├── 1. Data Manipulation with Python Pandas.ipynb ├── 1. Label Encoder.ipynb ├── 2. One Hot Encoding.ipynb ├── 3. Binary Encoder.ipynb ├── 4. Ordinal Encoder.ipynb ├── Bias Variance.ipynb ├── Boxplot using Python.ipynb ├── CNN Basic Overview .ipynb ├── Churn Modelling with Decision Tree.ipynb ├── Churn Modelling with Random Forest.ipynb ├── Confusion Matrix.ipynb ├── Cross Validation.ipynb ├── Datasets ├── Churn_Modelling.csv ├── car data.csv ├── linear_data.csv └── nonlinear_data.csv ├── Decision Tree Classifier.ipynb ├── Docs ├── Machine Learning with TensorFlow.pdf ├── PyTorch Cheatsheet.pdf ├── Readme.md └── 𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲, 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐢𝐨𝐧.pdf ├── Fit, Transforn and fit_transform.ipynb ├── Importing data from google sheet using pandas and python.ipynb ├── Linear Relationship.ipynb ├── Neural Network.pdf ├── PROJECT on Linear Regression.ipynb ├── Papers ├── A Proficient Approach to Detect Osteosarcoma Through Deep Learning.pdf └── read.txt ├── Plot accuracy in seaborn.ipynb ├── Polynomial Regression.ipynb ├── README.md ├── Random Forest & HyperparameterTuning.ipynb ├── SVM in ML.ipynb ├── Save ML Models.ipynb ├── Screen Time Data.csv ├── The Normal or Gaussian Distribution.ipynb ├── home data.csv ├── shoe.csv ├── shop data.csv └── weight-height.csv /1. Label Encoder.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "id": "21070538", 6 | "metadata": {}, 7 | "source": [ 8 | "# 1. Label Encoder" 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": 1, 14 | "id": "5122882e", 15 | "metadata": {}, 16 | "outputs": [], 17 | "source": [ 18 | "classes = ['ClassA', 'ClassB', 'ClassC', 'ClassD']\n", 19 | "\n", 20 | "instances = ['ClassA', 'ClassB', 'ClassC', 'ClassD', 'ClassA', 'ClassB', 'ClassC', 'ClassD', 'ClassA', 'ClassB']" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 2, 26 | "id": "0790c5cf", 27 | "metadata": {}, 28 | "outputs": [ 29 | { 30 | "name": "stdout", 31 | "output_type": "stream", 32 | "text": [ 33 | "Encoded labels: [0, 1, 2, 3, 0, 1, 2, 3, 0, 1]\n" 34 | ] 35 | } 36 | ], 37 | "source": [ 38 | "label_to_int = {label: index for index, label in enumerate(classes)} #60 Days of Python ; Day 25\n", 39 | "encoded_labels = [label_to_int[label] for label in instances]\n", 40 | "\n", 41 | "print(\"Encoded labels:\", encoded_labels)" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": 3, 47 | "id": "9bdaf4f3", 48 | "metadata": {}, 49 | "outputs": [ 50 | { 51 | "name": "stdout", 52 | "output_type": "stream", 53 | "text": [ 54 | "Encoded labels: [0, 1, 2, 3, 0, 1, 2, 3, 0, 1]\n", 55 | "Decoded labels: ['ClassA', 'ClassB', 'ClassC', 'ClassD', 'ClassA', 'ClassB', 'ClassC', 'ClassD', 'ClassA', 'ClassB']\n" 56 | ] 57 | } 58 | ], 59 | "source": [ 60 | "int_to_label = {index: label for label, index in label_to_int.items()}\n", 61 | "decoded_labels = [int_to_label[index] for index in encoded_labels]\n", 62 | "\n", 63 | "print(\"Encoded labels:\", encoded_labels)\n", 64 | "print(\"Decoded labels:\", decoded_labels)" 65 | ] 66 | }, 67 | { 68 | "cell_type": "markdown", 69 | "id": "63ee1325", 70 | "metadata": {}, 71 | "source": [ 72 | "# Sklearn - Label Encoder" 73 | ] 74 | }, 75 | { 76 | "cell_type": "code", 77 | "execution_count": 4, 78 | "id": "60a20a81", 79 | "metadata": {}, 80 | "outputs": [], 81 | "source": [ 82 | "from sklearn.preprocessing import LabelEncoder" 83 | ] 84 | }, 85 | { 86 | "cell_type": "code", 87 | "execution_count": 5, 88 | "id": "ad2970f2", 89 | "metadata": {}, 90 | "outputs": [ 91 | { 92 | "name": "stdout", 93 | "output_type": "stream", 94 | "text": [ 95 | "Encoded labels: [0 1 2 3 0 1 2 3 0 1]\n" 96 | ] 97 | } 98 | ], 99 | "source": [ 100 | "label_encoder = LabelEncoder()\n", 101 | "encoded_labels = label_encoder.fit_transform(instances)\n", 102 | "\n", 103 | "print(\"Encoded labels:\", encoded_labels)" 104 | ] 105 | }, 106 | { 107 | "cell_type": "code", 108 | "execution_count": 6, 109 | "id": "5fd9dabe", 110 | "metadata": {}, 111 | "outputs": [ 112 | { 113 | "name": "stdout", 114 | "output_type": "stream", 115 | "text": [ 116 | "Encoded labels: [0 1 2 3 0 1 2 3 0 1]\n", 117 | "Original labels: ['ClassA' 'ClassB' 'ClassC' 'ClassD' 'ClassA' 'ClassB' 'ClassC' 'ClassD'\n", 118 | " 'ClassA' 'ClassB']\n" 119 | ] 120 | } 121 | ], 122 | "source": [ 123 | "original_labels = label_encoder.inverse_transform(encoded_labels)\n", 124 | "\n", 125 | "print(\"Encoded labels:\", encoded_labels)\n", 126 | "print(\"Original labels:\", original_labels)" 127 | ] 128 | }, 129 | { 130 | "cell_type": "code", 131 | "execution_count": null, 132 | "id": "e932d2b3", 133 | "metadata": {}, 134 | "outputs": [], 135 | "source": [] 136 | } 137 | ], 138 | "metadata": { 139 | "kernelspec": { 140 | "display_name": "Python 3 (ipykernel)", 141 | "language": "python", 142 | "name": "python3" 143 | }, 144 | "language_info": { 145 | "codemirror_mode": { 146 | "name": "ipython", 147 | "version": 3 148 | }, 149 | "file_extension": ".py", 150 | "mimetype": "text/x-python", 151 | "name": "python", 152 | "nbconvert_exporter": "python", 153 | "pygments_lexer": "ipython3", 154 | "version": "3.9.13" 155 | } 156 | }, 157 | "nbformat": 4, 158 | "nbformat_minor": 5 159 | } 160 | -------------------------------------------------------------------------------- /2. One Hot Encoding.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "79afcd9b", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 2, 16 | "id": "a31b20f7", 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "data = {'Category': ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C']}" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 3, 26 | "id": "6c33a2f7", 27 | "metadata": {}, 28 | "outputs": [ 29 | { 30 | "data": { 31 | "text/html": [ 32 | "
\n", 33 | "\n", 46 | "\n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | "
Category
0A
1B
2C
3A
4B
\n", 76 | "
" 77 | ], 78 | "text/plain": [ 79 | " Category\n", 80 | "0 A\n", 81 | "1 B\n", 82 | "2 C\n", 83 | "3 A\n", 84 | "4 B" 85 | ] 86 | }, 87 | "execution_count": 3, 88 | "metadata": {}, 89 | "output_type": "execute_result" 90 | } 91 | ], 92 | "source": [ 93 | "df = pd.DataFrame(data)\n", 94 | "df.head()" 95 | ] 96 | }, 97 | { 98 | "cell_type": "code", 99 | "execution_count": 4, 100 | "id": "d5674ea5", 101 | "metadata": {}, 102 | "outputs": [ 103 | { 104 | "data": { 105 | "text/html": [ 106 | "
\n", 107 | "\n", 120 | "\n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | "
Category_ACategory_BCategory_C
0100
1010
2001
3100
4010
5001
6100
7010
8001
\n", 186 | "
" 187 | ], 188 | "text/plain": [ 189 | " Category_A Category_B Category_C\n", 190 | "0 1 0 0\n", 191 | "1 0 1 0\n", 192 | "2 0 0 1\n", 193 | "3 1 0 0\n", 194 | "4 0 1 0\n", 195 | "5 0 0 1\n", 196 | "6 1 0 0\n", 197 | "7 0 1 0\n", 198 | "8 0 0 1" 199 | ] 200 | }, 201 | "execution_count": 4, 202 | "metadata": {}, 203 | "output_type": "execute_result" 204 | } 205 | ], 206 | "source": [ 207 | "one_hot_encoded_df = pd.get_dummies(df, columns=['Category'])\n", 208 | "one_hot_encoded_df" 209 | ] 210 | }, 211 | { 212 | "cell_type": "code", 213 | "execution_count": 5, 214 | "id": "e16d27ac", 215 | "metadata": {}, 216 | "outputs": [ 217 | { 218 | "data": { 219 | "text/html": [ 220 | "
\n", 221 | "\n", 234 | "\n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | "
Dummy_ADummy_BDummy_C
0100
1010
2001
3100
4010
5001
6100
7010
8001
\n", 300 | "
" 301 | ], 302 | "text/plain": [ 303 | " Dummy_A Dummy_B Dummy_C\n", 304 | "0 1 0 0\n", 305 | "1 0 1 0\n", 306 | "2 0 0 1\n", 307 | "3 1 0 0\n", 308 | "4 0 1 0\n", 309 | "5 0 0 1\n", 310 | "6 1 0 0\n", 311 | "7 0 1 0\n", 312 | "8 0 0 1" 313 | ] 314 | }, 315 | "execution_count": 5, 316 | "metadata": {}, 317 | "output_type": "execute_result" 318 | } 319 | ], 320 | "source": [ 321 | "one_hot_encoded_df = pd.get_dummies(df, columns=['Category'], prefix='Dummy')\n", 322 | "one_hot_encoded_df" 323 | ] 324 | }, 325 | { 326 | "cell_type": "code", 327 | "execution_count": 6, 328 | "id": "2e8cfc1d", 329 | "metadata": {}, 330 | "outputs": [ 331 | { 332 | "data": { 333 | "text/html": [ 334 | "
\n", 335 | "\n", 348 | "\n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | "
Dummy_BDummy_C
000
110
201
300
410
501
600
710
801
\n", 404 | "
" 405 | ], 406 | "text/plain": [ 407 | " Dummy_B Dummy_C\n", 408 | "0 0 0\n", 409 | "1 1 0\n", 410 | "2 0 1\n", 411 | "3 0 0\n", 412 | "4 1 0\n", 413 | "5 0 1\n", 414 | "6 0 0\n", 415 | "7 1 0\n", 416 | "8 0 1" 417 | ] 418 | }, 419 | "execution_count": 6, 420 | "metadata": {}, 421 | "output_type": "execute_result" 422 | } 423 | ], 424 | "source": [ 425 | "one_hot_encoded_df = pd.get_dummies(df, columns=['Category'], prefix='Dummy',drop_first=True )\n", 426 | "one_hot_encoded_df" 427 | ] 428 | }, 429 | { 430 | "cell_type": "code", 431 | "execution_count": 7, 432 | "id": "287f4418", 433 | "metadata": {}, 434 | "outputs": [ 435 | { 436 | "data": { 437 | "text/html": [ 438 | "
\n", 439 | "\n", 452 | "\n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | "
Category
0A
1B
2C
3A
4B
\n", 482 | "
" 483 | ], 484 | "text/plain": [ 485 | " Category\n", 486 | "0 A\n", 487 | "1 B\n", 488 | "2 C\n", 489 | "3 A\n", 490 | "4 B" 491 | ] 492 | }, 493 | "execution_count": 7, 494 | "metadata": {}, 495 | "output_type": "execute_result" 496 | } 497 | ], 498 | "source": [ 499 | "df.head()" 500 | ] 501 | }, 502 | { 503 | "cell_type": "code", 504 | "execution_count": null, 505 | "id": "cb821849", 506 | "metadata": {}, 507 | "outputs": [], 508 | "source": [] 509 | } 510 | ], 511 | "metadata": { 512 | "kernelspec": { 513 | "display_name": "Python 3 (ipykernel)", 514 | "language": "python", 515 | "name": "python3" 516 | }, 517 | "language_info": { 518 | "codemirror_mode": { 519 | "name": "ipython", 520 | "version": 3 521 | }, 522 | "file_extension": ".py", 523 | "mimetype": "text/x-python", 524 | "name": "python", 525 | "nbconvert_exporter": "python", 526 | "pygments_lexer": "ipython3", 527 | "version": "3.9.13" 528 | } 529 | }, 530 | "nbformat": 4, 531 | "nbformat_minor": 5 532 | } 533 | -------------------------------------------------------------------------------- /3. Binary Encoder.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "adfe09d4", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd\n", 11 | "import category_encoders as ce" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 2, 17 | "id": "56986103", 18 | "metadata": {}, 19 | "outputs": [], 20 | "source": [ 21 | "data = {'Category': ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C']}\n", 22 | "df = pd.DataFrame(data)" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": 3, 28 | "id": "b5813023", 29 | "metadata": {}, 30 | "outputs": [ 31 | { 32 | "data": { 33 | "text/html": [ 34 | "
\n", 35 | "\n", 48 | "\n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | "
Category
0A
1B
2C
3A
4B
\n", 78 | "
" 79 | ], 80 | "text/plain": [ 81 | " Category\n", 82 | "0 A\n", 83 | "1 B\n", 84 | "2 C\n", 85 | "3 A\n", 86 | "4 B" 87 | ] 88 | }, 89 | "execution_count": 3, 90 | "metadata": {}, 91 | "output_type": "execute_result" 92 | } 93 | ], 94 | "source": [ 95 | "df.head()" 96 | ] 97 | }, 98 | { 99 | "cell_type": "code", 100 | "execution_count": 4, 101 | "id": "9390c11f", 102 | "metadata": {}, 103 | "outputs": [ 104 | { 105 | "data": { 106 | "text/plain": [ 107 | "(9, 1)" 108 | ] 109 | }, 110 | "execution_count": 4, 111 | "metadata": {}, 112 | "output_type": "execute_result" 113 | } 114 | ], 115 | "source": [ 116 | "df.shape" 117 | ] 118 | }, 119 | { 120 | "cell_type": "code", 121 | "execution_count": 5, 122 | "id": "ec81a1c2", 123 | "metadata": {}, 124 | "outputs": [], 125 | "source": [ 126 | "encoder = ce.BinaryEncoder(cols=['Category'], return_df=True)" 127 | ] 128 | }, 129 | { 130 | "cell_type": "code", 131 | "execution_count": 6, 132 | "id": "d5fe35de", 133 | "metadata": {}, 134 | "outputs": [ 135 | { 136 | "data": { 137 | "text/html": [ 138 | "
\n", 139 | "\n", 152 | "\n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | "
Category_0Category_1
001
110
211
301
410
511
601
710
811
\n", 208 | "
" 209 | ], 210 | "text/plain": [ 211 | " Category_0 Category_1\n", 212 | "0 0 1\n", 213 | "1 1 0\n", 214 | "2 1 1\n", 215 | "3 0 1\n", 216 | "4 1 0\n", 217 | "5 1 1\n", 218 | "6 0 1\n", 219 | "7 1 0\n", 220 | "8 1 1" 221 | ] 222 | }, 223 | "execution_count": 6, 224 | "metadata": {}, 225 | "output_type": "execute_result" 226 | } 227 | ], 228 | "source": [ 229 | "df_binary_encoded = encoder.fit_transform(df)\n", 230 | "df_binary_encoded" 231 | ] 232 | }, 233 | { 234 | "cell_type": "code", 235 | "execution_count": null, 236 | "id": "201a7fa5", 237 | "metadata": {}, 238 | "outputs": [], 239 | "source": [] 240 | } 241 | ], 242 | "metadata": { 243 | "kernelspec": { 244 | "display_name": "Python 3 (ipykernel)", 245 | "language": "python", 246 | "name": "python3" 247 | }, 248 | "language_info": { 249 | "codemirror_mode": { 250 | "name": "ipython", 251 | "version": 3 252 | }, 253 | "file_extension": ".py", 254 | "mimetype": "text/x-python", 255 | "name": "python", 256 | "nbconvert_exporter": "python", 257 | "pygments_lexer": "ipython3", 258 | "version": "3.9.13" 259 | } 260 | }, 261 | "nbformat": 4, 262 | "nbformat_minor": 5 263 | } 264 | -------------------------------------------------------------------------------- /4. Ordinal Encoder.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "b78c029d", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd\n", 11 | "from sklearn.preprocessing import OrdinalEncoder" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 2, 17 | "id": "c146e9da", 18 | "metadata": {}, 19 | "outputs": [], 20 | "source": [ 21 | "data = [\n", 22 | " ['good'], ['bad'], ['excellent'], ['average'], \n", 23 | " ['good'], ['average'], ['excellent'], ['bad'], \n", 24 | " ['average'], ['good']\n", 25 | "]" 26 | ] 27 | }, 28 | { 29 | "cell_type": "code", 30 | "execution_count": 3, 31 | "id": "3ad7f2c7", 32 | "metadata": {}, 33 | "outputs": [ 34 | { 35 | "data": { 36 | "text/html": [ 37 | "
\n", 38 | "\n", 51 | "\n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | "
reviews
0good
1bad
2excellent
3average
4good
\n", 81 | "
" 82 | ], 83 | "text/plain": [ 84 | " reviews\n", 85 | "0 good\n", 86 | "1 bad\n", 87 | "2 excellent\n", 88 | "3 average\n", 89 | "4 good" 90 | ] 91 | }, 92 | "execution_count": 3, 93 | "metadata": {}, 94 | "output_type": "execute_result" 95 | } 96 | ], 97 | "source": [ 98 | "data = pd.DataFrame(data=data, columns=['reviews'])\n", 99 | "data.head()" 100 | ] 101 | }, 102 | { 103 | "cell_type": "code", 104 | "execution_count": 4, 105 | "id": "14b89f09", 106 | "metadata": {}, 107 | "outputs": [ 108 | { 109 | "data": { 110 | "text/plain": [ 111 | "(10, 1)" 112 | ] 113 | }, 114 | "execution_count": 4, 115 | "metadata": {}, 116 | "output_type": "execute_result" 117 | } 118 | ], 119 | "source": [ 120 | "data.shape" 121 | ] 122 | }, 123 | { 124 | "cell_type": "code", 125 | "execution_count": 5, 126 | "id": "3e569b99", 127 | "metadata": {}, 128 | "outputs": [], 129 | "source": [ 130 | "categories = [['bad', 'average', 'good', 'excellent']]" 131 | ] 132 | }, 133 | { 134 | "cell_type": "code", 135 | "execution_count": 6, 136 | "id": "eee41b3c", 137 | "metadata": {}, 138 | "outputs": [ 139 | { 140 | "data": { 141 | "text/plain": [ 142 | "[['bad', 'average', 'good', 'excellent']]" 143 | ] 144 | }, 145 | "execution_count": 6, 146 | "metadata": {}, 147 | "output_type": "execute_result" 148 | } 149 | ], 150 | "source": [ 151 | "categories" 152 | ] 153 | }, 154 | { 155 | "cell_type": "code", 156 | "execution_count": 7, 157 | "id": "b3a1d73e", 158 | "metadata": {}, 159 | "outputs": [], 160 | "source": [ 161 | "encoder = OrdinalEncoder(categories=categories)" 162 | ] 163 | }, 164 | { 165 | "cell_type": "code", 166 | "execution_count": 8, 167 | "id": "74286b79", 168 | "metadata": {}, 169 | "outputs": [ 170 | { 171 | "data": { 172 | "text/plain": [ 173 | "array([[2.],\n", 174 | " [0.],\n", 175 | " [3.],\n", 176 | " [1.],\n", 177 | " [2.],\n", 178 | " [1.],\n", 179 | " [3.],\n", 180 | " [0.],\n", 181 | " [1.],\n", 182 | " [2.]])" 183 | ] 184 | }, 185 | "execution_count": 8, 186 | "metadata": {}, 187 | "output_type": "execute_result" 188 | } 189 | ], 190 | "source": [ 191 | "encoded_data = encoder.fit_transform(data)\n", 192 | "encoded_data" 193 | ] 194 | }, 195 | { 196 | "cell_type": "code", 197 | "execution_count": 9, 198 | "id": "b4fa6545", 199 | "metadata": {}, 200 | "outputs": [ 201 | { 202 | "data": { 203 | "text/plain": [ 204 | "array([['good'],\n", 205 | " ['bad'],\n", 206 | " ['excellent'],\n", 207 | " ['average'],\n", 208 | " ['good'],\n", 209 | " ['average'],\n", 210 | " ['excellent'],\n", 211 | " ['bad'],\n", 212 | " ['average'],\n", 213 | " ['good']], dtype=object)" 214 | ] 215 | }, 216 | "execution_count": 9, 217 | "metadata": {}, 218 | "output_type": "execute_result" 219 | } 220 | ], 221 | "source": [ 222 | "decoded_data = encoder.inverse_transform(encoded_data)\n", 223 | "decoded_data" 224 | ] 225 | }, 226 | { 227 | "cell_type": "code", 228 | "execution_count": null, 229 | "id": "525a8f59", 230 | "metadata": {}, 231 | "outputs": [], 232 | "source": [] 233 | } 234 | ], 235 | "metadata": { 236 | "kernelspec": { 237 | "display_name": "Python 3 (ipykernel)", 238 | "language": "python", 239 | "name": "python3" 240 | }, 241 | "language_info": { 242 | "codemirror_mode": { 243 | "name": "ipython", 244 | "version": 3 245 | }, 246 | "file_extension": ".py", 247 | "mimetype": "text/x-python", 248 | "name": "python", 249 | "nbconvert_exporter": "python", 250 | "pygments_lexer": "ipython3", 251 | "version": "3.9.13" 252 | } 253 | }, 254 | "nbformat": 4, 255 | "nbformat_minor": 5 256 | } 257 | -------------------------------------------------------------------------------- /Bias Variance.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "b1a8e3b3", 7 | "metadata": {}, 8 | "outputs": [ 9 | { 10 | "name": "stdout", 11 | "output_type": "stream", 12 | "text": [ 13 | "MSE (Mean Squared Error): 0.9388721228182039\n", 14 | "Bias^2: 0.9178184739745323\n", 15 | "Variance: 0.021053648843671263\n" 16 | ] 17 | } 18 | ], 19 | "source": [ 20 | "import numpy as np\n", 21 | "from sklearn.model_selection import train_test_split\n", 22 | "from sklearn.linear_model import LinearRegression\n", 23 | "from mlxtend.evaluate import bias_variance_decomp\n", 24 | "\n", 25 | "np.random.seed(0)\n", 26 | "X = np.random.rand(100, 1) * 10\n", 27 | "y = 2 * X.squeeze() + np.random.randn(100) # True relationship is y = 2X + noise\n", 28 | "\n", 29 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", 30 | "model = LinearRegression()\n", 31 | "model.fit(X_train, y_train)\n", 32 | "\n", 33 | "# Calculate bias and variance using the bias_variance_decomp function\n", 34 | "mse, bias, variance = bias_variance_decomp(model, X_train, y_train, X_test, y_test, loss='mse')\n", 35 | "\n", 36 | "print(\"MSE (Mean Squared Error):\", mse)\n", 37 | "print(\"Bias^2:\", bias)\n", 38 | "print(\"Variance:\", variance)" 39 | ] 40 | }, 41 | { 42 | "cell_type": "code", 43 | "execution_count": null, 44 | "id": "6c73e239", 45 | "metadata": {}, 46 | "outputs": [], 47 | "source": [] 48 | } 49 | ], 50 | "metadata": { 51 | "kernelspec": { 52 | "display_name": "Python 3 (ipykernel)", 53 | "language": "python", 54 | "name": "python3" 55 | }, 56 | "language_info": { 57 | "codemirror_mode": { 58 | "name": "ipython", 59 | "version": 3 60 | }, 61 | "file_extension": ".py", 62 | "mimetype": "text/x-python", 63 | "name": "python", 64 | "nbconvert_exporter": "python", 65 | "pygments_lexer": "ipython3", 66 | "version": "3.9.13" 67 | } 68 | }, 69 | "nbformat": 4, 70 | "nbformat_minor": 5 71 | } 72 | -------------------------------------------------------------------------------- /Cross Validation.