├── .github
├── actions
│ └── cached-venv
│ │ └── action.yml
└── workflows
│ └── cicd.yml
├── .gitignore
├── .pre-commit-config.yaml
├── CHANGELOG.md
├── LICENSE
├── README.md
├── docs
├── index.html
├── optionlab.html
├── optionlab.png
├── optionlab
│ ├── black_scholes.html
│ ├── engine.html
│ ├── models.html
│ ├── optionlab.png
│ ├── plot.html
│ ├── price_array.html
│ ├── support.html
│ └── utils.html
└── search.js
├── examples
├── .gitignore
├── black_scholes_calculator.ipynb
├── calendar_spread.ipynb
├── call_spread.ipynb
├── covered_call.ipynb
├── msft_22-November-2021.csv
└── naked_call.ipynb
├── optionlab.png
├── optionlab
├── .gitignore
├── __init__.py
├── black_scholes.py
├── engine.py
├── models.py
├── plot.py
├── price_array.py
├── support.py
└── utils.py
├── poetry.lock
├── pyproject.toml
└── tests
├── .gitignore
├── __init__.py
├── conftest.py
├── test_core.py
├── test_misc.py
└── test_models.py
/.github/actions/cached-venv/action.yml:
--------------------------------------------------------------------------------
1 | name: "Install dependencies in venv"
2 | description: "Install dependencies in venv"
3 |
4 | runs:
5 | using: composite
6 | steps:
7 | - name: Cache virtual environment
8 | uses: actions/cache@v4
9 | env:
10 | cache-name: cache-venv-1
11 | with:
12 | path: '**/venv'
13 | key: ${{ runner.os }}-${{ env.cache-name }}-${{ hashFiles('poetry.lock') }}
14 |
15 | - name: Set up Python ${{ matrix.python-version }}
16 | uses: actions/setup-python@v2
17 | with:
18 | python-version: "3.10.8"
19 |
20 | - name: Install Poetry
21 | run: |
22 | pip install poetry==1.4.0
23 | shell: bash
24 |
25 | - name: Install dependencies
26 | run: |
27 | python3.10 -m venv venv
28 | source venv/bin/activate
29 | poetry install
30 | shell: bash
31 |
--------------------------------------------------------------------------------
/.github/workflows/cicd.yml:
--------------------------------------------------------------------------------
1 | # Run unit and integration tests for CI
2 | # Build any branch that passes CI as a docker image
3 | # Push a docker image tagged with the git hash and branch name
4 | # For PR's, display the option to deploy to the test env
5 | # For merges to main, display the option to deploy to the dev env
6 | # The environments are configured in the GitHub repo settings
7 |
8 | name: CI/CD
9 |
10 | on:
11 | push:
12 | branches:
13 | - '**'
14 |
15 | jobs:
16 | tests:
17 | runs-on: ubuntu-latest
18 | steps:
19 | - uses: actions/checkout@v4
20 | - uses: ./.github/actions/cached-venv
21 | - name: Run mypy & service tests
22 | run: |
23 | source venv/bin/activate
24 | mypy optionlab/ --ignore-missing-imports
25 | black . --check --diff --color
26 | pytest -m "not benchmark"
27 |
28 | publish:
29 | name: Publish to pypi.org
30 | if: github.event.ref == 'refs/heads/main'
31 | needs: [ tests ]
32 | runs-on: ubuntu-latest
33 | steps:
34 | - uses: actions/checkout@v4
35 | - uses: ./.github/actions/cached-venv
36 | - name: Build and publish
37 | env:
38 | PYPI_TOKEN: ${{ secrets.PYPI_TOKEN }}
39 | run: |
40 | poetry config pypi-token.pypi "$PYPI_TOKEN"
41 | poetry publish --build
42 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | .benchmarks
2 | .mypy_cache
3 | .pytest_cache
4 | __pycache__
5 | dist
6 | run_check
7 | *.old
8 | runpdoc.bat
9 |
--------------------------------------------------------------------------------
/.pre-commit-config.yaml:
--------------------------------------------------------------------------------
1 | # See https://pre-commit.com for more information
2 | # See https://pre-commit.com/hooks.html for more hooks
3 | repos:
4 | - repo: https://github.com/psf/black
5 | rev: 24.2.0
6 | hooks:
7 | - id: black
8 | - repo: https://github.com/astral-sh/ruff-pre-commit
9 | rev: v0.3.2
10 | hooks:
11 | - id: ruff
12 | args: [--ignore,E501,--fix]
13 |
--------------------------------------------------------------------------------
/CHANGELOG.md:
--------------------------------------------------------------------------------
1 | # CHANGELOG
2 |
3 | ## 1.4.3 (2025-04-14)
4 |
5 | - Updated docstrings.
6 | - Added documentation with `pdoc`.
7 | - Changed __init__.py for compatibility with `pdoc` autodocumentation.
8 | - Removed `BaseLeg` from models.py.
9 | - Changed `StrategyType` to `StrategyLegType` in models.py for clarity.
10 | - Removed "normal" as an alias for "black-scholes" to avoid confusion with Bachelier model.
11 | - Updated Readme.md.
12 |
13 | ## 1.4.2 (2025-01-25)
14 |
15 | - Removed `expected_profit` and `expected_loss` calculation from `_get_pop_bs` in support.py; implementation was not correct, giving wrong results when compared with Monte Carlo simulations
16 |
17 | ## 1.4.1 (2025-01-04)
18 |
19 | - Removed a small bug in `create_price_seq` in support.py
20 | - Improved the algorithm in `get_profit_range` in support.py, then renamed to `_get_profit_range`
21 | - Created a helper function `_get_sign_changes` in support.py, called by `get_profit_range`
22 | - Removed the fields `probability_of_profit_from_mc`, `average_profit_from_mc` and `average_loss_from_mc` from `Outputs` in models.py
23 | - Created the fields `expected_profit` and `expected_loss` in `Outputs` in models.py
24 | - Created a class `PoPOutputs` in models.py containing fields returned by `get_pop` in support.py
25 | - Removed Laplace form `get_pop` in support.py
26 | - Improved `get_pop` in support.py to return a `PoPOutputs` object with more information
27 | - Added naked calls as an example of strategy
28 | - Created a custom type `FloatOrNdarray` that can contain a float or a numpy.ndarray in models.py
29 | - Created the helper functions `_get_pop_bs` and `get_pop_array` in support.py
30 |
31 | ## 1.4.0 (2025-01-01)
32 |
33 | - Changed the class name `DistributionInputs` to `TheoreticalModelInputs` in models.py, to be more descriptive
34 | - Changed the class name `DistributionBlackScholesInputs` to `BlackScholesModelInputs` in models.py
35 | - Changed the class name `DistributionLaplaceInputs` to `LaplaceInputs` in models.py
36 | - Changed the class name `DistributionArrayInputs` to `ArrayInputs` in models.py
37 | - Changed literal `Distribution` to `TheoreticalModel`
38 | - Moved `create_price_samples` from support.py to a new module price_array.py and renamed it to `create_price_array`
39 | - Commented a code snippet in engine.py where terminal stock prices are created using `create_price_samples`, to be removed in a next version
40 | - Allowed a dictionary as input for `create_price_array` in price_array.py
41 | - Allowed a dictionary as input for `get_pop` in support.py
42 |
43 | ## 1.3.5 (2024-12-28)
44 |
45 | - Created a base class `DistributionInputs`
46 | - Changed the name of `ProbabilityOfProfitInputs` in models.py (and everywhere in the code) to `DistributionBlackScholesInputs`, which inherits from `DistributionInputs`
47 | - Removed the `source` field from `DistributionBlackScholesInputs`
48 | - Modified interest_rate: float = Field(0.0, ge=0.0) in `DistributionBlackScholesInputs` in models.py
49 | - Modified volatility: float = Field(gt=0.0) in `DistributionInputs` in models.py
50 | - Modified years_to_maturity: float = Field(ge=0.0) in `DistributionInputs` in models.py
51 | - Created a class `DistributionLaplaceInputs` in models.py, which inherits from `DistributionInputs`
52 | - Changed `years_to_maturity` field in `DistributionInputs` to `years_to_target_date`
53 | - Refactored `create_price_samples` in support.py
54 | - Added __hash__ = object.__hash__ in `DistributionBlackScholesInputs` and `DistributionLaplaceInputs` in models.py to allow their use in `create_price_samples` in support.py with caching
55 | - Updated tests to reflect those changes
56 | - Removed a deprecated class, `StrategyEngine`, commented in a previous version
57 | - Added a test for Laplace distribution
58 | - Added a test for Calendar Spread
59 |
60 | ## 1.3.4 (2024-12-20)
61 |
62 | - Deleted `OptionInfo` class in models.py, because it is not necessary
63 | - Deleted `return_in_the_domain_ratio` in `Outputs` in models.py
64 | - Deleted `Country` in models.py, because it is not necessary
65 | - Deleted source: Literal["array"] = "array" in `ProbabilityOfProfitArrayInputs` class in models.py, because it is not necessary
66 | - Strike prices in black_scholes.py functions now can be provided also as numpy arrays and those functions return numpy arrays
67 | - `BlackScholesInfo` fields in models.py now can be both float and numpy arrays
68 | - Split `get_d1_d2` function in black_scholes.py into two functions, `get_d1` and `get_d2`
69 | - Added the field `business_days_in_year` in `Inputs` class in models.py to allow market-dependent customization; also changed in engine.py
70 | - Added Greek Rho calculation to black-scholes.py
71 | - Added `call_rho` and `put_rho` fields to `BlackScholesInfo` in models.py
72 | - Added `rho` field to `EngineData` in models.py
73 | - Added `rho` field to `Outputs` in models.py
74 | - Added `rho` data field in engine.py
75 | - Added a `seed` argument to `create_price_samples` in support.py to make the generation of price samples deterministic
76 | - Changed `array_prices` field to simply `array` in `Inputs` in models.py
77 | - Changed and commented some tests in test_core.py
78 |
79 | ## 1.3.3 (2024-12-18)
80 |
81 | - Updated docstrings to comply with reStructuredText (RST) standards
82 | - Changed the `country` argument in `get_nonbusiness_days` in utils.py to accept a string
83 | - Changed the `data` argument in `get_pl` and `pl_to_csv` in utils.py to accept an `Outputs` object instead of `EngineData`
84 | - Commented 'source: Literal["array"] = "array"' in `ProbabilityOfProfitArrayInputs` class in models.py, because `source` is not necessary
85 | - Commented `OptionInfo` class in models.py, because it is not used anywhere
86 | - Commented `return_in_the_domain_ratio` in `Outputs` in models.py, because it is not necessary
87 | - Commented `Country` in models.py, because it is not necessary
88 | - Changed country: Country = "US" to country: str = "US" in models.py
89 |
90 | ## 1.3.2 (2024-11-30)
91 |
92 | - Changed Laplace distribution implementation in `create_price_samples` and `get_pop` functions in support.py
93 |
94 | ## 1.3.1 (2024-09-27)
95 |
96 | - discriminator="type" removed from strategy: list[StrategyLeg] = Field(..., min_length=1) in models.py, since
97 | it was causing errors in new Pydantic versions.
