├── .gitignore ├── LICENSE ├── README.md ├── loopback-cc-experiments.py └── manual_tests ├── curl-webui.sh ├── dali.b64 ├── dirs2vid.sh ├── hulk.b64 ├── land.b64 └── split-image-list.sh /.gitignore: -------------------------------------------------------------------------------- 1 | demo 2 | *.bin 3 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2022 Robin Fernandes 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Advanced color correction script forstable-diffusion-webui img2img loopback 2 | 3 | ## **Update:** Color correction is no longer necessary in most cases, thanks to VAEs. [See here for details](https://www.reddit.com/r/StableDiffusion/comments/ydwnc3/good_news_vae_prevents_the_loopback_magenta_skew/). 4 | 5 | 6 | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) is an AI image generation tool. [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) is a web ui for that tool. 7 | 8 | This repo provides a script for that web ui that implements an extra img2img loopback mode with advanced color correction options. Specifically, it allows you to color-correct the input to each generated frame to the average histogram of a sliding window of previously generated frames. 9 | 10 | 11 | ## Installation 12 | 13 | * Copy `loopback-cc-experiments.py` into the scripts subdirectory in [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui). 14 | * After restarting the webui, you will see a script called `Loopback - color correction experiments` in the scripts list: 15 | 16 | 17 | ## Background 18 | 19 | When repeatedly looping a generated image back in as the input image for a subsequent generation, Stable Diffusion skews to magenta. 20 | 21 | This recreates in all forks I've tried, as well as in Dream Studio – including on model v1.5. As a result, most UIs now incorporate some form of colour correction to work around the issue, namely by matching the output of every frame to the input's colour range. You can see some examples on https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/847. 22 | 23 | Colour-correcting in this way has some drawbacks, such masking desirable colour shifts (e.g. you can't colorise a black and white photo). Therefore, this script is an attempt to provide more control over the color correction logic so that you can tweak it to better suit your usecase. 24 | 25 | This is just a workaround: ideally we'd prevent Stable Diffusion's magenta skew, and none of this would be necessary. However, there doesn't appear to be a known root cause for this issue yet, so in the mean time, this script might be useful to some. 26 | 27 | 28 | ## Usage 29 | 30 | The script provides the following options: 31 | 32 | * **Include input image in target** whether to use the colours of the input image when applying colour correction. 33 | * `never` - don't use the colours of the input image at all in the colour correction process. 34 | * `first` - (default) only use the colours of the input image when processing the first frame. 35 | * `always` - always add the initial image to the list of images to use for color correction. How much influence the initial image has depends on how many other images are in the color correction window. For example, if you set the window size to `0` and this value to `always`, all frames will be color corrected to the input image (same behaviour as the default with normal loopback mode). 36 | * window size (default: -1) how many frames to average over when computing the target color histogram. -1 means grow the window frames a processed, always starting at frame 0 and ending at the processed frame if slide rate is 1. 37 | * **window slide rate** (default: 1) how fast to move the end of the window relative to the frame generation. For example, if the loopback is 80 frames long, a slide rate of `0.5` means that on the last generated frame, the window ends on frame 40. 38 | * **window lag** (default: 0) how many frames the end of the window should lag behind the current frame. For example, a delay of `5` means the first 5 frames will have no color correction, and from the 6th frame, a window ending at frame 0 will begin to apply. 