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "id": "e8f71325", 6 | "metadata": {}, 7 | "source": [ 8 | "# Import Libraries" 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": null, 14 | "id": "be1ca00c", 15 | "metadata": {}, 16 | "outputs": [], 17 | "source": [ 18 | "import numpy as np\n", 19 | "import xgboost as xgb\n", 20 | "from sklearn.datasets import make_classification\n", 21 | "from sklearn.model_selection import train_test_split, KFold, StratifiedKFold, cross_val_score\n", 22 | "import warnings\n", 23 | "warnings.filterwarnings('ignore')" 24 | ] 25 | }, 26 | { 27 | "cell_type": "markdown", 28 | "id": "8169bc95", 29 | "metadata": {}, 30 | "source": [ 31 | "# Generating synthetic data & splitting into train-test" 32 | ] 33 | }, 34 | { 35 | "cell_type": "code", 36 | "execution_count": null, 37 | "id": "d78b72e8", 38 | "metadata": {}, 39 | "outputs": [], 40 | "source": [ 41 | "X, y = make_classification(n_samples=1000, n_features=20, n_informative=2, n_redundant=10, random_state=42)\n", 42 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)" 43 | ] 44 | }, 45 | { 46 | "cell_type": "markdown", 47 | "id": "74140325", 48 | "metadata": {}, 49 | "source": [ 50 | "# XGBoost Classifier" 51 | ] 52 | }, 53 | { 54 | "cell_type": "code", 55 | "execution_count": null, 56 | "id": "02b08163", 57 | "metadata": {}, 58 | "outputs": [], 59 | "source": [ 60 | "clf = xgb.XGBClassifier(use_label_encoder=False, eval_metric='logloss')\n", 61 | "clf.fit(X_train, y_train)" 62 | ] 63 | }, 64 | { 65 | "cell_type": "code", 66 | "execution_count": null, 67 | "id": "88846ffc", 68 | "metadata": {}, 69 | "outputs": [], 70 | "source": [ 71 | "clf.score(X_test,y_test)" 72 | ] 73 | }, 74 | { 75 | "cell_type": "markdown", 76 | "id": "828a0d8f", 77 | "metadata": {}, 78 | "source": [ 79 | "# Perform k-Fold Cross-Validation" 80 | ] 81 | }, 82 | { 83 | "cell_type": "code", 84 | "execution_count": null, 85 | "id": "40209a32", 86 | "metadata": {}, 87 | "outputs": [], 88 | "source": [ 89 | "kf = KFold(n_splits=5, random_state=42, shuffle=True)\n", 90 | "kf_scores = cross_val_score(clf, X, y, cv=kf)" 91 | ] 92 | }, 93 | { 94 | "cell_type": "code", 95 | "execution_count": null, 96 | "id": "7f1faafa", 97 | "metadata": {}, 98 | "outputs": [], 99 | "source": [ 100 | "kf_scores" 101 | ] 102 | }, 103 | { 104 | "cell_type": "markdown", 105 | "id": "ebe2b712", 106 | "metadata": {}, 107 | "source": [ 108 | "# Perform Stratified k-Fold Cross-Validation" 109 | ] 110 | }, 111 | { 112 | "cell_type": "code", 113 | "execution_count": null, 114 | "id": "975f881f", 115 | "metadata": {}, 116 | "outputs": [], 117 | "source": [ 118 | "skf = StratifiedKFold(n_splits=5, random_state=42, shuffle=True)\n", 119 | "skf_scores = cross_val_score(clf, X, y, cv=skf)" 120 | ] 121 | }, 122 | { 123 | "cell_type": "code", 124 | "execution_count": null, 125 | "id": "038c6ded", 126 | "metadata": {}, 127 | "outputs": [], 128 | "source": [ 129 | "skf_scores" 130 | ] 131 | }, 132 | { 133 | "cell_type": "code", 134 | "execution_count": null, 135 | "id": "25f4fdd9", 136 | "metadata": {}, 137 | "outputs": [], 138 | "source": [] 139 | } 140 | ], 141 | "metadata": { 142 | "kernelspec": { 143 | "display_name": "Python 3 (ipykernel)", 144 | "language": "python", 145 | "name": "python3" 146 | }, 147 | "language_info": { 148 | "codemirror_mode": { 149 | "name": "ipython", 150 | "version": 3 151 | }, 152 | "file_extension": ".py", 153 | "mimetype": "text/x-python", 154 | "name": "python", 155 | "nbconvert_exporter": "python", 156 | "pygments_lexer": "ipython3", 157 | "version": "3.9.13" 158 | } 159 | }, 160 | "nbformat": 4, 161 | "nbformat_minor": 5 162 | } 163 | -------------------------------------------------------------------------------- /Datasets/car data.csv: -------------------------------------------------------------------------------- 1 | speed,car_age,experience,risk 2 | 172,22,8.104041735628343,42 3 | 94,17,11.429460504100213,36 4 | 186,20,14.819477218213366,45 5 | 151,10,15.343897062171434,38 6 | 100,6,16.455807037533862,47 7 | 182,15,14.88423313886596,66 8 | 154,11,4.750129425849399,64 9 | 167,28,8.004457857440496,42 10 | 196,5,9.554297817604551,77 11 | 179,1,1.6578264338670845,95 12 | 183,8,10.567402425944184,75 13 | 210,21,8.726716632131119,19 14 | 132,28,16.04218498053468,14 15 | 81,12,19.558013375085416,83 16 | 167,12,11.120100772851693,47 17 | 117,5,6.453727765551673,22 18 | 209,7,0.8680156659634553,40 19 | 100,4,18.49286660447192,56 20 | 168,20,13.90822246213295,65 21 | 128,15,1.508690941795385,24 22 | 138,3,3.3243086381850584,38 23 | 94,23,4.336182131729824,17 24 | 130,8,5.889878936788597,14 25 | 187,20,19.916627500587413,38 26 | 134,16,13.938501117276296,56 27 | 143,13,7.6840366275843985,77 28 | 210,18,14.742014116860386,85 29 | 130,28,18.305086833382127,54 30 | 214,10,19.174048148156924,11 31 | 100,19,1.157277955154148,36 32 | 152,17,7.890435972162598,45 33 | 97,24,2.135121318717688,45 34 | 211,19,6.713201295939264,35 35 | 168,28,3.39359807791131,52 36 | 139,26,12.936967233374476,36 37 | 93,23,7.765367679797444,78 38 | 88,26,4.587894914098993,29 39 | 169,5,5.31875849928478,20 40 | 132,26,7.206901904105365,83 41 | 209,21,5.198997257085254,47 42 | 163,23,9.06481693657662,15 43 | 171,9,0.6463190221930093,81 44 | 190,12,5.595270143378914,32 45 | 87,21,8.224134417443725,56 46 | 114,1,12.05563764046597,99 47 | 160,26,5.419152850302598,55 48 | 183,1,1.524007591983263,99 49 | 211,15,18.81063654270767,22 50 | 81,2,8.332781154769584,71 51 | 213,22,11.623252423616526,91 52 | 133,16,18.38353103671119,98 53 | 185,25,1.6549684007061227,69 54 | 83,8,17.533229718515855,52 55 | 133,13,11.0317574508814,85 56 | 123,21,3.296685222740019,77 57 | 93,1,8.225102331707381,14 58 | 174,16,15.55204567470451,46 59 | 127,29,9.607401637327094,81 60 | 94,7,19.70572101331009,40 61 | 119,5,7.534779398758815,18 62 | 161,22,14.99156599952144,60 63 | 190,29,7.859788979577182,38 64 | 132,23,16.58328441413029,87 65 | 103,3,11.381629383314952,49 66 | 203,12,1.270236591800027,50 67 | 120,26,0.7364373527198276,95 68 | 94,16,2.677042376012664,20 69 | 124,19,0.2734392965399457,32 70 | 144,5,1.5071812070492463,10 71 | 168,22,13.83428794337824,55 72 | 150,25,10.68692550058926,30 73 | 88,29,14.998214989399436,99 74 | 167,14,18.263315045152854,45 75 | 208,28,11.70299064650944,63 76 | 215,5,14.52241688143696,96 77 | 142,15,15.141624040849118,66 78 | 218,17,7.557010985515729,10 79 | 215,20,4.100906570130498,63 80 | 112,5,5.028848790235969,64 81 | 202,12,5.494635940518176,49 82 | 84,16,4.144552980161129,24 83 | 120,26,17.564413349583845,30 84 | 107,26,15.139982643444574,56 85 | 214,16,0.9379293558243984,82 86 | 151,21,5.373449640506147,62 87 | 91,7,0.4436948406060326,18 88 | 112,4,9.963303732917858,83 89 | 127,1,9.524213935780285,61 90 | 141,5,16.627429801250024,66 91 | 116,23,6.1555447954209885,35 92 | 178,26,16.327714704261247,50 93 | 183,10,19.359475308796465,44 94 | 114,22,1.7681644673129315,72 95 | 180,5,15.836356789392658,34 96 | 210,4,11.79911794275272,99 97 | 80,2,9.600919340369504,84 98 | 84,20,8.410715573301502,47 99 | 182,10,15.69336527888619,11 100 | 106,26,12.787227139484846,16 101 | 216,19,16.10089335038724,91 102 | 94,26,18.06302117353253,43 103 | 169,1,12.34527424194584,26 104 | 121,24,19.60925450184756,52 105 | 203,5,12.161756990837704,68 106 | 142,13,12.732886432445651,60 107 | 175,4,11.096312170844511,63 108 | 131,16,1.8200418210266056,33 109 | 211,16,10.94892613798223,80 110 | 108,23,9.018208948322089,61 111 | 115,2,18.20942556806546,79 112 | 92,17,5.95918903083901,97 113 | 150,28,10.472045520300224,42 114 | 165,27,13.952837429869266,58 115 | 107,20,15.929435513477546,38 116 | 145,24,9.186936158923448,72 117 | 124,12,16.841828300374193,31 118 | 141,18,15.37835482630795,35 119 | 213,3,1.3247195570373171,37 120 | 107,28,0.917225328092659,94 121 | 107,1,12.416113688441826,58 122 | 187,1,6.948268164508285,80 123 | 123,29,4.182615821570284,90 124 | 109,11,6.8312642091309,58 125 | 207,12,9.20238317967144,95 126 | 171,3,11.695322118983071,72 127 | 208,1,8.006009778205627,70 128 | 200,1,13.953351473938636,58 129 | 106,8,3.6013454469859707,80 130 | 200,10,13.93002932454158,10 131 | 195,11,8.233224287150563,22 132 | 82,12,17.486352097088343,96 133 | 182,29,10.304721097284215,60 134 | 216,13,19.462206985402087,65 135 | 141,12,12.038707910819204,92 136 | 130,14,4.476981318126412,71 137 | 138,2,16.435812736888984,41 138 | 197,29,6.901652556447735,39 139 | 175,19,6.95238428965367,38 140 | 192,18,0.6360936297033026,58 141 | 141,3,10.974306184148173,54 142 | 131,23,10.68847007465046,39 143 | 91,17,7.119829685439722,25 144 | 118,26,17.884345257918515,49 145 | 209,8,2.574967965992878,28 146 | 210,29,6.601990266203108,27 147 | 192,26,6.43165529360058,10 148 | 180,10,1.8458117245749217,87 149 | 192,26,9.622907881125863,56 150 | 160,2,13.75569434192166,75 151 | 192,19,10.233140270945224,47 152 | 81,9,3.1395536543238745,60 153 | 209,7,7.545719304841452,72 154 | 133,4,0.0519004876729312,13 155 | 166,26,17.366022140711735,10 156 | 208,21,1.6903401536136389,17 157 | 205,18,11.945561645108612,38 158 | 132,11,10.73181291974665,12 159 | 147,29,18.480835182148663,41 160 | 202,24,4.722330662348087,19 161 | 117,4,15.199108178751713,83 162 | 103,25,10.62531507947068,92 163 | 148,21,14.410321227829296,43 164 | 195,29,1.246827250224829,96 165 | 177,25,2.954781838124534,64 166 | 218,4,2.662338571749565,41 167 | 176,10,13.743310108066622,59 168 | 203,5,16.888813452672576,16 169 | 149,9,14.992324640171748,17 170 | 82,3,17.344299621494464,66 171 | 175,3,7.94327665008165,97 172 | 131,16,2.097383330649618,96 173 | 207,4,14.748104121876382,68 174 | 118,18,3.645677569519161,81 175 | 161,17,11.279301840376728,63 176 | 183,7,16.814199717558623,76 177 | 208,24,1.7840865742411238,60 178 | 90,23,10.70671128031047,17 179 | 178,12,6.858537285565205,44 180 | 86,17,9.479398828611124,97 181 | 169,23,7.102086065586095,87 182 | 191,13,12.97645680583152,41 183 | 139,23,9.591642035085004,55 184 | 192,25,11.683989694283383,25 185 | 81,3,14.736449507898255,77 186 | 208,9,11.154845319008748,46 187 | 127,17,11.73070869321518,63 188 | 219,17,11.289170850452823,94 189 | 116,20,7.575452519025787,23 190 | 88,16,6.748936677438362,64 191 | 178,25,17.992947942900244,57 192 | 127,22,12.151104445871455,91 193 | 210,13,4.8870631092930905,16 194 | 133,27,9.964953956978803,83 195 | 199,19,6.60696962561828,16 196 | 195,17,18.67383647519749,42 197 | 192,12,4.506655954250565,94 198 | 183,29,7.307136393481153,28 199 | 163,9,9.75619601617476,28 200 | 191,19,17.016350356722924,45 201 | 178,12,1.7577524908028774,38 202 | 172,9,16.11729773482287,69 203 | 207,7,1.1130697871395068,91 204 | 189,28,16.846280705963633,11 205 | 161,14,1.0327095574902567,10 206 | 133,20,0.3648496285672209,56 207 | 147,19,13.93922924732843,78 208 | 112,26,19.945110695367887,29 209 | 100,15,17.932205259480416,20 210 | 127,16,11.5199683561132,11 211 | 207,21,18.347912261710636,76 212 | 215,5,0.1060001279521083,96 213 | 214,3,19.50134325890285,21 214 | 207,12,9.81497558517569,29 215 | 112,25,14.457921932435514,14 216 | 194,20,16.417229463067052,46 217 | 198,27,14.369145416731072,47 218 | 101,21,10.700734640898212,18 219 | 117,4,9.53238968252824,62 220 | 188,21,16.771651174052494,53 221 | 87,16,19.359881330084686,33 222 | 106,25,14.219049576734966,90 223 | 100,13,14.724943673969763,39 224 | 109,21,10.596800463622332,68 225 | 176,10,14.14460191288889,96 226 | 107,26,15.355590028856776,90 227 | 190,7,1.7458035917935089,90 228 | 140,14,10.12207912718694,23 229 | 127,26,18.64028684513868,18 230 | 83,5,6.412843843190286,49 231 | 114,3,11.877661951157975,75 232 | 128,23,7.384609630197922,34 233 | 96,29,9.085359444381991,82 234 | 125,11,10.972062358763065,31 235 | 196,11,10.978439597779545,13 236 | 85,18,4.034609246604717,35 237 | 178,15,13.691430957596666,67 238 | 203,12,1.7573622248531362,38 239 | 116,9,2.7764954688404075,96 240 | 172,26,2.3339212828336264,84 241 | 125,12,9.463324021037844,79 242 | 174,17,12.122037621116773,27 243 | 195,6,2.133985002268721,51 244 | 146,7,17.014549200329093,50 245 | 207,14,14.919490510974365,47 246 | 97,13,8.170365858718338,43 247 | 104,8,18.65876134199909,26 248 | 137,9,4.100036201064745,34 249 | 146,18,7.584571699276008,85 250 | 183,27,18.52898847179422,96 251 | 103,26,14.431931015025544,95 252 | 193,2,0.9618928792817538,94 253 | 111,5,15.630289635028298,36 254 | 165,29,16.558817743549838,66 255 | 206,5,15.01003849530627,40 256 | 209,6,15.990742618390312,15 257 | 96,19,16.502653533855945,49 258 | 183,8,3.728099735762882,21 259 | 216,16,4.713834921299995,62 260 | 122,13,12.675171274403546,80 261 | 118,1,18.15732260925032,19 262 | 105,22,6.323931645929893,54 263 | 178,20,11.766133515901132,26 264 | 129,17,13.659641268342648,35 265 | 92,7,9.038972025980785,94 266 | 139,25,14.27564909710652,71 267 | 214,13,17.99334890584346,55 268 | 136,4,12.482030883636751,73 269 | 99,6,8.77489350776678,63 270 | 144,28,11.549725418122511,74 271 | 87,19,7.107249036367918,60 272 | 194,29,7.829642204030039,62 273 | 171,12,10.63714959376348,45 274 | 177,22,1.3323822478163394,35 275 | 145,7,4.580507818495927,38 276 | 111,27,10.85698621226818,30 277 | 165,10,8.630562862728851,20 278 | 130,26,6.656315718249686,49 279 | 142,19,14.61098273618603,20 280 | 204,7,13.87435214806677,45 281 | 137,3,3.334615199867663,68 282 | -------------------------------------------------------------------------------- /Datasets/linear_data.csv: -------------------------------------------------------------------------------- 1 | x,y 2 | 0.0,4.4476917012367645 3 | 0.02004008016032064,5.024612031683661 4 | 0.04008016032064128,5.869592917849527 5 | 0.06012024048096192,4.722490205935278 6 | 0.08016032064128256,4.877100714416455 7 | 0.1002004008016032,5.046555162919705 8 | 0.12024048096192384,5.3749929985119715 9 | 0.1402805611222445,5.54302005406743 10 | 0.16032064128256512,5.954347109974459 11 | 0.18036072144288576,5.610470559620101 12 | 0.2004008016032064,5.369775040307245 13 | 0.22044088176352705,6.070465328332461 14 | 0.24048096192384769,5.833017434918486 15 | 0.2605210420841683,4.773202326039828 16 | 0.280561122244489,6.824306364666977 17 | 0.3006012024048096,6.486163098907986 18 | 0.32064128256513025,5.557175453746723 19 | 0.3406813627254509,5.87031777632014 20 | 0.3607214428857715,6.383622260769463 21 | 0.3807615230460922,5.675422649743743 22 | 0.4008016032064128,6.166779101601335 23 | 0.42084168336673344,6.393972603519205 24 | 0.4408817635270541,5.374350573186888 25 | 0.4609218436873747,5.620677760583318 26 | 0.48096192384769537,6.422628046600681 27 | 0.501002004008016,6.232411246590447 28 | 0.5210420841683366,6.503982448493647 29 | 0.5410821643286573,6.015880321330456 30 | 0.561122244488978,5.97774188350084 31 | 0.5811623246492986,5.163004911506911 32 | 0.6012024048096192,5.629404596365517 33 | 0.6212424849699398,6.266018017269126 34 | 0.6412825651302605,6.694843740042638 35 | 0.6613226452905812,6.58823447384901 36 | 0.6813627254509018,6.298604463887953 37 | 0.7014028056112224,6.266919827977096 38 | 0.721442885771543,6.5514755878622255 39 | 0.7414829659318637,6.522071522409804 40 | 0.7615230460921844,7.225318849654224 41 | 0.781563126252505,6.636346637744135 42 | 0.8016032064128256,5.862583431727002 43 | 0.8216432865731462,6.007007505630135 44 | 0.8416833667334669,7.442746401948724 45 | 0.8617234468937875,6.1378666630625345 46 | 0.8817635270541082,7.145775780624983 47 | 0.9018036072144289,6.669420846824168 48 | 0.9218436873747494,6.758808227798256 49 | 0.9418837675350701,6.81670114368593 50 | 0.9619238476953907,7.534540175120381 51 | 0.9819639278557114,6.86750694143944 52 | 1.002004008016032,6.987348374609487 53 | 1.0220440881763526,6.278686427652959 54 | 1.0420841683366733,7.187513592527349 55 | 1.062124248496994,7.389769750483017 56 | 1.0821643286573146,7.283901447641522 57 | 1.1022044088176353,7.903356948178638 58 | 1.122244488977956,7.272074655346028 59 | 1.1422845691382766,7.434057866336062 60 | 1.1623246492985972,8.148901303731284 61 | 1.1823647294589177,6.589722364238762 62 | 1.2024048096192383,7.176896945338792 63 | 1.222444889779559,8.15796915556875 64 | 1.2424849699398797,7.9530345140353 65 | 1.2625250501002003,7.8642401496206364 66 | 1.282565130260521,7.981455630253281 67 | 1.3026052104208417,7.7687435254021935 68 | 1.3226452905811623,8.46108929492846 69 | 1.342685370741483,7.874250326348325 70 | 1.3627254509018036,7.845384454751247 71 | 1.3827655310621243,7.845010399187069 72 | 1.4028056112224447,7.902043200220083 73 | 1.4228456913827654,7.267182742357597 74 | 1.442885771543086,8.271108070317844 75 | 1.4629258517034067,7.86063183651515 76 | 1.4829659318637274,8.876889412657658 77 | 1.503006012024048,7.9681867887538855 78 | 1.5230460921843687,8.256551326456565 79 | 1.5430861723446894,8.209473437820046 80 | 1.56312625250501,7.813473987455394 81 | 1.5831663326653307,8.662401079589914 82 | 1.6032064128256511,9.15894464593131 83 | 1.6232464929859718,8.239104376142022 84 | 1.6432865731462925,8.136333753499875 85 | 1.6633266533066131,8.149138941085539 86 | 1.6833667334669338,7.420552520275197 87 | 1.7034068136272544,8.317907055403003 88 | 1.723446893787575,8.572392845579312 89 | 1.7434869739478958,9.014352910485933 90 | 1.7635270541082164,9.007077978791397 91 | 1.783567134268537,8.358884727318728 92 | 1.8036072144288577,8.468802931470773 93 | 1.8236472945891782,9.209247241985576 94 | 1.8436873747494988,8.600642800962559 95 | 1.8637274549098195,8.47244013994183 96 | 1.8837675350701402,9.463794294857417 97 | 1.9038076152304608,9.32640806398624 98 | 1.9238476953907815,8.857091286668693 99 | 1.9438877755511021,8.590886827212872 100 | 1.9639278557114228,7.921915551800491 101 | 1.9839679358717435,9.262787674530848 102 | 2.004008016032064,8.559831170788037 103 | 2.024048096192385,8.066730187814393 104 | 2.0440881763527052,9.880586616379919 105 | 2.064128256513026,9.452240408530997 106 | 2.0841683366733466,8.598832576788212 107 | 2.1042084168336674,8.601216142187706 108 | 2.124248496993988,9.683977885073785 109 | 2.1442885771543083,8.849591846040681 110 | 2.164328657314629,9.9767322483932 111 | 2.1843687374749496,9.676967131262977 112 | 2.2044088176352705,9.677115895553953 113 | 2.224448897795591,9.651245523398334 114 | 2.244488977955912,9.58470339192378 115 | 2.2645290581162323,9.96931371582102 116 | 2.284569138276553,9.342098095295304 117 | 2.3046092184368736,9.652194423590938 118 | 2.3246492985971945,10.025271891032986 119 | 2.344689378757515,9.970873616808094 120 | 2.3647294589178354,9.131965515201342 121 | 2.3847695390781563,9.519334244504181 122 | 2.4048096192384767,9.936020991186531 123 | 2.4248496993987976,9.645692044277647 124 | 2.444889779559118,10.777108839604901 125 | 2.464929859719439,9.73328312206182 126 | 2.4849699398797593,9.888830655971173 127 | 2.50501002004008,10.394735129168811 128 | 2.5250501002004007,10.21536657201826 129 | 2.5450901803607215,10.017543132119059 130 | 2.565130260521042,9.752013756601709 131 | 2.5851703406813624,10.321097710061107 132 | 2.6052104208416833,10.729969061872563 133 | 2.6252505010020037,10.490048614053121 134 | 2.6452905811623246,9.901489401596589 135 | 2.665330661322645,11.199048801133646 136 | 2.685370741482966,9.647452537947986 137 | 2.7054108216432864,9.619478822385178 138 | 2.7254509018036073,10.93118041583583 139 | 2.7454909819639277,10.6039022032292 140 | 2.7655310621242486,10.256312851096476 141 | 2.785571142284569,10.021856920791473 142 | 2.8056112224448895,11.771622364529929 143 | 2.8256513026052104,10.709848041288142 144 | 2.845691382765531,10.958483350953948 145 | 2.8657314629258517,10.890405474470795 146 | 2.885771543086172,10.988947065037923 147 | 2.905811623246493,11.081670476755388 148 | 2.9258517034068134,11.217915411691065 149 | 2.9458917835671343,10.704172366753932 150 | 2.9659318637274548,10.786042734278988 151 | 2.9859719438877756,10.101432483596101 152 | 3.006012024048096,10.621871844845423 153 | 3.0260521042084165,11.18766060664019 154 | 3.0460921843687374,11.61469605648882 155 | 3.066132264529058,11.431784292246208 156 | 3.0861723446893787,11.001998517439793 157 | 3.106212424849699,10.580838393656823 158 | 3.12625250501002,9.863825437306325 159 | 3.1462925851703405,11.868452157731081 160 | 3.1663326653306614,11.038050837406248 161 | 3.186372745490982,11.148512987879933 162 | 3.2064128256513023,11.478612635256638 163 | 3.226452905811623,10.750125787927301 164 | 3.2464929859719436,11.31809488188812 165 | 3.2665330661322645,12.544802107149517 166 | 3.286573146292585,11.82583976187384 167 | 3.306613226452906,11.79285103116254 168 | 3.3266533066132262,10.862059374235573 169 | 3.346693386773547,12.815187720838413 170 | 3.3667334669338675,11.022069479554563 171 | 3.3867735470941884,12.734709471910577 172 | 3.406813627254509,10.756099246915115 173 | 3.4268537074148293,12.556390134191869 174 | 3.44689378757515,12.702814709650413 175 | 3.4669338677354706,11.521663174807022 176 | 3.4869739478957915,12.185238081928023 177 | 3.507014028056112,12.287768342164556 178 | 3.527054108216433,11.647210974817213 179 | 3.5470941883767533,11.369629571385042 180 | 3.567134268537074,11.475409865503767 181 | 3.5871743486973946,12.444852807374692 182 | 3.6072144288577155,12.171871056455728 183 | 3.627254509018036,11.97235850138499 184 | 3.6472945891783564,12.777973183939944 185 | 3.6673346693386772,12.588703293373094 186 | 3.6873747494989977,11.99701813581518 187 | 3.7074148296593186,11.814228899809944 188 | 3.727454909819639,12.716540688983317 189 | 3.74749498997996,12.22619829568089 190 | 3.7675350701402803,12.58467257154631 191 | 3.787575150300601,13.36329978691506 192 | 3.8076152304609217,12.866394580959232 193 | 3.8276553106212425,12.224177121365866 194 | 3.847695390781563,12.775721376473014 195 | 3.8677354709418834,12.259148465476073 196 | 3.8877755511022043,13.57981218017877 197 | 3.9078156312625247,12.534841887723438 198 | 3.9278557114228456,12.9593467963325 199 | 3.947895791583166,13.049657870506048 200 | 3.967935871743487,13.015496977673825 201 | 3.9879759519038074,11.996677426239346 202 | 4.008016032064128,12.29282153213659 203 | 4.028056112224449,12.829937086664351 204 | 4.04809619238477,13.255908301435305 205 | 4.06813627254509,13.067382937947293 206 | 4.0881763527054105,12.697778968835312 207 | 4.108216432865731,12.542220706170612 208 | 4.128256513026052,13.055734253802433 209 | 4.148296593186372,13.062355164032883 210 | 4.168336673346693,13.593091575489765 211 | 4.188376753507014,13.213594275934868 212 | 4.208416833667335,13.718187495549335 213 | 4.228456913827655,13.159588942795107 214 | 4.248496993987976,13.369015153368817 215 | 4.268537074148297,13.363050958475284 216 | 4.288577154308617,13.185970825166189 217 | 4.3086172344689375,13.92979379715474 218 | 4.328657314629258,13.250516630711264 219 | 4.348697394789579,13.43657403459385 220 | 4.368737474949899,13.7009151269257 221 | 4.38877755511022,13.12886528224207 