98 | - Changed `StotckStrategy` and `OptionStrategy` to `Stock` and `Option` in models.py, respectively.
99 | - Changed `BaseStrategy` to `BaseLeg` in models.py
100 | - Changed `Strategy` to `StrategyLeg` in models.py
101 | - Removed `premium` field from `Stock` in models.py
102 | - Moved `n` field to `BaseLeg` in models.py
103 |
104 | ## 1.3.0 (2024-09-13)
105 |
106 | - Remove the deprecated `StrategyEngine` class (it remains commented in the code).
107 | - Update the README.md file to reflect the current state of the library
108 |
109 | ## 1.2.1 (2024-06-03)
110 |
111 | - Add 1 to `time_to_target` and `time_to_maturity` in `engine.py` to consider the target and expiration dates as trading days in the calculations
112 | - Change Jupyter notebooks in the `examples` directory to utilize the `run_strategy()` function for performing options strategy calculations, instead of using the `StrategyEngine` class (deprecated)
113 | - Correct the PoP Calculator notebook
114 | - Change the name of variable `project_target_ranges` in `models.py` and `engine.py` to `profit_target_ranges`
115 |
116 | ## 1.2.0 (2024-03-31)
117 |
118 | - Add functions to run engine
119 |
120 | ## 1.1.0 (2024-03-24)
121 |
122 | - Refactor the engine's `run` method for readability
123 | - Accept dictionary of inputs to `StratgyEngine` init
124 |
125 | ## 1.0.1 (2024-03-18)
126 |
127 | - Refactor __holidays__.py to a utils function using the `holiday` library
128 |
129 | ## 1.0.0 (2024-03-11)
130 |
131 | **BREAKING CHANGES**:
132 | - Renamed strategy.py to engine.py and `Strategy` to `StrategyEngine`
133 | - Using pydantic for input validation into `StrategyEngine`
134 | - Outputs are now also a Pydantic model
135 | - Delete `use_dates`, as Pydantic will handle either using dates or `days_to_target`
136 | - Renamed functions to be PEP8 compliant, i.e. instead of `getPoP`, now is `get_pop`
137 | - Deleted options_chain.py module
138 |
139 | ## 0.1.7 (2023-07-04)
140 |
141 | - Initial commit with strategy engine and examples
142 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | 
2 |
3 | # OptionLab
4 |
5 | This package is a lightweight library written entirely in Python, designed to provide
6 | quick evaluation of option strategy ideas.
7 |
8 | The code produces various outputs, including the profit/loss profile of the strategy on
9 | a user-defined target date, the range of stock prices for which the strategy is
10 | profitable (i.e., generating a return greater than \$0.01), the Greeks associated with
11 | each leg of the strategy using the Black-Sholes model, the resulting debit or credit on the
12 | trading account, the maximum and minimum returns within a specified lower and higher price
13 | range of the underlying asset, and an estimate of the strategy's probability of profit.
14 |
15 | If you have any questions, corrections, comments or suggestions, just
16 | [drop a message](mailto:roberto.veiga@ufabc.edu.br).
17 |
18 | You can also reach me on [Linkedin](https://www.linkedin.com/in/roberto-gomes-phd-8a718317b/) or
19 | follow me on [X](https://x.com/rgaveiga). When I have some free time, which is rare, I publish articles
20 | on [Medium](https://medium.com/@rgaveiga).
21 |
22 | If you want to support this and other open source projects that I maintain, become a
23 | [sponsor on Github](https://github.com/sponsors/rgaveiga).
24 |
25 | ## Installation
26 |
27 | The easiest way to install **OptionLab** is using **pip**:
28 |
29 | ```
30 | pip install optionlab
31 | ```
32 |
33 | ## Documentation
34 |
35 | You can access the API documentation for **OptionLab** on the [project's GitHub Pages site](https://rgaveiga.github.io/optionlab).
36 |
37 | ## Contributions
38 |
39 | Contributions are definitely welcome. However, it should be mentioned that this
40 | repository uses [poetry](https://python-poetry.org/) as a package manager and
41 | [git hooks](https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks) with
42 | [pre-commit](https://pre-commit.com/) to customize actions on the repository. Source
43 | code must be formatted using [black](https://github.com/psf/black).
44 |
45 | ## Disclaimer
46 |
47 | This is free software and is provided as is. The author makes no guarantee that its
48 | results are accurate and is not responsible for any losses caused by the use of the
49 | code.
50 |
51 | Options are very risky derivatives and, like any other type of financial vehicle,
52 | trading options requires due diligence. This code is provided for educational and
53 | research purposes only.
54 |
55 | Bugs can be reported as issues.
56 |
--------------------------------------------------------------------------------
/docs/index.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/docs/optionlab.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rgaveiga/optionlab/b4af9805ea7658b9e0d6d96cc11af83e17c3903d/docs/optionlab.png
--------------------------------------------------------------------------------
/docs/optionlab/optionlab.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rgaveiga/optionlab/b4af9805ea7658b9e0d6d96cc11af83e17c3903d/docs/optionlab/optionlab.png
--------------------------------------------------------------------------------
/examples/.gitignore:
--------------------------------------------------------------------------------
1 | .ipynb_checkpoints
--------------------------------------------------------------------------------
/examples/black_scholes_calculator.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Black-Scholes calculator\n",
8 | "\n",
9 | "This notebook can be used to calculate the prices of call and put options, as well as the corresponding Greeks, using the famous [Black-Scholes model](https://www.investopedia.com/terms/b/blackscholes.asp).\n",
10 | "\n",
11 | "**Caveat: Options are very risky derivatives and, like any other type of financial vehicle, trading options requires due diligence.**"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 1,
17 | "metadata": {
18 | "ExecuteTime": {
19 | "end_time": "2024-03-15T21:15:37.010803Z",
20 | "start_time": "2024-03-15T21:15:36.450216Z"
21 | }
22 | },
23 | "outputs": [],
24 | "source": [
25 | "from __future__ import print_function\n",
26 | "from __future__ import division\n",
27 | "from optionlab import VERSION, get_bs_info\n",
28 | "import sys"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": 2,
34 | "metadata": {
35 | "ExecuteTime": {
36 | "end_time": "2024-03-11T13:51:18.074225Z",
37 | "start_time": "2024-03-11T13:51:18.059531Z"
38 | }
39 | },
40 | "outputs": [
41 | {
42 | "name": "stdout",
43 | "output_type": "stream",
44 | "text": [
45 | "Python version: 3.11.9 | packaged by Anaconda, Inc. | (main, Apr 19 2024, 16:40:41) [MSC v.1916 64 bit (AMD64)]\n",
46 | "OptionLab version: 1.4.3\n"
47 | ]
48 | }
49 | ],
50 | "source": [
51 | "print(f\"Python version: {sys.version}\")\n",
52 | "print(f\"OptionLab version: {VERSION}\")"
53 | ]
54 | },
55 | {
56 | "cell_type": "markdown",
57 | "metadata": {},
58 | "source": [
59 | "## Input\n",
60 | "\n",
61 | "You must provide the spot price of the underlying asset, the option strike, the annualized risk-free interest rate (as a percentage), the annualized volatility (also as a percentage), and the number of days remaining until the option expires. The annualized dividend yield on the stock, also as a percentage, is optional."
62 | ]
63 | },
64 | {
65 | "cell_type": "code",
66 | "execution_count": 3,
67 | "metadata": {
68 | "ExecuteTime": {
69 | "end_time": "2024-03-11T13:51:19.921321Z",
70 | "start_time": "2024-03-11T13:51:19.914234Z"
71 | }
72 | },
73 | "outputs": [],
74 | "source": [
75 | "stock_price = 100.0\n",
76 | "strike = 105.0\n",
77 | "interest_rate = 1.0\n",
78 | "dividend_yield = 0.0\n",
79 | "volatility = 20.0\n",
80 | "days_to_maturity = 60"
81 | ]
82 | },
83 | {
84 | "cell_type": "markdown",
85 | "metadata": {},
86 | "source": [
87 | "## Calculations\n",
88 | "\n",
89 | "Before performing the calculations, the risk-free interest rate, dividend yield and volatility are converted from percentage to fractional and time remaining to option expiration is converted from days to years.\n",
90 | "\n",
91 | "The calculations are then performed using the Black-Scholes model."
92 | ]
93 | },
94 | {
95 | "cell_type": "code",
96 | "execution_count": 4,
97 | "metadata": {
98 | "ExecuteTime": {
99 | "end_time": "2024-03-11T13:51:23.066600Z",
100 | "start_time": "2024-03-11T13:51:23.061122Z"
101 | }
102 | },
103 | "outputs": [
104 | {
105 | "name": "stdout",
106 | "output_type": "stream",
107 | "text": [
108 | "CPU times: total: 0 ns\n",
109 | "Wall time: 4 ms\n"
110 | ]
111 | }
112 | ],
113 | "source": [
114 | "%%time\n",
115 | "interest_rate = interest_rate / 100\n",
116 | "dividend_yield = dividend_yield / 100\n",
117 | "volatility = volatility / 100\n",
118 | "time_to_maturity = days_to_maturity / 365\n",
119 | "bs = get_bs_info(\n",
120 | " stock_price, strike, interest_rate, volatility, time_to_maturity, dividend_yield\n",
121 | ")"
122 | ]
123 | },
124 | {
125 | "cell_type": "markdown",
126 | "metadata": {},
127 | "source": [
128 | "## Output\n",
129 | "\n",
130 | "You can find below the output of Black-Scholes calculations."
