├── .gitattributes ├── .github └── workflows │ ├── build.yaml │ └── lint.yaml ├── .gitignore ├── .pre-commit-config.yaml ├── .readthedocs.yaml ├── CONTRIBUTING.md ├── LICENSE ├── README.md ├── assets ├── Figure.png ├── WSI_intro.png ├── logo.ai ├── logo.svg ├── logo.webp └── logo@3x.png ├── docs ├── clean_up.py └── source │ ├── _static │ ├── cemm-logo.svg │ ├── custom.css │ ├── logo.svg │ └── logo@3x.png │ ├── _templates │ ├── autosummary │ │ └── class.rst │ └── models.rst │ ├── api │ ├── .gitignore │ ├── cv.rst │ ├── index.rst │ ├── io.rst │ ├── models.rst │ ├── plotting.rst │ ├── preprocess.rst │ ├── segmentation.rst │ └── tools.rst │ ├── conf.py │ ├── contributing.rst │ ├── contributors.rst │ ├── index.rst │ ├── installation.rst │ └── tutorials │ ├── .gitignore │ ├── 00_intro_wsi.ipynb │ ├── 01_preprocessing.ipynb │ ├── 02_feature_extraction.ipynb │ ├── 03_multiple_slides.ipynb │ ├── 04_genomics_integration.ipynb │ ├── 05_cell-segmentation.ipynb │ ├── 05_training_models.ipynb │ ├── 06_visualization.ipynb │ ├── 07_zero-shot-learning.ipynb │ ├── index.rst │ └── matplotlibrc ├── pyproject.toml ├── src └── lazyslide │ ├── __init__.py │ ├── __main__.py │ ├── _const.py │ ├── _utils.py │ ├── cv │ ├── __init__.py │ ├── mask.py │ ├── scorer │ │ ├── __init__.py │ │ ├── base.py │ │ ├── focuslitenn │ │ │ ├── __init__.py │ │ │ ├── focuslitenn-2kernel-mse.pt │ │ │ └── model.py │ │ ├── module.py │ │ └── utils.py │ ├── tiles_merger.py │ └── transform │ │ ├── __init__.py │ │ ├── compose.py │ │ └── mods.py │ ├── datasets │ ├── __init__.py │ └── _sample.py │ ├── io │ ├── __init__.py │ └── _annotaiton.py │ ├── metrics.py │ ├── models │ ├── __init__.py │ ├── _model_registry.py │ ├── _utils.py │ ├── base.py │ ├── model_registry.csv │ ├── multimodal │ │ ├── __init__.py │ │ ├── conch.py │ │ ├── plip.py │ │ ├── prism.py │ │ └── titan.py │ ├── segmentation │ │ ├── __init__.py │ │ ├── cellpose.py │ │ ├── grandqc.py │ │ ├── instanseg.py │ │ ├── nulite │ │ │ ├── __init__.py │ │ │ ├── api.py │ │ │ └── model.py │ │ ├── postprocess.py │ │ ├── sam.py │ │ └── smp.py │ └── vision │ │ ├── __init__.py │ │ ├── base.py │ │ ├── conch.py │ │ ├── gigapath.py │ │ ├── h_optimus.py │ │ ├── hibou.py │ │ ├── midnight.py │ │ ├── phikon.py │ │ ├── plip.py │ │ ├── uni.py │ │ └── virchow.py │ ├── plotting │ ├── __init__.py │ ├── _api.py │ └── _wsi_viewer.py │ ├── preprocess │ ├── __init__.py │ ├── _graph.py │ ├── _tiles.py │ ├── _tissue.py │ └── _utils.py │ ├── py.typed │ ├── segmentation │ ├── __init__.py │ ├── _artifact.py │ ├── _cell.py │ ├── _seg_runner.py │ ├── _tissue.py │ └── _zero_shot.py │ └── tools │ ├── __init__.py │ ├── _domain.py │ ├── _features.py │ ├── _signatures.py │ ├── _spatial_features.py │ ├── _text_annotate.py │ ├── _tissue_props.py │ └── _zero_shot.py ├── tests ├── conftest.py ├── data │ └── CMU-1-Small-Region.svs ├── test_cv.py ├── test_datasets.py ├── test_pp.py └── test_tl.py ├── uv.lock └── workflow ├── main.nf └── modules └── qc └── main.nf /.gitattributes: -------------------------------------------------------------------------------- 1 | *.ipynb linguist-detectable=false -------------------------------------------------------------------------------- /.github/workflows/build.yaml: -------------------------------------------------------------------------------- 1 | name: CI 2 | 3 | on: 4 | push: 5 | paths: 6 | - '.github/**' 7 | - 'src/lazyslide/**' 8 | - 'tests/**' 9 | - 'pyproject.toml' 10 | pull_request: 11 | paths: 12 | - '.github/**' 13 | - 'src/lazyslide/**' 14 | - 'tests/**' 15 | - 'pyproject.toml' 16 | 17 | jobs: 18 | Test: 19 | strategy: 20 | fail-fast: false 21 | matrix: 22 | os: [ubuntu-latest, windows-latest, macos-latest] 23 | python-version: ['3.11', '3.12', '3.13'] 24 | 25 | runs-on: ${{ matrix.os }} 26 | steps: 27 | - uses: actions/checkout@v4 28 | - name: Set up uv 29 | uses: astral-sh/setup-uv@v5 30 | with: 31 | python-version: ${{ matrix.python-version }} 32 | enable-cache: true 33 | cache-dependency-glob: "uv.lock" 34 | - name: Install project 35 | run: uv sync --dev 36 | - name: Tests 37 | run: | 38 | uv run task test-ci 39 | 40 | Upload_to_pypi: 41 | runs-on: ubuntu-latest 42 | permissions: 43 | id-token: write 44 | steps: 45 | - uses: actions/checkout@v4 46 | - name: Setup uv 47 | uses: astral-sh/setup-uv@v5 48 | with: 49 | python-version: '3.12' 50 | enable-cache: true 51 | cache-dependency-glob: "uv.lock" 52 | 53 | - name: Publish to test pypi 54 | run: | 55 | uv build 56 | uv publish --publish-url https://test.pypi.org/legacy/ || exit 0 57 | 58 | - name: Publish to pypi 59 | if: github.event_name == 'push' && startsWith(github.event.ref, 'refs/tags/v') 60 | run: | 61 | uv build 62 | uv publish -------------------------------------------------------------------------------- /.github/workflows/lint.yaml: -------------------------------------------------------------------------------- 1 | name: Lint with Ruff 2 | on: [push, pull_request] 3 | jobs: 4 | ruff: 5 | runs-on: ubuntu-latest 6 | steps: 7 | - uses: actions/checkout@v4 8 | - uses: chartboost/ruff-action@v1 9 | with: 10 | src: "src/lazyslide" -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | share/python-wheels/ 24 | *.egg-info/ 25 | .installed.cfg 26 | *.egg 27 | MANIFEST 28 | 29 | # PyInstaller 30 | # Usually these files are written by a python script from a template 31 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 32 | *.manifest 33 | *.spec 34 | 35 | # Installer logs 36 | pip-log.txt 37 | pip-delete-this-directory.txt 38 | 39 | # Unit test / coverage reports 40 | htmlcov/ 41 | .tox/ 42 | .nox/ 43 | .coverage 44 | .coverage.* 45 | .cache 46 | nosetests.xml 47 | coverage.xml 48 | *.cover 49 | *.py,cover 50 | .hypothesis/ 51 | .pytest_cache/ 52 | cover/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/build/ 73 | docs/.jupyter_cache/ 74 | docs/jupyter_execute 75 | 76 | 77 | # PyBuilder 78 | .pybuilder/ 79 | target/ 80 | 81 | # Jupyter Notebook 82 | .ipynb_checkpoints 83 | 84 | # IPython 85 | profile_default/ 86 | ipython_config.py 87 | 88 | # pyenv 89 | # For a library or package, you might want to ignore these files since the code is 90 | # intended to run in multiple environments; otherwise, check them in: 91 | # .python-version 92 | 93 | # pipenv 94 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 95 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 96 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 97 | # install all needed dependencies. 98 | #Pipfile.lock 99 | 100 | # poetry 101 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. 102 | # This is especially recommended for binary packages to ensure reproducibility, and is more 103 | # commonly ignored for libraries. 104 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control 105 | #poetry.lock 106 | 107 | # pdm 108 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. 109 | #pdm.lock 110 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it 111 | # in version control. 112 | # https://pdm.fming.dev/#use-with-ide 113 | .pdm.toml 114 | 115 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm 116 | __pypackages__/ 117 | 118 | # Celery stuff 119 | celerybeat-schedule 120 | celerybeat.pid 121 | 122 | # SageMath parsed files 123 | *.sage.py 124 | 125 | # Environments 126 | .env 127 | .venv 128 | env/ 129 | venv/ 130 | ENV/ 131 | env.bak/ 132 | venv.bak/ 133 | 134 | # Spyder project settings 135 | .spyderproject 136 | .spyproject 137 | 138 | # Rope project settings 139 | .ropeproject 140 | 141 | # mkdocs documentation 142 | /site 143 | 144 | # mypy 145 | .mypy_cache/ 146 | .dmypy.json 147 | dmypy.json 148 | 149 | # Pyre type checker 150 | .pyre/ 151 | 152 | # pytype static type analyzer 153 | .pytype/ 154 | 155 | # Cython debug symbols 156 | cython_debug/ 157 | 158 | # Ruff cache 159 | .ruff_cache/ 160 | 161 | # PyCharm 162 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can 163 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore 164 | # and can be added to the global gitignore or merged into this file. For a more nuclear 165 | # option (not recommended) you can uncomment the following to ignore the entire idea folder. 166 | .idea/ 167 | .DS_Store 168 | 169 | work/ 170 | .nextflow.log* 171 | data/ 172 | checkpoints/ 173 | annotations/ 174 | # JetBrains AI Agent 175 | .junie/ 176 | pretrained_models/ 177 | figures/ 178 | sample_data/ -------------------------------------------------------------------------------- /.pre-commit-config.yaml: -------------------------------------------------------------------------------- 1 | repos: 2 | - repo: https://github.com/astral-sh/uv-pre-commit 3 | # uv version. 4 | rev: 0.5.26 5 | hooks: 6 | - id: uv-lock 7 | - repo: https://github.com/astral-sh/ruff-pre-commit 8 | # Ruff version. 9 | rev: v0.6.5 10 | hooks: 11 | # Run the linter. 12 | - id: ruff 13 | args: [ --fix ] 14 | # Run the formatter. 15 | - id: ruff-format 16 | -------------------------------------------------------------------------------- /.readthedocs.yaml: -------------------------------------------------------------------------------- 1 | # See https://docs.readthedocs.io/en/stable/config-file/v2.html for details 2 | version: 2 3 | 4 | build: 5 | os: ubuntu-22.04 6 | tools: 7 | python: "3.12" 8 | jobs: 9 | post_install: 10 | - pip install uv 11 | - UV_PROJECT_ENVIRONMENT=$READTHEDOCS_VIRTUALENV_PATH uv sync --all-extras --group docs --link-mode=copy 12 | 13 | sphinx: 14 | configuration: docs/source/conf.py 15 | -------------------------------------------------------------------------------- /CONTRIBUTING.md: -------------------------------------------------------------------------------- 1 | # Contributing 2 | 3 | We welcome contributions to this project. 4 | 5 | 6 | ## For core contributors 7 | 8 | Please do not commit directly to the `main` branch. 9 | Instead, create a new branch for your changes and submit a pull request. 10 | 11 | ### How to set up your development environment 12 | 13 | 1. Clone the repository 14 | 15 | ```bash 16 | git clone https://github.com/rendeirolab/LazySlide.git 17 | # or 18 | gh repo clone rendeirolab/LazySlide 19 | ``` 20 | 21 | 2. Checkout a new branch 22 | 23 | ```bash 24 | git checkout -b my-new-branch 25 | ``` 26 | 27 | 3. We use [uv](https://docs.astral.sh/uv/) to manage our development environment. 28 | 29 | ```bash 30 | uv lock 31 | uv run pre-commit install 32 | ``` 33 | 34 | We use [pre-commit](https://pre-commit.com/) to run code formatting and linting checks before each commit. 35 | 36 | 4. Start a IPython/Jupyter session 37 | 38 | ```bash 39 | uv run --with ipython ipython 40 | # or 41 | uv run --with jupyter jupyter lab 42 | ``` 43 | 44 | 5. Make your changes 45 | 46 | 6. (If needed) Add a test case and then run the tests 47 | 48 | ```bash 49 | uv run task test 50 | ``` 51 | 52 | 7. (If needed) Update the documentation 53 | 54 | To build the documentation, use: 55 | 56 | ```bash 57 | # Build doc with cache 58 | uv run task doc-build 59 | # Fresh build 60 | uv run task doc-clean-build 61 | ``` 62 | 63 | To serve the documentation, use: 64 | 65 | ```bash 66 | uv run task doc-serve 67 | ``` 68 | 69 | This will start a local server at [http://localhost:8000](http://localhost:8000). 70 | 71 | 8. Commit your changes and push them to your fork 72 | 73 | 9. Submit a pull request 74 | 75 | 76 | ## How to report bugs 77 | 78 | 79 | ## How to suggest enhancements 80 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2025 Rendeiro Lab 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # LazySlide 2 | 3 |

4 | 5 | 6 | 7 |

8 |

9 | Accessible and interoperable whole slide image analysis 10 |

11 | 12 | [![Documentation Status](https://readthedocs.org/projects/lazyslide/badge/?version=stable&style=flat-square)](https://lazyslide.readthedocs.io/en/stable) 13 | ![pypi version](https://img.shields.io/pypi/v/lazyslide?color=0098FF&logo=python&logoColor=white&style=flat-square) 14 | ![PyPI - License](https://img.shields.io/pypi/l/lazyslide?color=FFD43B&style=flat-square) 15 | ![scverse ecosystem](https://img.shields.io/badge/scverse_ecosystem-gray.svg?style=flat-square&logo=) 16 | 17 | [Installation](https://lazyslide.readthedocs.io/en/stable/installation.html) | 18 | [Tutorials](https://lazyslide.readthedocs.io/en/stable/tutorials/index.html) 19 | 20 | LazySlide is a Python framework for whole slide image (WSI) analysis, designed to integrate seamlessly with the scverse 21 | ecosystem. 22 | 23 | By adopting standardized data structures and APIs familiar to the single-cell and genomics community, LazySlide enables 24 | intuitive, interoperable, and reproducible workflows for histological analysis. It supports a range of tasks from basic 25 | preprocessing to advanced deep learning applications, facilitating the integration of histopathology into modern 26 | computational biology. 27 | 28 | ## Key features 29 | 30 | - **Interoperability**: Built on top of SpatialData, ensuring compatibility with scverse tools like scanpy, anndata, and 31 | squidpy. 32 | - **Accessibility**: User-friendly APIs that cater to both beginners and experts in digital pathology. 33 | - **Scalability**: Efficient handling of large WSIs, enabling high-throughput analyses. 34 | - **Multimodal integration**: Combine histological data with transcriptomics, genomics, and textual annotations. 35 | - **Foundation model support**: Native integration with state-of-the-art models (e.g., UNI, CONCH, Gigapath, Virchow) 36 | for tasks like zero-shot classification and captioning. 37 | - **Deep learning ready**: Provides PyTorch dataloaders for seamless integration into machine learning pipelines.​ 38 | 39 | ![figure](assets/Figure.png) 40 | 41 | ## Documentation 42 | 43 | Comprehensive documentation is available at [https://lazyslide.readthedocs.io](https://lazyslide.readthedocs.io). It 44 | includes tutorials, API references, and guides to help you get started.​ 45 | 46 | ## Installation 47 | 48 | Lazyslide is available at the [PyPI index](https://pypi.org/project/lazyslide). This means that you can get it with your 49 | favourite package manager: 50 | 51 | - `pip install lazyslide` or 52 | - `uv add lazyslide` 53 | 54 | For full instructions, please refer to 55 | the [Installation page in the documentation](https://lazyslide.readthedocs.io/en/stable/installation.html). 56 | 57 | ## Quick start 58 | 59 | With a few lines of code, you can quickly run process a whole slide image (tissue segmentation, tesselation, feature 60 | extraction): 61 | 62 | ```python 63 | import lazyslide as zs 64 | 65 | wsi = zs.datasets.sample() 66 | 67 | # Pipeline 68 | zs.pp.find_tissues(wsi) 69 | zs.pp.tile_tissues(wsi, tile_px=256, mpp=0.5) 70 | zs.tl.feature_extraction(wsi, model='resnet50') 71 | 72 | # Access the features 73 | features = wsi['resnet50_tiles'] 74 | ``` 75 | 76 | ## Contributing 77 | 78 | We welcome contributions from the community. Please refer to our [contributing guide](CONTRIBUTING.md) for guidelines on 79 | how to contribute. 80 | 81 | ## Licence 82 | 83 | LazySlide is released under the [MIT License](LICENCE). 84 | -------------------------------------------------------------------------------- /assets/Figure.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rendeirolab/LazySlide/f39634cc994b3098b0933075b9d25ecd99b9014e/assets/Figure.png -------------------------------------------------------------------------------- /assets/WSI_intro.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rendeirolab/LazySlide/f39634cc994b3098b0933075b9d25ecd99b9014e/assets/WSI_intro.png -------------------------------------------------------------------------------- /assets/logo.ai: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rendeirolab/LazySlide/f39634cc994b3098b0933075b9d25ecd99b9014e/assets/logo.ai -------------------------------------------------------------------------------- /assets/logo.webp: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rendeirolab/LazySlide/f39634cc994b3098b0933075b9d25ecd99b9014e/assets/logo.webp -------------------------------------------------------------------------------- /assets/logo@3x.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rendeirolab/LazySlide/f39634cc994b3098b0933075b9d25ecd99b9014e/assets/logo@3x.png -------------------------------------------------------------------------------- /docs/clean_up.py: -------------------------------------------------------------------------------- 1 | from pathlib import Path 2 | import shutil 3 | 4 | root = Path(__file__).parent # ./docs 5 | 6 | target_folders = [ 7 | root / "build", 8 | root / "source" / "api" / "_autogen", 9 | root / "jupyter_execute", 10 | ] 11 | 12 | 13 | if __name__ == "__main__": 14 | for folder in target_folders: 15 | if folder.exists(): 16 | shutil.rmtree(folder) 17 | -------------------------------------------------------------------------------- /docs/source/_static/custom.css: -------------------------------------------------------------------------------- 1 | html[data-theme="light"] { 2 | --pst-color-primary: #C68FE6; 3 | --pst-color-secondary: #FFCD05; 4 | --pst-color-link: #C68FE6; 5 | --pst-color-inline-code: rgb(96, 141, 130); 6 | } 7 | 8 | html[data-theme="dark"] { 9 | --pst-color-primary: #C68FE6; 10 | --pst-color-secondary: #FFCD05; 11 | } 12 | 13 | /* Change the highlight color, increase contrast*/ 14 | html[data-theme="light"] .highlight .hll { 15 | background-color: #fcf427; 16 | } 17 | 18 | .cell_output img { 19 | height: auto !important; 20 | } 21 | 22 | .navbar-brand .logo__image { 23 | height: 150px; 24 | } -------------------------------------------------------------------------------- /docs/source/_static/logo@3x.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rendeirolab/LazySlide/f39634cc994b3098b0933075b9d25ecd99b9014e/docs/source/_static/logo@3x.png -------------------------------------------------------------------------------- /docs/source/_templates/autosummary/class.rst: -------------------------------------------------------------------------------- 1 | {{ fullname | escape | underline}} 2 | 3 | .. currentmodule:: {{ module }} 4 | 5 | .. autoclass:: {{ objname }} 6 | :special-members: __call__ -------------------------------------------------------------------------------- /docs/source/_templates/models.rst: -------------------------------------------------------------------------------- 1 | {{ fullname | escape | underline }} 2 | 3 | 4 | .. currentmodule:: {{ module }} 5 | 6 | 7 | {% if objtype in ['class'] %} 8 | .. auto{{ objtype }}:: {{ objname }} 9 | :show-inheritance: 10 | :special-members: __call__ 11 | 12 | {% else %} 13 | .. auto{{ objtype }}:: {{ objname }} 14 | 15 | {% endif %} -------------------------------------------------------------------------------- /docs/source/api/.gitignore: -------------------------------------------------------------------------------- 1 | _autogen/ -------------------------------------------------------------------------------- /docs/source/api/cv.rst: -------------------------------------------------------------------------------- 1 | Computer vision utilities 2 | ------------------------- 3 | 4 | Scorers 5 | ~~~~~~~ 6 | 7 | .. currentmodule:: lazyslide.cv.scorer 8 | 9 | .. autosummary:: 10 | :toctree: _autogen 11 | :nosignatures: 12 | 13 | FocusLite 14 | Contrast 15 | SplitRGB 16 | Redness 17 | Brightness 18 | ScorerBase 19 | 20 | 21 | Mask 22 | ~~~~ 23 | 24 | .. currentmodule:: lazyslide.cv 25 | 26 | .. autosummary:: 27 | :toctree: _autogen 28 | :nosignatures: 29 | 30 | Mask 31 | BinaryMask 32 | MultiLabelMask 33 | MultiClassMask 34 | 35 | 36 | Polygon merging 37 | ~~~~~~~~~~~~~~~ 38 | 39 | .. currentmodule:: lazyslide.cv 40 | 41 | .. autosummary:: 42 | :toctree: _autogen 43 | :nosignatures: 44 | 45 | merge_polygons 46 | -------------------------------------------------------------------------------- /docs/source/api/index.rst: -------------------------------------------------------------------------------- 1 | API Reference 2 | ============= 3 | 4 | .. toctree:: 5 | :maxdepth: 1 6 | :hidden: 7 | 8 | preprocess 9 | tools 10 | plotting 11 | segmentation 12 | io 13 | models 14 | cv 15 | 16 | 17 | .. grid:: 1 2 2 2 18 | :gutter: 2 19 | 20 | .. grid-item-card:: Preprocessing 21 | :link: preprocess 22 | :link-type: doc 23 | 24 | Preprocessing functions for WSI 25 | 26 | .. grid-item-card:: Tools 27 | :link: tools 28 | :link-type: doc 29 | 30 | Tools for WSI analysis 31 | 32 | .. grid-item-card:: Plotting 33 | :link: plotting 34 | :link-type: doc 35 | 36 | Plotting functions for WSI 37 | 38 | .. grid-item-card:: Segmentation 39 | :link: segmentation 40 | :link-type: doc 41 | 42 | Segmentation tasks on WSI 43 | 44 | .. grid-item-card:: Models 45 | :link: models 46 | :link-type: doc 47 | 48 | Models for WSI analysis 49 | 50 | .. grid-item-card:: Computer Vision 51 | :link: cv 52 | :link-type: doc 53 | 54 | Computer Vision utilities for WSI 55 | 56 | .. grid-item-card:: IO 57 | :link: io 58 | :link-type: doc 59 | 60 | IO for annotations 61 | -------------------------------------------------------------------------------- /docs/source/api/io.rst: -------------------------------------------------------------------------------- 1 | IO :code:`io` 2 | ------------- 3 | 4 | .. currentmodule:: lazyslide 5 | 6 | .. autosummary:: 7 | :toctree: _autogen 8 | :nosignatures: 9 | 10 | io.load_annotations 11 | io.export_annotations -------------------------------------------------------------------------------- /docs/source/api/models.rst: -------------------------------------------------------------------------------- 1 | Models 2 | ------ 3 | 4 | .. currentmodule:: lazyslide.models 5 | 6 | .. autosummary:: 7 | :toctree: _autogen 8 | :nosignatures: 9 | 10 | list_models 11 | 12 | 13 | Vision Models 14 | ~~~~~~~~~~~~~ 15 | 16 | .. currentmodule:: lazyslide.models.vision 17 | 18 | .. autosummary:: 19 | :toctree: _autogen 20 | :nosignatures: 21 | 22 | UNI 23 | UNI2 24 | GigaPath 25 | PLIPVision 26 | CONCHVision 27 | Virchow 28 | Virchow2 29 | Phikon 30 | PhikonV2 31 | HOptimus0 32 | HOptimus1 33 | H0Mini 34 | 35 | 36 | Image-Text Models 37 | ~~~~~~~~~~~~~~~~~~~ 38 | 39 | .. currentmodule:: lazyslide.models.multimodal 40 | 41 | .. autosummary:: 42 | :toctree: _autogen 43 | :nosignatures: 44 | 45 | PLIP 46 | CONCH 47 | Titan 48 | Prism 49 | 50 | 51 | Segmentation Models 52 | ~~~~~~~~~~~~~~~~~~~ 53 | 54 | .. currentmodule:: lazyslide.models.segmentation 55 | 56 | .. autosummary:: 57 | :toctree: _autogen 58 | :nosignatures: 59 | 60 | Instanseg 61 | NuLite 62 | GrandQCTissue 63 | GrandQCArtifact 64 | SMPBase 65 | 66 | Base Models 67 | ~~~~~~~~~~~ 68 | 69 | .. currentmodule:: lazyslide.models.base 70 | 71 | .. autosummary:: 72 | :toctree: _autogen 73 | :nosignatures: 74 | 75 | ModelBase 76 | ImageModel 77 | ImageTextModel 78 | SegmentationModel 79 | SlideEncoderModel 80 | TimmModel 81 | -------------------------------------------------------------------------------- /docs/source/api/plotting.rst: -------------------------------------------------------------------------------- 1 | Plotting: :code:`pl` 2 | -------------------- 3 | 4 | .. currentmodule:: lazyslide 5 | 6 | .. autosummary:: 7 | :toctree: _autogen 8 | :nosignatures: 9 | 10 | pl.tissue 11 | pl.tiles 12 | pl.annotations 13 | pl.WSIViewer 14 | -------------------------------------------------------------------------------- /docs/source/api/preprocess.rst: -------------------------------------------------------------------------------- 1 | Preprocessing: :code:`pp` 2 | ------------------------- 3 | 4 | .. currentmodule:: lazyslide 5 | 6 | .. autosummary:: 7 | :toctree: _autogen 8 | :nosignatures: 9 | 10 | pp.find_tissues 11 | pp.score_tissues 12 | pp.tile_tissues 13 | pp.score_tiles 14 | pp.tile_graph 15 | -------------------------------------------------------------------------------- /docs/source/api/segmentation.rst: -------------------------------------------------------------------------------- 1 | Segmentation :code:`seg` 2 | ------------------------- 3 | 4 | .. currentmodule:: lazyslide 5 | 6 | .. autosummary:: 7 | :toctree: _autogen 8 | :nosignatures: 9 | 10 | seg.cells 11 | seg.nulite 12 | seg.semantic 13 | seg.tissue 14 | seg.artifact 15 | -------------------------------------------------------------------------------- /docs/source/api/tools.rst: -------------------------------------------------------------------------------- 1 | Tools: :code:`tl` 2 | ----------------- 3 | 4 | 5 | Image Embedding 6 | ~~~~~~~~~~~~~~~ 7 | 8 | .. currentmodule:: lazyslide 9 | 10 | .. autosummary:: 11 | :toctree: _autogen 12 | :nosignatures: 13 | 14 | tl.feature_extraction 15 | tl.feature_aggregation 16 | tl.spatial_features 17 | tl.feature_utag 18 | 19 | Tissue Geometry 20 | ~~~~~~~~~~~~~~~ 21 | 22 | .. currentmodule:: lazyslide 23 | 24 | .. autosummary:: 25 | :toctree: _autogen 26 | :nosignatures: 27 | 28 | tl.tissue_props 29 | 30 | 31 | Tissue Spatial Domain 32 | ~~~~~~~~~~~~~~~~~~~~~ 33 | 34 | .. currentmodule:: lazyslide 35 | 36 | .. autosummary:: 37 | :toctree: _autogen 38 | :nosignatures: 39 | 40 | tl.spatial_domain 41 | tl.tile_shaper 42 | 43 | 44 | Multi-Modal Analysis 45 | ~~~~~~~~~~~~~~~~~~~~ 46 | 47 | .. currentmodule:: lazyslide 48 | 49 | .. autosummary:: 50 | :toctree: _autogen 51 | :nosignatures: 52 | 53 | tl.text_embedding 54 | tl.text_image_similarity 55 | 56 | 57 | Zero-shot Learning 58 | ~~~~~~~~~~~~~~~~~~ 59 | 60 | .. currentmodule:: lazyslide 61 | 62 | .. autosummary:: 63 | :toctree: _autogen 64 | :nosignatures: 65 | 66 | tl.zero_shot_score 67 | tl.slide_caption 68 | -------------------------------------------------------------------------------- /docs/source/conf.py: -------------------------------------------------------------------------------- 1 | from datetime import datetime 2 | 3 | import lazyslide 4 | 5 | project = "LazySlide" 6 | copyright = f"{datetime.now().year}, Rendeiro Lab" 7 | author = "LazySlide Contributors" 8 | release = lazyslide.