222 | 4.408817635270541,13.655167791380833 223 | 4.428857715430862,13.50206225099033 224 | 4.448897795591182,13.703718494941239 225 | 4.468937875751503,13.907911750167461 226 | 4.488977955911824,13.577999100253315 227 | 4.509018036072144,13.90799818223411 228 | 4.529058116232465,14.712450608641019 229 | 4.5490981963927855,14.085297113658328 230 | 4.569138276553106,14.710907639615826 231 | 4.589178356713426,14.351603934430234 232 | 4.609218436873747,14.605517178656903 233 | 4.629258517034068,13.871287549682723 234 | 4.649298597194389,14.351050776931535 235 | 4.669338677354709,14.405633816017156 236 | 4.68937875751503,14.072444645592592 237 | 4.709418837675351,14.00742351320356 238 | 4.729458917835671,13.713785141717693 239 | 4.749498997995992,15.2470678144678 240 | 4.7695390781563125,14.052876711636376 241 | 4.789579158316633,15.252268853244416 242 | 4.809619238476953,14.38549189012498 243 | 4.829659318637274,14.228071987412182 244 | 4.849699398797595,15.01065836774769 245 | 4.869739478957916,14.423882987042404 246 | 4.889779559118236,15.063788577698611 247 | 4.909819639278557,14.653233396131009 248 | 4.929859719438878,15.09993168693665 249 | 4.949899799599198,14.415706567244843 250 | 4.969939879759519,15.355555288511422 251 | 4.98997995991984,15.223946261171182 252 | 5.01002004008016,14.56021473512899 253 | 5.03006012024048,16.38158810098833 254 | 5.050100200400801,15.37026191400185 255 | 5.070140280561122,16.285514096387512 256 | 5.090180360721443,15.980494630817265 257 | 5.110220440881763,15.126023491654633 258 | 5.130260521042084,15.054385164781896 259 | 5.150300601202405,15.09887161069441 260 | 5.170340681362725,14.425667087511545 261 | 5.190380761523046,15.032843963371318 262 | 5.210420841683367,15.544224695356718 263 | 5.2304609218436875,16.22390062412978 264 | 5.2505010020040075,15.114616062518914 265 | 5.270541082164328,15.982110464010162 266 | 5.290581162324649,14.954865653897638 267 | 5.31062124248497,15.328082472364374 268 | 5.33066132264529,15.432502348145817 269 | 5.350701402805611,15.88730834635997 270 | 5.370741482965932,15.97013778929227 271 | 5.390781563126252,16.262733998659677 272 | 5.410821643286573,16.207061766775613 273 | 5.430861723446894,15.983307554595033 274 | 5.4509018036072145,16.09698607896874 275 | 5.4709418837675345,16.736149113083837 276 | 5.490981963927855,15.726500837239579 277 | 5.511022044088176,16.409408247709933 278 | 5.531062124248497,15.158052285247868 279 | 5.551102204408817,16.30787153026644 280 | 5.571142284569138,15.900659797898722 281 | 5.591182364729459,16.183650320674673 282 | 5.611222444889779,16.74248801230641 283 | 5.6312625250501,16.3448469548634 284 | 5.651302605210421,16.745198981025307 285 | 5.671342685370742,17.079567778310686 286 | 5.691382765531062,16.577312515494985 287 | 5.7114228456913825,17.00836622369301 288 | 5.731462925851703,16.299645362863803 289 | 5.751503006012024,16.498901070889243 290 | 5.771543086172344,16.281776464145448 291 | 5.791583166332665,17.104655129988515 292 | 5.811623246492986,16.830292169882767 293 | 5.831663326653306,16.40970942235915 294 | 5.851703406813627,16.78074123045042 295 | 5.871743486973948,17.264271168357187 296 | 5.891783567134269,16.76393313874956 297 | 5.911823647294589,16.3491808891643 298 | 5.9318637274549095,16.929683332803528 299 | 5.95190380761523,15.913524819695994 300 | 5.971943887775551,17.32827309775084 301 | 5.991983967935871,16.7733041422094 302 | 6.012024048096192,16.78939272805283 303 | 6.032064128256513,17.50197609590278 304 | 6.052104208416833,16.42162697822108 305 | 6.072144288577154,18.117837898564485 306 | 6.092184368737475,16.944247716605837 307 | 6.112224448897796,16.962823426103142 308 | 6.132264529058116,17.77514142969981 309 | 6.152304609218437,17.658956854992088 310 | 6.1723446893787575,18.57030423829505 311 | 6.192384769539078,17.279166547262395 312 | 6.212424849699398,17.364646380066592 313 | 6.232464929859719,16.725271869737814 314 | 6.25250501002004,17.33895888136567 315 | 6.27254509018036,17.184374532574843 316 | 6.292585170340681,17.36078683412861 317 | 6.312625250501002,16.753156622725026 318 | 6.332665330661323,18.495634441269903 319 | 6.352705410821643,16.997109080430462 320 | 6.372745490981964,16.34438958276807 321 | 6.3927855711422845,17.191358931493056 322 | 6.4128256513026045,17.523731526207133 323 | 6.432865731462925,17.29095443129729 324 | 6.452905811623246,18.454963393612747 325 | 6.472945891783567,17.876972194269086 326 | 6.492985971943887,17.998664746091006 327 | 6.513026052104208,18.331247986361124 328 | 6.533066132264529,18.20913852801812 329 | 6.55310621242485,18.595496073572722 330 | 6.57314629258517,17.591553808352266 331 | 6.593186372745491,17.912613695151265 332 | 6.613226452905812,18.559436478846393 333 | 6.633266533066132,16.999255835090146 334 | 6.6533066132264524,17.619020986794283 335 | 6.673346693386773,18.597189502863518 336 | 6.693386773547094,18.146649029596723 337 | 6.713426853707414,18.894907482469677 338 | 6.733466933867735,18.871524016162052 339 | 6.753507014028056,17.90796758796059 340 | 6.773547094188377,18.750422732110195 341 | 6.793587174348697,19.188023276531148 342 | 6.813627254509018,18.70097170984352 343 | 6.833667334669339,18.178602230715743 344 | 6.853707414829659,19.147109800616 345 | 6.8737474949899795,19.065207253256958 346 | 6.8937875751503,19.058880542049998 347 | 6.913827655310621,19.18562475733974 348 | 6.933867735470941,17.37042904082807 349 | 6.953907815631262,19.348284411803007 350 | 6.973947895791583,19.851961696872653 351 | 6.993987975951904,19.20629518921845 352 | 7.014028056112224,19.12442061047431 353 | 7.034068136272545,19.41635560924081 354 | 7.054108216432866,19.27732916970829 355 | 7.074148296593186,19.47418722403668 356 | 7.0941883767535066,19.18911225362972 357 | 7.114228456913827,18.845104486559208 358 | 7.134268537074148,18.76637571804099 359 | 7.154308617234468,18.809521370353004 360 | 7.174348697394789,18.662176119314132 361 | 7.19438877755511,18.854906549600667 362 | 7.214428857715431,20.309490779140795 363 | 7.234468937875751,19.845985707579622 364 | 7.254509018036072,19.196504340729806 365 | 7.274549098196393,19.353901849400028 366 | 7.294589178356713,19.645457122166654 367 | 7.314629258517034,19.301486002291888 368 | 7.3346693386773545,19.703097105941872 369 | 7.354709418837675,20.098220906626807 370 | 7.374749498997995,19.731627631221905 371 | 7.394789579158316,19.95758702964763 372 | 7.414829659318637,20.272905088317085 373 | 7.434869739478958,19.733673600948812 374 | 7.454909819639278,20.052214938845736 375 | 7.474949899799599,19.79521100315752 376 | 7.49498997995992,19.97571552500263 377 | 7.51503006012024,19.867694987698997 378 | 7.535070140280561,19.80570535378306 379 | 7.5551102204408815,20.197076367375274 380 | 7.575150300601202,20.43357325911151 381 | 7.595190380761522,20.263532984523568 382 | 7.615230460921843,20.479824400999654 383 | 7.635270541082164,19.901575192043712 384 | 7.655310621242485,19.70875364638508 385 | 7.675350701402805,20.559223154289413 386 | 7.695390781563126,20.73472225871363 387 | 7.715430861723447,20.455790356746807 388 | 7.735470941883767,21.144959773979892 389 | 7.755511022044088,20.964871443082124 390 | 7.775551102204409,21.891387624793317 391 | 7.7955911823647295,20.490778107731625 392 | 7.8156312625250495,20.131838127002414 393 | 7.83567134268537,20.301274290000983 394 | 7.855711422845691,20.42867394250405 395 | 7.875751503006012,20.98951869773108 396 | 7.895791583166332,19.712548884352035 397 | 7.915831663326653,21.490938835698724 398 | 7.935871743486974,20.752095191402777 399 | 7.955911823647294,20.788426868400215 400 | 7.975951903807615,20.412232224602732 401 | 7.995991983967936,20.93487119221078 402 | 8.016032064128256,21.03868401209028 403 | 8.036072144288577,21.011171824777016 404 | 8.056112224448897,21.28175407686901 405 | 8.076152304609218,20.857488588242923 406 | 8.09619238476954,20.744476889333665 407 | 8.11623246492986,21.50662899510871 408 | 8.13627254509018,21.321878817088255 409 | 8.1563126252505,21.411215778099685 410 | 8.176352705410821,21.882219038042624 411 | 8.196392785571142,20.88150337551194 412 | 8.216432865731463,21.005245502837493 413 | 8.236472945891784,22.101555717198064 414 | 8.256513026052104,20.77158437331719 415 | 8.276553106212425,20.898400139259344 416 | 8.296593186372744,22.00211728833799 417 | 8.316633266533065,21.75236662907715 418 | 8.336673346693386,21.72596276191641 419 | 8.356713426853707,21.667597149657222 420 | 8.376753507014028,21.76914078754184 421 | 8.396793587174349,21.74753111700272 422 | 8.41683366733467,22.511388685966548 423 | 8.436873747494989,21.67467343061494 424 | 8.45691382765531,21.83314088717173 425 | 8.47695390781563,22.851132218243798 426 | 8.496993987975952,22.007742826966822 427 | 8.517034068136272,23.150076331035134 428 | 8.537074148296593,22.02165844608371 429 | 8.557114228456914,22.79793594814391 430 | 8.577154308617233,21.326636598079627 431 | 8.597194388777554,22.27121100796294 432 | 8.617234468937875,21.442232156300282 433 | 8.637274549098196,22.696776251498687 434 | 8.657314629258517,21.70819535041252 435 | 8.677354709418838,22.49659419602935 436 | 8.697394789579159,22.2536916408131 437 | 8.71743486973948,21.855768146886945 438 | 8.737474949899799,21.665269908350826 439 | 8.75751503006012,22.259509828330184 440 | 8.77755511022044,23.425424943388546 441 | 8.797595190380761,22.448447853316832 442 | 8.817635270541082,23.09388131214009 443 | 8.837675350701403,22.64682926757171 444 | 8.857715430861724,23.153794248568673 445 | 8.877755511022043,21.842055332891828 446 | 8.897795591182364,22.59399702893996 447 | 8.917835671342685,23.310374104581978 448 | 8.937875751503006,22.794124028589422 449 | 8.957915831663327,22.872604021971128 450 | 8.977955911823647,22.7406808677044 451 | 8.997995991983968,23.5706816756515 452 | 9.018036072144287,23.184829321266047 453 | 9.038076152304608,23.09816344269689 454 | 9.05811623246493,23.437759737599503 455 | 9.07815631262525,23.450425089809467 456 | 9.098196392785571,23.30268630878991 457 | 9.118236472945892,24.009988694387207 458 | 9.138276553106213,23.246409339392866 459 | 9.158316633266534,23.45567379051704 460 | 9.178356713426853,23.03523715017726 461 | 9.198396793587174,23.471851200677413 462 | 9.218436873747494,24.23075450936767 463 | 9.238476953907815,23.15532510692126 464 | 9.258517034068136,22.950237655317043 465 | 9.278557114228457,24.055494049866823 466 | 9.298597194388778,23.522811312660718 467 | 9.318637274549097,23.68527665158308 468 | 9.338677354709418,23.65479805757217 469 | 9.358717434869739,23.756995731704244 470 | 9.37875751503006,24.18278037182184 471 | 9.39879759519038,23.378033095081125 472 | 9.418837675350701,23.331788308648658 473 | 9.438877755511022,23.920239579540898 474 | 9.458917835671341,23.114615826617765 475 | 9.478957915831662,23.27138906364236 476 | 9.498997995991983,24.93133756614978 477 | 9.519038076152304,24.41681031733531 478 | 9.539078156312625,24.073128076690743 479 | 9.559118236472946,24.73723994092511 480 | 9.579158316633267,23.638017018223962 481 | 9.599198396793588,24.040595231894248 482 | 9.619238476953907,24.550203758620004 483 | 9.639278557114228,24.72389295494415 484 | 9.659318637274549,24.575095697962986 485 | 9.67935871743487,23.088098031025627 486 | 9.69939879759519,23.91475653635809 487 | 9.719438877755511,24.677411801689455 488 | 9.739478957915832,24.30098216930826 489 | 9.759519038076151,25.78915388653189 490 | 9.779559118236472,25.02239738695649 491 | 9.799599198396793,24.87823933710292 492 | 9.819639278557114,24.080803780240867 493 | 9.839679358717435,24.661710347633413 494 | 9.859719438877756,24.840040859864988 495 | 9.879759519038076,25.323410853140054 496 | 9.899799599198396,25.240164746946608 497 | 9.919839679358716,25.356173955977404 498 | 9.939879759519037,24.417803511133073 499 | 9.959919839679358,25.62591552850803 500 | 9.97995991983968,24.269704463525724 501 | 10.0,24.73204271916692 502 | -------------------------------------------------------------------------------- /Datasets/nonlinear_data.csv: -------------------------------------------------------------------------------- 1 | x,y 2 | 0.0,-0.1550429345083481 3 | 0.02004008016032064,0.08180935974681355 4 | 0.04008016032064128,-0.014297988564421674 5 | 0.06012024048096192,0.1439783751006325 6 | 0.08016032064128256,0.01955271003373421 7 | 0.1002004008016032,0.14105986395931544 8 | 0.12024048096192384,0.22885297029506865 9 | 0.1402805611222445,0.11357186933250851 10 | 0.16032064128256512,0.33078427579666553 11 | 0.18036072144288576,0.3208541542858158 12 | 0.2004008016032064,0.22388863438483758 13 | 0.22044088176352705,0.30699543908083504 14 | 0.24048096192384769,0.5368515594022353 15 | 0.2605210420841683,0.6047236921970546 16 | 0.280561122244489,0.5405988852500472 17 | 0.3006012024048096,0.6326651888327594 18 | 0.32064128256513025,0.6527348043643274 19 | 0.3406813627254509,0.7012210433485702 20 | 0.3607214428857715,0.8344970759999568 21 | 0.3807615230460922,0.5925552828087919 22 | 0.4008016032064128,0.8479591583598756 23 | 0.42084168336673344,0.7788567850566092 24 | 0.4408817635270541,0.8310482593645548 25 | 0.4609218436873747,0.8593229040631473 26 | 0.48096192384769537,0.8877496550086097 27 | 0.501002004008016,0.8379896588756035 28 | 0.5210420841683366,1.0139023369604454 29 | 0.5410821643286573,1.1972220476073598 30 | 0.561122244488978,1.0586600791627163 31 | 0.5811623246492986,1.0978531108053506 32 | 0.6012024048096192,1.0625390012747948 33 | 0.6212424849699398,1.152344432428056 34 | 0.6412825651302605,1.243064022494059 35 | 0.6613226452905812,1.1912981456956242 36 | 0.6813627254509018,1.2143237118619112 37 | 0.7014028056112224,1.330906409879643 38 | 0.721442885771543,1.2291370330018552 39 | 0.7414829659318637,1.3760142497042984 40 | 0.7615230460921844,1.46208138833122 41 | 0.781563126252505,1.5447744685257239 42 | 0.8016032064128256,1.4279060656439315 43 | 0.8216432865731462,1.601291577946044 44 | 0.8416833667334669,1.5949722868500014 45 | 0.8617234468937875,1.4183104923000833 46 | 0.8817635270541082,1.4219287750158618 47 | 0.9018036072144289,1.5383971865395532 48 | 0.9218436873747494,1.6963279696201543 49 | 0.9418837675350701,1.610106680124518 50 | 0.9619238476953907,1.5805210776992267 51 | 0.9819639278557114,1.8184037585362305 52 | 1.002004008016032,1.7137945778838801 53 | 1.0220440881763526,1.4742926667766783 54 | 1.0420841683366733,1.7586308659777274 55 | 1.062124248496994,1.7987880597122246 56 | 1.0821643286573146,1.7885125652256482 57 | 1.1022044088176353,1.8293814203582959 58 | 1.122244488977956,1.7954245562539277 59 | 1.1422845691382766,1.6873307082507454 60 | 1.1623246492985972,1.7983875098665425 61 | 1.1823647294589177,1.756446841545052 62 | 1.2024048096192383,1.7725414919210414 63 | 1.222444889779559,1.7535666145492845 64 | 1.2424849699398797,1.9384252842238592 65 | 1.2625250501002003,1.9155086317027792 66 | 1.282565130260521,1.872679802779411 67 | 1.3026052104208417,1.8635698181738913 68 | 1.3226452905811623,1.9363941019322874 69 | 1.342685370741483,2.056110106916444 70 | 1.3627254509018036,1.75644090767547 71 | 1.3827655310621243,2.002436117341837 72 | 1.4028056112224447,1.9172742278536223 73 | 1.4228456913827654,1.7896919246454688 74 | 1.442885771543086,1.7890908765370983 75 | 1.4629258517034067,1.8970968899322924 76 | 1.4829659318637274,2.014241735076086 77 | 1.503006012024048,2.0347125262572403 78 | 1.5230460921843687,1.9038221910262003 79 | 1.5430861723446894,2.100934295613555 80 | 1.56312625250501,2.142239519900412 81 | 1.5831663326653307,2.0394556434015962 82 | 1.6032064128256511,1.939809411486857 83 | 1.6232464929859718,2.109691529135625 84 | 1.6432865731462925,2.0702870344555087 85 | 1.6633266533066131,2.0781849868570843 86 | 1.6833667334669338,1.921694912229008 87 | 1.7034068136272544,1.6989847640911548 88 | 1.723446893787575,2.1884221207728154 89 | 1.7434869739478958,1.8091641393433944 90 | 1.7635270541082164,1.959392897369658 91 | 1.783567134268537,2.1929736528471646 92 | 1.8036072144288577,1.9791011359023967 93 | 1.8236472945891782,2.0313309359164413 94 | 1.8436873747494988,1.77575181584901 95 | 1.8637274549098195,1.7370364999814392 96 | 1.8837675350701402,1.8495756704811979 97 | 1.9038076152304608,1.9991995108304037 98 | 1.9238476953907815,1.8420191226229021 99 | 1.9438877755511021,1.7829463212144907 100 | 1.9639278557114228,1.8672246404808763 101 | 1.9839679358717435,1.93989748038832 102 | 2.004008016032064,1.6707503891807893 103 | 2.024048096192385,1.677001573729698 104 | 2.0440881763527052,1.7012783280191188 105 | 2.064128256513026,1.8709835802937382 106 | 2.0841683366733466,1.7656689736387114 107 | 2.1042084168336674,1.9353695931256178 108 | 2.124248496993988,1.7950746533867166 109 | 2.1442885771543083,1.6765131122103463 110 | 2.164328657314629,1.7844482802061659 111 | 2.1843687374749496,1.656342249571021 112 | 2.2044088176352705,1.5412957857278977 113 | 2.224448897795591,1.6557334979606348 114 | 2.244488977955912,1.493413819622692 115 | 2.2645290581162323,1.5086895404179306 116 | 2.284569138276553,1.6445727467834268 117 | 2.3046092184368736,1.4751244316362044 118 | 2.3246492985971945,1.3778000799719168 119 | 2.344689378757515,1.3839565219203482 120 | 2.3647294589178354,1.5042709895804174 121 | 2.3847695390781563,1.3179764356146118 122 | 2.4048096192384767,1.3051305126835464 123 | 2.4248496993987976,1.2628357522642886 124 | 2.444889779559118,1.3017773676615918 125 | 2.464929859719439,1.2138402379193414 126 | 2.4849699398797593,1.0607070560856826 127 | 2.50501002004008,1.1001837146682778 128 | 2.5250501002004007,1.0631565998628272 129 | 2.5450901803607215,1.2478367230984377 130 | 2.565130260521042,1.1713902796748257 131 | 2.5851703406813624,1.115029120273178 132 | 2.6052104208416833,0.9715234552312824 133 | 2.6252505010020037,0.9058257871910538 134 | 2.6452905811623246,0.9016023023518387 135 | 2.665330661322645,0.8117327162144812 136 | 2.685370741482966,1.1308392021274276 137 | 2.7054108216432864,0.6204315847766939 138 | 2.7254509018036073,0.8648698596144211 139 | 2.7454909819639277,0.643194358623227 140 | 2.7655310621242486,0.7240859337711637 141 | 2.785571142284569,0.5982958061608836 142 | 2.8056112224448895,0.5416288739120655 143 | 2.8256513026052104,0.5074031037709246 144 | 2.845691382765531,0.7587027549341389 145 | 2.8657314629258517,0.5314524932736454 146 | 2.885771543086172,0.4295095445649847 147 | 2.905811623246493,0.5227836516622559 148 | 2.9258517034068134,0.42917745247256656 149 | 2.9458917835671343,0.46091152436943866 150 | 2.9659318637274548,0.16709192810373055 151 | 2.9859719438877756,0.3403470661557953 152 | 3.006012024048096,0.3476007534573682 153 | 3.0260521042084165,0.06440747196756744 154 | 3.0460921843687374,0.23553026701435945 155 | 3.066132264529058,0.32039574556060035 156 | 3.0861723446893787,0.10929811666945405 157 | 3.106212424849699,0.15288628958131578 158 | 3.12625250501002,0.0977361389227303 159 | 3.1462925851703405,-0.08015039830603513 160 | 3.1663326653306614,-0.0454983026528951 161 | 3.186372745490982,-0.24622972603071128 162 | 3.2064128256513023,-0.1746798829098487 163 | 3.226452905811623,-0.14294807996470393 164 | 3.2464929859719436,-0.13710604983380065 165 | 3.2665330661322645,-0.2467700087303436 166 | 3.286573146292585,-0.2169478811801639 167 | 3.306613226452906,-0.43883587010657 168 | 3.3266533066132262,-0.37818202994568123 169 | 3.346693386773547,-0.40540362715240297 170 | 3.3667334669338675,-0.261528123206779 171 | 3.3867735470941884,-0.5068802903391166 172 | 3.406813627254509,-0.5741467073595528 173 | 3.4268537074148293,-0.5606808077302485 174 | 3.44689378757515,-0.6930721391342413 175 | 3.4669338677354706,-0.6199888532847664 176 | 3.4869739478957915,-0.7136164803871653 177 | 3.507014028056112,-0.8938185121586724 178 | 3.527054108216433,-0.7578321994557699 179 | 3.5470941883767533,-0.8207136546354942 180 | 3.567134268537074,-0.9888706370830798 181 | 3.5871743486973946,-0.8686791187666261 182 | 3.6072144288577155,-0.7490213455368011 183 | 3.627254509018036,-0.8814571935950923 184 | 3.6472945891783564,-0.9076505551150326 185 | 3.6673346693386772,-1.1378595738116617 186 | 3.6873747494989977,-0.9904836099895311 187 | 3.7074148296593186,-1.0573751128727402 188 | 3.727454909819639,-1.0529315769763847 189 | 3.74749498997996,-1.0967451742005678 190 | 3.7675350701402803,-1.307700628682865 191 | 3.787575150300601,-1.2081066033798356 192 | 3.8076152304609217,-1.3115140717900342 193 | 3.8276553106212425,-1.2719996014032664 194 | 3.847695390781563,-1.3874866781605326 195 | 3.8677354709418834,-1.1967337784194294 196 | 3.8877755511022043,-1.4435789780029715 197 | 3.9078156312625247,-1.4767316455570836 198 | 3.9278557114228456,-1.4079775380612882 199 | 3.947895791583166,-1.5511764075034926 200 | 3.967935871743487,-1.513383468960745 201 | 3.9879759519038074,-1.5807735289930824 202 | 4.008016032064128,-1.3829182990232531 203 | 4.028056112224449,-1.4711015193917043 204 | 4.04809619238477,-1.580452911702012 205 | 4.06813627254509,-1.6382193345258587 206 | 4.0881763527054105,-1.5287553534922533 207 | 4.108216432865731,-1.6054244711585715 208 | 4.128256513026052,-1.618576405700615 209 | 4.148296593186372,-1.6927676292062654 210 | 4.168336673346693,-1.8800594185340818 211 | 4.188376753507014,-1.7428838065171566 212 | 4.208416833667335,-1.8045915821232736 213 | 