqGxY5F66Dp52BaAqlG264ofA3vO0MHLy+7LLLFuNaHm8KGuLTSJDCaSRACXhCmRv9iTISbI34zRL3DzBoRJ7j6A/oAXg6KnTDTXnObDT1ERanh+gvfA8i9qdmPnUJS3tej45+Ii8/+irLgc2+xXPzJ974GDGXXHJJXfpwiZE6OuNIOnBrwiZ+UN24jQQqDvFkTqdf5phjjhLHNbA6mWG4Zxob4u61115V+AoXn4/DaG3qCyv9pEAvKKAA0lBAADG1CD9qGLgnh+nWaBgorMBLpU9YmLvsskuBo7DR4GAWTSHYFDZpJAxt5VxumFwjQT5FHrOnJsprwuiDeDWySji2YtxEqLLlU9/M1KHUgaO/2GKLDTkJFOHEsLqGi5TMa38F3pZbbtl2pg4Y4mifjf34c5/7XD26bF3ZlxT1EeGYJ+I1iOFxGwk28KWXXtri4y0QzmkYLEBGXF7eIuFsQAlGvEL4/vvvH8Jonj0/8MAD65ftbDxHdcJJPynQbQooBIELnyLEllhiiSFGLEKIWTS+X6+L+eBTBA98G3mW0cyb3/zmIkg1EOgzXDvLzYgKKwF+THsAACAASURBVGHip5EQqZEzCfKECiv6EzGToHKEr1leRrFHHDCAL7jggiGNBl9Hp2FAHH2MvWmHHHJIheM15sDlw2jRqVOIU68AnzA++LFkoU6inzkjccUVV5T3wGjiBDzj1DfErbfeenWfHPhgBO2zzz51ECA+4hJxHdTwuI0EKi5hVltttdKwjKxU7hCSKVgIroBkJCURjQMOhgKnJbT4hMEGFNd8EL5RAA8q4RPvwaEA/KoRy2kCeNopUMLwKSMMHf2BH8JFAQj/K2zgX+M9EumSA/AQrB7vUlAJO40EKfEXP2cSJncmgVaQrwlzPTE8zE/Dl0+Sq7RjeuI0MuBzwxxhtB84y8YzRxhxyn/7WYkMf/Yt4XFMGWUOPs50E+aUEf0aeLEOAVQN2n/nnHPOIfVjifDss8+u6VxeJEIdV18OaKArRgJ1p8EYSdGYEA6fBuHHpiyIR4Mo9BS65MNhLFx00UWVOWxM4Fx++eXlfUwrowwo3RPtAaFA5LMnn3yyjPydvnR0sswyy1S+RjAocDoRElyixBch4XN+ClbCLGvgGKHZX/AxpL2tcUY/ArnWWmuV6WTlBUqFD2cpKzphM9KSR4UELNoY2J24WNaDDz5Y25I2FC/bz83cES48hlzE4HFgRF5w8ANepnepyjIdZJGeX8x/5513mm1YP/KoOFIuP/hbWc6ysXwNMPOZhzjqwf40B3ngA01XWmmlWr75jLAe1N93zNRBN/oCeKjc0S/UV+UvjJF86cXtpy4LYpBTL+Aec8wxJXu8zCzCt87EMbsX+6dh9j5Qd+sCwCg3RsJvEN51xUiQqFhwXH8Jc7hbG0LSIDaGRIH4MgU7VXl246PCFwZjk9YLL7xQskWGJMIOIsz0kwK9oAC8iXD/2Mc+VhWAAgIeZalNYWRfAA8FzGg4+elbBKPKnz4099xz1z4SYWy44YZV+czoRoJHsJUZ0K0payLthguTh7z8hAXs0ZwyjHQMhDidAgyNA2EKB5kFX8gbceTJlwxJj2I0n6Nw86uIKNcBF7AoDyVoudTh+uuvN9uIvjCVp5YtHvg33XRTLQ9g4q8ylO9//OMfV9yFwzI0/YO04owfDQNggsfJJ59cDRMNBOBgfIzVoV8w8MUHGmkQoptclqFOHsOnLOlhuSx1CEOfmQWW3K2XaSNfGDeo/riNBAgrw0AEzpFyFlVmhZh2uscff7wIW9LJVBIOS560cdqVsN8jJ52EtzyZWxjpJwV6QQEE+QMPPFCFFwYCyw3wp99nkBejYJFPR8IJ4Ynxy9FJBQ8CjB996LzzzquCS4HMuihpGbHN6EYCBpN00+eK3Gl15DG/PrA7ccoy2pvZH0fzyj2+60HbxUFOU0kywOKeDMomP+1PfjaxCh9c5DPK4gf/IBdV6I6Q4R2V32h10FBR0TmzJf4Yrj/5yU9epTTBRXw0kuF/ZbiKmDqxhGDaJj7Ug3eM5uPlebYDMwssN0NDjhCDL+UNBy/Cj7T7yle+UnDTwLedpkyZUvUSeWmLaCxYDnsPwAnaCoMr2dVL5LVdIg6DHh63kSCBZDQIcvrpp1dmh2lt7M0226zQKzYc4Ycffrik8ROfNAA/jlDKuHQwwzLkoBM/8R8MCsBvXIDkTBf8jFBeZJFF6pKANVGR+9ypz0ht1VVXLcaHAp+9ONxZ3+R3b7Zj5DijGwlcqsN1wLQJSm255Zarm9uiTBquHUzDKJG8KkZgArsTF9uHTdq0o3IPOUZ7RYcsU24ajxxk1sDbN6nP/PPP3/IrojEdYZQRTgXGer1lknfppZeu+17M284Xju9QjlOnTq0zWihElgu8QRQZDK7K8JhfXDR4wUdDwT07pjEftFOus5xgH4NulE0fi2v+4jmtPjOBGBrQSV7B58fsN44ZgWjIubfBtmJZkfTWiTDHPqOjftYtxg9yeNxGgpW38SEsYdZNIaKdjl3cCD92lMIUMIejLm7lgiH4kQcG4Zv3LDNIcGAigGVOyo1h8Ug/KdBNCvgde/lQgSa/U5ajDt756xQH4ZGevsOzZdI/2vE4I1z6CH1lRjcSoFs0zBTsndI/pot5I8yYphmmveAN5JkKJsLhvbxCvHwEHNMp12hrFZLtLkxhkJ+w7/U1dsQvlmPcSD7lKI9JJ1zCHEfEgWc0iGLY9/gun8mjyH0+uhTTxLIiraUJaamTeICf6fANF6Cj/DXTSlPjrYe0Bxw09sczBoy6TCOeJXX2KeDsx7YTceJeEgzwX1eMBG+Rgw42MtNTMgnCjB/TVixFREJyqQzvtKBtAD94047YNoj+ANM/UR8QCsjXCJIoXBTGUcAQVvCMVj2FflPIky+WyUgIfkfwsNzglG4aCX+hMLSJigfadSKkSSOdgQSMaZErUZYZxqddgSOvyAc8G8f7du1OWvMbjnWBv+Kz+FIudVEey5uWPZwvPvoqZOFGONDHegovbsYEr5dffrnciqjcd1r/ueeeM0vBH/ixzaQFeMT6saegnYt5270nzjoAz3qZlnppMBhHetJKC+P52ir1Qaep11xqJI3tFeVArINwBtHvupEAESQ8l8vEjVhaYieeeGKhFSMmru2UmZjGwUjgXCsElsjAi4xKfKdCeBAbJXHuPwrAc5EHwVChTBjhokDiuSlkOqkRefjmA/wu70ehI4y11167zrrN6EYCbdCORtJPmo3kt0sLzKYyHA5Gs3zaUcWp8hgOlnlJh9LDl8/MM5wyNC94EVbJ8tyuTu3wJ5/w5d9oNJGH+pCO97FM4fmeZ99/+MMfrnJduc8Niu2cedQb+tIh1gu6KvspdzTXLo0zfzEvdY5pKVt6kM5bTl3SwXepQTxJbx7rFMsY1HBXjAQqHwWbjcx1nKybOurBGMAI4HIMjgqddtpphZGwNFlqcBaB2QUczCDReaYRY0PGdyVD/iUFekABBW7kN3mc4hRiMa5TNIRNei8mU2hHBQjfm1aBRX+a0Y0E6Ca9CKtYO6V/TBfzRpgxzUhh2kiFoU96+SMqjmhEkGY43uJdlHkxLDxwNb9lwSvGjYSzacRXBdwsN9ImwpMnxUU4fBURRaqBAK+yBB31hHAo0/zUTxysC+mi4TKtbRNxFw5xlike1oVnDQnSYbhrHKij/H4EaWO+drCMG1S/a0bCcARgdzYM4mYPiIxBsNFGG5WlB97FG7X23XffAqrZgMPBz/ikwPROAQWbfcJRGv2Ij9UoBJvCKiqU6Z1GWb/JoQBGgXwmf4IJip7bF+FRZL8/jiK6HBLTTw72fykVY0TjJuJBHDhywoR6oKv4ocOYJZ9RXM+NBBgCCxImkWEgdPMKZ2YT2NzoJhkaSCt3RmmMrGdSoB0F7Af0CQQap3688ZEpTwQyaTQSNBrawcq4pECvKBBH/pTBVfoODpHvjMbjXrNe4TEtcO0z5CGs4aLRQL/iFklwdzYB/cVMeMw7LWUOWtqeGwkQhLsOtMIkNJs/sMjidBSbQ3DNhho0oia+SYFuUgCBheJXCDOz4NKGRnU0DHzXTRwSVlJgJArAoy6hmI5ZA+Q9Mt6R+OKLL16UK+lVxKafDN9ZEHBxmQM87EP33Xdf1V3oMOqB0TAjuZ4bCTLCnnvuWXeFal1qOETCs/6TLimQFPgLBeJ680g0aWckOAMxUr58lxQYLwVU+A7ugCc/8qVT5Ds/Z5PjBXnjLbtb+Zv7HOw73BmBnmJfHbN31IGTexhEpukWDv0Kp+dGAsSHeVD+3p0N0T1GQpgZhW9961t1BgFiuW7Vr4RLvJICE0kB+hA/RjiGNcCZ9nQU5LuJxC3LmrEp4KgbKmgc6D///PN1JO4GdpbLfN9vlGOWzr7EUU4uNENHOQPOEf4ZzfXcSHDd5mtf+1ohNvsOnElgnYofjcAnpW2cGcVCm9GYLes77RRgOnQkgUr/iu9jWCNi2kvNHEmBzikQR+FO35Mb3mSJ7IADDqhKVvn/zDPP1BMEnZfU+5Qu6YH7WWedVZZKGMSio7wBFSxiP+s9VpNbQs+NBKrHZRhvf/vbC6GZsnEWAV+DgUa45pprykhJpktjYXKZI0vvLwpoRCPAEMbtjADj6DuG+6sWic30SAH4rak44T9mtrgPZ/nlly/yn9kEZpQfffTRviAD+OGiccMzMwp+XoA9Fdz388lPfrLi3Nx/UV9Mh4GeGwkwCl/P42M00SCIGxZhHCxMjswgCGU2hGG6pMCMTAH7AjRwlBPpEQ0B+ouGdcwX02c4KdBNCiij4TsHd8ZZDvHypcpVA8I0k+WLsz54aDDY37wzgXfx9sdmPSerDr0ut2tGAo0uofElIJtUmDGI3xhn1oCrZYl3nYr3GA6c+zYvDKUQlMlsQAhjeXH/AsIxWocKS/LT6E14pgWeaZvn0nln+V54E8snrHO0F5nJd/iWEetBfKxDxIl3lC3ePIufOBEnLWI64tMlBZICSYGkQFJgrBQYt5GgQkPpoaDcxKKi5wti8Wrmt73tba2FFlqo4Ov30zEa+LEDFp9Njipj4cUKohDbKdtonKg0ydfuxIQbwFC01sE8PqvIqYvliYdpeSYdz9S/neImDbdP6sSH9ObjHXktk2fLBFfSxnfEkT7mF76WL3nSJQWSAkmBpEBSYKwUGLeRoBJXoYGII12+360B4OUvzBZcf/31BV/2IPDM5kW+qGXajTfe+FX1aSpQyzChePCMMm2+J76dsjc9vsYBYZxK2XiVLs9Om8V6k4eZBN9pKP0F2l/Kj3iZN+JOWuOpMz+dePCsEeU7/KYhIb4xTYaTAkmBpEBSICnQKQXGbSQMV9Avf/nLIV929BQD3xrHOR0/ZcqUahxgJLjB8fvf/35R2ig6FSUKWEVpvNP7KnRgm4awo+qonFXe5o2zAipmFXVB9hXlD4wImzSmY3NOfEc+lXQTPkaEhoR1Ew718B0weO876yJO1iOm5x31issXpk8/KZAUSAokBZIC00KBrhgJcSTsVPpOO+1Ulb9nTFlOeOSRR6rSB1GOwnC0JG5kZIMjSxIoOhSeG0hIjxJtKlaU6MEHH1zKY+fsbbfdVhXtlVde2eKTnjPPPHM9brnyyiu3fvSjH1XlizIHrsqYclTAlo3PksEXvvCF1rzzzlvKoj6Ut9RSS7X22Wef1rPPPltgAEsjSEPhzDPPrPRYdtllqxInLY56arTwfMghh9T03PAlHHxpbD58vqyJkcVxHc4h45pGS4nMv6RAUiApkBRICnRIgXEbCSpWlRjl3njjjWV/AYqfUwsuIxx11FEVLdI7wuZLdvGiJdIz83DEEUfU9Boi5FOxogRVhKuttlq9+OKnP/1pi0s8lllmmVI2ylwjZJZZZqkflNpiiy3qtyKAGZU09dIYAQnuIXc2xKUT6+ZSCQr6c5/7XMUZeNLnnnvuKbh4/PPHP/5xScd7DRLqolGCISPdMLJ+/etfl/TWF9xi/TFU3Pux9957l7TSqSKUgaRAUiApkBRICkwDBcZtJKhYVYaM/qOCU9G9+93vLmhFY4IIFB3T6Chv0jKLgFL3NMQDDzxQ8jHVr1ERlap15SNS5OcY5cknn9xigyTPwGIWgdMUK6ywQhlpixNK/fOf/7wg6midCJSwShbYGgbkBc5BBx3UOvzww8uneueaa65aFu+33377ApO6RmNjttlmK+mo26677lqNg+bSALMtcfYFmJdeemnFk4BGE2Hu7yeNBsgdd9xR0tomQzLmQ1IgKZAUSAokBTqkwLiNBMpBaavA+UgTCstRt8rue9/7XlW6Kl9HxfjsQXC0T35+KFM2MQrbOqkgUeQaDJtttllVkuTFAMBQOOOMM8xWFD8KdM0116wnKUiLUtY5QveZ2QwMF+rBcc2rr766vLJcNxC6SRNFjWFywQUXCKLSZ7fddqt0wZjBqcjjngm+xS79wI/y+Tyw9Y57EKAlN4OZnqWQOEtTkchAUiApkBRICiQFppECoxoJKibhokR1hh0J8/lMpuBVWCg3lNy6665bskSlroGgkiTBGmusMWSkT15+N998c52Gt2zL5BkYW265ZUmLcUAeRu2PPfbYEMPEsh566KGShnTgevzxx5dbwYStAcBXzGJdrr322lKWcEgfjQr2KzgLMt988wmuzlCwxGCdWF656667Spqo9IlgPwf1cGaAPHxaG5pZtjiSfv31169LDfvtt181nCoC4wxgwMgHLOV8+ctfLp98Zcbm2GOPHdcPWCeddFLr0EMPbR155JEFLntKcLGOY60C7TOen/SO5WOEARM3HtjdyBvxMgzcyCvGT6ZvXZs4GN+vfhPffB4bBegz/KJTB8S4iQ7Dd9HxHPGcbL5EBkYcCUO3KIMi/mMJRzkb9aqwRjUSTIgPcgAUSRG1Etys6OVIKFcUJrMDfDULx3q7aXl2qYIwivKWW24pexOcUSA/8Bgd49wMSNiyrSD3MbivgfS33377EMMilvuHP/yh9d73vrfeAImBYZ3EidkLNwOy52CRRRZ51bHKCJMw+wY0AvCffvrpynC8f+mll1pzzjlnNYRYrlAJ6VMflmaoN2ndJInRgIKOZUKHF198sZ4Iocwf/OAHr0pTiDfGP+lBdmji0kqsZ7fCtDszNuuss05tjzGi3bVs8Bk/+aNJ/64VNEZA4jVcdvGfLL9JL/Bg9ouffXc43PshHvz7+RdpBC/QX+mn0FeZEtNMVjjScLJwaFcuNOIH7SKvEiau312k61jC7oFDJ+rgn9g3OzYS6NyRiALU57SAyiKOgBkV42KhhKPyoZFgahyfFgUOStGZCJ4ZceJoOCqBi4Jm7bXXrkYCJw1w4its4qgHjlG/xsjqq69e4oAtnuDnfePgccopp5Q0/jn6l6COtFFypMdIuuqqq0pyG4+HbbfdttJp6aWXrnSQIR9//PHyHtwwuj7zmc9Uw8t6STvKjnSfY445iiFjvbshJKwXswnApS0wxvwGB+00nh+w4BfqC82AT7gbuNtW3fBpH9uoG/C6DQPcoBk/ebzbZYwFHv1JfiR/7AtjgZd5hlIA2RbpO/TtX+kt3Sfab9eP4c/R9EmzHpPxTJ+aaHo1y6Pe4IHM52f/hn7taDseOgFTXWkbAW9UIwGkJdZwCJCGkTbKAiHPjzBT5Cg9nBaLMJzWABmVHghyJJKRtMoIH6XL/QlPPPGE2ev9B0SgsF1uYPbhq1/9apkeB2+cRgVlWRfW8YGNUt9ggw0qXALUB0cdnJ3Yd999y2ZFptc5jcGGR/Y7MFV+6qmnlo+BEA9MfswEfOlLXypwLJ8HNiBaJ5QhxybBC0ejk0cYP/zhD1sscVAn4hZffPHSiOJHHvY5gCdptttuuwLHetvgJXKcf+IoPayDuI7Xx1DgR12oZ7fcePEyP7jRpmyw5XOxzKjMPffcZaaH2Z7J/IEH+Mwzzzzl6DDG56qrrlr23jBjNpk/9v/we9/73leWE/HZCMxeI04XffzjH+/r32GHHdbq5x/yAvnDV3a/8Y1vlN95553X8sf+psn+XXjhhWXPGZfnMascfzfccENrsn/M0LKkfffdd7dYimaZmVlgfsjnyfw999xzLX7MUjMTjd5sGt7jkZXuhVNXOEiOOmtUIwEEolIiDCAUmvFMmyNMPYKHMOU5jv6BAyIiJVyR4tl35CM/CgNfxaQypwKUreIiLzMJpMWgIL8jYN41lSb5mRkgPb+NNtqoGhKkBy5GDe/EgTAGBYodn1/zPc/QwHfMVuCsIzT7zW9+U45gotT5YaxoEZKOkxOOqFlK4G4Gj1hStpssqRN4YogRT9kXX3xxKY/4SJsSOcY/6GxZGHOcErE9VOrQaKw/8KZ+wCL8lre8pYVBRpm22xhRL9mA2Y0f+PGz3ax7N2CPBwZ0j3iBn7jRFwhP5o/Nx/QH8KKe+OIMXuOpe+b961X20haaSmvjeJ6sX2wjcENW8YMHJgunZrngJU/yTjzVY7EOkxkGt1h+8zm+6zSMLMc5aCeMHo6ytyMjoUB5ZaSrQjPOzX0qMpBDKCy55JJlhB+VlUaAcSCioaEiBS6KdLnllqsEQdjRiMBmel2n9cMz34GwURnR44RtenFH2R199NG1M8WNlc5q3H///aU8yqZclNdwhEcQelOkeLKfgI2clinRwclZD2AzqhJP1oUsD2PBvB/60IcqrsxeQD/odeutt1acaOwXXnjBqg4xkmrkGALgFtsGENIdYwtcxvOLxhxlWecxoNrzLPAGbcQdHIwumPV66qmnJv3HiEdcHn744bIhlg+rMQvFKGkyf9ddd135BDybdgkzimREecUVV5RZtfPPP7/Vz79+nkUAt/3337+1xx57tHbeeeey4ZmZGZZsuVCNMMu9k/3beuutWxtuuGGLS+GYSXJWiRkuNqtP5s9ZLmbemIFbYIEFyqwc8psZOp4n88cG+Pnnn7/MVM4+++xFDzkoRB9h0IznBwzlOQIUeayu0h/VSFChA6CpLBht77DDDnUkS4GOolXm5kEBCAtEojIgjYpSw+Giiy4qBIEAwPXiokUXXbQoA28dVIlxq6IzGUy/GU9iYVs+cXxtEoXMDwNDJ16M2KOlxqZKjRzT4gsTP1pj3F2Ak9CmI47jkdTJejGVBI4sLxjvLAT5mEoUFwwaFSu3Mhq/1VZblfL8i9NFxo3HBw/KRVFa/njgxbzQPOILzTxaGtNNRljesWye48/4yfLp4JG3Ih4Rz8kKg1s7/MBH3E3Tj36kZz+HkaH0zShL+wlf+jjtrT7oJ9zABX5E7vjjGefzZPn0CXERT/sJ8YbH6pdKhnt3qGfTjWokRARjA6Ok77333qrUUOaOgpt3G6gAQCDuTQCeSlmfyuqwOIHr9DbwUYpuIiS/6VdZZZU6jcUsQaysswOktRzSqJA5QmgayyY/Bo+zE+w9wLH/QctLWMBtV57pxJEyoCfrXho04MAGR+iy1157VRoy0sIBl1GrtIUejF6Bg5WpkXDOOedUWpSMwUDxeSy+7W9dgWF99McC1zzAsAziIh2ln2nH4gN7PD/LBC9+EdfxwO1WXvGDjrQRv260i3C75VNf8IKG/YjfcPXsVjv1Ck6TJ62H9O5VuZ3CjXJD3ORVeYHnyfqBU6SVOOKDX7846dNtfKKMVQeqo30e1UgwIchFgBxHvOmmm4qyc5SPwmNaiXgcFRvN0UA4GiQaIYzKmUJlCsgpfBQkO/jZmBgdjMhlSpRPWjYXAheYMqkMaXknnHBCSY+SXWuttSo46ijeKGFgoqCnTp06ZCYh4iqT2ZA+WzbALdeCVlxxxWKEYIiwJwL8Fl544TorYzrzYTCBC0bLJZdc0nr00UergUA8MxfiZLk+C2ssPnhh5IkH/ABcaTQWmM08ka/E2To00+ZzUiApkBRICkwcBUY1EkQFJdEU3HFKGGWCAsHXKfB9buerfNq985ihCgnfONJjqJif5QaUJT8uR4oOnGI+3h1zzDElLYYHhk0TV8ryOCaKHGNCAyJ+8TEuMcS6x/IJAw/6WRcuDtL4Yc2LnbWWg9GAg57Uj/K4bMjZBPYonH322cVgAC/W9OJSiGWMhE8Tv06eu20cWEf5Sl+8m23SCY6ZJimQFEgKJAW6R4GOjQQEuApZJTQcGnFkOFwa46MiAL4Kovl+pDLBjU0wjLJRpBxPVOHEmRBgghvv2Lfg9xi48tj04sMzNyKiyFXmHDeMFzpZz4gb+Vmzpx7CpFzqRjrrx22QwsWwAQeNHHCL6/4YOHw0yw0rbKJkw2NML730bSufx+rzXQ3rEWlJXZqfrh5rGeaTNpZjub5PPymQFEgKJAUmlgIdGQkohKgIUY4K8qiMVIwqQ/cijFSlqAjIrxJXqQof5WuZKFAVlPk5mqfSZSkBF8tXoYsLGxdVstzwF+tHGuBSJhsFScfpDfZGMOvAMgjvgQ9c8Cbtyy+/XHZtc4SPUwjibpn4lkN+PoeNoSLelIORw90SwORnHYDF9x7EGYPIo0QeiwQ+eXDg023nbIV1AD54jecHDGiIISRc27Tb+Ce8pEBSICmQFJg2CoxqJKB0FN5N0MRH5dsU7vFdM28nz5SNslPxNfNEJeyaPUqUTYnRgWdcFsDY4BISvg4566yzlotdSK9ijXCZOWDPgspZf8EFF6wXwrDxEVi8c3/GJptsElGoNAQX4EMrPj9Nnrgxk2MuEY+IC5fPkN7NlIQXW2yxIfQx73hpL/LQHuNAHsC3DNN009cQBKYGUjfhJ6ykQFIgKZAU6JwCoxoJUUmh2OJzVN6EUUwIdgS9SqVTVCJc8wjDcikDZa8xQnkoLHZjsnGR9XlODWAAAI93UVkSB27ExZsNWdPHCTcqQcrkHPqOO+5YFDQjf8pBQfPz4iOf8TEYmKkQf3zxMI6y7rvvvjo74NIH9SANOIiP92pzdJJZB2YQwIEw1zZHZ5vEOsT34wkz2sdQiTMasd7dCFM36uQO2/Hgm3mTAkmBpEBSYHwUGNVIiOBRWvxU6CgknlV8puVZZWXcSL7phUtawv4irJjGdPhcKoKSYrreI5LEq5yFRRyOjX8oeJYRttlmmyF7AHhPvWK5jKYxFri4hI2FlBWXCVZeeeXWpz/96WJ8+BXDWCawIjzKQJGzTAIslCPKl5MLTWc+Lnhi5sD0XBGMoRGdaZt0immmJQwddMCOsxhstIQG4/nZZtSfMD+Os2IkxFkFcUg/KZAUSAokBSaOAqMaCVHRjYYWCqWpVEbL03xPeSijkZQcyjVu7ANGfNYwEDbPKpyYjnKIV7HGWQpPQ2DACE9f3KIhARyuUNZZTjSgHN1bHnkivXwfy/R9HFlbF/Egn2HSG9YXp7H6wLHuKHGMqzibonIfqw8sZ0aAQdh6jxXnzJcUSAokBZIC46fAqEbC+ItICINMAQwWjQ3C7JmIBgJHSMfzwyhwT4YGArdHxj0kg0y/xD0pkBRICgwyBdJIGOTWmyDcneGgOD4ideKJJ9YvYHJx1Xh+J598cuvMARkunwAAIABJREFUM88sm0251ZJn7vjHOeMyQdXMYpICSYGkQFKgQYE0EhoEycdXU8BTBi6dsNxB2CWVV+foPIZlBX4sp7CkEQ2DbsDvHJNMmRRICiQFkgJNCqSR0KRIPg+hAEsN7QyCuATB+7H+hhQWHoCXLimQFEgKJAUmlwJpJEwu/QemdEf4bqD0ebwVAI4GAcsazCoQ58VN44Wf+ZMCSYGkQFJg7BRII2HstJthcnqygQr38tSBsxOUE/dBzDCEzoomBZICSYE+o0AaCX3WIP2IDoYBo/2m4mbEj2Lvxq+d8dEsrx9pkzglBZICSYHpmQJpJEzPrduFuqm88eNIv1vLAcJ0+QLDQOPAZYguVCNBJAWSAkmBpMAYKJBGwhiIllmSAkmBv1JAY85lKQ1L40lpHEahRqCG4V8hTXtIGF4wFssEmjgRtlzC4NNMO+2lZ45OKGAbkTaGHSB0AmOsaShjpHLkAdPwbJxl/vGPfzRY+bjTQZJwI//7cUJ5E76Uf00feZWL/YwHEe+QEWZFrkeBNBJ6RNgEmxSYkSig8Ne37hyfVRjiK4DbCWPzjMVXYCJMFbD68fZU3oOj78ZSVubpnALQWoVqG3mkunMo3UlJ+fxUuPJq86j1n/70p1Jgk0fgX+swLRhhAAALPrRM88ubPP/5z382uvhNOomPMOxLQzL14CGNhB4QNUEmBWYkCqgEEF4aBISjADSNArqbAg6YCHqFZ6Q9n2/HxXeE43NMn+HeUUCl1822Hw1b+Y100UDgGR4QJ54doQsT5a7BQJzGBPGe8jLtcL554nvK1diQFvYb0vHO2QvfEx9haTBEuL0Kp5HQK8om3KTADEIBp0oVYgrm0047rXywi4+u8bl1DQXIgvAz33jIpLAVBoL+/PPPL1eFc833lClTyivKjoZBM5/50+8uBaKhCM1RyvCHPNLd0l4NjTaPijamMP64445rvfnNby68utpqqxUFHfFjeUDeoQ7mk98jzHZhDZEIkzh5UHj33HNP+YIwH86be+65i4GC8WDZ+pQhzHbldTsujYRuUzThJQVmIAoouPycOVV/6aWXikEwxxxz1E+pf+pTnypUIT3GgQJyvKRCwALTkRWC+Be/+EX5MinGCYbCT37yk1JMNEpieLw4ZP6RKaASjKmgf1Sa8V23w5QfcUDx2v4vvPBCa8455yx88pa3vKW111571RE7edopc/Azf6e4qtThe2chrL/GBrNefAn4DW94Q8HnmGOOKeAj7pHPOy17vOnSSBgvBTN/UmAGpoCCTiGoQPvGN75RBB1K+o1vfGProYce6qlSiNO1v//971tLLrlkLX+DDTYoLQSuptO4mYGbbkKqjsF4wgkntE455ZTW6aef3vr1r389IeU2C0E5y6vyKGmuvPLKVvxM/SOPPFKzytNEwC/REGaGpBNDF36jXMsWloYCz+CjobvzzjtXvp1rrrnqPgWMA2BEvpWXK8I9CqSR0CPCJtikwIxCgbjhCsGF0FtllVXqlP/mm29eSBFHQYyeosAbK62i8I0wUEjMJDB1y+/mm28egkNMm+HeUYDlHgxFf5/4xCcmdKrcmsEnTaUO377jHe8ouDGLsPbaa5fk8K8GAv4nP/nJkoav1fJzCUvYo/kYFMxYrLjiigXO61//+ta73vWuyv+UJ2633357mUnwy7oYVzgNiVgWcRPh0kiYCCpnGUmB6ZQCKuko6K644opqIDBKO++884bsRzBPt0kScXj++eeLcaBy2mOPPUpxGib4EzUS63Y9BwneyiuvXBQrSo+2eNvb3lYU4kQpuLgsENub2aabbrppyGfq4VvSN3Hjy7fgbh0IX3755R01g0sJGksuJWy44YY1vwYCERjS0MyyFltssdp37DfUI9arAupRII2EHhE2wQ4WBeiACAdHu1Gg8A6looKxZvF5pPfNDXuWIRzgKwDwee9zTIMwsUzeGyYN+MZn3jfTOMXZjFcoAsOyTeu7Js5RsFE+Qss8W2+9dRGqCFM2hOmEEekBzsaTjpGbsIHpjnP8WL8YFn70ybvllluWvQngMcsss7TYgCaOsX1jvkELSwfaVP5t1o13kcbNOsZ3pNWpiIizTXjXhG/6dv66665bZnRUsu9973tLMpVnzGNdiDMMP0ScCMdn0opn5Cv5Vvi+I6/4b7vttlX5wx+Wa9nAsN7rr79+5Wnqsuiii7YtF+Oj6X7605+WvDPNNFOFQZzOMnimvi7VaSjcdtttBWfrbXs16yi8bvtpJHSboglvoChAx3O63M7K8SM7oh2TShFGgMS4dmuTzc4LLDo/gkqlBzyEFfEoLoRmM5/vxatJWHBRoPkOgQnMJiyegQfu4k8c+UmPi7AoM5arYAVPBS55KE94PDOCf+tb31qEIdP8jKDI28xD2Qp38tkGhHERl1eiiocQFl/jKd/2Is7d6Ndcc00VygjcSy65pGSJ+ApjUP3h6ER9oLttHutHuxKv7zviaJPY7hpVpIk8RbidoheWPjRHAb/uda8re1MuuOCCUrbv8SkXF9sl4kAdKcv3+NabeNM2eRGeiHwRy3zuuedab3rTm1qvfe1rC4/suOOOFYdYDpH02ccee6ykZbmBuvA79thja9mRFuAW6casAYYFP5Yapk6dWsryUiXwj7S99957h+yT2HfffSPqNSwNakSPAmkk9IiwCXawKKAwiUo81oAOaRrjY8cmTBoFjOmJj+nIyzuFt+mJJx3P+JTVzMczAoX8OtIbRx4Fpu8V/D5H37ItR5xNAyzSRAVu2Sj9SA8F/aWXXloFIkLx2muvFVypDwo+5tN4IE7YZEDI8o4fOIirwBTKlkt8s+4YLIzeHMFtvPHGJbtlCmvQfWgQ24j6EUe7Rpo2n6l3NNQijW37mJ++IY1j/Gj0s73N20wvDral/Ei6Zh7eyQ/iQH7KMH8Tvs/x/Xe/+90hfHr99deXsiINyCefUcahhx46JM9ss83WevbZZ4cYBLEM8n/961+vs1kzzzxzOeL4m9/8pqBkvSmTulgf6rj88suXGRiMGJdomrg1n61nt/00ErpN0YQ3UBRACDAbYAcFeZ5xUVjxTKe0Y/IOhccv5kWoRcFGegQHo4aonIQT0wonloMgiWkKYsGgEC/jSc8PGApn3olXxFchFesZ3wvT/OIvnvG9l8586EMfKqMlhBujrRdffLEkowxwiGV50RFx4Ou7iLd0AojtQtjLZiJtqA+4ESeOTG9rJCCkKdN6R/ynhzDtQ/vpIu2gLe8ivWKY99AMP9IPWMCVp4SNH+HH+GZY2CpQ24Z42yzmsX3EF37gZz7Tgid8F/GIYfnIcnmmTPyPfvSjdRmEGQX6J/Exv+UQh5wgDbMizCZgAMPjbGrUQSfg48ANHo3HK8lz0kknlTSWE+sknuTHIGEmzrJuuOGGAtc2ivnKix7+pZHQQ+Im6MGiAJ00dj6ElILGmiAEiFcYGN/0FSxREANLAch7YVOuIxbhEOd74/SBGctvPpsOH1x1CqaIE2HKinGmgxbk9zlOoTpVquFAGRx380QBAnHVVVet9Y10jXBiucCIQp+RK2WDn4701l28SIfyN5600o6z5uDi77LLLiugIj7CHkSfOmugRfydWYBe0im+J05e1Oc9dIs8Q1ykP4rP953Q0HYAz3Z42P7yP+kNC7+Zl/aOfCfe+uQXZ/LG+pGGY5goeO/RWH311YfwP3mig6915557bsnH8hWbcoFzyy23lNfWT/ocfPDBhe8wllH473nPewRTcbL+vCAsve68886S1+OZu+66ay2DcmK+CrRHgTQSekTYBDsYFECA2DEjxjGONCg2hUBMRxw/BBqCCQFF+ihoiFNwkDe+i7AIU24Uago54iyfOAWoceSjfOIRoApa4YtTLDsKGt7HZ/IBS/jipPDlvfUW5g9+8IOqjFHKn//854fUVfjCcJMXcDyDrvEhfHzqRrx1hpbkAZ5x4iue5udImQYC/sc//nFevaquJXKA/2wnaBJ5jWffUT3oJf2tLvQlD/GRfhpzztoAR+ODvOQbzZEmlq9yb+aNcIEpjjFdbGvSxLqYnvhYJrxp+fLpjTfeWHjC2a7Pfe5zQ+pNevPE8oXNvRuRpzjuazr9X/7yl8WYoAwMBNLff//9gChO2vJgWa+8Ks/A0YhhHwN3JsQ62pfM00s/jYReUjdh9z0Frr766nrciDVGHB0QpcSIg5sCV1hhhTJiYPSw8MILF0WDQlQYR6FCfs7kf+xjHytTk051L7LIIq0jjzyy9fDDD1eaMH2OMIgKPU6pgwOCDUX3hS98oVxt7LluhA6jjLe//e0tRhmssbI+qgMueClMEDAIRy42Ii+CZ9lll2099dRTZql4IHyj4IJGCDrWRilzt912K3kUugrGT3/603Vqn/QcKdOBh/QiDqNgm222qeu10P7ss882eZmVqA/BsGLUvN122xXaUg+mf6GPDlzEi3ogjL1ylxHdAgssUBVCrKP5B823fffbb7+quPbcc89SDXnpZz/7WWmzeeaZp6ShbeDpnXbaqfXkk0/WKtuORDz99NOt6667rrXRRhtVnoHe6623Xrn2msuxOnEcM5Tn8IEpH9A+0Sj0qCHlcFsn/UKcnnjiiWJ0LrjggrWepNtkk01a3/72t+slTaYHN+tvO2tUHHbYYaU/w8v0aS5Ukmesk3Qlj2FhsokRBQ4/gQM/eJcZDh2nOojXQNhnn33KK/u0OBFJmHJ0hlkqAwY4YmzEvmoa8/TSTyOhl9RN2H1PgeOPP752RDoknY+Rk5uUPNccOzzh2WefvcUlQWyO0916662tj3zkI3UEoIDAd9qQO9nZzBSFEsLQZ4Xcr371q9YRRxzR4pIXBARl8gNOfCbsuiUXtHAngbCoi2F8BBQnDxRu+EcffXRd37ce4KBgZJPVMsssU8sHB649xuhAuIkvI8Qtttii4oZCYMoUF0dNpFNAMtMgXYCLwfPMM89UgRkFoaModsdLC4QnSkJ4joKpq+kpH8OAPNSXPM5aWEfrPYi+Cjce0VtnnXVKu2Dk8i2CaFja9tBD/vza175W2khe4VQI+aQzPsYuihH68YyBeccdd4xKMm5bFA5tjaHcdPAHZZ911lklrTxhOgxk+yHGrfxvXXgGHwwSHHwTDe8Yhi/WWGONariA23333VfyRX6Ql3gRw8I/4IADCh7iOuuss5YZPPibQQJweQe9MGTjkpD8Wgp95c9+BO6WxwwH9QUWdeTYpDMxsW9EOL0Ip5HQC6omzIGhAIpYYUlnRIh4Mxod05kA3vlTOPHMaJg8rEsiKIhTcEShyuYo3insOPuso8Pzi0LqK1/5Si2PfJSpcOSZMALIKUniTIeQx0VF6aiKWQHSKezBlZGmTuEjLhgR4k4+hKMuCjsEsTDBFZoKw/Tt/OWWW25IPVkOQGEoKIUBXih37ra3rhgV3GQXlQB5VXaWxyY184Aj33KwnqYZyYeO/KwvAt0yiBvPTzjgA5z4PBJOzXdrrrlm5btNN9209eijjxYDU16EXyL/OLqXLmeccUYBycexjLM9ySfPEyfPMbOk8hNvn+U9jXDLb/c9Agom/Re/+MVaNmXQ3iuttFKNoy78xEU8wJd4jCGuVZYfVKjSFR+jyv4OHOgQjWLxlr4+w4/C4R0zG8x2ULZ0tW8sscQSJV7Z8aMf/aiUoSGgDzyd5fgOejI7YV0xFjAaNAqnhX8tY6x+GgljpVzmmy4owG5jhQw+R49ix+QaWZYWGG0gQFFMvldIHXTQQSUOYUFnZrSO0MXy//nPf97itj9gmx6Bxq5nnEqQMIKIZwTAmWeeWfJQFjBRpsxucKSQETrTtmzCY1mD6XRgCh9j5be//W1tH4UmggjBucsuu9Q6k4+NWzhH2IRJe/fdd9eRDPgjsIULTASZyo2lDumCcOSmuE7cXXfdNWR2g3L8IJP5xQvlB76koc5cvUx9VFCkj4LX8CGHHFLykI/fV7/61YJ3J4I2to/46GvI+DwWP8KPYZVBJzChAbShbswqzT///CXMaQ5phbHHSJulmc9+9rMlnvZSwUFPlotITxxtCI9+5zvfaT3wwAMtZnC22mqr8p40Klo31MEvKjhwVumNZiSoyMljWvlIYx1cqBfLXCyr0a9QvE7pg48/j7lGXIAtj7hXgPQYPCj06MynQWCbtGuPb37zm7VcaIbBsfvuu9c4ygBHl1TkY8oTnnhZjuWTBoNeWgCLy5+kq+kj7r0Kp5HQK8om3IGgAOuTjqpUsvjsIeDTrThG4SoElgEQWI4S9OnEzBKgcEmjYlYIMFonDT8ELGVwNhu4TWWFgGLqFWMD4e50KLgoXCJxWfJwyQH4GDLc2oYTtvjzzG5tR0GkR/Eyo4IjnYKIzzvzXmVz0UUXlTRRsIMrP+qiwiEPa9mdOPIeddRRJa+XML373e8uG+QUmAhEFJwGAu3F1bXWzXKAFZ3vv/Wtb5V6iJ9fpOxE0Eo32hF8Yt3JT/x4f+Asn1CeZcW6DBeWRh/4wAfKzAG0h7/kaZYeWCsHrrhDJ4wz0sKH0MVZA5asWOJyX4M0gu+AwbcEyGc5KLHf/e53BT35hgf5VMVPGfxGmkn40pe+VNuJfkU9MJCZybrqqquGkMAZC5co6HsqVEb5OPsgYXkDA0M+wPfjX5H+FiT/QAPD0Nu6kY49GtJOuihHwJ29G8IWh4iP7WcafMPsQbBOwF5qqaVqPcDHdOLbKz+NhF5RNuEOBAVQwnRABJEdktkEBEwUMlTGKft4k5+CAQW3ww47DKlzzE+YGQU30ZFv//33H5IeYRTX7+NLBAxCIQoa3issWZ7AUFA5cBscQl0hHwU4+ZjpAAcFHEYD+wHEWWUgTbj/AEf5KhsFHPHss5AW+Cji+L5kHuYPJTPffPOV/Ah7jBJHqJTFvghmJsBFfLiVLjrwatKG98RhwJBP5eAHp2L+kcLQHVriVBDdFNDgKK2k7Uj4tHuHQacRRZtCR87w2+6OZs2LkqGNbDNnBnhmAyHOOsaTB4QXX3zxyjfQlNG9TmWKD++NZiTYZpTlrB44yJe0O7cj4ugbpI8bBIlnxkO+IO8555xT0tNmwi8RrVaLI4ykkRegEbhKf+lFeuuvTxzvqZdxbAaGX6UfBhbwwYeZGRx7nExPXsvinWFwEFdpCK9BB+tGm0Zn+hjXi3AaCb2gasIcGAqgTLH8HYmzy57O6dlohYbKQSGOIGBDEj4/Nu3hVPLmV+mSn6UC0iJQMBa8xx7BwS86hIdGCcJAIUOaqPx5Ji07tBWs1MUv2ilIxAMBBCxgOH2MwETBfPjDHy4oMIJhY6bCCQPIT/yKB3CFTdxxxx1XBK+jKEaFnTjpibBFCEIfYbC+DOy4Vg3tmC7XRTyMiz7vmcWJMz7ve9/7Ku4x7Uhh2geaYQx9+ctfbjEDxQwI/DOeH0Yqo2tgMrUvffEprxMHDdnACe0wduEDzuSrgDQkoYXHTuFrZmecvSEvPICCtU3kfZWWeTlJwSiZPPjQQbzNC97QbDQjIfI9GxThRRUuex4wSiKfSQ/z4WvQgg91Z2+AeICX+ckLn5oO35kN4VoPns1rWfEdcT5jdAKLnzMghDFmooElHGDbH42L8MBXnIFDu9i3zSe+E+GnkTARVM4y+pYCzd3XCG2Fa0SaODsuCn+zzTYrQgGhxughrqMrXM2v4YCQVQHS+RmdN0dFKIaYH6GgMFKgCFfhLwyFK7BZm9UgIL1n3SMMRuNs9nJUhZLmWmU2wYknAqrdMoN1Ajb4qcg1LKCr9BLfkXzq7Vo5AhE4Sy+9dFlDpz7gxiwJMx46adMsh3pTT+NpG+oBHH4cY9XoE9Zwvm0BPDanoriE0y0fWlNn6gfOlBXpOxxuxKsMmfZWcYMXywk46wlclb3wKIe00FpDUcPUepOHcOwT3//+90s+eQRDgPfyqcYN+UYzEsDFdsLwgg7wMcqWZx3whUucMyOUwfIC9aCN4ROWulSmwBYv8rGsRl3l+U6MWcqIMIDjMzRk74SDDGfymF1wyc86AKfphBP7KmlsK+oFTfgRdlaFekm3JsxuP6eR0G2KJryBooBCTAGDkWBnVigpkKiYwpuPtiDMnF5kJIxTKBO2o+MjzBEICCeXHDiap6MsBb5xCCAc+YTFMwLQd45UwAshoqJwrZX01kOjIpbDCJZ8Cs155523PBPHD4MBpyFSHl6Zdo0CzvVk8x1++OFDFIv5hvOBBX4oBwUu9GWkGxW85/MjnZvCElpJH8pjHRq8FLQIct6L/3A4ER9hs0fF+jliVICP1VfRCldcOsHNtPjuHxEOm95U3NRVpWmd5AUMBA078kZHP4jGAbTAiOBkTsxz4IEHlmzSyjw8279UzI7crR+4UQ5txmbdaOiyhIajrYWNb9vqY+xab3iHy41w8r3pKIPyI805kim++uS1PMLgGvEFLs/4HpWmfPmWMGUwq8NmRcoVF+DxjKM8yhF2M0wa66XvsdOYtgDr4d9QruhhQQk6KdCPFDj55JNLR3QEwLooTiWk4PBZYcvIzY7LaQIEJ51f4UI+Or9GhXU3jwKFePIoOCw7KnIUNFPmCGOmyrlQRkMjClUUlcqepYOmYge2BpB48szFOig9cTNMvbhUByd+ClzigMEP2jjli3BEqbc7D18ANf7Iq5DEd7+Hxo44MULkCBjl2wbWhXzi1wBfHplWB440JzwtzvLYO+ESU6S7OI7FV2FRX06wWBb4yXMj4Wp67kmw7amnM1u2szAivVFc4CzvUydoGhUa+aCt9IWvgW0e8IYndZYn349mJJgPXnUpAAMEuMwkRFw0bMjjjAdhaAB/SH9ogZOv7MP4GMWx7ShTZx15tlzzmibyv8tylGufYVaBfqgRRZ8VhjApBzqJX4RJGmlImdFApgxONeliOuN64U9bb+kFBgkzKTCJFOhEiNEZ7ZD60UhASHCBCs73CoAYR1hBpkAnTuGhEFSoIEyYHuVKVvMhKFQsxCnwEEw8qwgV3CpSBJFKxzhwJJ4b5MiroCPMDAlC2rTiBL4KNfD2PSM08iEc+bG+3ImTTsIH5vbbb19gWU/won4qHtPqj1YOBhy4+YP2uKgURoPR7+8/+MEP1vpBt3j3xUi4QxN5kbBOPubZNjLOy4KkJ30B53t8w530L+HDQ+AiPuTtxFGW/E9e8SFvbGPKYVlMxUvfYT9FdPKUPM47DTHCHmOkL3FHirAwajCMOfJsP6If8B4jFScu4AHOPpeXr/zZn5QJGhvShAvbcBG/mL8X4b9yRS+gJ8ykQJ9ToBMhFoWewq9bRoLwFEQIDn7cR8C0KYJYAahAaj4rrDUYeOZMNQJPAUwzaCQQR1hBw1KBxoWw8N///veXNMJwdoNn8wKXOiDgFWjg0amAV1AqHBHCHIGMtwQyamXm5MILLyxGCWkVop2wl6cbqBM4cpJienNpJPzFSG4aCbGd4VM3KssLw/Fp5C/7qP0H/oOn7DPMLsGfGPn0kS233LIabJTD9dfOfMDvwgM3YPGscWI/0LdPaSQ4s+f7WL9ehdNI6BVlE+5AUGCyjQSIpBImjPJFGO28885F0CgcMAzYVc7FTt63ryAzPwJJwcXVs7gokGJYocR6rnf6mxc4/CiTZQRcUyhFWBg4Ufgyko1rvQVAB3/A4apmjR3rLi4sf2hMAc76jwaa9XnrhqHFPoto5IyWfxDep5EwvJGgsYyCdg+OPO6ymP3BttYgIA8KXv7XUOYaaGC4zBG/O8Jtl+ylifzLdek6Z8R4ttwmP2o8OyCwD5i+U963zPH4aSSMh3qZd+Ap0A9Ggh3eDZIPPvhgEUBxNM00ZhQkChpukNMptBh9eASSd8CPSl0BhCD0GCR5mTLde++9S9koZOLYpe3X68xnecJEcLHpLI56pkyZUmcuTD+cDxxgN5cF+H6A1zaDG/hwyQ9pFZbDwYzx7MbXSEBwc2QNmjTrE/MMWjiNhOGNBPgcQ5oft23CR/xQwNziSHyTn2JfgxfkdcLcsCoMfI4ym598wPPOB4xSeI5LqjgWLc8Jr+nLd6TDIAG+/QrjWSccn3vpp5HQS+om7L6nQD8YCRDJTo/PRUeOQtghjcJF8OgUYHFUzUgnjjo4XqkAErb5hIUgQwCpgPnGAYJpxx13LMLJ5Q3vT9AwAZ4jLcuIn4kGD24A7MR5NJOjXWzIJK8KneuAuW3SZ2gCvu7wdgp3pHKgC3cbSE+Erl+xHCnfoL1LI2F4I0H+p035MqkKnhkvltR8j28fie1vf6FvcLoGHoUPnUVgI6dpMPSBAW96qyl9mDIPPvjgCLbMisWyhUGfAgZfjCWfexy4uwRnnzP9EKA9eEgjoQdETZCDQ4HJNhLs8I5E6PhcBuPRSoQEU/k4hJSKMZ5cMExalCE/jkACOwoS8uv4LoNfR8QYYHqUGxdx7Nr2kh1HMS47AJNfFG7kicfQwIMljE4d+xDYJEk+f95GSTnen+A79hS8/PLLHYEnP0sY5NWIkp4dARiQRGkktDcS7F82I3wvH8ATfOciGgb2Q9KTl2eMY9Nw9Fmjmr7BJltdNNrpd14HTjnkwdiNn4oHJvxJOaRv4qpBo5Hg7GCz71l+r/w0EnpF2YQ7EBToByNBRa6AQokhWNgQxSiEdVMNAYgahYl5OMrFNxvIx89vJyjcyGM+Nljx4SrSeYIAOuAUXFyGpIFAOm6i5CNO0SGsFG7c1+DxQEftzjzEPO3CfHSIMtj8RV6MAC6eQuhSP2YbmK4ljaOyabmHwYuvHAH6VT7p3g6nQYtLI6G9kaBCtZ9wjNWlNPiJ2QBPFdnm5vEZH+Oc2TKNd3iJpTg+m46DlzTg5Xv6UvP+CtqJtKYhbywv8qT7JzRq+FAZLvbpEtHjvzQSekzgBN/fFJhsI8EOD5UUHJdccklRiAgxlCajcqYxESZxfwEzAxgPfF7Z0Y2b/pxJAC5luO9cF3wtAAAMiElEQVSBMuLHpiiDK3zFww1aKH0+osR7YCKoODGBU+CWh3BEbMkllyzpHfm4wdJ07XwMgShIqS9fHIyOOvKBH4UlOLFfw2WHmLZdeKGFFqr0BDdmTKxnu/SDGJdGQnsjQcM4tjcfb4MPNILZ1+PyGW0Pf0dlTV8gju9IwHsY1hgXfhSNvJYjHPsbV7FTVrxXgrsO7G+UF3EzP+XzbQ1xpF/w1UnxK4EJ+ksjYYIIncX0JwU4useIQGXIKN4Or6BoKkVqghKmA6uUORKFI6/pEQQodhShMFWglEd+hQXvDTNyVum7L2DVVVctIxmpyPQ+IxsVIHgoiFCmTIsKjzyu/TNNz2gcQSfubIq0rqQVb5QwwglcFapMgVoX6kZY3w8GARsc+JgOTiEYlzvcpOkHtiiDPHy10PQl8ysjLeI8WkY66MMOc3Hx5smYhzD1Bbb0ZBRpXcF7enFcIEQ9+UF/bpnsxJHWfLQxtIF/m7SRp4EZv4UBD/kNEt455U56+Gi0/iVcyuUOA0fqtBe8MZqz/WMbx9tGyU8ZtjnKm486kV4FzNFanLibVtjUg5kr+gK8R95FF120fgdjJByBxeZgZ8DIy2ZcvhSrs5z4DP35NLvlke/xxx83SalTM1992eVAGgldJmiCGywKYBTEjnjiiScWxUPnbnbCKNCYzqfjqkQ7ueSEjk8eBLPKH2qhAFXoLivwvYS4YY98/ohX6REnLC53UehHQekMBWV5UZGwWcpQOIJDrDfxKH4FN3RCyQJPfBWopPVOf3CCLuwriDMflE96DQSustZQIQ8bvaIgRPEzslJhsZ5LvRHuCnhmgsQh4k5Z5GU6ONJt00035dWr2rZEDugf9GG9mraXLl4TPlqVoA1tYD5HwOSjTTHs7Afyv5cpMZqmnb1PgzzgQnoNvdH6l21HXi7gAh/4jLqQt1NHPoxk+sK6665bcSa/uIAbv8suu6zyBPn22Wefys+Wp0FLf+RDY540sq9hAEsX87TzKZuZCsqRxoS92RUY4IQTT8IsgdBH7c986bJpCLcrrxdxaST0gqoJc2AogFFAp/V3+umnF9zpuAiwKMQQkvxQkuz410AgLx//QSmpPM2PEEDwKnwtBx+Fq1NAkF5hDC4IYgQFgjMaM+TnGQHPdD1CjQ1+KHRGLQhKBR3wgPu9732v1hOYrP1zaZPO+sY6szeA7zkorCiXXdqxnuSn7i+++GKBb1pGTDoUjgaQcYyUgOcshbffQQvw1Ukbntkr4ZXU5KW+LmtQT+iu0CW9H54iLQLe8+wxjeUMoi9t4pcIUUYYR361caR6RcXFjBrwaEt5J+bV2IzfsICuLHdBe/KKD/mg8Wj9i3TkhefOOuusIYqUK9NHc5YHD4ELP7/I6jv7nv2TT4/Lo6RnRsr6yvvWlfLp66Qzj6d9RsMtvpcPhQE8L0ayTOgl33scWBnDySMctJpol0bCRFM8y+srCrDWzQ5nFC7Kx2/Rg6QdFmGjoBH53XffvShwOvFSSy1VRgu8U/kooCIcwssss0wROCj35pIAihTnBijCHA1kAxO3LyLEKQ9BwxcSd9lll/KtA9Ih1PjUMMKHHxcvRQc+jJjIj2LgS4jnn39+SYLwVFARQZj0Kl32SPD1Q3DmxxIHTkEqbcCffQyejABPvtAXBRvGBekZ6brREnwYCQNPukUaUBZ0RZDjc3+C9aQ+fLnS2YmCWBjRLr/88pXeKBKuoBafWGfzDZpvXRiFOztEW8UZmZHq5KVA0DOOwOV92tT2tSxmEjBwoT35XJunHGiqAUn6TvqX7UA7MmIGJhtl+fx5Jw6e8D4N8nJkWBzIL/7UiR/8zj4c8ccQp5/Be+Sz7pYN38DL0Jf9QShwHHBGc/A09WMWgL0QLgmCJ/0V1yyPuPjhKNK6T8c2oM78JsKlkTARVM4y+pYCdDSO4CmoRFRlFTswYUccKnTSs2Oad3TgdsIJWO6gNr9wKd+ywMF4/AiLdAgl8pteXNuNGMFPIaLCVckS7x4FYKjsCccyeRYf4613pJf4kIY7HhBq/i6++OKCJrQBVsxXXgQhzrNCUMEObHEwveXxHMPkUSjzjnbFqMEIwQjEuIjphTc9+LSx7azfNJza1bPJZ6SBz6DlSLSyDGHSbpGPiKet4bWR+pf58YEhf8Cr9pWYphmWH5nFajr4UXj6pAEnZi3gUQ0FNwWSzrTyvH0X/CyvE9ya+JBHw4IymFlrlkUe6I5xC++CI0bfCy+8MASc/WRIZI8e0kjoEWET7GBRQIEYhYQ1IE6lFeOIbyow4qKwVNCQrylYiVORm478xgFHoRTLJUy5TUFK3ii8otA1fzvf8ngnHs10cakgGhjWX//555+vBgLT+1zqhIv5o4CzbHxxjzgAV9hNONJZn/cKYcKeU1cRxOnrZnuSfhAdbR7pRR2gJfGdukjfSEv4VcUovXhu136xLPpSs/yR+pd5rUfEx3fT6lue/BXxBj53gUQjYeONNx5SBLhQBw0taCFvAWtaaBwNrkhfCpSuwJOuHDVmdkND2z5kWvKZdgjSPXpII6FHhE2wg0MBBAIdEOGhcAH7KAgUXDFNFNDkU8iRVyEJjChceIfCJN4y8FWQhBVMJcErAgH8zEM8eIgTz9EAoWzfiUfToBDfdsKGvOQjTRRMlBOVPWHS8bOO5OXbCAg4jASmaOMoj/I0fCKtI/7SMdIB+KZXgIMPsGIdeLbOCFcVAUsbKAbpAoxIT2ANopNW4E5bSVtoYpuMVi94Q5oBDxjSiby8a0cr8tkmlh/bQp4G5nD9i3zgGeGTj/SxbsPVwTIsP8KJ+akDMPGpG2XCp+7zYfmEJQeddOSZPPxwEWasq/mG82M+jWzwEd9I71NPPbUaCCxzsAyDI73OfD730k8joZfUTdgDQQEFHR1ZYQDiCpRmJeygdlo7eBQEUZlGBQgs05lPeAody20Ka/KSNuJInPliOVHBiqf1aI5miIcG4mM6yxG+PjiIM2mFTxxpEGoqZ0bx7POwzsLGB755eVZ4xjS2jT7wY9mmjUsuwIT+jsRmmmmm1iabbGLSalBZn/pigAMqS9uwHY2Gq57trGKMvMC7SHthRAPE97wjvT/T+r5d/yKNOONHHjZ/J37k6cj75I24RlgsMWgkwCsujTVpF/uyPKMf4Q0XFh70ldbW2Tz2D+rBx9nAB77lVEWsG+mFoS+MXvlpJPSKsgk3KTADUCAKKpU8ApAZBH4YCWzsxEUloeIYL4lUACpJ4fH5a2cyELh33nlnNS7AORon5kl/xqMAPOppGTYD4+DfphLvJWXgRY0ONtZqIOBzwkkjwT6D0RH7XS9xA3YaCb2mcMJPCkznFEBgOVqyqihphBw/Tjtw+ZMjVQWwz+YZq6/wBA9gY6yssMIKtXxuilTQalSMtazMN31RIG60ZeTOF1jHOpsxFsrYFzBy6Q877bRTPQHhEplwNSR4Jp+zD77vlZ9GQq8om3CTAjMIBVDSGgkIMgQYO8L5ah2CF0Nh5513LtQgXRR23SBRFOqU7WU/GinehklZGguEu41HN+qSMCaWAixTcV8Ia//wy9SpU+tyyUTMNsmD9AuWSeRZZuA41qoDl6ZRMFGzCWkk2ArpJwWSAmOigMJLoYXRgLI+7bTTqtDjXDrOtN0SwBonls2IjC9WKvS5S4IRmsKYdObpFg5jIlpm6hsK8HE0L5VaccUVJxQv+FHe5NPo4sHSBxed+d5+Q78y/UQhmkbCRFE6y0kKTIcUcKqfqhlGsCHMVMYxHEnQTWHHXRU6yqVMnCcrMAiM62a5lpn+YFJAHhV7eQNe7tZymLCH891oGY1Wr2DGOIg4kiYaDMPB7GZ8GgndpGbCSgrMYBTQMNCn+jEcd4bH/QAq7G6QqylEgQn8iAdxGC/RNZ/juwzPOBRQIWsgTGTNVfiUGU/otOsf8Gs0JCaKf9NImEiOyLKSAtMpBRRqKGwFGXsFFGTuG2A5gLimAh8PWeLJBg0G8WE0KD6xjG7jEGFneLAoEI1X96zAPzG+VzWSXyN8ZhZi2Rov9Bn7k/wd8/UqnEZCryibcJMCMwgFVNJxelbB1o4ECmINh3ZppiUOQUt5Gh4I0HbCF5jGj4TftJSdaQebAipbFPNkKGCohxFr2TyLEz6/drwa+1qvWyCNhF5TOOEnBZICSYGkQFJgQCmQRsKANlyinRRICiQFkgJJgV5TII2EXlM44ScFkgJJgaRAUmBAKZBGwoA2XKKdFEgKJAWSAkmBXlMgjYReUzjhJwWSAkmBpEBSYEAp8P+RwYapcqvBgAAAAABJRU5ErkJggg==\n",