131 | ]
132 | },
133 | {
134 | "cell_type": "code",
135 | "execution_count": 5,
136 | "metadata": {
137 | "ExecuteTime": {
138 | "end_time": "2024-03-11T13:51:26.685306Z",
139 | "start_time": "2024-03-11T13:51:26.678507Z"
140 | }
141 | },
142 | "outputs": [
143 | {
144 | "name": "stdout",
145 | "output_type": "stream",
146 | "text": [
147 | "CALL\n",
148 | "====\n",
149 | " Price: 1.44\n",
150 | " Delta: 0.29\n",
151 | " Theta: -8.78\n",
152 | " Rho: 0.05\n",
153 | " ITM probability: 26.70\n",
154 | "\n",
155 | "\n",
156 | "PUT\n",
157 | "===\n",
158 | " Price: 6.27\n",
159 | " Delta: -0.71\n",
160 | " Theta: -7.73\n",
161 | " Rho: -0.13\n",
162 | " ITM probability: 73.30\n",
163 | "\n",
164 | "\n",
165 | "Gamma and Vega: 0.0425 \n",
166 | " 0.14\n"
167 | ]
168 | }
169 | ],
170 | "source": [
171 | "print(\"CALL\")\n",
172 | "print(\"====\")\n",
173 | "print(f\" Price: {bs.call_price:.2f}\")\n",
174 | "print(f\" Delta: {bs.call_delta:.2f}\")\n",
175 | "print(f\" Theta: {bs.call_theta:.2f}\")\n",
176 | "print(f\" Rho: {bs.call_rho: .2f}\")\n",
177 | "print(f\" ITM probability: {bs.call_itm_prob * 100.0:.2f}\")\n",
178 | "print(\"\\n\")\n",
179 | "print(\"PUT\")\n",
180 | "print(\"===\")\n",
181 | "print(f\" Price: {bs.put_price:.2f}\")\n",
182 | "print(f\" Delta: {bs.put_delta:.2f}\")\n",
183 | "print(f\" Theta: {bs.put_theta:.2f}\")\n",
184 | "print(f\" Rho: {bs.put_rho: .2f}\")\n",
185 | "print(f\" ITM probability: {bs.put_itm_prob * 100.0:.2f}\")\n",
186 | "print(\"\\n\")\n",
187 | "print(f\"Gamma and Vega: {bs.gamma:.4f} \\n {bs.vega:.2f}\")"
188 | ]
189 | },
190 | {
191 | "cell_type": "code",
192 | "execution_count": null,
193 | "metadata": {},
194 | "outputs": [],
195 | "source": []
196 | }
197 | ],
198 | "metadata": {
199 | "kernelspec": {
200 | "display_name": "Python 3 (ipykernel)",
201 | "language": "python",
202 | "name": "python3"
203 | },
204 | "language_info": {
205 | "codemirror_mode": {
206 | "name": "ipython",
207 | "version": 3
208 | },
209 | "file_extension": ".py",
210 | "mimetype": "text/x-python",
211 | "name": "python",
212 | "nbconvert_exporter": "python",
213 | "pygments_lexer": "ipython3",
214 | "version": "3.11.9"
215 | }
216 | },
217 | "nbformat": 4,
218 | "nbformat_minor": 4
219 | }
220 |
--------------------------------------------------------------------------------
/examples/calendar_spread.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Calendar Spread\n",
8 | "\n",
9 | "To implement this [strategy](https://www.investopedia.com/terms/c/calendarspread.asp), the trader sells a short-term option (either a call or a put) and buys a long-term option of same type, both options with the same strike. As such, it is a debit spread, the maximum loss being the amount paid for the strategy.\n",
10 | "\n",
11 | "**Caveat: Options are very risky derivatives and, like any other type of financial vehicle, trading options requires due diligence. Transactions shown as examples of trading strategies with options in this notebook are not recommendations.**"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 1,
17 | "metadata": {
18 | "ExecuteTime": {
19 | "end_time": "2024-03-15T17:48:30.709566Z",
20 | "start_time": "2024-03-15T17:48:29.956122Z"
21 | }
22 | },
23 | "outputs": [],
24 | "source": [
25 | "from __future__ import print_function\n",
26 | "\n",
27 | "import datetime as dt\n",
28 | "import sys\n",
29 | "\n",
30 | "from optionlab import VERSION, run_strategy, plot_pl\n",
31 | "\n",
32 | "%matplotlib inline"
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": 2,
38 | "metadata": {
39 | "ExecuteTime": {
40 | "end_time": "2024-03-11T13:51:39.643053Z",
41 | "start_time": "2024-03-11T13:51:39.640177Z"
42 | }
43 | },
44 | "outputs": [
45 | {
46 | "name": "stdout",
47 | "output_type": "stream",
48 | "text": [
49 | "Python version: 3.11.9 | packaged by Anaconda, Inc. | (main, Apr 19 2024, 16:40:41) [MSC v.1916 64 bit (AMD64)]\n",
50 | "OptionLab version: 1.4.3\n"
51 | ]
52 | }
53 | ],
54 | "source": [
55 | "print(f\"Python version: {sys.version}\")\n",
56 | "print(f\"OptionLab version: {VERSION}\")"
57 | ]
58 | },
59 | {
60 | "cell_type": "markdown",
61 | "metadata": {},
62 | "source": [
63 | "The underlying asset is Apple stock (ticker: APPL). We consider the stock price on January 18, 2021. The strategy involves selling 1000 calls with a strike of 127, expiring on January 29, 2021, and buying 1000 calls with a strike of 127, expiring on February 12, 2021. The first leg of the strategy earns us a premium of 4.60 per option, while the second leg costs us 5.90 per option."
64 | ]
65 | },
66 | {
67 | "cell_type": "code",
68 | "execution_count": 3,
69 | "metadata": {
70 | "ExecuteTime": {
71 | "end_time": "2024-03-15T17:48:35.828897Z",
72 | "start_time": "2024-03-15T17:48:35.823904Z"
73 | }
74 | },
75 | "outputs": [],
76 | "source": [
77 | "stock_price = 127.14\n",
78 | "volatility = 0.427\n",
79 | "start_date = dt.date(2021, 1, 18)\n",
80 | "target_date = dt.date(2021, 1, 29)\n",
81 | "interest_rate = 0.0009\n",
82 | "min_stock = stock_price - round(stock_price * 0.5, 2)\n",
83 | "max_stock = stock_price + round(stock_price * 0.5, 2)\n",
84 | "strategy = [\n",
85 | " {\"type\": \"call\", \"strike\": 127.00, \"premium\": 4.60, \"n\": 1000, \"action\": \"sell\"},\n",