4.228456913827655,-1.705839120723068 214 | 4.248496993987976,-1.687451507499352 215 | 4.268537074148297,-1.872003657318579 216 | 4.288577154308617,-1.7762174736867327 217 | 4.3086172344689375,-1.6655834180578601 218 | 4.328657314629258,-1.9213193152617358 219 | 4.348697394789579,-1.7009878240816203 220 | 4.368737474949899,-1.968319891129414 221 | 4.38877755511022,-1.8938904180004705 222 | 4.408817635270541,-1.9096645497981046 223 | 4.428857715430862,-1.9189972364702015 224 | 4.448897795591182,-2.014740953971418 225 | 4.468937875751503,-2.0001420213230467 226 | 4.488977955911824,-2.017066802372436 227 | 4.509018036072144,-1.9260863554310232 228 | 4.529058116232465,-1.9334803145566815 229 | 4.5490981963927855,-1.750800880931491 230 | 4.569138276553106,-1.8424154030411792 231 | 4.589178356713426,-2.0358226615830652 232 | 4.609218436873747,-1.9568783155364764 233 | 4.629258517034068,-1.8933815068518034 234 | 4.649298597194389,-1.9929607412362105 235 | 4.669338677354709,-2.0051111154716104 236 | 4.68937875751503,-1.9943130587276592 237 | 4.709418837675351,-1.9132635153779285 238 | 4.729458917835671,-2.0845406765912005 239 | 4.749498997995992,-2.0311899515136105 240 | 4.7695390781563125,-1.9496914407123673 241 | 4.789579158316633,-1.9628999271562109 242 | 4.809619238476953,-1.966595446319126 243 | 4.829659318637274,-2.0232435377269558 244 | 4.849699398797595,-1.8839218747207533 245 | 4.869739478957916,-1.7619050384834432 246 | 4.889779559118236,-1.9279734632347807 247 | 4.909819639278557,-1.9804652533511007 248 | 4.929859719438878,-1.8773185449508127 249 | 4.949899799599198,-1.9977665633506891 250 | 4.969939879759519,-2.0090024252662926 251 | 4.98997995991984,-1.9201559160314194 252 | 5.01002004008016,-2.1703474184658864 253 | 5.03006012024048,-2.0153258859961283 254 | 5.050100200400801,-1.9218271338475332 255 | 5.070140280561122,-2.0087121173463256 256 | 5.090180360721443,-1.9622274944696612 257 | 5.110220440881763,-1.8874814271985851 258 | 5.130260521042084,-1.9922060751577346 259 | 5.150300601202405,-1.8518856050792838 260 | 5.170340681362725,-1.8474469277663976 261 | 5.190380761523046,-1.7733004535751264 262 | 5.210420841683367,-1.6416304720505261 263 | 5.2304609218436875,-1.7203007184676815 264 | 5.2505010020040075,-1.7152494574446635 265 | 5.270541082164328,-1.6865250381213386 266 | 5.290581162324649,-1.652164742647872 267 | 5.31062124248497,-1.7543387943523145 268 | 5.33066132264529,-1.6412396753224925 269 | 5.350701402805611,-1.5753297336000702 270 | 5.370741482965932,-1.7190785329630405 271 | 5.390781563126252,-1.4705996007829778 272 | 5.410821643286573,-1.423564303987994 273 | 5.430861723446894,-1.5687614023767704 274 | 5.4509018036072145,-1.5030748332454666 275 | 5.4709418837675345,-1.5394834089817615 276 | 5.490981963927855,-1.353866671053958 277 | 5.511022044088176,-1.5014955051779084 278 | 5.531062124248497,-1.3886291646089874 279 | 5.551102204408817,-1.4227329145095542 280 | 5.571142284569138,-1.3016680923904056 281 | 5.591182364729459,-1.4555842586477183 282 | 5.611222444889779,-1.1124004832887717 283 | 5.6312625250501,-1.3098926059805842 284 | 5.651302605210421,-1.1753405074752938 285 | 5.671342685370742,-1.1700058805645919 286 | 5.691382765531062,-1.1919272980551936 287 | 5.7114228456913825,-1.1710080694436833 288 | 5.731462925851703,-0.9546697960885535 289 | 5.751503006012024,-1.0665323123064012 290 | 5.771543086172344,-0.952102636182517 291 | 5.791583166332665,-1.0242274986706594 292 | 5.811623246492986,-0.9732749752974768 293 | 5.831663326653306,-0.825446270500215 294 | 5.851703406813627,-0.7433938321553948 295 | 5.871743486973948,-0.8173941133048775 296 | 5.891783567134269,-0.9051610336735347 297 | 5.911823647294589,-0.5259736101852628 298 | 5.9318637274549095,-0.7739328579780327 299 | 5.95190380761523,-0.8046689696387276 300 | 5.971943887775551,-0.35303883411572695 301 | 5.991983967935871,-0.6146096182956018 302 | 6.012024048096192,-0.681874157422806 303 | 6.032064128256513,-0.5653242321066019 304 | 6.052104208416833,-0.4213055496737062 305 | 6.072144288577154,-0.39992471440488725 306 | 6.092184368737475,-0.46485637171508193 307 | 6.112224448897796,-0.15798619620377752 308 | 6.132264529058116,-0.35285498334217524 309 | 6.152304609218437,-0.37948337658308434 310 | 6.1723446893787575,-0.12515825843630016 311 | 6.192384769539078,-0.04844535127401098 312 | 6.212424849699398,-0.22315215408284353 313 | 6.232464929859719,-0.24153199585606877 314 | 6.25250501002004,0.04169285822594594 315 | 6.27254509018036,-0.22601239376524038 316 | 6.292585170340681,-0.10386271646549187 317 | 6.312625250501002,0.15561599671609092 318 | 6.332665330661323,0.09338441690674525 319 | 6.352705410821643,0.1125345015609039 320 | 6.372745490981964,0.21416266939966105 321 | 6.3927855711422845,0.2034845016559189 322 | 6.4128256513026045,0.12868635414504473 323 | 6.432865731462925,0.4258518098449712 324 | 6.452905811623246,0.4703151570882038 325 | 6.472945891783567,0.3977808216442616 326 | 6.492985971943887,0.4210432809091094 327 | 6.513026052104208,0.6896073992614267 328 | 6.533066132264529,0.46693369038310334 329 | 6.55310621242485,0.50735271508041 330 | 6.57314629258517,0.608277803706171 331 | 6.593186372745491,0.7572514980491376 332 | 6.613226452905812,0.8074409828813962 333 | 6.633266533066132,0.6600909522435346 334 | 6.6533066132264524,0.754290177093437 335 | 6.673346693386773,0.6228670087667453 336 | 6.693386773547094,0.7663905669971686 337 | 6.713426853707414,0.7501516560255053 338 | 6.733466933867735,0.7697550383577565 339 | 6.753507014028056,1.074503842751756 340 | 6.773547094188377,0.8626614816789757 341 | 6.793587174348697,0.9238952788358095 342 | 6.813627254509018,1.0484140929983332 343 | 6.833667334669339,1.175978743590853 344 | 6.853707414829659,1.128254588844602 345 | 6.8737474949899795,1.3895916707796576 346 | 6.8937875751503,1.139255210018654 347 | 6.913827655310621,1.2051989866680342 348 | 6.933867735470941,1.239019137158622 349 | 6.953907815631262,1.3866092240437666 350 | 6.973947895791583,1.3249741761243559 351 | 6.993987975951904,1.293261578703992 352 | 7.014028056112224,1.2402459266044772 353 | 7.034068136272545,1.3890132466553908 354 | 7.054108216432866,1.5337295000546711 355 | 7.074148296593186,1.3810232976904107 356 | 7.0941883767535066,1.5028512114082628 357 | 7.114228456913827,1.5018847107842468 358 | 7.134268537074148,1.590341721243575 359 | 7.154308617234468,1.4496302155212728 360 | 7.174348697394789,1.7902716496135778 361 | 7.19438877755511,1.4525674745052544 362 | 7.214428857715431,1.5681704062844741 363 | 7.234468937875751,1.722132255526509 364 | 7.254509018036072,1.6809398843692411 365 | 7.274549098196393,1.7565456143048117 366 | 7.294589178356713,1.6455451142393254 367 | 7.314629258517034,1.70860243884781 368 | 7.3346693386773545,1.7375445608559885 369 | 7.354709418837675,1.9127884576429364 370 | 7.374749498997995,1.843741393095164 371 | 7.394789579158316,1.8724889923582457 372 | 7.414829659318637,1.7444324813731715 373 | 7.434869739478958,1.9237896928095923 374 | 7.454909819639278,1.86540226578437 375 | 7.474949899799599,1.9969612311783367 376 | 7.49498997995992,2.0739091397612226 377 | 7.51503006012024,1.8555309902258648 378 | 7.535070140280561,1.8585242136573092 379 | 7.5551102204408815,1.8249343023919056 380 | 7.575150300601202,1.9083975479582742 381 | 7.595190380761522,1.895197489842799 382 | 7.615230460921843,1.9792185735293737 383 | 7.635270541082164,1.9378991509964827 384 | 7.655310621242485,1.9244995544708656 385 | 7.675350701402805,2.0746342620884275 386 | 7.695390781563126,1.8811135888870072 387 | 7.715430861723447,2.0241451673949267 388 | 7.735470941883767,1.9453774734444513 389 | 7.755511022044088,2.0627482216547217 390 | 7.775551102204409,2.132377958969171 391 | 7.7955911823647295,1.966281698401161 392 | 7.8156312625250495,2.0426327199872087 393 | 7.83567134268537,2.0175440291731053 394 | 7.855711422845691,1.9200547678768973 395 | 7.875751503006012,2.023604842493498 396 | 7.895791583166332,2.0271642333078854 397 | 7.915831663326653,2.037462875248685 398 | 7.935871743486974,1.973457866969629 399 | 7.955911823647294,1.9990384589483667 400 | 7.975951903807615,1.8703805927819102 401 | 7.995991983967936,1.94405552229236 402 | 8.016032064128256,2.0293933429077726 403 | 8.036072144288577,2.056181948890078 404 | 8.056112224448897,1.9170506590149456 405 | 8.076152304609218,1.9613142948371043 406 | 8.09619238476954,1.9644255331980438 407 | 8.11623246492986,1.95176576622672 408 | 8.13627254509018,1.9749169799249768 409 | 8.1563126252505,1.7274823155753782 410 | 8.176352705410821,1.8920413743946485 411 | 8.196392785571142,1.9077990360253247 412 | 8.216432865731463,1.7700279792464326 413 | 8.236472945891784,2.022873922714745 414 | 8.256513026052104,1.85630047371615 415 | 8.276553106212425,1.9804152302997036 416 | 8.296593186372744,1.7282201297333017 417 | 8.316633266533065,1.6990143108675015 418 | 8.336673346693386,1.7939226903409637 419 | 8.356713426853707,1.58467035908628 420 | 8.376753507014028,1.754373676935718 421 | 8.396793587174349,1.722241055077264 422 | 8.41683366733467,1.7930399411264826 423 | 8.436873747494989,1.7398525470546613 424 | 8.45691382765531,1.6056051213586833 425 | 8.47695390781563,1.5145460715846637 426 | 8.496993987975952,1.7718168367561646 427 | 8.517034068136272,1.4970226084706109 428 | 8.537074148296593,1.4466964487056793 429 | 8.557114228456914,1.4171551241754052 430 | 8.577154308617233,1.6111504032294273 431 | 8.597194388777554,1.420706838703299 432 | 8.617234468937875,1.3698120178039788 433 | 8.637274549098196,1.4309566794792619 434 | 8.657314629258517,1.367929327947836 435 | 8.677354709418838,1.2916926957022827 436 | 8.697394789579159,1.4052338668849362 437 | 8.71743486973948,1.4061646976526216 438 | 8.737474949899799,1.3674414061327462 439 | 8.75751503006012,1.314368545830818 440 | 8.77755511022044,1.246209015367652 441 | 8.797595190380761,0.996143247953506 442 | 8.817635270541082,1.3079713536183704 443 | 8.837675350701403,1.1381011847085876 444 | 8.857715430861724,1.135128973134417 445 | 8.877755511022043,1.1517891944058019 446 | 8.897795591182364,1.1491900714575352 447 | 8.917835671342685,1.0128525387403835 448 | 8.937875751503006,0.9793353196411695 449 | 8.957915831663327,0.8402504406106313 450 | 8.977955911823647,0.8675125064578089 451 | 8.997995991983968,0.7424710115675756 452 | 9.018036072144287,0.7192442184080388 453 | 9.038076152304608,0.6649142109005665 454 | 9.05811623246493,0.7013997325544158 455 | 9.07815631262525,0.784353969102201 456 | 9.098196392785571,0.9587117971856334 457 | 9.118236472945892,0.6224762863825104 458 | 9.138276553106213,0.4303546456589809 459 | 9.158316633266534,0.6531369414080328 460 | 9.178356713426853,0.4577913812410666 461 | 9.198396793587174,0.3828441456671511 462 | 9.218436873747494,0.43074491265624126 463 | 9.238476953907815,0.24638790864072269 464 | 9.258517034068136,0.35323831905765685 465 | 9.278557114228457,0.2825631608647057 466 | 9.298597194388778,0.2615301903816453 467 | 9.318637274549097,0.25002463414025744 468 | 9.338677354709418,0.17873775307438408 469 | 9.358717434869739,0.13365878528380684 470 | 9.37875751503006,0.12043985820286288 471 | 9.39879759519038,0.09349494856856527 472 | 9.418837675350701,-0.09126774506564513 473 | 9.438877755511022,-0.17119778099492475 474 | 9.458917835671341,-0.07443029209924415 475 | 9.478957915831662,-0.2515804523989187 476 | 9.498997995991983,-0.13955067771883878 477 | 9.519038076152304,-0.09436650111172341 478 | 9.539078156312625,-0.16739178931997983 479 | 9.559118236472946,-0.3726901608463903 480 | 9.579158316633267,-0.39356195347787715 481 | 9.599198396793588,-0.3142446632131576 482 | 9.619238476953907,-0.42660427541533075 483 | 9.639278557114228,-0.4573845217731056 484 | 9.659318637274549,-0.4051018764346206 485 | 9.67935871743487,-0.6024080695288476 486 | 9.69939879759519,-0.5824874734962593 487 | 9.719438877755511,-0.6608390437315119 488 | 9.739478957915832,-0.7233772829079065 489 | 9.759519038076151,-0.7427570780576205 490 | 9.779559118236472,-0.6270241030282162 491 | 9.799599198396793,-0.7270303280206188 492 | 9.819639278557114,-0.8572764266889769 493 | 9.839679358717435,-0.8293095529169475 494 | 9.859719438877756,-1.0065953885016579 495 | 9.879759519038076,-0.9522227772435712 496 | 9.899799599198396,-0.6997579264519058 497 | 9.919839679358716,-0.9591963065537876 498 | 9.939879759519037,-0.9120809896866726 499 | 9.959919839679358,-1.0264750140589323 500 | 9.97995991983968,-1.0193789536220121 501 | 10.0,-1.021716412810822 502 | -------------------------------------------------------------------------------- /Decision Tree Classifier.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import pandas as pd\n", 10 | "import matplotlib.pyplot as plt\n", 11 | "import numpy as np" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 2, 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "df = pd.read_csv('shop data.csv')" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 3, 26 | "metadata": {}, 27 | "outputs": [ 28 | { 29 | "data": { 30 | "text/html": [ 31 | "
\n", 32 | "\n", 45 | "\n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | "
ageincomegenderm_statusbuys
0<25highmalesingleno
1<25highmalemarriedno
225-35highmalesingleyes
3>35mediummalesingleyes
4>35lowfemalesingleyes
5>35lowfemalesingleno
625-35lowfemalemarriedyes
7<25mediummalemarriedno
8<25lowfemalesingleyes
9>35mediumfemalemarriedyes
10<25mediumfemalesingleyes
1125-35mediummalemarriedyes
1225-35highfemalesingleyes
13>35mediummalemarriedno
14<25highmalesingleno
15<25highfemalemarriedyes
16>35mediummalemarriedyes
17<25highfemalesingleyes
1825-35mediumfemalemarriedyes
1925-35highmalesingleyes
20>35mediumfemalemarriedno
21<25lowmalesingleyes
\n", 235 | "
" 236 | ], 237 | "text/plain": [ 238 | " age income gender m_status buys\n", 239 | "0 <25 high male single no\n", 240 | "1 <25 high male married no\n", 241 | "2 25-35 high male single yes\n", 242 | "3 >35 medium male single yes\n", 243 | "4 >35 low female single yes\n", 244 | "5 >35 low female single no\n", 245 | "6 25-35 low female married yes\n", 246 | "7 <25 medium male married no\n", 247 | "8 <25 low female single yes\n", 248 | "9 >35 medium female married yes\n", 249 | "10 <25 medium female single yes\n", 250 | "11 25-35 medium male married yes\n", 251 | "12 25-35 high female single yes\n", 252 | "13 >35 medium male married no\n", 253 | "14 <25 high male single no\n", 254 | "15 <25 high female married yes\n", 255 | "16 >35 medium male married yes\n", 256 | "17 <25 high female single yes\n", 257 | "18 25-35 medium female married yes\n", 258 | "19 25-35 high male single yes\n", 259 | "20 >35 medium female married no\n", 260 | "21 <25 low male single yes" 261 | ] 262 | }, 263 | "execution_count": 3, 264 | "metadata": {}, 265 | "output_type": "execute_result" 266 | } 267 | ], 268 | "source": [ 269 | "df" 270 | ] 271 | }, 272 | { 273 | "cell_type": "code", 274 | "execution_count": 4, 275 | "metadata": {}, 276 | "outputs": [], 277 | "source": [ 278 | "x = df.iloc[:,:-1]" 279 | ] 280 | }, 281 | { 282 | "cell_type": "code", 283 | "execution_count": 5, 284 | "metadata": {}, 285 | "outputs": [ 286 | { 287 | "data": { 288 | "text/html": [ 289 | "
\n", 290 | "\n", 303 | "\n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | "
ageincomegenderm_status
0<25highmalesingle
1<25highmalemarried
225-35highmalesingle
3>35mediummalesingle
4>35lowfemalesingle
5>35lowfemalesingle
625-35lowfemalemarried
7<25mediummalemarried
8<25lowfemalesingle
9>35mediumfemalemarried
10<25mediumfemalesingle
1125-35mediummalemarried
1225-35highfemalesingle
13>35mediummalemarried
14<25highmalesingle
15<25highfemalemarried
16>35mediummalemarried
17<25highfemalesingle
1825-35mediumfemalemarried
1925-35highmalesingle
20>35mediumfemalemarried
21<25lowmalesingle
\n", 470 | "
" 471 | ], 472 | "text/plain": [ 473 | " age income gender m_status\n", 474 | "0 <25 high male single\n", 475 | "1 <25 high male married\n", 476 | "2 25-35 high male single\n", 477 | "3 >35 medium male single\n", 478 | "4 >35 low female single\n", 479 | "5 >35 low female single\n", 480 | "6 25-35 low female married\n", 481 | "7 <25 medium male married\n", 482 | "8 <25 low female single\n", 483 | "9 >35 medium female married\n", 484 | "10 <25 medium female single\n", 485 | "11 25-35 medium male married\n", 486 | "12 25-35 high female single\n", 487 | "13 >35 medium male married\n", 488 | "14 <25 high male single\n", 489 | "15 <25 high female married\n", 490 | "16 >35 medium male married\n", 491 | "17 <25 high female single\n", 492 | "18 25-35 medium female married\n", 493 | "19 25-35 high male single\n", 494 | "20 >35 medium female married\n", 495 | "21 <25 low male single" 496 | ] 497 | }, 498 | "execution_count": 5, 499 | "metadata": {}, 500 | "output_type": "execute_result" 501 | } 502 | ], 503 | "source": [ 504 | "x" 505 | ] 506 | }, 507 | { 508 | "cell_type": "code", 509 | "execution_count": 6, 510 | "metadata": {}, 511 | "outputs": [], 512 | "source": [ 513 | "y = df.iloc[:,4]" 514 | ] 515 | }, 516 | { 517 | "cell_type": "code", 518 | "execution_count": 7, 519 | "metadata": {}, 520 | "outputs": [ 521 | { 522 | "data": { 523 | "text/plain": [ 524 | "0 no\n", 525 | "1 no\n", 526 | "2 yes\n", 527 | "3 yes\n", 528 | "4 yes\n", 529 | "5 no\n", 530 | "6 yes\n", 531 | "7 no\n", 532 | "8 yes\n", 533 | "9 yes\n", 534 | "10 yes\n", 535 | "11 yes\n", 536 | "12 yes\n", 537 | "13 no\n", 538 | "14 no\n", 539 | "15 yes\n", 540 | "16 yes\n", 541 | "17 yes\n", 542 | "18 yes\n", 543 | "19 yes\n", 544 | "20 no\n", 545 | "21 yes\n", 546 | "Name: buys, dtype: object" 547 | ] 548 | }, 549 | "execution_count": 7, 550 | "metadata": {}, 551 | "output_type": "execute_result" 552 | } 553 | ], 554 | "source": [ 555 | "y" 556 | ] 557 | }, 558 | { 559 | "cell_type": "code", 560 | "execution_count": 8, 561 | "metadata": {}, 562 | "outputs": [], 563 | "source": [ 564 | "from sklearn.preprocessing import LabelEncoder" 565 | ] 566 | }, 567 | { 568 | "cell_type": "code", 569 | "execution_count": 9, 570 | "metadata": {}, 571 | "outputs": [], 572 | "source": [ 573 | "le_x=LabelEncoder()\n", 574 | "x = x.apply(LabelEncoder().fit_transform)" 575 | ] 576 | }, 577 | { 578 | "cell_type": "code", 579 | "execution_count": 10, 580 | "metadata": {}, 581 | "outputs": [], 582 | "source": [ 583 | "from sklearn.model_selection import train_test_split\n", 584 | "xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=.25,random_state=1)" 585 | ] 586 | }, 587 | { 588 | "cell_type": "code", 589 | "execution_count": 11, 590 | "metadata": {}, 591 | "outputs": [ 592 | { 593 | "data": { 594 | "text/html": [ 595 | "
\n", 596 | "\n", 609 | "\n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | "
ageincomegenderm_status
101201
42101
20011
171001
60100
71210
11010
141011
01011
211111
202200
92200
81101
120001
110210
52101
\n", 734 | "
" 735 | ], 736 | "text/plain": [ 737 | " age income gender m_status\n", 738 | "10 1 2 0 1\n", 739 | "4 2 1 0 1\n", 740 | "2 0 0 1 1\n", 741 | "17 1 0 0 1\n", 742 | "6 0 1 0 0\n", 743 | "7 1 2 1 0\n", 744 | "1 1 0 1 0\n", 745 | "14 1 0 1 1\n", 746 | "0 1 0 1 1\n", 747 | "21 1 1 1 1\n", 748 | "20 2 2 0 0\n", 749 | "9 2 2 0 0\n", 750 | "8 1 1 0 1\n", 751 | "12 0 0 0 1\n", 752 | "11 0 2 1 0\n", 753 | "5 2 1 0 1" 754 | ] 755 | }, 756 | "execution_count": 11, 757 | "metadata": {}, 758 | "output_type": "execute_result" 759 | } 760 | ], 761 | "source": [ 762 | "xtrain" 763 | ] 764 | }, 765 | { 766 | "cell_type": "code", 767 | "execution_count": 12, 768 | "metadata": {}, 769 | "outputs": [ 770 | { 771 | "data": { 772 | "text/html": [ 773 | "
\n", 774 | "\n", 787 | "\n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | "
ageincomegenderm_status
190011
162210
32211
132210
180200
151000
\n", 842 | "