12 | "text/plain": [
13 | ""
14 | ]
15 | },
16 | "execution_count": 1,
17 | "metadata": {},
18 | "output_type": "execute_result"
19 | }
20 | ],
21 | "source": [
22 | "from IPython.display import Image\n",
23 | "Image('minmax.png')"
24 | ]
25 | },
26 | {
27 | "cell_type": "code",
28 | "execution_count": 2,
29 | "id": "68728e9f",
30 | "metadata": {},
31 | "outputs": [],
32 | "source": [
33 | "from sklearn.preprocessing import MinMaxScaler\n",
34 | "import numpy as np"
35 | ]
36 | },
37 | {
38 | "cell_type": "markdown",
39 | "id": "cdce050c",
40 | "metadata": {},
41 | "source": [
42 | "# Generate some example data"
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": 3,
48 | "id": "1660a307",
49 | "metadata": {},
50 | "outputs": [],
51 | "source": [
52 | "data = np.array([[1.0, 2.0, 3.0],\n",
53 | " [4.0, 5.0, 6.0],\n",
54 | " [7.0, 8.0, 9.0]])"
55 | ]
56 | },
57 | {
58 | "cell_type": "markdown",
59 | "id": "f76cd59f",
60 | "metadata": {},
61 | "source": [
62 | "# Create a MinMaxScaler instance"
63 | ]
64 | },
65 | {
66 | "cell_type": "code",
67 | "execution_count": 4,
68 | "id": "076dc5c5",
69 | "metadata": {},
70 | "outputs": [],
71 | "source": [
72 | "scaler = MinMaxScaler()"
73 | ]
74 | },
75 | {
76 | "cell_type": "markdown",
77 | "id": "0e66a5c7",
78 | "metadata": {},
79 | "source": [
80 | "# Fit the scaler to the data and transform it in one step"
81 | ]
82 | },
83 | {
84 | "cell_type": "code",
85 | "execution_count": 5,
86 | "id": "7760afe8",
87 | "metadata": {},
88 | "outputs": [
89 | {
90 | "data": {
91 | "text/plain": [
92 | "array([[0. , 0. , 0. ],\n",
93 | " [0.5, 0.5, 0.5],\n",
94 | " [1. , 1. , 1. ]])"
95 | ]
96 | },
97 | "execution_count": 5,
98 | "metadata": {},
99 | "output_type": "execute_result"
100 | }
101 | ],
102 | "source": [
103 | "data_transformed = scaler.fit_transform(data)\n",
104 | "data_transformed"
105 | ]
106 | },
107 | {
108 | "cell_type": "markdown",
109 | "id": "ea221d4f",
110 | "metadata": {},
111 | "source": [
112 | "# Alternatively, you can use fit and transform separately"
113 | ]
114 | },
115 | {
116 | "cell_type": "code",
117 | "execution_count": 6,
118 | "id": "555cfdca",
119 | "metadata": {},
120 | "outputs": [],
121 | "source": [
122 | "scaler.fit(data)\n",
123 | "data_transformed_separate = scaler.transform(data)"
124 | ]
125 | },
126 | {
127 | "cell_type": "markdown",
128 | "id": "0bc6919a",
129 | "metadata": {},
130 | "source": [
131 | "# Print the original data, transformed data using fit_transform, and transformed data using fit and transform separately"
132 | ]
133 | },
134 | {
135 | "cell_type": "code",
136 | "execution_count": 7,
137 | "id": "7fd8e6aa",
138 | "metadata": {},
139 | "outputs": [
140 | {
141 | "name": "stdout",
142 | "output_type": "stream",
143 | "text": [
144 | "Original Data:\n",
145 | "[[1. 2. 3.]\n",
146 | " [4. 5. 6.]\n",
147 | " [7. 8. 9.]]\n",
148 | "\n",
149 | "Transformed Data using fit_transform:\n",
150 | "[[0. 0. 0. ]\n",
151 | " [0.5 0.5 0.5]\n",
152 | " [1. 1. 1. ]]\n",
153 | "\n",
154 | "Transformed Data using fit and transform separately:\n",
155 | "[[0. 0. 0. ]\n",
156 | " [0.5 0.5 0.5]\n",
157 | " [1. 1. 1. ]]\n"
158 | ]
159 | }
160 | ],
161 | "source": [
162 | "print(\"Original Data:\")\n",
163 | "print(data)\n",
164 | "\n",
165 | "print(\"\\nTransformed Data using fit_transform:\")\n",
166 | "print(data_transformed)\n",
167 | "\n",
168 | "print(\"\\nTransformed Data using fit and transform separately:\")\n",
169 | "print(data_transformed_separate)\n"
170 | ]
171 | },
172 | {
173 | "cell_type": "markdown",
174 | "id": "f8113f1a",
175 | "metadata": {},
176 | "source": [
177 | "# Fit and Transform Seperately"
178 | ]
179 | },
180 | {
181 | "cell_type": "code",
182 | "execution_count": 8,
183 | "id": "928f44f7",
184 | "metadata": {},
185 | "outputs": [],
186 | "source": [
187 | "scaler.fit(data)\n",
188 | "data_transformed_separate = scaler.transform(data)"
189 | ]
190 | },
191 | {
192 | "cell_type": "code",
193 | "execution_count": 9,
194 | "id": "ddffb752",
195 | "metadata": {},
196 | "outputs": [
197 | {
198 | "name": "stdout",
199 | "output_type": "stream",
200 | "text": [
201 | "Original Data:\n",
202 | "[[1. 2. 3.]\n",
203 | " [4. 5. 6.]\n",
204 | " [7. 8. 9.]]\n",
205 | "\n",
206 | "Transformed Data using fit and transform separately:\n",
207 | "[[0. 0. 0. ]\n",
208 | " [0.5 0.5 0.5]\n",
209 | " [1. 1. 1. ]]\n"
210 | ]
211 | }
212 | ],
213 | "source": [
214 | "print(\"Original Data:\")\n",
215 | "print(data)\n",
216 | "\n",
217 | "print(\"\\nTransformed Data using fit and transform separately:\")\n",
218 | "print(data_transformed_separate)"
219 | ]
220 | },
221 | {
222 | "cell_type": "code",
223 | "execution_count": null,
224 | "id": "e616905a",
225 | "metadata": {},
226 | "outputs": [],
227 | "source": []
228 | }
229 | ],
230 | "metadata": {
231 | "kernelspec": {
232 | "display_name": "Python 3 (ipykernel)",
233 | "language": "python",
234 | "name": "python3"
235 | },
236 | "language_info": {
237 | "codemirror_mode": {
238 | "name": "ipython",
239 | "version": 3
240 | },
241 | "file_extension": ".py",
242 | "mimetype": "text/x-python",
243 | "name": "python",
244 | "nbconvert_exporter": "python",
245 | "pygments_lexer": "ipython3",
246 | "version": "3.9.13"
247 | }
248 | },
249 | "nbformat": 4,
250 | "nbformat_minor": 5
251 | }
252 |
--------------------------------------------------------------------------------
/Importing data from google sheet using pandas and python.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "id": "bbdeadf4",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "# Full Video: Video: https://youtu.be/3KWzYM_KafM"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 13,
16 | "id": "91176585",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "# !pip install gspread"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 1,
26 | "id": "d5bec96a",
27 | "metadata": {},
28 | "outputs": [],
29 | "source": [
30 | "import gspread as gs\n",
31 | "import pandas as pd"
32 | ]
33 | },
34 | {
35 | "cell_type": "code",
36 | "execution_count": 3,
37 | "id": "dd662fbd",
38 | "metadata": {},
39 | "outputs": [],
40 | "source": [
41 | "gc = gs.service_account(filename=\"C:\\\\Users\\\\rashe\\\\Downloads\\\\aiquest-376023-1304ddc10d11.json\")"
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": 4,
47 | "id": "4a5cd3d8",
48 | "metadata": {},
49 | "outputs": [],
50 | "source": [
51 | "sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1zr1M2Tdrash8S8LdbnwpzLmbCDESZaXCkA_2d-nd6fI/edit?usp=sharing')"
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": 5,
57 | "id": "3e788fdf",
58 | "metadata": {},
59 | "outputs": [
60 | {
61 | "data": {
62 | "text/plain": [
63 | ""
64 | ]
65 | },
66 | "execution_count": 5,
67 | "metadata": {},
68 | "output_type": "execute_result"
69 | }
70 | ],
71 | "source": [
72 | "sh"
73 | ]
74 | },
75 | {
76 | "cell_type": "code",
77 | "execution_count": 10,
78 | "id": "425087c0",
79 | "metadata": {},
80 | "outputs": [],
81 | "source": [
82 | "ws = sh.worksheet('emp2')"
83 | ]
84 | },
85 | {
86 | "cell_type": "code",
87 | "execution_count": 11,
88 | "id": "4025c84d",
89 | "metadata": {},
90 | "outputs": [
91 | {
92 | "data": {
93 | "text/html": [
94 | "\n",
95 | "\n",
108 | "
\n",
109 | " \n",
110 | " \n",
111 | " | \n",
112 | " name2 | \n",
113 | " age2 | \n",
114 | "
\n",
115 | " \n",
116 | " \n",
117 | " \n",
118 | " 0 | \n",
119 | " noman | \n",
120 | " 27 | \n",
121 | "
\n",
122 | " \n",
123 | " 1 | \n",
124 | " rony | \n",
125 | " 28 | \n",
126 | "
\n",
127 | " \n",
128 | " 2 | \n",
129 | " sohan | \n",
130 | " 30 | \n",
131 | "
\n",
132 | " \n",
133 | " 3 | \n",
134 | " shuvo | \n",
135 | " 31 | \n",
136 | "
\n",
137 | " \n",
138 | "
\n",
139 | "
"
140 | ],
141 | "text/plain": [
142 | " name2 age2\n",
143 | "0 noman 27\n",
144 | "1 rony 28\n",
145 | "2 sohan 30\n",
146 | "3 shuvo 31"
147 | ]
148 | },
149 | "execution_count": 11,
150 | "metadata": {},
151 | "output_type": "execute_result"
152 | }
153 | ],
154 | "source": [
155 | "df = pd.DataFrame(ws.get_all_records())\n",
156 | "df.head()"
157 | ]
158 | },
159 | {
160 | "cell_type": "code",
161 | "execution_count": null,
162 | "id": "d8025040",