39 | * **color correction interval** (default: 1) do color correction every Nth frame, skip other frames. Default of 1 means color correction is applied on every frame. 40 | 41 | ### Notes 42 | With this script: 43 | 44 | * Color correction is applied **regardless of whether you have color correction enabled in the settings**. The script's sole purpose is to do color correction. If you don't want color correction, use the main loopback script. :) 45 | * Color correction is **always applied after saving the image** for a given loop, but before feeding the image into the next generation step. This is different from "official" color correction logic, where the default behaviour is to save the image after color correction, and you optionally save an extra file before color correction (which typically looks better). See https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/847 for details. 46 | 47 | 48 | ## Examples 49 | 50 | All examples below were generated with this script, then converted to video with a color histogram using ffmpeg (see [dir2vid.sh](https://github.com/rewbs/stable-diffusion-loopback-color-correction-script/blob/master/manual_tests/dirs2vid.sh) for specifics). The videos were combined into a grid [following this approach, also with ffmpeg](https://ottverse.com/stack-videos-horizontally-vertically-grid-with-ffmpeg/). 51 | 52 | 53 | ### Natural skin tones from a green init image 54 | 55 | * Prompt: `Classy studio photo portrait with (natural skin tones).` 56 | * Params: Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 8-87, Denoising strength: 0.5 57 | * Initial image: 58 | 59 | 60 | In the video below: 61 | * **Top-left:** (for reference) No color correction. Here we see the image rapidly skewing to magenta. 62 | * **Top-right:** (for reference) Correct all frames to the input histogram, i.e. default official behaviour. Here we see the generated images cannot pull away from the green palette of the input. 63 | * **Mid-left:** Correct to the average of input plus all previously generated frames (window size: -1; slide rate: 1; lag: 0). Here we see natural skin tones emerging. 64 | * **Mid-right:** Correct to average of a window 10 frames wide, moving at 75% the speed of generation (window size: 10; slide rate: 0.75; lag: 0). This is roughly equivalent to the previous. 65 | * **Bot-left:** Correct to the average of a window 5 frames wide, running up to the last generated frame (window size: 5; slide rate: 1; lag: 0). Here we see a blue skew emerging towards the end of the loop, which is common with narrow windows that only account for the most recently generated images. The cause is not known but is possibly a cyan skew related to overcorrecting away from the magenta skew. 66 | * **Bot-right:** Correct to the average of a window 5 frames wide, lagging 4 frames behind the last generated frame (window size: 5; slide rate: 1; lag: 4). This helps mitigate the cyan/blue skew, resulting in simlar results to the middle row. 67 | 68 | https://user-images.githubusercontent.com/74455/192528827-c4696a99-9cf6-4ff7-8771-78ef835e7d0c.mp4 69 | 70 | 71 | ### Colour from a black and white init image 72 | 73 | * Prompt: `(Colorful) color photo of a man with yellow hair and a rainbow hat.` 74 | * Params: Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 24-103, Denoising strength: 0.68 75 | * Initial image: 76 | 77 | 78 | In the video below: 79 | * **Top-left:** (for reference) No color correction. Here the image does not skew to magenta too quickly because the denoise strength is a bit higher. However, the image still degrades aggressively. 80 | * **Top-right:** (for reference) Correct all frames to the input histogram, i.e. default official behaviour. Here we see the generated images struggle to introduce colour: each generation adds a bit of colour, but is reset to B&W before being fed back into the loop, resulting in a washed out result overall. 81 | * **Mid-left:** Correct to the average of input plus all previously generated frames (window size: -1; slide rate: 1; lag: 0). Here we get pretty good results but still a little washed out. 82 | * **Mid-right:** Correct to average of the first 75% of images generated so far (window size: -1; slide rate: 0.75; lag: 0). It's interesting to see how a little change in color palette can lead to completely different output images from about frame 15. 83 | * **Bot-left:** Correct to the average of a window 5 frames wide, running up to the last generated frame (window size: 5; slide rate: 1; lag: 0). 84 | * **Bot-right:** Correct to the average of a window 5 frames wide, lagging 4 frames behind the last generated frame (window size: 5; slide rate: 1; lag: 4). 85 | 86 | https://user-images.githubusercontent.com/74455/192535122-dbb1d5b4-3338-4410-bdc4-eee7e33818f5.mp4 87 | 88 | ### Counter example 89 | 90 | In this example, the "official" color correction is clearly the winner. The input color palette is perfectly fine for the type of output being generated. Any attempt to apply a different correction seems to result in a reduction of the colours used, and ultimately a simplification and/or undesirable color fade. I don't know why this is: the alternative color corrections should theoretically allow the animation to veer into different colors, without necessarily converging into murkiness. :) 91 | 92 | * Prompt: Dramatic 4k high detail urban dense utopian cityscape at sunset. 93 | * Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 20-99, Size: 512x512, Denoising strength: 0.6 94 | * Initial image: 95 | 96 | 97 | https://user-images.githubusercontent.com/74455/192546570-6ea0c224-daea-46e8-b578-7fee30f6808d.mp4 98 | -------------------------------------------------------------------------------- /loopback-cc-experiments.py: -------------------------------------------------------------------------------- 1 | # +--( Advanced color correction script for stable-diffusion-webui img2img loopback )--+ 2 | # | | 3 | # | For more information and the latest version: | 4 | # | https://github.com/rewbs/stable-diffusion-loopback-color-correction-script | 5 | # | | 6 | # +-----------------------------------------------------------------------------------+ 7 | 8 | import numpy as np 9 | import logging 10 | from pprint import pformat 11 | from tqdm import trange 12 | import glob 13 | import cv2 14 | 15 | import modules.scripts as scripts 16 | import gradio as gr 17 | 18 | from modules import processing, shared, sd_samplers, images 19 | from modules.processing import Processed 20 | from modules.sd_samplers import samplers 21 | from modules.shared import opts, cmd_opts, state 22 | 23 | class Script(scripts.Script): 24 | def title(self): 25 | return "Loopback - color correction experiments" 26 | 27 | def show(self, is_img2img): 28 | return is_img2img 29 | 30 | def ui(self, is_img2img): 31 | loops = gr.Slider(minimum=1, maximum=500, step=1, label='Loops', value=4) 32 | denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1) 33 | cc_include_input = gr.Radio(label='Include input image in color target', choices=['never', 'first', 'always'], value='first') 34 | cc_window_size = gr.Slider(minimum=-1, maximum=50, step=1, label='Color correction window size', value=-1) 35 | cc_window_rate = gr.Slider(minimum=0.1, maximum=1, step=0.1, label='Color correction window slide rate', value=1) 36 | cc_window_delay = gr.Slider(minimum=1, maximum=10, step=1, label='Color correction window lag', value=0) 37 | cc_interval = gr.Slider(minimum=1, maximum=50, step=1, label='Color correction interval', value=1) 38 | 39 | return [loops, denoising_strength_change_factor, cc_include_input, cc_window_size, cc_window_rate, cc_window_delay, cc_interval] 40 | 41 | def run(self, p, loops, denoising_strength_change_factor, cc_include_input, cc_window_size, cc_window_rate, cc_window_delay, cc_interval): 42 | logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.DEBUG) 43 | 44 | processing.fix_seed(p) 45 | batch_count = p.n_iter 46 | 47 | logging.info(f"Starting loopback with: \n" 48 | f"loops: {loops}; \n" 49 | f"initial seed: {p.seed}; \n" 50 | f"initial