" 843 | ], 844 | "text/plain": [ 845 | " age income gender m_status\n", 846 | "19 0 0 1 1\n", 847 | "16 2 2 1 0\n", 848 | "3 2 2 1 1\n", 849 | "13 2 2 1 0\n", 850 | "18 0 2 0 0\n", 851 | "15 1 0 0 0" 852 | ] 853 | }, 854 | "execution_count": 12, 855 | "metadata": {}, 856 | "output_type": "execute_result" 857 | } 858 | ], 859 | "source": [ 860 | "xtest" 861 | ] 862 | }, 863 | { 864 | "cell_type": "code", 865 | "execution_count": 13, 866 | "metadata": {}, 867 | "outputs": [], 868 | "source": [ 869 | "from sklearn.tree import DecisionTreeClassifier" 870 | ] 871 | }, 872 | { 873 | "cell_type": "code", 874 | "execution_count": 14, 875 | "metadata": {}, 876 | "outputs": [], 877 | "source": [ 878 | "dect = DecisionTreeClassifier()" 879 | ] 880 | }, 881 | { 882 | "cell_type": "code", 883 | "execution_count": 15, 884 | "metadata": {}, 885 | "outputs": [ 886 | { 887 | "data": { 888 | "text/plain": [ 889 | "DecisionTreeClassifier()" 890 | ] 891 | }, 892 | "execution_count": 15, 893 | "metadata": {}, 894 | "output_type": "execute_result" 895 | } 896 | ], 897 | "source": [ 898 | "dect.fit(xtrain,ytrain)" 899 | ] 900 | }, 901 | { 902 | "cell_type": "code", 903 | "execution_count": 16, 904 | "metadata": {}, 905 | "outputs": [], 906 | "source": [ 907 | "y_predict = dect.predict(xtest)" 908 | ] 909 | }, 910 | { 911 | "cell_type": "code", 912 | "execution_count": 17, 913 | "metadata": {}, 914 | "outputs": [], 915 | "source": [ 916 | "from sklearn.metrics import confusion_matrix, accuracy_score\n", 917 | "cm = confusion_matrix(ytest,y_predict)" 918 | ] 919 | }, 920 | { 921 | "cell_type": "code", 922 | "execution_count": 18, 923 | "metadata": {}, 924 | "outputs": [ 925 | { 926 | "data": { 927 | "text/plain": [ 928 | "array([[1, 0],\n", 929 | " [1, 4]], dtype=int64)" 930 | ] 931 | }, 932 | "execution_count": 18, 933 | "metadata": {}, 934 | "output_type": "execute_result" 935 | } 936 | ], 937 | "source": [ 938 | "cm" 939 | ] 940 | }, 941 | { 942 | "cell_type": "code", 943 | "execution_count": 19, 944 | "metadata": {}, 945 | "outputs": [], 946 | "source": [ 947 | "xinput = np.array([1,0,0,1])" 948 | ] 949 | }, 950 | { 951 | "cell_type": "code", 952 | "execution_count": null, 953 | "metadata": {}, 954 | "outputs": [], 955 | "source": [ 956 | "y_predict = dect.predict([xinput])" 957 | ] 958 | }, 959 | { 960 | "cell_type": "code", 961 | "execution_count": null, 962 | "metadata": {}, 963 | "outputs": [], 964 | "source": [ 965 | "y_predict" 966 | ] 967 | }, 968 | { 969 | "cell_type": "code", 970 | "execution_count": null, 971 | "metadata": {}, 972 | "outputs": [], 973 | "source": [ 974 | "import seaborn as sn\n", 975 | "plt.figure(figsize = (10,7))\n", 976 | "sn.heatmap(cm, annot=True)\n", 977 | "plt.xlabel('Predicted')\n", 978 | "plt.ylabel('Truth')" 979 | ] 980 | }, 981 | { 982 | "cell_type": "code", 983 | "execution_count": null, 984 | "metadata": {}, 985 | "outputs": [], 986 | "source": [ 987 | "dect.score(xtest,ytest)" 988 | ] 989 | }, 990 | { 991 | "cell_type": "code", 992 | "execution_count": null, 993 | "metadata": {}, 994 | "outputs": [], 995 | "source": [] 996 | } 997 | ], 998 | "metadata": { 999 | "kernelspec": { 1000 | "display_name": "Python 3", 1001 | "language": "python", 1002 | "name": "python3" 1003 | }, 1004 | "language_info": { 1005 | "codemirror_mode": { 1006 | "name": "ipython", 1007 | "version": 3 1008 | }, 1009 | "file_extension": ".py", 1010 | "mimetype": "text/x-python", 1011 | "name": "python", 1012 | "nbconvert_exporter": "python", 1013 | "pygments_lexer": "ipython3", 1014 | "version": "3.8.8" 1015 | } 1016 | }, 1017 | "nbformat": 4, 1018 | "nbformat_minor": 2 1019 | } 1020 | -------------------------------------------------------------------------------- /Docs/Machine Learning with TensorFlow.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rashakil-ds/Machine-Learning-with-Python/418124d517ff32f4e19c21ea3567fb106a222264/Docs/Machine Learning with TensorFlow.pdf -------------------------------------------------------------------------------- /Docs/PyTorch Cheatsheet.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rashakil-ds/Machine-Learning-with-Python/418124d517ff32f4e19c21ea3567fb106a222264/Docs/PyTorch Cheatsheet.pdf -------------------------------------------------------------------------------- /Docs/Readme.md: -------------------------------------------------------------------------------- 1 | Author info:
2 | KM Rashedul Alam 3 | -------------------------------------------------------------------------------- /Docs/𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲, 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐢𝐨𝐧.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rashakil-ds/Machine-Learning-with-Python/418124d517ff32f4e19c21ea3567fb106a222264/Docs/𝐏𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲, 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐢𝐨𝐧.pdf -------------------------------------------------------------------------------- /Fit, Transforn and fit_transform.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "8b4f83cb", 7 | "metadata": {}, 8 | "outputs": [ 9 | { 10 | "data": { 11 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAACdCAYAAAA+CuuEAAAgAElEQVR4Ae2dB7hsRZGAdd1dXCOgoiA555wVQQTJSBIlKwLPB0gWAUVJkpQMgiIgIklFREEkiEpOknNWQQHj5ryz39/yt3UPc++dd+/MvTPvVX/fTPfp011dXV1dVR3Pa1rpkgJJgaRAUiApkBRICrShwGvaxGVUUiApkBRICiQFkgJJgVYaCckESYGkQFIgKZAUSAq0pUAaCW3JkpFJgaRAUiApkBRICqSRkDyQFEgKJAWSAkmBpEBbCqSR0JYsGZkUSAokBZICSYGkQBoJyQNJgaRAUiApkBRICrSlQBoJbcmSkUmBpEBSICmQFEgKpJGQPJAUSAokBZICSYGkQFsKpJHQliwZmRRICiQFkgJJgaRAGgnJA0mBpEBSICmQFEgKtKVAGgltyZKRSYGkQFIgKZAUSAqkkZA8kBRICiQFkgJJgaRAWwqkkdCWLBmZFEgKJAWSAkmBpEAaCckDSYGkQFIgKZAUSAq0pUAaCW3JkpFJgaRAUiApkBRICqSRkDyQFBiBAv/5n//Z+t///d+a4r/+679a//d//9f693//9xoXA8T/z//8T4mK+WKaZvif//mfa/p/+7d/a76uz5Trr0ZmYOAp8K//+q+FZ+SX//7v/y51oq3lB/juX/7lX2o8AfmsHwjwH//xHxU3+gwOnKnLL3/5y9YiiyzS+ru/+7vWa17zmtb888/f+vWvf13eU2frHesRaUA8tIhuuP4X0zTD0ItfhGU54C+tjTvrrLNab33rW1t/+7d/W/DefffdK0jT1ojpOJBGwnTcuFm17lEAAY0gUYAI+U9/+lMJ/tM//VNL4UhEO8Fnnuj/8Y9/rI8KWmDhgBcFWk2YgemGAk0+aSofFG0zDc+R1/qBGOCpM6wRs/3221dFi5HwD//wD60HHnjA5MWX53kwnwlefvnlEmzSwnJMN5xPuibM2O+afRo4GCFnnnlmxfu1r31tMRh+8pOf1GKabVVfTGeBNBKmswbN6nSXAlF4qbAxGKLQUWA3RzfTIsTAWjiE//Ef/7FUhHKaSqK7NUxok00B+ASFg7KSxzQYwY14ecD3nfLWRNQNnMSL8mLfeO6551pvfvOby0gcRYuRsOuuu7aYPcHZZ6ifcfYDZ04iPML2jU7qBp3ETXjM3BlHuX/+858LKOKisc8AYNZZZ239zd/8Tet1r3tdwf0DH/hALVYYNWI6DaSRMJ02bFaruxRQSLs0oCBrN5pQ2LUboTSxQogJm3eEhc0zMKKQbObP58GmgLxCLU477bTWsssuW5QRynT55Zdv3XTTTUWhwQNR4fWTgpI/9SNu++23X1WwLjc8+uijpdGse0xPf4r8T0L7EentK/iGO+EA+y1pNbCcBRwuP3hMmTKlLpO84Q1vKG1z2223zVB9Mo2E4Tgk45MCr1DApYYtt9yy9fd///dViCPIp06dWlK99NJLlV6MAhWYNXKUANOvSy65ZIXNlOzSSy+dRsIodBv01yq6X/ziF63ZZputtj/r4CjV5ZZb7lVK09F3v9RdXlf5ihd7Ed7+9rdXI4E6rbTSSnX2gHQaCs6cfOYzn2nNOeeclQ70sZVXXrn1+9//fki+qPQtr50vXN4988wzrfe85z1lZgC49LG55567deutt5alRPMzU6FhgkHDDIizINRhp512Kkmbxoz5pzc/jYTprUWzPl2ngMLggx/8YBVeCD8EDcLj9NNPL2VGIRmF02gIIfDmm2++Au/1r399XQdlqhMBrCIZDU6+H1wK3HLLLZW34KtojFor+WtaeMu8vfLjLICK1bK++tWvFl5WwVKv7373u2352Rk5NguSjp8jd6b6t9tuO8FWAzyWXV+2CUi3Aw44oPXGN76x9i/LefDBB8tsTRN/lyfWWGONFv2S9OAy88wzt1hGmVFcGgkzSktnPcdEAackUdY333xzERbudlbIYDC8+OKLZVSkQkeANYXOcAicdNJJRQC96U1vqgIS2Oeff35dOx0ub8YPNgXgERQko1kMA5SYfMVMAuv5OpRWVIyO4H0/GX7ER94HL0b+q6+++hCFTN3ihkFnRKABcMjHqYclllii0oD9ABpM0Ahnn+ykvsDEyP/5z38+BBdoq/EhHvjsScAIi33329/+dpnVARfb5tBDD+2k+OkiTRoJ00UzZiV6SQGFCGXsu+++RVBEYY7w2GWXXYagoMAcEtnmgWUKRkwaHgrENddcsx55MxuC1J9x6Q82BVT099xzT1VA8gJKbI455hjCByqvfuED+Rx8dCjZp556qtYHxTrTTDO1Nttss7p0EjcEk8/ZOsLXXXddyUv9+amYF1tsMYsYYpDXyBEC6667boHDrIazAhxvfPLJJ0suyo91cGaDeJYfxIH+SX9fdNFF696GEYqdLl6lkTBdNGNWotcUUJg/++yzrQUXXLAKDYSHBsONN95Y0TB9jXjlrDfxCnreYVwAA+GDcnC0wuYoBXCEkeH2FEAxxWn4uGYNvYdrD6ANR2fXy5muVoFEgzHmo2zLIK1Kpj22f40VHnmOP/74cp8A/MCsEvsR7r///pLYskjnNLh8hG8YeM2yUXROuQMMPKNSBmbcFCh2xE+LizC33nrrqoztHz/4wQ9qudYH+DFseZwigA4aCRpOp5xyypC9CaSHHtKedpcWwCX+iiuuqP0VYwW4/E444QSLG9aHBtCTfQhNXJidkEeguzRu0n9Y4APyIo2EAWmoRHNyKICQQNiogBAG55xzThGAKHZH/ggfRiu4qFR8VnApQIDLiOktb3lLFVoKrz322KPAUfCVh/xrSwHbxZdRUUX6QW+eaYeolGIYGMCLcSpx3+EDi2lz29Sy8WP6WH5M0wwDh1/MCw7URWMnliXcGAdMlZTwNSZ4Bh4KzbymMQ+wqBeOkXNzpG/6pm8+4fIMbRhpy88YviybYGDjSBtx90gj5at0H3/88bKxMMIg/La3va3Q5Q9/+ENFxSOMLHHorC/v6KMsL/ADBkbLMsss09FRSmnyrW99q9ZHY2HPPfe0uEo7IsjjryYY4EAaCQPceIn6xFAAoaYQpEQE0MYbb1yFhsIH4YEBobAnD2lxUSgSj3D+0Ic+VIUWwovRIzvc3RQlnImp5eCWAo01vlSq1EalE9uOcGwL2ybGmca24xmFrcKIlNJIiUqB9BGPmL4Zjorcd+RvOnFp4hCNImkQ88Jn5jUenOGtZrzv9Tupg/iIB+W5XKCCx99ggw0EW/uS5ZNHOCSSpp/97Gdr/1AxA2vvvfcusGL/oP3EIdKP2RnxwFjQKL/66qsrPiMFhPXb3/62wIl4sBcJF/GgLjjqZv1KxAD/pZEwwI2XqE8MBRRgCACVyQ033FBGJAoNdjwjjFjnVPAPJ/wQHoxMmEKNMxHkx8jAKfAmpoaDW0qTxrSVcbYVtYPmCnxry3vbljiUE3mbztEt8YywVcbAI7/KAGURFWsMN2H6bPnwDPjIO7yXByyPONJQrmUKRx9ceScc01EOccIUPjhaZ2DzbB5hduKrKMm7zz77lL6g8Qxfc9IBF+sCLj5Tto54ZgCgNdc5ezrCPga8u+++2+S1TxIR6/3EE0+U/mUfIx+/j3zkI0PyVEDDBKwb91bE5Qpg3X777dWoIbsGju06DMiBik4jYaCaK5GdaArEzo4gi88HHnhgEToKH4XZ4YcfXtBUuUTBgQBkWnTeeecdIkjJyxlyheZE13N6KO93v/vdEAWHMkUBNpUebcg7frQpaVSU0IH0Kganwo2XTiojn6NPfmB34mK5pI/KUl6LaYRrOtIQFt9YpjgKx3fwYIRpfPTjKYQY3wwLG3jgwG+hhRYqvK0BDW+zfICzTxCO7WK9XOawPldeeWWBFQ0E+ptLe9YReNZJWMxe2DcxyDFaOFbM3QfgLe4FsRH+7JPObESY3Ougox34iYfxg+6nkTDoLZj495QCUZDEMMIAZf/Od76zCiKEECMN1jy5HEeH0IqC4+CDD655FKQIHo94KSA1LoSTfnsKNNeiSRWVB0qRs/BMPbMZUCE/zzzztNZbb73WBRdcUI6wQnfaCuUV28tSgckFQRdffHGZPkf5uaFurrnmKidfuO9A12n7UZaGhQqpHQ804ZHPehLWoIn0EBd8YN55550tju+xJg8dNGzf//73t4444ojW97///ao8xSHCaIajoofOjz32WIEbZxHe8Y53DDF+6Uf0n+h8VsHzzrhNNtmkthnLBfQZ4DvrRtpme11zzTUlD3shPM1AW5188snVOIllRVyaYeoIzsJ0ZgI8VlhhhQqPNPygw/Tk0kiYnloz69IzCigALMCNU95xwPqkJxMQSqusskpJqiBSiGE8cNOb99mrsNgEZRo/aGNZ6Q9PgWOOOabSEmX04Q9/uEz5omAQ1tCSEaB3UCDYXZeG9gr82WefvVyLbEmOeFVUKMyzzz67hTFgm+GrgNhLYhnbbrvtkPsAhNnOt815R10wXFTcnKKJRkdT+chbKDEu+nL5apZZZml98YtfLMW5qY+jfjvuuGM1aryoSD4kj4r9ox/9aDVY2+E8XBx9BBpJH+vB3hve6QiLu3EqYp6hvemhu8dDPSUh/He/+90t+mG87RSjiTZbYIEF6qkj0lM3jlA6Q9I0uMSj6WsE4bsvQcMQuODEcU+d/CL+xg+yn0bCILde4t5zCkTh1RRujrRWXXXVIhjjeiW7sLldDmGooEEhcFZcIaew4WpYhB2CS5iknZ4ETa8aipkA6YmPEaBDuTBzoCKE3hhoplfB+5547sHwsh4V+COPPFKOqgKbNOTTuOAZBStM2p0wa+lOsYtPO98yaPdNN9205LUc4GA4OLtgfnmEZ3nE8vWhi+6b3/xmUZC+k+98RoGq0DUeuBoZ+nXi4G/4HAX5sY99rMKyPxx33HEFDO/FlwgVtbMhwIl10ygi7rDDDiu0sf00yJmVw2FY2M+gme+pm+Gf/vSnJW0su0aMEFDxkwQjEfoJExoyw6DRo3EZ6zkC6IF4lUbCQDRTItnPFODzsSoNBTCKh5EOghCBwe+OO+6oygRFoGC+/PLLi3BUGCEUFZD9XO9+wG2jjTYqNFXhI7RxKDhmFlSE+tDcEXMMq9Dwzz333Fo1DAam5lEKtldMC9xYNs+kIz3fHMDR9hoDPKPMms/EMxtgGcJBwar85CN84eLDY6SPiospetJxWyDv5DfgN0fkKl7SRYOBi5xeeOGFUpbKjwf5VDzEj3csv0U8gEn/II+KlHTTyt8Y0XFpT2MG+Cxx4NjPwM/60E7Ulx+fq454WoeScYQ/8dTffPPNK3zp2tyXADjgS58RwA/EqzQSBqKZEsl+pgDCgEuRNBCcdsZQYA0Uh9BgQ5ejRBUVm6sUxCONGPu5/pOJG5fuRKUEzRkxqlBUJihyPtB17LHHtthYyoyOCtk2YVMbgp+ZAdb3marnI1u+5x153vWud5WRLVP6n/rUp+o+FMpQQTk74bQ/NEJJwSsqKH2V11iMBGCgwMAROlA+/MdMwje+8Y1SH/CWNzFm+RYBdDjjjDNa3MlBHvgxGgjOjrAMpnIHd8ryGUNH3KkfV5NDb2gUacbHy3DgquKMRlJ5Ocofyv/SSy8t9dHIsf2YgdFx6ZHtSL1pE4yF559/viSJMxXS37zD+eLMe3gHOmsoEoaeOmFGuvhuUP00Ega15RLvvqIA66II1qYAY1c2m+a43Q2hxU8BTPhnP/tZrYfCVwGjwKkJMvAqCqy11lpFYMfRPF/6g7Yq6ve9731lbZ/jfW7uAxDr9CxHoCRNSz4UHZsc11577aoMUEjsW7j22msrDioc4Oy11161fTVaaHsUlqNw29Npdn3beyxGgsjE+lMHZlEwZsDbkwEbbrhhVZaUraLmXo4vfelLxUgQd2CQF8PBq4spKxqy4C3uvGPGgHz8NIIxWOJRUGkg3p340om08X4ScHUGj6U9jEOMIQ0iFTkGkc7yI96+G86Peby9UdiWB44YExoU+sPBHKT4NBIGqbUS176jAMJBgcOVsQpJZxN4ZqoTgR2FJ2HOkytMEL6Go1Dsuwr3GUJM/0pzfZSbiuITn/hEHfmKOqNSFTfHJuMnmlGoKgAVHXBXXHHF1tNPP12ms4Fjfg07fDb82e4ai+RlmYn0tq9T1/KN/liNBJS9uFJ3ytQwkCbOaLH+T/1x4KwCBMb+++9fZyQwmqzD1772tcrj0tC6+Ix/2mmn1bZwJoG9GdFZ1xg3Ulj8TMMJINsHw4h2pixmfNZZZ51qNJiGz6/j2LAo3XmOxo6wR/LNe++999Y6akRBYz5MFWkyrfUcqezJfpdGwmS3QJY/8BRAOCgU3MSokkKAOeWNUFF4celSPNePMEQQObqDKDE88ETqUQXc7IegZlTJ6FLa77777qVdHPG78x1U3CxHmGl5lStwULjCwOcSHaarVRQo/KhoaXsMO87fq5TBBZi0PyPZOJpukkLeGauRAF4RX2jgzAgzGRwVbBqe8ha8Ky1Y91944YVLHeKMAkti0lDcpQXP4s9NiHFGg/pTJ5xGlYq0qfyF2/SFbX6eDzrooIKjhoizCbF/aayxqVBnPcUh1sE0w/nm4bSMvKJhRp/mOw4ajMCI4eFgDkp8GgmD0lKJZ99SICqMm266qSgqBZdKB9+d7wgXjk7qFNg+K5D0jU//1RRgKQHF1FRO7BWIjjZSMakcUDjEswSBIYewV/CrZJllcBaAdjKvsOMzinjnnXeuhgLKBGXLNL9OZRvbVkU4ViMB2JHfVPAYDmeddVYpmjKoB8pLBaZPAhQoOHFBmLR0hoVZiXZ4WyfpijGhcobfqf/UqVNLMhW0eWLZxg3nQ1dpBI4cRfQyMg0FFTfP0oL9CTiPPQrf/hbbznftfNPLB/KIdMbgP++884bwxrTUr12Z/RSXRkI/tUbiMnAUQHjxQ3gpSL2WFkGJwEIBKVCIY2oUpyBh6lMhSDxCqTnyGzjCTBDCKFZH0dCW/QUsDaBIHH16VwAoebyRsPsToD17G8jvj/bi7gv2k+BUKPq0HfAtw/Y68sgji6FBu4sXR1x1KlQVD/G2/ViMBPNSlorSZYIpU6ZYbOVNeFQaREPFhOwriLwqPdxc2y6PcfPNN1+ts/mOOuooQY/Z18CwHABh/GDU0d6UZd0xElDiGOTcX2AeDXny2gadIuTShP2b9rR+ls1yToRru3RaRj+nSyOhn1sncet7CqjoVR4gzNfuHM0gRByZEYcAv+qqq8rOedIqxAgDI8KJ7/qeEJOEoB/Jgs4qiHaKKdK1aYSh6JnZoZ0cmaJ02bgY25ewwl/favuOT3zHNjeMERENA40L8gtrLEYC+VFOlIPSxOeHor/55psLerHulhsVmiN160peftBAg4F6RUeeJn9GntdAYsOu9QO+xhSwLC/CbYZND77iLh1ZBmrWm2eMBO5PiHUUbsRZOL4bzhd/3gNzzTXXLOXCK9LcPR+kIb2/4WAOUnwaCYPUWolr31IAQeyIw7PpCmx8BIoClzPsUXAbJr9hKtoUNAorrs5lkxzCCoMDpzAljPBz5OTopyR65WreM888s8UmS45zsV7eyx/n/DkGSBnsoPdCGxREFNjiN60+d/hDX2mLz2U6uE7gmyZewCMsvw/QCU4qPJabHNVG33La4WW7jtVIIH/kNcMaCZ3gH/GK9GzCsh7iTD7DpLXO5vvyl79cjSPz4kc+Hwk/YTsbpOJnhkejREVNH8PQAwdmGFhmML++/cH2GqnsSBPTASd+E4Ky+G211ValrFhH8wy6n0bCoLdg4j+pFFDYKXzYjIiA4iIlBWW8BlgF9MMf/nDISEchaGWE57NKlfKEi3BkPdQRFmk1VAgrGIHtuizXQitc3VApvF741Bc8VR7e448wFT/rOBY/jYS/tHO7tusHI4GvnepUoDyr7H03kk8++D8awhjJ1NmlFfsVcfC3swmxLA0D+U5/tLLje/JEI0G6c6lXLCvWNeYfxHAaCYPYaolzX1EgKmaO3Ck4ou9mJ+IY8XBHf8zXnPpUoGEAaCBYaeGifIEV82q0mDYKVuLYhY0QJR+KG7+XP3HFx6DBxzXxEt9p9dNI6G8jwXtAVMhRecrjI7W5aczH82WXXVb4CL6VvwyzcVKDAd9lEvLZNzTAhTlS+c007YwElla41AuH8dPMMxL8QXiXRsIgtFLiOBAUYOqf6c5oECDE+OgQviN3ZxaYgscptBAwIylP0jFTsc0229Rb5ZjCx7m5izBGgwKxvHxl6h3hdeONN1bBqoDtpY/wZrSnEKcsHPiNdCxQvEfz00jobyOBOyJwKnuNBeKicTtcOzdnHJgRY0MpfISRzKwdvMVSjbMKvLMPbrHFFgV07FvCjLgMV35T4TeNBMoGD5b+cMJs5hsO/iDEp5EwCK2UOPYtBRAGCB0UOLvqvcQGIcVIhhEG19Wuv/76VTkjVPjxno8HIUCbAjMKGZSp7/U1LH7zm99U2jgzoaDyBfEaDb/61a9a7EKnfIQpQq6XP8pwZIdxxLRsrJs4jtVPI6G/jQRuqIQf5Ul92juGR2t/T2TwRU94yqOW8BYnGehHp556anlnHyQdP+7BiOVpsOiPVHaTV8E5LjfYd/jU9vTq0kiYXls26zUhFFCIsBkQgeQIxrCf+uWDQ+741icNsww4ZxBU5gpQ4VuZuP/APO3eEeeIybCGBbfD4YBNOb38lYJeOW6oEUMc9Wjib9pp8dNI6G8jgS9QytO0q3w9LW1sWvbToJQ9LUT/4ccV2jguvPK7DfRD+xl3Kvz+978XTJ3VqBEjBJr9D/yjkSAOnLLBgDe9/gigB+ZVGgkD01SJaD9SAEXHxkBGL3F0jiDzwzMIFk4bcCOd6/KMgBwNce+8jnQKGPIZRqmq9FW2vNNo4J1pTUd+BZdxlEP8RLm4IdNZEPHvBg5pJPS3kcDRUo0E+FPei7w9Gh/IQ3E2jv7Dj4+msQSnwXnhhRcWQ0LlrUFx6KGH1uUt+XC0cnlvnzIteLczEvhQljiQNvY38w6qn0bCoLZc4t03FPj4xz9eRzfuO0BIPfPMM1UoMop/4okniiHh6QLSEF5ggQVaXImrUzApUIk3DBwEEgKSUdXXv/51sxWfvFEIKqCF4RRrFGhDAPTgAYHpxUWAB8eI13iKTCOhv42Eo48+uipMDVbam7A8PVL7q2xR/i7hOVuH/53vfKcqZ/me7zVgHHiihhkFwlybjdNI7YQH7Yvi2DQS6IP0Y+7msHzSTmT/Erde+V0xEqIAMAwxFUgyA8/GWSFHQsZL6Ng4MgoCknS8s6GFk35SoJcUgAflw8irbAR0tOLRK4QG9xDAo/KxAomNhrxHyTsdyjOXzuAULvQL8prfujWFFPcQ2L9Mbx59806PfhoJk2skwGPy31xzzVVn05zu5wbKyIcxTD+yX+jDo1EHkIY9OWxQjBsT6TN8ERIX+yYzcbfffnvdJEw6jQqWBMTV2YmR+kTEFZzMS78FH40Qwocddlh9T1plxEjwB+XduI0ENmZBJBrDI1W77bbbkPpL3BgZGwAm0Fgg3nccX/GDI8CmcdhF6pnvyFgRdoaTAt2kgB0+Kn3gE89mRXg/Knw+VcwXA9s5NjHC045AyOsd+Q899FDJojHCg31BWPSlON2ZRkJepgRPwEfN30TdkwBvohj5CiM4YADj0yd22GGHYgiAI3zd5Gf52nj6GGnpWxrMBxxwwJD+5TdQ7rrrLrNXn7wYCrvuuusQemjIX3zxxdUIIe1oTrxiOvWc9MYIOffcc181iFBuxLyDGB63keA6EYSzISAea1EKOy1DCWTj0ABupuKdsxDEk4ZrN52aBT5wWcfFOEgDQWqm30sKaLx6xJCOL/9yfzw8qcKXV7lxUUMW3ODxKGyYIiVfnHngmZsYdfA3QjLm4x1lp5EglVqtnEmY3JkEeZJ+wlc3Y38gzAe4dJGX7UNNX8WqzvCaaxSx/Qy4zFDQR0xPGXF2GQOCTYzoJGcSyMcn2zkpwcA04kM4Pouz+PFMmLzA4YdOUi/xCWv1nXl8Ftag+uM2Eu6+++5KNAjHrAKbs/jREBJXq9BnfBrFeAlrPNO1Ngb+LLPMUp757Gm6pMBEUSDypWWi9Dly9c53vrNOr8qrm2++eUkGX0eDQj5nlINbY4016oiLvG5ovO666yxmyHKFkeCTRoLUSCMBSsAT8l/0J2omQWXI/gPLVzEvuOCCf22sELI/6ANDw8Bk9J9VVlllSB9jzw9HaTmtYLkONKPBAAyWAMQnDmK5Jrw5yNRIGMlQoBxOKQnTOvIcjyKLVztY1m2Q/HEbCRCC73vTCCpyicjtczIBDSjxJJACmAbzHQ3BblWutWW6itGWFiSCFWc+YQsv/aRALyjgCAU+VSBxVzt87tSqGxY5F66Dp52BaAqlG264ofA3vO0MHLy+7LLLFuNaHm8KGuLTSJDCaSRACXhCmRv9iTISbI34zRL3DzBoRJ7j6A/oAXg6KnTDTXnObDT1ERanh+gvfA8i9qdmPnUJS3tej45+Ii8/+irLgc2+xXPzJ974GDGXXHJJXfpwiZE6OuNIOnBrwiZ+UN24jQQqDvFkTqdf5phjjhLHNbA6mWG4Zxob4u61115V+AoXn4/DaG3qCyv9pEAvKKAA0lBAADG1CD9qGLgnh+nWaBgorMBLpU9YmLvsskuBo7DR4GAWTSHYFDZpJAxt5VxumFwjQT5FHrOnJsprwuiDeDWySji2YtxEqLLlU9/M1KHUgaO/2GKLDTkJFOHEsLqGi5TMa38F3pZbbtl2pg4Y4mifjf34c5/7XD26bF3ZlxT1EeGYJ+I1iOFxGwk28KWXXtri4y0QzmkYLEBGXF7eIuFsQAlGvEL4/vvvH8Jonj0/8MAD65ftbDxHdcJJPynQbQooBIELnyLEllhiiSFGLEKIWTS+X6+L+eBTBA98G3mW0cyb3/zmIkg1EOgzXDvLzYgKKwF+THsAACAASURBVGHip5EQqZEzCfKECiv6EzGToHKEr1leRrFHHDCAL7jggiGNBl9Hp2FAHH2MvWmHHHJIheM15sDlw2jRqVOIU68AnzA++LFkoU6inzkjccUVV5T3wGjiBDzj1DfErbfeenWfHPhgBO2zzz51ECA+4hJxHdTwuI0EKi5hVltttdKwjKxU7hCSKVgIroBkJCURjQMOhgKnJbT4hMEGFNd8EL5RAA8q4RPvwaEA/KoRy2kCeNopUMLwKSMMHf2BH8JFAQj/K2zgX+M9EumSA/AQrB7vUlAJO40EKfEXP2cSJncmgVaQrwlzPTE8zE/Dl0+Sq7RjeuI0MuBzwxxhtB84y8YzRxhxyn/7WYkMf/Yt4XFMGWUOPs50E+aUEf0aeLEOAVQN2n/nnHPOIfVjifDss8+u6VxeJEIdV18OaKArRgJ1p8EYSdGYEA6fBuHHpiyIR4Mo9BS65MNhLFx00UWVOWxM4Fx++eXlfUwrowwo3RPtAaFA5LMnn3yyjPydvnR0sswyy1S+RjAocDoRElyixBch4XN+ClbCLGvgGKHZX/AxpL2tcUY/ArnWWmuV6WTlBUqFD2cpKzphM9KSR4UELNoY2J24WNaDDz5Y25I2FC/bz83cES48hlzE4HFgRF5w8ANepnepyjIdZJGeX8x/5513mm1YP/KoOFIuP/hbWc6ysXwNMPOZhzjqwf40B3ngA01XWmmlWr75jLAe1N93zNRBN/oCeKjc0S/UV+UvjJF86cXtpy4LYpBTL+Aec8wxJXu8zCzCt87EMbsX+6dh9j5Qd+sCwCg3RsJvEN51xUiQqFhwXH8Jc7hbG0LSIDaGRIH4MgU7VXl246PCFwZjk9YLL7xQskWGJMIOIsz0kwK9oAC8iXD/2Mc+VhWAAgIeZalNYWRfAA8FzGg4+elbBKPKnz4099xz1z4SYWy44YZV+czoRoJHsJUZ0K0payLthguTh7z8hAXs0ZwyjHQMhDidAgyNA2EKB5kFX8gbceTJlwxJj2I0n6Nw86uIKNcBF7AoDyVoudTh+uuvN9uIvjCVp5YtHvg33XRTLQ9g4q8ylO9//OMfV9yFwzI0/YO04owfDQNggsfJJ59cDRMNBOBgfIzVoV8w8MUHGmkQoptclqFOHsOnLOlhuSx1CEOfmQWW3K2XaSNfGDeo/riNBAgrw0AEzpFyFlVmhZh2uscff7wIW9LJVBIOS560cdqVsN8jJ52EtzyZWxjpJwV6QQEE+QMPPFCFFwYCyw3wp99nkBejYJFPR8IJ4Ynxy9FJBQ8CjB996LzzzquCS4HMuihpGbHN6EYCBpN00+eK3Gl15DG/PrA7ccoy2pvZH0fzyj2+60HbxUFOU0kywOKeDMomP+1PfjaxCh9c5DPK4gf/IBdV6I6Q4R2V32h10FBR0TmzJf4Yrj/5yU9epTTBRXw0kuF/ZbiKmDqxhGDaJj7Ug3eM5uPlebYDMwssN0NDjhCDL+UNBy/Cj7T7yle+UnDTwLedpkyZUvUSeWmLaCxYDnsPwAnaCoMr2dVL5LVdIg6DHh63kSCBZDQIcvrpp1dmh2lt7M0226zQKzYc4Ycffrik8ROfNAA/jlDKuHQwwzLkoBM/8R8MCsBvXIDkTBf8jFBeZJFF6pKANVGR+9ypz0ht1VVXLcaHAp+9ONxZ3+R3b7Zj5DijGwlcqsN1wLQJSm255Zarm9uiTBquHUzDKJG8KkZgArsTF9uHTdq0o3IPOUZ7RYcsU24ajxxk1sDbN6nP/PPP3/IrojEdYZQRTgXGer1lknfppZeu+17M284Xju9QjlOnTq0zWihElgu8QRQZDK7K8JhfXDR4wUdDwT07pjEftFOus5xgH4NulE0fi2v+4jmtPjOBGBrQSV7B58fsN44ZgWjIubfBtmJZkfTWiTDHPqOjftYtxg9yeNxGgpW38SEsYdZNIaKdjl3cCD92lMIUMIejLm7lgiH4kQcG4Zv3LDNIcGAigGVOyo1h8Ug/KdBNCvgde/lQgSa/U5ajDt756xQH4ZGevsOzZdI/2vE4I1z6CH1lRjcSoFs0zBTsndI/pot5I8yYphmmveAN5JkKJsLhvbxCvHwEHNMp12hrFZLtLkxhkJ+w7/U1dsQvlmPcSD7lKI9JJ1zCHEfEgWc0iGLY9/gun8mjyH0+uhTTxLIiraUJaamTeICf6fANF6Cj/DXTSlPjrYe0Bxw09sczBoy6TCOeJXX2KeDsx7YTceJeEgzwX1eMBG+Rgw42MtNTMgnCjB/TVixFREJyqQzvtKBtAD94047YNoj+ANM/UR8QCsjXCJIoXBTGUcAQVvCMVj2FflPIky+WyUgIfkfwsNzglG4aCX+hMLSJigfadSKkSSOdgQSMaZErUZYZxqddgSOvyAc8G8f7du1OWvMbjnWBv+Kz+FIudVEey5uWPZwvPvoqZOFGONDHegovbsYEr5dffrnciqjcd1r/ueeeM0vBH/ixzaQFeMT6saegnYt5270nzjoAz3qZlnppMBhHetJKC+P52ir1Qaep11xqJI3tFeVArINwBtHvupEAESQ8l8vEjVhaYieeeGKhFSMmru2UmZjGwUjgXCsElsjAi4xKfKdCeBAbJXHuPwrAc5EHwVChTBjhokDiuSlkOqkRefjmA/wu70ehI4y11167zrrN6EYCbdCORtJPmo3kt0sLzKYyHA5Gs3zaUcWp8hgOlnlJh9LDl8/MM5wyNC94EVbJ8tyuTu3wJ5/w5d9oNJGH+pCO97FM4fmeZ99/+MMfrnJduc8Niu2cedQb+tIh1gu6KvspdzTXLo0zfzEvdY5pKVt6kM5bTl3SwXepQTxJbx7rFMsY1HBXjAQqHwWbjcx1nKybOurBGMAI4HIMjgqddtpphZGwNFlqcBaB2QUczCDReaYRY0PGdyVD/iUFekABBW7kN3mc4hRiMa5TNIRNei8mU2hHBQjfm1aBRX+a0Y0E6Ca9CKtYO6V/TBfzRpgxzUhh2kiFoU96+SMqjmhEkGY43uJdlHkxLDxwNb9lwSvGjYSzacRXBdwsN9ImwpMnxUU4fBURRaqBAK+yBB31hHAo0/zUTxysC+mi4TKtbRNxFw5xlike1oVnDQnSYbhrHKij/H4EaWO+drCMG1S/a0bCcARgdzYM4mYPiIxBsNFGG5WlB97FG7X23XffAqrZgMPBz/ikwPROAQWbfcJRGv2Ij9UoBJvCKiqU6Z1GWb/JoQBGgXwmf4IJip7bF+FRZL8/jiK6HBLTTw72fykVY0TjJuJBHDhywoR6oKv4ocOYJZ9RXM+NBBgCCxImkWEgdPMKZ2YT2NzoJhkaSCt3RmmMrGdSoB0F7Af0CQQap3688ZEpTwQyaTQSNBrawcq4pECvKBBH/pTBVfoODpHvjMbjXrNe4TEtcO0z5CGs4aLRQL/iFklwdzYB/cVMeMw7LWUOWtqeGwkQhLsOtMIkNJs/sMjidBSbQ3DNhho0oia+SYFuUgCBheJXCDOz4NKGRnU0DHzXTRwSVlJgJArAoy6hmI5ZA+Q9Mt6R+OKLL16UK+lVxKafDN9ZEHBxmQM87EP33Xdf1V3oMOqB0TAjuZ4bCTLCnnvuWXeFal1qOETCs/6TLimQFPgLBeJ680g0aWckOAMxUr58lxQYLwVU+A7ugCc/8qVT5Ds/Z5PjBXnjLbtb+Zv7HOw73BmBnmJfHbN31IGTexhEpukWDv0Kp+dGAsSHeVD+3p0N0T1GQpgZhW9961t1BgFiuW7Vr4RLvJICE0kB+hA/RjiGNcCZ9nQU5LuJxC3LmrEp4KgbKmgc6D///PN1JO4GdpbLfN9vlGOWzr7EUU4uNENHOQPOEf4ZzfXcSHDd5mtf+1ohNvsOnElgnYofjcAnpW2cGcVCm9GYLes77RRgOnQkgUr/iu9jWCNi2kvNHEmBzikQR+FO35Mb3mSJ7IADDqhKVvn/zDPP1BMEnZfU+5Qu6YH7WWedVZZKGMSio7wBFSxiP+s9VpNbQs+NBKrHZRhvf/vbC6GZsnEWAV+DgUa45pprykhJpktjYXKZI0vvLwpoRCPAEMbtjADj6DuG+6sWic30SAH4rak44T9mtrgPZ/nlly/yn9kEZpQfffTRviAD+OGiccMzMwp+XoA9Fdz388lPfrLi3Nx/UV9Mh4GeGwkwCl/P42M00SCIGxZhHCxMjswgCGU2hGG6pMCMTAH7AjRwlBPpEQ0B+ouGdcwX02c4KdBNCiij4TsHd8ZZDvHypcpVA8I0k+WLsz54aDDY37wzgXfx9sdmPSerDr0ut2tGAo0uofElIJtUmDGI3xhn1oCrZYl3nYr3GA6c+zYvDKUQlMlsQAhjeXH/AsIxWocKS/LT6E14pgWeaZvn0nln+V54E8snrHO0F5nJd/iWEetBfKxDxIl3lC3ePIufOBEnLWI64tMlBZICSYGkQFJgrBQYt5GgQkPpoaDcxKKi5wti8Wrmt73tba2FFlqo4Ov30zEa+LEDFp9Njipj4cUKohDbKdtonKg0ydfuxIQbwFC01sE8PqvIqYvliYdpeSYdz9S/neImDbdP6sSH9ObjHXktk2fLBFfSxnfEkT7mF76WL3nSJQWSAkmBpEBSYKwUGLeRoBJXoYGII12+360B4OUvzBZcf/31BV/2IPDM5kW+qGXajTfe+FX1aSpQyzChePCMMm2+J76dsjc9vsYBYZxK2XiVLs9Om8V6k4eZBN9pKP0F2l/Kj3iZN+JOWuOpMz+dePCsEeU7/KYhIb4xTYaTAkmBpEBSICnQKQXGbSQMV9Avf/nLIV929BQD3xrHOR0/ZcqUahxgJLjB8fvf/35R2ig6FSUKWEVpvNP7KnRgm4awo+qonFXe5o2zAipmFXVB9hXlD4wImzSmY3NOfEc+lXQTPkaEhoR1Ew718B0weO876yJO1iOm5x31issXpk8/KZAUSAokBZIC00KBrhgJcSTsVPpOO+1Ulb9nTFlOeOSRR6rSB1GOwnC0JG5kZIMjSxIoOhSeG0hIjxJtKlaU6MEHH1zKY+fsbbfdVhXtlVde2eKTnjPPPHM9brnyyiu3fvSjH1XlizIHrsqYclTAlo3PksEXvvCF1rzzzlvKoj6Ut9RSS7X22Wef1rPPPltgAEsjSEPhzDPPrPRYdtllqxInLY56arTwfMghh9T03PAlHHxpbD58vqyJkcVxHc4h45pGS4nMv6RAUiApkBRICnRIgXEbCSpWlRjl3njjjWV/AYqfUwsuIxx11FEVLdI7wuZLdvGiJdIz83DEEUfU9Boi5FOxogRVhKuttlq9+OKnP/1pi0s8lllmmVI2ylwjZJZZZqkflNpiiy3qtyKAGZU09dIYAQnuIXc2xKUT6+ZSCQr6c5/7XMUZeNLnnnvuKbh4/PPHP/5xScd7DRLqolGCISPdMLJ+/etfl/TWF9xi/TFU3Pux9957l7TSqSKUgaRAUiApkBRICkwDBcZtJKhYVYaM/qOCU9G9+93vLmhFY4IIFB3T6Chv0jKLgFL3NMQDDzxQ8jHVr1ERlap15SNS5OcY5cknn9xigyTPwGIWgdMUK6ywQhlpixNK/fOf/7wg6midCJSwShbYGgbkBc5BBx3UOvzww8uneueaa65aFu+33377ApO6RmNjttlmK+mo26677lqNg+bSALMtcfYFmJdeemnFk4BGE2Hu7yeNBsgdd9xR0tomQzLmQ1IgKZAUSAokBTqkwLiNBMpBaavA+UgTCstRt8rue9/7XlW6Kl9HxfjsQXC0T35+KFM2MQrbOqkgUeQaDJtttllVkuTFAMBQOOOMM8xWFD8KdM0116wnKUiLUtY5QveZ2QwMF+rBcc2rr766vLJcNxC6SRNFjWFywQUXCKLSZ7fddqt0wZjBqcjjngm+xS79wI/y+Tyw9Y57EKAlN4OZnqWQOEtTkchAUiApkBRICiQFppECoxoJKibhokR1hh0J8/lMpuBVWCg3lNy6665bskSlroGgkiTBGmusMWSkT15+N998c52Gt2zL5BkYW265ZUmLcUAeRu2PPfbYEMPEsh566KGShnTgevzxx5dbwYStAcBXzGJdrr322lKWcEgfjQr2KzgLMt988wmuzlCwxGCdWF656667Spqo9IlgPwf1cGaAPHxaG5pZtjiSfv31169LDfvtt181nCoC4wxgwMgHLOV8+ctfLp98Zcbm2GOPHdcPWCeddFLr0EMPbR155JEFLntKcLGOY60C7TOen/SO5WOEARM3HtjdyBvxMgzcyCvGT6ZvXZs4GN+vfhPffB4bBegz/KJTB8S4iQ7Dd9HxHPGcbL5EBkYcCUO3KIMi/mMJRzkb9aqwRjUSTIgPcgAUSRG1Etys6OVIKFcUJrMDfDULx3q7aXl2qYIwivKWW24pexOcUSA/8Bgd49wMSNiyrSD3MbivgfS33377EMMilvuHP/yh9d73vrfeAImBYZ3EidkLNwOy52CRRRZ51bHKCJMw+wY0AvCffvrpynC8f+mll1pzzjlnNYRYrlAJ6VMflmaoN2ndJInRgIKOZUKHF198sZ4Iocwf/OAHr0pTiDfGP+lBdmji0kqsZ7fCtDszNuuss05tjzGi3bVs8Bk/+aNJ/64VNEZA4jVcdvGfLL9JL/Bg9ouffXc43PshHvz7+RdpBC/QX+mn0FeZEtNMVjjScLJwaFcuNOIH7SKvEiau312k