86 | " {\n",
87 | " \"type\": \"call\",\n",
88 | " \"strike\": 127.00,\n",
89 | " \"premium\": 5.90,\n",
90 | " \"n\": 1000,\n",
91 | " \"action\": \"buy\",\n",
92 | " \"expiration\": dt.date(2021, 2, 12),\n",
93 | " },\n",
94 | "]\n",
95 | "\n",
96 | "inputs = {\n",
97 | " \"stock_price\": stock_price,\n",
98 | " \"start_date\": start_date,\n",
99 | " \"target_date\": target_date,\n",
100 | " \"volatility\": volatility,\n",
101 | " \"interest_rate\": interest_rate,\n",
102 | " \"min_stock\": min_stock,\n",
103 | " \"max_stock\": max_stock,\n",
104 | " \"strategy\": strategy,\n",
105 | "}"
106 | ]
107 | },
108 | {
109 | "cell_type": "code",
110 | "execution_count": 4,
111 | "metadata": {
112 | "ExecuteTime": {
113 | "end_time": "2024-03-12T13:22:23.858251Z",
114 | "start_time": "2024-03-12T13:22:23.848088Z"
115 | }
116 | },
117 | "outputs": [
118 | {
119 | "name": "stdout",
120 | "output_type": "stream",
121 | "text": [
122 | "CPU times: total: 375 ms\n",
123 | "Wall time: 485 ms\n"
124 | ]
125 | }
126 | ],
127 | "source": [
128 | "%%time\n",
129 | "out = run_strategy(inputs)"
130 | ]
131 | },
132 | {
133 | "cell_type": "code",
134 | "execution_count": 5,
135 | "metadata": {
136 | "ExecuteTime": {
137 | "end_time": "2024-03-12T13:22:31.185260Z",
138 | "start_time": "2024-03-12T13:22:30.357975Z"
139 | }
140 | },
141 | "outputs": [
142 | {
143 | "name": "stdout",
144 | "output_type": "stream",
145 | "text": [
146 | "Profit/Loss diagram:\n",
147 | "--------------------\n",
148 | "The vertical green dashed line corresponds to the position of the stock's spot price. The right and left arrow markers indicate the strike prices of calls and puts, respectively, with blue representing long and red representing short positions.\n"
149 | ]
150 | },
151 | {
152 | "data": {
153 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV89JREFUeJzt3QeUFFXWwPHLRCYwgGTJSM5ZUQFRFFCCoKiYwLisropZTKCui4oJ17Tqt6KrGEARQVGQJFEBJWclZ5A0gWGY6e/ch1V2w8wwoburu/r/O6d8r7truh8l1Nx+4b4SHo/HIwAAAAh7UU43AAAAAP5BYAcAAOASBHYAAAAuQWAHAADgEgR2AAAALkFgBwAA4BIEdgAAAC5BYAcAAOASMU43wI1ycnJkx44dUqpUKSlRooTTzQEAAGFM95I4cuSInHnmmRIVlX+fHIFdAGhQV716daebAQAAXGTr1q1SrVq1fM8hsAsA7amz/gekpKQ43RwAISg7J1uW7Fpi6i0rt5ToqGinmwQgRB0+fNh0GFnxRX4I7ALAGn7VoI7ADkBu0o6lyYWfXWjqqUNTJSkuyekmAQhxBZnexeIJAAAAlyCwAwAAcAkCOwAAAJcgsAMAAHAJAjsAAACXILADAABwCdKdAIADYqNjZVjnYXYdAPyBwA4AHBAXHSfDLxjudDMAuAxDsQAAAC5Bjx0AOCDHkyOr96429UYVGklUCb5nAyg+AjsAcEBGVoY0faupqbOlGAB/4SsiAACAS4RNYPfWW29J8+bNJSUlxRwdOnSQyZMn268fPXpU7rzzTilXrpwkJyfLFVdcIbt37/Z5jy1btshll10miYmJUrFiRXnwwQfl+PHjPufMnDlTWrduLfHx8VK3bl0ZPXp00P6MAAAAERHYVatWTZ577jlZvHixLFq0SC688ELp06ePrFy50rx+7733ysSJE2Xs2LEya9Ys2bFjh/Tr18/++ezsbBPUHTt2TObNmycffPCBCdqefPJJ+5yNGzeac7p06SJLliyRIUOGyK233irff/+9I39mAACAwijh8Xg8EqbOOOMMGTlypFx55ZVSoUIFGTNmjKmrNWvWSKNGjWT+/PlyzjnnmN69nj17moCvUqVK5py3335bHn74Ydm7d6/ExcWZ+jfffCMrVqywP+Oaa66RgwcPynfffVfgdh0+fFhKly4thw4dMr2LAHCy1etXS+M7Gou0EUl9mjl2APwTV4RNj5037X379NNPJS0tzQzJai9eVlaWdO3a1T6nYcOGUqNGDRPYKS2bNWtmB3WqW7du5mJZvX56jvd7WOdY75GXzMxM8z7eBwDk57577hP5QUR+dLolANwkrAK75cuXm/lzOv9t8ODBMn78eGncuLHs2rXL9LiVKVPG53wN4vQ1paV3UGe9br2W3zkaqGVkZOTZrhEjRphI2jqqV6/utz8zAHf6bvKfowC/ON0SAG4SVoFdgwYNzNy3n376Sf7+97/LwIEDZdWqVU43S4YOHWq6R61j69atTjcJQLjIZEsxABGax0575XSlqmrTpo0sXLhQRo0aJVdffbVZFKFz4bx77XRVbOXKlU1dy59//tnn/axVs97nnLySVh/reHZCQkKe7dIeRD0AoLCioqLM9mIAEHE9difLyckx89s0yIuNjZVp06bZr61du9akN9E5eEpLHcrds2ePfc7UqVNN0KbDudY53u9hnWO9BwD4g84J9r6PAUDE9djpcGePHj3MgogjR46YFbCac05Tkei8tltuuUXuu+8+s1JWg7W77rrLBGS6IlZdcsklJoC74YYb5IUXXjDz6R5//HGT+87qbdN5e6+//ro89NBDcvPNN8v06dPl888/NytlAcBftm3b5vM4OydboqOiHWsPAPcIm8BOe9puvPFG2blzpwnkNFmxBnUXX3yxef2VV14xQxqamFh78XQ165tvvmn/fHR0tEyaNMnMzdOALykpyczRe/rpp+1zateubYI4zYmnQ7yaO++9994z7wUA/nLylI+de3dKtUrVHGsPAPcI6zx2oYo8dgDyo18Yb7vtNvvxgkUL5Ow2ZzvaJgChy/V57AAgnKWnp/s83rF9h2NtAeAuBHYA4PBQrG6TCAD+QGAHAEE2e/Zsn8esjAXgLwR2ABBkuoOOt18Wsf0EAP8gsAOAIJsyZcqJyp8LYY+kHnG0PQDcg8AOABzqsWvaoqkpjx095nCLALgFgR0ABFF2drZJWaCevuVEHs3Fixc73CoAbkFgBwAOrYjVROuW48ePO9QiAG5CYAcAQbRjx18565IqJNl13dsaAIqLwA4AgsgK4Jq3aC5VXqliP6/bJQJAcRHYAUAQ/fbbb6aMj48/8UTVE8WaNWscbBUAtyCwA4AgOnr0qCmTkv4chv1zt+79+/c72CoAbkFgBwBBNH36dFO2bdf2xBNn/LXJNwAUF4EdAARRqVKl7LQnRvkTxfjx4x1sFQC3ILADgCBasmSJKdud3e7EEzEnirJlyzrYKgBuQWAHAEG0detWU5YuXdpn8cTcuXMdbBUAtyCwA4Ag8Xg8Ehsba+p1z6orA1sMlN6te/u8DgDF8ecgAAAg0A4cOCBZWVmmXqNqDRl91mhJS0uT5HtO7B2bmppqz8EDgKKgxw4AgmTz5s12vWTJknbak4SEBJ8cdwBQVAR2ABAk+/btM2X16tXNsGvasTRzZGRk+My/A4CiIrADgCD55ZdfTFmnTh1Jz0qX5BHJ5rio60Xm+W3btjncQgDhjsAOAIIkJycn12TEZ5Q7kaV46dKljrQLgHsQ2AFAkMybN8+UXbt29XneWim7atUqR9oFwD0I7AAgyKKifG+9DRs1dKwtANyFwA4AguTgwYOmbNq0qc/zjRs3ttOhAEBxENgBQJDMmTPHlFWr/rndxJ8qV6lsyhUrVjjSLgDuQWAHAEGg6U2s3HWVKlXyea1qtb8CPSv1CQAUBTtPAEAQ6A4TR48eNfUaNWpIdFS0XNn4SvO4UsVKEh0dLdnZ2fL7779LkyZNHG4tgHBFYAcAQbBp0ya7rrtNlChRQsb2H2s/p0Gd2rNnD4EdgCJjKBYAgrjrhNKg7mQdO3Y0JbnsABQHgR0ABMGSJUtMef755+f6enp6uimZYwegOAjsACAIrIDNSmmie8SWeKqEObTeqVMn8/zUqVMdbSeA8EZgBwBBMH36dFNeeumlub4eHx9vyuTk5KC2C4C7ENgBQBDogoncdp2wtG/f3mfbMQAoCgI7AAiCadOm+QRwJytbtqzPXDsAKAoCOwAIAmuotXTp0rm+3qBBA3su3vHjx4PaNgDuQWAHAEHYdcLaJ7ZevXq5nlOxYsVcc94BQGEQ2AFAgP3xxx92AuIKFSrkeo7uPHHGGWeY+qpVq4LaPgDuwc4TABBg27dvt+sJCQmm1C3FLq13qV1X1hCs1bsHAIVFjx0ABNiWLVtM6b1VWMmYkvLNtd+YQ+uqZ8+eply9erVDLQUQ7gjsACDAli1b5tNbd7qUKNu2bQtKuwC4D4EdAARp14kyZcrke561gGL+/PlBaRcA9yGwA4AA++