__version__ 9 | 10 | # -- General configuration --------------------------------------------------- 11 | # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration 12 | 13 | extensions = [ 14 | "numpydoc", 15 | "sphinx.ext.autodoc", 16 | "sphinx.ext.autosummary", 17 | "sphinx.ext.autosectionlabel", 18 | "matplotlib.sphinxext.plot_directive", 19 | "sphinx.ext.intersphinx", 20 | "sphinx_design", 21 | "sphinx_copybutton", 22 | "myst_nb", 23 | "sphinx_contributors", 24 | ] 25 | autoclass_content = "class" 26 | autodoc_docstring_signature = True 27 | autodoc_default_options = { 28 | "members": True, 29 | "show-inheritance": True, 30 | "no-undoc-members": True, 31 | "special-members": "__call__", 32 | "exclude-members": "__init__, __weakref__", 33 | "class-doc-from": "class", 34 | } 35 | autodoc_typehints = "none" 36 | # setting autosummary 37 | autosummary_generate = True 38 | numpydoc_show_class_members = False 39 | add_module_names = False 40 | 41 | templates_path = ["_templates"] 42 | exclude_patterns = [] 43 | 44 | 45 | html_theme = "sphinx_book_theme" 46 | html_static_path = ["_static"] 47 | html_logo = "_static/logo@3x.png" 48 | html_css_files = ["custom.css"] 49 | html_theme_options = { 50 | "repository_url": "https://github.com/rendeirolab/LazySlide", 51 | "navigation_with_keys": True, 52 | "show_prev_next": False, 53 | } 54 | # html_sidebars = {"installation": [], "cli": []} 55 | 56 | nb_output_stderr = "remove" 57 | nb_execution_mode = "off" 58 | nb_merge_streams = True 59 | myst_enable_extensions = [ 60 | "colon_fence", 61 | "html_image", 62 | ] 63 | 64 | copybutton_prompt_text = r">>> |\.\.\. |\$ |In \[\d*\]: | {2,5}\.\.\.: | {5," r"8}: " 65 | copybutton_prompt_is_regexp = True 66 | 67 | # Plot directive 68 | plot_include_source = True 69 | plot_html_show_source_link = False 70 | plot_html_show_formats = False 71 | plot_formats = [("png", 200)] 72 | 73 | intersphinx_mapping = { 74 | "wsidata": ("https://wsidata.readthedocs.io/en/latest", None), 75 | "torch": ("https://pytorch.org/docs/stable/", None), 76 | } 77 | -------------------------------------------------------------------------------- /docs/source/contributing.rst: -------------------------------------------------------------------------------- 1 | Contributing 2 | ============ 3 | 4 | We welcome contributions to the LazySlide project. This document provides guidelines for contributing to the project. 5 | 6 | Project overview 7 | ---------------- 8 | 9 | LazySlide is a modularized and scalable whole slide image analysis toolkit. The project is structured as follows: 10 | 11 | - ``src/lazyslide``: Main package code 12 | - ``tests``: Test files 13 | - ``docs``: Documentation 14 | 15 | 16 | For core contributors 17 | --------------------- 18 | 19 | Please do not commit directly to the ``main`` branch. 20 | Instead, create a new branch for your changes and submit a pull request. 21 | 22 | Set up development environment 23 | ------------------------------ 24 | 25 | We use `uv `_ to manage our development environment. 26 | Please make sure you have it installed before proceeding. 27 | 28 | 1. Clone the repository:: 29 | 30 | git clone https://github.com/rendeirolab/lazyslide.git 31 | # or 32 | gh repo clone rendeirolab/lazyslide 33 | 34 | 2. Checkout a new branch:: 35 | 36 | git checkout -b my-new-branch 37 | 38 | 3. We use `uv `_ to manage our development environment:: 39 | 40 | uv lock 41 | uv run pre-commit install 42 | 43 | We use `pre-commit `_ to run code formatting and linting checks before each commit. 44 | 45 | 4. Start an IPython/Jupyter session:: 46 | 47 | uv run --with ipython ipython 48 | # or 49 | uv run --with jupyter jupyter lab 50 | 51 | 5. Make your changes. 52 | 53 | Testing 54 | ------- 55 | 56 | LazySlide uses pytest for testing. Tests are located in the ``tests`` directory. 57 | 58 | To run all tests:: 59 | 60 | uv run task test 61 | 62 | To run a specific test file:: 63 | 64 | uv run python -m pytest tests/test_example.py 65 | 66 | When adding new tests: 67 | 68 | 1. Create a new file in the ``tests`` directory with a name starting with ``test_``. 69 | 2. Import pytest and the module you want to test. 70 | 3. Write test functions with names starting with ``test_``. 71 | 4. Use assertions to verify expected behavior. 72 | 73 | Code style and development guidelines 74 | ------------------------------------- 75 | 76 | LazySlide uses `ruff `_ for both linting and formatting. 77 | The configuration is defined in ``pyproject.toml`` and enforced through pre-commit hooks. 78 | 79 | To format code:: 80 | 81 | uv run task fmt 82 | # or 83 | ruff format docs/source src/lazyslide tests 84 | 85 | Documentation 86 | ------------- 87 | 88 | Documentation is built using Sphinx and is located in the ``docs`` directory. 89 | 90 | To build the documentation:: 91 | 92 | # Build doc with cache 93 | uv run task doc-build 94 | # Fresh build 95 | uv run task doc-clean-build 96 | 97 | To serve the documentation locally:: 98 | 99 | uv run task doc-serve 100 | 101 | This will start a local server at http://localhost:8000. 102 | 103 | Documentation is written in reStructuredText (.rst) and Jupyter notebooks (.ipynb) using the myst-nb extension. 104 | 105 | Submitting changes 106 | ------------------ 107 | 108 | 1. Commit your changes and push them to your branch. 109 | 2. Create a pull request on GitHub. 110 | 3. Ensure all CI checks pass. 111 | 4. Wait for a review from a maintainer. 112 | 113 | Reporting issues 114 | ---------------- 115 | 116 | If you encounter a bug or have a feature request, please open an issue on the 117 | `GitHub repository `_. 118 | 119 | When reporting a bug, please include: 120 | 121 | - A clear description of the issue 122 | - Steps to reproduce the problem 123 | - Expected behavior 124 | - Actual behavior 125 | - Any relevant logs or error messages 126 | - Your environment (OS, Python version, package versions) 127 | -------------------------------------------------------------------------------- /docs/source/contributors.rst: -------------------------------------------------------------------------------- 1 | Contributors 2 | ============ 3 | 4 | 5 | .. card:: Rendeiro Lab 6 | 7 | LazySlide is developed by `Rendeiro Lab `_ 8 | at the `CeMM Research Center for Molecular Medicine `_. 9 | 10 | .. image:: _static/cemm-logo.svg 11 | :width: 200px 12 | :align: center 13 | 14 | 15 | Developers 16 | ---------- 17 | 18 | - `Yimin Zheng `_, lead developer. 19 | - `Ernesto Abila `_, developer. 20 | - `Andre Rendeiro `_, lab leader, guidance and support. 21 | 22 | .. contributors:: rendeirolab/LazySlide 23 | :avatars: 24 | 25 | -------------------------------------------------------------------------------- /docs/source/index.rst: -------------------------------------------------------------------------------- 1 | LazySlide: Accessible and interoperable whole slide image analysis 2 | ================================================================== 3 | 4 | .. grid:: 1 2 2 2 5 | 6 | .. grid-item:: 7 | :columns: 12 4 4 4 8 | 9 | .. image:: _static/logo@3x.png 10 | :align: center 11 | :width: 150px 12 | 13 | .. grid-item:: 14 | :columns: 12 8 8 8 15 | :child-align: center 16 | 17 | **LasySlide** LazySlide is a Python framework for whole slide image (WSI) analysis, 18 | designed to integrate seamlessly with the `scverse`_ ecosystem. 19 | 20 | By adopting standardized data structures and APIs familiar to the single-cell and genomics community, 21 | LazySlide enables intuitive, interoperable, and reproducible workflows for histological analysis. 22 | It supports a range of tasks from basic preprocessing to advanced deep learning applications, 23 | facilitating the integration of histopathology into modern computational biology. 24 | 25 | Key features 26 | ------------ 27 | 28 | * **Interoperability**: Built on top of `SpatialData`_, ensuring compatibility with scverse tools like `Scanpy`_, `Anndata`_, and `Squidpy`_. Check out `WSIData`_ for more details. 29 | * **Accessibility**: User-friendly APIs that cater to both beginners and experts in digital pathology. 30 | * **Scalability**: Efficient handling of large WSIs, enabling high-throughput analyses. 31 | * **Multimodal integration**: Combine histological data with transcriptomics, genomics, and textual annotations. 32 | * **Foundation model support**: Native integration with state-of-the-art models (e.g., UNI, CONCH, Gigapath, Virchow) for tasks like zero-shot classification and captioning. 33 | * **Deep learning ready**: Provides PyTorch dataloaders for seamless integration into machine learning pipelines. 34 | 35 | Whether you're a novice in digital pathology or an expert computational biologist, LazySlide provides a scalable and modular foundation to accelerate AI-driven discovery in tissue biology and pathology. 36 | 37 | .. image:: https://github.com/rendeirolab/LazySlide/raw/main/assets/Figure.png 38 | 39 | | 40 | 41 | .. toctree:: 42 | :maxdepth: 1 43 | :hidden: 44 | 45 | installation 46 | tutorials/index 47 | api/index 48 | contributing 49 | contributors 50 | 51 | 52 | .. grid:: 1 2 2 2 53 | :gutter: 2 54 | 55 | .. grid-item-card:: Installation 56 | :link: installation 57 | :link-type: doc 58 | 59 | How to install LazySlide 60 | 61 | .. grid-item-card:: Tutorials 62 | :link: tutorials/index 63 | :link-type: doc 64 | 65 | Get started with LazySlide 66 | 67 | .. grid-item-card:: Contributing 68 | :link: contributing 69 | :link-type: doc 70 | 71 | Contribute to Lazyslide 72 | 73 | .. grid-item-card:: Contributors 74 | :link: contributors 75 | :link-type: doc 76 | 77 | The team behind LazySlide 78 | 79 | .. _scverse: https://scverse.org/ 80 | .. _WSIData: https://wsidata.readthedocs.io/ 81 | .. _SpatialData: https://spatialdata.scverse.org/ 82 | .. _Scanpy: https://scanpy.readthedocs.io/ 83 | .. _Anndata: https://anndata.readthedocs.io/ 84 | .. _Squidpy: https://squidpy.readthedocs.io/ 85 | 86 | -------------------------------------------------------------------------------- /docs/source/installation.rst: -------------------------------------------------------------------------------- 1 | Installation 2 | ============ 3 | 4 | You can install :code:`lazyslide` with different package manager you prefer. 5 | 6 | .. tab-set:: 7 | 8 | .. tab-item:: PyPI 9 | 10 | The default installation. 11 | 12 | .. code-block:: bash 13 | 14 | pip install lazyslide 15 | 16 | .. tab-item:: uv 17 | 18 | .. code-block:: bash 19 | 20 | uv add lazyslide 21 | 22 | .. tab-item:: Conda 23 | 24 | .. warning:: 25 | 26 | Not available yet. 27 | 28 | .. code-block:: bash 29 | 30 | conda install -c conda-forge lazyslide 31 | 32 | .. tab-item:: Mamba 33 | 34 | .. warning:: 35 | 36 | Not available yet. 37 | 38 | .. code-block:: bash 39 | 40 | mamba install lazyslide 41 | 42 | .. tab-item:: Development 43 | 44 | If you want to install the latest version from the GitHub repository, you can use the following command: 45 | 46 | .. code-block:: bash 47 | 48 | pip install git+https://github.com/rendeirolab/lazyslide.git 49 | 50 | 51 | Installation of slide readers 52 | ----------------------------- 53 | 54 | LazySlide uses :code:`wsidata` to handle the IO with the slide files. 55 | To support different file formats, you need to install corresponding slide readers. 56 | The reader will be automatically detected by :code:`wsidata` when you open the slide file. 57 | 58 | 59 | .. tab-set:: 60 | 61 | .. tab-item:: TiffSlide 62 | 63 | `TiffSlide `_ is a cloud native openslide-python replacement 64 | based on tifffile. 65 | 66 | TiffSlide is installed by default. You don't need to install it manually. 67 | 68 | .. code-block:: bash 69 | 70 | pip install tiffslide 71 | 72 | .. tab-item:: OpenSlide 73 | 74 | `OpenSlide `_ is a C library that provides a simple interface to read whole-slide images. 75 | 76 | OpenSlide is installed by default, you don't need to install it manually. 77 | 78 | But you can always install from PyPI 79 | 80 | .. code-block:: bash 81 | 82 | pip install openslide-python openslide-bin 83 | 84 | In case your OpenSlide installation is not working, you can install it manually. 85 | 86 | For Linux and OSX users, it's suggested that you install :code:`openslide` with conda or mamba: 87 | 88 | .. code-block:: bash 89 | 90 | conda install -c conda-forge openslide-python 91 | # or 92 | mamba install -c conda-forge openslide-python 93 | 94 | 95 | For Windows users, you need to download compiled :code:`openslide` from 96 | `GitHub Release `_. 97 | If you open the folder, you should find a :code:`bin` folder. 98 | 99 | Make sure you point the :code:`bin` folder for python to locate the :code:`openslide` binary. 100 | You need to run following code to import the :code:`openslide`, 101 | it's suggested to run this code before everything: 102 | 103 | .. code-block:: python 104 | 105 | import os 106 | with os.add_dll_directory("path/to/openslide/bin")): 107 | import openslide 108 | 109 | .. tab-item:: BioFormats 110 | 111 | `BioFormats `_ is a standalone Java library 112 | for reading and writing life sciences image file formats. 113 | 114 | `scyjava `_ is used to interact with the BioFormats library. 115 | 116 | .. code-block:: bash 117 | 118 | pip install scyjava 119 | 120 | .. tab-item:: CuCIM 121 | 122 | `CuCIM `_ is a GPU-accelerated image I/O library. 123 | 124 | .. warning:: 125 | 126 | CuCIM support is not available yet. 127 | 128 | Please refer to the `CuCIM GitHub `_. -------------------------------------------------------------------------------- /docs/source/tutorials/.gitignore: -------------------------------------------------------------------------------- 1 | /tmp 2 | GTEx* 3 | *.sha256 -------------------------------------------------------------------------------- /docs/source/tutorials/05_training_models.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "id": "1df73331906bcf35", 6 | "metadata": {}, 7 | "source": [ 8 | "# Training deep learning models with LazySlide" 9 | ] 10 | }, 11 | { 12 | "cell_type": "markdown", 13 | "id": "6a559156-6909-46c5-bd0c-597fc02f2fe5", 14 | "metadata": {}, 15 | "source": [ 16 | "## Classification task" 17 | ] 18 | }, 19 | { 20 | "cell_type": "markdown", 21 | "id": "3b777679-2963-476c-8136-1b5d17ac33ee", 22 | "metadata": {}, 23 | "source": [ 24 | "## Segmentation task" 25 | ] 26 | }, 27 | { 28 | "cell_type": "markdown", 29 | "id": "a774bc01-fc85-41ac-9d02-0f0914e6e804", 30 | "metadata": {}, 31 | "source": [ 32 | "## Tissue generative model" 33 | ] 34 | }, 35 | { 36 | "cell_type": "code", 37 | "execution_count": null, 38 | "id": "4ad9b7e0-f76f-4ad3-b922-5e1c4815f316", 39 | "metadata": {}, 40 | "outputs": [], 41 | "source": [] 42 | } 43 | ], 44 | "metadata": { 45 | "kernelspec": { 46 | "display_name": "Python 3 (ipykernel)", 47 | "language": "python", 48 | "name": "python3" 49 | }, 50 | "language_info": { 51 | "codemirror_mode": { 52 | "name": "ipython", 53 | "version": 3 54 | }, 55 | "file_extension": ".py", 56 | "mimetype": "text/x-python", 57 | "name": "python", 58 | "nbconvert_exporter": "python", 59 | "pygments_lexer": "ipython3", 60 | "version": "3.12.8" 61 | }, 62 | "widgets": { 63 | "application/vnd.jupyter.widget-state+json": { 64 | "state": {}, 65 | "version_major": 2, 66 | "version_minor": 0 67 | } 68 | } 69 | }, 70 | "nbformat": 4, 71 | "nbformat_minor": 5 72 | } 73 | -------------------------------------------------------------------------------- /docs/source/tutorials/index.rst: -------------------------------------------------------------------------------- 1 | Tutorials 2 | ========= 3 | 4 | Here is a list of tutorials that will help you get started with the LazySlide. 5 | 6 | .. toctree:: 7 | :hidden: 8 | :maxdepth: 1 9 | 10 | 00_intro_wsi 11 | 01_preprocessing 12 | 02_feature_extraction 13 | 03_multiple_slides 14 | 04_genomics_integration 15 | 05_cell-segmentation 16 | 06_visualization 17 | 07_zero-shot-learning 18 | 19 | .. card:: Introduction to WSI 20 | 21 | :doc:`00_intro_wsi` 22 | 23 | .. card:: Preprocessing 24 | 25 | :doc:`01_preprocessing` 26 | 27 | .. card:: Feature extraction and spatial analysis 28 | 29 | :doc:`02_feature_extraction` 30 | 31 | .. card:: Working with multiple slides 32 | 33 | :doc:`03_multiple_slides` 34 | 35 | .. card:: Integration with RNA-seq 36 | 37 | :doc:`04_genomics_integration` 38 | 39 | .. card:: Cell segmentation 40 | 41 | :doc:`05_cell-segmentation` 42 | 43 | .. card:: WSI visualization in LazySlide 44 | 45 | :doc:`06_visualization` 46 | 47 | .. card:: Zero-shot learning LazySlide 48 | 49 | :doc:`07_zero-shot-learning` 50 | 51 | -------------------------------------------------------------------------------- /docs/source/tutorials/matplotlibrc: -------------------------------------------------------------------------------- 1 | pdf.fonttype: 42 2 | svg.fonttype: none 3 | font.family: sans-serif 4 | font.sans-serif: Arial 5 | font.size: 10.0 6 | figure.figsize: 4.0, 4.0 7 | savefig.dpi: 300 # figure dots per inch or 'figure' 8 | savefig.facecolor: none # figure face color when saving 9 | savefig.edgecolor: none # figure edge color when saving 10 | savefig.bbox: tight -------------------------------------------------------------------------------- /pyproject.toml: -------------------------------------------------------------------------------- 1 | [build-system] 2 | requires = ["hatchling"] 3 | build-backend = "hatchling.build" 4 | 5 | [project] 6 | name = "lazyslide" 7 | description = "Modularized and scalable whole slide image analysis" 8 | readme = "README.md" 9 | requires-python = ">=3.10" 10 | license = "MIT" 11 | authors = [ 12 | {name = "Yimin Zheng", email = "yzheng@cemm.at"}, 13 | {name = "Ernesto Abila", email = "eabila@cemm.at"}, 14 | {name = "André F. Rendeiro", email = "arendeiro@cemm.at"}, 15 | ] 16 | keywords = ["histopathology", "whole slide image", "image analysis", "segmentation", "deep learning"] 17 | classifiers = [ 18 | "Development Status :: 3 - Alpha", 19 | "Intended Audience :: Science/Research", 20 | "License :: OSI Approved :: MIT License", 21 | "Natural Language :: English", 22 | "Operating System :: OS Independent", 23 | "Programming Language :: Python :: 3", 24 | "Topic :: File Formats", 25 | "Topic :: Scientific/Engineering :: Bio-Informatics", 26 | ] 27 | Documentation = "https://lazyslide.readthedocs.io" 28 | repository = "https://github.com/rendeirolab/lazyslide" 29 | dynamic = ["version"] 30 | dependencies = [ 31 | "wsidata>=0.6.0", 32 | "scikit-learn>=1.0", 33 | "matplotlib>=3.9.0", 34 | "matplotlib-scalebar>=0.9.0", 35 | "legendkit>=0.3.4", 36 | "rich>=13.0.0", 37 | "cyclopts>=3.0.0", 38 | "timm>=1.0.3", 39 | "torch>=2.0.0", 40 | "seaborn>=0.12.2", 41 | "psutil>=5.9.0", 42 | ] 43 | 44 | [project.optional-dependencies] 45 | all = [ 46 | "scipy>=1.15.1", 47 | "scanpy>=1.10.4", 48 | "torchvision>=0.15", # >0.15 49 | "torchstain>=1.4.1", 50 | "transformers>=4.49.0", 51 | ] 52 | 53 | # Define entry points 54 | [project.scripts] 55 | lazyslide = "lazyslide.__main__:app" 56 | zs = "lazyslide.__main__:app" 57 | 58 | [tool.hatch.version] 59 | path = "src/lazyslide/__init__.py" 60 | 61 | [tool.hatch.build.targets.sdist] 62 | exclude = [ 63 | "docs", 64 | "data", 65 | "assets", 66 | "tests", 67 | "scripts", 68 | ".readthedocs.yaml", 69 | ".github", 70 | ".gitignore", 71 | ] 72 | include = [ 73 | "README.md", 74 | "LICENSE", 75 | "pyproject.toml", 76 | "src/lazyslide", 77 | ] 78 | 79 | [tool.hatch.build.targets.wheel] 80 | packages = ["src/lazyslide", "README.md", "LICENSE", "pyproject.toml"] 81 | 82 | [tool.hatch.metadata] 83 | allow-direct-references = true 84 | 85 | [tool.ruff] 86 | lint.ignore = ["F401"] 87 | line-length = 88 88 | 89 | [tool.ruff.lint.per-file-ignores] 90 | "tests/test_example.py" = ["E402"] 91 | "tests/test_loader.py" = ["E402"] 92 | 93 | [tool.mypy] 94 | ignore_missing_imports = true 95 | 96 | [tool.taskipy.tasks] 97 | hello = "echo Hello, World!" 98 | test = "pytest tests --disable-warnings" 99 | test-ci = "python -X faulthandler -m pytest tests -v --tb=short --disable-warnings" 100 | doc-build = "sphinx-build -b html docs/source docs/build" 101 | doc-clean-build = "python docs/clean_up.py && sphinx-build -b html docs/source docs/build" 102 | doc-serve = "python -m http.server -d docs/build" 103 | fmt = "ruff format docs/source src/lazyslide tests" 104 | 105 | [tool.uv] 106 | default-groups = ["dev", "docs", "tutorials", "model"] 107 | 108 | [dependency-groups] 109 | dev = [ 110 | "jupyterlab>=4.3.5", 111 | "pytest>=8.3.4", 112 | "pre-commit>=4.1.0", 113 | "ruff>=0.9.4", 114 | "taskipy>=1.14.1", 115 | "torchvision>=0.21.0", 116 | "torchstain>=1.4.1", 117 | "matplotlib>=3.10.0", 118 | "matplotlib-scalebar>=0.9.0", 119 | "scikit-learn>=1.6.1", 120 | "scanpy>=1.10.4", 121 | "scipy>=1.15.1", 122 | "segmentation-models-pytorch>=0.4.0", 123 | "albumentations>=2.0.3", 124 | "spatialdata-plot>=0.2.9", 125 | "scyjava>=1.12.0", 126 | ] 127 | docs = [ 128 | "sphinx>=8.1.3", 129 | "sphinx-copybutton>=0.5.2", 130 | "sphinx-design>=0.6.1", 131 | "myst-nb>=1.1.2", 132 | "numpydoc>=1.8.0", 133 | "pydata-sphinx-theme>=0.16.1", 134 | "sphinx>=8.1.3", 135 | "sphinx-copybutton>=0.5.2", 136 | "sphinx-design>=0.6.1", 137 | "sphinx-book-theme>=1.1.3", 138 | "sphinx-contributors>=0.2.7", 139 | ] 140 | tutorials = [ 141 | "igraph>=0.11.8", 142 | "ipywidgets>=8.1.5", 143 | "marsilea>=0.5.1", 144 | "parse>=1.20.2", 145 | "gseapy>=1.1.7", 146 | "mpl-fontkit>=0.5.1", 147 | "matplotlib-venn>=1.1.2", 148 | "muon>=0.1.7", 149 | "mofapy2>=0.7.2", 150 | "pypalettes>=0.1.5", 151 | "bokeh>=3.7.2", 152 | "dask-jobqueue>=0.9.0", 153 | ] 154 | napari = [ 155 | "napari[all]>=0.5.6", 156 | "napari-spatialdata>=0.5.5", 157 | "spatialdata-plot>=0.2.9", 158 | ] 159 | model = [ 160 | "einops>=0.8.1", 161 | "einops-exts>=0.0.4", 162 | "environs>=14.1.1", 163 | "sacremoses>=0.1.1", 164 | "conch", 165 | "transformers>=4.49.0", 166 | ] 167 | 168 | 169 | [tool.uv.sources] 170 | # wsidata = { git = "https://github.com/rendeirolab/wsidata", branch = "main" } 171 | # wsidata = { path = "../wsidata", editable = true } 172 | conch = { git = "https://github.com/mahmoodlab/CONCH.git" } 173 | 174 | [tool.uv.workspace] 175 | members = ["scripts/grandqc/artifacts_detection"] 176 | 177 | [tool.pytest.ini_options] 178 | filterwarnings = [ 179 | "ignore::UserWarning" 180 | ] 181 | -------------------------------------------------------------------------------- /src/lazyslide/__init__.py: -------------------------------------------------------------------------------- 1 | """Efficient and Scalable Whole Slide Image (WSI) processing library.""" 2 | 3 | __version__ = "0.6.0" 4 | 5 | 6 | import sys 7 | 8 | # Re-export the public API 9 | from wsidata import open_wsi, agg_wsi 10 | 11 | from . import cv 12 | from . import io 13 | from . import models 14 | from . import plotting as pl 15 | from . import preprocess as pp 16 | from . import segmentation as seg 17 | from . import tools as tl 18 | from . import datasets 19 | from . import metrics 20 | 21 | # Inject the aliases into the current module 22 | sys.modules.update({f"{__name__}.{m}": globals()[m] for m in ["tl", "pp", "pl", "seg"]}) 23 | del sys 24 | 25 | 26 | __all__ = [ 27 | "open_wsi", 28 | "agg_wsi", 29 | "pp", 30 | "tl", 31 | "pl", 32 | "seg", 33 | "cv", 34 | "models", 35 | "io", 36 | ] 37 | -------------------------------------------------------------------------------- /src/lazyslide/_const.py: -------------------------------------------------------------------------------- 1 | class Key: 2 | tissue_qc = "qc" 3 | tile_qc = "qc" 4 | tissue: str = "tissues" 5 | tissue_id: str = "tissue_id" 6 | tiles = "tiles" 7 | tile_spec: str = "tile_spec" 8 | annotations: str = "annotations" 9 | 10 | @classmethod 11 | def tile_graph(cls, name): 12 | return f"{name}_graph" 13 | 14 | @classmethod 15 | def feature(cls, name, tile_key=None): 16 | tile_key = tile_key or cls.tiles 17 | return f"{name}_{tile_key}" 18 | 19 | @classmethod 20 | def feature_slide(cls, name, tile_key=None): 21 | tile_key = tile_key or cls.tiles 22 | return f"{name}_{tile_key}_slide" 23 | -------------------------------------------------------------------------------- /src/lazyslide/_utils.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | import inspect 4 | import os 5 | from functools import wraps 6 | from types import FrameType 7 | 8 | from rich.console import Console 9 | 10 | console = Console() 11 | 12 | 13 | def get_torch_device(): 14 | """Automatically get the torch device""" 15 | import torch 16 | 17 | if torch.cuda.is_available(): 18 | device = torch.device("cuda") 19 | elif torch.backends.mps.is_available(): 20 | device = torch.device("mps") 21 | else: 22 | device = torch.device("cpu") 23 | return device 24 | 25 | 26 | def default_pbar(disable=False): 27 | """Get the default progress bar""" 28 | from rich.progress import Progress 29 | from rich.progress import ( 30 | TextColumn, 31 | BarColumn, 32 | TaskProgressColumn, 33 | TimeRemainingColumn, 34 | ) 35 | 36 | return Progress( 37 | TextColumn("[progress.description]{task.description}"), 38 | BarColumn(bar_width=30), 39 | TaskProgressColumn(), 40 | TimeRemainingColumn(compact=True, elapsed_when_finished=True), 41 | disable=disable, 42 | console=console, 43 | transient=True, 44 | ) 45 | 46 | 47 | def chunker(seq, num_workers): 48 | avg = len(seq) / num_workers 49 | out = [] 50 | last = 0.0 51 | 52 | while last < len(seq): 53 | out.append(seq[int(last) : int(last + avg)]) 54 | last += avg 55 | 56 | return out 57 | 58 | 59 | def find_stack_level() -> int: 60 | """ 61 | Find the first place in the stack that is not inside pandas 62 | (tests notwithstanding). 