61jC7oFDJ+rgn9g3OzYS6NyRiALU57SAyiKOgBkV42KhhKPyoZFgahyfFgUOStGZCJ4ZceJoOCqBi4Jm7bXXrkYCJw1w4its4qgHjlG/xsjqq69e4oAtnuDnfePgccopp5Q0/jn6l6COtFFypMdIuuqqq0pyG4+HbbfdttJp6aWXrnSQIR9//PHyHtwwuj7zmc9Uw8t6STvKjnSfY445iiFjvbshJKwXswnApS0wxvwGB+00nh+w4BfqC82AT7gbuNtW3fBpH9uoG/C6DQPcoBk/ebzbZYwFHv1JfiR/7AtjgZd5hlIA2RbpO/TtX+kt3Sfab9eP4c/R9EmzHpPxTJ+aaHo1y6Pe4IHM52f/hn7taDseOgFTXWkbAW9UIwGkJdZwCJCGkTbKAiHPjzBT5Cg9nBaLMJzWABmVHghyJJKRtMoIH6XL/QlPPPGE2ev9B0SgsF1uYPbhq1/9apkeB2+cRgVlWRfW8YGNUt9ggw0qXALUB0cdnJ3Yd999y2ZFptc5jcGGR/Y7MFV+6qmnlo+BEA9MfswEfOlLXypwLJ8HNiBaJ5QhxybBC0ejk0cYP/zhD1sscVAn4hZffPHSiOJHHvY5gCdptttuuwLHetvgJXKcf+IoPayDuI7Xx1DgR12oZ7fcePEyP7jRpmyw5XOxzKjMPffcZaaH2Z7J/IEH+Mwzzzzl6DDG56qrrlr23jBjNpk/9v/we9/73leWE/HZCMxeI04XffzjH+/r32GHHdbq5x/yAvnDV3a/8Y1vlN95553X8sf+psn+XXjhhWXPGZfnMascfzfccENrsn/M0LKkfffdd7dYimaZmVlgfsjnyfw999xzLX7MUjMTjd5sGt7jkZXuhVNXOEiOOmtUIwEEolIiDCAUmvFMmyNMPYKHMOU5jv6BAyIiJVyR4tl35CM/CgNfxaQypwKUreIiLzMJpMWgIL8jYN41lSb5mRkgPb+NNtqoGhKkBy5GDe/EgTAGBYodn1/zPc/QwHfMVuCsIzT7zW9+U45gotT5YaxoEZKOkxOOqFlK4G4Gj1hStpssqRN4YogRT9kXX3xxKY/4SJsSOcY/6GxZGHOcErE9VOrQaKw/8KZ+wCL8lre8pYVBRpm22xhRL9mA2Y0f+PGz3ax7N2CPBwZ0j3iBn7jRFwhP5o/Nx/QH8KKe+OIMXuOpe+b961X20haaSmvjeJ6sX2wjcENW8YMHJgunZrngJU/yTjzVY7EOkxkGt1h+8zm+6zSMLMc5aCeMHo6ytyMjoUB5ZaSrQjPOzX0qMpBDKCy55JJlhB+VlUaAcSCioaEiBS6KdLnllqsEQdjRiMBmel2n9cMz34GwURnR44RtenFH2R199NG1M8WNlc5q3H///aU8yqZclNdwhEcQelOkeLKfgI2clinRwclZD2AzqhJP1oUsD2PBvB/60IcqrsxeQD/odeutt1acaOwXXnjBqg4xkmrkGALgFtsGENIdYwtcxvOLxhxlWecxoNrzLPAGbcQdHIwumPV66qmnJv3HiEdcHn744bIhlg+rMQvFKGkyf9ddd135BDybdgkzimREecUVV5RZtfPPP7/Vz79+nkUAt/3337+1xx57tHbeeeey4ZmZGZZsuVCNMMu9k/3beuutWxtuuGGLS+GYSXJWiRkuNqtP5s9ZLmbemIFbYIEFyqwc8psZOp4n88cG+Pnnn7/MVM4+++xFDzkoRB9h0IznBwzlOQIUeayu0h/VSFChA6CpLBht77DDDnUkS4GOolXm5kEBCAtEojIgjYpSw+Giiy4qBIEAwPXiokUXXbQoA28dVIlxq6IzGUy/GU9iYVs+cXxtEoXMDwNDJ16M2KOlxqZKjRzT4gsTP1pj3F2Ak9CmI47jkdTJejGVBI4sLxjvLAT5mEoUFwwaFSu3Mhq/1VZblfL8i9NFxo3HBw/KRVFa/njgxbzQPOILzTxaGtNNRljesWye48/4yfLp4JG3Ih4Rz8kKg1s7/MBH3E3Tj36kZz+HkaH0zShL+wlf+jjtrT7oJ9zABX5E7vjjGefzZPn0CXERT/sJ8YbH6pdKhnt3qGfTjWokRARjA6Ok77333qrUUOaOgpt3G6gAQCDuTQCeSlmfyuqwOIHr9DbwUYpuIiS/6VdZZZU6jcUsQaysswOktRzSqJA5QmgayyY/Bo+zE+w9wLH/QctLWMBtV57pxJEyoCfrXho04MAGR+iy1157VRoy0sIBl1GrtIUejF6Bg5WpkXDOOedUWpSMwUDxeSy+7W9dgWF99McC1zzAsAziIh2ln2nH4gN7PD/LBC9+EdfxwO1WXvGDjrQRv260i3C75VNf8IKG/YjfcPXsVjv1Ck6TJ62H9O5VuZ3CjXJD3ORVeYHnyfqBU6SVOOKDX7846dNtfKKMVQeqo30e1UgwIchFgBxHvOmmm4qyc5SPwmNaiXgcFRvN0UA4GiQaIYzKmUJlCsgpfBQkO/jZmBgdjMhlSpRPWjYXAheYMqkMaXknnHBCSY+SXWuttSo46ijeKGFgoqCnTp06ZCYh4iqT2ZA+WzbALdeCVlxxxWKEYIiwJwL8Fl544TorYzrzYTCBC0bLJZdc0nr00UergUA8MxfiZLk+C2ssPnhh5IkH/ABcaTQWmM08ka/E2To00+ZzUiApkBRICkwcBUY1EkQFJdEU3HFKGGWCAsHXKfB9buerfNq985ihCgnfONJjqJif5QaUJT8uR4oOnGI+3h1zzDElLYYHhk0TV8ryOCaKHGNCAyJ+8TEuMcS6x/IJAw/6WRcuDtL4Yc2LnbWWg9GAg57Uj/K4bMjZBPYonH322cVgAC/W9OJSiGWMhE8Tv06eu20cWEf5Sl+8m23SCY6ZJimQFEgKJAW6R4GOjQQEuApZJTQcGnFkOFwa46MiAL4Kovl+pDLBjU0wjLJRpBxPVOHEmRBgghvv2Lfg9xi48tj04sMzNyKiyFXmHDeMFzpZz4gb+Vmzpx7CpFzqRjrrx22QwsWwAQeNHHCL6/4YOHw0yw0rbKJkw2NML730bSufx+rzXQ3rEWlJXZqfrh5rGeaTNpZjub5PPymQFEgKJAUmlgIdGQkohKgIUY4K8qiMVIwqQ/cijFSlqAjIrxJXqQof5WuZKFAVlPk5mqfSZSkBF8tXoYsLGxdVstzwF+tHGuBSJhsFScfpDfZGMOvAMgjvgQ9c8Cbtyy+/XHZtc4SPUwjibpn4lkN+PoeNoSLelIORw90SwORnHYDF9x7EGYPIo0QeiwQ+eXDg023nbIV1AD54jecHDGiIISRc27Tb+Ce8pEBSICmQFJg2CoxqJKB0FN5N0MRH5dsU7vFdM28nz5SNslPxNfNEJeyaPUqUTYnRgWdcFsDY4BISvg4566yzlotdSK9ijXCZOWDPgspZf8EFF6wXwrDxEVi8c3/GJptsElGoNAQX4EMrPj9Nnrgxk2MuEY+IC5fPkN7NlIQXW2yxIfQx73hpL/LQHuNAHsC3DNN009cQBKYGUjfhJ6ykQFIgKZAU6JwCoxoJUUmh2OJzVN6EUUwIdgS9SqVTVCJc8wjDcikDZa8xQnkoLHZjsnGR9XlODWAAAI93UVkSB27ExZsNWdPHCTcqQcrkHPqOO+5YFDQjf8pBQfPz4iOf8TEYmKkQf3zxMI6y7rvvvjo74NIH9SANOIiP92pzdJJZB2YQwIEw1zZHZ5vEOsT34wkz2sdQiTMasd7dCFM36uQO2/Hgm3mTAkmBpEBSYHwUGNVIiOBRWvxU6CgknlV8puVZZWXcSL7phUtawv4irJjGdPhcKoKSYrreI5LEq5yFRRyOjX8oeJYRttlmmyF7AHhPvWK5jKYxFri4hI2FlBWXCVZeeeXWpz/96WJ8+BXDWCawIjzKQJGzTAIslCPKl5MLTWc+Lnhi5sD0XBGMoRGdaZt0immmJQwddMCOsxhstIQG4/nZZtSfMD+Os2IkxFkFcUg/KZAUSAokBSaOAqMaCVHRjYYWCqWpVEbL03xPeSijkZQcyjVu7ANGfNYwEDbPKpyYjnKIV7HGWQpPQ2DACE9f3KIhARyuUNZZTjSgHN1bHnkivXwfy/R9HFlbF/Egn2HSG9YXp7H6wLHuKHGMqzibonIfqw8sZ0aAQdh6jxXnzJcUSAokBZIC46fAqEbC+ItICINMAQwWjQ3C7JmIBgJHSMfzwyhwT4YGArdHxj0kg0y/xD0pkBRICgwyBdJIGOTWmyDcneGgOD4ideKJJ9YvYHJx1Xh+J598cuvMARkunwAAIABJREFUM88sm0251ZJn7vjHOeMyQdXMYpICSYGkQFKgQYE0EhoEycdXU8BTBi6dsNxB2CWVV+foPIZlBX4sp7CkEQ2DbsDvHJNMmRRICiQFkgJNCqSR0KRIPg+hAEsN7QyCuATB+7H+hhQWHoCXLimQFEgKJAUmlwJpJEwu/QemdEf4bqD0ebwVAI4GAcsazCoQ58VN44Wf+ZMCSYGkQFJg7BRII2HstJthcnqygQr38tSBsxOUE/dBzDCEzoomBZICSYE+o0AaCX3WIP2IDoYBo/2m4mbEj2Lvxq+d8dEsrx9pkzglBZICSYHpmQJpJEzPrduFuqm88eNIv1vLAcJ0+QLDQOPAZYguVCNBJAWSAkmBpMAYKJBGwhiIllmSAkmBv1JAY85lKQ1L40lpHEahRqCG4V8hTXtIGF4wFssEmjgRtlzC4NNMO+2lZ45OKGAbkTaGHSB0AmOsaShjpHLkAdPwbJxl/vGPfzRY+bjTQZJwI//7cUJ5E76Uf00feZWL/YwHEe+QEWZFrkeBNBJ6RNgEmxSYkSig8Ne37hyfVRjiK4DbCWPzjMVXYCJMFbD68fZU3oOj78ZSVubpnALQWoVqG3mkunMo3UlJ+fxUuPJq86j1n/70p1Jgk0fgX+swLRhhAAALPrRM88ubPP/5z382uvhNOomPMOxLQzL14CGNhB4QNUEmBWYkCqgEEF4aBISjADSNArqbAg6YCHqFZ6Q9n2/HxXeE43NMn+HeUUCl1822Hw1b+Y100UDgGR4QJ54doQsT5a7BQJzGBPGe8jLtcL554nvK1diQFvYb0vHO2QvfEx9haTBEuL0Kp5HQK8om3KTADEIBp0oVYgrm0047rXywi4+u8bl1DQXIgvAz33jIpLAVBoL+/PPPL1eFc833lClTyivKjoZBM5/50+8uBaKhCM1RyvCHPNLd0l4NjTaPijamMP64445rvfnNby68utpqqxUFHfFjeUDeoQ7mk98jzHZhDZEIkzh5UHj33HNP+YIwH86be+65i4GC8WDZ+pQhzHbldTsujYRuUzThJQVmIAoouPycOVV/6aWXikEwxxxz1E+pf+pTnypUIT3GgQJyvKRCwALTkRWC+Be/+EX5MinGCYbCT37yk1JMNEpieLw4ZP6RKaASjKmgf1Sa8V23w5QfcUDx2v4vvPBCa8455yx88pa3vKW111571RE7edopc/Azf6e4qtThe2chrL/GBrNefAn4DW94Q8HnmGOOKeAj7pHPOy17vOnSSBgvBTN/UmAGpoCCTiGoQPvGN75RBB1K+o1vfGProYce6qlSiNO1v//971tLLrlkLX+DDTYoLQSuptO4mYGbbkKqjsF4wgkntE455ZTW6aef3vr1r389IeU2C0E5y6vyKGmuvPLKVvxM/SOPPFKzytNEwC/REGaGpBNDF36jXMsWloYCz+CjobvzzjtXvp1rrrnqPgWMA2BEvpWXK8I9CqSR0CPCJtikwIxCgbjhCsGF0FtllVXqlP/mm29eSBFHQYyeosAbK62i8I0wUEjMJDB1y+/mm28egkNMm+HeUYDlHgxFf5/4xCcmdKrcmsEnTaUO377jHe8ouDGLsPbaa5fk8K8GAv4nP/nJkoav1fJzCUvYo/kYFMxYrLjiigXO61//+ta73vWuyv+UJ2633357mUnwy7oYVzgNiVgWcRPh0kiYCCpnGUmB6ZQCKuko6K644opqIDBKO++884bsRzBPt0kScXj++eeLcaBy2mOPPUpxGib4EzUS63Y9BwneyiuvXBQrSo+2eNvb3lYU4kQpuLgsENub2aabbrppyGfq4VvSN3Hjy7fgbh0IX3755R01g0sJGksuJWy44YY1vwYCERjS0MyyFltssdp37DfUI9arAupRII2EHhE2wQ4WBeiACAdHu1Gg8A6looKxZvF5pPfNDXuWIRzgKwDwee9zTIMwsUzeGyYN+MZn3jfTOMXZjFcoAsOyTeu7Js5RsFE+Qss8W2+9dRGqCFM2hOmEEekBzsaTjpGbsIHpjnP8WL8YFn70ybvllluWvQngMcsss7TYgCaOsX1jvkELSwfaVP5t1o13kcbNOsZ3pNWpiIizTXjXhG/6dv66665bZnRUsu9973tLMpVnzGNdiDMMP0ScCMdn0opn5Cv5Vvi+I6/4b7vttlX5wx+Wa9nAsN7rr79+5Wnqsuiii7YtF+Oj6X7605+WvDPNNFOFQZzOMnimvi7VaSjcdtttBWfrbXs16yi8bvtpJHSboglvoChAx3O63M7K8SM7oh2TShFGgMS4dmuTzc4LLDo/gkqlBzyEFfEoLoRmM5/vxatJWHBRoPkOgQnMJiyegQfu4k8c+UmPi7AoM5arYAVPBS55KE94PDOCf+tb31qEIdP8jKDI28xD2Qp38tkGhHERl1eiiocQFl/jKd/2Is7d6Ndcc00VygjcSy65pGSJ+ApjUP3h6ER9oLttHutHuxKv7zviaJPY7hpVpIk8RbidoheWPjRHAb/uda8re1MuuOCCUrbv8SkXF9sl4kAdKcv3+NabeNM2eRGeiHwRy3zuuedab3rTm1qvfe1rC4/suOOOFYdYDpH02ccee6ykZbmBuvA79thja9mRFuAW6casAYYFP5Yapk6dWsryUiXwj7S99957h+yT2HfffSPqNSwNakSPAmkk9IiwCXawKKAwiUo81oAOaRrjY8cmTBoFjOmJj+nIyzuFt+mJJx3P+JTVzMczAoX8OtIbRx4Fpu8V/D5H37ItR5xNAyzSRAVu2Sj9SA8F/aWXXloFIkLx2muvFVypDwo+5tN4IE7YZEDI8o4fOIirwBTKlkt8s+4YLIzeHMFtvPHGJbtlCmvQfWgQ24j6EUe7Rpo2n6l3NNQijW37mJ++IY1j/Gj0s73N20wvDral/Ei6Zh7eyQ/iQH7KMH8Tvs/x/Xe/+90hfHr99deXsiINyCefUcahhx46JM9ss83WevbZZ4cYBLEM8n/961+vs1kzzzxzOeL4m9/8pqBkvSmTulgf6rj88suXGRiMGJdomrg1n61nt/00ErpN0YQ3UBRACDAbYAcFeZ5xUVjxTKe0Y/IOhccv5kWoRcFGegQHo4aonIQT0wonloMgiWkKYsGgEC/jSc8PGApn3olXxFchFesZ3wvT/OIvnvG9l8586EMfKqMlhBujrRdffLEkowxwiGV50RFx4Ou7iLd0AojtQtjLZiJtqA+4ESeOTG9rJCCkKdN6R/ynhzDtQ/vpIu2gLe8ivWKY99AMP9IPWMCVp4SNH+HH+GZY2CpQ24Z42yzmsX3EF37gZz7Tgid8F/GIYfnIcnmmTPyPfvSjdRmEGQX6J/Exv+UQh5wgDbMizCZgAMPjbGrUQSfg48ANHo3HK8lz0kknlTSWE+sknuTHIGEmzrJuuOGGAtc2ivnKix7+pZHQQ+Im6MGiAJ00dj6ElILGmiAEiFcYGN/0FSxREANLAch7YVOuIxbhEOd74/SBGctvPpsOH1x1CqaIE2HKinGmgxbk9zlOoTpVquFAGRx380QBAnHVVVet9Y10jXBiucCIQp+RK2WDn4701l28SIfyN5600o6z5uDi77LLLiugIj7CHkSfOmugRfydWYBe0im+J05e1Oc9dIs8Q1ykP4rP953Q0HYAz3Z42P7yP+kNC7+Zl/aOfCfe+uQXZ/LG+pGGY5goeO/RWH311YfwP3mig6915557bsnH8hWbcoFzyy23lNfWT/ocfPDBhe8wllH473nPewRTcbL+vCAsve68886S1+OZu+66ay2DcmK+CrRHgTQSekTYBDsYFECA2DEjxjGONCg2hUBMRxw/BBqCCQFF+ihoiFNwkDe+i7AIU24Uago54iyfOAWoceSjfOIRoApa4YtTLDsKGt7HZ/IBS/jipPDlvfUW5g9+8IOqjFHKn//854fUVfjCcJMXcDyDrvEhfHzqRrx1hpbkAZ5x4iue5udImQYC/sc//nFevaquJXKA/2wnaBJ5jWffUT3oJf2tLvQlD/GRfhpzztoAR+ODvOQbzZEmlq9yb+aNcIEpjjFdbGvSxLqYnvhYJrxp+fLpjTfeWHjC2a7Pfe5zQ+pNevPE8oXNvRuRpzjuazr9X/7yl8WYoAwMBNLff//9gChO2vJgWa+8Ks/A0YhhHwN3JsQ62pfM00s/jYReUjdh9z0Frr766nrciDVGHB0QpcSIg5sCV1hhhTJiYPSw8MILF0WDQlQYR6FCfs7kf+xjHytTk051L7LIIq0jjzyy9fDDD1eaMH2OMIgKPU6pgwOCDUX3hS98oVxt7LluhA6jjLe//e0tRhmssbI+qgMueClMEDAIRy42Ii+CZ9lll2099dRTZql4IHyj4IJGCDrWRilzt912K3kUugrGT3/603Vqn/QcKdOBh/QiDqNgm222qeu10P7ss882eZmVqA/BsGLUvN122xXaUg+mf6GPDlzEi3ogjL1ylxHdAgssUBVCrKP5B823fffbb7+quPbcc89SDXnpZz/7WWmzeeaZp6ShbeDpnXbaqfXkk0/WKtuORDz99NOt6667rrXRRhtVnoHe6623Xrn2msuxOnEcM5Tn8IEpH9A+0Sj0qCHlcFsn/UKcnnjiiWJ0LrjggrWepNtkk01a3/72t+slTaYHN+tvO2tUHHbYYaU/w8v0aS5Ukmesk3Qlj2FhsokRBQ4/gQM/eJcZDh2nOojXQNhnn33KK/u0OBFJmHJ0hlkqAwY4YmzEvmoa8/TSTyOhl9RN2H1PgeOPP752RDoknY+Rk5uUPNccOzzh2WefvcUlQWyO0916662tj3zkI3UEoIDAd9qQO9nZzBSFEsLQZ4Xcr371q9YRRxzR4pIXBARl8gNOfCbsuiUXtHAngbCoi2F8BBQnDxRu+EcffXRd37ce4KBgZJPVMsssU8sHB649xuhAuIkvI8Qtttii4oZCYMoUF0dNpFNAMtMgXYCLwfPMM89UgRkFoaModsdLC4QnSkJ4joKpq+kpH8OAPNSXPM5aWEfrPYi+Cjce0VtnnXVKu2Dk8i2CaFja9tBD/vza175W2khe4VQI+aQzPsYuihH68YyBeccdd4xKMm5bFA5tjaHcdPAHZZ911lklrTxhOgxk+yHGrfxvXXgGHwwSHHwTDe8Yhi/WWGONariA23333VfyRX6Ql3gRw8I/4IADCh7iOuuss5YZPPibQQJweQe9MGTjkpD8Wgp95c9+BO6WxwwH9QUWdeTYpDMxsW9EOL0Ip5HQC6omzIGhAIpYYUlnRIh4Mxod05kA3vlTOPHMaJg8rEsiKIhTcEShyuYo3insOPuso8Pzi0LqK1/5Si2PfJSpcOSZMALIKUniTIeQx0VF6aiKWQHSKezBlZGmTuEjLhgR4k4+hKMuCjsEsTDBFZoKw/Tt/OWWW25IPVkOQGEoKIUBXih37ra3rhgV3GQXlQB5VXaWxyY184Aj33KwnqYZyYeO/KwvAt0yiBvPTzjgA5z4PBJOzXdrrrlm5btNN9209eijjxYDU16EXyL/OLqXLmeccUYBycexjLM9ySfPEyfPMbOk8hNvn+U9jXDLb/c9Agom/Re/+MVaNmXQ3iuttFKNoy78xEU8wJd4jCGuVZYfVKjSFR+jyv4OHOgQjWLxlr4+w4/C4R0zG8x2ULZ0tW8sscQSJV7Z8aMf/aiUoSGgDzyd5fgOejI7YV0xFjAaNAqnhX8tY6x+GgljpVzmmy4owG5jhQw+R49ix+QaWZYWGG0gQFFMvldIHXTQQSUOYUFnZrSO0MXy//nPf97itj9gmx6Bxq5nnEqQMIKIZwTAmWeeWfJQFjBRpsxucKSQETrTtmzCY1mD6XRgCh9j5be//W1tH4UmggjBucsuu9Q6k4+NWzhH2IRJe/fdd9eRDPgjsIULTASZyo2lDumCcOSmuE7cXXfdNWR2g3L8IJP5xQvlB76koc5cvUx9VFCkj4LX8CGHHFLykI/fV7/61YJ3J4I2to/46GvI+DwWP8KPYZVBJzChAbShbswqzT///CXMaQ5phbHHSJulmc9+9rMlnvZSwUFPlotITxxtCI9+5zvfaT3wwAMtZnC22mqr8p40Klo31MEvKjhwVumNZiSoyMljWvlIYx1cqBfLXCyr0a9QvE7pg48/j7lGXIAtj7hXgPQYPCj06MynQWCbtGuPb37zm7VcaIbBsfvuu9c4ygBHl1TkY8oTnnhZjuWTBoNeWgCLy5+kq+kj7r0Kp5HQK8om3IGgAOuTjqpUsvjsIeDTrThG4SoElgEQWI4S9OnEzBKgcEmjYlYIMFonDT8ELGVwNhu4TWWFgGLqFWMD4e50KLgoXCJxWfJwyQH4GDLc2oYTtvjzzG5tR0GkR/Eyo4IjnYKIzzvzXmVz0UUXlTRRsIMrP+qiwiEPa9mdOPIeddRRJa+XML373e8uG+QUmAhEFJwGAu3F1bXWzXKAFZ3vv/Wtb5V6iJ9fpOxE0Eo32hF8Yt3JT/x4f+Asn1CeZcW6DBeWRh/4wAfKzAG0h7/kaZYeWCsHrrhDJ4wz0sKH0MVZA5asWOJyX4M0gu+AwbcEyGc5KLHf/e53BT35hgf5VMVPGfxGmkn40pe+VNuJfkU9MJCZybrqqquGkMAZC5co6HsqVEb5OPsgYXkDA0M+wPfjX5H+FiT/QAPD0Nu6kY49GtJOuihHwJ29G8IWh4iP7WcafMPsQbBOwF5qqaVqPcDHdOLbKz+NhF5RNuEOBAVQwnRABJEdktkEBEwUMlTGKft4k5+CAQW3ww47DKlzzE+YGQU30ZFv//33H5IeYRTX7+NLBAxCIQoa3issWZ7AUFA5cBscQl0hHwU4+ZjpAAcFHEYD+wHEWWUgTbj/AEf5KhsFHPHss5AW+Cji+L5kHuYPJTPffPOV/Ah7jBJHqJTFvghmJsBFfLiVLjrwatKG98RhwJBP5eAHp2L+kcLQHVriVBDdFNDgKK2k7Uj4tHuHQacRRZtCR87w2+6OZs2LkqGNbDNnBnhmAyHOOsaTB4QXX3zxyjfQlNG9TmWKD++NZiTYZpTlrB44yJe0O7cj4ugbpI8bBIlnxkO+IO8555xT0tNmwi8RrVaLI4ykkRegEbhKf+lFeuuvTxzvqZdxbAaGX6UfBhbwwYeZGRx7nExPXsvinWFwEFdpCK9BB+tGm0Zn+hjXi3AaCb2gasIcGAqgTLH8HYmzy57O6dlohYbKQSGOIGBDEj4/Nu3hVPLmV+mSn6UC0iJQMBa8xx7BwS86hIdGCcJAIUOaqPx5Ji07tBWs1MUv2ilIxAMBBCxgOH2MwETBfPjDHy4oMIJhY6bCCQPIT/yKB3CFTdxxxx1XBK+jKEaFnTjpibBFCEIfYbC+DOy4Vg3tmC7XRTyMiz7vmcWJMz7ve9/7Ku4x7Uhh2geaYQx9+ctfbjEDxQwI/DOeH0Yqo2tgMrUvffEprxMHDdnACe0wduEDzuSrgDQkoYXHTuFrZmecvSEvPICCtU3kfZWWeTlJwSiZPPjQQbzNC97QbDQjIfI9GxThRRUuex4wSiKfSQ/z4WvQgg91Z2+AeICX+ckLn5oO35kN4VoPns1rWfEdcT5jdAKLnzMghDFmooElHGDbH42L8MBXnIFDu9i3zSe+E+GnkTARVM4y+pYCzd3XCG2Fa0SaODsuCn+zzTYrQgGhxughrqMrXM2v4YCQVQHS+RmdN0dFKIaYH6GgMFKgCFfhLwyFK7BZm9UgIL1n3SMMRuNs9nJUhZLmWmU2wYknAqrdMoN1Ajb4qcg1LKCr9BLfkXzq7Vo5AhE4Sy+9dFlDpz7gxiwJMx46adMsh3pTT+NpG+oBHH4cY9XoE9Zwvm0BPDanoriE0y0fWlNn6gfOlBXpOxxuxKsMmfZWcYMXywk46wlclb3wKIe00FpDUcPUepOHcOwT3//+90s+eQRDgPfyqcYN+UYzEsDFdsLwgg7wMcqWZx3whUucMyOUwfIC9aCN4ROWulSmwBYv8rGsRl3l+U6MWcqIMIDjMzRk74SDDGfymF1wyc86AKfphBP7KmlsK+oFTfgRdlaFekm3JsxuP6eR0G2KJryBooBCTAGDkWBnVigpkKiYwpuPtiDMnF5kJIxTKBO2o+MjzBEICCeXHDiap6MsBb5xCCAc+YTFMwLQd45UwAshoqJwrZX01kOjIpbDCJZ8Cs155523PBPHD4MBpyFSHl6Zdo0CzvVk8x1++OFDFIv5hvOBBX4oBwUu9GWkGxW85/MjnZvCElpJH8pjHRq8FLQIct6L/3A4ER9hs0fF+jliVICP1VfRCldcOsHNtPjuHxEOm95U3NRVpWmd5AUMBA078kZHP4jGAbTAiOBkTsxz4IEHlmzSyjw8279UzI7crR+4UQ5txmbdaOiyhIajrYWNb9vqY+xab3iHy41w8r3pKIPyI805kim++uS1PMLgGvEFLs/4HpWmfPmWMGUwq8NmRcoVF+DxjKM8yhF2M0wa66XvsdOYtgDr4d9QruhhQQk6KdCPFDj55JNLR3QEwLooTiWk4PBZYcvIzY7LaQIEJ51f4UI+Or9GhXU3jwKFePIoOCw7KnIUNFPmCGOmyrlQRkMjClUUlcqepYOmYge2BpB48szFOig9cTNMvbhUByd+ClzigMEP2jjli3BEqbc7D18ANf7Iq5DEd7+Hxo44MULkCBjl2wbWhXzi1wBfHplWB440JzwtzvLYO+ESU6S7OI7FV2FRX06wWBb4yXMj4Wp67kmw7amnM1u2szAivVFc4CzvUydoGhUa+aCt9IWvgW0e8IYndZYn349mJJgPXnUpAAMEuMwkRFw0bMjjjAdhaAB/SH9ogZOv7MP4GMWx7ShTZx15tlzzmibyv8tylGufYVaBfqgRRZ8VhjApBzqJX4RJGmlImdFApgxONeliOuN64U9bb+kFBgkzKTCJFOhEiNEZ7ZD60UhASHCBCs73CoAYR1hBpkAnTuGhEFSoIEyYHuVKVvMhKFQsxCnwEEw8qwgV3CpSBJFKxzhwJJ4b5MiroCPMDAlC2rTiBL4KNfD2PSM08iEc+bG+3ImTTsIH5vbbb19gWU/won4qHtPqj1YOBhy4+YP2uKgURoPR7+8/+MEP1vpBt3j3xUi4QxN5kbBOPubZNjLOy4KkJ30B53t8w530L+HDQ+AiPuTtxFGW/E9e8SFvbGPKYVlMxUvfYT9FdPKUPM47DTHCHmOkL3FHirAwajCMOfJsP6If8B4jFScu4AHOPpeXr/zZn5QJGhvShAvbcBG/mL8X4b9yRS+gJ8ykQJ9ToBMhFoWewq9bRoLwFEQIDn7cR8C0KYJYAahAaj4rrDUYeOZMNQJPAUwzaCQQR1hBw1KBxoWw8N///veXNMJwdoNn8wKXOiDgFWjg0amAV1AqHBHCHIGMtwQyamXm5MILLyxGCWkVop2wl6cbqBM4cpJienNpJPzFSG4aCbGd4VM3KssLw/Fp5C/7qP0H/oOn7DPMLsGfGPn0kS233LIabJTD9dfOfMDvwgM3YPGscWI/0LdPaSQ4s+f7WL9ehdNI6BVlE+5AUGCyjQSIpBImjPJFGO28885F0CgcMAzYVc7FTt63ryAzPwJJwcXVs7gokGJYocR6rnf6mxc4/CiTZQRcUyhFWBg4Ufgyko1rvQVAB3/A4apmjR3rLi4sf2hMAc76jwaa9XnrhqHFPoto5IyWfxDep5EwvJGgsYyCdg+OPO6ymP3BttYgIA8KXv7XUOYaaGC4zBG/O8Jtl+ylifzLdek6Z8R4ttwmP2o8OyCwD5i+U963zPH4aSSMh3qZd+Ap0A9Ggh3eDZIPPvhgEUBxNM00ZhQkChpukNMptBh9eASSd8CPSl0BhCD0GCR5mTLde++9S9koZOLYpe3X68xnecJEcLHpLI56pkyZUmcuTD+cDxxgN5cF+H6A1zaDG/hwyQ9pFZbDwYzx7MbXSEBwc2QNmjTrE/MMWjiNhOGNBPgcQ5oft23CR/xQwNziSHyTn2JfgxfkdcLcsCoMfI4ym598wPPOB4xSeI5LqjgWLc8Jr+nLd6TDIAG+/QrjWSccn3vpp5HQS+om7L6nQD8YCRDJTo/PRUeOQtghjcJF8OgUYHFUzUgnjjo4XqkAErb5hIUgQwCpgPnGAYJpxx13LMLJ5Q3vT9AwAZ4jLcuIn4kGD24A7MR5NJOjXWzIJK8KneuAuW3SZ2gCvu7wdgp3pHKgC3cbSE+Erl+xHCnfoL1LI2F4I0H+p035MqkKnhkvltR8j28fie1vf6FvcLoGHoUPnUVgI6dpMPSBAW96qyl9mDIPPvjgCLbMisWyhUGfAgZfjCWfexy4uwRnnzP9EKA9eEgjoQdETZCDQ4HJNhLs8I5E6PhcBuPRSoQEU/k4hJSKMZ5cMExalCE/jkACOwoS8uv4LoNfR8QYYHqUGxdx7Nr2kh1HMS47AJNfFG7kicfQwIMljE4d+xDYJEk+f95GSTnen+A79hS8/PLLHYEnP0sY5NWIkp4dARiQRGkktDcS7F82I3wvH8ATfOciGgb2Q9KTl2eMY9Nw9Fmjmr7BJltdNNrpd14HTjnkwdiNn4oHJvxJOaRv4qpBo5Hg7GCz71l+r/w0EnpF2YQ7EBToByNBRa6AQokhWNgQxSiEdVMNAYgahYl5OMrFNxvIx89vJyjcyGM+Nljx4SrSeYIAOuAUXFyGpIFAOm6i5CNO0SGsFG7c1+DxQEftzjzEPO3CfHSIMtj8RV6MAC6eQuhSP2YbmK4ljaOyabmHwYuvHAH6VT7p3g6nQYtLI6G9kaBCtZ9wjNWlNPiJ2QBPFdnm5vEZH+Oc2TKNd3iJpTg+m46DlzTg5Xv6UvP+CtqJtKYhbywv8qT7JzRq+FAZLvbpEtHjvzQSekzgBN/fFJhsI8EOD5UUHJdccklRiAgxlCajcqYxESZxfwEzAxgPfF7Z0Y2b/pxJAC5luO9cF3wtAAAMiElEQVSBMuLHpiiDK3zFww1aKH0+osR7YCKoODGBU+CWh3BEbMkllyzpHfm4wdJ07XwMgShIqS9fHIyOOvKBH4UlOLFfw2WHmLZdeKGFFqr0BDdmTKxnu/SDGJdGQnsjQcM4tjcfb4MPNILZ1+PyGW0Pf0dlTV8gju9IwHsY1hgXfhSNvJYjHPsbV7FTVrxXgrsO7G+UF3EzP+XzbQ1xpF/w1UnxK4EJ+ksjYYIIncX0JwU4useIQGXIKN4Or6BoKkVqghKmA6uUORKFI6/pEQQodhShMFWglEd+hQXvDTNyVum7L2DVVVctIxmpyPQ+IxsVIHgoiFCmTIsKjzyu/TNNz2gcQSfubIq0rqQVb5QwwglcFapMgVoX6kZY3w8GARsc+JgOTiEYlzvcpOkHtiiDPHy10PQl8ysjLeI8WkY66MMOc3Hx5smYhzD1Bbb0ZBRpXcF7enFcIEQ9+UF/bpnsxJHWfLQxtIF/m7SRp4EZv4UBD/kNEt455U56+Gi0/iVcyuUOA0fqtBe8MZqz/WMbx9tGyU8ZtjnKm486kV4FzNFanLibVtjUg5kr+gK8R95FF120fgdjJByBxeZgZ8DIy2ZcvhSrs5z4DP35NLvlke/xxx83SalTM1992eVAGgldJmiCGywKYBTEjnjiiScWxUPnbnbCKNCYzqfjqkQ7ueSEjk8eBLPKH2qhAFXoLivwvYS4YY98/ohX6REnLC53UehHQekMBWV5UZGwWcpQOIJDrDfxKH4FN3RCyQJPfBWopPVOf3CCLuwriDMflE96DQSustZQIQ8bvaIgRPEzslJhsZ5LvRHuCnhmgsQh4k5Z5GU6ONJt00035dWr2rZEDugf9GG9mraXLl4TPlqVoA1tYD5HwOSjTTHs7Afyv5cpMZqmnb1PgzzgQnoNvdH6l21HXi7gAh/4jLqQt1NHPoxk+sK6665bcSa/uIAbv8suu6zyBPn22Wefys+Wp0FLf+RDY540sq9hAEsX87TzKZuZCsqRxoS92RUY4IQTT8IsgdBH7c986bJpCLcrrxdxaST0gqoJc2AogFFAp/V3+umnF9zpuAiwKMQQkvxQkuz410AgLx//QSmpPM2PEEDwKnwtBx+Fq1NAkF5hDC4IYgQFgjMaM+TnGQHPdD1CjQ1+KHRGLQhKBR3wgPu9732v1hOYrP1zaZPO+sY6szeA7zkorCiXXdqxnuSn7i+++GKBb1pGTDoUjgaQcYyUgOcshbffQQvw1Ukbntkr4ZXU5KW+LmtQT+iu0CW9H54iLQLe8+wxjeUMoi9t4pcIUUYYR361caR6RcXFjBrwaEt5J+bV2IzfsICuLHdBe/KKD/mg8Wj9i3TkhefOOuusIYqUK9NHc5YHD4ELP7/I6jv7nv2TT4/Lo6RnRsr6yvvWlfLp66Qzj6d9RsMtvpcPhQE8L0ayTOgl33scWBnDySMctJpol0bCRFM8y+srCrDWzQ5nFC7Kx2/Rg6QdFmGjoBH53XffvShwOvFSSy1VRgu8U/kooCIcwssss0wROCj35pIAihTnBijCHA1kAxO3LyLEKQ9BwxcSd9lll/KtA9Ih1PjUMMKHHxcvRQc+jJjIj2LgS4jnn39+SYLwVFARQZj0Kl32SPD1Q3DmxxIHTkEqbcCffQyejABPvtAXBRvGBekZ6brREnwYCQNPukUaUBZ0RZDjc3+C9aQ+fLnS2YmCWBjRLr/88pXeKBKuoBafWGfzDZpvXRiFOztEW8UZmZHq5KVA0DOOwOV92tT2tSxmEjBwoT35XJunHGiqAUn6TvqX7UA7MmIGJhtl+fx5Jw6e8D4N8nJkWBzIL/7UiR/8zj4c8ccQp5/Be+Sz7pYN38DL0Jf9QShwHHBGc/A09WMWgL0QLgmCJ/0V1yyPuPjhKNK6T8c2oM78JsKlkTARVM4y+pYCdDSO4CmoRFRlFTswYUccKnTSs2Oad3TgdsIJWO6gNr9wKd+ywMF4/AiLdAgl8pteXNuNGMFPIaLCVckS7x4FYKjsCccyeRYf4613pJf4kIY7HhBq/i6++OKCJrQBVsxXXgQhzrNCUMEObHEwveXxHMPkUSjzjnbFqMEIwQjEuIjphTc9+LSx7azfNJza1bPJZ6SBz6DlSLSyDGHSbpGPiKet4bWR+pf58YEhf8Cr9pWYphmWH5nFajr4UXj6pAEnZi3gUQ0FNwWSzrTyvH0X/CyvE9ya+JBHw4IymFlrlkUe6I5xC++CI0bfCy+8MASc/WRIZI8e0kjoEWET7GBRQIEYhYQ1IE6lFeOIbyow4qKwVNCQrylYiVORm478xgFHoRTLJUy5TUFK3ii8otA1fzvf8ngnHs10cakgGhjWX//555+vBgLT+1zqhIv5o4CzbHxxjzgAV9hNONJZn/cKYcKeU1cRxOnrZnuSfhAdbR7pRR2gJfGdukjfSEv4VcUovXhu136xLPpSs/yR+pd5rUfEx3fT6lue/BXxBj53gUQjYeONNx5SBLhQBw0taCFvAWtaaBwNrkhfCpSuwJOuHDVmdkND2z5kWvKZdgjSPXpII6FHhE2wg0MBBAIdEOGhcAH7KAgUXDFNFNDkU8iRVyEJjChceIfCJN4y8FWQhBVMJcErAgH8zEM8eIgTz9EAoWzfiUfToBDfdsKGvOQjTRRMlBOVPWHS8bOO5OXbCAg4jASmaOMoj/I0fCKtI/7SMdIB+KZXgIMPsGIdeLbOCFcVAUsbKAbpAoxIT2ANopNW4E5bSVtoYpuMVi94Q5oBDxjSiby8a0cr8tkmlh/bQp4G5nD9i3zgGeGTj/SxbsPVwTIsP8KJ+akDMPGpG2XCp+7zYfmEJQeddOSZPPxwEWasq/mG82M+jWzwEd9I71NPPbUaCCxzsAyDI73OfD730k8joZfUTdgDQQEFHR1ZYQDiCpRmJeygdlo7eBQEUZlGBQgs05lPeAody20Ka/KSNuJInPliOVHBiqf1aI5miIcG4mM6yxG+PjiIM2mFTxxpEGoqZ0bx7POwzsLGB755eVZ4xjS2jT7wY9mmjUsuwIT+jsRmmmmm1iabbGLSalBZn/pigAMqS9uwHY2Gq57trGKMvMC7SHthRAPE97wjvT/T+r5d/yKNOONHHjZ/J37k6cj75I24RlgsMWgkwCsujTVpF/uyPKMf4Q0XFh70ldbW2Tz2D+rBx9nAB77lVEWsG+mFoS+MXvlpJPSKsgk3KTADUCAKKpU8ApAZBH4YCWzsxEUloeIYL4lUACpJ4fH5a2cyELh33nlnNS7AORon5kl/xqMAPOppGTYD4+DfphLvJWXgRY0ONtZqIOBzwkkjwT6D0RH7XS9xA3YaCb2mcMJPCkznFEBgOVqyqihphBw/Tjtw+ZMjVQWwz+YZq6/wBA9gY6yssMIKtXxuilTQalSMtazMN31RIG60ZeTOF1jHOpsxFsrYFzBy6Q877bRTPQHhEplwNSR4Jp+zD77vlZ9GQq8om3CTAjMIBVDSGgkIMgQYO8L5ah2CF0Nh5513LtQgXRR23SBRFOqU7WU/GinehklZGguEu41HN+qSMCaWAixTcV8Ia//wy9SpU+tyyUTMNsmD9AuWSeRZZuA41qoDl6ZRMFGzCWkk2ArpJwWSAmOigMJLoYXRgLI+7bTTqtDjXDrOtN0SwBonls2IjC9WKvS5S4IRmsKYdObpFg5jIlpm6hsK8HE0L5VaccUVJxQv+FHe5NPo4sHSBxed+d5+Q78y/UQhmkbCRFE6y0kKTIcUcKqfqhlGsCHMVMYxHEnQTWHHXRU6yqVMnCcrMAiM62a5lpn+YFJAHhV7eQNe7tZymLCH891oGY1Wr2DGOIg4kiYaDMPB7GZ8GgndpGbCSgrMYBTQMNCn+jEcd4bH/QAq7G6QqylEgQn8iAdxGC/RNZ/juwzPOBRQIWsgTGTNVfiUGU/otOsf8Gs0JCaKf9NImEiOyLKSAtMpBRRqKGwFGXsFFGTuG2A5gLimAh8PWeLJBg0G8WE0KD6xjG7jEGFneLAoEI1X96zAPzG+VzWSXyN8ZhZi2Rov9Bn7k/wd8/UqnEZCryibcJMCMwgFVNJxelbB1o4ECmINh3ZppiUOQUt5Gh4I0HbCF5jGj4TftJSdaQebAipbFPNkKGCohxFr2TyLEz6/drwa+1qvWyCNhF5TOOEnBZICSYGkQFJgQCmQRsKANlyinRRICiQFkgJJgV5TII2EXlM44ScFkgJJgaRAUmBAKZBGwoA2XKKdFEgKJAWSAkmBXlMgjYReUzjhJwWSAkmBpEBSYEAp8P+RwYapcqvBgAAAAABJRU5ErkJggg==\n", 12 | "text/plain": [ 13 | "" 14 | ] 15 | }, 16 | "execution_count": 1, 17 | "metadata": {}, 18 | "output_type": "execute_result" 19 | } 20 | ], 21 | "source": [ 22 | "from IPython.display import Image\n", 23 | "Image('minmax.png')" 24 | ] 25 | }, 26 | { 27 | "cell_type": "code", 28 | "execution_count": 2, 29 | "id": "68728e9f", 30 | "metadata": {}, 31 | "outputs": [], 32 | "source": [ 33 | "from sklearn.preprocessing import MinMaxScaler\n", 34 | "import numpy as np" 35 | ] 36 | }, 37 | { 38 | "cell_type": "markdown", 39 | "id": "cdce050c", 40 | "metadata": {}, 41 | "source": [ 42 | "# Generate some example data" 43 | ] 44 | }, 45 | { 46 | "cell_type": "code", 47 | "execution_count": 3, 48 | "id": "1660a307", 49 | "metadata": {}, 50 | "outputs": [], 51 | "source": [ 52 | "data = np.array([[1.0, 2.0, 3.0],\n", 53 | " [4.0, 5.0, 6.0],\n", 54 | " [7.0, 8.0, 9.0]])" 55 | ] 56 | }, 57 | { 58 | "cell_type": "markdown", 59 | "id": "f76cd59f", 60 | "metadata": {}, 61 | "source": [ 62 | "# Create a MinMaxScaler instance" 63 | ] 64 | }, 65 | { 66 | "cell_type": "code", 67 | "execution_count": 4, 68 | "id": "076dc5c5", 69 | "metadata": {}, 70 | "outputs": [], 71 | "source": [ 72 | "scaler = MinMaxScaler()" 73 | ] 74 | }, 75 | { 76 | "cell_type": "markdown", 77 | "id": "0e66a5c7", 78 | "metadata": {}, 79 | "source": [ 80 | "# Fit the scaler to the data and transform it in one step" 81 | ] 82 | }, 83 | { 84 | "cell_type": "code", 85 | "execution_count": 5, 86 | "id": "7760afe8", 87 | "metadata": {}, 88 | "outputs": [ 89 | { 90 | "data": { 91 | "text/plain": [ 92 | "array([[0. , 0. , 0. ],\n", 93 | " [0.5, 0.5, 0.5],\n", 94 | " [1. , 1. , 1. ]])" 95 | ] 96 | }, 97 | "execution_count": 5, 98 | "metadata": {}, 99 | "output_type": "execute_result" 100 | } 101 | ], 102 | "source": [ 103 | "data_transformed = scaler.fit_transform(data)\n", 104 | "data_transformed" 105 | ] 106 | }, 107 | { 108 | "cell_type": "markdown", 109 | "id": "ea221d4f", 110 | "metadata": {}, 111 | "source": [ 112 | "# Alternatively, you can use fit and transform separately" 113 | ] 114 | }, 115 | { 116 | "cell_type": "code", 117 | "execution_count": 6, 118 | "id": "555cfdca", 119 | "metadata": {}, 120 | "outputs": [], 121 | "source": [ 122 | "scaler.fit(data)\n", 123 | "data_transformed_separate = scaler.transform(data)" 124 | ] 125 | }, 126 | { 127 | "cell_type": "markdown", 128 | "id": "0bc6919a", 129 | "metadata": {}, 130 | "source": [ 131 | "# Print the original data, transformed data using fit_transform, and transformed data using fit and transform separately" 132 | ] 133 | }, 134 | { 135 | "cell_type": "code", 136 | "execution_count": 7, 137 | "id": "7fd8e6aa", 138 | "metadata": {}, 139 | "outputs": [ 140 | { 141 | "name": "stdout", 142 | "output_type": "stream", 143 | "text": [ 144 | "Original Data:\n", 145 | "[[1. 