163 | "metadata": {},
164 | "outputs": [],
165 | "source": []
166 | }
167 | ],
168 | "metadata": {
169 | "kernelspec": {
170 | "display_name": "Python 3 (ipykernel)",
171 | "language": "python",
172 | "name": "python3"
173 | },
174 | "language_info": {
175 | "codemirror_mode": {
176 | "name": "ipython",
177 | "version": 3
178 | },
179 | "file_extension": ".py",
180 | "mimetype": "text/x-python",
181 | "name": "python",
182 | "nbconvert_exporter": "python",
183 | "pygments_lexer": "ipython3",
184 | "version": "3.9.13"
185 | }
186 | },
187 | "nbformat": 4,
188 | "nbformat_minor": 5
189 | }
190 |
--------------------------------------------------------------------------------
/Neural Network.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rashakil-ds/Machine-Learning-with-Python/418124d517ff32f4e19c21ea3567fb106a222264/Neural Network.pdf
--------------------------------------------------------------------------------
/PROJECT on Linear Regression.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "# Importing the libraries\n",
10 | "import numpy as np\n",
11 | "import matplotlib.pyplot as plt\n",
12 | "import pandas as pd"
13 | ]
14 | },
15 | {
16 | "cell_type": "code",
17 | "execution_count": 2,
18 | "metadata": {},
19 | "outputs": [],
20 | "source": [
21 | "# Importing the dataset\n",
22 | "df = pd.read_csv('online.csv')"
23 | ]
24 | },
25 | {
26 | "cell_type": "code",
27 | "execution_count": 4,
28 | "metadata": {},
29 | "outputs": [
30 | {
31 | "data": {
32 | "text/html": [
33 | "\n",
34 | "\n",
47 | "
\n",
48 | " \n",
49 | " \n",
50 | " | \n",
51 | " Marketing Spend | \n",
52 | " Administration | \n",
53 | " Transport | \n",
54 | " Area | \n",
55 | " Profit | \n",
56 | "
\n",
57 | " \n",
58 | " \n",
59 | " \n",
60 | " 0 | \n",
61 | " 114523.61 | \n",
62 | " 136897.80 | \n",
63 | " 471784.10 | \n",
64 | " Dhaka | \n",
65 | " 192261.83 | \n",
66 | "
\n",
67 | " \n",
68 | " 1 | \n",
69 | " 162597.70 | \n",
70 | " 151377.59 | \n",
71 | " 443898.53 | \n",
72 | " Ctg | \n",
73 | " 191792.06 | \n",
74 | "
\n",
75 | " \n",
76 | " 2 | \n",
77 | " 153441.51 | \n",
78 | " 101145.55 | \n",
79 | " 407934.54 | \n",
80 | " Rangpur | \n",
81 | " 191050.39 | \n",
82 | "
\n",
83 | " \n",
84 | " 3 | \n",
85 | " 144372.41 | \n",
86 | " 118671.85 | \n",
87 | " 383199.62 | \n",
88 | " Dhaka | \n",
89 | " 182901.99 | \n",
90 | "
\n",
91 | " \n",
92 | " 4 | \n",
93 | " 142107.34 | \n",
94 | " 91391.77 | \n",
95 | " 366168.42 | \n",
96 | " Rangpur | \n",
97 | " 166187.94 | \n",
98 | "
\n",
99 | " \n",
100 | "
\n",
101 | "
"
102 | ],
103 | "text/plain": [
104 | " Marketing Spend Administration Transport Area Profit\n",
105 | "0 114523.61 136897.80 471784.10 Dhaka 192261.83\n",
106 | "1 162597.70 151377.59 443898.53 Ctg 191792.06\n",
107 | "2 153441.51 101145.55 407934.54 Rangpur 191050.39\n",
108 | "3 144372.41 118671.85 383199.62 Dhaka 182901.99\n",
109 | "4 142107.34 91391.77 366168.42 Rangpur 166187.94"
110 | ]
111 | },
112 | "execution_count": 4,
113 | "metadata": {},
114 | "output_type": "execute_result"
115 | }
116 | ],
117 | "source": [
118 | "df.head()"
119 | ]
120 | },
121 | {
122 | "cell_type": "code",
123 | "execution_count": 5,
124 | "metadata": {},
125 | "outputs": [
126 | {
127 | "data": {
128 | "text/plain": [
129 | "(50, 5)"
130 | ]
131 | },
132 | "execution_count": 5,
133 | "metadata": {},
134 | "output_type": "execute_result"
135 | }
136 | ],
137 | "source": [
138 | "df.shape"
139 | ]
140 | },
141 | {
142 | "cell_type": "code",
143 | "execution_count": 6,
144 | "metadata": {},
145 | "outputs": [
146 | {
147 | "data": {
148 | "text/plain": [
149 | "Marketing Spend 0\n",
150 | "Administration 0\n",
151 | "Transport 0\n",
152 | "Area 0\n",
153 | "Profit 0\n",
154 | "dtype: int64"
155 | ]
156 | },
157 | "execution_count": 6,
158 | "metadata": {},
159 | "output_type": "execute_result"
160 | }
161 | ],
162 | "source": [
163 | "df.isnull().sum()"
164 | ]
165 | },
166 | {
167 | "cell_type": "code",
168 | "execution_count": null,
169 | "metadata": {},
170 | "outputs": [],
171 | "source": [
172 | "# if missiong\n",
173 | "# missing = df.Administration.mean()\n",
174 | "# df.Administration = df.Administration.fillna(missing)"
175 | ]
176 | },
177 | {
178 | "cell_type": "markdown",
179 | "metadata": {},
180 | "source": [
181 | "# separate x,y"
182 | ]
183 | },
184 | {
185 | "cell_type": "code",
186 | "execution_count": 7,
187 | "metadata": {},
188 | "outputs": [],
189 | "source": [
190 | "x = df.drop(['Profit'],axis=1)"
191 | ]
192 | },
193 | {
194 | "cell_type": "code",
195 | "execution_count": 8,
196 | "metadata": {},
197 | "outputs": [
198 | {
199 | "data": {
200 | "text/html": [
201 | "\n",
202 | "\n",
215 | "
\n",
216 | " \n",
217 | " \n",
218 | " | \n",
219 | " Marketing Spend | \n",
220 | " Administration | \n",
221 | " Transport | \n",
222 | " Area | \n",
223 | "
\n",
224 | " \n",
225 | " \n",
226 | " \n",
227 | " 0 | \n",
228 | " 114523.61 | \n",
229 | " 136897.80 | \n",
230 | " 471784.10 | \n",
231 | " Dhaka | \n",
232 | "
\n",
233 | " \n",
234 | " 1 | \n",
235 | " 162597.70 | \n",
236 | " 151377.59 | \n",
237 | " 443898.53 | \n",
238 | " Ctg | \n",
239 | "
\n",
240 | " \n",
241 | " 2 | \n",
242 | " 153441.51 | \n",
243 | " 101145.55 | \n",
244 | " 407934.54 | \n",
245 | " Rangpur | \n",
246 | "
\n",
247 | " \n",
248 | " 3 | \n",
249 | " 144372.41 | \n",
250 | " 118671.85 | \n",
251 | " 383199.62 | \n",
252 | " Dhaka | \n",
253 | "
\n",
254 | " \n",
255 | " 4 | \n",
256 | " 142107.34 | \n",
257 | " 91391.77 | \n",
258 | " 366168.42 | \n",
259 | " Rangpur | \n",
260 | "
\n",
261 | " \n",
262 | "
\n",
263 | "
"
264 | ],
265 | "text/plain": [
266 | " Marketing Spend Administration Transport Area\n",
267 | "0 114523.61 136897.80 471784.10 Dhaka\n",
268 | "1 162597.70 151377.59 443898.53 Ctg\n",
269 | "2 153441.51 101145.55 407934.54 Rangpur\n",
270 | "3 144372.41 118671.85 383199.62 Dhaka\n",
271 | "4 142107.34 91391.77 366168.42 Rangpur"
272 | ]
273 | },
274 | "execution_count": 8,
275 | "metadata": {},
276 | "output_type": "execute_result"
277 | }
278 | ],
279 | "source": [
280 | "x.head()"
281 | ]
282 | },
283 | {
284 | "cell_type": "code",
285 | "execution_count": 9,
286 | "metadata": {},
287 | "outputs": [],
288 | "source": [
289 | "y = df['Profit']"
290 | ]
291 | },
292 | {
293 | "cell_type": "code",
294 | "execution_count": 10,
295 | "metadata": {},
296 | "outputs": [
297 | {
298 | "data": {
299 | "text/plain": [
300 | "0 192261.83\n",
301 | "1 191792.06\n",
302 | "2 191050.39\n",
303 | "3 182901.99\n",
304 | "4 166187.94\n",
305 | "Name: Profit, dtype: float64"
306 | ]
307 | },
308 | "execution_count": 10,
309 | "metadata": {},
310 | "output_type": "execute_result"
311 | }
312 | ],
313 | "source": [
314 | "y.head()"
315 | ]
316 | },
317 | {
318 | "cell_type": "markdown",
319 | "metadata": {},
320 | "source": [
321 | "# One hot encoding "
322 | ]
323 | },
324 | {
325 | "cell_type": "code",
326 | "execution_count": 11,
327 | "metadata": {},
328 | "outputs": [],
329 | "source": [
330 | "#Convert the column into categorical columns\n",
331 | "city = pd.get_dummies(x['Area'],drop_first=True)"
332 | ]
333 | },
334 | {
335 | "cell_type": "code",
336 | "execution_count": 12,
337 | "metadata": {},
338 | "outputs": [
339 | {
340 | "data": {
341 | "text/html": [
342 | "\n",
343 | "\n",
356 | "
\n",
357 | " \n",
358 | " \n",
359 | " | \n",
360 | " Dhaka | \n",
361 | " Rangpur | \n",
362 | "
\n",
363 | " \n",
364 | " \n",
365 | " \n",
366 | " 0 | \n",
367 | " 1 | \n",
368 | " 0 | \n",
369 | "
\n",
370 | " \n",
371 | " 1 | \n",
372 | " 0 | \n",
373 | " 0 | \n",
374 | "
\n",
375 | " \n",
376 | " 2 | \n",
377 | " 0 | \n",
378 | " 1 | \n",
379 | "
\n",
380 | " \n",
381 | " 3 | \n",
382 | " 1 | \n",
383 | " 0 | \n",
384 | "
\n",
385 | " \n",
386 | " 4 | \n",
387 | " 0 | \n",
388 | " 1 | \n",
389 | "
\n",
390 | " \n",
391 | "
\n",
392 | "
"
393 | ],
394 | "text/plain": [
395 | " Dhaka Rangpur\n",
396 | "0 1 0\n",
397 | "1 0 0\n",
398 | "2 0 1\n",
399 | "3 1 0\n",
400 | "4 0 1"
401 | ]
402 | },
403 | "execution_count": 12,
404 | "metadata": {},
405 | "output_type": "execute_result"
406 | }
407 | ],
408 | "source": [
409 | "city.head()"
410 | ]
411 | },
412 | {
413 | "cell_type": "code",
414 | "execution_count": 13,
415 | "metadata": {},
416 | "outputs": [],
417 | "source": [
418 | "# Drop the Area coulmn\n",
419 | "x = x.drop('Area',axis=1)"
420 | ]
421 | },
422 | {
423 | "cell_type": "code",
424 | "execution_count": 14,
425 | "metadata": {},
426 | "outputs": [
427 | {
428 | "data": {
429 | "text/html": [
430 | "\n",
431 | "\n",
444 | "
\n",
445 | " \n",
446 | " \n",
447 | " | \n",
448 | " Marketing Spend | \n",
449 | " Administration | \n",
450 | " Transport | \n",
451 | "
\n",
452 | " \n",
453 | " \n",