denoising strength: {p.denoising_strength}; \n" 51 | f"denoising strength change factor: {denoising_strength_change_factor}; \n" 52 | f"color correction enabled in main options?: {opts.img2img_color_correction}; \n" 53 | f"Color correction window size: {cc_window_size} \n" 54 | f"Color correction window slide rate: {cc_window_rate} \n" 55 | f"Color correction window start delay: {cc_window_delay} \n" 56 | f"apply cc every N loops: {cc_interval} \n") 57 | 58 | p.batch_size = 1 59 | p.n_iter = 1 60 | 61 | output_images, info = None, None 62 | initial_seed = None 63 | initial_info = None 64 | 65 | grids = [] 66 | all_images = [] 67 | state.job_count = loops * batch_count 68 | 69 | # HACK - ideally scripts could opt in to hooks at various points in the processing loop including file saving. 70 | logging.info("Overriding color correction option to false in main processing so that we can control color correction in the script loop.") 71 | old_cc_opt = opts.img2img_color_correction 72 | opts.img2img_color_correction = False 73 | p.color_corrections = None 74 | 75 | original_input_image_resized = images.resize_image(p.resize_mode, p.init_images[0], p.width, p.height) 76 | 77 | try: 78 | 79 | for n in range(batch_count): 80 | history = [] 81 | uncorrected_images = [] 82 | 83 | for i in range(loops): 84 | p.n_iter = 1 85 | p.batch_size = 1 86 | p.do_not_save_grid = True 87 | 88 | loop_index = i+1 89 | cc_window_start, cc_window_end = self.compute_cc_target_window(loop_index, cc_window_delay, cc_window_size, cc_window_rate) 90 | do_cc = loop_index%cc_interval==0 91 | 92 | state.job = f"Iteration {loop_index}/{loops}, batch {n + 1}/{batch_count}" 93 | logging.info(f"it:{loop_index} - seed:{p.seed}; denoising_strength:{p.denoising_strength}; ") 94 | 95 | processed = processing.process_images(p) 96 | 97 | if initial_seed is None: 98 | initial_seed = processed.seed 99 | initial_info = processed.info 100 | 101 | init_img = processed.images[0] 102 | 103 | uncorrected_images.append(processed.images[0]) 104 | if (cc_window_end>0): 105 | target_images = uncorrected_images[cc_window_start:cc_window_end] 106 | else: 107 | target_images = [] 108 | 109 | if cc_include_input == 'first' and cc_window_start==0: 110 | target_images.append(original_input_image_resized) 111 | logging.info(f"Window start is 0 so including initital image in correction target (total target images: {len(target_images)})") 112 | elif cc_include_input == 'always': 113 | target_images.append(original_input_image_resized) 114 | logging.info(f"Forcing initital image into correction target (total target images: {len(target_images)})") 115 | else: 116 | logging.info(f"Initital image NOT included in correction target (total target images: {len(target_images)})") 117 | target_histogram = self.compute_cc_target(target_images) 118 | 119 | 120 | p.extra_generation_params = { 121 | "Batch": n, 122 | "Loop": loop_index, 123 | "Denoising strength change factor": denoising_strength_change_factor, 124 | "Color correction interval": cc_interval, 125 | "Color correction input image use": cc_include_input, 126 | "Color correction on this image": do_cc, 127 | "Color correction window size (desired)": cc_window_size, 128 | "Color correction window size (effective)": len(target_images) if target_images is not None else 0, 129 | "Color correction window slide rate": cc_window_rate, 130 | "Color correction window lag": cc_window_delay, 131 | "Color correction window pos start on this image": cc_window_start, 132 | "Color correction window pos end on this image": cc_window_end 133 | } 134 | logging.info(pformat(p.extra_generation_params)) 135 | 136 | if do_cc: 137 | if target_histogram is None: 138 | logging.info(f"Skipping color correction on loop {loop_index} (cc interval: {cc_interval}, target frames: {cc_window_start} to {cc_window_end})") 139 | else: 140 | logging.info(f"Applying color correction on loop {loop_index} (cc interval: {cc_interval}; target frames: {cc_window_start} to {cc_window_end}; effective window size: {len(target_images)})") 141 | init_img = processing.apply_color_correction(target_histogram, init_img) 142 | #images.save_image(init_img, p.outpath_samples, "", p.seed, p.prompt, opts.samples_format, info=None, p=p, suffix="-after-color-correction") 143 | else: 144 | logging.debug(f"Skipping color correction on loop {loop_index} because interval condition not met (interval: {cc_interval}), target frames: {cc_window_start} to {cc_window_end})") 145 | 146 | p.init_images = [init_img] 147 | p.seed = processed.seed + 1 148 | p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1) 149 | history.append(processed.images[0]) 150 | 151 | grid = images.image_grid(history, rows=1) 152 | if opts.grid_save: 153 | images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p) 154 | 155 | grids.append(grid) 156 | all_images += history 157 | 158 | if opts.return_grid: 159 | all_images = grids + all_images 160 | 161 | processed = Processed(p, all_images, initial_seed, initial_info) 162 | return processed 163 | 164 | finally: 165 | logging.info("Restoring CC option to: %s", old_cc_opt) 166 | opts.img2img_color_correction = old_cc_opt 167 | logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.WARNING) 168 | 169 | def compute_cc_target_window(self, current_pos, window_delay, window_size, window_rate): 170 | cc_window_end = round((current_pos-window_delay)*window_rate) 171 | if window_size == -1: 172 | cc_window_start = 0 173 | else: 174 | cc_window_start = max(0, cc_window_end-window_size) 175 | return cc_window_start, cc_window_end 176 | 177 | def compute_cc_target(self, target_images): 178 | if target_images is None or len(target_images)==0: 179 | return None 180 | 181 | target_histogram = (cv2.cvtColor(np.asarray(target_images[0].copy()), cv2.COLOR_RGB2LAB)*0).astype('float64') 182 | for img in target_images: 183 | target_histogram_component = cv2.cvtColor(np.asarray(img.copy()), cv2.COLOR_RGB2LAB).astype('float64') 184 | target_histogram += (target_histogram_component/len(target_images)).astype('float64') 185 | 186 | target_histogram=target_histogram.astype('uint8') 187 | 188 | return target_histogram -------------------------------------------------------------------------------- /manual_tests/curl-webui.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -o nounset 3 | 4 | #!/bin/bash 5 | set -o nounset 6 | 7 | function runCurl() { 8 | CC_TYPE=$1 9 | CC_WIDTH=$2 10 | CC_RATE=$3 11 | CC_DELAY=$4 12 | CC_INT=$5 13 | 14 | echo '{"fn_index":28,"data":[0,"'$PROMPT'","","None","None","'$(cat $FILE)'",null,null,null,"Draw mask",'$STEPS',"'$DIFF'",4,"fill",'$RESTORE_FACES',false,1,1,7,'$DENOISE','$SEED',-1,0,0,0,false,512,512,"Just resize",false,32,"Inpaint masked","","","Loopback - color correction experiments","Seed","","Steps","",true,false,"

Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8

",128,8,["left","right","up","down"],1,0.05,"","",1,50,0,false,null,"",'$LOOPS',1,"'$CC_TYPE'",'$CC_WIDTH','$CC_RATE','$CC_DELAY','$CC_INT',false,128,4,"fill",["left","right","up","down"],4,1,"

Will upscale the image to twice the dimensions; use width and height sliders to set tile size

",64,"None",null,"",""],"session_hash":"nb79h3wwdee"}' > data.bin 15 | 16 | curl "$HOST" \ 17 | -H 'accept: */*' \ 18 | -H 'content-type: application/json' \ 19 | --data '@./data.bin' \ 20 | --compressed >> out-$(date +%s).bin 21 | } 22 | 23 | # function runCurl_origLoopback() { 24 | # 25 | # echo '{"fn_index":27,"data":[0,"'$PROMPT'","","None","None","'$(cat $FILE)'",null,null,null,"Draw mask",20,"Euler a",4,"fill",'$RESTORE_FACES',false,1,1,7,'$DENOISE','$SEED',-1,0,0,0,false,512,512,"Just resize",false,32,"Inpaint masked","","","Loopback","Seed","","Steps","",true,"

Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8

",128,4,["left","right","up","down"],1,0.05,"","",1,50,0,false,null,"",false,128,4,"fill",["left","right","up","down"],'$LOOPS',1,"

Will upscale the image to twice the dimensions; use width and height sliders to set tile size