2. 3.]\n", 146 | " [4. 5. 6.]\n", 147 | " [7. 8. 9.]]\n", 148 | "\n", 149 | "Transformed Data using fit_transform:\n", 150 | "[[0. 0. 0. ]\n", 151 | " [0.5 0.5 0.5]\n", 152 | " [1. 1. 1. ]]\n", 153 | "\n", 154 | "Transformed Data using fit and transform separately:\n", 155 | "[[0. 0. 0. ]\n", 156 | " [0.5 0.5 0.5]\n", 157 | " [1. 1. 1. ]]\n" 158 | ] 159 | } 160 | ], 161 | "source": [ 162 | "print(\"Original Data:\")\n", 163 | "print(data)\n", 164 | "\n", 165 | "print(\"\\nTransformed Data using fit_transform:\")\n", 166 | "print(data_transformed)\n", 167 | "\n", 168 | "print(\"\\nTransformed Data using fit and transform separately:\")\n", 169 | "print(data_transformed_separate)\n" 170 | ] 171 | }, 172 | { 173 | "cell_type": "markdown", 174 | "id": "f8113f1a", 175 | "metadata": {}, 176 | "source": [ 177 | "# Fit and Transform Seperately" 178 | ] 179 | }, 180 | { 181 | "cell_type": "code", 182 | "execution_count": 8, 183 | "id": "928f44f7", 184 | "metadata": {}, 185 | "outputs": [], 186 | "source": [ 187 | "scaler.fit(data)\n", 188 | "data_transformed_separate = scaler.transform(data)" 189 | ] 190 | }, 191 | { 192 | "cell_type": "code", 193 | "execution_count": 9, 194 | "id": "ddffb752", 195 | "metadata": {}, 196 | "outputs": [ 197 | { 198 | "name": "stdout", 199 | "output_type": "stream", 200 | "text": [ 201 | "Original Data:\n", 202 | "[[1. 2. 3.]\n", 203 | " [4. 5. 6.]\n", 204 | " [7. 8. 9.]]\n", 205 | "\n", 206 | "Transformed Data using fit and transform separately:\n", 207 | "[[0. 0. 0. ]\n", 208 | " [0.5 0.5 0.5]\n", 209 | " [1. 1. 1. ]]\n" 210 | ] 211 | } 212 | ], 213 | "source": [ 214 | "print(\"Original Data:\")\n", 215 | "print(data)\n", 216 | "\n", 217 | "print(\"\\nTransformed Data using fit and transform separately:\")\n", 218 | "print(data_transformed_separate)" 219 | ] 220 | }, 221 | { 222 | "cell_type": "code", 223 | "execution_count": null, 224 | "id": "e616905a", 225 | "metadata": {}, 226 | "outputs": [], 227 | "source": [] 228 | } 229 | ], 230 | "metadata": { 231 | "kernelspec": { 232 | "display_name": "Python 3 (ipykernel)", 233 | "language": "python", 234 | "name": "python3" 235 | }, 236 | "language_info": { 237 | "codemirror_mode": { 238 | "name": "ipython", 239 | "version": 3 240 | }, 241 | "file_extension": ".py", 242 | "mimetype": "text/x-python", 243 | "name": "python", 244 | "nbconvert_exporter": "python", 245 | "pygments_lexer": "ipython3", 246 | "version": "3.9.13" 247 | } 248 | }, 249 | "nbformat": 4, 250 | "nbformat_minor": 5 251 | } 252 | -------------------------------------------------------------------------------- /Importing data from google sheet using pandas and python.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "id": "bbdeadf4", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "# Full Video: Video: https://youtu.be/3KWzYM_KafM" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 13, 16 | "id": "91176585", 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "# !pip install gspread" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 1, 26 | "id": "d5bec96a", 27 | "metadata": {}, 28 | "outputs": [], 29 | "source": [ 30 | "import gspread as gs\n", 31 | "import pandas as pd" 32 | ] 33 | }, 34 | { 35 | "cell_type": "code", 36 | "execution_count": 3, 37 | "id": "dd662fbd", 38 | "metadata": {}, 39 | "outputs": [], 40 | "source": [ 41 | "gc = gs.service_account(filename=\"C:\\\\Users\\\\rashe\\\\Downloads\\\\aiquest-376023-1304ddc10d11.json\")" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": 4, 47 | "id": "4a5cd3d8", 48 | "metadata": {}, 49 | "outputs": [], 50 | "source": [ 51 | "sh = gc.open_by_url('https://docs.google.com/spreadsheets/d/1zr1M2Tdrash8S8LdbnwpzLmbCDESZaXCkA_2d-nd6fI/edit?usp=sharing')" 52 | ] 53 | }, 54 | { 55 | "cell_type": "code", 56 | "execution_count": 5, 57 | "id": "3e788fdf", 58 | "metadata": {}, 59 | "outputs": [ 60 | { 61 | "data": { 62 | "text/plain": [ 63 | "" 64 | ] 65 | }, 66 | "execution_count": 5, 67 | "metadata": {}, 68 | "output_type": "execute_result" 69 | } 70 | ], 71 | "source": [ 72 | "sh" 73 | ] 74 | }, 75 | { 76 | "cell_type": "code", 77 | "execution_count": 10, 78 | "id": "425087c0", 79 | "metadata": {}, 80 | "outputs": [], 81 | "source": [ 82 | "ws = sh.worksheet('emp2')" 83 | ] 84 | }, 85 | { 86 | "cell_type": "code", 87 | "execution_count": 11, 88 | "id": "4025c84d", 89 | "metadata": {}, 90 | "outputs": [ 91 | { 92 | "data": { 93 | "text/html": [ 94 | "
\n", 95 | "\n", 108 | "\n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | "
name2age2
0noman27
1rony28
2sohan30
3shuvo31
\n", 139 | "
" 140 | ], 141 | "text/plain": [ 142 | " name2 age2\n", 143 | "0 noman 27\n", 144 | "1 rony 28\n", 145 | "2 sohan 30\n", 146 | "3 shuvo 31" 147 | ] 148 | }, 149 | "execution_count": 11, 150 | "metadata": {}, 151 | "output_type": "execute_result" 152 | } 153 | ], 154 | "source": [ 155 | "df = pd.DataFrame(ws.get_all_records())\n", 156 | "df.head()" 157 | ] 158 | }, 159 | { 160 | "cell_type": "code", 161 | "execution_count": null, 162 | "id": "d8025040", 163 | "metadata": {}, 164 | "outputs": [], 165 | "source": [] 166 | } 167 | ], 168 | "metadata": { 169 | "kernelspec": { 170 | "display_name": "Python 3 (ipykernel)", 171 | "language": "python", 172 | "name": "python3" 173 | }, 174 | "language_info": { 175 | "codemirror_mode": { 176 | "name": "ipython", 177 | "version": 3 178 | }, 179 | "file_extension": ".py", 180 | "mimetype": "text/x-python", 181 | "name": "python", 182 | "nbconvert_exporter": "python", 183 | "pygments_lexer": "ipython3", 184 | "version": "3.9.13" 185 | } 186 | }, 187 | "nbformat": 4, 188 | "nbformat_minor": 5 189 | } 190 | -------------------------------------------------------------------------------- /Neural Network.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rashakil-ds/Machine-Learning-with-Python/418124d517ff32f4e19c21ea3567fb106a222264/Neural Network.pdf -------------------------------------------------------------------------------- /PROJECT on Linear Regression.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "# Importing the libraries\n", 10 | "import numpy as np\n", 11 | "import matplotlib.pyplot as plt\n", 12 | "import pandas as pd" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": 2, 18 | "metadata": {}, 19 | "outputs": [], 20 | "source": [ 21 | "# Importing the dataset\n", 22 | "df = pd.read_csv('online.csv')" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": 4, 28 | "metadata": {}, 29 | "outputs": [ 30 | { 31 | "data": { 32 | "text/html": [ 33 | "
\n", 34 | "\n", 47 | "\n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | "
Marketing SpendAdministrationTransportAreaProfit
0114523.61136897.80471784.10Dhaka192261.83
1162597.70151377.59443898.53Ctg191792.06
2153441.51101145.55407934.54Rangpur191050.39
3144372.41118671.85383199.62Dhaka182901.99
4142107.3491391.77366168.42Rangpur166187.94
\n", 101 | "
" 102 | ], 103 | "text/plain": [ 104 | " Marketing Spend Administration Transport Area Profit\n", 105 | "0 114523.61 136897.80 471784.10 Dhaka 192261.83\n", 106 | "1 162597.70 151377.59 443898.53 Ctg 191792.06\n", 107 | "2 153441.51 101145.55 407934.54 Rangpur 191050.39\n", 108 | "3 144372.41 118671.85 383199.62 Dhaka 182901.99\n", 109 | "4 142107.34 91391.77 366168.42 Rangpur 166187.94" 110 | ] 111 | }, 112 | "execution_count": 4, 113 | "metadata": {}, 114 | "output_type": "execute_result" 115 | } 116 | ], 117 | "source": [ 118 | "df.head()" 119 | ] 120 | }, 121 | { 122 | "cell_type": "code", 123 | "execution_count": 5, 124 | "metadata": {}, 125 | "outputs": [ 126 | { 127 | "data": { 128 | "text/plain": [ 129 | "(50, 5)" 130 | ] 131 | }, 132 | "execution_count": 5, 133 | "metadata": {}, 134 | "output_type": "execute_result" 135 | } 136 | ], 137 | "source": [ 138 | "df.shape" 139 | ] 140 | }, 141 | { 142 | "cell_type": "code", 143 | "execution_count": 6, 144 | "metadata": {}, 145 | "outputs": [ 146 | { 147 | "data": { 148 | "text/plain": [ 149 | "Marketing Spend 0\n", 150 | "Administration 0\n", 151 | "Transport 0\n", 152 | "Area 0\n", 153 | "Profit 0\n", 154 | "dtype: int64" 155 | ] 156 | }, 157 | "execution_count": 6, 158 | "metadata": {}, 159 | "output_type": "execute_result" 160 | } 161 | ], 162 | "source": [ 163 | "df.isnull().sum()" 164 | ] 165 | }, 166 | { 167 | "cell_type": "code", 168 | "execution_count": null, 169 | "metadata": {}, 170 | "outputs": [], 171 | "source": [ 172 | "# if missiong\n", 173 | "# missing = df.Administration.mean()\n", 174 | "# df.Administration = df.Administration.fillna(missing)" 175 | ] 176 | }, 177 | { 178 | "cell_type": "markdown", 179 | "metadata": {}, 180 | "source": [ 181 | "# separate x,y" 182 | ] 183 | }, 184 | { 185 | "cell_type": "code", 186 | "execution_count": 7, 187 | "metadata": {}, 188 | "outputs": [], 189 | "source": [ 190 | "x = df.drop(['Profit'],axis=1)" 191 | ] 192 | }, 193 | { 194 | "cell_type": "code", 195 | "execution_count": 8, 196 | "metadata": {}, 197 | "outputs": [ 198 | { 199 | "data": { 200 | "text/html": [ 201 | "
\n", 202 | "\n", 215 | "\n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | "
Marketing SpendAdministrationTransportArea
0114523.61136897.80471784.10Dhaka
1162597.70151377.59443898.53Ctg
2153441.51101145.55407934.54Rangpur
3144372.41118671.85383199.62Dhaka
4142107.3491391.77366168.42Rangpur
\n", 263 | "
" 264 | ], 265 | "text/plain": [ 266 | " Marketing Spend Administration Transport Area\n", 267 | "0 114523.61 136897.80 471784.10 Dhaka\n", 268 | "1 162597.70 151377.59 443898.53 Ctg\n", 269 | "2 153441.51 101145.55 407934.54 Rangpur\n", 270 | "3 144372.41 118671.85 383199.62 Dhaka\n", 271 | "4 142107.34 91391.77 366168.42 Rangpur" 272 | ] 273 | }, 274 | "execution_count": 8, 275 | "metadata": {}, 276 | "output_type": "execute_result" 277 | } 278 | ], 279 | "source": [ 280 | "x.head()" 281 | ] 282 | }, 283 | { 284 | "cell_type": "code", 285 | "execution_count": 9, 286 | "metadata": {}, 287 | "outputs": [], 288 | "source": [ 289 | "y = df['Profit']" 290 | ] 291 | }, 292 | { 293 | "cell_type": "code", 294 | "execution_count": 10, 295 | "metadata": {}, 296 | "outputs": [ 297 | { 298 | "data": { 299 | "text/plain": [ 300 | "0 192261.83\n", 301 | "1 191792.06\n", 302 | "2 191050.39\n", 303 | "3 182901.99\n", 304 | "4 166187.94\n", 305 | "Name: Profit, dtype: float64" 306 | ] 307 | }, 308 | "execution_count": 10, 309 | "metadata": {}, 310 | "output_type": "execute_result" 311 | } 312 | ], 313 | "source": [ 314 | "y.head()" 315 | ] 316 | }, 317 | { 318 | "cell_type": "markdown", 319 | "metadata": {}, 320 | "source": [ 321 | "# One hot encoding " 322 | ] 323 | }, 324 | { 325 | "cell_type": "code", 326 | "execution_count": 11, 327 | "metadata": {}, 328 | "outputs": [], 329 | "source": [ 330 | "#Convert the column into categorical columns\n", 331 | "city = pd.get_dummies(x['Area'],drop_first=True)" 332 | ] 333 | }, 334 | { 335 | "cell_type": "code", 336 | "execution_count": 12, 337 | "metadata": {}, 338 | "outputs": [ 339 | { 340 | "data": { 341 | "text/html": [ 342 | "
\n", 343 | "\n", 356 | "\n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | "
DhakaRangpur
010
100
201
310
401
\n", 392 | "
" 393 | ], 394 | "text/plain": [ 395 | " Dhaka Rangpur\n", 396 | "0 1 0\n", 397 | "1 0 0\n", 398 | "2 0 1\n", 399 | "3 1 0\n", 400 | "4 0 1" 401 | ] 402 | }, 403 | "execution_count": 12, 404 | "metadata": {}, 405 | "output_type": "execute_result" 406 | } 407 | ], 408 | "source": [ 409 | "city.head()" 410 | ] 411 | }, 412 | { 413 | "cell_type": "code", 414 | "execution_count": 13, 415 | "metadata": {}, 416 | "outputs": [], 417 | "source": [ 418 | "# Drop the Area coulmn\n", 419 | "x = x.drop('Area',axis=1)" 420 | ] 421 | }, 422 | { 423 | "cell_type": "code", 424 | "execution_count": 14, 425 | "metadata": {}, 426 | "outputs": [ 427 | { 428 | "data": { 429 | "text/html": [ 430 | "
\n", 431 | "\n", 444 | "\n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | "
Marketing SpendAdministrationTransport
0114523.61136897.80471784.10
1162597.70151377.59443898.53
2153441.51101145.55407934.54
3144372.41118671.85383199.62
4142107.3491391.77366168.42
\n", 486 | "
" 487 | ], 488 | "text/plain": [ 489 | " Marketing Spend Administration Transport\n", 490 | "0 114523.61 136897.80 471784.10\n", 491 | "1 162597.70 151377.59 443898.53\n", 492 | "2 153441.51 101145.55 407934.54\n", 493 | "3 144372.41 118671.85 383199.62\n", 494 | "4 142107.34 91391.77 366168.42" 495 | ] 496 | }, 497 | "execution_count": 14, 498 | "metadata": {}, 499 | "output_type": "execute_result" 500 | } 501 | ], 502 | "source": [ 503 | "x.head()" 504 | ] 505 | }, 506 | { 507 | "cell_type": "code", 508 | "execution_count": 15, 509 | "metadata": {}, 510 | "outputs": [], 511 | "source": [ 512 | "#concatation\n", 513 | "x = pd.concat([x,city],axis=1)" 514 | ] 515 | }, 516 | { 517 | "cell_type": "code", 518 | "execution_count": 16, 519 | "metadata": {}, 520 | "outputs": [ 521 | { 522 | "data": { 523 | "text/html": [ 524 | "
\n", 525 | "\n", 538 | "\n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | "
Marketing SpendAdministrationTransportDhakaRangpur
0114523.61136897.80471784.1010
1162597.70151377.59443898.5300
2153441.51101145.55407934.5401
3144372.41118671.85383199.6210
4142107.3491391.77366168.4201
\n", 592 | "
" 593 | ], 594 | "text/plain": [ 595 | " Marketing Spend Administration Transport Dhaka Rangpur\n", 596 | "0 114523.61 136897.80 471784.10 1 0\n", 597 | "1 162597.70 151377.59 443898.53 0 0\n", 598 | "2 153441.51 101145.55 407934.54 0 1\n", 599 | "3 144372.41 118671.85 383199.62 1 0\n", 600 | "4 142107.34 91391.77 366168.42 0 1" 601 | ] 602 | }, 603 | "execution_count": 16, 604 | "metadata": {}, 605 | "output_type": "execute_result" 606 | } 607 | ], 608 | "source": [ 609 | "x.head()" 610 | ] 611 | }, 612 | { 613 | "cell_type": "code", 614 | "execution_count": 17, 615 | "metadata": {}, 616 | "outputs": [], 617 | "source": [ 618 | "# Splitting the dataset into the Training set and Test set" 619 | ] 620 | }, 621 | { 622 | "cell_type": "code", 623 | "execution_count": 18, 624 | "metadata": {}, 625 | "outputs": [], 626 | "source": [ 627 | "#import library\n", 628 | "from sklearn.model_selection import train_test_split\n" 629 | ] 630 | }, 631 | { 632 | "cell_type": "code", 633 | "execution_count": 19, 634 | "metadata": {}, 635 | "outputs": [], 636 | "source": [ 637 | "xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size = 0.25, random_state = 0)" 638 | ] 639 | }, 640 | { 641 | "cell_type": "code", 642 | "execution_count": 20, 643 | "metadata": {}, 644 | "outputs": [], 645 | "source": [ 646 | "# Fitting Multiple Linear Regression to the Training set\n", 647 | "from sklearn.linear_model import LinearRegression\n" 648 | ] 649 | }, 650 | { 651 | "cell_type": "code", 652 | "execution_count": 21, 653 | "metadata": {}, 654 | "outputs": [], 655 | "source": [ 656 | "regressor = LinearRegression()" 657 | ] 658 | }, 659 | { 660 | "cell_type": "code", 661 | "execution_count": 22, 662 | "metadata": {}, 663 | "outputs": [ 664 | { 665 | "data": { 666 | "text/plain": [ 667 | "LinearRegression()" 668 | ] 669 | }, 670 | "execution_count": 22, 671 | "metadata": {}, 672 | "output_type": "execute_result" 673 | } 674 | ], 675 | "source": [ 676 | "regressor.fit(xtrain, ytrain)" 677 | ] 678 | }, 679 | { 680 | "cell_type": "code", 681 | "execution_count": 23, 682 | "metadata": {}, 683 | "outputs": [ 684 | { 685 | "data": { 686 | "text/html": [ 687 | "
\n", 688 | "\n", 701 | "\n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | "
Marketing SpendAdministrationTransportDhakaRangpur
2866051.52182645.56118148.2001
11100671.9691790.61249744.5500
10101913.08110594.11229160.9501
4127892.9284710.77164470.7101
2153441.51101145.55407934.5401
\n", 755 | "
" 756 | ], 757 | "text/plain": [ 758 | " Marketing Spend Administration Transport Dhaka Rangpur\n", 759 | "28 66051.52 182645.56 118148.20 0 1\n", 760 | "11 100671.96 91790.61 249744.55 0 0\n", 761 | "10 101913.08 110594.11 229160.95 0 1\n", 762 | "41 27892.92 84710.77 164470.71 0 1\n", 763 | "2 153441.51 101145.55 407934.54 0 1" 764 | ] 765 | }, 766 | "execution_count": 23, 767 | "metadata": {}, 768 | "output_type": "execute_result" 769 | } 770 | ], 771 | "source": [ 772 | "xtest.head()" 773 | ] 774 | }, 775 | { 776 | "cell_type": "code", 777 | "execution_count": 24, 778 | "metadata": {}, 779 | "outputs": [ 780 | { 781 | "data": { 782 | "text/plain": [ 783 | "28 103282.38\n", 784 | "11 144259.40\n", 785 | "10 146121.95\n", 786 | "41 77798.83\n", 787 | "2 191050.39\n", 788 | "Name: Profit, dtype: float64" 789 | ] 790 | }, 791 | "execution_count": 24, 792 | "metadata": {}, 793 | "output_type": "execute_result" 794 | } 795 | ], 796 | "source": [ 797 | "ytest.head()" 798 | ] 799 | }, 800 | { 801 | "cell_type": "code", 802 | "execution_count": 25, 803 | "metadata": {}, 804 | "outputs": [], 805 | "source": [ 806 | "# Predicting the Test set results\n", 807 | "pred = regressor.predict(xtest)" 808 | ] 809 | }, 810 | { 811 | "cell_type": "code", 812 | "execution_count": 26, 813 | "metadata": {}, 814 | "outputs": [ 815 | { 816 | "data": { 817 | "text/plain": [ 818 | "array([103501.0825284 , 128011.28068627, 126695.43891127, 70573.91718775,\n", 819 | " 173381.96874259, 124238.07860872, 69298.09250304, 98399.41936876,\n", 820 | " 116419.1480864 , 161430.98134847, 94740.73303076, 89920.22800514,\n", 821 | " 105956.86065332])" 822 | ] 823 | }, 824 | "execution_count": 26, 825 | "metadata": {}, 826 | "output_type": "execute_result" 827 | } 828 | ], 829 | "source": [ 830 | "pred" 831 | ] 832 | }, 833 | { 834 | "cell_type": "code", 835 | "execution_count": 27, 836 | "metadata": {}, 837 | "outputs": [ 838 | { 839 | "data": { 840 | "text/plain": [ 841 | "0.8840978623923469" 842 | ] 843 | }, 844 | "execution_count": 27, 845 | "metadata": {}, 846 | "output_type": "execute_result" 847 | } 848 | ], 849 | "source": [ 850 | "regressor.score(xtest,ytest)" 851 | ] 852 | }, 853 | { 854 | "cell_type": "markdown", 855 | "metadata": {}, 856 | "source": [ 857 | "# R-Squared Value" 858 | ] 859 | }, 860 | { 861 | "cell_type": "code", 862 | "execution_count": 31, 863 | "metadata": {}, 864 | "outputs": [], 865 | "source": [ 866 | "from sklearn.metrics import r2_score\n", 867 | "from sklearn.metrics import mean_squared_error" 868 | ] 869 | }, 870 | { 871 | "cell_type": "code", 872 | "execution_count": 32, 873 | "metadata": {}, 874 | "outputs": [], 875 | "source": [ 876 | "score=r2_score(ytest,pred)" 877 | ] 878 | }, 879 | { 880 | "cell_type": "code", 881 | "execution_count": 33, 882 | "metadata": {}, 883 | "outputs": [ 884 | { 885 | "data": { 886 | "text/plain": [ 887 | "0.8840978623923469" 888 | ] 889 | }, 890 | "execution_count": 33, 891 | "metadata": {}, 892 | "output_type": "execute_result" 893 | } 894 | ], 895 | "source": [ 896 | "score" 897 | ] 898 | }, 899 | { 900 | "cell_type": "code", 901 | "execution_count": null, 902 | "metadata": {}, 903 | "outputs": [], 904 | "source": [ 905 | "mean_squared_error(xtest)" 906 | ] 907 | }, 908 | { 909 | "cell_type": "code", 910 | "execution_count": null, 911 | "metadata": {}, 912 | "outputs": [], 913 | "source": [] 914 | } 915 | ], 916 | "metadata": { 917 | "kernelspec": { 918 | "display_name": "Python 3", 919 | "language": "python", 920 | "name": "python3" 921 | }, 922 | "language_info": { 923 | "codemirror_mode": { 924 | "name": "ipython", 925 | "version": 3 926 | }, 927 | "file_extension": ".py", 928 | "mimetype": "text/x-python", 929 | "name": "python", 930 | "nbconvert_exporter": "python", 931 | "pygments_lexer": "ipython3", 932 | "version": "3.8.8" 933 | } 934 | }, 935 | "nbformat": 4, 936 | "nbformat_minor": 2 937 | } 938 | -------------------------------------------------------------------------------- /Papers/A Proficient Approach to Detect Osteosarcoma Through Deep Learning.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rashakil-ds/Machine-Learning-with-Python/418124d517ff32f4e19c21ea3567fb106a222264/Papers/A Proficient Approach to Detect Osteosarcoma Through Deep Learning.pdf -------------------------------------------------------------------------------- /Papers/read.txt: -------------------------------------------------------------------------------- 1 | Research Paper 2 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 |