63 | """ 64 | 65 | import pandas as pd 66 | 67 | pkg_dir = os.path.dirname(pd.__file__) 68 | test_dir = os.path.join(pkg_dir, "tests") 69 | 70 | # https://stackoverflow.com/questions/17407119/python-inspect-stack-is-slow 71 | frame: FrameType | None = inspect.currentframe() 72 | try: 73 | n = 0 74 | while frame: 75 | filename = inspect.getfile(frame) 76 | if filename.startswith(pkg_dir) and not filename.startswith(test_dir): 77 | frame = frame.f_back 78 | n += 1 79 | else: 80 | break 81 | finally: 82 | # See note in 83 | # https://docs.python.org/3/library/inspect.html#inspect.Traceback 84 | del frame 85 | return n 86 | 87 | 88 | def _param_doc(param_type, param_text): 89 | return f"""{param_type}\n\t{param_text}""" 90 | 91 | 92 | PARAMS_DOCSTRING = { 93 | "wsi": _param_doc( 94 | param_type=":class:`WSIData `", 95 | param_text="The WSIData object to work on.", 96 | ), 97 | "key_added": _param_doc( 98 | param_type="str, default: '{key_added}'", 99 | param_text="The key to save the result in the WSIData object.", 100 | ), 101 | } 102 | 103 | 104 | def _doc(obj=None, *, key_added: str = None): 105 | """ 106 | A decorator to inject docstring to an object by replacing the placeholder in docstring by looking up a dict. 107 | """ 108 | 109 | def decorator(obj): 110 | if obj.__doc__ is not None: 111 | if key_added is not None: 112 | PARAMS_DOCSTRING["key_added"] = PARAMS_DOCSTRING["key_added"].format( 113 | key_added=key_added 114 | ) 115 | obj.__doc__ = obj.__doc__.format(**PARAMS_DOCSTRING) 116 | 117 | @wraps(obj) 118 | def wrapper(*args, **kwargs): 119 | return obj(*args, **kwargs) 120 | 121 | return wrapper 122 | 123 | if obj is None: 124 | return decorator 125 | else: 126 | return decorator(obj) 127 | -------------------------------------------------------------------------------- /src/lazyslide/cv/__init__.py: -------------------------------------------------------------------------------- 1 | from .mask import Mask, BinaryMask, MultiLabelMask, MultiClassMask 2 | from .tiles_merger import merge_polygons 3 | -------------------------------------------------------------------------------- /src/lazyslide/cv/scorer/__init__.py: -------------------------------------------------------------------------------- 1 | from .base import ScorerBase, ComposeScorer 2 | from .focuslitenn import FocusLite 3 | from .module import Contrast, SplitRGB, Redness, Brightness 4 | -------------------------------------------------------------------------------- /src/lazyslide/cv/scorer/base.py: -------------------------------------------------------------------------------- 1 | from collections import namedtuple 2 | 3 | ScoreResult = namedtuple("ScoreResult", ["scores", "qc"]) 4 | 5 | 6 | class ScorerBase: 7 | """ 8 | Base class for all scorers. 9 | 10 | All scores are operated on a patch. 11 | 12 | Image -> float 13 | """ 14 | 15 | def __call__(self, patch, mask=None): 16 | return self.apply(patch, mask=None) 17 | 18 | def __repr__(self): 19 | return f"{self.__class__.__name__}()" 20 | 21 | def apply(self, patch, mask=None) -> ScoreResult: 22 | """The scorer will return the scores and the bool value indicating of QC""" 23 | raise NotImplementedError 24 | 25 | 26 | class ComposeScorer(ScorerBase): 27 | """ 28 | Compose multiple scorers into one. 29 | 30 | Parameters 31 | ---------- 32 | scorers : List[ScorerBase] 33 | List of scorers to be composed. 34 | """ 35 | 36 | def __init__(self, scorers): 37 | self.scorers = scorers 38 | 39 | def apply(self, patch, mask=None) -> ScoreResult: 40 | scores = {} 41 | qc = True 42 | for scorer in self.scorers: 43 | score, _qc = scorer.apply(patch, mask) 44 | scores.update(score) 45 | qc &= _qc 46 | return ScoreResult(scores=scores, qc=qc) 47 | -------------------------------------------------------------------------------- /src/lazyslide/cv/scorer/focuslitenn/__init__.py: -------------------------------------------------------------------------------- 1 | from .model import FocusLite 2 | -------------------------------------------------------------------------------- /src/lazyslide/cv/scorer/focuslitenn/focuslitenn-2kernel-mse.pt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rendeirolab/LazySlide/f39634cc994b3098b0933075b9d25ecd99b9014e/src/lazyslide/cv/scorer/focuslitenn/focuslitenn-2kernel-mse.pt -------------------------------------------------------------------------------- /src/lazyslide/cv/scorer/focuslitenn/model.py: -------------------------------------------------------------------------------- 1 | import math 2 | from pathlib import Path 3 | 4 | import numpy as np 5 | 6 | from lazyslide.cv.scorer.base import ScorerBase, ScoreResult 7 | 8 | try: 9 | import torch 10 | 11 | class FocusLiteNN(torch.nn.Module): 12 | """ 13 | A FocusLiteNN model for filtering out-of-focus regions in whole slide images. 14 | """ 15 | 16 | def __init__(self, num_channel=2): 17 | super().__init__() 18 | self.num_channel = num_channel 19 | self.conv = torch.nn.Conv2d( 20 | 3, self.num_channel, 7, stride=5, padding=1 21 | ) # 47x47 22 | self.maxpool = torch.nn.MaxPool2d(kernel_size=47) 23 | if self.num_channel > 1: 24 | self.fc = torch.nn.Conv2d(self.num_channel, 1, 1, stride=1, padding=0) 25 | 26 | for m in self.modules(): 27 | if isinstance(m, torch.nn.Conv2d): 28 | n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels 29 | m.weight.data.normal_(0, math.sqrt(2.0 / n)) 30 | 31 | def forward(self, x): 32 | batch_size = x.size()[0] 33 | 34 | x = self.conv(x) 35 | x = -self.maxpool(-x) # minpooling 36 | if self.num_channel > 1: 37 | x = self.fc(x) 38 | x = x.view(batch_size, -1) 39 | 40 | return x 41 | except ImportError: 42 | 43 | class FocusLiteNN: 44 | def __init__(self, *args, **kwargs): 45 | raise ImportError( 46 | "FocusLiteNN requires torch. You can install it using `pip install torch`." 47 | "Please restart the kernel after installation." 48 | ) 49 | 50 | 51 | def load_focuslite_model(device="cpu"): 52 | model = FocusLiteNN() 53 | if not hasattr(model, "forward"): 54 | raise ModuleNotFoundError("To use Focuslite, you need to install pytorch") 55 | ckpt = torch.load( 56 | Path(__file__).parent / "focuslitenn-2kernel-mse.pt", 57 | map_location=device, 58 | weights_only=True, 59 | ) 60 | model.load_state_dict(ckpt["state_dict"]) 61 | model.eval() 62 | # model = torch.compile(model) 63 | return model 64 | 65 | 66 | class FocusLite(ScorerBase): 67 | # The device must be CPU, otherwise this module cannot be serialized 68 | def __init__(self, threshold=3, device="cpu"): 69 | from torchvision.transforms import ToTensor, Resize 70 | 71 | # threshold should be between 1 and 12 72 | if not (1 <= threshold <= 12): 73 | raise ValueError("threshold should be between 1 and 12") 74 | self.threshold = threshold 75 | self.model = load_focuslite_model(device) 76 | self.to_tensor = ToTensor() 77 | self.resize = Resize((256, 256), antialias=False) 78 | 79 | def apply(self, patch, mask=None): 80 | """Higher score means the patch is more clean, range from 0 to 1""" 81 | arr = self.to_tensor(patch) 82 | # If the image is not big enough, resize it 83 | if arr.shape[1] < 256 or arr.shape[2] < 256: 84 | arr = self.resize(arr) 85 | arr = torch.stack([arr], dim=0) 86 | score = self.model(arr) 87 | score = max(0, np.mean(torch.squeeze(score.cpu().data, dim=1).numpy())) 88 | return ScoreResult(scores={"focus": score}, qc=score < self.threshold) 89 | -------------------------------------------------------------------------------- /src/lazyslide/cv/scorer/module.py: -------------------------------------------------------------------------------- 1 | import cv2 2 | import numpy as np 3 | 4 | from .base import ScorerBase, ScoreResult 5 | from .utils import dtype_limits 6 | 7 | 8 | class SplitRGB(ScorerBase): 9 | """ 10 | Calculate the RGB value of a patch. 11 | 12 | Brightness is calculated as the mean of the pixel values. 13 | 14 | The patch need to be in shape (H, W, 3). 15 | 16 | Parameters 17 | ---------- 18 | red_threshold : float 19 | Threshold to determine if a patch is red enough. 20 | 21 | """ 22 | 23 | def __init__( 24 | self, 25 | threshold: (int, int, int) = ( 26 | 0, 27 | 0, 28 | 0, 29 | ), 30 | method="mean", 31 | dim="xyc", 32 | ): 33 | self.threshold = np.array(threshold) 34 | self.method = method 35 | self.dim = dim 36 | if dim == "xyc": 37 | self.func = self._score_xyc 38 | elif dim == "cyx": 39 | self.func = self._score_cyx 40 | else: 41 | raise ValueError(f"Unknown dim {dim}, should be 'xyc' or 'cyx'") 42 | 43 | def _score_xyc(self, patch, mask=None): 44 | if mask is not None: 45 | img = patch[mask] 46 | else: 47 | img = patch 48 | c_int = getattr(img, self.method)(axis=(0, 1)) 49 | return {"red": c_int[0], "green": c_int[1], "blue": c_int[2]} 50 | 51 | def _score_cyx(self, patch, mask=None): 52 | if mask is not None: 53 | c_int = [patch[c][mask].mean() for c in range(3)] 54 | else: 55 | c_int = [patch[c].mean() for c in range(3)] 56 | return {"red": c_int[0], "green": c_int[1], "blue": c_int[2]} 57 | 58 | def apply(self, patch, mask=None): 59 | scores = self.func(patch, mask) 60 | return ScoreResult(scores=scores, qc=scores > self.threshold) 61 | 62 | 63 | class Redness(SplitRGB): 64 | def __init__(self, red_threshold=0.5, **kwargs): 65 | self.red_threshold = red_threshold 66 | super().__init__(**kwargs) 67 | 68 | def apply(self, patch, mask=None): 69 | scores = self.func(patch, mask) 70 | return ScoreResult( 71 | scores={"redness": scores["red"]}, qc=scores["red"] > self.red_threshold 72 | ) 73 | 74 | 75 | class Brightness(ScorerBase): 76 | def __init__(self, threshold=235): 77 | self.threshold = threshold 78 | 79 | def apply(self, patch, mask=None) -> ScoreResult: 80 | if mask is not None: 81 | bright = patch[mask].mean() 82 | else: 83 | bright = patch.mean() 84 | return ScoreResult(scores={"brightness": bright}, qc=bright < self.threshold) 85 | 86 | 87 | class Contrast(ScorerBase): 88 | """ 89 | Calculate the contrast of a patch. 90 | 91 | Contrast is calculated as the standard deviation of the pixel values. 92 | 93 | Parameters 94 | ---------- 95 | threshold : float 96 | Threshold to determine if a patch is contrasted or not. 97 | """ 98 | 99 | def __init__( 100 | self, 101 | fraction_threshold=0.05, 102 | lower_percentile=1, 103 | upper_percentile=99, 104 | ): 105 | self.fraction_threshold = fraction_threshold 106 | self.lower_percentile = lower_percentile 107 | self.upper_percentile = upper_percentile 108 | 109 | def apply(self, patch, mask=None): 110 | patch = np.asarray(patch) 111 | if patch.dtype == bool: 112 | ratio = int((patch.max() == 1) and (patch.min() == 0)) 113 | elif patch.ndim == 3: 114 | if patch.shape[2] == 4: 115 | patch = cv2.cvtColor(patch, cv2.COLOR_RGBA2RGB) 116 | if patch.shape[2] == 3: 117 | patch = cv2.cvtColor(patch, cv2.COLOR_RGB2GRAY) 118 | 119 | dlimits = dtype_limits(patch, clip_negative=False) 120 | limits = np.percentile( 121 | patch, [self.lower_percentile, self.upper_percentile] 122 | ) 123 | ratio = (limits[1] - limits[0]) / (dlimits[1] - dlimits[0]) 124 | else: 125 | raise NotImplementedError("Only support 3D image or 2D image") 126 | 127 | return ScoreResult( 128 | scores={"contrast": ratio}, qc=ratio > self.fraction_threshold 129 | ) 130 | 131 | 132 | class Sharpness(ScorerBase): 133 | """ 134 | Calculate the sharpness of a patch. 135 | 136 | Sharpness is calculated as the variance of the Laplacian of the pixel values. 137 | 138 | Parameters 139 | ---------- 140 | threshold : float 141 | Threshold to determine if a patch is sharp or not. 142 | """ 143 | 144 | def __init__(self, threshold: float = 0.5): 145 | self.threshold = threshold 146 | 147 | def apply(self, patch, mask=None): 148 | score = cv2.Laplacian(patch, cv2.CV_64F).var() 149 | return ScoreResult(scores={"sharpness": score}, qc=score > self.threshold) 150 | 151 | 152 | class Sobel(ScorerBase): 153 | """ 154 | Calculate the sobel of a patch. 155 | 156 | Sobel is calculated as the variance of the Sobel of the pixel values. 157 | 158 | Parameters 159 | ---------- 160 | threshold : float 161 | Threshold to determine if a patch is sharp or not. 162 | """ 163 | 164 | name = "sobel" 165 | 166 | def __init__(self, threshold: float = 0.5): 167 | self.threshold = threshold 168 | 169 | def apply(self, patch, mask=None): 170 | score = cv2.Sobel(patch, 3, 3, 3).var() 171 | return ScoreResult(scores={"sobel": score}, qc=score > self.threshold) 172 | 173 | 174 | class Canny(ScorerBase): 175 | """ 176 | Calculate the canny of a patch. 177 | 178 | Canny is calculated as the variance of the Canny of the pixel values. 179 | 180 | Parameters 181 | ---------- 182 | threshold : float 183 | Threshold to determine if a patch is sharp or not. 184 | """ 185 | 186 | name = "canny" 187 | 188 | def __init__(self, threshold: float = 0.5): 189 | self.threshold = threshold 190 | 191 | def apply(self, patch, mask=None): 192 | score = cv2.Canny(patch, cv2.CV_64F).var() 193 | return ScoreResult(scores={"canny": score}, qc=score > self.threshold) 194 | -------------------------------------------------------------------------------- /src/lazyslide/cv/scorer/utils.py: -------------------------------------------------------------------------------- 1 | # This is copied from https://github.com/scikit-image/scikit-image/blob/v0.24.0/skimage/util/dtype.py 2 | import warnings 3 | 4 | import numpy as np 5 | 6 | _integer_types = ( 7 | np.int8, 8 | np.byte, 9 | np.int16, 10 | np.short, 11 | np.int32, 12 | np.int64, 13 | np.longlong, 14 | np.int_, 15 | np.intp, 16 | np.intc, 17 | int, 18 | np.uint8, 19 | np.ubyte, 20 | np.uint16, 21 | np.ushort, 22 | np.uint32, 23 | np.uint64, 24 | np.ulonglong, 25 | np.uint, 26 | np.uintp, 27 | np.uintc, 28 | ) 29 | _integer_ranges = {t: (np.iinfo(t).min, np.iinfo(t).max) for t in _integer_types} 30 | dtype_range = { 31 | bool: (False, True), 32 | np.bool_: (False, True), 33 | float: (-1, 1), 34 | np.float16: (-1, 1), 35 | np.float32: (-1, 1), 36 | np.float64: (-1, 1), 37 | } 38 | 39 | with warnings.catch_warnings(): 40 | warnings.filterwarnings("ignore", category=DeprecationWarning) 41 | 42 | # np.bool8 is a deprecated alias of np.bool_ 43 | if hasattr(np, "bool8"): 44 | dtype_range[np.bool8] = (False, True) 45 | 46 | dtype_range.update(_integer_ranges) 47 | 48 | _supported_types = list(dtype_range.keys()) 49 | 50 | 51 | def dtype_limits(image, clip_negative=False): 52 | """Return intensity limits, i.e. (min, max) tuple, of the image's dtype. 53 | 54 | Parameters 55 | ---------- 56 | image : ndarray 57 | Input image. 58 | clip_negative : bool, optional 59 | If True, clip the negative range (i.e. return 0 for min intensity) 60 | even if the image dtype allows negative values. 61 | 62 | Returns 63 | ------- 64 | imin, imax : tuple 65 | Lower and upper intensity limits. 66 | """ 67 | imin, imax = dtype_range[image.dtype.type] 68 | if clip_negative: 69 | imin = 0 70 | return imin, imax 71 | -------------------------------------------------------------------------------- /src/lazyslide/cv/tiles_merger.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | from itertools import combinations 4 | 5 | import geopandas as gpd 6 | import numpy as np 7 | from shapely.ops import unary_union 8 | from shapely.strtree import STRtree 9 | 10 | 11 | class PolygonMerger: 12 | """ 13 | Merge polygons from different tiles. 14 | 15 | If the polygons are overlapping/touching, the overlapping regions are merged. 16 | 17 | If probabilities exist, the probabilities are averaged weighted by the area of the polygons. 18 | 19 | Parameters 20 | ---------- 21 | gdf : `GeoDataFrame ` 22 | The GeoDataFrame containing the polygons. 23 | class_col : str, default: None 24 | The column that specify the names of the polygons. 25 | prob_col : str, default: None 26 | The column that specify the probabilities of the polygons. 27 | buffer_px : float, default: 0 28 | The buffer size for the polygons to test the intersection. 29 | drop_overlap : float, default: 0.9 30 | The ratio to drop the overlapping polygons. 31 | 32 | """ 33 | 34 | def __init__( 35 | self, 36 | gdf: gpd.GeoDataFrame, 37 | class_col: str = None, 38 | prob_col: str = None, 39 | buffer_px: float = 0, 40 | drop_overlap: float = 0.9, 41 | ): 42 | self.gdf = gdf 43 | self.class_col = class_col 44 | self.prob_col = prob_col 45 | self.buffer_px = buffer_px 46 | self.drop_overlap = drop_overlap 47 | 48 | self._has_class = class_col in gdf.columns if class_col else False 49 | self._has_prob = prob_col in gdf.columns if prob_col else False 50 | self._preprocessed_polygons = self._preprocess_polys() 51 | self._merged_polygons = None 52 | 53 | def _preprocess_polys(self): 54 | """Preprocess the polygons.""" 55 | new_gdf = self.gdf.copy() 56 | if self.buffer_px > 0: 57 | new_gdf["geometry"] = self.gdf["geometry"].buffer(self.buffer_px) 58 | # Filter out invalid and empty geometries efficiently 59 | return new_gdf[new_gdf["geometry"].is_valid & ~new_gdf["geometry"].is_empty] 60 | 61 | def _merge_overlap(self, gdf: gpd.GeoDataFrame): 62 | """ 63 | Merge the overlapping polygons recursively. 64 | 65 | This function has no assumptions about the class or probability 66 | """ 67 | pass 68 | 69 | def _tree_merge(self, gdf: gpd.GeoDataFrame): 70 | polygons = gdf["geometry"].tolist() 71 | tree = STRtree(polygons) 72 | visited = set() 73 | merged = [] 74 | 75 | for geom in polygons: 76 | if geom in visited: 77 | continue 78 | 79 | groups_ix = tree.query(geom, predicate="intersects") 80 | groups_ix = set([g for g in groups_ix if g not in visited]) 81 | if len(groups_ix) == 0: 82 | continue 83 | else: 84 | # continue finding other polygons that intersect with the group 85 | # until the group size is stable 86 | current_group_size = len(groups_ix) 87 | while True: 88 | new_groups_ix = set() 89 | for ix in groups_ix: 90 | c_groups_ix = tree.query(polygons[ix], predicate="intersects") 91 | c_groups_ix = [g for g in c_groups_ix if g not in visited] 92 | new_groups_ix.update(c_groups_ix) 93 | groups_ix.update(new_groups_ix) 94 | if len(groups_ix) == current_group_size: 95 | break 96 | current_group_size = len(groups_ix) 97 | 98 | # Sort the group index 99 | groups_ix = np.sort(list(groups_ix)) 100 | 101 | # Merge the group 102 | merged_geoms = [] # (polygon, row_ix, groups_ix) 103 | 104 | if len(groups_ix) == 1: 105 | ix = groups_ix[0] 106 | m_geoms = polygons[ix] 107 | merged_geoms.append((m_geoms, ix, groups_ix)) 108 | else: 109 | m_geoms = [polygons[g] for g in groups_ix] 110 | if self._has_class: 111 | ref_df = gpd.GeoDataFrame( 112 | { 113 | "names": [gdf[self.class_col].values[g] for g in groups_ix], 114 | "index": groups_ix, 115 | "geometry": m_geoms, 116 | } 117 | ) 118 | 119 | # {class_name: polygon} 120 | named_polys = ( 121 | ref_df[["names", "geometry"]] 122 | .groupby("names") 123 | .apply(unary_union) 124 | .to_dict() 125 | ) 126 | 127 | if self.drop_overlap > 0: 128 | # If the two classes instances are more than 90% overlapping 129 | # The smaller one is removed 130 | while len(named_polys) > 1: 131 | names = list(named_polys.keys()) 132 | combs = combinations(names, 2) 133 | for n1, n2 in combs: 134 | if n1 in named_polys and n2 in named_polys: 135 | p1, p2 = named_polys[n1], named_polys[n2] 136 | if p1.intersection(p2).is_empty: 137 | continue 138 | area, drop = ( 139 | (p1.area, n1) 140 | if p1.area < p2.area 141 | else (p2.area, n2) 142 | ) 143 | union = p1.union(p2).area 144 | overlap_ratio = union / area 145 | if overlap_ratio > self.drop_overlap: 146 | del named_polys[drop] 147 | break 148 | for n, p in named_polys.items(): 149 | gs = ref_df[ref_df["names"] == n]["index"].tolist() 150 | merged_geoms.append((p, gs[0], gs)) 151 | else: 152 | m_geoms = unary_union(m_geoms) 153 | merged_geoms.append((m_geoms, groups_ix[0], groups_ix)) 154 | # Postprocess the merged polygon 155 | for m_geom, ix, gs_ix in merged_geoms: 156 | if self.buffer_px > 0: 157 | m_geom = m_geom.buffer(-self.buffer_px).buffer(0) 158 | if m_geom.is_valid & (m_geom.is_empty is False): 159 | m_data = gdf.iloc[ix].copy() 160 | m_data["geometry"] = m_geom 161 | if self._has_prob: 162 | gs_gdf = gdf.iloc[gs_ix] 163 | m_data[self.prob_col] = np.average( 164 | gs_gdf[self.prob_col], weights=gs_gdf["geometry"].area 165 | ) 166 | merged.append(m_data) 167 | for g in groups_ix: 168 | visited.add(g) 169 | return gpd.GeoDataFrame(merged) 170 | 171 | def merge(self): 172 | """Launch the merging process.""" 173 | self._merged_polygons = self._tree_merge(self._preprocessed_polygons) 174 | 175 | @property 176 | def merged_polygons(self): 177 | return self._merged_polygons 178 | 179 | 180 | def merge_polygons( 181 | gdf: gpd.GeoDataFrame, 182 | class_col: str = None, 183 | prob_col: str = None, 184 | buffer_px: float = 0, 185 | drop_overlap: float = 0.9, 186 | ): 187 | merger = PolygonMerger(gdf, class_col, prob_col, buffer_px, drop_overlap) 188 | merger.merge() 189 | return merger.merged_polygons 190 | 191 | 192 | merge_polygons.__doc__ = PolygonMerger.__doc__ 193 | -------------------------------------------------------------------------------- /src/lazyslide/cv/transform/__init__.py: -------------------------------------------------------------------------------- 1 | """This module is highly inspired by both torchvison and pathml""" 2 | 3 | from .compose import TissueDetectionHE 4 | 5 | from .mods import ( 6 | MedianBlur, 7 | GaussianBlur, 8 | BoxBlur, 9 | MorphOpen, 10 | MorphClose, 11 | BinaryThreshold, 12 | ArtifactFilterThreshold, 13 | Compose, 14 | ) 15 | -------------------------------------------------------------------------------- /src/lazyslide/cv/transform/compose.py: -------------------------------------------------------------------------------- 1 | import cv2 2 | from shapely import Polygon 3 | 4 | from .mods import ( 5 | Transform, 6 | MedianBlur, 7 | MorphClose, 8 | ArtifactFilterThreshold, 9 | BinaryThreshold, 10 | ForegroundDetection, 11 | ) 12 | 13 | 14 | class TissueDetectionHE(Transform): 15 | """ 16 | Detect tissue regions from H&E stained slide. 17 | First applies a median blur, then binary thresholding, then morphological opening and closing, and finally 18 | foreground detection. 19 | 20 | Parameters 21 | ---------- 22 | use_saturation : bool 23 | Whether to convert to HSV and use saturation channel for tissue detection. 24 | If False, convert from RGB to greyscale and use greyscale image_ref for tissue detection. Defaults to True. 25 | blur_ksize : int 26 | kernel size used to apply median blurring. Defaults to 15. 27 | threshold : int 28 | threshold for binary thresholding. If None, uses Otsu's method. Defaults to None. 29 | morph_n_iter : int 30 | number of iterations of morphological opening and closing to apply. Defaults to 3. 31 | morph_k_size : int 32 | kernel size for morphological opening and closing. Defaults to 7. 33 | min_region_size : int 34 | """ 35 | 36 | def __init__( 37 | self, 38 | use_saturation=False, 39 | blur_ksize=17, 40 | threshold=7, 41 | morph_n_iter=3, 42 | morph_k_size=7, 43 | min_tissue_area=0.01, 44 | min_hole_area=0.0001, 45 | detect_holes=True, 46 | filter_artifacts=True, 47 | ): 48 | self.set_params( 49 | use_saturation=use_saturation, 50 | blur_ksize=blur_ksize, 51 | threshold=threshold, 52 | morph_n_iter=morph_n_iter, 53 | morph_k_size=morph_k_size, 54 | min_tissue_area=min_tissue_area, 55 | min_hole_area=min_hole_area, 56 | detect_holes=detect_holes, 57 | filter_artifacts=filter_artifacts, 58 | ) 59 | 60 | if filter_artifacts: 61 | thresholder = ArtifactFilterThreshold(threshold=threshold) 62 | else: 63 | if threshold is None: 64 | thresholder = BinaryThreshold(use_otsu=True) 65 | else: 66 | thresholder = BinaryThreshold(use_otsu=False, threshold=threshold) 67 | 68 | foreground = ForegroundDetection( 69 | min_foreground_area=min_tissue_area, 70 | min_hole_area=min_hole_area, 71 | detect_holes=detect_holes, 72 | ) 73 | 74 | self.pipeline = [ 75 | MedianBlur(kernel_size=blur_ksize), 76 | thresholder, 77 | # MorphOpen(kernel_size=morph_k_size, n_iterations=morph_n_iter), 78 | MorphClose(kernel_size=morph_k_size, n_iterations=morph_n_iter), 79 | foreground, 80 | ] 81 | 82 | def apply(self, image): 83 | filter_artifacts = self.params["filter_artifacts"] 84 | use_saturation = self.params["use_saturation"] 85 | 86 | if not filter_artifacts: 87 | if use_saturation: 88 | image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)[:, :, 1] 89 | else: 90 | image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) 91 | 92 | for p in self.pipeline: 93 | image = p.apply(image) 94 | return image 95 | 96 | 97 | class Mask2Polygon(Transform): 98 | """ 99 | Convert binary mask to polygon. 100 | 101 | Parameters 102 | ---------- 103 | min_area : int 104 | Minimum area of detected regions to be included in the polygon. 105 | """ 106 | 107 | def __init__( 108 | self, 109 | min_area=0, 110 | morph_k_size=7, 111 | morph_n_iter=3, 112 | min_tissue_area=0.01, 113 | min_hole_area=0.0001, 114 | detect_holes=True, 115 | ): 116 | self.set_params(min_area=min_area) 117 | 118 | self.pipeline = [ 119 | # MorphOpen(kernel_size=morph_k_size, n_iterations=morph_n_iter), 120 | MorphClose(kernel_size=morph_k_size, n_iterations=morph_n_iter), 121 | ForegroundDetection( 122 | min_foreground_area=min_tissue_area, 123 | min_hole_area=min_hole_area, 124 | detect_holes=detect_holes, 125 | ), 126 | ] 127 | 128 | def apply(self, mask): 129 | min_area = self.params["min_area"] 130 | 131 | for p in self.pipeline: 132 | try: 133 | mask = p.apply(mask) 134 | except Exception as e: 135 | print(self.__class__.