454 | " \n",
455 | " 0 | \n",
456 | " 114523.61 | \n",
457 | " 136897.80 | \n",
458 | " 471784.10 | \n",
459 | "
\n",
460 | " \n",
461 | " 1 | \n",
462 | " 162597.70 | \n",
463 | " 151377.59 | \n",
464 | " 443898.53 | \n",
465 | "
\n",
466 | " \n",
467 | " 2 | \n",
468 | " 153441.51 | \n",
469 | " 101145.55 | \n",
470 | " 407934.54 | \n",
471 | "
\n",
472 | " \n",
473 | " 3 | \n",
474 | " 144372.41 | \n",
475 | " 118671.85 | \n",
476 | " 383199.62 | \n",
477 | "
\n",
478 | " \n",
479 | " 4 | \n",
480 | " 142107.34 | \n",
481 | " 91391.77 | \n",
482 | " 366168.42 | \n",
483 | "
\n",
484 | " \n",
485 | "
\n",
486 | "
"
487 | ],
488 | "text/plain": [
489 | " Marketing Spend Administration Transport\n",
490 | "0 114523.61 136897.80 471784.10\n",
491 | "1 162597.70 151377.59 443898.53\n",
492 | "2 153441.51 101145.55 407934.54\n",
493 | "3 144372.41 118671.85 383199.62\n",
494 | "4 142107.34 91391.77 366168.42"
495 | ]
496 | },
497 | "execution_count": 14,
498 | "metadata": {},
499 | "output_type": "execute_result"
500 | }
501 | ],
502 | "source": [
503 | "x.head()"
504 | ]
505 | },
506 | {
507 | "cell_type": "code",
508 | "execution_count": 15,
509 | "metadata": {},
510 | "outputs": [],
511 | "source": [
512 | "#concatation\n",
513 | "x = pd.concat([x,city],axis=1)"
514 | ]
515 | },
516 | {
517 | "cell_type": "code",
518 | "execution_count": 16,
519 | "metadata": {},
520 | "outputs": [
521 | {
522 | "data": {
523 | "text/html": [
524 | "\n",
525 | "\n",
538 | "
\n",
539 | " \n",
540 | " \n",
541 | " | \n",
542 | " Marketing Spend | \n",
543 | " Administration | \n",
544 | " Transport | \n",
545 | " Dhaka | \n",
546 | " Rangpur | \n",
547 | "
\n",
548 | " \n",
549 | " \n",
550 | " \n",
551 | " 0 | \n",
552 | " 114523.61 | \n",
553 | " 136897.80 | \n",
554 | " 471784.10 | \n",
555 | " 1 | \n",
556 | " 0 | \n",
557 | "
\n",
558 | " \n",
559 | " 1 | \n",
560 | " 162597.70 | \n",
561 | " 151377.59 | \n",
562 | " 443898.53 | \n",
563 | " 0 | \n",
564 | " 0 | \n",
565 | "
\n",
566 | " \n",
567 | " 2 | \n",
568 | " 153441.51 | \n",
569 | " 101145.55 | \n",
570 | " 407934.54 | \n",
571 | " 0 | \n",
572 | " 1 | \n",
573 | "
\n",
574 | " \n",
575 | " 3 | \n",
576 | " 144372.41 | \n",
577 | " 118671.85 | \n",
578 | " 383199.62 | \n",
579 | " 1 | \n",
580 | " 0 | \n",
581 | "
\n",
582 | " \n",
583 | " 4 | \n",
584 | " 142107.34 | \n",
585 | " 91391.77 | \n",
586 | " 366168.42 | \n",
587 | " 0 | \n",
588 | " 1 | \n",
589 | "
\n",
590 | " \n",
591 | "
\n",
592 | "
"
593 | ],
594 | "text/plain": [
595 | " Marketing Spend Administration Transport Dhaka Rangpur\n",
596 | "0 114523.61 136897.80 471784.10 1 0\n",
597 | "1 162597.70 151377.59 443898.53 0 0\n",
598 | "2 153441.51 101145.55 407934.54 0 1\n",
599 | "3 144372.41 118671.85 383199.62 1 0\n",
600 | "4 142107.34 91391.77 366168.42 0 1"
601 | ]
602 | },
603 | "execution_count": 16,
604 | "metadata": {},
605 | "output_type": "execute_result"
606 | }
607 | ],
608 | "source": [
609 | "x.head()"
610 | ]
611 | },
612 | {
613 | "cell_type": "code",
614 | "execution_count": 17,
615 | "metadata": {},
616 | "outputs": [],
617 | "source": [
618 | "# Splitting the dataset into the Training set and Test set"
619 | ]
620 | },
621 | {
622 | "cell_type": "code",
623 | "execution_count": 18,
624 | "metadata": {},
625 | "outputs": [],
626 | "source": [
627 | "#import library\n",
628 | "from sklearn.model_selection import train_test_split\n"
629 | ]
630 | },
631 | {
632 | "cell_type": "code",
633 | "execution_count": 19,
634 | "metadata": {},
635 | "outputs": [],
636 | "source": [
637 | "xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size = 0.25, random_state = 0)"
638 | ]
639 | },
640 | {
641 | "cell_type": "code",
642 | "execution_count": 20,
643 | "metadata": {},
644 | "outputs": [],
645 | "source": [
646 | "# Fitting Multiple Linear Regression to the Training set\n",
647 | "from sklearn.linear_model import LinearRegression\n"
648 | ]
649 | },
650 | {
651 | "cell_type": "code",
652 | "execution_count": 21,
653 | "metadata": {},
654 | "outputs": [],
655 | "source": [
656 | "regressor = LinearRegression()"
657 | ]
658 | },
659 | {
660 | "cell_type": "code",
661 | "execution_count": 22,
662 | "metadata": {},
663 | "outputs": [
664 | {
665 | "data": {
666 | "text/plain": [
667 | "LinearRegression()"
668 | ]
669 | },
670 | "execution_count": 22,
671 | "metadata": {},
672 | "output_type": "execute_result"
673 | }
674 | ],
675 | "source": [
676 | "regressor.fit(xtrain, ytrain)"
677 | ]
678 | },
679 | {
680 | "cell_type": "code",
681 | "execution_count": 23,
682 | "metadata": {},
683 | "outputs": [
684 | {
685 | "data": {
686 | "text/html": [
687 | "\n",
688 | "\n",
701 | "
\n",
702 | " \n",
703 | " \n",
704 | " | \n",
705 | " Marketing Spend | \n",
706 | " Administration | \n",
707 | " Transport | \n",
708 | " Dhaka | \n",
709 | " Rangpur | \n",
710 | "
\n",
711 | " \n",
712 | " \n",
713 | " \n",
714 | " 28 | \n",
715 | " 66051.52 | \n",
716 | " 182645.56 | \n",
717 | " 118148.20 | \n",
718 | " 0 | \n",
719 | " 1 | \n",
720 | "
\n",
721 | " \n",
722 | " 11 | \n",
723 | " 100671.96 | \n",
724 | " 91790.61 | \n",
725 | " 249744.55 | \n",
726 | " 0 | \n",
727 | " 0 | \n",
728 | "
\n",
729 | " \n",
730 | " 10 | \n",
731 | " 101913.08 | \n",
732 | " 110594.11 | \n",
733 | " 229160.95 | \n",
734 | " 0 | \n",
735 | " 1 | \n",
736 | "
\n",
737 | " \n",
738 | " 41 | \n",
739 | " 27892.92 | \n",
740 | " 84710.77 | \n",
741 | " 164470.71 | \n",
742 | " 0 | \n",
743 | " 1 | \n",
744 | "
\n",
745 | " \n",
746 | " 2 | \n",
747 | " 153441.51 | \n",
748 | " 101145.55 | \n",
749 | " 407934.54 | \n",
750 | " 0 | \n",
751 | " 1 | \n",
752 | "
\n",
753 | " \n",
754 | "
\n",
755 | "
"
756 | ],
757 | "text/plain": [
758 | " Marketing Spend Administration Transport Dhaka Rangpur\n",
759 | "28 66051.52 182645.56 118148.20 0 1\n",
760 | "11 100671.96 91790.61 249744.55 0 0\n",
761 | "10 101913.08 110594.11 229160.95 0 1\n",
762 | "41 27892.92 84710.77 164470.71 0 1\n",
763 | "2 153441.51 101145.55 407934.54 0 1"
764 | ]
765 | },
766 | "execution_count": 23,
767 | "metadata": {},
768 | "output_type": "execute_result"
769 | }
770 | ],
771 | "source": [
772 | "xtest.head()"
773 | ]
774 | },
775 | {
776 | "cell_type": "code",
777 | "execution_count": 24,
778 | "metadata": {},
779 | "outputs": [
780 | {
781 | "data": {
782 | "text/plain": [
783 | "28 103282.38\n",
784 | "11 144259.40\n",
785 | "10 146121.95\n",
786 | "41 77798.83\n",
787 | "2 191050.39\n",
788 | "Name: Profit, dtype: float64"
789 | ]
790 | },
791 | "execution_count": 24,
792 | "metadata": {},
793 | "output_type": "execute_result"
794 | }
795 | ],
796 | "source": [
797 | "ytest.head()"
798 | ]
799 | },
800 | {
801 | "cell_type": "code",
802 | "execution_count": 25,
803 | "metadata": {},
804 | "outputs": [],
805 | "source": [
806 | "# Predicting the Test set results\n",
807 | "pred = regressor.predict(xtest)"
808 | ]
809 | },
810 | {
811 | "cell_type": "code",
812 | "execution_count": 26,
813 | "metadata": {},
814 | "outputs": [
815 | {
816 | "data": {
817 | "text/plain": [
818 | "array([103501.0825284 , 128011.28068627, 126695.43891127, 70573.91718775,\n",
819 | " 173381.96874259, 124238.07860872, 69298.09250304, 98399.41936876,\n",
820 | " 116419.1480864 , 161430.98134847, 94740.73303076, 89920.22800514,\n",
821 | " 105956.86065332])"
822 | ]
823 | },
824 | "execution_count": 26,
825 | "metadata": {},
826 | "output_type": "execute_result"
827 | }
828 | ],
829 | "source": [
830 | "pred"
831 | ]
832 | },
833 | {
834 | "cell_type": "code",
835 | "execution_count": 27,
836 | "metadata": {},
837 | "outputs": [
838 | {
839 | "data": {
840 | "text/plain": [
841 | "0.8840978623923469"
842 | ]
843 | },
844 | "execution_count": 27,
845 | "metadata": {},
846 | "output_type": "execute_result"
847 | }
848 | ],
849 | "source": [
850 | "regressor.score(xtest,ytest)"
851 | ]
852 | },
853 | {
854 | "cell_type": "markdown",
855 | "metadata": {},
856 | "source": [
857 | "# R-Squared Value"
858 | ]
859 | },
860 | {
861 | "cell_type": "code",
862 | "execution_count": 31,
863 | "metadata": {},
864 | "outputs": [],
865 | "source": [
866 | "from sklearn.metrics import r2_score\n",
867 | "from sklearn.metrics import mean_squared_error"
868 | ]
869 | },
870 | {
871 | "cell_type": "code",
872 | "execution_count": 32,
873 | "metadata": {},
874 | "outputs": [],
875 | "source": [
876 | "score=r2_score(ytest,pred)"
877 | ]
878 | },
879 | {
880 | "cell_type": "code",
881 | "execution_count": 33,
882 | "metadata": {},
883 | "outputs": [
884 | {
885 | "data": {
886 | "text/plain": [
887 | "0.8840978623923469"
888 | ]
889 | },
890 | "execution_count": 33,
891 | "metadata": {},
892 | "output_type": "execute_result"
893 | }
894 | ],
895 | "source": [