Machine Learning with Python by Study Mart & aiQuest Intelligence

5 |

Welcome to the Machine Learning with Python repository! This repository contains resources and materials to help you learn and master machine learning using Python. Curated by Study Mart and aiQuest Intelligence, these resources are perfect for both beginners and advanced learners.

6 | 7 |

Topics Covered

8 | 16 | 17 |

YouTube Video Playlist

18 |

Watch the complete video playlist on YouTube: Machine Learning with Python Playlist

19 | 20 |

Repository Link

21 |

Explore the resources in detail here.

22 | 23 |

Additional Resources

24 |

We also offer a variety of paid courses on data science on our website. Visit AIQuest for more details.

25 |

For free resources, check out our YouTube channel: StudyMart.

26 |

Join our Facebook group for more discussions and resources: StudyMart Facebook Group.

27 | 28 | 33 | 34 | 35 | -------------------------------------------------------------------------------- /Save ML Models.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "id": "8f8d056b", 6 | "metadata": {}, 7 | "source": [ 8 | "# Random Forest" 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": 13, 14 | "id": "cb7d7f37", 15 | "metadata": {}, 16 | "outputs": [], 17 | "source": [ 18 | "from sklearn.ensemble import RandomForestClassifier" 19 | ] 20 | }, 21 | { 22 | "cell_type": "code", 23 | "execution_count": 14, 24 | "id": "99140e4e", 25 | "metadata": {}, 26 | "outputs": [], 27 | "source": [ 28 | "ran = RandomForestClassifier(n_estimators=15)" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": 15, 34 | "id": "9ca3fdcd", 35 | "metadata": {}, 36 | "outputs": [ 37 | { 38 | "data": { 39 | "text/plain": [ 40 | "RandomForestClassifier(n_estimators=15)" 41 | ] 42 | }, 43 | "execution_count": 15, 44 | "metadata": {}, 45 | "output_type": "execute_result" 46 | } 47 | ], 48 | "source": [ 49 | "ran.fit(x,y)" 50 | ] 51 | }, 52 | { 53 | "cell_type": "code", 54 | "execution_count": 16, 55 | "id": "525c42fe", 56 | "metadata": {}, 57 | "outputs": [ 58 | { 59 | "data": { 60 | "text/plain": [ 61 | "array(['Yes'], dtype=object)" 62 | ] 63 | }, 64 | "execution_count": 16, 65 | "metadata": {}, 66 | "output_type": "execute_result" 67 | } 68 | ], 69 | "source": [ 70 | "ran.predict([[1,0,1]])" 71 | ] 72 | }, 73 | { 74 | "cell_type": "code", 75 | "execution_count": 17, 76 | "id": "f5babf51", 77 | "metadata": {}, 78 | "outputs": [ 79 | { 80 | "data": { 81 | "text/plain": [ 82 | "array(['No'], dtype=object)" 83 | ] 84 | }, 85 | "execution_count": 17, 86 | "metadata": {}, 87 | "output_type": "execute_result" 88 | } 89 | ], 90 | "source": [ 91 | "ran.predict([[0,1,0]])" 92 | ] 93 | }, 94 | { 95 | "cell_type": "code", 96 | "execution_count": null, 97 | "id": "de29bfc4", 98 | "metadata": {}, 99 | "outputs": [], 100 | "source": [] 101 | }, 102 | { 103 | "cell_type": "markdown", 104 | "id": "f7febbe2", 105 | "metadata": {}, 106 | "source": [ 107 | "# Save Machine Learning Models" 108 | ] 109 | }, 110 | { 111 | "cell_type": "code", 112 | "execution_count": 18, 113 | "id": "f9edb713", 114 | "metadata": {}, 115 | "outputs": [], 116 | "source": [ 117 | "import pickle as pk\n", 118 | "\n", 119 | "with open('My_Model1','wb') as file:\n", 120 | " pk.dump(ran,file)" 121 | ] 122 | }, 123 | { 124 | "cell_type": "code", 125 | "execution_count": 19, 126 | "id": "4e31af7e", 127 | "metadata": {}, 128 | "outputs": [], 129 | "source": [ 130 | "with open('My_Model1','rb') as file:\n", 131 | " model1 = pk.load(file)" 132 | ] 133 | }, 134 | { 135 | "cell_type": "code", 136 | "execution_count": 20, 137 | "id": "b94ba55a", 138 | "metadata": {}, 139 | "outputs": [ 140 | { 141 | "data": { 142 | "text/plain": [ 143 | "array(['Yes'], dtype=object)" 144 | ] 145 | }, 146 | "execution_count": 20, 147 | "metadata": {}, 148 | "output_type": "execute_result" 149 | } 150 | ], 151 | "source": [ 152 | "model1.predict([[1,0,1]])" 153 | ] 154 | }, 155 | { 156 | "cell_type": "code", 157 | "execution_count": 21, 158 | "id": "60cdf548", 159 | "metadata": {}, 160 | "outputs": [ 161 | { 162 | "data": { 163 | "text/plain": [ 164 | "'C:\\\\Users\\\\study mart\\\\Downloads\\\\New Folder'" 165 | ] 166 | }, 167 | "execution_count": 21, 168 | "metadata": {}, 169 | "output_type": "execute_result" 170 | } 171 | ], 172 | "source": [ 173 | "import os\n", 174 | "os.getcwd()" 175 | ] 176 | }, 177 | { 178 | "cell_type": "code", 179 | "execution_count": 22, 180 | "id": "ed465725", 181 | "metadata": {}, 182 | "outputs": [], 183 | "source": [ 184 | "pk.dump(ran,open('My_Model2','wb'))" 185 | ] 186 | }, 187 | { 188 | "cell_type": "code", 189 | "execution_count": 23, 190 | "id": "b319f8ca", 191 | "metadata": {}, 192 | "outputs": [], 193 | "source": [ 194 | "model2 = pk.load(open('My_Model2','rb'))" 195 | ] 196 | }, 197 | { 198 | "cell_type": "code", 199 | "execution_count": 24, 200 | "id": "35a79a67", 201 | "metadata": {}, 202 | "outputs": [ 203 | { 204 | "data": { 205 | "text/plain": [ 206 | "array(['No'], dtype=object)" 207 | ] 208 | }, 209 | "execution_count": 24, 210 | "metadata": {}, 211 | "output_type": "execute_result" 212 | } 213 | ], 214 | "source": [ 215 | "model2.predict([[0,1,0]])" 216 | ] 217 | }, 218 | { 219 | "cell_type": "code", 220 | "execution_count": null, 221 | "id": "7b292b64", 222 | "metadata": {}, 223 | "outputs": [], 224 | "source": [] 225 | }, 226 | { 227 | "cell_type": "markdown", 228 | "id": "49ae4874", 229 | "metadata": {}, 230 | "source": [ 231 | "# Joblib" 232 | ] 233 | }, 234 | { 235 | "cell_type": "code", 236 | "execution_count": 25, 237 | "id": "0a9782b1", 238 | "metadata": {}, 239 | "outputs": [ 240 | { 241 | "data": { 242 | "text/plain": [ 243 | "['My_Model3']" 244 | ] 245 | }, 246 | "execution_count": 25, 247 | "metadata": {}, 248 | "output_type": "execute_result" 249 | } 250 | ], 251 | "source": [ 252 | "import joblib as jbl\n", 253 | "\n", 254 | "jbl.dump(ran,'My_Model3')" 255 | ] 256 | }, 257 | { 258 | "cell_type": "code", 259 | "execution_count": 26, 260 | "id": "d2acfb96", 261 | "metadata": {}, 262 | "outputs": [], 263 | "source": [ 264 | "model3 = jbl.load('My_Model3')" 265 | ] 266 | }, 267 | { 268 | "cell_type": "code", 269 | "execution_count": 27, 270 | "id": "2768c18e", 271 | "metadata": {}, 272 | "outputs": [ 273 | { 274 | "data": { 275 | "text/plain": [ 276 | "array(['No'], dtype=object)" 277 | ] 278 | }, 279 | "execution_count": 27, 280 | "metadata": {}, 281 | "output_type": "execute_result" 282 | } 283 | ], 284 | "source": [ 285 | "model3.predict([[0,1,0]])" 286 | ] 287 | }, 288 | { 289 | "cell_type": "markdown", 290 | "id": "176e33a0", 291 | "metadata": {}, 292 | "source": [ 293 | "# Access File From Diffrent Folder" 294 | ] 295 | }, 296 | { 297 | "cell_type": "code", 298 | "execution_count": 28, 299 | "id": "14390d9c", 300 | "metadata": {}, 301 | "outputs": [ 302 | { 303 | "data": { 304 | "text/plain": [ 305 | "'C:\\\\Users\\\\study mart\\\\Downloads\\\\New Folder'" 306 | ] 307 | }, 308 | "execution_count": 28, 309 | "metadata": {}, 310 | "output_type": "execute_result" 311 | } 312 | ], 313 | "source": [ 314 | "import os\n", 315 | "os.getcwd()" 316 | ] 317 | }, 318 | { 319 | "cell_type": "code", 320 | "execution_count": 29, 321 | "id": "60a7b572", 322 | "metadata": {}, 323 | "outputs": [], 324 | "source": [ 325 | "os.chdir('C:\\\\Users\\\\study mart\\\\Downloads\\\\new 2')" 326 | ] 327 | }, 328 | { 329 | "cell_type": "code", 330 | "execution_count": 30, 331 | "id": "756553a7", 332 | "metadata": {}, 333 | "outputs": [ 334 | { 335 | "data": { 336 | "text/plain": [ 337 | "'C:\\\\Users\\\\study mart\\\\Downloads\\\\new 2'" 338 | ] 339 | }, 340 | "execution_count": 30, 341 | "metadata": {}, 342 | "output_type": "execute_result" 343 | } 344 | ], 345 | "source": [ 346 | "os.getcwd()" 347 | ] 348 | }, 349 | { 350 | "cell_type": "code", 351 | "execution_count": 31, 352 | "id": "d1eb0e87", 353 | "metadata": {}, 354 | "outputs": [], 355 | "source": [ 356 | "with open('My_Model1','rb') as file:\n", 357 | " model4 = pk.load(file)" 358 | ] 359 | }, 360 | { 361 | "cell_type": "code", 362 | "execution_count": 32, 363 | "id": "9df5e9fc", 364 | "metadata": {}, 365 | "outputs": [ 366 | { 367 | "data": { 368 | "text/plain": [ 369 | "array(['No'], dtype=object)" 370 | ] 371 | }, 372 | "execution_count": 32, 373 | "metadata": {}, 374 | "output_type": "execute_result" 375 | } 376 | ], 377 | "source": [ 378 | "model4.predict([[0,1,0]])" 379 | ] 380 | }, 381 | { 382 | "cell_type": "markdown", 383 | "id": "167acab7", 384 | "metadata": {}, 385 | "source": [ 386 | "Vist: https://youtube.com/StudyMart" 387 | ] 388 | }, 389 | { 390 | "cell_type": "code", 391 | "execution_count": null, 392 | "id": "b040d926", 393 | "metadata": {}, 394 | "outputs": [], 395 | "source": [] 396 | } 397 | ], 398 | "metadata": { 399 | "kernelspec": { 400 | "display_name": "Python 3", 401 | "language": "python", 402 | "name": "python3" 403 | }, 404 | "language_info": { 405 | "codemirror_mode": { 406 | "name": "ipython", 407 | "version": 3 408 | }, 409 | "file_extension": ".py", 410 | "mimetype": "text/x-python", 411 | "name": "python", 412 | "nbconvert_exporter": "python", 413 | "pygments_lexer": "ipython3", 414 | "version": "3.8.8" 415 | } 416 | }, 417 | "nbformat": 4, 418 | "nbformat_minor": 5 419 | } 420 | -------------------------------------------------------------------------------- /Screen Time Data.csv: -------------------------------------------------------------------------------- 1 | index,Date,Week Day,Total Screen Time ,Social Networking,Reading and Reference,Other,Productivity,Health and Fitness,Entertainment,Creativity,Yoga 2 | 0,04/17/19,Wednesday,187,89,17,41,22,0,0,0,0 3 | 1,04/18/19,Thursday,123,78,17,8,9,0,0,0,0 4 | 2,04/19/19,Friday,112,52,40,8,4,0,3,0,0 5 | 3,04/20/19,Saturday,101,69,9,38,2,0,3,0,0 6 | 4,04/21/19,Sunday,56,35,2,43,3,0,1,1,0 7 | 5,04/22/19,Monday,189,68,0,9,3,4,0,0,0 8 | 6,04/23/19,Tuesday,158,56,18,41,12,15,0,0,0 9 | 7,04/24/19,Wednesday,135,98,3,33,16,0,0,0,0 10 | 8,04/25/19,Thursday,52,25,7,3,16,0,0,0,0 11 | 9,04/26/19,Friday,198,76,8,29,15,0,32,0,0 12 | 10,04/27/19,Saturday,116,75,10,20,5,0,0,0,0 13 | 11,04/28/19,Sunday,85,42,22,4,2,0,0,0,0 14 | 12,04/29/19,Monday,109,46,8,13,9,15,1,0,1 15 | 13,04/30/19,Tuesday,79,40,2,9,12,0,0,0,1 16 | 14,05/01/19,Wednesday,127,90,0,10,7,0,0,0,1 17 | 15,05/02/19,Thursday,170,60,3,2,11,0,0,0,1 18 | 16,05/03/19,Friday,91,64,2,18,5,1,1,2,1 19 | 17,05/04/19,Saturday,58,34,4,5,3,0,1,0,1 20 | 18,05/05/19,Sunday,133,109,5,1,3,0,0,0,1 21 | 19,05/06/19,Monday,144,81,4,5,3,0,0,0,1 22 | 20,05/07/19,Tuesday,110,70,5,6,15,0,9,0,1 23 | 21,05/08/19,Wednesday,122,53,25,26,15,0,0,0,1 24 | 22,05/09/19,Thursday,96,42,15,16,19,0,0,0,1 25 | 23,05/10/19,Friday,161,93,13,17,16,1,0,0,1 26 | 24,05/11/19,Saturday,58,49,1,2,2,0,0,2,1 27 | 25,05/12/19,Sunday,52,28,1,1,6,0,0,1,1 28 | 26,05/13/19,Monday,61,37,1,0,4,0,0,0,1 29 | 27,05/14/19,Tuesday,88,41,2,7,15,0,0,0,1 30 | -------------------------------------------------------------------------------- /home data.csv: -------------------------------------------------------------------------------- 1 | x,y 2 | 48.95588857,60.72360244 3 | 44.68719623,82.89250373 4 | 60.29732685,97.37989686 5 | 45.61864377,48.84715332 6 | 38.81681754,56.87721319 7 | 53.42680403,68.77759598 8 | 61.53035803,62.5623823 9 | 47.47563963,71.54663223 10 | 52.55001444,71.30087989 11 | 45.41973014,55.16567715 12 | 54.35163488,82.47884676 13 | 44.1640495,62.00892325 14 | 58.16847072,75.39287043 15 | 56.72720806,81.43619216 16 | 59.81320787,87.23092513 17 | 55.14218841,78.21151827 18 | 52.21179669,79.64197305 19 | 39.29956669,59.17148932 20 | 48.10504169,75.3312423 21 | 66.18981661,83.87856466 22 | 65.41605175,118.5912173 23 | 47.48120861,57.25181946 24 | 41.57564262,51.39174408 25 | 51.84518691,75.38065167 26 | 59.37082201,74.76556403 27 | 57.31000344,95.45505292 28 | 63.61556125,95.22936602 29 | 46.73761941,79.05240617 30 | 50.55676015,83.43207142 31 | 52.22399609,63.35879032 32 | 35.56783005,41.4128853 33 | 42.43647694,76.61734128 34 | 58.16454011,96.76956643 35 | 57.50444762,74.08413012 36 | 45.44053073,66.58814441 37 | 61.89622268,77.76848242 38 | 33.09383174,50.71958891 39 | 36.43600951,62.12457082 40 | 37.67565486,60.81024665 41 | 44.55560838,52.68298337 42 | 43.31828263,58.56982472 43 | 50.07314563,82.90598149 44 | 43.87061265,61.4247098 45 | 62.99748075,115.2441528 46 | 32.66904376,45.57058882 47 | 40.16689901,54.0840548 48 | 53.57507753,87.99445276 49 | 33.86421497,52.72549438 50 | 64.70713867,93.57611869 51 | 38.11982403,80.16627545 52 | 44.50253806,65.10171157 53 | 40.59953838,65.56230126 54 | 41.72067636,65.28088692 55 | 51.08863468,73.43464155 56 | 55.0780959,71.13972786 57 | 41.37772653,79.10282968 58 | 62.49469743,86.52053844 59 | 49.20388754,84.74269781 60 | 41.10268519,59.35885025 61 | 41.18201611,61.68403752 62 | 50.18638949,69.84760416 63 | 52.37844622,86.09829121 64 | 50.13548549,59.10883927 65 | 33.64470601,69.89968164 66 | 39.55790122,44.86249071 67 | 56.13038882,85.49806778 68 | 57.36205213,95.53668685 69 | 60.26921439,70.25193442 70 | 35.67809389,52.72173496 71 | 31.588117,50.39267014 72 | 53.66093226,63.64239878 73 | 46.68222865,72.24725107 74 | 43.10782022,57.81251298 75 | 70.34607562,104.2571016 76 | 44.49285588,86.64202032 77 | 57.5045333,91.486778 78 | 36.93007661,55.23166089 79 | 55.80573336,79.55043668 80 | 38.95476907,44.84712424 81 | 56.9012147,80.20752314 82 | 56.86890066,83.14274979 83 | 34.3331247,55.72348926 84 | 59.04974121,77.63418251 85 | 57.78822399,99.05141484 86 | 54.28232871,79.12064627 87 | 51.0887199,69.58889785 88 | 50.28283635,69.51050331 89 | 44.21174175,73.68756432 90 | 38.00548801,61.36690454 91 | 32.94047994,67.17065577 92 | 53.69163957,85.66820315 93 | 68.76573427,114.8538712 94 | 46.2309665,90.12357207 95 | 68.31936082,97.91982104 96 | 50.03017434,81.53699078 97 | 49.23976534,72.11183247 98 | 50.03957594,85.23200734 99 | 48.14985889,66.22495789 100 | 25.12848465,53.45439421 101 | -------------------------------------------------------------------------------- /shoe.csv: -------------------------------------------------------------------------------- 1 | size(cm),class(y) 2 | 9.5,Female 3 | 10.125,Male 4 | 10.41,Male 5 | 9.81,Female 6 | 11.05,Male 7 | 9.15,Female 8 | 9.45,Female 9 | 10.57,Male 10 | 9.71,Female 11 | 9.65,Female 12 | 9.82,Female 13 | 10.42,Male 14 | 10.19,Male 15 | 10.91,Male 16 | 10.55,Male 17 | 10.73,Male 18 | 10.02,Female 19 | 9.93,Female 20 | 10.3,Male 21 | 10.59,Male 22 | 10.15,Male 23 | 9.35,Female 24 | 9.2,Female 25 | 10.66,Male 26 | 9.62,Female 27 | 10.46,Male 28 | 10.29,Male 29 | 10.81,Male 30 | 10.45,Male 31 | 10.73,Male 32 | 10.04,Female 33 | 9.91,Female 34 | 10.4,Male 35 | 9.59,Female 36 | 10.16,Male 37 | 9.3,Female 38 | 9.21,Female 39 | 10.56,Male 40 | 9.6,Female 41 | 9.32,Male 42 | -------------------------------------------------------------------------------- /shop data.csv: -------------------------------------------------------------------------------- 1 | age,income,gender,m_status,buys 2 | <25,high,male,single,no 3 | <25,high,male,married,no 4 | 25-35,high,male,single,yes 5 | >35,medium,male,single,yes 6 | >35,low,female,single,yes 7 | >35,low,female,single,no 8 | 25-35,low,female,married,yes 9 | <25,medium,male,married,no 10 | <25,low,female,single,yes 11 | >35,medium,female,married,yes 12 | <25,medium,female,single,yes 13 | 25-35,medium,male,married,yes 14 | 25-35,high,female,single,yes 15 | >35,medium,male,married,no 16 | <25,high,male,single,no 17 | <25,high,female,married,yes 18 | >35,medium,male,married,yes 19 | <25,high,female,single,yes 20 | 25-35,medium,female,married,yes 21 | 25-35,high,male,single,yes 22 | >35,medium,female,married,no 23 | <25,low,male,single,yes 24 | --------------------------------------------------------------------------------