__name__, e) 136 | 137 | tissue_instances = mask 138 | polygons = [] 139 | if len(tissue_instances) == 0: 140 | return [] 141 | for tissue in tissue_instances: 142 | shell = tissue.contour 143 | if len(tissue.holes) == 0: 144 | tissue_poly = Polygon(shell) 145 | else: 146 | holes = [hole for hole in tissue.holes] 147 | tissue_poly = Polygon(shell, holes=holes) 148 | if tissue_poly.area < min_area: 149 | continue 150 | polygons.append(tissue_poly) 151 | return polygons 152 | -------------------------------------------------------------------------------- /src/lazyslide/datasets/__init__.py: -------------------------------------------------------------------------------- 1 | from ._sample import ( 2 | sample, 3 | gtex_artery, 4 | lung_carcinoma, 5 | ) 6 | -------------------------------------------------------------------------------- /src/lazyslide/datasets/_sample.py: -------------------------------------------------------------------------------- 1 | import pooch 2 | from wsidata import open_wsi 3 | 4 | ENTRY = pooch.create( 5 | path=pooch.os_cache("lazyslide"), 6 | base_url="https://lazyslide.blob.core.windows.net/lazyslide-data", 7 | registry={ 8 | "sample.svs": "sha256:ed92d5a9f2e86df67640d6f92ce3e231419ce127131697fbbce42ad5e002c8a7", 9 | "sample.zarr.zip": "sha256:075a3ab61e6958673d79612cc29796a92cf875ad049fc1fe5780587968635378", 10 | "GTEX-1117F-0526.svs": "sha256:222ab7f2bb42dcd0bcfaccd910cb13be452b453499e6117ab553aa6cd60a135e", 11 | "GTEX-1117F-0526.zarr.zip": "sha256:2323b656322d2dcc7e9d18aaf586b39a88bf8f2a3959f642f109eb54268f3732", 12 | "lung_carcinoma.ndpi": "sha256:3297b0a564f22940208c61caaca56d97ba81c9b6b7816ebc4042a087e557f85e", 13 | "lung_carcinoma.zarr.zip": "sha256:0a8ccfc608f55624b473c6711b55739c3279d3b6fc5b654395dfc23b010bf866", 14 | }, 15 | ) 16 | 17 | logger = pooch.get_logger() 18 | logger.setLevel("WARNING") 19 | 20 | 21 | def _load_dataset(slide_file, zarr_file, with_data=True, pbar=False): 22 | slide = ENTRY.fetch(slide_file) 23 | _ = ENTRY.fetch( 24 | zarr_file, 25 | progressbar=pbar, 26 | processor=pooch.Unzip(extract_dir=zarr_file.rstrip(".zip")), 27 | ) 28 | store = "auto" if with_data else None 29 | return open_wsi(slide, store=store) 30 | 31 | 32 | def sample(with_data: bool = True, pbar: bool = False): 33 | """ 34 | Load a small sample slide (~1.9 MB). 35 | 36 | Source: https://openslide.cs.cmu.edu/download/openslide-testdata/Aperio/CMU-1-Small-Region.svs 37 | 38 | Parameters 39 | ---------- 40 | with_data : bool, default: True 41 | Whether to load the associated zarr storage data. 42 | pbar : bool, default: False 43 | Whether to show the progress bar. 44 | 45 | """ 46 | return _load_dataset( 47 | "sample.svs", "sample.zarr.zip", with_data=with_data, pbar=pbar 48 | ) 49 | 50 | 51 | def gtex_artery(with_data: bool = True, pbar: bool = False): 52 | """ 53 | A GTEX artery slide. 54 | 55 | Source: https://gtexportal.org/home/histologyPage, GTEX-1117F-0526 56 | 57 | Parameters 58 | ---------- 59 | with_data : bool, default: True 60 | Whether to load the associated zarr storage data. 61 | pbar : bool, default: False 62 | Whether to show the progress bar. 63 | 64 | """ 65 | return _load_dataset( 66 | "GTEX-1117F-0526.svs", 67 | "GTEX-1117F-0526.zarr.zip", 68 | with_data=with_data, 69 | pbar=pbar, 70 | ) 71 | 72 | 73 | def lung_carcinoma(with_data: bool = True, pbar: bool = False): 74 | """ 75 | A lung carcinoma slide. 76 | 77 | Source: https://idr.openmicroscopy.org/webclient/img_detail/9846318/?dataset=10801 78 | 79 | Parameters 80 | ---------- 81 | with_data : bool, default: True 82 | Whether to load the associated zarr storage data. 83 | pbar : bool, default: False 84 | Whether to show the progress bar. 85 | 86 | """ 87 | 88 | return _load_dataset( 89 | "lung_carcinoma.ndpi", "lung_carcinoma.zarr.zip", with_data=with_data, pbar=pbar 90 | ) 91 | -------------------------------------------------------------------------------- /src/lazyslide/io/__init__.py: -------------------------------------------------------------------------------- 1 | from ._annotaiton import load_annotations, export_annotations 2 | -------------------------------------------------------------------------------- /src/lazyslide/io/_annotaiton.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | import json 4 | from itertools import cycle 5 | from pathlib import Path 6 | from typing import List, Literal, Mapping, Iterable 7 | 8 | import pandas as pd 9 | from geopandas import GeoDataFrame 10 | from wsidata import WSIData 11 | from wsidata.io import update_shapes_data, add_shapes 12 | 13 | from lazyslide._const import Key 14 | 15 | 16 | def _in_bounds_transform(wsi: WSIData, annos: GeoDataFrame, reverse: bool = False): 17 | from functools import partial 18 | from shapely.affinity import translate 19 | 20 | xoff, yoff, _, _ = wsi.properties.bounds 21 | if reverse: 22 | xoff, yoff = -xoff, -yoff 23 | trans = partial(translate, xoff=xoff, yoff=yoff) 24 | annos["geometry"] = annos["geometry"].apply(lambda x: trans(x)) 25 | return annos 26 | 27 | 28 | def load_annotations( 29 | wsi: WSIData, 30 | annotations: str | Path | GeoDataFrame = None, 31 | *, 32 | explode: bool = True, 33 | in_bounds: bool = False, 34 | join_with: str | List[str] = Key.tissue, 35 | join_to: str = None, 36 | json_flatten: str | List[str] = "classification", 37 | min_area: float = 1e2, 38 | key_added: str = "annotations", 39 | ): 40 | """Load the annotation file and add it to the WSIData 41 | 42 | Parameters 43 | ---------- 44 | wsi : :class:`WSIData ` 45 | The WSIData object to work on. 46 | annotations : str, Path, GeoDataFrame 47 | The path to the annotation file or the GeoDataFrame. 48 | explode : bool, default: True 49 | Whether to explode the annotations. 50 | in_bounds : bool, default: False 51 | Whether to move the annotations to the slide bounds. 52 | join_with : str, List[str], default: 'tissues' 53 | The key to join the annotations with. 54 | join_to : str, default: None 55 | The key to join the annotations to. 56 | json_flatten : str, default: "classification" 57 | The column(s) to flatten the json data, if not exist, it will be ignored. 58 | "classification" is the default column for the QuPath annotations. 59 | min_area : float, default: 1e2 60 | The minimum area of the annotation. 61 | key_added : str, default: 'annotations' 62 | The key to store the annotations. 63 | 64 | """ 65 | import geopandas as gpd 66 | 67 | if isinstance(annotations, (str, Path)): 68 | geo_path = Path(annotations) 69 | anno_df = gpd.read_file(geo_path) 70 | elif isinstance(annotations, GeoDataFrame): 71 | anno_df = annotations 72 | else: 73 | raise ValueError(f"Invalid annotations: {annotations}") 74 | 75 | # remove crs 76 | anno_df.crs = None 77 | 78 | if explode: 79 | anno_df = ( 80 | anno_df.explode() 81 | .assign(**{"__area__": lambda x: x.geometry.area}) 82 | .query(f"__area__ > {min_area}") 83 | .drop(columns=["__area__"], errors="ignore") 84 | .reset_index(drop=True) 85 | ) 86 | 87 | if json_flatten is not None: 88 | 89 | def flatten_json(x): 90 | if isinstance(x, dict): 91 | return x 92 | elif isinstance(x, str): 93 | try: 94 | return json.loads(x) 95 | except json.JSONDecodeError: 96 | return {} 97 | 98 | if isinstance(json_flatten, str): 99 | json_flatten = [json_flatten] 100 | for col in json_flatten: 101 | if col in anno_df.columns: 102 | anno_df[col] = anno_df[col].apply(flatten_json) 103 | anno_df = anno_df.join( 104 | anno_df[col].apply(pd.Series).add_prefix(f"{col}_") 105 | ) 106 | anno_df.drop(columns=[col], inplace=True) 107 | 108 | if in_bounds: 109 | anno_df = _in_bounds_transform(wsi, anno_df) 110 | 111 | # get tiles 112 | if isinstance(join_with, str): 113 | join_with = [join_with] 114 | 115 | join_anno_df = anno_df.copy() 116 | for key in join_with: 117 | if key in wsi: 118 | shapes_df = wsi[key] 119 | # join the annotations with the tiles 120 | join_anno_df = ( 121 | gpd.sjoin(shapes_df, join_anno_df, how="right", predicate="intersects") 122 | .reset_index(drop=True) 123 | .drop(columns=["index_left"]) 124 | ) 125 | add_shapes(wsi, key_added, join_anno_df) 126 | 127 | # TODO: still Buggy 128 | if join_to is not None: 129 | if join_to in wsi: 130 | shapes_df = wsi[join_to] 131 | # join the annotations with the tiles 132 | shapes_df = ( 133 | gpd.sjoin( 134 | shapes_df[["geometry"]], anno_df, how="left", predicate="intersects" 135 | ) 136 | .reset_index(drop=True) 137 | .drop(columns=["index_right"], errors="ignore") 138 | ) 139 | update_shapes_data(wsi, join_to, shapes_df) 140 | 141 | 142 | def export_annotations( 143 | wsi: WSIData, 144 | key: str, 145 | *, 146 | in_bounds: bool = False, 147 | classes: str = None, 148 | colors: str | Mapping = None, 149 | format: Literal["qupath"] = "qupath", 150 | file: str | Path = None, 151 | ): 152 | """ 153 | Export the annotations 154 | 155 | Parameters 156 | ---------- 157 | wsi : :class:`WSIData ` 158 | The WSIData object to work on. 159 | key : str 160 | The key to export. 161 | in_bounds : bool, default: False 162 | Whether to move the annotations to the slide bounds. 163 | classes : str, default: None 164 | The column to use for the classification. 165 | If None, the classification will be ignored. 166 | colors : str, Mapping, default: None 167 | The column to use for the color. 168 | If None, the color will be ignored. 169 | format : str, default: 'qupath' 170 | The format to export. 171 | Currently only 'qupath' is supported. 172 | file : str, Path, default: None 173 | The file to save the annotations. 174 | If None, the annotations will not be saved. 175 | 176 | 177 | """ 178 | gdf = wsi.shapes[key].copy() 179 | if in_bounds: 180 | gdf = _in_bounds_transform(wsi, gdf, reverse=True) 181 | 182 | if format == "qupath": 183 | # Prepare classification column 184 | import json 185 | 186 | if classes is not None: 187 | class_values = gdf[classes] 188 | 189 | if colors is None: 190 | # Assign default colors 191 | colors = cycle( 192 | [ 193 | "#1B9E77", # Teal Green 194 | "#D95F02", # Burnt Orange 195 | "#7570B3", # Deep Lavender 196 | "#E7298A", # Magenta 197 | "#66A61E", # Olive Green 198 | "#E6AB02", # Goldenrod 199 | "#A6761D", # Earthy Brown 200 | "#666666", # Charcoal Gray 201 | "#1F78B4", # Cool Blue 202 | ] 203 | ) 204 | 205 | if colors is not None: 206 | color_values = cycle([]) 207 | if isinstance(colors, str): 208 | color_values = gdf[colors] 209 | elif isinstance(colors, Iterable): 210 | # if sequence of colors, map to class values 211 | colors = dict(zip(pd.unique(class_values), colors)) 212 | else: 213 | raise ValueError(f"Invalid colors: {colors}") 214 | 215 | if isinstance(colors, Mapping): 216 | color_values = map(lambda x: colors.get(x, None), gdf[classes]) 217 | 218 | # covert color to rgb array 219 | from matplotlib.colors import to_rgb 220 | 221 | color_values = map( 222 | lambda x: tuple(int(255 * c) for c in to_rgb(x)) 223 | if x is not None 224 | else None, 225 | color_values, 226 | ) 227 | 228 | classifications = [] 229 | for class_value, color_value in zip(class_values, color_values): 230 | json_string = json.dumps({"name": class_value, "color": color_value}) 231 | classifications.append(json_string) 232 | gdf["classification"] = classifications 233 | 234 | if file is not None: 235 | gdf.to_file(file) 236 | 237 | return gdf 238 | -------------------------------------------------------------------------------- /src/lazyslide/metrics.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from anndata import AnnData 3 | 4 | 5 | def topk_score( 6 | matrix: np.ndarray | AnnData, 7 | k: int = 5, 8 | agg_method: str = "max", 9 | ) -> np.ndarray: 10 | """ 11 | Get the top k score from a feature x class matrix. 12 | 13 | Parameters 14 | ---------- 15 | matrix : np.ndarray | AnnData 16 | The input matrix. Feature x class. 17 | k : int, default: 5 18 | The number of top scores to return. 19 | agg_method : str, default: "max" 20 | The method to use for aggregation. 21 | Can be "max", "mean", "median" or "sum". 22 | 23 | Returns 24 | ------- 25 | np.ndarray 26 | The top k scores. 27 | 28 | """ 29 | if isinstance(matrix, AnnData): 30 | matrix = matrix.X 31 | 32 | top_k_score = np.sort(matrix, axis=0)[-k:] 33 | score = getattr(np, agg_method)(top_k_score, axis=0) 34 | return score 35 | -------------------------------------------------------------------------------- /src/lazyslide/models/__init__.py: -------------------------------------------------------------------------------- 1 | from typing import Dict, Type 2 | 3 | from . import multimodal 4 | from . import segmentation 5 | from . import vision 6 | from .base import ( 7 | ModelBase, 8 | ImageModel, 9 | ImageTextModel, 10 | SegmentationModel, 11 | SlideEncoderModel, 12 | TimmModel, 13 | ) 14 | 15 | from ._model_registry import MODEL_REGISTRY, list_models 16 | -------------------------------------------------------------------------------- /src/lazyslide/models/_model_registry.py: -------------------------------------------------------------------------------- 1 | from dataclasses import dataclass 2 | from enum import Enum 3 | from pathlib import Path 4 | from typing import Type, List 5 | 6 | import pandas as pd 7 | 8 | from . import ModelBase 9 | from . import multimodal 10 | from . import segmentation 11 | from . import vision 12 | 13 | 14 | class ModelTask(Enum): 15 | vision = "vision" 16 | segmentation = "segmentation" 17 | multimodal = "multimodal" 18 | 19 | 20 | @dataclass 21 | class ModelCard: 22 | name: str 23 | model_type: ModelTask 24 | module: Type[ModelBase] 25 | github_url: str = None 26 | hf_url: str = None 27 | paper_url: str = None 28 | description: str = None 29 | keys: List[str] = None 30 | 31 | def __post_init__(self): 32 | try: 33 | inject_doc = str(self) 34 | origin_doc = self.module.__doc__ 35 | if origin_doc is None: 36 | origin_doc = "" 37 | else: 38 | origin_doc = f"\n\n{origin_doc}" 39 | self.module.__doc__ = f"{inject_doc}{origin_doc}" 40 | except AttributeError: 41 | # If the module does not have a __doc__ attribute, skip the injection 42 | pass 43 | 44 | if self.keys is None: 45 | self.keys = [self.name.lower()] 46 | 47 | def __str__(self): 48 | skeleton = "" 49 | if self.github_url is not None: 50 | skeleton += f":octicon:`mark-github;1em;` `GitHub <{self.github_url}>`__ \\" 51 | if self.hf_url is not None: 52 | skeleton += f"🤗 `Hugging Face <{self.hf_url}>`__ \\" 53 | if self.paper_url is not None: 54 | skeleton += f" :octicon:`book;1em;` `Paper <{self.paper_url}>`__" 55 | if self.description is not None: 56 | skeleton += f"\n| {self.description}" 57 | 58 | return skeleton 59 | 60 | 61 | MODEL_REGISTRY = {} 62 | 63 | MODEL_DB = pd.read_csv(f"{Path(__file__).parent}/model_registry.csv") 64 | _modules = { 65 | ModelTask.vision: vision, 66 | ModelTask.segmentation: segmentation, 67 | ModelTask.multimodal: multimodal, 68 | } 69 | 70 | for _, row in MODEL_DB.iterrows(): 71 | model_type = ModelTask(row["model_type"]) 72 | card = ModelCard( 73 | name=row["name"], 74 | model_type=model_type, 75 | module=getattr(_modules[model_type], row["module"]), 76 | github_url=None if pd.isna(row["github_url"]) else row["github_url"], 77 | hf_url=None if pd.isna(row["hf_url"]) else row["hf_url"], 78 | paper_url=None if pd.isna(row["paper_url"]) else row["paper_url"], 79 | description=None if pd.isna(row["description"]) else row["description"], 80 | ) 81 | keys = [i.strip() for i in row["keys"].split(",")] if row["keys"] else [] 82 | for key in keys: 83 | MODEL_REGISTRY[key] = card 84 | 85 | 86 | def list_models(task: ModelTask = None): 87 | """List all available models. 88 | 89 | If you want to get models for feature extraction, 90 | you can use task='vision' or task='multimodal'. 91 | 92 | Parameters 93 | ---------- 94 | task : {'vision', 'segmentation', 'multimodal'}, default: None 95 | The task to filter the models. If None, return all models. 96 | 97 | Returns 98 | ------- 99 | list 100 | A list of model names. 101 | 102 | """ 103 | if task is None: 104 | return list(MODEL_REGISTRY.keys()) 105 | if task is not None: 106 | task = ModelTask(task) 107 | if task in ModelTask: 108 | return [ 109 | name 110 | for name, model in MODEL_REGISTRY.items() 111 | if model.model_type == task 112 | ] 113 | else: 114 | raise ValueError( 115 | f"Unknown task: {task}. " 116 | "Available tasks are: vision, segmentation, multimodal." 117 | ) 118 | -------------------------------------------------------------------------------- /src/lazyslide/models/_utils.py: -------------------------------------------------------------------------------- 1 | from contextlib import contextmanager 2 | 3 | import torch 4 | 5 | 6 | def _fake_class(name, deps, inject=""): 7 | def init(self, *args, **kwargs): 8 | raise ImportError( 9 | f"To use {name}, you need to install {', '.join(deps)}." 10 | f"{inject}" 11 | "Please restart the kernel after installation." 12 | ) 13 | 14 | # Dynamically create the class 15 | new_class = type(name, (object,), {"__init__": init}) 16 | 17 | return new_class 18 | 19 | 20 | @contextmanager 21 | def hf_access(name): 22 | """ 23 | Context manager for Hugging Face access. 24 | """ 25 | from huggingface_hub.errors import GatedRepoError 26 | 27 | try: 28 | yield 29 | except GatedRepoError as e: 30 | raise GatedRepoError( 31 | f"You don't have access to {name}. Please request access to the model on HuggingFace. " 32 | "After access granted, please login to HuggingFace with huggingface-cli on this machine " 33 | "with a token that has access to this model. " 34 | "You may also pass token as an argument in LazySlide, however, this is not recommended." 35 | ) from e 36 | 37 | 38 | def get_default_transform(): 39 | """The default transform for the model.""" 40 | from torchvision.transforms import InterpolationMode 41 | from torchvision.transforms.v2 import ( 42 | Compose, 43 | Normalize, 44 | CenterCrop, 45 | ToImage, 46 | ToDtype, 47 | Resize, 48 | ) 49 | 50 | transforms = [ 51 | ToImage(), 52 | Resize( 53 | size=(224, 224), 54 | interpolation=InterpolationMode.BICUBIC, 55 | max_size=None, 56 | antialias=True, 57 | ), 58 | CenterCrop(224), 59 | ToDtype(dtype=torch.float32, scale=True), 60 | Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), 61 | ] 62 | return Compose(transforms) 63 | -------------------------------------------------------------------------------- /src/lazyslide/models/base.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | from pathlib import Path 4 | from typing import Callable 5 | 6 | import numpy as np 7 | import torch 8 | 9 | from lazyslide.models._utils import hf_access, get_default_transform 10 | 11 | 12 | class ModelBase: 13 | model: torch.nn.Module 14 | name: str = "ModelBase" 15 | is_restricted: bool = False 16 | 17 | def get_transform(self): 18 | return None 19 | 20 | def to(self, device): 21 | self.model.to(device) 22 | return self 23 | 24 | @staticmethod 25 | def load_weights(url, progress=True): 26 | from timm.models.hub import download_cached_file 27 | 28 | return Path(download_cached_file(url, progress=progress)) 29 | 30 | 31 | class ImageModel(ModelBase): 32 | # TODO: Add a config that specify the recommended input tile size and mpp 33 | 34 | def get_transform(self): 35 | import torch 36 | from torchvision.transforms.v2 import ( 37 | Compose, 38 | ToImage, 39 | ToDtype, 40 | Resize, 41 | Normalize, 42 | ) 43 | 44 | return Compose( 45 | [ 46 | ToImage(), 47 | ToDtype(dtype=torch.float32, scale=True), 48 | Resize(size=(224, 224), antialias=False), 49 | Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), 50 | ] 51 | ) 52 | 53 | def encode_image(self, image) -> np.ndarray[np.float32]: 54 | raise NotImplementedError 55 | 56 | def __call__(self, image): 57 | return self.encode_image(image) 58 | 59 | 60 | class TimmModel(ImageModel): 61 | def __init__(self, name, token=None, compile=False, compile_kws=None, **kwargs): 62 | import timm 63 | from huggingface_hub import login 64 | 65 | if token is not None: 66 | login(token) 67 | 68 | default_kws = {"pretrained": True, "num_classes": 0} 69 | default_kws.update(kwargs) 70 | 71 | with hf_access(name): 72 | self.model = timm.create_model(name, **default_kws) 73 | 74 | if compile: 75 | if compile_kws is None: 76 | compile_kws = {} 77 | self.compiled_model = torch.compile(self.model, **compile_kws) 78 | 79 | def get_transform(self): 80 | return get_default_transform() 81 | 82 | @torch.inference_mode() 83 | def encode_image(self, image): 84 | with torch.inference_mode(): 85 | return self.model(image).cpu().detach().numpy() 86 | 87 | 88 | class SlideEncoderModel(ModelBase): 89 | def encode_slide(self, embeddings, coords=None): 90 | raise NotImplementedError 91 | 92 | 93 | class ImageTextModel(ImageModel): 94 | def encode_image(self, image): 95 | """This should return the image feature before normalize.""" 96 | raise NotImplementedError 97 | 98 | def encode_text(self, text): 99 | raise NotImplementedError 100 | 101 | def tokenize(self, text): 102 | raise NotImplementedError 103 | 104 | 105 | class SegmentationModel(ModelBase): 106 | CLASS_MAPPING = None 107 | 108 | def get_transform(self): 109 | import torch 110 | from torchvision.transforms.v2 import Compose, ToImage, ToDtype, Normalize 111 | 112 | return Compose( 113 | [ 114 | ToImage(), 115 | ToDtype(dtype=torch.float32, scale=True), 116 | Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), 117 | ] 118 | ) 119 | 120 | def segment(self, image): 121 | raise NotImplementedError 122 | 123 | def get_postprocess(self) -> Callable | None: 124 | return None 125 | -------------------------------------------------------------------------------- /src/lazyslide/models/model_registry.csv: -------------------------------------------------------------------------------- 1 | name,keys,model_type,module,github_url,hf_url,paper_url,description 2 | CONCH,conch,multimodal,CONCH,https://github.com/mahmoodlab/CONCH,https://huggingface.co/MahmoodLab/conch,https://doi.org/10.1038/s41591-024-02856-4,Multimodal foundation model 3 | PLIP,plip,multimodal,PLIP,https://github.com/PathologyFoundation/plip,https://huggingface.co/vinid/plip,https://doi.org/10.1038/s41591-023-02504-3,Multimodal foundation model 4 | Prism,prism,multimodal,Prism,https://github.com/mahmoodlab/PRISM,https://huggingface.co/paige-ai/Prism,https://doi.org/10.48550/arXiv.2405.10254,Slide-Level multimodal generative model 5 | Titan,"titan, conch_v1.5",multimodal,Titan,https://github.com/mahmoodlab/TITAN,https://huggingface.co/MahmoodLab/TITAN,https://doi.org/10.48550/arXiv.2411.19666,Multimodal foundation model 6 | Uni,uni,vision,UNI,https://github.com/mahmoodlab/UNI,https://huggingface.co/MahmoodLab/UNI,https://doi.org/10.1038/s41591-024-02857-3,Vision foundation model 7 | Uni2,uni2,vision,UNI2,https://github.com/mahmoodlab/UNI,https://huggingface.co/MahmoodLab/UNI2-h,https://doi.org/10.1038/s41591-024-02857-3,Vision foundation model 8 | GigaPath,gigapath,vision,GigaPath,https://github.com/prov-gigapath/prov-gigapath,https://huggingface.co/prov-gigapath/prov-gigapath,https://doi.org/10.1038/s41586-024-07441-w,Vision foundation model 9 | Virchow,virchow,vision,Virchow,,https://huggingface.co/paige-ai/Virchow,https://doi.org/10.1038/s41591-024-03141-0,Vision foundation model 10 | Virchow2,virchow2,vision,Virchow2,,https://huggingface.co/paige-ai/Virchow2,https://doi.org/10.48550/arXiv.2408.00738,Vision foundation model 11 | Phikon,phikon,vision,Phikon,https://github.com/owkin/HistoSSLscaling/,https://huggingface.co/owkin/phikon,https://doi.org/10.1101/2023.07.21.23292757,Vision foundation model 12 | PhikonV2,phikonv2,vision,PhikonV2,https://github.com/owkin,https://huggingface.co/owkin/phikon-v2,https://doi.org/10.48550/arXiv.2409.09173,Vision foundation model 13 | H-optimus-0,h-optimus-0,vision,HOptimus0,https://github.com/bioptimus,https://huggingface.co/bioptimus/H-optimus-0,,Vision foundation model 14 | H-optimus-1,h-optimus-1,vision,HOptimus1,https://github.com/bioptimus,https://huggingface.co/bioptimus/H-optimus-1,,Vision foundation model 15 | H0-mini,h0-mini,vision,H0Mini,https://github.com/bioptimus,https://huggingface.co/bioptimus/H0-mini,https://doi.org/10.48550/arXiv.2501.16239,Vision foundation model 16 | CONCHVision,conch_vision,vision,CONCHVision,https://github.com/mahmoodlab/CONCH,https://huggingface.co/MahmoodLab/conch,https://doi.org/10.1038/s41591-024-02856-4,Multimodal foundation model 17 | PLIPVision,plip_vision,vision,PLIPVision,https://github.com/PathologyFoundation/plip,https://huggingface.co/vinid/plip,https://doi.org/10.1038/s41591-023-02504-3,Multimodal foundation model 18 | NuLite,nulite,segmentation,NuLite,https://github.com/CosmoIknosLab/NuLite,,https://doi.org/10.48550/arXiv.2408.01797,Cell segmentation and classification 19 | InstanSeg,instanseg,segmentation,Instanseg,https://github.com/instanseg/instanseg,,https://doi.org/10.48550/arXiv.2408.15954,Cell segmentation 20 | GrandQC-Tissue,grandqc-tissue,segmentation,GrandQCTissue,https://github.com/cpath-ukk/grandqc,,https://doi.org/10.1038/s41467-024-54769-y,Tissue segmentation 21 | GrandQC-Artifact,grandqc-artifact,segmentation,GrandQCArtifact,https://github.com/cpath-ukk/grandqc,,https://doi.org/10.1038/s41467-024-54769-y,Artifact segmentation 22 | Midnight,midnight,vision,Midnight,https://github.com/kaiko-ai/midnight,https://huggingface.co/kaiko-ai/midnight,https://doi.org/10.48550/arXiv.2504.05186,Vision foundation model 23 | HibouB,hibou-b,vision,HibouB,https://github.com/HistAI/hibou/tree/main,https://huggingface.co/histai/hibou-b,https://doi.org/10.48550/arXiv.2406.05074,Foundation Vision Transformer 24 | HibouL,hibou-l,vision,HibouL,https://github.com/HistAI/hibou/tree/main,https://huggingface.co/histai/hibou-l,https://doi.org/10.48550/arXiv.2406.05074,Foundation Vision Transformer -------------------------------------------------------------------------------- /src/lazyslide/models/multimodal/__init__.py: -------------------------------------------------------------------------------- 1 | from .conch import CONCH 2 | from .plip import PLIP 3 | from .titan import Titan 4 | from .prism import Prism 5 | -------------------------------------------------------------------------------- /src/lazyslide/models/multimodal/conch.