GHH0x53nnn2c/pNmJJ/0oyh9ZV3bp1TZmYmOhQSwGEOxZPAECAWT11mvbEW3qWbzLili1bmnL58uVBbB0AN6HHDgCCNMeuXbt2+Z5Xo0YNu84OFACKgsAOAAJsx44dPtuG5UVfj4uLM/W9e/cGpW0A3IXADgACSBMTlyhRwtRr166d77l6XnJysqmvW7cuKO0D4C4EdgAQQLt27bLn1uW164S3mJgTU5+ZZwegKAjsACCA1q5da9djY2NPe36dOnVMmZZ2YqUsABQGgR0ABND+/ftN2bBhQ5/no0pESeeanc2hdcv5559vyilTpgS5pQDcgHQnABBAP/30kykbNGjg83xCbILMHDTzlPNLljyxvVipUqWC1EIAbkKPHQAEUHR0tClTU1MLdL6VEuXHH38MaLsAuBOBHQAE0PTp00154YUXFuj88uXLm5I5dgCKgsAOAAIoKyvLZ4jVotuIVRhZwRzWlmKqSZMmdp0kxQAKi8AOAALo0KFDpmzTps0pr+1L32cObykpKfbq2Y0bNwaplQDcgsAOAAJE89dt2rTJ1KtUqVKgn9EkxVYvn/WzAFBQBHYAECAHDhyw69WqVSvwz11yySWmnDdvXkDaBcC9COwAIEB2795tD68mJiYW+OeOHj0awFYBcDMCOwAIkKVLl5qyMEGd9wramTNPzXMHAPkhsAOAADl8+HCuK2JPxzo/MzMzIO0C4F7sPAEAATJ79uw8c9jpNmJtz2xr171ZK2itFbUAUFAEdgAQIFbPW2756HRLsYW3Lcz1584880xTbtiwQbKzs+3dKwDgdBiKBYAAWbFihSk7depUqJ8766yz7PquXbv83i4A7kVgBwABXjxRtmzZQv1cfHy8VKxY0dTXrFkTkLYBcCcCOwAIEA3QVL169U55LT0rXWq9WsscWj/ZkSNHTsmFBwCnQ2AHAAGgu0ccPHjQ1GvWrJnrrhSbD202h9ZP1q1bN1POnTs3CK0F4BYEdgAQAN7bgRV2KFYdO3bMlCQrBlAYBHYAEACrVq0yZZkyZYq0qvWiiy4y5bfffuv3tgFwLwI7AAgAaxg2t2HWgqhQoYIpMzIy/NouAO5GYAcAAWCtZu3Zs2eRfr5Zs2am3Lt3b5GDQwCRh8AOAAJg8+bNpkxOTi7Sz3uvpLVWyALA6RDYAUAA/Pzzz6YsX758rq+XKFFCGldobA6tnywpKcmur1+/PoAtBeAmbCkGAAFgBWbeu0h4S4xNlJV3rDzte6Slpcn+/fsD0kYA7kOPHQAEwNatW33myhXF2Wefbco5c+b4rV0A3I3ADgD87Pjx4/aOEdbq1qJITz+xIwW7TwBwXWA3YsQIadeunZQqVcrsoXj55ZfL2rVrfc7RRJ533nmnlCtXzkxYvuKKK2T37t0+52zZskUuu+wySUxMNO/z4IMPmpuwt5kzZ0rr1q3NdkB169aV0aNHB+XPCMAddu3aZderVauW6zm6jViTN5uYI7ctxVSvXr1MuWjRogC1FIDbhE1gN2vWLBO0LViwQKZOnWq267nkkkvM/BPLvffeKxMnTpSxY8ea83fs2CH9+vWzX8/OzjZBnWZ0nzdvnnzwwQcmaHvyySftczZu3GjO6dKliyxZskSGDBkit956q3z//fdB/zMDCE+rV6825RlnnJFncmJNYbJq7ypz5JXOJCUlxSfZMQCclidM7dmzR++EnlmzZpnHBw8e9MTGxnrGjh1rn7N69Wpzzvz5883jb7/91hMVFeXZtWuXfc5bb73lSUlJ8WRmZprHDz30kKdJkyY+n3X11Vd7unXrVuC2HTp0yHyulgAiz4svvmjuAeXLl8/znNTMVI8MF3NoPTczZ84076P3KACR61Ah4oqw6bE72aFDh+xvxGrx4sWmF69r1672OQ0bNpQaNWrI/PnzzWMtdSJzpUqVfDbaPnz4sKxcudI+x/s9rHOs98hNZmameQ/vA0DksubG5bUitqD0Hqb0nmLtHQsA+QnLwC4nJ8cMkZ533nnStGlTe05LXFyc2ZfRmwZx1nwXLb2DOut167X8ztEba15b++j8v9KlS9tH9erV/finBRBu9u3b57Oqtai8F15s2rSp2O0C4H5hGdjpXLsVK1bIp59+KqFg6NChpgfROqw0BwAikzUnV0cMiiMqKsp+D73nAYDrEhT/4x//kEmTJsmPP/7os9qscuXKZqhCN9727rXTVbH6mnWOlQ3e+3XrNas8eSWtPtZJzAkJCbm2SVfP6gEA6o8//jBlXveMwrBGCqwtygDAFT12umpMg7rx48fL9OnTpXbt2j6vt2nTRmJjY2XatGn2c5oORdObdOjQwTzWcvny5bJnzx77HF1hq0Fb48aN7XO838M6x3oPAChoYNe8efM8z9FtxGqWrmmO3LYUs1x88cWmXLduXQBaCsBtYsJp+HXMmDEyYcIEk8vOmhOnc9r0W7GWt9xyi9x3331mQYUGa3fddZcJyM455xxzrqZH0QDuhhtukBdeeMG8x+OPP27e2+pxGzx4sLz++uvy0EMPyc0332yCyM8//1y++eYbR//8AMKDLqbS1Ereix/y2lJs05DTz5uzUp4sXLjQj60E4FZh02P31ltvmflrF1xwgVSpUsU+PvvsM/ucV155RXr27GkSE3fq1MkMq3755Zf265pPSodxtdSA7/rrr5cbb7xRnn76afsc7QnUIE576Vq0aCEvvfSSvPfee2ZlLACcjubCtFir9oujfv36ptTFYQBwOiU058lpz0Kh6Apa7UHUQNT6tg0gMui+rh07djQjC/5IfaTziTt37mzq3K6ByHS4EHFF2PTYAUA4sHJeWvN285KRlSHt3m1nDq3nxXtlrTXECwBhP8cOAMKBlUj4yJEj+Z6X48mRRTsW2fW8eOfF1JWxderU8VtbAbgPPXYA4OehWNWrVy+/vJ/3XrPr16/3y3sCcC8COwDwo9TUVL8vdmjSpMkpCzMAIDcEdgAQgMCuVatWfntPK4H6ggUL/PaeANyJwA4A/GjJkiV+2U4st8COVbEATofADgD8mJzY4r3lYXF16dLFlOPGjfPbewJwJ1bFAoCfrF692pRRUVFSsWLF055fPrF8gd63atWqpkxPTy9mCwG4HYEdAPjJjh07TJmTk5Pv/q8qKS5J9j64t0Dv27JlS7t+9OhRKVmyZDFbCsCtGIoFAD/5+eefTenvLQgrVarkk8sOAPJCYAcAfmIlJdZeNX/S3j8rfcrvv//u1/cG4C4EdgDgJ/v37zel7hV7OrqN2AWjLzBHfluKnZzLbuHChX5oKQC3Yo4dAPjJd999Z8qaNWue9lzdRmzW5ll2/XQSExNNeeDAgWK3E4B70WMHAH6yd++JxRClSpXy+3tffPHFppw160QwCAC5IbADAD/Iysoyq2FVixYt/P7+FSpUMOWaNWv8/t4A3IPADgD8YN++fXa9fv36fn//Nm3amJLdJwDkh8AOAPxg48aNptTExJqg2N/q1atnr7glUTGAvBDYAYAf7Nmz55SeO38qW7asXSflCYC8ENgBgB/MnTvXlN27dy/wzyTGJpqjoLns6tSpY+o//fRTEVsJwO1IdwIAfrBt2zZTZmdnF+h83VIs7dG0Qn2G9d6bNm0qQgsBRAJ67ADAD9avX2/K888/P2Cf0bNnT1OuW7cuYJ8BILwR2AGAHxw/ftyUZ511VsA+w5pnZ+1JCwAnI7ADAD9YunRpoVKdHD1+VC4bc5k5tF4QDRs2NGXJkiWL0VIAbsYcOwAopszMTLtetWrVAv1Mdk62fLv+W7teEM2bN7eTFGsy5ECkVQEQ3rgrAICfctipSpUqBexzrFx2aufOnQH7HADhi8AOAIrJe5WqpiUJFB2CtQLH1atXB+xzAIQvAjsAKKbly5eb8txzzw34Z6WlnUiRsmrVqoB/FoDwQ2AHAH5aOBEXFxfwz7LSqbD7BIDcENgBQDFZiYOtVauBZM2zmzVrVsA/C0D4IbADgGL65ptvTNm+ffuAf5a1rVgwegcBhB/SnQCAn3rsqlSpUuCf0S3FPMM8hf6stm3bmpIkxQByQ48dABRDVlaWpKenm3qjRo0C/nkNGjQ4ZSEFAFgI7ACgGHbs2GHXa9SoEfDPK1++vERHR/vsTwsAFgI7ACgG3QVClSpVqlA57HQbsf5j+5ujoFuKKf0Ma+h3yZIlRWgxADcjsAOAYrCCq7Jlyxbq53QbsXGrxpmjoFuKWZo1a3ZKbyEAKAI7ACiGo0ePBnwrsZOdc845ppw0aVLQPhNAeCCwA4Bi+O6770zZrVu3oH2mtfo2IyMjaJ8JIDwQ2AFAMezfv9/exzVYOnXqZErm2AE4GYEdABTDrl27TNm6deugfWatWrXsusdT+Fx4ANyLwA4AikiDqiNHjph6/fr1g/a51atXt+vr1q0L2ucCCH0EdgBQRN555KpVqxa0z/XeTowdKAB4Y0sxACii5cuXmzIhIUHi4+ML9bOJsYmSOjTVrheWBpLbtm2Tffv2FfpnAbgXPXYAUERWUJWUlFTon9VEw7pfrB6FSWxs6du3rymnTJlS6J8F4F4EdgBQRHPnzjVlr169gv7ZsbGxpty9e3fQPxtA6CKwA4Ai+v33301ZlB63zOOZMuirQebQemG1b9/elL/99luhfxaAexHYAUARpaenm7JVq1aF/tnjOcflg6UfmEPrhdW8eXNTHj58mJQnAGwEdgBQRL/++qspmzRpEvTPrl279ik9hwBAYAcARXD8+PFcg6xg0Z0urHl2ixYtCvrnAwhNBHYAUAQbNmzINWFwMJUpU8aUO3bscOTzAYQeAjsAKIK1a9fa9ejoaEfa0L9/f1OS8gSAhcAOAIpg2bJlpuzSpYtjbUhMPJHYeM2aNY61AUBoIbADgGIEdtY8Nyd06NDBXhkLAIotxQCgCLKzs03ZuHHjIv28biO254E9dr0o2rRpY8o//vjDtMepIWEAoYMeOwAogvHjx5uybdu2Rfp5TWpcIamCOYqS4FideeaZuc75AxC5COwAoBicSHVi0WFgK7j7+eefHWsHgNBBYAcAhXTw4EG73rRp0yK9h24jduc3d5qjKFuKWazhV7YWA6AI7ACgkLx3ekhJSSnSe+g2Ym8uetMcRdlSzNK7d29T/vLLL0V+DwDuQWAHAIVkpRepWbOm002RSpUqmXL+/PlONwVACCCwA4BCmjdvns/OD06yVsZGRXE7B1CMwE67/ZcvX24/njBhglx++eXy6KOPyrFjx/zVPgAIOdY9zqmtxLy1bt3alPv375eMjAynmwMgXAO7v/3tb7Ju3Tp7vsk111xjsqCPHTtWHnroIX+2EQBCysSJE03Zs2dPp5siFStWtOvWPRlA5CpyYKc3kJYtW5q6BnOdOnWSMWPGyOjRo+WLL77wZxsBIKRoQuBQGYrVIVgrSfLcuXOdbg6AcA3sPB6P5OTkmPoPP/wgl156qT00sW/fPv+1EABCbBjWGopt3ry5hNIuGCtXrnS6KQDCdUsxzbb+z3/+U7p27SqzZs2St956yzy/ceNGe5UWALjNtm3b7HrDhg2L/D4JsQmy8Z6Ndr04LrzwQrPzxPbt24v1PgAiOLB79dVX5brrrpOvvvpKHnvsMalbt655fty4cXLuuef6s40AEDKsRMC660NRtwJTUSWipFaZWn5pU6NGjUz57bff+uX9AERgYKdDEN6rYi0jR45kI2oArmXNY7O+zIYCa/cLDTYBRLYiz7HbunWrz5CE7lM4ZMgQ+fDDD7m5AHCtAwcOmLJ06dLFep9j2cfkwSkPmkPrxWHN9UtPT5e9e/cW670ARGhgd+2118qMGTNMfdeuXXLxxReb4E6HZZ9++ml/thEAQsaPP/5oyj59+hTrfbKys+TF+S+aQ+vFccYZZ9j1pUuXFuu9AERoYLdixQpp3769qX/++edmKECzsX/88ccm5QkAuJGVK65UqVISKnSuX4cOHUx9wYIFTjcHQDgGdllZWRIfH2+nO7E2otZVYjt37vRfCwEgRGiaJx3uVK1atZJQUrJkSVPqyAmAyFXkwK5Jkyby9ttvy+zZs2Xq1KnSvXt38/yOHTukXLly/mwjAIRUYmLVokULCSXWnrFHjx51uikAwjGwe/755+U///mPXHDBBTJgwAD7Jvf111/bQ7QA4CbeCYCTkpIklFhppvSLNoDIVeR0JxrQ6Q4Thw8flrJly9rP33777WbPWABwm8WLF4fUjhPevHsQMzIyJCGheEmPAURYYKc0X93x48dlzpw55nGDBg2kVi3/JNwEgFCjU01UcRITB0rt2rVNu3Qe4KpVq+yhWQCRpchDsWlpaXLzzTdLlSpVpFOnTuY488wz5ZZbbrEnFwcizUCvXr3M5+gNTHe98KY3tCeffNK0Sb+t6nZn69evP2WOjO6YkZKSYjbw1vampqb6nLNs2TLp2LGjmYyse9++8MILAfnzAAgvv/zyiyk1vVNx6TZiK/6+whzF3VJMWUGdyi15PIDIUOTA7r777jN7xE6cOFEOHjxojgkTJpjn7r//fgkEDSZ1uOGNN97I9XUNwF577TWzqOOnn34yc2C6devmM5lYgzqdJ6PzUCZNmmSCRR0+tujQ8iWXXCI1a9Y0wy66k8bw4cPlnXfeCcifCUD40JROqnLlysV+L91SrEnFJubQuj/o/U6d/KUXQATxFFG5cuU8M2bMOOX56dOne8qXL+8JNG36+PHj7cc5OTmeypUre0aOHGk/d/DgQU98fLznk08+MY9XrVplfm7hwoX2OZMnT/aUKFHCs337dvP4zTff9JQtW9aTmZlpn/Pwww97GjRoUOC2HTp0yHyOlgDcIykpyfzbzu3eFwquvPJK076+ffs63RQAflSYuKLIXxN1uLVSpUqnPF+xYsWADcXmZ+PGjWYHDB1+teiWP2effbbMnz/fPNZSh1/btm1rn6PnR0VFmR4+6xwdVo6Li/P5Frx27Vp7KyEAkefQoUNm1EC1bNmy2O+n24gNnzncHMXdUszSt29fU44fP94v7wcg/BQ5sNMs58OGDfMZ5tSVWE899ZSdAT2YNKhTJweb+th6TUsNPL3FxMSY7Xi8z8ntPbw/42SZmZlmCNf7AOAua9assevF3SdW6TZiT816yhzF3VLMUq9ePb+8D4AIXBU7atQo05NVrVo1e5m97lGou1FMmTJFIsmIESNMQAvA/alOWrduHZKrYlWjRo18RjF0pSyAyFLkHjvdG1ZXnGpQo8MSejz33HOyYcMGsytFsFmTmXfv3u3zvD62XtNyz549Pq9ruhZdKet9Tm7v4f0ZJxs6dKgZprGOrVu3+vFPBiAU6HQMq4c+VCUnJ58SiAKILMVaiqWJiG+77TZ56aWXzHHrrbeafWJ1VWmw6TdTDbymTZtmP6dDojp3zhoa1lJX73rf8KZPny45OTlmLp51jq6U1b1wLbqCVnP0eSdi9qa9lJo+xfsA4C5btmwx5fnnny+hTOcIK+bZAZHJP2vsvRw5csQnuPInzTe3ZMkSc1hDDVrXG64OjQwZMkT++c9/mm3NNI/TjTfeaHLeXX755fYwhe5pq8GobpQ9d+5c+cc//iHXXHONOU9de+21ZuGE5rfTtCifffaZGXbW9C4AItd3331nSv2SF8qsrc70CyuAyOP3wC6QFi1aJK1atTKH0mBL65qUWD300ENy1113mbx07dq1M4Gg3ow10bDl448/loYNG8pFF10kl156qfn27Z2jTidF6xxBDRo1c7vm5NP39851ByDyaM+8NQ0llPXr18+Un376qdNNAeCAEprzxJ9vqAsodHJxdna2RCodAtYAUefbMSwLhD8dibD+Les83QoVKhT7PdOOpUnyiBNz4lKHpkpS3ImetuLSkQhruFjnEOvWjwAiJ64o1l6xABBJCydU+fLl/fKeJWNKys+3/mzX/aV9+/Y+C7+saSYAIkOhAzsd+sxvqb8TyYkBIJAWLFhgD8P6K9VJdFS0tKvaTvwtNjbW5N7UoE7nO99www1+/wwALgrs+vTpE7I5nAAgUPN7raApHBw7dmIni99//93ppgAI9cBOFyhomhMAiKQ5dsp7O8Li0m3ERi0YZer3nHOPxEX/tY1hcenq/08++UQmTZpkdggCEDkKvSpW55f07NnTrCTNa4stAHCTL7/80pT+3C5RtxF76IeHzOGvLcUsuvJfRfIiNiBSFTqwW716tdlK7PPPP5datWqZxL7PPvusyRsHAG4WLnuxao+d+vXXX8XPiQ8AuC2wq1mzpskV98MPP5jJuZoUWIO6jh07Sp06dcxj3c2Bb4oA3GDfvn12PdRz2Fm8t3XctGmTo20BEEYJijWnyoABA0wizL1798p//vMfE9DddNNNJs+TJgMGgHCmO9BYypQpI+HA2n1CrVixwtG2AAiTwE638fLu4tfVYhdffLG89tprZq9VXWZfv359f7UTAByhw5mqcePGEk505xyl+2UDiBxFDuxq165teulO9scff5ghWc13p9t6AUA4mz17tikrVqwo4USnzajJkyc73RQA4RDYaW9dbvnsdH9W771ZASCcWfOFw20EQrd2tLYVAxA5Cp3H7r777jOlBnVPPPGET047vQFqt3/Lli3920oAcMiECRNMqVNN/Em3EZsxcIZd97dLLrlEHn/8cVm2bJkJ7mJi2EESiAQxRZ1voj12uho2Lu6vpJpab9GihTzwwAP+bSUAOMB7db+/59jplmIX1LpAAqVZs2Z2ffv27fbQLAB3K3RgN2PGiW+YuvJ11KhRkpKSEoh2AYDj1q5da9cbNGgg4USnxFStWtUEdZpg+d5773W6SQCCoMh98++//75/WwIAIWbx4sV2PTo62q/vrbtNvLP4HVO/vc3tEhvt/31orXnQ27Zt8/t7A3BBYNevXz8ZPXq06aXTekG24AGAcKVpnZSu8vc33Sv2H5P/YeqDWg4KSGDXp08feeONN+Trr7+Wl156ye/vDyDMAztNSGx9A9TgLrdVsQDgFlaqEJ07HI6sHSjYCQiIHIUK7Pr27WunMtGeOwBws2PHjpmyevXqEo66dOliyo0bN8rRo0dJRQVEgKjCBnYHDx6055vs2bMnUO0CAMctXLjQlBdcELjVq4FUt25du75gwQJH2wIgBAM73f/VujnklaAYANxAd9GxhFtyYovmrrNyjS5dutTp5gAItcBu8ODBZjKu9tZpUFe5cmVTz+0AgHDmHQhVq1ZNwlX37t1NOWbMGKebAiDU5tgNHz5crrnmGtmwYYP07t3bpDwpU6ZM4FoHAA7nsKtRo4aEszPPPNOUsbH+X3ULwAV57Bo2bGiOYcOGSf/+/X22FAMAt5g0aZIpGzVqFJD3j4+Jl0kDJtn1QNG50a+//rrMnTuXKTRABChygmIN7NTevXvtb7aamV3n4QFAuEtNTTVloLbiiomKkcvqXyaB5p2qZdOmTVK7du2AfyaAMJlj5y09PV1uvvlm083fqVMnc2j9lltuMa8BQDibNWuWKXv16iXhrFy5cnZ93bp1jrYFQAgHdrrvoN74NKO5pkDRY8KECea5+++/37+tBIAgysnJCfiKWN1SbPSS0ebQeiBZ6VrYChJwvyIPxX7xxRcybtw4n/xOl156qSQkJMhVV10lb731lr/aCABBtXr1arseqKFL3VLspgk3mXr/xv0DsqWYRXcKUvPnzw/YZwBwwVBspUqVTnm+YsWKDMUCCGu//vqrXXfDalJNU+W99y0A9ypyYNehQwezgEK3qbFkZGTIU089ZV4DgHA1Z84cU5533nniBlYuO+V9zwbgPkUein311VfNzUITd1qrrjShp+5F+P333/uzjQAQVJoaRNWqVUvcoEqVKnZ9yZIlcs455zjaHgAhGNg1a9ZM1q9fLx9//LGsWbPGPDdgwAC57rrrzDw7AAhXu3btclWPneau00Pz2OncaAI7wL2KFNhlZWWZJMWawPO2227zf6sAwCEa/Ozbt8/U3RQA9ejRQ7799luZMmWK000BEGpz7HQyMfM0ALiRlXBdNW7cWNzi3HPPNeXy5cudbgqAUFw8ceedd8rzzz8vx48f92+LAMBBs2fPtuvx8YHb6ku3Efv8ys/NEcgtxSy6v7f3qAsAdyryHLuFCxfKtGnTTLe+zrdLSkryef3LL7/0R/sAIKi2b99uynr16gX0c3RLsf5N+kuwNGnSxK5v2LAhYHvgAgjTwK5MmTJyxRVX+Lc1AOAw60tp3759xU2ioqJMntE9e/bI9OnTCewAl4opylY7I0eONHsOHjt2TC688EIZPnw4K2EBuGrXCQ2CAul4znEZv3q8qfdt1Nf04AVj31gN7HTnIJ1OA8B9Cj3H7tlnn5VHH31UkpOTpWrVqvLaa69xgwDgmhWx1rxh/dIaSJnHM+WqcVeZQ+vB0LNnT588fQDcp9CB3YcffihvvvmmSUL81VdfycSJE00uO+9NswEg3FfENmjQQNzGClZ1tEWDWADuU+jATvcavPTSS+3HXbt2NYkvd+zY4e+2AUBQzZw5064nJiaK23Tu3