",64,"None",null,"",""],"session_hash":"n61d76buoh"}' > data.bin 26 | # 27 | # curl "$HOST" \ 28 | # -H 'accept: */*' \ 29 | # -H 'content-type: application/json' \ 30 | # --data '@./data.bin' \ 31 | # --compressed >> out-$(date +%s).bin 32 | # 33 | # } 34 | 35 | # function setColorCorrection() { 36 | # echo "WARNING: setting color correction nukes all setting changes" 37 | 38 | # curl "$HOST" \ 39 | # -H 'accept: */*' \ 40 | # -H 'content-type: application/json' \ 41 | # --data-raw '{"fn_index":38,"data":["",true,true,"","","outputs/txt2img-images","outputs/img2img-images","outputs/extras-images","","outputs/txt2img-grids","outputs/img2img-grids","log/images",true,false,"png",false,true,false,"png",false,true,4,100,false,true,false,'$1',true,true,true,"",true,true,true,192,8,["Real-ESRGAN 4x plus","Real-ESRGAN 4x plus anime 6B"],192,8,100,1,1,[],null,true,10,true,8,"CodeFormer",0.5,true,false,false,true,1,24,48,1500,null,true,true,false],"session_hash":"n61d76buoh"}' \ 42 | # --compressed 43 | 44 | # } 45 | 46 | HOST="https://29300.gradio.app/api/predict/" 47 | 48 | DIFF="Euler a" 49 | STEPS=20 50 | RESTORE_FACES=false 51 | SEED=8 52 | LOOPS=80 53 | DENOISE=0.5 54 | 55 | function doAll() { 56 | echo "No color correction" 57 | runCurl "window" -1 1 0 1000 58 | 59 | echo "Color correct every frame to the input histogram" 60 | runCurl "input" -1 1 0 1 61 | 62 | echo "Color correct every frame to average of all frames so far" 63 | runCurl "window" -1 1 0 1 64 | 65 | echo "Color correct every frame to average of last 5 frames." 66 | runCurl "window" 5 1 0 1 67 | 68 | echo "Color correct every frame to average of last 10 frames." 69 | runCurl "window" 10 1 0 1 70 | 71 | echo "Color correct every frame to average of 5 frames lagging 4 frames behind the current frame." 72 | runCurl "window" 5 1 4 1 73 | 74 | echo "Color correct every frame to average of 20 frames shifting at 75% the rate of the image generation" 75 | runCurl "window" 20 0.75 0 1 76 | 77 | echo "Color correct every frame to average of first 75% of frames generated so far." 78 | runCurl "window" -1 0.75 0 1 79 | 80 | } 81 | 82 | 83 | # PROMPT="Classy studio photo portrait with (natural skin tones)." 84 | # FILE='hulk.b64' 85 | # DENOISE=0.5 86 | # doAll 87 | 88 | PROMPT="Dramatic 4k high detail urban dense utopian cityscape at sunset." 89 | FILE='land.b64' 90 | SEED=20 91 | DENOISE=0.6 92 | doAll 93 | 94 | # PROMPT="(Colorful) color photo of a man with yellow hair and a rainbow hat." 95 | # FILE='dali.b64' 96 | # SEED=24 97 | # DENOISE=0.68 98 | # RESTORE_FACES=true 99 | # doAll -------------------------------------------------------------------------------- /manual_tests/dirs2vid.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | for d in */ ; do 4 | EXP_NAME=${d%?} 5 | echo "Converting $EXP_NAME..." 6 | ffmpeg -framerate 10 -pattern_type glob -i $EXP_NAME/'*.png' -vf "drawtext=fontfile=Verdana.ttf: text='$EXP_NAME; frame %{frame_num}': start_number=1: x=w-tw*1.1: y=h-lh*1.5: fontcolor=blue: fontsize=20: box=1: boxcolor=white@0.4: boxborderw=5" -c:v libx264 -pix_fmt yuv420p ./$EXP_NAME.mp4 7 | ffmpeg -framerate 10 -pattern_type glob -i $EXP_NAME/'*.png' -filter_complex "histogram=display_mode=overlay,scale=512:512" -an -c:v libx264 -pix_fmt yuv420p ./$EXP_NAME-histo.mp4 8 | ffmpeg -i ./$EXP_NAME.mp4 -i ./$EXP_NAME-histo.mp4 -filter_complex hstack ./$EXP_NAME-combined.mp4 9 | done -------------------------------------------------------------------------------- /manual_tests/hulk.b64: -------------------------------------------------------------------------------- 1 |  -------------------------------------------------------------------------------- /manual_tests/split-image-list.sh: -------------------------------------------------------------------------------- 1 | #!/bin/zsh 2 | 3 | function move() { 4 | NUM=$1 5 | DEST=$2 6 | mkdir $DEST 7 | mv -- *(D.[1,$NUM]) $DEST 8 | } 9 | 10 | move 160 no-cc 11 | move 160 cc-to-input 12 | move 160 cc-to-average 13 | move 160 cc-5-last-frames 14 | move 160 cc-5-last-frames-lag-1 15 | move 160 cc-5-last-frames-lag-4 16 | move 160 cc-10-frames-75pc-behind 17 | move 160 cc-first-75pc-frames --------------------------------------------------------------------------------