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | from .._utils import hf_access 4 | from ..base import ImageTextModel 5 | 6 | 7 | class CONCH(ImageTextModel): 8 | def __init__(self, model_path=None, token=None): 9 | try: 10 | from conch.open_clip_custom import create_model_from_pretrained 11 | from conch.open_clip_custom import get_tokenizer 12 | except ImportError: 13 | raise ImportError( 14 | "Conch is not installed. You can install it using " 15 | "`pip install git+https://github.com/mahmoodlab/CONCH.git`." 16 | ) 17 | 18 | if model_path is None: 19 | model_path = "hf_hub:MahmoodLab/conch" 20 | 21 | with hf_access(model_path): 22 | self.model, self.processor = create_model_from_pretrained( 23 | "conch_ViT-B-16", model_path, hf_auth_token=token 24 | ) 25 | self.tokenizer = get_tokenizer() 26 | 27 | @torch.inference_mode() 28 | def encode_image(self, image): 29 | if not isinstance(image, torch.Tensor): 30 | image = self.processor(image) 31 | if image.dim() == 3: 32 | image = image.unsqueeze(0) 33 | 34 | image_feature = self.model.encode_image( 35 | image, normalize=True, proj_contrast=True 36 | ) 37 | return image_feature 38 | 39 | def tokenize(self, text): 40 | from conch.open_clip_custom import tokenize 41 | 42 | return tokenize(self.tokenizer, text) 43 | 44 | @torch.inference_mode() 45 | def encode_text(self, text): 46 | encode_texts = self.tokenize(text) 47 | text_feature = self.model.encode_text(encode_texts) 48 | return text_feature 49 | -------------------------------------------------------------------------------- /src/lazyslide/models/multimodal/plip.py: -------------------------------------------------------------------------------- 1 | # Modified from https://github.com/PathologyFoundation/plip/blob/main/plip.py 2 | 3 | import torch 4 | 5 | from .._utils import hf_access 6 | from ..base import ImageTextModel 7 | 8 | 9 | class PLIP(ImageTextModel): 10 | def __init__(self, model_path=None, token=None): 11 | try: 12 | from transformers import CLIPModel, CLIPProcessor 13 | except ImportError: 14 | raise ImportError( 15 | "Please install the 'transformers' package to use the PLIP model" 16 | ) 17 | 18 | if model_path is None: 19 | model_path = "vinid/plip" 20 | 21 | with hf_access(model_path): 22 | self.model = CLIPModel.from_pretrained(model_path, use_auth_token=token) 23 | self.processor = CLIPProcessor.from_pretrained( 24 | model_path, use_auth_token=token 25 | ) 26 | 27 | def get_transform(self): 28 | return None 29 | 30 | @torch.inference_mode() 31 | def encode_image(self, image): 32 | inputs = self.processor(images=image, return_tensors="pt") 33 | inputs = {k: v.to(self.model.device) for k, v in inputs.items()} 34 | image_features = self.model.get_image_features(**inputs) 35 | image_features = torch.nn.functional.normalize(image_features, p=2, dim=-1) 36 | return image_features 37 | 38 | @torch.inference_mode() 39 | def encode_text(self, text): 40 | inputs = self.processor( 41 | text=text, 42 | return_tensors="pt", 43 | max_length=77, 44 | padding="max_length", 45 | truncation=True, 46 | ) 47 | inputs = {k: v.to(self.model.device) for k, v in inputs.items()} 48 | text_features = self.model.get_text_features(**inputs) 49 | return text_features 50 | -------------------------------------------------------------------------------- /src/lazyslide/models/multimodal/prism.py: -------------------------------------------------------------------------------- 1 | import warnings 2 | 3 | import torch 4 | 5 | from .._utils import hf_access 6 | from ..base import ModelBase 7 | 8 | 9 | class Prism(ModelBase): 10 | def __init__(self, model_path=None, token=None): 11 | from transformers import AutoModel 12 | 13 | # Suppress warnings from transformers 14 | with warnings.catch_warnings(), hf_access(model_path): 15 | warnings.simplefilter("ignore") 16 | 17 | self.model = AutoModel.from_pretrained( 18 | "paige-ai/Prism", 19 | trust_remote_code=True, 20 | token=token, 21 | ) 22 | 23 | @torch.inference_mode() 24 | def encode_slide(self, embeddings, coords=None) -> dict: 25 | # Make sure the embeddings has a batch dimension 26 | if len(embeddings.shape) == 2: 27 | embeddings = embeddings.unsqueeze(0) 28 | return self.model.slide_representations(embeddings) 29 | 30 | @torch.inference_mode() 31 | def score( 32 | self, 33 | slide_embedding, 34 | prompts: list[list[str]], 35 | ): 36 | if len(prompts): 37 | pass 38 | 39 | device = self.model.device 40 | 41 | # Flatten all prompts and track indices for class reconstruction 42 | flat_prompts = [] 43 | group_lengths = [] 44 | for group in prompts: 45 | flat_prompts.extend(group) 46 | group_lengths.append(len(group)) 47 | 48 | token_ids = self.model.tokenize(flat_prompts)[:, :-1].to(device) 49 | 50 | dummy_image_latents = torch.empty( 51 | (len(flat_prompts), 1, self.model.text_decoder.context_dim), device=device 52 | ) 53 | decoder_out = self.model.text_decoder(token_ids, dummy_image_latents) 54 | 55 | text_proj = self.model.text_to_latents(decoder_out["text_embedding"]) 56 | image_proj = self.model.img_to_latents(slide_embedding) 57 | 58 | sim = torch.einsum("i d, j d -> i j", image_proj, text_proj) # (image, prompt) 59 | sim = sim * self.model.temperature.exp() 60 | zero_shot_probs = torch.softmax( 61 | sim.to(torch.float), dim=-1 62 | ) # (Bi, total_prompts) 63 | 64 | # Sum probabilities per group (class) 65 | class_probs = [] 66 | start = 0 67 | for length in group_lengths: 68 | end = start + length 69 | class_probs.append(zero_shot_probs[:, start:end].sum(dim=-1, keepdim=True)) 70 | start = end 71 | 72 | probs = torch.cat(class_probs, dim=-1) 73 | return probs.detach().cpu().numpy() 74 | 75 | @torch.inference_mode() 76 | def caption( 77 | self, 78 | img_latents, 79 | prompt: list[str], 80 | max_length: int = 100, 81 | ): 82 | genned_ids = self.model.generate( 83 | self.model.tokenize(prompt).to(self.model.device), 84 | key_value_states=img_latents, 85 | do_sample=False, 86 | num_beams=5, 87 | num_beam_groups=1, 88 | max_length=max_length, 89 | ) 90 | genned_caption = self.model.untokenize(genned_ids) 91 | 92 | return genned_caption 93 | -------------------------------------------------------------------------------- /src/lazyslide/models/multimodal/titan.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | from .._utils import hf_access 4 | from ..base import ImageModel 5 | 6 | 7 | class Titan(ImageModel): 8 | name = "titan" 9 | 10 | TEMPLATES = [ 11 | "CLASSNAME.", 12 | "an image of CLASSNAME.", 13 | "the image shows CLASSNAME.", 14 | "the image displays CLASSNAME.", 15 | "the image exhibits CLASSNAME.", 16 | "an example of CLASSNAME.", 17 | "CLASSNAME is shown.", 18 | "this is CLASSNAME.", 19 | "I observe CLASSNAME.", 20 | "the pathology image shows CLASSNAME.", 21 | "a pathology image shows CLASSNAME.", 22 | "the pathology slide shows CLASSNAME.", 23 | "shows CLASSNAME.", 24 | "contains CLASSNAME.", 25 | "presence of CLASSNAME.", 26 | "CLASSNAME is present.", 27 | "CLASSNAME is observed.", 28 | "the pathology image reveals CLASSNAME.", 29 | "a microscopic image of showing CLASSNAME.", 30 | "histology shows CLASSNAME.", 31 | "CLASSNAME can be seen.", 32 | "the tissue shows CLASSNAME.", 33 | "CLASSNAME is identified.", 34 | ] 35 | 36 | def __init__(self, model_path=None, token=None): 37 | from transformers import AutoModel 38 | 39 | with hf_access(model_path): 40 | self.model = AutoModel.from_pretrained( 41 | "MahmoodLab/TITAN", 42 | add_pooling_layer=False, 43 | use_auth_token=token, 44 | trust_remote_code=True, 45 | ) 46 | self.conch, self.conch_transform = self.model.return_conch() 47 | 48 | def to(self, device): 49 | super().to(device) 50 | self.conch.to(device) 51 | 52 | def get_transform(self): 53 | from torchvision.transforms import InterpolationMode 54 | from torchvision.transforms.v2 import ( 55 | Resize, 56 | CenterCrop, 57 | ToImage, 58 | ToDtype, 59 | Normalize, 60 | Compose, 61 | ) 62 | 63 | return Compose( 64 | [ 65 | ToImage(), 66 | Resize(448, interpolation=InterpolationMode.BICUBIC, antialias=True), 67 | CenterCrop(448), 68 | ToDtype(dtype=torch.float32, scale=True), 69 | Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), 70 | ] 71 | ) 72 | 73 | @torch.inference_mode() 74 | def encode_image(self, image): 75 | image_feature = self.conch(image) 76 | return image_feature.detach().cpu().numpy() 77 | 78 | @torch.inference_mode() 79 | def encode_slide(self, embeddings, coords=None, base_tile_size=None, **kwargs): 80 | slide_embeddings = self.model.encode_slide_from_patch_features( 81 | embeddings, coords, base_tile_size 82 | ) 83 | return slide_embeddings.detach().cpu().numpy() 84 | 85 | @torch.inference_mode() 86 | def score( 87 | self, slide_embeddings, prompts: list[str], template: str = None, **kwargs 88 | ): 89 | if template is None: 90 | template = self.TEMPLATES 91 | 92 | classifier = self.model.zero_shot_classifier(prompts, template) 93 | scores = self.model.zero_shot(slide_embeddings, classifier) 94 | return scores.squeeze(0).detach().cpu().numpy() 95 | -------------------------------------------------------------------------------- /src/lazyslide/models/segmentation/__init__.py: -------------------------------------------------------------------------------- 1 | from .instanseg import Instanseg 2 | from .nulite import NuLite 3 | from .grandqc import GrandQCTissue, GrandQCArtifact 4 | from .postprocess import ( 5 | instanseg_postprocess, 6 | semanticseg_postprocess, 7 | ) 8 | from .smp import SMPBase 9 | from .sam import SAM 10 | -------------------------------------------------------------------------------- /src/lazyslide/models/segmentation/cellpose.py: -------------------------------------------------------------------------------- 1 | from lazyslide.models.base import SegmentationModel 2 | 3 | 4 | class Cellpose(SegmentationModel): 5 | def __init__(self, model_type="nuclei"): 6 | from cellpose import models 7 | 8 | self.cellpose_model = models.Cellpose(model_type=model_type, gpu=False) 9 | 10 | def to(self, device): 11 | self.cellpose_model.device = device 12 | 13 | def get_transform(self): 14 | return None 15 | 16 | def segment(self, image): 17 | masks, flows, styles = self.cellpose_model.eval( 18 | image, diameter=30, channels=[0, 0] 19 | ) 20 | -------------------------------------------------------------------------------- /src/lazyslide/models/segmentation/grandqc.py: -------------------------------------------------------------------------------- 1 | from typing import Literal 2 | 3 | import torch 4 | from lazyslide.models.base import SegmentationModel 5 | from lazyslide.models.segmentation.postprocess import semanticseg_postprocess 6 | from lazyslide.models.segmentation.smp import SMPBase 7 | 8 | 9 | class GrandQCArtifact(SegmentationModel): 10 | CLASS_MAPPING = { 11 | 0: "Background", 12 | 1: "Normal Tissue", 13 | 2: "Fold", 14 | 3: "Darkspot & Foreign Object", 15 | 4: "PenMarking", 16 | 5: "Edge & Air Bubble", 17 | 6: "Out of Focus", 18 | 7: "Background", 19 | } 20 | 21 | def __init__(self, model: Literal["5x", "7x", "10x"] = "7x"): 22 | from huggingface_hub import hf_hub_download 23 | 24 | weights_map = { 25 | "5x": "GrandQC_MPP2_traced.pt", 26 | "7x": "GrandQC_MPP15_traced.pt", 27 | "10x": "GrandQC_MPP1_traced.pt", 28 | } 29 | weights = hf_hub_download( 30 | "RendeiroLab/LazySlide-models", f"grandqc/{weights_map[model]}" 31 | ) 32 | 33 | self.model = torch.jit.load(weights) 34 | 35 | def get_transform(self): 36 | import torch 37 | from torchvision.transforms.v2 import ( 38 | Compose, 39 | ToImage, 40 | ToDtype, 41 | Normalize, 42 | ) 43 | 44 | return Compose( 45 | [ 46 | ToImage(), 47 | ToDtype(dtype=torch.float32, scale=True), 48 | Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), 49 | ] 50 | ) 51 | 52 | @torch.inference_mode() 53 | def segment(self, image): 54 | out = self.model(image) 55 | return out.detach().cpu().numpy() 56 | 57 | def get_postprocess(self): 58 | return semanticseg_postprocess 59 | 60 | 61 | class GrandQCTissue(SMPBase): 62 | CLASS_MAPPING = { 63 | 0: "Background", 64 | 1: "Tissue", 65 | } 66 | 67 | def __init__(self): 68 | from huggingface_hub import hf_hub_download 69 | 70 | weights = hf_hub_download( 71 | "RendeiroLab/LazySlide-models", "grandqc/Tissue_Detection_MPP10.pth" 72 | ) 73 | 74 | super().__init__( 75 | arch="unetplusplus", 76 | encoder_name="timm-efficientnet-b0", 77 | encoder_weights="imagenet", 78 | in_channels=3, 79 | classes=2, 80 | activation=None, 81 | ) 82 | self.model.load_state_dict( 83 | torch.load(weights, map_location=torch.device("cpu"), weights_only=True) 84 | ) 85 | self.model.eval() 86 | 87 | @torch.inference_mode() 88 | def segment(self, image): 89 | return self.model.predict(image) 90 | -------------------------------------------------------------------------------- /src/lazyslide/models/segmentation/instanseg.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | from typing import Callable 4 | 5 | import numpy as np 6 | import torch 7 | 8 | from lazyslide.models.base import SegmentationModel 9 | from .postprocess import instanseg_postprocess 10 | 11 | 12 | class PercentileNormalize: 13 | def __call__(self, image: torch.Tensor) -> torch.Tensor: 14 | # image shape should be [C, H, W] 15 | for c in range(image.shape[0]): 16 | channel = image[c] 17 | min_i = torch.quantile(channel.flatten(), 0.001) 18 | max_i = torch.quantile(channel.flatten(), 0.999) 19 | image[c] = (channel - min_i) / max(1e-3, max_i - min_i) 20 | return image 21 | 22 | def __repr__(self): 23 | return self.__class__.__name__ + "()" 24 | 25 | 26 | class Instanseg(SegmentationModel): 27 | """Apply the InstaSeg model to the input image.""" 28 | 29 | _base_mpp = 0.5 30 | 31 | def __init__(self, model_file=None): 32 | from huggingface_hub import hf_hub_download 33 | 34 | model_file = hf_hub_download( 35 | "RendeiroLab/LazySlide-models", "instanseg/instanseg_v0_1_0.pt" 36 | ) 37 | 38 | self.model = torch.jit.load(model_file, map_location="cpu") 39 | 40 | def get_transform(self): 41 | from torchvision.transforms.v2 import ToImage, ToDtype, Compose 42 | 43 | return Compose( 44 | [ 45 | ToImage(), # Converts numpy or PIL to torch.Tensor in [C, H, W] format 46 | ToDtype(dtype=torch.float32, scale=False), 47 | PercentileNormalize(), 48 | ] 49 | ) 50 | 51 | @torch.inference_mode() 52 | def segment(self, image): 53 | # with torch.inference_mode(): 54 | out = self.model(image) 55 | return out.squeeze().cpu().numpy().astype(np.uint16) 56 | 57 | def get_postprocess(self) -> Callable | None: 58 | return instanseg_postprocess 59 | -------------------------------------------------------------------------------- /src/lazyslide/models/segmentation/nulite/__init__.py: -------------------------------------------------------------------------------- 1 | from .api import NuLite 2 | -------------------------------------------------------------------------------- /src/lazyslide/models/segmentation/nulite/api.py: -------------------------------------------------------------------------------- 1 | from typing import Literal 2 | 3 | import cv2 4 | import numpy as np 5 | import torch 6 | import geopandas as gpd 7 | 8 | from lazyslide.cv import Mask 9 | from lazyslide.models.base import SegmentationModel 10 | 11 | from .model import NuLite as NuLiteModel 12 | 13 | 14 | class NuLite(SegmentationModel): 15 | def __init__( 16 | self, 17 | variant: Literal["H", "M", "T"] = "H", 18 | ): 19 | from huggingface_hub import hf_hub_download 20 | 21 | model_file = hf_hub_download( 22 | "RendeiroLab/LazySlide-models", f"nulite/NuLite-{variant}-Weights.pth" 23 | ) 24 | 25 | weights = torch.load(model_file, map_location="cpu") 26 | 27 | config = weights["config"] 28 | self.model = NuLiteModel( 29 | config["data.num_nuclei_classes"], 30 | config["data.num_tissue_classes"], 31 | config["model.backbone"], 32 | ) 33 | self.model.load_state_dict(weights["model_state_dict"]) 34 | 35 | def get_transform(self): 36 | from torchvision.transforms.v2 import ToImage, ToDtype, Normalize, Compose 37 | 38 | return Compose( 39 | [ 40 | ToImage(), 41 | ToDtype(dtype=torch.float32, scale=True), 42 | Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 43 | ] 44 | ) 45 | 46 | @torch.inference_mode() 47 | def segment(self, image): 48 | return self.model.forward(image, retrieve_tokens=True) 49 | 50 | def get_postprocess(self): 51 | return nulite_preprocess 52 | 53 | 54 | CLASS_MAPPING = { 55 | 0: "Background", 56 | 1: "Neoplastic", 57 | 2: "Inflammatory", 58 | 3: "Connective", 59 | 4: "Dead", 60 | 5: "Epithelial", 61 | } 62 | 63 | 64 | def nulite_preprocess( 65 | output, 66 | ksize: int = 11, 67 | min_object_size: int = 3, 68 | nucleus_size: (int, int) = (20, 5000), 69 | ) -> gpd.GeoDataFrame: 70 | """Preprocess the image for NuLite model.""" 71 | 72 | binary_mask = output["nuclei_binary_map"].softmax(0).detach().cpu().numpy()[1] 73 | hv_map = output["hv_map"].detach().cpu().numpy() 74 | type_prob_map = ( 75 | output["nuclei_type_map"].softmax(0).detach().cpu().numpy()[1::] 76 | ) # to skip background 77 | 78 | _, blb = cv2.threshold(binary_mask.astype(np.float32), 0.5, 1, cv2.THRESH_BINARY) 79 | blb = blb.astype(np.uint8) 80 | 81 | # Remove small objects based on connected components. 82 | # Use cv2.connectedComponentsWithStats to label regions and filter by area. 83 | num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(blb, connectivity=8) 84 | min_size = 3 # Minimum pixel area to keep an object 85 | blb_clean = np.zeros_like(blb) 86 | for label in range(1, num_labels): # label 0 is the background. 87 | if stats[label, cv2.CC_STAT_AREA] >= min_size: 88 | blb_clean[labels == label] = 1 89 | 90 | h_map, v_map = hv_map 91 | # STEP 2: Normalize directional maps 92 | h_dir_norm = cv2.normalize( 93 | h_map, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX 94 | ).astype(np.float32) 95 | v_dir_norm = cv2.normalize( 96 | v_map, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX 97 | ).astype(np.float32) 98 | 99 | # STEP 3: Compute edges using Sobel operators 100 | # ksize = 11 # Kernel size for Sobel operators; adjust for edge sensitivity. 101 | sobelh = cv2.Sobel(h_dir_norm, cv2.CV_64F, dx=1, dy=0, ksize=ksize) 102 | sobelv = cv2.Sobel(v_dir_norm, cv2.CV_64F, dx=0, dy=1, ksize=ksize) 103 | 104 | # Normalize the edge responses and invert them to prepare for the "distance" map. 105 | sobelh_norm = 1 - cv2.normalize( 106 | sobelh, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX 107 | ) 108 | sobelv_norm = 1 - cv2.normalize( 109 | sobelv, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX 110 | ) 111 | 112 | # Combine edge images by taking the maximum value at each pixel. 113 | overall = np.maximum(sobelh_norm, sobelv_norm) 114 | 115 | # Remove non-nuclei regions from the edge map. 116 | overall = overall - (1 - blb_clean.astype(np.float32)) 117 | overall[overall < 0] = 0 # Set negative values to zero 118 | 119 | # STEP 4: Create an inverse “distance” map for watershed 120 | # The idea is to make the centers of nuclei correspond to local minima. 121 | # dist = (1.0 - overall) * blb_clean.astype(np.float32) 122 | # dist = -cv2.GaussianBlur(dist, (3, 3), 0) 123 | 124 | # STEP 5: Create markers for watershed (seed regions) 125 | # Identify the nucleus interior by thresholding the overall edge image. 126 | _, overall_bin = cv2.threshold(overall, 0.4, 1, cv2.THRESH_BINARY) 127 | overall_bin = overall_bin.astype(np.uint8) 128 | 129 | # Subtract the boundaries from the clean binary mask 130 | marker = blb_clean - overall_bin 131 | marker[marker < 0] = 0 132 | 133 | # Fill holes and do a morphological closing to smooth marker regions. 134 | kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) 135 | marker_closed = cv2.morphologyEx(marker, cv2.MORPH_CLOSE, kernel) 136 | 137 | # Again, remove tiny markers using connected component analysis. 138 | num_labels, markers, stats, _ = cv2.connectedComponentsWithStats( 139 | marker_closed, connectivity=8 140 | ) 141 | object_size = 10 # Minimum size (in pixels) for a marker region 142 | markers_clean = np.zeros_like(markers, dtype=np.int32) 143 | for label in range(1, num_labels): 144 | if stats[label, cv2.CC_STAT_AREA] >= object_size: 145 | markers_clean[markers == label] = label 146 | 147 | # STEP 6: Apply the Watershed algorithm using only OpenCV 148 | # The watershed function in OpenCV requires a 3-channel image. 149 | # Here, we build a dummy 3-channel (RGB) image from our binary mask (for visualization/masking purposes). 150 | dummy_img = cv2.cvtColor((blb_clean * 255).astype(np.uint8), cv2.COLOR_GRAY2BGR) 151 | 152 | # Watershed modifies the marker image in place. 153 | # The boundaries between segmented regions will be marked with -1. 154 | cv2.watershed(dummy_img, markers_clean) 155 | 156 | unique_labels = np.unique(markers_clean) 157 | final_seg = np.zeros_like(markers_clean, dtype=np.int32) 158 | cells = [] 159 | nucleus_size_min, nucleus_size_max = nucleus_size 160 | for lbl in unique_labels: 161 | if lbl <= 1: # Skip background (-1) and unknown (1) 162 | continue 163 | mask = markers_clean == lbl 164 | x, y = np.where(mask) 165 | area = len(x) 166 | 167 | if nucleus_size_min <= area <= nucleus_size_max: 168 | probs = type_prob_map[:, x, y].mean(1) 169 | class_ix = np.argmax(probs) 170 | class_prob = type_prob_map[class_ix, x, y].mean() 171 | m = Mask.from_array(mask.astype(np.uint8)) 172 | poly = m.to_polygons()[0] 173 | cells.append([CLASS_MAPPING[class_ix + 1], class_prob, poly]) 174 | final_seg[markers_clean == lbl] = lbl 175 | return gpd.GeoDataFrame(cells, columns=["name", "prob", "geometry"]) 176 | -------------------------------------------------------------------------------- /src/lazyslide/models/segmentation/postprocess.py: -------------------------------------------------------------------------------- 1 | import cv2 2 | import geopandas as gpd 3 | import numpy as np 4 | 5 | 6 | def instanseg_postprocess( 7 | mask: np.ndarray, 8 | ): 9 | """ 10 | Postprocess the mask to get the cell polygons. 11 | 12 | The feature of each cell is average-pooling the feature map within the cell's bounding box. 13 | 14 | Parameters 15 | ---------- 16 | mask: np.ndarray 17 | The mask array. 18 | 19 | """ 20 | from lazyslide.cv import MultiLabelMask 21 | 22 | mmask = MultiLabelMask(mask) 23 | polys = mmask.to_polygons(min_area=5, detect_holes=False) 24 | cells = [] 25 | for k, vs in polys.items(): 26 | if len(vs) == 0: 27 | continue 28 | elif len(vs) == 1: 29 | cell = vs[0] 30 | else: 31 | # Get the largest polygon 32 | svs = sorted(vs, key=lambda x: x.area) 33 | cell = svs[-1] 34 | 35 | cells.append(cell) 36 | 37 | container = {"geometry": cells} 38 | return gpd.GeoDataFrame(container) 39 | 40 | 41 | def semanticseg_postprocess( 42 | probs: np.ndarray, 43 | ignore_index: list[int] = None, 44 | min_area: int = 5, 45 | mapping: dict = None, 46 | ): 47 | from lazyslide.cv import MultiLabelMask 48 | 49 | mask = np.argmax(probs, axis=0).astype(np.uint8) 50 | mmask = MultiLabelMask(mask) 51 | polys = mmask.to_polygons(ignore_index=ignore_index, min_area=min_area) 52 | data = [] 53 | for k, vs in polys.items(): 54 | for v in vs: 55 | empty_mask = np.zeros_like(mask) 56 | 57 | cv2.drawContours( # noqa 58 | empty_mask, 59 | [np.array(v.exterior.coords).astype(np.int32)], 60 | -1, 61 | 1, 62 | thickness=cv2.FILLED, 63 | ) 64 | 65 | prob = np.mean(probs[k][empty_mask == 1]) 66 | class_name = k 67 | if mapping is not None: 68 | class_name = mapping[k] 69 | data.append([class_name, prob, v]) 70 | 71 | return gpd.GeoDataFrame(data, columns=["class", "prob", "geometry"]) 72 | -------------------------------------------------------------------------------- /src/lazyslide/models/segmentation/sam.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | from ..base import SegmentationModel 4 | 5 | 6 | class SAM(SegmentationModel): 7 | SAM_VARIENTS = [ 8 | "facebook/sam-vit-base", 9 | "facebook/sam-vit-large", 10 | "facebook/sam-vit-huge", 11 | ] 12 | 13 | SAM_HQ_VARIENTS = [ 14 | "syscv-community/sam-hq-vit-base", 15 | "syscv-community/sam-hq-vit-large", 16 | "syscv-community/sam-hq-vit-huge", 17 | ] 18 | 19 | def __init__(self, variant="facebook/sam-vit-base", model_path=None, token=None): 20 | self.variant = variant 21 | if variant in self.SAM_VARIENTS: 22 | from transformers import SamModel, SamProcessor 23 | 24 | self.model = SamModel.from_pretrained(variant, use_auth_token=token) 25 | self.processor = SamProcessor.from_pretrained(variant, use_auth_token=token) 26 | self._is_hq = False 27 | 28 | elif variant in self.SAM_HQ_VARIENTS: 29 | from transformers import SamHQModel, SamHQProcessor 30 | 31 | self.model = SamHQModel.from_pretrained(variant, use_auth_token=token) 32 | self.processor = SamHQProcessor.from_pretrained( 33 | variant, use_auth_token=token 34 | ) 35 | self._is_hq = True 36 | else: 37 | raise ValueError( 38 | f"Unsupported SAM variant: {variant}. " 39 | f"Choose from {self.SAM_VARIENTS + self.SAM_HQ_VARIENTS}." 40 | ) 41 | 42 | def get_transform(self): 43 | return self.processor.image_processor 44 | 45 | @torch.inference_mode() 46 | def get_image_embedding(self, image) -> torch.Tensor: 47 | """ 48 | Get the image embedding from the SAM model. 49 | 50 | Returns: 51 | torch.Tensor: Image embedding tensor of shape (1, C, H, W). 52 | 53 | """ 54 | img_inputs = self.processor(image, return_tensors="pt").to(self.model.device) 55 | 56 | with torch.inference_mode(): 57 | embeddings = self.model.get_image_embeddings(img_inputs["pixel_values"]) 58 | if self._is_hq: 59 | embeddings = embeddings[0] 60 | return embeddings.detach().cpu() 61 | 62 | @torch.inference_mode() 63 | def segment( 64 | self, 65 | image, 66 | image_embedding=None, 67 | input_points=None, 68 | input_labels=None, 69 | input_boxes=None, 70 | segmentation_maps=None, 71 | multimask_output=False, 72 | ) -> torch.Tensor: 73 | """ 74 | Segment the input image using the SAM model. 