Nmu63QaAO5T6MBOhyl027CT89qxfB6AW1bEagJ2N/KeC61ZDQC4T6Fn62r3/aBBg3zyO2my4sGDB/ukPCHdCYBw89FHH5ny8ssvF7fSIWYdcv7666/ljjvucLo5AJwO7AYOHHjKc9dff72/2gMAjjl06JApq1WrJm6laVyee+45M08agPsUOrB7//33A9MSAHCQLgA7cODAKXPR3KZ79+4msLP+zJrfDoB7BD5xEgCEAd1NJ5grYuOi4+T9Pu/b9WDvGatWrlxpdg4C4B4EdgDgtZhAF4PpEWix0bEyqOWggH/OKZ/r9WebPHkygR3gMvTBA4CI7N2715StWrUSt7O2EyNRMeA+BHYAICKfffaZKfv06ROUz9Mtxb5Z9405tB5M1g4UujIWgLsQ2AGIeJrGaefOnaauWyUGg24j1vOTnuYI1pZiFu/g1dpCDYA7ENgBiHiHDx8+pTfLzc4++2y7vmzZMkfbAsC/COwARLw5c+aYUnfVKVeunLhdTMxf6+a++OILR9sCwL8I7ABEvKVLl9q76ESKtm3bmnLq1KlONwWAHxHYAYh4P/zwgykHDBggkcLaNs07fx+A8EdgByDizZgxI2iJiUOF9wKKjIwMR9sCwH8I7ABIpK+ItXTr1k0iRePGje36rFmzHG0LAP9h5wkAEc1Kc6JatGgRtM/VbcRe7/G6XQ823SO2YsWKsmfPHhk3bpzZQxZA+COwAxDRvv32W7uekJAQtM/VLcXubH+nOKl9+/YyadIkFlAALsJQLICINnHiRFPWqFFDIo2Vs2/Lli1ONwWAnxDYAYhoqamppjz33HOD+rnZOdkyc9NMc2jdCVdccYVdJ7gD3IHADkBEmz59uilvuummoH7u0eNHpcsHXcyhdSeUL1/ern/33XeOtAGAfxHYAYhY6enpdr1evXoSiZo0aWLKzz77zOmmAPADAjsAEevHH3+067Vq1ZJI1KNHD5+eSwDhjcAOgET6wonSpUtLiRIlJBJZCyhUTk6Oo20BUHwEdgAi1vz580159tlnS6Q677zz7DppT4DwR2AHIGL9+uuvEbfjxMliYv5KZ6o57QCENwI7ABEpMzPTrl966aUSyXr37u0zNA0gfLHzBICI9NNPP9n1+vXrB/3zdeeJF7q+YNeddOWVV8rXX38tmzdvNnvnRup8Q8ANCOwARKQJEyaYMiUlxeybGmy6P+yD5z0oodRjp9auXSsNGzZ0tD0Aio6hWAARaebMmfZ+qZFOVwVbPv30U0fbAqB4COwARKRffvnFlB07dnTk83UbsYXbF5rDqS3FvLVs2dKULKAAwhuBHYCIk5WVZdf79OnjSBt0G7H277U3h1Nbinnr16+fKRcvXux0UwAUA4EdgIjtrVNNmzZ1tC2hYtCgQXZ99+7djrYFQNER2AGION98840po6OjzRFImYczxZPjkVBXvXp1u86+sUD4IrADEHHGjh1rys6dOwf0c3b8tFUOla0pq0qdLYue/T7kAzxrnp11fQCEHwI7ABFnzZo1przooosC+jmHNuyVijm7pWH6Ymn7ePeQD/C6dOliyjlz5jjdFABFRGCXhzfeeENq1aolJUuWNPtI/vzzz043CYCfd5ywFgwEWrTkmLJB+i92gLf0ueny59MhY8CAAXY9PT3d0bYAKBoCu1zo/JL77rtPhg0bZiZZt2jRwuwluWfPHqebBqCYZsyYYdcbNGgQ1M+OkWw7wDt3WG/5aUQjueTH1iHTg9e2bVu7Tj47IDwR2OXi5Zdflttuu01uuukmady4sbz99tuSmJgo//3vf51uGoBi+u6770yp22Y5tXWWFeC1zlon30//RTaX6xISQ7R6PaxkxWPGjHG0LQCKhi3FTnLs2DGTx2no0KH2c7rdUNeuXWX+/PmFeq+94/fK0cRT81PFVYyTMp3L/HXeV3vFk5X7DT32jFgpe1FZ+/G+SfskJyP38ZuY0jFyxiVn2I/3T94v2am5Jz6NToqWcpeWsx//MfUPOX7weK7nRpWMkvK9ytuPD0w/IFn7/8oD5q1ETAmp0LeC/fjgjwfl2O5juZ4rJUQqXlnRfnho3iHJ3P7XMNnJKvSrICWiT/wiPvzTYTm6Je/cX+X7lJeouBPfW44sPiIZv2fkeW65y8pJdOKJlZFHlhyRjPV5n3tG9zMkptSJfzapK1IlfXXew1Vlu5aV2LIn9gBNW50maSvS8jy3TJcyElc+ztTT16dL6pLUPM8t3bG0xFeON3X9c+mfLy8pHVKkZLWSpq7XS69bnue2T5GSNU+cm7kjUw7NPZTnuaVal5KEsxJMXf//6v/nvCS3SJbE+ommrn9v9O9PXpKaJElS46QT5x7MkgNT8z43sWGiJDdLNvXjqcflj8l/5HluQt0EKdWqlKl/Nf4rU/bu0Fv2jD21F75k7ZKS0jbF1HOycmTfV/vyfN/46vFS+pwTgZAGZXu/2Ovz+uGf8r6Gvj14v0rM491lxTNtZH/fodL89gulbJeyjtwjbrroJnn1y1dl2rRpPs9zj+AeESn3iOyMbNk/aX+e5/rzHuEtrkqclDnfKzb4Yq/9Ze9Iet7/D09GYHeSffv2SXZ2tlSqVMnneX1sTbjObc6O97ydw4dP/MNYM2iNJMmJv4DeylxURlp2PrH6TK29ea0cP5D7DTPlnBSfm/a6wevk2Pbcb4JJzZLkjGV/3bQ3DNkgGetyvwGVPKukT2D3+8O/S+qvud8o4irHSfmdf920Nz65UQ7Pzf0ff3SpaJ+b9uZnN8uBKXn8w4sWqXj8r5v21he3yr7xef8D6XS0k33T3vbvbbLn47yHxs/bf55EnXHipr3jnR2y852deZ57ztZz7Jv27g93y7ZXtuV5bvs17SWmwYl/Nns+3SNbnt2S57ltFrexb9r6D3/joxvzPLfl7JYSd/6Jm7befDbcsyHPc5t/19y+aesNcN1t6/I8t8kXTeybtt6EV1+7Os9zG/6voVSuWdnUjyw6IquuWpXnufXfrm/ftFOXp+Z77lkvnSWJ9524aaevS8/33FrP1LJv2plbMvM9t8YjNSR5xImb9rFdx/I9t+pdVe2b9uYtm01ZZ14dWTXv1J+pfEtlSXnvz5t2Rk6+71vxmoo+N+2Tz90v2+VsOT0rwGuYuURiPr1Sln/eWjaOeF5aP9Q16PeIJtLE516me+kq7hHcIyLlHnH84PF8z/XnPcJbuV7lfAK7VdeuEs+xE4FdmuQd9J+MwM4PRowYIU899dQpz6eclyLJMSf+Up387cRb6fNKy/Ejud+0rb/A9rkdSsuxvbnftBPqJPh+fvsU8w0gN/FVT/yjt5RqU0qiU6Lz7BHwObdVKfOtOzfWzc+S3DxZcjJz7z2wbsDe38Sy/sj9W/6JH/A6t1GSlO5cOu9Tvdqn3wTzOzcq/q8ZCXojyvfcBK9za+d/bnTyX9eiZI2S+Z6rPSne/2/yPbes17lV8j83tnysT09xfufGVfrr70psudj8z/X6e6W/mPI7N77aX3/XYlJi8j3X6g2wepXzPbe217kJ+Z+r38bV/v1/fQvvfk53KR1/6s8kNjjxC8b6O5rf+yY2SvQdxjzp3Izd+0Vy/z6Yb4DXLOcX2fDE3SIPrQr6PaKNtBGZ9dc8u9tvv93UuUecwD3C3fcIpT25+f679+M9wltSU99/y2U6lTE9gir6eLTIXCmQEh6PJzRm7YbQUKzOpxs3bpxcfvnl9vMDBw6UgwcPyoQJEwrUY6fJPg8dOmR/2wXgPJ0ne8stt5h6MG59qz/+RRpd36bA5x+XaBPcrUxsJ5nD/mX32AVblSpVZNeuXdKpUyeZNevPKA+AYzSu0PmvBYkrWDxxkri4OGnTpo3P/JKcnBzzuEOHDrn+THx8vLnQ3geA0DN16lRTliv31zSEUKABnVqb2FoW/fM7aXzkJ8eCOnXFFVeY8scff3SsDQCKhsAuF5rq5N1335UPPvhAVq9eLX//+98lLS3NrJIFEP5bifXt21dCK6BrZQd0bR/rJiWinFmtaxkyZIhd/+OPvCecAwg9zLHLxdVXXy179+6VJ5980gxH6DY7miLh5AUVAMKHDr0eOXJiZdmVV17paFusIddfYuvLEx0T5ItvZkhyyVPn4zrlrLPOsuvvv/++3H///Y62B0DBMcfO4bFwAMGxZMkSadWqlalnZGSYXWWCPcfOew7doYefkPOye5txk9ShqZIUd+oKeidpYvZly5ZJw4YNzcgFAOcwxw4ATuK9k0Iwgjpv2X/ear3n0LV45MKQvgNb8+zySvMEIDSF8G0FAPy/cEL3fg6WMvUryp6oyrImsU1IzaEriEGDBtn1tWvXOtoWAAXHHDsAEUH3fVa9e/cO2mdWaVdNMg9skgrJcacEc7HRsfJAhwfseqipUaOGXR89erTJ1wkg9DHHLgCYYweEFl3ZaaU42bBhg8/iAOStbdu2ZotFzcu5ZUveOygACCzm2AGAl8mTJ9v1OnXqONqWcHLPPfeYcuvWrWarRQChj8AOgOtpTkpVt25ds61PKMjx5Mimg5vMofVQXkChfvjhB0fbAqBgCOwARMzCiQsuuEBCRUZWhtQeVdscWg9Fur2i7saj3njjDaebA6AACOwAuFpW1l+bxl9//fWOtiUc9enTx5QTJ050uikACoDADoCree932rFjR0fbEo68d53QHXkAhDYCOwCu9uWXX9r1qChueYXVvn17u/7ee+852hYAp8ddDoCraQ42ddVVVzndlLCki02srdhGjhzpdHMAnAaBHQDX0jSd6enpp6zwROEMHjzYlAcOHJCcnNBcwQvgBAI7AK41f/58ux7MHSfc5sYbb7Tr48ePd7QtAPJHYAfAtT788EO7XrJkSQklMVExckfbO8yh9VCm1y429sS2Z6+//rrTzQGQj9C+mwBAMXz33XemvPDCCyXUxMfEyxuXhU9uuIEDB5rFEzNnznS6KQDyQY8dAFfSuWCbN2829Ztvvtnp5oS9Rx991K7//vvvjrYFQN4I7AC40rJly05JshtqCzv2pu01h9ZDXe3ate06q2OB0EVgB8CVXn31VbuenJwsoSY9K10qvljRHFoPB927dzfl22+/7XRTAOSBwA6AK3311Vem7NGjh9NNcY27777brmvqEwChh8AOgOvo0OahQ4dMnf1h/d9jd3KPKIDQQWAHwHW8V2727dvX0ba4bReKmjVrmvq7777rdHMA5ILADoDrfPTRR3Y9ISHB0ba4zdNPP23KnTt32rt6AAgdBHYAXOe///