896 | "score"
897 | ]
898 | },
899 | {
900 | "cell_type": "code",
901 | "execution_count": null,
902 | "metadata": {},
903 | "outputs": [],
904 | "source": [
905 | "mean_squared_error(xtest)"
906 | ]
907 | },
908 | {
909 | "cell_type": "code",
910 | "execution_count": null,
911 | "metadata": {},
912 | "outputs": [],
913 | "source": []
914 | }
915 | ],
916 | "metadata": {
917 | "kernelspec": {
918 | "display_name": "Python 3",
919 | "language": "python",
920 | "name": "python3"
921 | },
922 | "language_info": {
923 | "codemirror_mode": {
924 | "name": "ipython",
925 | "version": 3
926 | },
927 | "file_extension": ".py",
928 | "mimetype": "text/x-python",
929 | "name": "python",
930 | "nbconvert_exporter": "python",
931 | "pygments_lexer": "ipython3",
932 | "version": "3.8.8"
933 | }
934 | },
935 | "nbformat": 4,
936 | "nbformat_minor": 2
937 | }
938 |
--------------------------------------------------------------------------------
/Papers/A Proficient Approach to Detect Osteosarcoma Through Deep Learning.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rashakil-ds/Machine-Learning-with-Python/418124d517ff32f4e19c21ea3567fb106a222264/Papers/A Proficient Approach to Detect Osteosarcoma Through Deep Learning.pdf
--------------------------------------------------------------------------------
/Papers/read.txt:
--------------------------------------------------------------------------------
1 | Research Paper
2 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | Machine Learning with Python by Study Mart & aiQuest Intelligence
5 | Welcome to the Machine Learning with Python repository! This repository contains resources and materials to help you learn and master machine learning using Python. Curated by Study Mart and aiQuest Intelligence, these resources are perfect for both beginners and advanced learners.
6 |
7 | Topics Covered
8 |
9 | - Introduction to Machine Learning
10 | - Data Preprocessing
11 | - Supervised Learning
12 | - Unsupervised Learning
13 | - Model Evaluation and Validation
14 | - Advanced Machine Learning Techniques
15 |
16 |
17 | YouTube Video Playlist
18 | Watch the complete video playlist on YouTube: Machine Learning with Python Playlist
19 |
20 | Repository Link
21 | Explore the resources in detail here.
22 |
23 | Additional Resources
24 | We also offer a variety of paid courses on data science on our website. Visit AIQuest for more details.
25 | For free resources, check out our YouTube channel: StudyMart.
26 | Join our Facebook group for more discussions and resources: StudyMart Facebook Group.
27 |
28 |
33 |
34 |
35 |
--------------------------------------------------------------------------------
/Save ML Models.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "8f8d056b",
6 | "metadata": {},
7 | "source": [
8 | "# Random Forest"
9 | ]
10 | },
11 | {
12 | "cell_type": "code",
13 | "execution_count": 13,
14 | "id": "cb7d7f37",
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "from sklearn.ensemble import RandomForestClassifier"
19 | ]
20 | },
21 | {
22 | "cell_type": "code",
23 | "execution_count": 14,
24 | "id": "99140e4e",
25 | "metadata": {},
26 | "outputs": [],
27 | "source": [
28 | "ran = RandomForestClassifier(n_estimators=15)"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": 15,
34 | "id": "9ca3fdcd",
35 | "metadata": {},
36 | "outputs": [
37 | {
38 | "data": {
39 | "text/plain": [
40 | "RandomForestClassifier(n_estimators=15)"
41 | ]
42 | },
43 | "execution_count": 15,
44 | "metadata": {},
45 | "output_type": "execute_result"
46 | }
47 | ],
48 | "source": [
49 | "ran.fit(x,y)"
50 | ]
51 | },
52 | {
53 | "cell_type": "code",
54 | "execution_count": 16,
55 | "id": "525c42fe",
56 | "metadata": {},
57 | "outputs": [
58 | {
59 | "data": {
60 | "text/plain": [
61 | "array(['Yes'], dtype=object)"
62 | ]
63 | },
64 | "execution_count": 16,
65 | "metadata": {},
66 | "output_type": "execute_result"
67 | }
68 | ],
69 | "source": [
70 | "ran.predict([[1,0,1]])"
71 | ]
72 | },
73 | {
74 | "cell_type": "code",
75 | "execution_count": 17,
76 | "id": "f5babf51",
77 | "metadata": {},
78 | "outputs": [
79 | {
80 | "data": {
81 | "text/plain": [
82 | "array(['No'], dtype=object)"
83 | ]
84 | },
85 | "execution_count": 17,
86 | "metadata": {},
87 | "output_type": "execute_result"
88 | }
89 | ],
90 | "source": [
91 | "ran.predict([[0,1,0]])"
92 | ]
93 | },
94 | {
95 | "cell_type": "code",
96 | "execution_count": null,
97 | "id": "de29bfc4",
98 | "metadata": {},
99 | "outputs": [],
100 | "source": []
101 | },
102 | {
103 | "cell_type": "markdown",
104 | "id": "f7febbe2",
105 | "metadata": {},
106 | "source": [
107 | "# Save Machine Learning Models"
108 | ]
109 | },
110 | {
111 | "cell_type": "code",
112 | "execution_count": 18,
113 | "id": "f9edb713",
114 | "metadata": {},
115 | "outputs": [],
116 | "source": [
117 | "import pickle as pk\n",
118 | "\n",
119 | "with open('My_Model1','wb') as file:\n",
120 | " pk.dump(ran,file)"
121 | ]
122 | },
123 | {
124 | "cell_type": "code",
125 | "execution_count": 19,
126 | "id": "4e31af7e",
127 | "metadata": {},
128 | "outputs": [],
129 | "source": [
130 | "with open('My_Model1','rb') as file:\n",
131 | " model1 = pk.load(file)"
132 | ]
133 | },
134 | {
135 | "cell_type": "code",
136 | "execution_count": 20,
137 | "id": "b94ba55a",
138 | "metadata": {},
139 | "outputs": [
140 | {
141 | "data": {
142 | "text/plain": [
143 | "array(['Yes'], dtype=object)"
144 | ]
145 | },
146 | "execution_count": 20,
147 | "metadata": {},
148 | "output_type": "execute_result"
149 | }
150 | ],
151 | "source": [
152 | "model1.predict([[1,0,1]])"
153 | ]
154 | },
155 | {
156 | "cell_type": "code",
157 | "execution_count": 21,
158 | "id": "60cdf548",
159 | "metadata": {},
160 | "outputs": [
161 | {
162 | "data": {
163 | "text/plain": [
164 | "'C:\\\\Users\\\\study mart\\\\Downloads\\\\New Folder'"
165 | ]
166 | },
167 | "execution_count": 21,
168 | "metadata": {},
169 | "output_type": "execute_result"
170 | }
171 | ],
172 | "source": [
173 | "import os\n",
174 | "os.getcwd()"
175 | ]
176 | },
177 | {
178 | "cell_type": "code",
179 | "execution_count": 22,
180 | "id": "ed465725",
181 | "metadata": {},
182 | "outputs": [],
183 | "source": [
184 | "pk.dump(ran,open('My_Model2','wb'))"
185 | ]
186 | },
187 | {
188 | "cell_type": "code",
189 | "execution_count": 23,
190 | "id": "b319f8ca",
191 | "metadata": {},
192 | "outputs": [],
193 | "source": [
194 | "model2 = pk.load(open('My_Model2','rb'))"
195 | ]
196 | },
197 | {
198 | "cell_type": "code",
199 | "execution_count": 24,
200 | "id": "35a79a67",
201 | "metadata": {},
202 | "outputs": [
203 | {
204 | "data": {
205 | "text/plain": [
206 | "array(['No'], dtype=object)"
207 | ]
208 | },
209 | "execution_count": 24,
210 | "metadata": {},
211 | "output_type": "execute_result"
212 | }
213 | ],
214 | "source": [
215 | "model2.predict([[0,1,0]])"
216 | ]
217 | },
218 | {
219 | "cell_type": "code",
220 | "execution_count": null,
221 | "id": "7b292b64",
222 | "metadata": {},
223 | "outputs": [],
224 | "source": []
225 | },
226 | {
227 | "cell_type": "markdown",
228 | "id": "49ae4874",
229 | "metadata": {},
230 | "source": [
231 | "# Joblib"
232 | ]
233 | },
234 | {
235 | "cell_type": "code",
236 | "execution_count": 25,
237 | "id": "0a9782b1",
238 | "metadata": {},
239 | "outputs": [
240 | {
241 | "data": {
242 | "text/plain": [
243 | "['My_Model3']"
244 | ]
245 | },
246 | "execution_count": 25,
247 | "metadata": {},
248 | "output_type": "execute_result"
249 | }
250 | ],
251 | "source": [
252 | "import joblib as jbl\n",
253 | "\n",
254 | "jbl.dump(ran,'My_Model3')"
255 | ]
256 | },
257 | {
258 | "cell_type": "code",
259 | "execution_count": 26,
260 | "id": "d2acfb96",
261 | "metadata": {},
262 | "outputs": [],
263 | "source": [
264 | "model3 = jbl.load('My_Model3')"
265 | ]
266 | },
267 | {
268 | "cell_type": "code",
269 | "execution_count": 27,
270 | "id": "2768c18e",
271 | "metadata": {},
272 | "outputs": [
273 | {
274 | "data": {
275 | "text/plain": [
276 | "array(['No'], dtype=object)"
277 | ]
278 | },
279 | "execution_count": 27,
280 | "metadata": {},
281 | "output_type": "execute_result"
282 | }
283 | ],
284 | "source": [
285 | "model3.predict([[0,1,0]])"
286 | ]
287 | },
288 | {
289 | "cell_type": "markdown",
290 | "id": "176e33a0",
291 | "metadata": {},
292 | "source": [
293 | "# Access File From Diffrent Folder"
294 | ]
295 | },
296 | {
297 | "cell_type": "code",
298 | "execution_count": 28,
299 | "id": "14390d9c",
300 | "metadata": {},
301 | "outputs": [
302 | {
303 | "data": {
304 | "text/plain": [
305 | "'C:\\\\Users\\\\study mart\\\\Downloads\\\\New Folder'"
306 | ]
307 | },
308 | "execution_count": 28,
309 | "metadata": {},
310 | "output_type": "execute_result"
311 | }
312 | ],