75 | 76 | Args: 77 | image (torch.Tensor): Input image tensor of shape (C, H, W). 78 | 79 | Returns: 80 | torch.Tensor: Segmentation mask tensor of shape (H, W). 81 | """ 82 | inputs = self.processor( 83 | image, 84 | input_points=input_points, 85 | input_labels=input_labels, 86 | input_boxes=input_boxes, 87 | segmentation_maps=segmentation_maps, 88 | return_tensors="pt", 89 | ) 90 | if image_embedding is not None: 91 | del inputs["pixel_values"] 92 | inputs["image_embeddings"] = image_embedding 93 | 94 | for k, v in inputs.items(): 95 | if isinstance(v, torch.Tensor) and v.dtype == torch.float64: 96 | inputs[k] = v.to(dtype=torch.float32) 97 | 98 | inputs = inputs.to(self.model.device) 99 | outputs = self.model(**inputs, multimask_output=multimask_output) 100 | masks = self.processor.image_processor.post_process_masks( 101 | outputs.pred_masks.cpu(), 102 | inputs["original_sizes"].cpu(), 103 | inputs["reshaped_input_sizes"].cpu(), 104 | mask_threshold=0, 105 | ) 106 | return masks[0] 107 | -------------------------------------------------------------------------------- /src/lazyslide/models/segmentation/smp.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | from typing import Callable 4 | 5 | import torch 6 | 7 | from lazyslide.models.base import SegmentationModel 8 | from lazyslide.models.segmentation.postprocess import semanticseg_postprocess 9 | 10 | 11 | class SMPBase(SegmentationModel): 12 | """This is a base class for any models from segmentation models pytorch""" 13 | 14 | def __init__( 15 | self, 16 | arch: str = "unetplusplus", 17 | encoder_name: str = "timm-efficientnet-b0", 18 | encoder_weights: str = "imagenet", 19 | in_channels: int = 3, 20 | classes: int = 3, 21 | **kwargs, 22 | ): 23 | try: 24 | import segmentation_models_pytorch as smp 25 | except ModuleNotFoundError: 26 | raise ModuleNotFoundError( 27 | "Please install segmentation_models_pytorch to use this model." 28 | ) 29 | 30 | self.encoder_name = encoder_name 31 | self.encoder_weights = encoder_weights 32 | 33 | self.model = smp.create_model( 34 | arch=arch, 35 | encoder_name=encoder_name, 36 | encoder_weights=encoder_weights, 37 | in_channels=in_channels, 38 | classes=classes, 39 | **kwargs, 40 | ) 41 | 42 | def get_transform(self): 43 | from torchvision.transforms.v2 import Compose, ToImage, ToDtype, Normalize 44 | 45 | # default_fn = smp.encoders.get_preprocessing_fn( 46 | # self.encoder_name, self.encoder_weights 47 | # ) 48 | 49 | return Compose( 50 | [ 51 | ToImage(), 52 | ToDtype(torch.float32, scale=True), 53 | Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), 54 | # default_fn 55 | ] 56 | ) 57 | 58 | def get_postprocess(self) -> Callable: 59 | return semanticseg_postprocess 60 | -------------------------------------------------------------------------------- /src/lazyslide/models/vision/__init__.py: -------------------------------------------------------------------------------- 1 | from .conch import CONCHVision 2 | from .gigapath import GigaPath, GigaPathSlideEncoder 3 | from .plip import PLIPVision 4 | from .uni import UNI, UNI2 5 | from .virchow import Virchow, Virchow2 6 | from .phikon import Phikon, PhikonV2 7 | from .h_optimus import HOptimus0, HOptimus1, H0Mini 8 | from .midnight import Midnight 9 | from .hibou import HibouB, HibouL 10 | -------------------------------------------------------------------------------- /src/lazyslide/models/vision/base.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rendeirolab/LazySlide/f39634cc994b3098b0933075b9d25ecd99b9014e/src/lazyslide/models/vision/base.py -------------------------------------------------------------------------------- /src/lazyslide/models/vision/conch.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | from lazyslide.models._utils import hf_access 4 | from lazyslide.models.base import ImageModel 5 | 6 | 7 | class CONCHVision(ImageModel): 8 | def __init__(self, model_path=None, token=None): 9 | try: 10 | from conch.open_clip_custom import create_model_from_pretrained 11 | except ImportError: 12 | raise ImportError( 13 | "Conch is not installed. You can install it using " 14 | "`pip install git+https://github.com/mahmoodlab/CONCH.git`." 15 | ) 16 | 17 | with hf_access("conch_ViT-B-16"): 18 | self.model, self.processor = create_model_from_pretrained( 19 | "conch_ViT-B-16", model_path, hf_auth_token=token 20 | ) 21 | 22 | def get_transform(self): 23 | return None 24 | 25 | @torch.inference_mode() 26 | def encode_image(self, image): 27 | if not isinstance(image, torch.Tensor): 28 | image = self.processor(image) 29 | if image.dim() == 3: 30 | image = image.unsqueeze(0) 31 | 32 | image_feature = self.model.encode_image( 33 | image, normalize=False, proj_contrast=False 34 | ) 35 | return image_feature 36 | -------------------------------------------------------------------------------- /src/lazyslide/models/vision/gigapath.py: -------------------------------------------------------------------------------- 1 | from platformdirs import user_cache_path 2 | 3 | from lazyslide.models.base import SlideEncoderModel, TimmModel 4 | 5 | 6 | class GigaPath(TimmModel): 7 | name = "GigaPath" 8 | 9 | def __init__(self, model_path=None, token=None): 10 | # Version check 11 | import timm 12 | 13 | try: 14 | from packaging import version 15 | 16 | timm_version = version.parse(timm.__version__) 17 | minimum_version = version.parse("1.0.3") 18 | if timm_version < minimum_version: 19 | raise ImportError( 20 | f"Gigapath needs timm >= 1.0.3. You have version {timm_version}." 21 | f"Run `pip install --upgrade timm` to install the latest version." 22 | ) 23 | # If packaging is not installed, skip the version check 24 | except ModuleNotFoundError: 25 | pass 26 | 27 | super().__init__("hf_hub:prov-gigapath/prov-gigapath", token=token) 28 | 29 | 30 | class GigaPathSlideEncoder(SlideEncoderModel): 31 | def __init__(self, model_path=None, token=None): 32 | from huggingface_hub import login 33 | 34 | super().__init__() 35 | 36 | if token is not None: 37 | login(token) 38 | 39 | from gigapath.slide_encoder import create_model 40 | 41 | model = create_model( 42 | "hf_hub:prov-gigapath/prov-gigapath", 43 | "gigapath_slide_enc12l768d", 44 | 1536, 45 | local_dir=str(user_cache_path("lazyslide")), 46 | ) 47 | self.model = model 48 | 49 | def encode_slide(self, tile_embed, coordinates): 50 | return self.model(tile_embed, coordinates).squeeze() 51 | -------------------------------------------------------------------------------- /src/lazyslide/models/vision/h_optimus.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | from lazyslide.models.base import TimmModel 4 | 5 | 6 | def get_hoptimus_transform(): 7 | from torchvision.transforms.v2 import ( 8 | Compose, 9 | ToImage, 10 | Resize, 11 | CenterCrop, 12 | ToDtype, 13 | Normalize, 14 | ) 15 | from torchvision.transforms import InterpolationMode 16 | 17 | return Compose( 18 | [ 19 | ToImage(), 20 | Resize( 21 | size=(224, 224), 22 | interpolation=InterpolationMode.BICUBIC, 23 | max_size=None, 24 | antialias=True, 25 | ), 26 | CenterCrop(224), 27 | ToDtype(dtype=torch.float32, scale=True), 28 | Normalize( 29 | mean=(0.707223, 0.578729, 0.703617), std=(0.211883, 0.230117, 0.177517) 30 | ), 31 | ] 32 | ) 33 | 34 | 35 | class HOptimus0(TimmModel): 36 | name = "H-optimus-0" 37 | 38 | def __init__(self, model_path=None, token=None): 39 | super().__init__( 40 | "hf-hub:bioptimus/H-optimus-0", 41 | pretrained=True, 42 | init_values=1e-5, 43 | dynamic_img_size=False, 44 | token=token, 45 | ) 46 | 47 | def get_transform(self): 48 | return get_hoptimus_transform() 49 | 50 | 51 | class HOptimus1(TimmModel): 52 | name = "H-optimus-1" 53 | 54 | def __init__(self, model_path=None, token=None): 55 | super().__init__( 56 | "hf-hub:bioptimus/H-optimus-1", 57 | pretrained=True, 58 | init_values=1e-5, 59 | dynamic_img_size=False, 60 | token=token, 61 | ) 62 | 63 | def get_transform(self): 64 | return get_hoptimus_transform() 65 | 66 | 67 | class H0Mini(TimmModel): 68 | name = "H0-mini" 69 | 70 | def __init__(self, model_path=None, token=None): 71 | import timm 72 | 73 | super().__init__( 74 | "hf-hub:bioptimus/H0-mini", 75 | pretrained=True, 76 | mlp_layer=timm.layers.SwiGLUPacked, 77 | act_layer=torch.nn.SiLU, 78 | token=token, 79 | ) 80 | 81 | def get_transform(self): 82 | return get_hoptimus_transform() 83 | 84 | @torch.inference_mode() 85 | def encode_image(self, image): 86 | output = self.model(image) 87 | # CLS token features (1, 768): 88 | cls_features = output[:, 0] 89 | # Patch token features (1, 256, 768): 90 | patch_token_features = output[:, self.model.num_prefix_tokens :] 91 | # Concatenate the CLS token features with the mean of the patch token 92 | # features (1, 1536): 93 | concatenated_features = torch.cat( 94 | [cls_features, patch_token_features.mean(1)], dim=-1 95 | ) 96 | return concatenated_features.cpu().detach().numpy() 97 | -------------------------------------------------------------------------------- /src/lazyslide/models/vision/hibou.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | from lazyslide.models._utils import hf_access 4 | from lazyslide.models.base import ImageModel 5 | 6 | 7 | class Hibou(ImageModel): 8 | def __init__(self, hibou_version: str, model_path=None, token=None): 9 | try: 10 | from transformers import AutoModel 11 | except ImportError: 12 | raise ImportError( 13 | "transformers is not installed. You can install it using " 14 | "`pip install transformers`." 15 | ) 16 | 17 | self.version = hibou_version 18 | 19 | with hf_access(f"histai/{self.version}"): 20 | self.model = AutoModel.from_pretrained( 21 | f"histai/{self.version}", trust_remote_code=True 22 | ) 23 | 24 | def get_transform(self): 25 | from torchvision.transforms.v2 import ( 26 | Compose, 27 | ToImage, 28 | Resize, 29 | CenterCrop, 30 | ToDtype, 31 | Normalize, 32 | ) 33 | from torchvision.transforms import InterpolationMode 34 | 35 | return Compose( 36 | [ 37 | ToImage(), 38 | Resize( 39 | size=(224, 224), 40 | interpolation=InterpolationMode.BICUBIC, 41 | max_size=None, 42 | antialias=True, 43 | ), 44 | CenterCrop(224), 45 | ToDtype(dtype=torch.float32, scale=True), 46 | Normalize(mean=(0.7068, 0.5755, 0.722), std=(0.195, 0.2316, 0.1816)), 47 | ] 48 | ) 49 | 50 | @torch.inference_mode() 51 | def encode_image(self, image): 52 | image_features = self.model(pixel_values=image) 53 | return image_features.pooler_output 54 | 55 | 56 | class HibouB(Hibou): 57 | def __init__(self, token=None, model_path=None): 58 | super().__init__(hibou_version="hibou-b", token=token) 59 | 60 | 61 | class HibouL(Hibou): 62 | def __init__(self, token=None, model_path=None): 63 | super().__init__(hibou_version="hibou-l", token=token) 64 | -------------------------------------------------------------------------------- /src/lazyslide/models/vision/midnight.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | from lazyslide.models._utils import hf_access 4 | from lazyslide.models.base import ImageModel 5 | 6 | 7 | class Midnight(ImageModel): 8 | def __init__(self, model_path=None, token=None): 9 | try: 10 | from transformers import AutoImageProcessor, AutoModel 11 | except ImportError: 12 | raise ImportError( 13 | "transformers is not installed. You can install it using " 14 | "`pip install transformers`." 15 | ) 16 | 17 | with hf_access("kaiko-ai/midnight"): 18 | self.model = AutoModel.from_pretrained("kaiko-ai/midnight") 19 | 20 | def get_transform(self): 21 | from torchvision.transforms import v2 22 | 23 | return v2.Compose( 24 | [ 25 | v2.ToImage(), 26 | v2.Resize(224), 27 | v2.CenterCrop(224), 28 | v2.ToDtype(dtype=torch.float32, scale=True), 29 | v2.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 30 | ] 31 | ) 32 | 33 | @staticmethod 34 | def extract_classification_embedding(tensor): 35 | cls_embedding = tensor[:, 0, :] 36 | patch_embedding = tensor[:, 1:, :].mean(dim=1) 37 | return torch.cat([cls_embedding, patch_embedding], dim=-1) 38 | 39 | @torch.inference_mode() 40 | def encode_image(self, image): 41 | output = self.model(image).last_hidden_state 42 | image_feature = self.extract_classification_embedding(output) 43 | return image_feature 44 | -------------------------------------------------------------------------------- /src/lazyslide/models/vision/phikon.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import torch 3 | 4 | from lazyslide.models._utils import hf_access 5 | from lazyslide.models.base import ImageModel 6 | 7 | 8 | class Phikon(ImageModel): 9 | name = "phikon" 10 | 11 | def __init__(self, model_path=None, token=None): 12 | from transformers import AutoImageProcessor, ViTModel 13 | 14 | with hf_access("owkin/phikon"): 15 | self.model = ViTModel.from_pretrained( 16 | "owkin/phikon", 17 | add_pooling_layer=False, 18 | use_auth_token=token, 19 | ) 20 | self.img_processor = AutoImageProcessor.from_pretrained( 21 | "owkin/phikon", use_fast=True 22 | ) 23 | 24 | def get_transform(self): 25 | return None 26 | 27 | @torch.inference_mode() 28 | def encode_image(self, image) -> np.ndarray[np.float32]: 29 | inputs = self.img_processor(images=image, return_tensors="pt") 30 | inputs = {k: v.to(self.model.device) for k, v in inputs.items()} 31 | return self.model(**inputs).last_hidden_state[:, 0, :].cpu().detach().numpy() 32 | 33 | 34 | class PhikonV2(ImageModel): 35 | name = "phikon-v2" 36 | 37 | def __init__(self, model_path=None, token=None): 38 | from transformers import AutoImageProcessor, AutoModel 39 | 40 | with hf_access("owkin/phikon-v2"): 41 | self.model = AutoModel.from_pretrained( 42 | "owkin/phikon-v2", 43 | add_pooling_layer=False, 44 | use_auth_token=token, 45 | ) 46 | self.img_processor = AutoImageProcessor.from_pretrained( 47 | "owkin/phikon-v2", use_fast=True 48 | ) 49 | 50 | def get_transform(self): 51 | return None 52 | 53 | @torch.inference_mode() 54 | def encode_image(self, image) -> np.ndarray[np.float32]: 55 | inputs = self.img_processor(images=image, return_tensors="pt") 56 | inputs = {k: v.to(self.model.device) for k, v in inputs.items()} 57 | return self.model(**inputs).last_hidden_state[:, 0, :].cpu().detach().numpy() 58 | -------------------------------------------------------------------------------- /src/lazyslide/models/vision/plip.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | from lazyslide.models._utils import hf_access 4 | from lazyslide.models.base import ImageModel 5 | 6 | 7 | class PLIPVision(ImageModel): 8 | def __init__(self, model_path=None, token=None): 9 | try: 10 | from transformers import CLIPVisionModelWithProjection, CLIPProcessor 11 | except ImportError: 12 | raise ImportError( 13 | "Please install the 'transformers' package to use the PLIP model" 14 | ) 15 | 16 | super().__init__() 17 | 18 | if model_path is None: 19 | model_path = "vinid/plip" 20 | 21 | with hf_access(model_path): 22 | self.model = CLIPVisionModelWithProjection.from_pretrained( 23 | model_path, use_auth_token=token 24 | ) 25 | self.processor = CLIPProcessor.from_pretrained( 26 | model_path, use_auth_token=token 27 | ) 28 | 29 | def get_transform(self): 30 | return None 31 | 32 | @torch.inference_mode() 33 | def encode_image(self, image): 34 | inputs = self.processor(images=image, return_tensors="pt") 35 | inputs = {k: v.to(self.model.device) for k, v in inputs.items()} 36 | image_features = self.model.get_image_features(**inputs) 37 | return image_features 38 | -------------------------------------------------------------------------------- /src/lazyslide/models/vision/uni.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | from lazyslide.models.base import TimmModel 4 | 5 | 6 | class UNI(TimmModel): 7 | def __init__(self, model_path=None, token=None): 8 | # from huggingface_hub import hf_hub_download 9 | # model_path = hf_hub_download("MahmoodLab/UNI", filename="pytorch_model.bin") 10 | 11 | if model_path is not None: 12 | super().__init__( 13 | "vit_large_patch16_224", 14 | token=token, 15 | img_size=224, 16 | patch_size=16, 17 | init_values=1e-5, 18 | num_classes=0, 19 | dynamic_img_size=True, 20 | pretrained=False, 21 | ) 22 | self.model.load_state_dict(torch.load(model_path, map_location="cpu")) 23 | else: 24 | super().__init__( 25 | "hf-hub:MahmoodLab/uni", 26 | token=token, 27 | init_values=1e-5, 28 | dynamic_img_size=True, 29 | ) 30 | 31 | 32 | class UNI2(TimmModel): 33 | def __init__(self, model_path=None, token=None): 34 | import timm 35 | 36 | timm_kwargs = { 37 | "img_size": 224, 38 | "patch_size": 14, 39 | "depth": 24, 40 | "num_heads": 24, 41 | "init_values": 1e-5, 42 | "embed_dim": 1536, 43 | "mlp_ratio": 2.66667 * 2, 44 | "num_classes": 0, 45 | "no_embed_class": True, 46 | "mlp_layer": timm.layers.SwiGLUPacked, 47 | "act_layer": torch.nn.SiLU, 48 | "reg_tokens": 8, 49 | "dynamic_img_size": True, 50 | } 51 | 52 | # from huggingface_hub import hf_hub_download 53 | # model_path = hf_hub_download("MahmoodLab/UNI2-h", filename="pytorch_model.bin") 54 | 55 | if model_path is not None: 56 | super().__init__( 57 | "vit_giant_patch14_224", token=token, pretrained=False, **timm_kwargs 58 | ) 59 | self.model.load_state_dict( 60 | torch.load(model_path, map_location="cpu"), strict=True 61 | ) 62 | else: 63 | super().__init__("hf-hub:MahmoodLab/UNI2-h", **timm_kwargs) 64 | -------------------------------------------------------------------------------- /src/lazyslide/models/vision/virchow.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | from lazyslide.models.base import TimmModel 4 | 5 | 6 | class Virchow(TimmModel): 7 | _hf_hub_id = "paige-ai/Virchow" 8 | 9 | def __init__(self, model_path=None, token=None): 10 | from timm.layers import SwiGLUPacked 11 | 12 | super().__init__( 13 | f"hf-hub:{self._hf_hub_id}", 14 | pretrained=True, 15 | mlp_layer=SwiGLUPacked, 16 | act_layer=torch.nn.SiLU, 17 | token=token, 18 | ) 19 | 20 | @torch.inference_mode() 21 | def encode_image(self, img): 22 | output = self.model(img) 23 | # CLS token features (1, 768): 24 | cls_features = output[:, 0] 25 | # Patch token features (1, 256, 768): 26 | patch_features = output[:, self.model.num_prefix_tokens :] 27 | return torch.cat((cls_features, patch_features.mean(1)), dim=-1) 28 | 29 | 30 | class Virchow2(Virchow): 31 | _hf_hub_id = "paige-ai/Virchow2" 32 | -------------------------------------------------------------------------------- /src/lazyslide/plotting/__init__.py: -------------------------------------------------------------------------------- 1 | from ._api import tissue, tiles, annotations 2 | from ._wsi_viewer import WSIViewer 3 | -------------------------------------------------------------------------------- /src/lazyslide/preprocess/__init__.py: -------------------------------------------------------------------------------- 1 | __all__ = ["find_tissues", "score_tissues", "tile_tissues", "score_tiles"] 2 | 3 | from ._graph import tile_graph 4 | from ._tiles import tile_tissues, score_tiles 5 | from ._tissue import find_tissues, score_tissues 6 | -------------------------------------------------------------------------------- /src/lazyslide/preprocess/_graph.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | import warnings 4 | from itertools import chain 5 | 6 | import numpy as np 7 | import pandas as pd 8 | from anndata import AnnData 9 | from numba import njit 10 | from scipy.sparse import csr_matrix, spmatrix, isspmatrix_csr, SparseEfficiencyWarning 11 | from scipy.spatial import Delaunay 12 | from wsidata import WSIData 13 | from wsidata.io import add_table 14 | 15 | from lazyslide._const import Key 16 | 17 | 18 | def tile_graph( 19 | wsi: WSIData, 20 | n_neighs: int = 6, 21 | n_rings: int = 1, 22 | delaunay=False, 23 | transform: str = None, 24 | set_diag: bool = False, 25 | tile_key: str = Key.tiles, 26 | table_key: str = None, 27 | ): 28 | """ 29 | Compute the spatial graph of the tiles. 30 | 31 | Parameters 32 | ---------- 33 | wsi : :class:`WSIData ` 34 | The WSIData object to work on. 35 | n_neighs : int, default: 6 36 | The number of neighbors to consider. 37 | n_rings : int, default: 1 38 | The number of rings to consider. 39 | delaunay : bool, default: False 40 | Whether to use Delaunay triangulation. 41 | transform : str, default: None 42 | The transformation to apply to the graph. 43 | set_diag : bool, default: False 44 | Whether to set the diagonal to 1. 45 | tile_key : str, default: 'tiles' 46 | The tile key. 47 | table_key : str, default: None 48 | The table key to store the graph. 49 | 50 | Returns 51 | ------- 52 | The tiles with spatial connectivities and distances in an anndata format. 53 | 54 | - The feature spatial connectivities and distances will be added to :bdg-danger:`tables` slot of the spatial data object. 55 | 56 | Examples 57 | -------- 58 | .. code-block:: python 59 | 60 | >>> import lazyslide as zs 61 | >>> wsi = zs.datasets.sample() 62 | >>> zs.pp.find_tissues(wsi) 63 | >>> zs.pp.tile_graph(wsi) 64 | >>> wsi['tile_graph'] 65 | 66 | 67 | """ 68 | coords = wsi[tile_key].bounds[["minx", "miny"]].values 69 | Adj, Dst = _spatial_neighbor( 70 | coords, n_neighs, delaunay, n_rings, transform, set_diag 71 | ) 72 | 73 | conns_key = "spatial_connectivities" 74 | dists_key = "spatial_distances" 75 | neighbors_dict = { 76 | "connectivities_key": conns_key, 77 | "distances_key": dists_key, 78 | "params": { 79 | "n_neighbors": n_neighs, 80 | "transform": transform, 81 | }, 82 | } 83 | # TODO: Store in a anndata object 84 | if table_key is None: 85 | table_key = Key.tile_graph(tile_key) 86 | if table_key not in wsi: 87 | table = AnnData( 88 | obs=pd.DataFrame(index=np.arange(coords.shape[0], dtype=int).astype(str)), 89 | obsp={conns_key: Adj, dists_key: Dst}, 90 | uns={"spatial": neighbors_dict}, 91 | ) 92 | add_table(wsi, table_key, table) 93 | else: 94 | table = wsi[table_key] 95 | table.obsp[conns_key] = Adj 96 | table.obsp[dists_key] = Dst 97 | table.uns["spatial"] = neighbors_dict 98 | 99 | 100 | def _spatial_neighbor( 101 | coords, 102 | n_neighs: int = 6, 103 | delaunay: bool = False, 104 | n_rings: int = 1, 105 | transform: str = None, 106 | set_diag: bool = False, 107 | ) -> tuple[csr_matrix, csr_matrix]: 108 | with warnings.catch_warnings(): 109 | warnings.simplefilter("ignore", SparseEfficiencyWarning) 110 | Adj, Dst = _build_grid( 111 | coords, 112 | n_neighs=n_neighs, 113 | n_rings=n_rings, 114 | delaunay=delaunay, 115 | set_diag=set_diag, 116 | ) 117 | 118 | Adj.eliminate_zeros() 119 | Dst.eliminate_zeros() 120 | 121 | # check transform 122 | if transform == "spectral": 123 | Adj = _transform_a_spectral(Adj) 124 | elif transform == "cosine": 125 | Adj = _transform_a_cosine(Adj) 126 | elif transform == "none" or transform is None: 127 | pass 128 | else: 129 | raise NotImplementedError(f"Transform `{transform}` is not yet implemented.") 130 | 131 | return Adj, Dst 132 | 133 | 134 | def _build_grid( 135 | coords, 136 | n_neighs: int, 137 | n_rings: int, 138 | delaunay: bool = False, 139 | set_diag: bool = False, 140 | ) -> tuple[csr_matrix, csr_matrix]: 141 | if n_rings > 1: 142 | Adj: csr_matrix = _build_connectivity( 143 | coords, 144 | n_neighs=n_neighs, 145 | neigh_correct=True, 146 | set_diag=True, 147 | delaunay=delaunay, 148 | return_distance=False, 149 | ) 150 | Res, Walk = Adj, Adj 151 | for i in range(n_rings - 1): 152 | Walk = Walk @ Adj 153 | Walk[Res.nonzero()] = 0.0 154 | Walk.eliminate_zeros() 155 | Walk.data[:] = i + 2.0 156 | Res = Res + Walk 157 | Adj = Res 158 | Adj.setdiag(float(set_diag)) 159 | Adj.eliminate_zeros() 160 | 161 | Dst = Adj.copy() 162 | Adj.data[:] = 1.0 163 | else: 164 | Adj = _build_connectivity( 165 | coords, 166 | n_neighs=n_neighs, 167 | neigh_correct=True, 168 | delaunay=delaunay, 169 | set_diag=set_diag, 170 | ) 171 | Dst = Adj.copy() 172 | 173 | Dst.setdiag(0.0) 174 | 175 | return Adj, Dst 176 | 177 | 178 | def _build_connectivity( 179 | coords, 180 | n_neighs: int, 181 | radius: float | tuple[float, float] | None = None, 182 | delaunay: bool = False, 183 | neigh_correct: bool = False, 184 | set_diag: bool = False, 185 | return_distance: bool = False, 186 | ) -> csr_matrix | tuple[csr_matrix, csr_matrix]: 187 | from sklearn.metrics import euclidean_distances 188 | from sklearn.neighbors import NearestNeighbors 189 | 190 | N = coords.shape[0] 191 | if delaunay: 192 | tri = Delaunay(coords) 193 | indptr, indices = tri.vertex_neighbor_vertices 194 | Adj = csr_matrix( 195 | (np.ones_like(indices, dtype=np.float64), indices, indptr), shape=(N, N) 196 | ) 197 | 198 | if return_distance: 199 | # fmt: off 200 | dists = np.array(list(chain(*( 201 | euclidean_distances(coords[indices[indptr[i]: indptr[i + 1]], :], coords[np.newaxis, i, :]) 202 | for i in range(N) 203 | if len(indices[indptr[i]: indptr[i + 1]]) 204 | )))).squeeze() 205 | Dst = csr_matrix((dists, indices, indptr), shape=(N, N)) 206 | # fmt: on 207 | else: 208 | r = ( 209 | 1 210 | if radius is None 211 | else radius 212 | if isinstance(radius, (int, float)) 213 | else max(radius) 214 | ) 215 | tree = NearestNeighbors(n_neighbors=n_neighs, radius=r, metric="euclidean") 216 | tree.fit(coords) 217 | 218 | if radius is None: 219 | dists, col_indices = tree.kneighbors() 220 | dists, col_indices = dists.reshape(-1), col_indices.reshape(-1) 221 | row_indices = np.repeat(np.arange(N), n_neighs) 222 | if neigh_correct: 223 | dist_cutoff = np.median(dists) * 1.3 # there's a small amount of sway 224 | mask = dists < dist_cutoff 225 | row_indices, col_indices, dists = ( 226 | row_indices[mask], 227 | col_indices[mask], 228 | dists[mask], 229 | ) 230 | else: 231 | dists, col_indices = tree.radius_neighbors() 232 | row_indices = np.repeat(np.arange(N), [len(x) for x in col_indices]) 233 | dists = np.concatenate(dists) 234 | col_indices = np.concatenate(col_indices) 235 | 236 | Adj = csr_matrix( 237 | (np.ones_like(row_indices, dtype=np.float64), (row_indices, col_indices)), 238 | shape=(N, N), 239 | ) 240 | if return_distance: 241 | Dst = csr_matrix((dists, (row_indices, col_indices)), shape=(N, N)) 242 | 243 | # radius-based filtering needs same indices/indptr: do not remove 0s 244 | Adj.setdiag(1.0 if set_diag else Adj.diagonal()) 245 | if return_distance: 246 | Dst.setdiag(0.0) 247 | return Adj, Dst 248 | 249 | return Adj 250 | 251 | 252 | @njit 253 | def outer(indices, indptr, degrees): 254 | res = np.empty_like(indices, dtype=np.float64) 255 | start = 0 256 | for i in range(len(indptr) - 1): 257 | ixs = indices[indptr[i] : indptr[i + 1]] 258 | res[start : start + len(ixs)] = degrees[i] * degrees[ixs] 259 | start += len(ixs) 260 | 261 | return res 262 | 263 | 264 | def _transform_a_spectral(a: spmatrix) -> spmatrix: 265 | if not isspmatrix_csr(a): 266 | a = a.tocsr() 267 | if not a.nnz: 268 | return a 269 | 270 | degrees = np.squeeze(np.array(np.sqrt(1.0 / a.sum(axis=0)))) 271 | a = a.multiply(outer(a.indices, a.indptr, degrees)) 272 | a.eliminate_zeros() 273 | 274 | return a 275 | 276 | 277 | def _transform_a_cosine(a: spmatrix) -> spmatrix: 278 | from sklearn.metrics.pairwise import cosine_similarity 279 | 280 | return cosine_similarity(a, dense_output=False) 281 | -------------------------------------------------------------------------------- /src/lazyslide/preprocess/_utils.py: -------------------------------------------------------------------------------- 1 | from typing import Union 2 | 3 | from lazyslide.cv.scorer import ScorerBase 4 | 5 | Scorer = Union[ScorerBase, str] 6 | 7 | 8 | def get_scorer(scorers): 9 | from lazyslide.cv.scorer import ( 10 | ScorerBase, 11 | ComposeScorer, 12 | FocusLite, 13 | Contrast, 14 | Brightness, 15 | Redness, 16 | ) 17 | 18 | scorer_mapper = { 19 | "focus": FocusLite, 20 | "contrast": Contrast, 21 | "brightness": Brightness, 22 | "redness": Redness, 23 | } 24 | 25 | scorer_list = [] 26 | for s in scorers: 27 | if isinstance(s, ScorerBase): 28 | scorer_list.append(s) 29 | elif isinstance(s, str): 30 | scorer = scorer_mapper.get(s) 31 | if scorer is None: 32 | raise ValueError( 33 | f"Unknown scorer {s}, " 34 | f"available scorers are {'.'