313 | "source": [
314 | "import os\n",
315 | "os.getcwd()"
316 | ]
317 | },
318 | {
319 | "cell_type": "code",
320 | "execution_count": 29,
321 | "id": "60a7b572",
322 | "metadata": {},
323 | "outputs": [],
324 | "source": [
325 | "os.chdir('C:\\\\Users\\\\study mart\\\\Downloads\\\\new 2')"
326 | ]
327 | },
328 | {
329 | "cell_type": "code",
330 | "execution_count": 30,
331 | "id": "756553a7",
332 | "metadata": {},
333 | "outputs": [
334 | {
335 | "data": {
336 | "text/plain": [
337 | "'C:\\\\Users\\\\study mart\\\\Downloads\\\\new 2'"
338 | ]
339 | },
340 | "execution_count": 30,
341 | "metadata": {},
342 | "output_type": "execute_result"
343 | }
344 | ],
345 | "source": [
346 | "os.getcwd()"
347 | ]
348 | },
349 | {
350 | "cell_type": "code",
351 | "execution_count": 31,
352 | "id": "d1eb0e87",
353 | "metadata": {},
354 | "outputs": [],
355 | "source": [
356 | "with open('My_Model1','rb') as file:\n",
357 | " model4 = pk.load(file)"
358 | ]
359 | },
360 | {
361 | "cell_type": "code",
362 | "execution_count": 32,
363 | "id": "9df5e9fc",
364 | "metadata": {},
365 | "outputs": [
366 | {
367 | "data": {
368 | "text/plain": [
369 | "array(['No'], dtype=object)"
370 | ]
371 | },
372 | "execution_count": 32,
373 | "metadata": {},
374 | "output_type": "execute_result"
375 | }
376 | ],
377 | "source": [
378 | "model4.predict([[0,1,0]])"
379 | ]
380 | },
381 | {
382 | "cell_type": "markdown",
383 | "id": "167acab7",
384 | "metadata": {},
385 | "source": [
386 | "Vist: https://youtube.com/StudyMart"
387 | ]
388 | },
389 | {
390 | "cell_type": "code",
391 | "execution_count": null,
392 | "id": "b040d926",
393 | "metadata": {},
394 | "outputs": [],
395 | "source": []
396 | }
397 | ],
398 | "metadata": {
399 | "kernelspec": {
400 | "display_name": "Python 3",
401 | "language": "python",
402 | "name": "python3"
403 | },
404 | "language_info": {
405 | "codemirror_mode": {
406 | "name": "ipython",
407 | "version": 3
408 | },
409 | "file_extension": ".py",
410 | "mimetype": "text/x-python",
411 | "name": "python",
412 | "nbconvert_exporter": "python",
413 | "pygments_lexer": "ipython3",
414 | "version": "3.8.8"
415 | }
416 | },
417 | "nbformat": 4,
418 | "nbformat_minor": 5
419 | }
420 |
--------------------------------------------------------------------------------
/Screen Time Data.csv:
--------------------------------------------------------------------------------
1 | index,Date,Week Day,Total Screen Time ,Social Networking,Reading and Reference,Other,Productivity,Health and Fitness,Entertainment,Creativity,Yoga
2 | 0,04/17/19,Wednesday,187,89,17,41,22,0,0,0,0
3 | 1,04/18/19,Thursday,123,78,17,8,9,0,0,0,0
4 | 2,04/19/19,Friday,112,52,40,8,4,0,3,0,0
5 | 3,04/20/19,Saturday,101,69,9,38,2,0,3,0,0
6 | 4,04/21/19,Sunday,56,35,2,43,3,0,1,1,0
7 | 5,04/22/19,Monday,189,68,0,9,3,4,0,0,0
8 | 6,04/23/19,Tuesday,158,56,18,41,12,15,0,0,0
9 | 7,04/24/19,Wednesday,135,98,3,33,16,0,0,0,0
10 | 8,04/25/19,Thursday,52,25,7,3,16,0,0,0,0
11 | 9,04/26/19,Friday,198,76,8,29,15,0,32,0,0
12 | 10,04/27/19,Saturday,116,75,10,20,5,0,0,0,0
13 | 11,04/28/19,Sunday,85,42,22,4,2,0,0,0,0
14 | 12,04/29/19,Monday,109,46,8,13,9,15,1,0,1
15 | 13,04/30/19,Tuesday,79,40,2,9,12,0,0,0,1
16 | 14,05/01/19,Wednesday,127,90,0,10,7,0,0,0,1
17 | 15,05/02/19,Thursday,170,60,3,2,11,0,0,0,1
18 | 16,05/03/19,Friday,91,64,2,18,5,1,1,2,1
19 | 17,05/04/19,Saturday,58,34,4,5,3,0,1,0,1
20 | 18,05/05/19,Sunday,133,109,5,1,3,0,0,0,1
21 | 19,05/06/19,Monday,144,81,4,5,3,0,0,0,1
22 | 20,05/07/19,Tuesday,110,70,5,6,15,0,9,0,1
23 | 21,05/08/19,Wednesday,122,53,25,26,15,0,0,0,1
24 | 22,05/09/19,Thursday,96,42,15,16,19,0,0,0,1
25 | 23,05/10/19,Friday,161,93,13,17,16,1,0,0,1
26 | 24,05/11/19,Saturday,58,49,1,2,2,0,0,2,1
27 | 25,05/12/19,Sunday,52,28,1,1,6,0,0,1,1
28 | 26,05/13/19,Monday,61,37,1,0,4,0,0,0,1
29 | 27,05/14/19,Tuesday,88,41,2,7,15,0,0,0,1
30 |
--------------------------------------------------------------------------------
/home data.csv:
--------------------------------------------------------------------------------
1 | x,y
2 | 48.95588857,60.72360244
3 | 44.68719623,82.89250373
4 | 60.29732685,97.37989686
5 | 45.61864377,48.84715332
6 | 38.81681754,56.87721319
7 | 53.42680403,68.77759598
8 | 61.53035803,62.5623823
9 | 47.47563963,71.54663223
10 | 52.55001444,71.30087989
11 | 45.41973014,55.16567715
12 | 54.35163488,82.47884676
13 | 44.1640495,62.00892325
14 | 58.16847072,75.39287043
15 | 56.72720806,81.43619216
16 | 59.81320787,87.23092513
17 | 55.14218841,78.21151827
18 | 52.21179669,79.64197305
19 | 39.29956669,59.17148932
20 | 48.10504169,75.3312423
21 | 66.18981661,83.87856466
22 | 65.41605175,118.5912173
23 | 47.48120861,57.25181946
24 | 41.57564262,51.39174408
25 | 51.84518691,75.38065167
26 | 59.37082201,74.76556403
27 | 57.31000344,95.45505292
28 | 63.61556125,95.22936602
29 | 46.73761941,79.05240617
30 | 50.55676015,83.43207142
31 | 52.22399609,63.35879032
32 | 35.56783005,41.4128853
33 | 42.43647694,76.61734128
34 | 58.16454011,96.76956643
35 | 57.50444762,74.08413012
36 | 45.44053073,66.58814441
37 | 61.89622268,77.76848242
38 | 33.09383174,50.71958891
39 | 36.43600951,62.12457082
40 | 37.67565486,60.81024665
41 | 44.55560838,52.68298337
42 | 43.31828263,58.56982472
43 | 50.07314563,82.90598149
44 | 43.87061265,61.4247098
45 | 62.99748075,115.2441528
46 | 32.66904376,45.57058882
47 | 40.16689901,54.0840548
48 | 53.57507753,87.99445276
49 | 33.86421497,52.72549438
50 | 64.70713867,93.57611869
51 | 38.11982403,80.16627545
52 | 44.50253806,65.10171157
53 | 40.59953838,65.56230126
54 | 41.72067636,65.28088692
55 | 51.08863468,73.43464155
56 | 55.0780959,71.13972786
57 | 41.37772653,79.10282968
58 | 62.49469743,86.52053844
59 | 49.20388754,84.74269781
60 | 41.10268519,59.35885025
61 | 41.18201611,61.68403752
62 | 50.18638949,69.84760416
63 | 52.37844622,86.09829121
64 | 50.13548549,59.10883927
65 | 33.64470601,69.89968164
66 | 39.55790122,44.86249071
67 | 56.13038882,85.49806778
68 | 57.36205213,95.53668685
69 | 60.26921439,70.25193442
70 | 35.67809389,52.72173496
71 | 31.588117,50.39267014
72 | 53.66093226,63.64239878
73 | 46.68222865,72.24725107
74 | 43.10782022,57.81251298
75 | 70.34607562,104.2571016
76 | 44.49285588,86.64202032
77 | 57.5045333,91.486778
78 | 36.93007661,55.23166089
79 | 55.80573336,79.55043668
80 | 38.95476907,44.84712424
81 | 56.9012147,80.20752314
82 | 56.86890066,83.14274979
83 | 34.3331247,55.72348926
84 | 59.04974121,77.63418251
85 | 57.78822399,99.05141484
86 | 54.28232871,79.12064627
87 | 51.0887199,69.58889785
88 | 50.28283635,69.51050331
89 | 44.21174175,73.68756432
90 | 38.00548801,61.36690454
91 | 32.94047994,67.17065577
92 | 53.69163957,85.66820315
93 | 68.76573427,114.8538712
94 | 46.2309665,90.12357207
95 | 68.31936082,97.91982104
96 | 50.03017434,81.53699078
97 | 49.23976534,72.11183247
98 | 50.03957594,85.23200734
99 | 48.14985889,66.22495789
100 | 25.12848465,53.45439421
101 |
--------------------------------------------------------------------------------
/shoe.csv:
--------------------------------------------------------------------------------
1 | size(cm),class(y)
2 | 9.5,Female
3 | 10.125,Male
4 | 10.41,Male
5 | 9.81,Female
6 | 11.05,Male
7 | 9.15,Female
8 | 9.45,Female
9 | 10.57,Male
10 | 9.71,Female
11 | 9.65,Female
12 | 9.82,Female
13 | 10.42,Male
14 | 10.19,Male
15 | 10.91,Male
16 | 10.55,Male
17 | 10.73,Male
18 | 10.02,Female
19 | 9.93,Female
20 | 10.3,Male
21 | 10.59,Male
22 | 10.15,Male
23 | 9.35,Female
24 | 9.2,Female
25 | 10.66,Male
26 | 9.62,Female
27 | 10.46,Male
28 | 10.29,Male
29 | 10.81,Male
30 | 10.45,Male
31 | 10.73,Male
32 | 10.04,Female
33 | 9.91,Female
34 | 10.4,Male
35 | 9.59,Female
36 | 10.16,Male
37 | 9.3,Female
38 | 9.21,Female
39 | 10.56,Male
40 | 9.6,Female
41 | 9.32,Male
42 |
--------------------------------------------------------------------------------
/shop data.csv:
--------------------------------------------------------------------------------
1 | age,income,gender,m_status,buys
2 | <25,high,male,single,no
3 | <25,high,male,married,no
4 | 25-35,high,male,single,yes
5 | >35,medium,male,single,yes
6 | >35,low,female,single,yes
7 | >35,low,female,single,no
8 | 25-35,low,female,married,yes
9 | <25,medium,male,married,no
10 | <25,low,female,single,yes
11 | >35,medium,female,married,yes
12 | <25,medium,female,single,yes
13 | 25-35,medium,male,married,yes
14 | 25-35,high,female,single,yes
15 | >35,medium,male,married,no
16 | <25,high,male,single,no
17 | <25,high,female,married,yes
18 | >35,medium,male,married,yes
19 | <25,high,female,single,yes
20 | 25-35,medium,female,married,yes
21 | 25-35,high,male,single,yes
22 | >35,medium,female,married,no
23 | <25,low,male,single,yes
24 |
--------------------------------------------------------------------------------