.join(scorer_mapper.keys())}" 35 | ) 36 | # The scorer should be initialized when used 37 | scorer_list.append(scorer()) 38 | else: 39 | raise TypeError(f"Unknown scorer type {type(s)}") 40 | compose_scorer = ComposeScorer(scorer_list) 41 | return compose_scorer 42 | -------------------------------------------------------------------------------- /src/lazyslide/py.typed: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rendeirolab/LazySlide/f39634cc994b3098b0933075b9d25ecd99b9014e/src/lazyslide/py.typed -------------------------------------------------------------------------------- /src/lazyslide/segmentation/__init__.py: -------------------------------------------------------------------------------- 1 | from ._seg_runner import SegmentationRunner, semantic 2 | from ._cell import cells, nulite 3 | from ._artifact import artifact 4 | from ._tissue import tissue 5 | from ._zero_shot import zero_shot 6 | -------------------------------------------------------------------------------- /src/lazyslide/segmentation/_artifact.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | from typing import Literal 4 | 5 | from wsidata import WSIData 6 | from wsidata.io import add_shapes 7 | 8 | from lazyslide._const import Key 9 | from lazyslide._utils import get_torch_device 10 | from ._seg_runner import SegmentationRunner 11 | from ..models.segmentation import GrandQCArtifact 12 | 13 | # Define class mapping 14 | CLASS_MAPPING = { 15 | 1: "Normal Tissue", 16 | 2: "Fold", 17 | 3: "Dark spot & Foreign Object", 18 | 4: "PenMarking", 19 | 5: "Edge & Air Bubble", 20 | 6: "Out of Focus", 21 | 7: "Background", 22 | } 23 | 24 | 25 | def artifact( 26 | wsi: WSIData, 27 | tile_key: str, 28 | variants: Literal["grandqc_5x", "grandqc_7x", "grandqc_10x"] = "grandqc_7x", 29 | tissue_key: str = Key.tissue, 30 | batch_size: int = 4, 31 | num_workers: int = 0, 32 | device: str | None = None, 33 | key_added: str = "artifacts", 34 | ): 35 | """ 36 | Artifact segmentation for the whole slide image. 37 | 38 | Run GrandQC artifact segmentation model on the whole slide image. 39 | The model is trained on 512x512 tiles with mpp=1.5, 2, or 1. 40 | 41 | It can detect the following artifacts: 42 | - Fold 43 | - Darkspot & Foreign Object 44 | - Pen Marking 45 | - Edge & Air Bubble 46 | - Out of Focus 47 | 48 | Parameters 49 | ---------- 50 | wsi : WSIData 51 | The whole slide image data. 52 | tile_key : str 53 | The key of the tile table. 54 | variants : {"grandqc_5x", "grandqc_7x", "grandqc_10x"}, default: "grandqc_7x" 55 | The model variant to use for segmentation. 56 | tissue_key : str, default: Key.tissue 57 | The key of the tissue table. 58 | batch_size : int, default: 4 59 | The batch size for segmentation. 60 | num_workers : int, default: 0 61 | The number of workers for data loading. 62 | device : str, default: None 63 | The device for the model. 64 | key_added : str, default: "artifacts" 65 | The key for the added artifact shapes. 66 | 67 | """ 68 | if tissue_key not in wsi: 69 | raise ValueError( 70 | "Tissue segmentation is required before artifact segmentation." 71 | "Please run `pp.find_tissues` first." 72 | ) 73 | 74 | if device is None: 75 | device = get_torch_device() 76 | 77 | model_mpp = { 78 | "grandqc_5x": 2, 79 | "grandqc_7x": 1.5, 80 | "grandqc_10x": 1, 81 | } 82 | 83 | mpp = model_mpp[variants] 84 | 85 | if tile_key is not None: 86 | # Check if the tile spec is compatible with the model 87 | spec = wsi.tile_spec(tile_key) 88 | if spec is None: 89 | raise ValueError(f"Tiles or tile spec for {tile_key} not found.") 90 | if spec.mpp != mpp: 91 | raise ValueError( 92 | f"Tile spec mpp {spec.mpp} is not " 93 | f"compatible with the model mpp {mpp}" 94 | ) 95 | if spec.width != 512 or spec.height != 512: 96 | raise ValueError("Tile should be 512x512.") 97 | 98 | model = GrandQCArtifact(model=variants.lstrip("grandqc_")) 99 | 100 | runner = SegmentationRunner( 101 | wsi, 102 | model, 103 | tile_key, 104 | transform=None, 105 | batch_size=batch_size, 106 | num_workers=num_workers, 107 | device=device, 108 | class_col="class", 109 | postprocess_kws={ 110 | "ignore_index": [0, 1, 7], # Ignore background, normal tissue 111 | "mapping": CLASS_MAPPING, 112 | }, 113 | ) 114 | arts = runner.run() 115 | add_shapes(wsi, key=key_added, shapes=arts) 116 | -------------------------------------------------------------------------------- /src/lazyslide/segmentation/_cell.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | import warnings 4 | 5 | from wsidata import WSIData 6 | from wsidata.io import add_shapes 7 | 8 | from lazyslide.models import SegmentationModel 9 | from lazyslide.models.segmentation import Instanseg, NuLite 10 | from ._seg_runner import SegmentationRunner 11 | from .._const import Key 12 | 13 | 14 | def cells( 15 | wsi: WSIData, 16 | model: str | SegmentationModel = "instanseg", 17 | tile_key=Key.tiles, 18 | transform=None, 19 | batch_size=4, 20 | num_workers=0, 21 | device=None, 22 | key_added="cells", 23 | ): 24 | """Cell segmentation for the whole slide image. 25 | 26 | Tiles should be prepared before segmentation. 27 | 28 | Recommended tile setting: 29 | - **instanseg**: 512x512, mpp=0.5 30 | 31 | Parameters 32 | ---------- 33 | wsi : WSIData 34 | The whole slide image data. 35 | model : str | SegmentationModel, default: "instanseg" 36 | The cell segmentation model. 37 | tile_key : str, default: "tiles" 38 | The key of the tile table. 39 | transform : callable, default: None 40 | The transformation for the input tiles. 41 | batch_size : int, default: 4 42 | The batch size for segmentation. 43 | num_workers : int, default: 0 44 | The number of workers for data loading. 45 | device : str, default: None 46 | The device for the model. 47 | key_added : str, default: "cells" 48 | The key for the added cell shapes. 49 | 50 | """ 51 | if model == "instanseg": 52 | model = Instanseg() 53 | # Run tile check 54 | tile_spec = wsi.tile_spec(tile_key) 55 | check_mpp = tile_spec.mpp == 0.5 56 | check_size = tile_spec.height == 512 and tile_spec.width == 512 57 | if not check_mpp or not check_size: 58 | warnings.warn( 59 | f"To optimize the performance of Instanseg model, " 60 | f"the tile size should be 512x512 and the mpp should be 0.5. " 61 | f"Current tile size is {tile_spec.width}x{tile_spec.height} with {tile_spec.mpp} mpp." 62 | ) 63 | 64 | runner = SegmentationRunner( 65 | wsi, 66 | model, 67 | tile_key, 68 | transform=transform, 69 | batch_size=batch_size, 70 | num_workers=num_workers, 71 | device=device, 72 | ) 73 | cells = runner.run() 74 | # Add cells to the WSIData 75 | add_shapes(wsi, key=key_added, shapes=cells) 76 | 77 | 78 | def nulite( 79 | wsi: WSIData, 80 | tile_key="tiles", 81 | transform=None, 82 | batch_size=4, 83 | num_workers=0, 84 | device=None, 85 | key_added="cell_types", 86 | ): 87 | """Cell type segmentation for the whole slide image. 88 | 89 | Tiles should be prepared before segmentation. 90 | 91 | Recommended tile setting: 92 | - **nulite**: 512x512, mpp=0.5 93 | 94 | Parameters 95 | ---------- 96 | wsi : WSIData 97 | The whole slide image data. 98 | tile_key : str, default: "tiles" 99 | The key of the tile table. 100 | transform : callable, default: None 101 | The transformation for the input tiles. 102 | batch_size : int, default: 4 103 | The batch size for segmentation. 104 | num_workers : int, default: 0 105 | The number of workers for data loading. 106 | device : str, default: None 107 | The device for the model. 108 | key_added : str, default: "cell_types" 109 | The key for the added cell type shapes. 110 | 111 | """ 112 | 113 | model = NuLite() 114 | 115 | runner = SegmentationRunner( 116 | wsi, 117 | model, 118 | tile_key, 119 | transform=transform, 120 | batch_size=batch_size, 121 | num_workers=num_workers, 122 | device=device, 123 | ) 124 | cells = runner.run() 125 | # Add cells to the WSIData 126 | add_shapes(wsi, key=key_added, shapes=cells) 127 | -------------------------------------------------------------------------------- /src/lazyslide/segmentation/_seg_runner.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | from functools import partial 4 | from typing import Literal, Callable, Mapping 5 | 6 | import geopandas as gpd 7 | import numpy as np 8 | import pandas as pd 9 | import torch 10 | from shapely.affinity import scale, translate 11 | from torch.utils.data import DataLoader 12 | from wsidata import WSIData 13 | from wsidata.io import add_shapes 14 | 15 | from lazyslide._const import Key 16 | from lazyslide._utils import default_pbar, get_torch_device 17 | from lazyslide.cv import merge_polygons 18 | from lazyslide.models.base import SegmentationModel 19 | 20 | 21 | def semantic( 22 | wsi: WSIData, 23 | model: SegmentationModel, 24 | tile_key=Key.tiles, 25 | transform=None, 26 | batch_size=4, 27 | num_workers=0, 28 | device=None, 29 | key_added="anatomical_structures", 30 | ): 31 | """ 32 | Semantic segmentation for the whole slide image. 33 | 34 | Parameters 35 | ---------- 36 | wsi : WSIData 37 | The whole slide image data. 38 | model : SegmentationModel 39 | The segmentation model. 40 | tile_key : str, default: "tiles" 41 | The key of the tile table. 42 | transform : callable, default: None 43 | The transformation for the input tiles. 44 | batch_size : int, default: 4 45 | The batch size for segmentation. 46 | num_workers : int, default: 0 47 | The number of workers for data loading. 48 | device : str, default: None 49 | The device for the model. 50 | key_added : str, default: "anatomical_structures" 51 | The key for the added instance shapes. 52 | 53 | """ 54 | runner = SegmentationRunner( 55 | wsi=wsi, 56 | model=model, 57 | tile_key=tile_key, 58 | transform=transform, 59 | batch_size=batch_size, 60 | num_workers=num_workers, 61 | device=device, 62 | ) 63 | shapes = runner.run() 64 | # Add the segmentation results to the WSIData 65 | add_shapes(wsi, key=key_added, shapes=shapes) 66 | 67 | 68 | class SegmentationRunner: 69 | """ 70 | Segmentation runner for the whole slide image. 71 | 72 | Parameters 73 | ---------- 74 | wsi : :class:`WSIData ` 75 | The whole slide image data. 76 | model : :class:`SegmentationModel ` 77 | The segmentation model. 78 | tile_key : str 79 | The key of the tile table. 80 | transform : callable, default: None 81 | The transformation for the input tiles. 82 | batch_size : int, default: 4 83 | The batch size for segmentation. 84 | num_workers : int, default: 0 85 | The number of workers for data loading. 86 | device : str, default: None 87 | The device for the model. 88 | postprocess_kws : dict, default: None 89 | The keyword arguments for the postprocess function defined in the model class 90 | dataloader_kws : dict, default: None 91 | The keyword arguments for the DataLoader. 92 | class_col : str, default: None 93 | The column name for the class in the output GeoDataFrame. 94 | prob_col : str, default: None 95 | The column name for the probability in the output GeoDataFrame. 96 | buffer_px : int, default: 0 97 | The buffer size in pixels for the polygons. 98 | drop_overlap : float, default: 0.9 99 | The overlap threshold for dropping polygons. 100 | pbar : bool, default: True 101 | Whether to show the progress bar. 102 | 103 | """ 104 | 105 | def __init__( 106 | self, 107 | wsi: WSIData, 108 | model: SegmentationModel, 109 | tile_key: str, 110 | transform: Callable = None, 111 | batch_size: int = 4, 112 | num_workers: int = 0, 113 | device: str = None, 114 | postprocess_kws: dict = None, 115 | dataloader_kws: dict = None, 116 | class_col: str = None, 117 | prob_col: str = None, 118 | buffer_px: int = 0, 119 | drop_overlap: float = 0.9, 120 | pbar: bool = True, 121 | ): 122 | self.wsi = wsi 123 | self.model = model 124 | if device is None: 125 | device = get_torch_device() 126 | self.device = device 127 | self.tile_key = tile_key 128 | self.downsample = wsi.tile_spec(tile_key).base_downsample 129 | 130 | if transform is None: 131 | transform = model.get_transform() 132 | self.transform = transform 133 | 134 | if postprocess_kws is None: 135 | postprocess_kws = {} 136 | postprocess_fn = model.get_postprocess() 137 | self.postprocess_fn = partial(postprocess_fn, **postprocess_kws) 138 | 139 | if dataloader_kws is None: 140 | dataloader_kws = {} 141 | dataloader_kws.setdefault("num_workers", num_workers) 142 | dataloader_kws.setdefault("batch_size", batch_size) 143 | self.dataloader_kws = dataloader_kws 144 | self.merge_kws = dict( 145 | class_col=class_col, 146 | prob_col=prob_col, 147 | buffer_px=buffer_px, 148 | drop_overlap=drop_overlap, 149 | ) 150 | 151 | self.pbar = pbar 152 | 153 | def _batch_postprocess(self, output, xs, ys): 154 | results = [] 155 | 156 | if isinstance(output, (torch.Tensor, np.ndarray)): 157 | batches = zip(output, xs, ys) 158 | elif isinstance(output, tuple): 159 | batches = zip(list(zip(*output)), xs, ys) 160 | elif isinstance(output, Mapping): 161 | flattened = [ 162 | dict(zip(output.keys(), values)) for values in zip(*output.values()) 163 | ] 164 | batches = zip(flattened, xs, ys) 165 | else: 166 | raise NotImplementedError(f"Unsupported model output type {type(output)}") 167 | 168 | for batch, x, y in batches: 169 | result = self.postprocess_fn(batch) 170 | # The output of postprocess_fn is a gpd.GeoDataFrame 171 | # transform the polygons to the global coordinate 172 | polys = [] 173 | for poly in result["geometry"]: 174 | poly = scale( 175 | poly, xfact=self.downsample, yfact=self.downsample, origin=(0, 0) 176 | ) 177 | poly = translate(poly, xoff=x, yoff=y) 178 | polys.append(poly) 179 | result["geometry"] = polys 180 | if len(result) > 0: 181 | results.append(result) 182 | 183 | return results 184 | 185 | def __call__(self): 186 | dataset = self.wsi.ds.tile_images( 187 | tile_key=self.tile_key, transform=self.transform 188 | ) 189 | dl = DataLoader(dataset, **self.dataloader_kws) 190 | 191 | # Move model to device 192 | if self.device is not None: 193 | self.model.to(self.device) 194 | 195 | with default_pbar(disable=not self.pbar) as progress_bar: 196 | task = progress_bar.add_task("Segmentation", total=len(dataset)) 197 | 198 | results = [] 199 | for chunk in dl: 200 | images = chunk["image"] 201 | xs, ys = np.asarray(chunk["x"]), np.asarray(chunk["y"]) 202 | if self.device is not None: 203 | images = images.to(self.device) 204 | output = self.model.segment(images) 205 | 206 | rs = self._batch_postprocess(output, xs, ys) 207 | # Update only if the output is not empty 208 | results.extend(rs) 209 | progress_bar.update(task, advance=len(xs)) 210 | polys_df = gpd.GeoDataFrame(pd.concat(results).reset_index(drop=True)) 211 | progress_bar.update(task, description="Merging tiles...") 212 | # === Merge the polygons === 213 | polys_df = merge_polygons(polys_df, **self.merge_kws) 214 | # === Refresh the progress bar === 215 | progress_bar.update(task, description="Segmentation") 216 | progress_bar.refresh() 217 | 218 | polys_df = polys_df.explode().reset_index(drop=True) 219 | return polys_df 220 | 221 | def run(self): 222 | """ 223 | Run the segmentation. 224 | """ 225 | return self.__call__() 226 | -------------------------------------------------------------------------------- /src/lazyslide/segmentation/_tissue.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | import cv2 4 | import numpy as np 5 | import torch 6 | from shapely.affinity import scale 7 | from wsidata import WSIData 8 | from wsidata.io import add_tissues 9 | 10 | from lazyslide._const import Key 11 | from lazyslide._utils import get_torch_device 12 | from lazyslide.cv import BinaryMask 13 | from lazyslide.models.segmentation import GrandQCTissue 14 | 15 | 16 | def tissue( 17 | wsi: WSIData, 18 | level: int = None, 19 | device: str | None = None, 20 | key_added: str = Key.tissue, 21 | ): 22 | """ 23 | Return a dataset for tissue segmentation. 24 | 25 | Parameters 26 | ---------- 27 | wsi: :class:`wsidata.WSIData` 28 | The whole slide image. 29 | level : int, default: None 30 | The level to segment the tissue. 31 | device : str, default: None 32 | The device to run the model. 33 | key_added : str, default: 'tissues' 34 | The key to add the tissue polygons. 35 | 36 | """ 37 | 38 | if device is None: 39 | device = get_torch_device() 40 | 41 | props = wsi.properties 42 | if level is None: 43 | level_mpp = np.array(props.level_downsample) * props.mpp 44 | # Get the nearest level that towards mpp=10 45 | level = np.argmin(np.abs(level_mpp - 10)) 46 | shape = props.level_shape[level] 47 | 48 | model = GrandQCTissue() 49 | transform = model.get_transform() 50 | 51 | model.to(device) 52 | 53 | # Ensure the image size is multiple of 32 54 | # Calculate the nearest multiples of 32 55 | height, width = shape 56 | new_height = (height + 31) // 32 * 32 57 | new_width = (width + 31) // 32 * 32 58 | img = wsi.reader.get_region(0, 0, width, height, level=level) 59 | downsample = props.level_downsample[level] 60 | 61 | # We cannot read the image directly from the reader. 62 | # The padding from image reader will introduce padding at only two sides 63 | # We need to pad the image on all four sides 64 | # without shifting the image equilibrium 65 | # Otherwise, this will introduce artifacts in the segmentation 66 | 67 | # # Compute padding amounts 68 | top_pad = (new_height - height) // 2 69 | bottom_pad = new_height - height - top_pad 70 | left_pad = (new_width - width) // 2 71 | right_pad = new_width - width - left_pad 72 | 73 | # Apply padding 74 | img = np.pad( 75 | img, 76 | pad_width=((top_pad, bottom_pad), (left_pad, right_pad), (0, 0)), 77 | mode="constant", 78 | constant_values=0, # Pad with black pixels 79 | ) 80 | 81 | # Simulate JPEG compression 82 | encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 80] 83 | result, img = cv2.imencode(".jpg", img, encode_param) 84 | img = cv2.imdecode(img, 1) 85 | 86 | img = torch.tensor(img).permute(2, 0, 1) 87 | 88 | img_t = transform(img).unsqueeze(0) 89 | img_t = img_t.to(device) 90 | pred = model.segment(img_t) 91 | 92 | pred = pred.squeeze().detach().cpu().numpy() 93 | mask = np.argmax(pred, axis=0).astype(np.uint8) 94 | # Flip the mask 95 | mask = 1 - mask 96 | polygons = BinaryMask(mask).to_polygons( 97 | min_area=1e-3, 98 | min_hole_area=1e-5, 99 | detect_holes=True, 100 | ) 101 | polygons = [ 102 | scale(p, xfact=downsample, yfact=downsample, origin=(0, 0)) for p in polygons 103 | ] 104 | add_tissues(wsi, key_added, polygons) 105 | -------------------------------------------------------------------------------- /src/lazyslide/tools/__init__.py: -------------------------------------------------------------------------------- 1 | from ._domain import spatial_domain, tile_shaper 2 | from ._features import feature_extraction, feature_aggregation 3 | from ._signatures import RNALinker 4 | from ._text_annotate import text_embedding, text_image_similarity 5 | from ._tissue_props import tissue_props 6 | from ._spatial_features import spatial_features, feature_utag 7 | from ._zero_shot import zero_shot_score, slide_caption 8 | -------------------------------------------------------------------------------- /src/lazyslide/tools/_domain.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from wsidata import WSIData 3 | from wsidata.io import update_shapes_data, add_shapes 4 | 5 | from lazyslide._const import Key 6 | 7 | 8 | def spatial_domain( 9 | wsi: WSIData, 10 | feature_key: str, 11 | tile_key: str = Key.tiles, 12 | layer: str = None, 13 | resolution: float = 0.1, 14 | key_added: str = "domain", 15 | ): 16 | """Return the unsupervised domain of the WSI""" 17 | try: 18 | import scanpy as sc 19 | except ImportError: 20 | raise ImportError( 21 | "Please install scanpy to use this function, try `pip install scanpy`." 22 | ) 23 | feature_key = wsi._check_feature_key(feature_key, tile_key) 24 | adata = wsi.fetch.features_anndata(feature_key, tile_key, tile_graph=False) 25 | sc.pp.scale(adata, layer=layer) 26 | sc.pp.pca(adata, layer=layer) 27 | sc.pp.neighbors(adata) 28 | sc.tl.leiden(adata, flavor="igraph", key_added=key_added, resolution=resolution) 29 | # Add to tile table 30 | update_shapes_data(wsi, tile_key, {key_added: adata.obs[key_added].to_numpy()}) 31 | 32 | 33 | def tile_shaper( 34 | wsi: WSIData, 35 | groupby: str = "domain", 36 | tile_key: str = Key.tiles, 37 | key_added: str = "domain_shapes", 38 | ): 39 | # """Return the domain shapes of the WSI 40 | # Parameters 41 | # ---------- 42 | # wsi: :class:`WSIData ` 43 | # The WSIData object. 44 | # groupby: str 45 | # The groupby key. 46 | # tile_key: str 47 | # The tile key. 48 | # key_added: str 49 | # The key to add the shapes to. 50 | # 51 | # Returns 52 | # ------- 53 | # None 54 | # The shapes will be added to the WSIData object. 55 | # - The shapes will be added to the `domain_shapes` layer of the tile table. 56 | # 57 | # Examples 58 | # -------- 59 | # .. code-block:: python 60 | # 61 | # >>> import lazyslide as zs 62 | # >>> wsi = zs.datasets.sample() 63 | # >>> zs.pp.find_tissues(wsi) 64 | # >>> zs.pp.tile_tissues(wsi, 256, mpp=0.5) 65 | # >>> zs.tl.feature_extraction(wsi, "resnet50") 66 | # >>> zs.pp.tile_graph(wsi) 67 | # >>> zs.tl.spatial_domain(wsi, layer="utag", feature_key="resnet50", resolution=0.3) 68 | # >>> zs.tl.tile_shaper(wsi) 69 | # 70 | # """ 71 | import geopandas as gpd 72 | from lazyslide.cv import BinaryMask 73 | from shapely.affinity import scale, translate 74 | 75 | result = [] 76 | 77 | tile_table = wsi[tile_key] 78 | 79 | spec = wsi.tile_spec(tile_key) 80 | 81 | # To avoid large memory allocation of mask, get domain in each tissue 82 | for _, tissue_group in tile_table.groupby("tissue_id"): 83 | for name, group in tissue_group.groupby(groupby): 84 | bounds = (group.bounds / spec.base_height).astype(int) 85 | minx, miny, maxx, maxy = ( 86 | bounds["minx"].min(), 87 | bounds["miny"].min(), 88 | bounds["maxx"].max(), 89 | bounds["maxy"].max(), 90 | ) 91 | w, h = int(maxx - minx), int(maxy - miny) 92 | mask = np.zeros((h, w), dtype=np.uint8) 93 | for _, row in bounds.iterrows(): 94 | mask[row["miny"] - miny, row["minx"] - minx] = 1 95 | polys = BinaryMask(mask).to_polygons() 96 | # scale back 97 | polys = [ 98 | scale( 99 | poly, xfact=spec.base_height, yfact=spec.base_height, origin=(0, 0) 100 | ) 101 | for poly in polys 102 | ] 103 | # translate 104 | polys = [ 105 | translate( 106 | poly, xoff=minx * spec.base_height, yoff=miny * spec.base_height 107 | ) 108 | for poly in polys 109 | ] 110 | for poly in polys: 111 | result.append([name, poly]) 112 | 113 | domain_shapes = gpd.GeoDataFrame(data=result, columns=[groupby, "geometry"]) 114 | add_shapes(wsi, key_added, domain_shapes) 115 | # return domain_shapes 116 | -------------------------------------------------------------------------------- /src/lazyslide/tools/_spatial_features.py: -------------------------------------------------------------------------------- 1 | import warnings 2 | 3 | import numpy as np 4 | from wsidata import WSIData 5 | 6 | from lazyslide._const import Key 7 | from lazyslide._utils import find_stack_level 8 | 9 | 10 | def spatial_features( 11 | wsi: WSIData, 12 | feature_key: str, 13 | method: str = "smoothing", 14 | tile_key: str = Key.tiles, 15 | graph_key: str = None, 16 | layer_key: str = "spatial_features", 17 | ): 18 | """ 19 | Integrate spatial tile context with vision features using spatial feature smoothing. 20 | 21 | Parameters 22 | ---------- 23 | wsi : :class:`WSIData ` 24 | The WSIData object. 25 | feature_key : str 26 | The feature key. 27 | method : str, default: 'smoothing' 28 | The method used for spatial feature smoothing. Currently only 'smoothing' is supported. 29 | tile_key : str, default: 'tiles' 30 | The tile key. 31 | graph_key : str, optional 32 | The graph key. If None, defaults to '{tile_key}_graph'. 33 | layer_key : str, default: 'spatial_features' 34 | The key for the output layer in the feature table. 35 | 36 | Returns 37 | ------- 38 | None. The transformed feature will be added to the `spatial_features` layer of the feature table. 39 | 40 | Examples 41 | -------- 42 | .. code-block:: python 43 | 44 | >>> import lazyslide as zs 45 | >>> wsi = zs.datasets.sample() 46 | >>> zs.pp.find_tissues(wsi) 47 | >>> zs.pp.tile_tissues(wsi, 256, mpp=0.5) 48 | >>> zs.tl.feature_extraction(wsi, "resnet50") 49 | >>> zs.pp.tile_graph(wsi) 50 | >>> zs.tl.spatial_features(wsi, "resnet50") 51 | >>> wsi["resnet50"].layers["spatial_features"] 52 | 53 | """ 54 | if method != "smoothing": 55 | raise ValueError(f"Unknown method '{method}'. Only 'smoothing' is currently supported.") 56 | 57 | # Get the spatial connectivity 58 | try: 59 | if graph_key is None: 60 | graph_key = f"{tile_key}_graph" 61 | A = wsi.tables[graph_key].obsp["spatial_connectivities"] 62 | except KeyError: 63 | raise ValueError( 64 | "The tile graph is needed to transform feature with spatial smoothing. Please run `pp.tile_graph` first." 65 | ) 66 | A = A + np.eye(A.shape[0]) 67 | # L1 norm for each row 68 | norms = np.sum(np.abs(A), axis=1) 69 | # Normalize the array 70 | A_norm = A / norms 71 | 72 | feature_key = wsi._check_feature_key(feature_key, tile_key) 73 | feature_X = wsi.tables[feature_key].X 74 | A_spatial = np.transpose(feature_X) @ A_norm 75 | A_spatial = np.transpose(A_spatial) 76 | wsi.tables[feature_key].layers[layer_key] = np.asarray(A_spatial) 77 | 78 | 79 | def feature_utag( 80 | wsi: WSIData, 81 | feature_key: str, 82 | tile_key: str = Key.tiles, 83 | graph_key: str = None, 84 | ): 85 | """ 86 | Deprecated. Use :func:`spatial_features` instead. 87 | """ 88 | warnings.warn( 89 | "`tl.feature_utag` is deprecated and will be removed after 0.8.0, " 90 | "please use `tl.spatial_features` instead.", 91 | stacklevel=find_stack_level(), 92 | ) 93 | return spatial_features(wsi, feature_key, method="smoothing", tile_key=tile_key, graph_key=graph_key, layer_key="spatial_features") 94 | -------------------------------------------------------------------------------- /src/lazyslide/tools/_text_annotate.py: -------------------------------------------------------------------------------- 1 | from typing import List, Literal 2 | 3 | import numpy as np 4 | import pandas as pd 5 | from wsidata import WSIData 6 | from wsidata.io import add_features 7 | 8 | from lazyslide._const import Key 9 | 10 | 11 | def text_embedding( 12 | texts: List[str], 13 | model: Literal["plip", "conch"] = "plip", 14 | ): 15 | """Embed the text into a vector in the text-vision co-embedding using 16 | `PLIP `_ or 17 | `CONCH `_. 18 | 19 | Parameters 20 | ---------- 21 | texts : List[str] 22 | The list of texts. 23 | model : Literal["plip", "conch"], default: "plip" 24 | The text embedding model, either PLIP or CONCH 25 | 26 | Returns 27 | ------- 28 | pd.DataFrame 29 | The embeddings of the texts, with texts as index. 30 | 31 | Examples 32 | -------- 33 | .. code-block:: python 34 | 35 | >>> import lazyslide as zs 36 | >>> wsi = zs.datasets.sample() 37 | >>> zs.pp.find_tissues(wsi) 38 | >>> zs.pp.tile_tissues(wsi, 256, mpp=0.5, key_added="text_tiles") 39 | >>> zs.tl.feature_extraction(wsi, "plip", tile_key="text_tiles") 40 | >>> terms = ["mucosa", "submucosa", "musclaris", "lymphocyte"] 41 | >>> zs.tl.text_embedding(terms, model="plip") 42 | 43 | """ 44 | import torch 45 | 46 | if model == "plip": 47 | from lazyslide.models.multimodal import PLIP 48 | 49 | model_ins = PLIP() 50 | elif model == "conch": 51 | from lazyslide.models.multimodal import CONCH 52 | 53 | model_ins = CONCH() 54 | else: 55 | raise ValueError(f"Invalid model: {model}") 56 | 57 | # use numpy record array to store the embeddings 58 | with torch.inference_mode(): 59 | embeddings = model_ins.encode_text(texts).detach().cpu().numpy() 60 | return pd.DataFrame(embeddings, index=texts) 61 | 62 | 63 | def text_image_similarity( 64 | wsi: WSIData, 65 | text_embeddings: pd.DataFrame, 66 | model: Literal["plip", "conch"] = "plip", 67 | tile_key: str = Key.tiles, 68 | feature_key: str = None, 69 | key_added: str = None, 70 | ): 71 | """ 72 | Compute the similarity between text and image. 73 | 74 | Parameters 75 | ---------- 76 | wsi : WSIData 77 | The WSIData object. 78 | text_embeddings : pd.DataFrame 79 | The embeddings of the texts, with texts as index. 80 | You can use :func:`zs.tl.text_embedding ` to get the embeddings. 81 | model : Literal["plip", "conch"], default: "plip" 82 | The text embedding model. 83 | tile_key : str, default: 'tiles' 84 | The tile key. 85 | feature_key : str 86 | The feature key. 87 | key_added : str 88 | 89 | Returns 90 | ------- 91 | None 92 | 93 | - The similarity scores will be added to :bdg-danger:`tables` slot of the spatial data object. 94 | 95 | Examples 96 | -------- 97 | .. code-block:: python 98 | >>> import lazyslide as zs 99 | >>> wsi = zs.datasets.sample() 100 | >>> zs.pp.find_tissues(wsi) 101 | >>> zs.pp.tile_tissues(wsi, 256, mpp=0.5, key_added="text_tiles") 102 | >>> zs.tl.feature_extraction(wsi, "plip", tile_key="text_tiles") 103 | >>> terms = ["mucosa", "submucosa", "musclaris", "lymphocyte"] 104 | >>> embeddings = zs.tl.text_embedding(terms, model="plip") 105 | >>> zs.tl.text_image_similarity(wsi, embeddings, model="plip", tile_key="text_tiles") 106 | 107 | """ 108 | 109 | if feature_key is None: 110 | feature_key = model 111 | feature_key = wsi._check_feature_key(feature_key, tile_key) 112 | key_added = f"{feature_key}_text_similarity" or key_added 113 | 114 | feature_X = wsi.tables[feature_key].X 115 | similarity_score = np.dot(text_embeddings.values, feature_X.T).T 116 | 117 | add_features( 118 | wsi, 119 | key_added, 120 | tile_key, 121 | similarity_score, 122 | var=pd.DataFrame(index=text_embeddings.index), 123 | ) 124 | -------------------------------------------------------------------------------- /src/lazyslide/tools/_tissue_props.py: -------------------------------------------------------------------------------- 1 | from functools import cached_property 2 | 3 | import cv2 4 | import numpy as np 5 | import pandas as pd 6 | from wsidata import WSIData 7 | from wsidata.io import update_shapes_data 8 | 9 | from lazyslide._const import Key 10 | 11 | 12 | def point2shape( 13 | wsi: WSIData, 14 | key: str = "tiles", 15 | groupby: str = None, 16 | ): 17 | pass 18 | 19 | 20 | def tissue_props( 21 | wsi: WSIData, 22 | key: str = Key.tissue, 23 | ): 24 | """Compute a series of geometrical properties of tissue piecies 25 | 26 | - "area" 27 | - "area_filled" 28 | - "convex_area" 29 | - "solidity" 30 | - "convexity" 31 | - "axis_major_length" 32 | - "axis_minor_length" 33 | - "eccentricity" 34 | - "orientation" 35 | - "extent" 36 | - "perimeter" 37 | - "circularity" 38 | 39 | Parameters 40 | ---------- 41 | wsi : :class:`WSIData ` 42 | The WSIData object. 43 | key : str 44 | The tissue key. 45 | 46 | Returns 47 | ------- 48 | None 49 | 50 | - The tissue properties will be added to the same table as the tissue shapes. 51 | 52 | Examples 53 | -------- 54 | .. code-block:: python 55 | 56 | >>> import lazyslide as zs 57 | >>> wsi = zs.datasets.sample() 58 | >>> zs.pp.find_tissues(wsi) 59 | >>> zs.tl.tissue_props(wsi) 60 | >>> wsi['tissues'] 61 | 62 | """ 63 | 64 | props = [] 65 | cnts = [] 66 | for tissue_contour in wsi.iter.tissue_contours(key): 67 | cnt = tissue_contour.contour 68 | holes = tissue_contour.holes 69 | 70 | cnt_array = np.asarray(cnt.exterior.coords.xy, dtype=np.int32).T 71 | holes_array = [ 72 | np.asarray(h.exterior.coords.xy, dtype=np.int32).T for h in holes 73 | ] 74 | 75 | _props = contour_props(cnt_array, holes_array) 76 | cnts.append(cnt) 77 | props.append(_props) 78 | 79 | props = pd.DataFrame(props).to_dict(orient="list") 80 | update_shapes_data(wsi, key, props) 81 | 82 | 83 | class ContourProps: 84 | def __init__(self, cnt, holes=None): 85 | self.cnt = cnt 86 | self.holes = holes 87 | 88 | @cached_property 89 | def area_filled(self): 90 | return cv2.contourArea(self.cnt) 91 | 92 | @cached_property 93 | def area(self): 94 | """Area without holes.""" 95 | if self.holes is None: 96 | return self.area_filled 97 | else: 98 | area = self.area_filled 99 | for hole in self.holes: 100 | area -= cv2.contourArea(hole) 101 | return area 102 | 103 | @cached_property 104 | def bbox(self): 105 | x, y, w, h = cv2.boundingRect(self.cnt) 106 | return x, y, w, h 107 | 108 | @cached_property 109 | def centroid(self): 110 | M = self.moments 111 | cX = int(M["m10"] / M["m00"]) 112 | cY = int(M["m01"] / M["m00"]) 113 | return cX, cY 114 | 115 | @cached_property 116 | def convex_hull(self): 117 | return cv2.convexHull(self.cnt) 118 | 119 | @cached_property 120 | def convex_area(self): 121 | return cv2.contourArea(self.convex_hull) 122 | 123 | @cached_property 124 | def solidity(self): 125 | """Solidity is the ratio of the contour area to the convex area.""" 126 | if self.convex_area == 0: 127 | return 0 128 | return self.area / self.convex_area 129 | 130 | @cached_property 131 | def convexity(self): 132 | """Convexity is the ratio of the convex area to the contour area.""" 133 | if self.area == 0: 134 | return 0 135 | return self.convex_area / self.area 136 | 137 | @cached_property 138 | def ellipse(self): 139 | return cv2.fitEllipse(self.cnt) 140 | 141 | @cached_property 142 | def axis_major_length(self): 143 | x1, x2 = self.ellipse[1] 144 | if x1 < x2: 145 | return x2 146 | return x1 147 | 148 | @cached_property 149 | def axis_minor_length(self): 150 | x1, x2 = self.ellipse[1] 151 | if x1 < x2: 152 | return x1 153 | return x2 154 | 155 | @cached_property 156 | def eccentricity(self): 157 | if self.axis_major_length == 0: 158 | return 0 159 | return np.sqrt(1 - (self.axis_minor_length**2) / (self.axis_major_length**2)) 160 | 161 | @cached_property 162 | def orientation(self): 163 | return self.ellipse[2] 164 | 165 | @cached_property 166 | def extent(self): 167 | if self.area == 0: 168 | return 0 169 | return self.area / (self.bbox[2] * self.bbox[3]) 170 | 171 | @cached_property 172 | def perimeter(self): 173 | return cv2.arcLength(self.cnt, True) 174 | 175 | @cached_property 176 | def circularity(self): 177 | if self.perimeter == 0: 178 | return 0 179 | return 4 * np.pi * self.area / (self.perimeter**2) 180 | 181 | @cached_property 182 | def moments(self): 183 | return cv2.moments(self.cnt) 184 | 185 | @cached_property 186 | def moments_hu(self): 187 | return cv2.HuMoments(self.moments) 188 | 189 | def __call__(self): 190 | props = { 191 | "area": self.area, 192 | "area_filled": self.area_filled, 193 | "convex_area": self.convex_area, 194 | "solidity": self.solidity, 195 | "convexity": self.convexity, 196 | "axis_major_length": self.axis_major_length, 197 | "axis_minor_length": self.axis_minor_length, 198 | "eccentricity": self.eccentricity, 199 | "orientation": self.orientation, 200 | "extent": self.extent, 201 | "perimeter": self.perimeter, 202 | "circularity": self.circularity, 203 | } 204 | 205 | for ix, box in enumerate(self.bbox): 206 | props[f"bbox-{ix}"] = box 207 | 208 | for ix, c in enumerate(self.centroid): 209 | props[f"centroid-{ix}"] = c 210 | 211 | for i, hu in enumerate(self.moments_hu): 212 | props[f"hu-{i}"] = hu[0] 213 | 214 | for key, value in self.moments.items(): 215 | props[f"moment-{key}"] = value 216 | 217 | return props 218 | 219 | 220 | def contour_props(cnt: np.ndarray, holes=None): 221 | """Calculate the properties of a contour.""" 222 | return ContourProps(cnt, holes)() 223 | -------------------------------------------------------------------------------- /src/lazyslide/tools/_zero_shot.py: -------------------------------------------------------------------------------- 1 | from __future__ import annotations 2 | 3 | from typing import Sequence, List, Iterable 4 | 5 | import numpy as np 6 | import pandas as pd 7 | import torch 8 | from wsidata import WSIData 9 | 10 | from lazyslide._utils import get_torch_device 11 | 12 | 13 | def _preprocess_prompts(prompts: List[str | List[str]]) -> List[List[str]]: 14 | """ 15 | Preprocess the prompts to ensure they are in the correct format. 16 | """ 17 | processed_prompts = [] 18 | for prompt in prompts: 19 | if isinstance(prompt, str): 20 | processed_prompts.append([prompt]) 21 | elif isinstance(prompt, Iterable): 22 | processed_prompts.append(list(prompt)) 23 | else: 24 | raise ValueError(f"Invalid prompt type: {type(prompt)}") 25 | return processed_prompts 26 | 27 | 28 | def _get_agg_info( 29 | wsi: WSIData, 30 | feature_key, 31 | agg_key: str = None, 32 | agg_by: str | Sequence[str] = None, 33 | ): 34 | if agg_key is None: 35 | if agg_by is None: 36 | agg_key = "agg_slide" 37 | else: 38 | if isinstance(agg_by, str): 39 | agg_by = [agg_by] 40 | agg_key = f"agg_{'_'.join(agg_by)}" 41 | agg_info = wsi[feature_key].uns["agg_ops"][agg_key] 42 | annos = None 43 | if "keys" in agg_info: 44 | annos = pd.DataFrame( 45 | data=agg_info["values"], 46 | columns=agg_info["keys"], 47 | ) 48 | return agg_info, annos 49 | 50 | 51 | def zero_shot_score( 52 | wsi: WSIData, 53 | prompts: list[list[str]], 54 | feature_key, 55 | *, 56 | agg_key: str = None, 57 | agg_by: str | Sequence[str] = None, 58 | model: str = "prism", 59 | device: str = None, 60 | ): 61 | """ 62 | Perform zero-shot classification on the WSI 63 | 64 | Supported models: 65 | - prism: `Prism model `_. 66 | - titan: `Titan model `_. 67 | 68 | Corresponding slide-level features are required for the model. 69 | 70 | 71 | Parameters 72 | ---------- 73 | wsi : :class:`wsidata.WSIData` 74 | The WSI data object. 75 | prompts : array of str 76 | The text labels to classify. You can use a list of strings to 77 | add more information to one class. 78 | feature_key : str 79 | The tile features to be used. 80 | agg_key : str 81 | The aggregation key 82 | agg_by : str or list of str 83 | The aggregation keys that were used to create the slide features. 84 | model: {"prism", "titan"} 85 | The model to use for zero-shot classification. 86 | device : str 87 | The device to use for inference. If None, the default device will be used. 88 | 89 | Returns 90 | ------- 91 | pd.DataFrame 92 | The classification results (probability). The columns are the text labels and the 93 | rows are the slide features. 94 | 95 | # - The classification results will be added to :bdg-danger:`tables` slot of the spatial data object. 96 | 97 | Examples 98 | -------- 99 | .. code-block:: python 100 | 101 | >>> import lazyslide as zs 102 | >>> wsi = zs.datasets.lung_carcinoma(with_data=False) 103 | >>> zs.pp.find_tissues(wsi) 104 | >>> zs.pp.tile_tissues(wsi, 512, background_fraction=0.95, mpp=0.5) 105 | >>> zs.tl.feature_extraction(wsi, "virchow") 106 | >>> zs.tl.feature_aggregation(wsi, feature_key="virchow", encoder="prism") 107 | >>> print(zs.tl.zero_shot_score(wsi, classes, feature_key="virchow_tiles")) 108 | 109 | """ 110 | if device is None: 111 | device = get_torch_device() 112 | 113 | prompts = _preprocess_prompts(prompts) 114 | 115 | if model == "prism": 116 | from lazyslide.models.multimodal import Prism 117 | 118 | model = Prism() 119 | elif model == "titan": 120 | from lazyslide.models.multimodal import Titan 121 | 122 | model = Titan() 123 | model.to(device) 124 | # Get the embeddings from the WSI 125 | agg_info, annos = _get_agg_info( 126 | wsi, 127 | feature_key, 128 | agg_key=agg_key, 129 | agg_by=agg_by, 130 | ) 131 | 132 | all_probs = [] 133 | for ix, f in enumerate(agg_info["features"]): 134 | f = torch.tensor(f).unsqueeze(0).to(device) 135 | probs = model.score(f, prompts=prompts) 136 | all_probs.append(probs) 137 | 138 | all_probs = np.vstack(all_probs) 139 | 140 | named_prompts = [", ".join(p) for p in prompts] 141 | results = pd.DataFrame( 142 | data=all_probs, 143 | columns=named_prompts, 144 | ) 145 | if annos is not None: 146 | results = pd.concat([annos, results], axis=1) 147 | return results 148 | 149 | 150 | def slide_caption( 151 | wsi: WSIData, 152 | prompt: list[str], 153 | feature_key, 154 | *, 155 | agg_key: str = None, 156 | agg_by: str | Sequence[str] = None, 157 | max_length: int = 100, 158 | model: str = "prism", 159 | device: str = None, 160 | ): 161 | """ 162 | Generate captions for the slide. 163 | 164 | Parameters 165 | ---------- 166 | wsi : :class:`wsidata.WSIData` 167 | The WSI data object. 168 | prompt : list of str 169 | The text instruction to generate the caption. 170 | feature_key : str 171 | The slide features to be used. 172 | agg_key : str 173 | The aggregation key 174 | agg_by : str or list of str 175 | The aggregation keys that were used to create the slide features. 176 | max_length : int 177 | The maximum length of the generated caption. 178 | model : {"prism"} 179 | The caption generation model to use. 180 | device : str 181 | The device to use for inference. If None, the default device will be used. 182 | 183 | """ 184 | 185 | if device is None: 186 | device = get_torch_device() 187 | 188 | from lazyslide.models.multimodal import Prism 189 | 190 | model = Prism() 191 | model.to(device) 192 | 193 | agg_info, annos = _get_agg_info( 194 | wsi, 195 | feature_key, 196 | agg_key=agg_key, 197 | agg_by=agg_by, 198 | ) 199 | 200 | captions = [] 201 | 202 | for ix, lat in enumerate(agg_info["latents"]): 203 | lat = torch.tensor(lat).unsqueeze(0).to(device) 204 | caption = model.caption( 205 | lat, 206 | prompt=prompt, 207 | max_length=max_length, 208 | ) 209 | captions.append(caption) 210 | 211 | results = pd.DataFrame( 212 | { 213 | "caption": captions, 214 | } 215 | ) 216 | if annos is not None: 217 | results = pd.concat([annos, results], axis=1) 218 | return results 219 | -------------------------------------------------------------------------------- /tests/conftest.py: -------------------------------------------------------------------------------- 1 | import os 2 | 3 | import pytest 4 | import torch 5 | 6 | 7 | class MockNet(torch.nn.Module): 8 | def __init__(self): 9 | super().__init__() 10 | 11 | def forward(self, x): 12 | return torch.zeros(x.shape[0], 1000) 13 | 14 | 15 | @pytest.fixture(scope="session", autouse=True) 16 | def wsi(): 17 | import lazyslide as zs 18 | 19 | return zs.datasets.gtex_artery() 20 | 21 | 22 | @pytest.fixture(scope="session") 23 | def tmp_path_session(tmp_path_factory): 24 | return tmp_path_factory.mktemp("session_tmp") 25 | 26 | 27 | @pytest.fixture(scope="session", autouse=True) 28 | def torch_model_file(tmp_path_session): 29 | model = MockNet() 30 | torch.save(model, tmp_path_session / "model.pt") 31 | return tmp_path_session / "model.pt" 32 | 33 | 34 | @pytest.fixture(scope="session", autouse=True) 35 | def torch_jit_file(tmp_path_session): 36 | model = MockNet() 37 | torch.jit.script(model).save(tmp_path_session / "jit_model.pt") 38 | return tmp_path_session / "jit_model.pt" 39 | 40 | 41 | def pytest_collection_modifyitems(config, items): 42 | if os.getenv("GITHUB_ACTIONS") == "true": 43 | skip_on_ci = pytest.mark.skip(reason="Skipped on GitHub CI") 44 | for item in items: 45 | if "skip_on_ci" in item.keywords: 46 | item.add_marker(skip_on_ci) 47 | -------------------------------------------------------------------------------- /tests/data/CMU-1-Small-Region.svs: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rendeirolab/LazySlide/f39634cc994b3098b0933075b9d25ecd99b9014e/tests/data/CMU-1-Small-Region.svs -------------------------------------------------------------------------------- /tests/test_cv.py: -------------------------------------------------------------------------------- 1 | import pytest 2 | import numpy as np 3 | 4 | 5 | np.random.seed(42) 6 | 7 | H, W = 100, 100 8 | N_CLASS = 5 9 | binary_mask = np.random.randint(0, 2, (H, W), dtype=np.uint8) 10 | multilabel_mask = np.random.randint(0, N_CLASS, (H, W), dtype=np.uint8) 11 | multiclass_mask = np.random.randint( 12 | 0, 13 | 2, 14 | ( 15 | N_CLASS, 16 | H, 17 | W, 18 | ), 19 | dtype=np.uint8, 20 | ) 21 | 22 | 23 | class TestMask: 24 | @pytest.mark.parametrize("mask", [binary_mask, multilabel_mask, multiclass_mask]) 25 | def test_mask_to_polygon(self, mask): 26 | from lazyslide.cv.mask import Mask 27 | 28 | mask = Mask.from_array(mask) 29 | mask.to_polygons() 30 | -------------------------------------------------------------------------------- /tests/test_datasets.py: -------------------------------------------------------------------------------- 1 | import lazyslide as zs 2 | 3 | 4 | def test_load_sample(): 5 | wsi = zs.datasets.sample() 6 | assert wsi is not None 7 | 8 | 9 | def test_load_gtex_artery(): 10 | wsi = zs.datasets.gtex_artery() 11 | assert wsi is not None 12 | 13 | 14 | def test_load_lung_carcinoma(): 15 | wsi = zs.datasets.lung_carcinoma() 16 | assert wsi is not None 17 | -------------------------------------------------------------------------------- /tests/test_pp.py: -------------------------------------------------------------------------------- 1 | import pytest 2 | 3 | import lazyslide as zs 4 | 5 | 6 | @pytest.mark.parametrize("detect_holes", [True, False]) 7 | @pytest.mark.parametrize("key_added", ["tissue", "tissue2"]) 8 | def test_pp_find_tissues(wsi, detect_holes, key_added): 9 | zs.pp.find_tissues(wsi, detect_holes=detect_holes, key_added=key_added) 10 | 11 | assert key_added in wsi.shapes 12 | if not detect_holes: 13 | tissue = wsi[key_added].geometry[0] 14 | assert len(tissue.interiors) == 0 15 | 16 | 17 | class TestPPTileTissues: 18 | def test_tile_px(self, wsi): 19 | zs.pp.find_tissues(wsi) 20 | zs.pp.tile_tissues(wsi, 256, key_added="tiles") 21 | 22 | def test_mpp(self, wsi): 23 | zs.pp.tile_tissues(wsi, 256, mpp=1, key_added="tiles1") 24 | 25 | @pytest.mark.xfail(raises=ValueError) 26 | def test_slide_mpp(self, wsi): 27 | zs.pp.tile_tissues(wsi, 256, slide_mpp=1, key_added="tiles2") 28 | 29 | def test_assert(self, wsi): 30 | s0 = len(wsi["tiles"]) 31 | s1 = len(wsi["tiles1"]) 32 | 33 | assert s0 > 0 34 | assert s1 < s0 35 | -------------------------------------------------------------------------------- /tests/test_tl.py: -------------------------------------------------------------------------------- 1 | import pytest 2 | import lazyslide as zs 3 | 4 | TIMM_MODEL = "mobilenetv3_small_050" 5 | 6 | 7 | class TestFeatureExtraction: 8 | def test_load_model(self, wsi, torch_model_file): 9 | zs.pp.find_tissues(wsi) 10 | zs.pp.tile_tissues(wsi, 512) 11 | zs.tl.feature_extraction(wsi, model_path=torch_model_file) 12 | # Test feature aggregation 13 | zs.tl.feature_aggregation(wsi, feature_key="MockNet") 14 | 15 | def test_load_jit_model(self, wsi, torch_jit_file): 16 | zs.tl.feature_extraction(wsi, model_path=torch_jit_file) 17 | 18 | @pytest.mark.skip_on_ci 19 | def test_timm_model(self, wsi): 20 | zs.tl.feature_extraction(wsi, model=TIMM_MODEL) 21 | -------------------------------------------------------------------------------- /workflow/main.nf: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env nextflow 2 | nextflow.enable.dsl = 2 3 | 4 | params.slide_table = null 5 | params.tile_px = 256 6 | params.report_dir = "reports" 7 | params.models = "resnet50" 8 | 9 | process PREPROCESS { 10 | publishDir params.report_dir, mode: 'move' 11 | // conda "${projectDir}/env.yaml" 12 | 13 | input: 14 | tuple val(wsi), val(storage) 15 | val tile_px 16 | 17 | output: 18 | path '*_report.txt', emit: report 19 | tuple val(wsi), val(storage), emit: slide 20 | 21 | script: 22 | 23 | def wsi_base = wsi.baseName 24 | 25 | """ 26 | lazyslide preprocess ${wsi} ${tile_px} --output ${storage} 27 | touch ${wsi_base}_report.txt 28 | """ 29 | } 30 | 31 | process FEATURE { 32 | // conda "${projectDir}/env.yaml" 33 | 34 | input: 35 | tuple val(wsi), val(storage) 36 | each model 37 | 38 | script: 39 | """ 40 | lazyslide feature ${wsi} ${model} --output ${storage} 41 | """ 42 | } 43 | 44 | 45 | 46 | workflow { 47 | 48 | log.info """ 49 | ██ █████ ███████ ██ ██ ███████ ██ ██ ██████ ███████ 50 | ██ ██ ██ ███ ██ ██ ██ ██ ██ ██ ██ ██ 51 | ██ ███████ ███ ████ ███████ ██ ██ ██ ██ █████ 52 | ██ ██ ██ ███ ██ ██ ██ ██ ██ ██ ██ 53 | ███████ ██ ██ ███████ ██ ███████ ███████ ██ ██████ ███████ 54 | 55 | =================================================================== 56 | 57 | Workflow information: 58 | Workflow: ${workflow.projectDir} 59 | 60 | Input parameters: 61 | Slide table: ${file(params.slide_table)} 62 | 63 | """ 64 | 65 | slides_ch = Channel 66 | .fromPath( params.slide_table, checkIfExists: true ) 67 | .splitCsv( header: true ) 68 | .map { row -> 69 | def slide_file = file(row.file, checkIfExists: true) 70 | def slide_storage = row.storage 71 | if (row.storage == null) { slide_storage = slide_file.parent / slide_file.baseName + ".zarr" } 72 | return tuple(slide_file, slide_storage) 73 | } 74 | 75 | // slides_ch.view() 76 | 77 | out_ch = PREPROCESS(slides_ch, params.tile_px) 78 | 79 | // println "Ouput of PREPROCESS: " 80 | // out_ch.slide.view() 81 | 82 | models = Channel.of(params.models?.split(',')) 83 | 84 | FEATURE(out_ch.slide, models) 85 | 86 | } -------------------------------------------------------------------------------- /workflow/modules/qc/main.nf: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env nextflow 2 | nextflow.enable.dsl = 2 3 | 4 | process SlideQC { 5 | 6 | input: 7 | val mpp 8 | val 9 | path slide 10 | 11 | output: 12 | path("*.qc.csv") into qc_ch 13 | 14 | script: 15 | """ 16 | lazyslide qc $slide 17 | """ 18 | } --------------------------------------------------------------------------------