2vKRmG9b+rr77arrOIAgg9BHYAXOXo0aO5boUF/4iPj5f69eub+jPPPON0cwCchMAOgKuMGTPGrnft2lVClW4jNrDFQHOE+pZiJ7vzzjtNefDgQTl27JjTzQHghcAOgKuMHj3alOXKlTOT/UOVbik2+vLR5tB6OBk8eLBdf+211xxtCwBfBHYAXGX27NmnzAWDf8XFxUnZsmVN/eWXX3a6OQC8ENgBcI0tW7bY9QcffFBCPdde2rE0c4TDlmIne/755+3VsWlpaU43B8CfCOwAuMY777xj12vVqiWhTLcRSx6RbI5w2VLM28CBA+36qFGjHG0LgL8Q2AFwjVdeecWU559/vtNNiYjh2CZNmpj6Y4895nRzAPyJwA6AK2RnZ9sJcwcNGuR0cyLCww8/bNd1hSwA5xHYAXCFTz75xK6Tvy44vBNADx8+3NG2ADiBwA6AK7z33numjI2NNQcCT9PJWMmKmWcHhAYCOwCuMGvWLJ/kuQiOd999167/9ttvjrYFAIEdABdYu3atXb///vsdbUuk6dixo12/6667HG0LAAI7AC7wr3/9y65Xq1ZNwkF0VLRc2fhKc2g9nIdjr7vuOlOfPHlyWObkA9ykhId/hX53+PBhKV26tBw6dEhSUlKcbg7getbWYd27dzfBBYLr999/l7POOsvUP//8c+nfv7/TTQIiNq6gxw5AWNuzZ49dv/vuux1tS6SqU6dO2Oz4AbgdgR2AsOa9GrNHjx6OtiWSDRs2zJSbN29mizHAQQR2AMLaG2+8YUor7Ua40D1iSzxVwhxad1Oy4qeeesrRtgCRjMAOQNg6cuSImXNy8gIKBF9CQoI0a9bM1EeOHOl0c4CIRWAHIGy9/fbbdr13796OtgUiH3zwgV2fOnWqo20BIhWBHYCw9cwzz5iybt267DYRAlq1amXXBwwY4GhbgEhFYAcgLGVkZJihWDVkyBCnm4M/Pfnkk6bcv3+/OQAEF4EdgLD0yiuv2PXBgwc72hb85YknnrDr99xzj6NtASIRgR2AsPTcc8+ZsnLlyhIdHb47N7hNTEyMtG/f3tQ//vhjOX78uNNNAiIKgR2AsKMrYa1hWO+eu3Ci24hdWu9Sc4TzlmK5+fLLL+16uP7/AcIVW4oFAFuKAYHPmfbCCy+YelZWluklQmjRntTdu3ebOr9mgOJhSzEArmYFdc2bNyeoC1GjR4+265MmTXK0LUAkIbADEHYbzp+8jRVCT/fu3e06qU+A4CGwAxBWHn/8cbvet29fCVe6jVjSv5LM4YYtxfLrWU1NTZV169Y53RwgIhDYAQgrn3zyiSkvuOACKVGihISz9Kx0c7jV/fffb9f79evnaFuASEFgByBszJkzx66/9957jrYFpxcVFSV33323qa9cuVK2b9/udJMA1yOwAxA2rr32Wrt+1llnOdoWFC7foOrWrZujbQEiAYEdgLDZQmzr1q2m/sgjjzjdHBRQQkKCXHfddXav3a5du5xuEuBqBHYAwmoPUjV8+HBH24LCeeedd+x6r169HG0L4HYEdgDCwosvvmjKGjVqSHx8vNPNQSEkJibaAd2iRYvsxMUA/I/ADkDIW7hwoV3/6KOPxA2iSkRJ55qdzaF1txszZoxd79q1q6NtAdyMLcUCgC3FAP+qVauWbN682dS5ZYWvQYMGyQcffGDqq1atkkaNGjndJCAssKUYANfYv3+/HdQ98cQTTjcHxfD222/b9caNGzvaFsCtCOwAhLQhQ4bY9UcffdTRtqB4SpYsKY899pj9eMqUKY62B3AjhmIDgKFYwD9ycnIkOjra1Fu3bi2LFy8Wt9BtxGqNqmXqm+7ZJElxSRIJsrOzJSYmxuf/cbjvIAIEGkOxAFzhlVdesevW3Cw32Ze+zxyRRAP1N99803780ksvOdoewG3osQsAeuwA//DuyXHbrUp77JJHJJt66tDUiOmxs/5f6nZjlrS0NJMSBUDu6LEDEPa+//57uz5v3jxH2wL/B+zLly+3H7PVGOA/BHYAQlL37t3teocOHRxtC/yvadOm0rFjR1OfM2eO/Pzzz043CXAFAjsAId1b550iA+4yadIku3722WebhRQAiofADkBI99bdfvvtjrYFgaNzhZ5//nn78QMPPOBoewA3ILADEFKmT59u10eNGuXaVBi6jVjbM9uaIxK2FMvLgw8+6LMKesuWLY62Bwh3rIoNAFbFAkXnHciR4ywybNq0SWrXrm0/5tcS4ItVsQDCfm7d//3f/xHURdBewE899ZT9+P7773e0PUA4o8cuAOixA4qf24zeusij//+tX0ma4obV0MAJ9NgBCDsvvviiXf/ss89cH9SlZ6VLrVdrmUPrENm6datdP/fcc80vMQCFQ2AHwHHp6eny0EMP2Y+vuuoqcTvtmdp8aLM5GDg5oWrVqj7pbVq1auVoe4BwRGAHwHHXXnutXZ8/f76jbYGz/va3v0m7du1MfePGjfLCCy843SQgrIRNYPfss8+arnndT7BMmTK5nqPL5C+77DJzTsWKFc0y+uPHj/ucM3PmTGndurXEx8dL3bp1ZfTo0ae8zxtvvGEm85YsWdIkzSQjOhDYFZETJkww9YYNG8o555zjdJPgsB9//NGuP/zww2wpB7gxsDt27Jj0799f/v73v+f6enZ2tgnq9Dy9CXzwwQcmaHvyySftc/Tbn57TpUsXWbJkiQwZMkRuvfVWn5V4Orfnvvvuk2HDhskvv/wiLVq0MPsY7tmzJyh/TiCS6BCkd5qLBQsWONoehAb9Uq0Bv+W8886THTt2ONomIGx4wsz777/vKV269CnPf/vtt56oqCjPrl277OfeeustT0pKiiczM9M8fuihhzxNmjTx+bmrr77a061bN/tx+/btPXfeeaf9ODs723PmmWd6RowYUeA2Hjp0SCfMmBJA3p599lnzb0UPrUeS1MxUjwwXc2gdp5o0aZL990OPgwcPOt0kwBGFiSvCpsfudHReTrNmzaRSpUr2c9rTpkuEV65caZ/TtWtXn5/Tc6w5Pdrbt3jxYp9zdPm9Ps5v3k9mZqb5HO8DQP52794tjz32mP146NChjrYHoUdHWIYPH24/rlChgrnfAsibawK7Xbt2+QR1ynqsr+V3jgZiGRkZsm/fPjOkm9s51nvkZsSIESa/jHVUr17dj38ywJ1DsNWqVbMfr1mzxvXpTU6mf97GFRqbI9L+7IWh02KsfHZZWVnStGlTVhEDoRrYPfLII+aGlt+hN/xQpz0Nmm/JOrxzMQE41b/+9S97YdNNN90kDRo0kEiTGJsoK+9YaQ6tI2+zZs0yX5rVhg0bpHv37k43CQhZMU5+uG4bM2jQoHzPqVOnToHeq3LlyqesXtWhHus1q7Se8z5HszgnJCRIdHS0OXI7x3qP3OgKWz0AnJ5+WXv88cftx++8846j7UHoi42NNV+YrYz7U6ZMkX79+smXX37pdNOAkONoj53Ol9D0BvkdcXFxBXov7apfvny5z+rVqVOnmhtB48aN7XOmTZvm83N6jtXNr5/Vpk0bn3N0WyN9zNY2QPHp/KhGjRrZj3/77TeJiXH0+yXCRKlSpUwia8v48eOlU6dOp6S0AiJd2Myx0xx1mqJES50Hp3U9UlNTzeuXXHKJCeBuuOEGWbp0qUlhor0Cd955p92bNnjwYPn9999NhnvtNXjzzTfl888/l3vvvdf+HE118u6775p0KatXrzbpVdLS0sxwEYCi03+3mh/Sov/GCtoj70a6jViTN5uYgy3FCkZHVo4ePWo/nj17trnvHzlyxNF2ASHFEyYGDhzos+zdOmbMmGGfs2nTJk+PHj08CQkJnvLly3vuv/9+T1ZWls/76PktW7b0xMXFeerUqWPSp5zs3//+t6dGjRrmHE1/smDBgkK1lXQnwKmuvfZa+9/tBRdc4Il0pDspuoyMDJ/fAzExMZ49e/Y43SwgYAoTV5TQ/zgdXLqNrrLVib66kMKaEwJEsvfee09uu+02+7H2ukT6vNS0Y2mSPCLZ1FOHpkpSXJLTTQorOlqjGQgOHjxoP7d+/XqzoxAQyXFF2AzFAgjf7aG8gzrdQSDSgzoUX3JysuzcudPsDmSpV6+ez3ZkQCQisAMQMIsWLZLOnTvbj3/99VepUqWKo22Cu7Ye079j3tkV9O+bzqPWhW9AJCKwAxAQCxculHbt2tmPJ0yYIC1btnS0TXAfXVX93//+V95//337uZEjR0r58uVl27ZtjrYNcAKBHQC/mzlzprRv395+PGbMGOndu7ejbYJ7aTJ77bXTrAlW+pwDBw6YOXg6v1N3rAAiBYEdAL/SpLFdunSxH48dO1YGDBjgaJtCNRipWbqmOdhSzD80kNM9vzXNlUXnd2panRUrVjjaNiBYCOwA+M2rr74qV1xxhc/w65VXXulom0KVbiO2acgmc7ClmP9okPz666/LxIkT7ed0SLZZs2ZmtyMSGsPtCOwAFJtmTbrqqqt8kn3rcCzDr3BKz549Ze/evXL99dfbz7388stme7JPP/3U0bYBgUQeuwAgjx0iycaNG0/ZQWLlypX2Vn6A06ZPn252J9LdTyx6j/7oo4/koosuMjtaAKGMPHYAAi4jI0MeeOABn6CucuXKsn//foK6AsjIypB277Yzh9YROBdeeKHZGlLne1r0F2SvXr0kMTFRPvnkE9m6daujbQT8hcAOQKFNmTLF/EJ86aWX7Oc0yNPkw2eccYajbQsXOZ4cWbRjkTm0jsDSpNg631N3rND9wOPi4uzXrr32WqlRo4Y8++yz8u2335qpBUC4IrADUGCaYLhr167SrVs3+zkdHlizZo3JHcbqToS6pKQkufXWWyUzM1PGjRtnFlVYHn/8cbnsssvknHPOkWHDhsmmTZscbStQFAR2AE5LA7cbb7xRWrduLdOmTbOff/TRR02+sAYNGjjaPqAodAX3smXL5Pvvv5c+ffrYz//888/y9NNPS+3ataV///5y1113mf2NgXDA4okAYPEE3EJ/wQ0ZMkTmz5/v8/zAgQNN7wYbrhdd2rE0SR6RbOqpQ1MlKS7J6SZFPO2h+89//mO+vOjOKSfTfWmrVq1q5uRxb0eoxhUEdgFAYIdw/rurk8xHjBhhtmjS+Ugn93Dcc8890rFjR8fa6BYEdqFLfy1qHjzNf/fYY4/JwYMHcx3S1akHOj9v+PDh9vMVKlSwd78A/IXAzmEEdggXmv5h8eLFZr7RjBkzzLyi3OgvLh2q0h4L5tH5B4FdeNCdLBYsWGD+jfzrX/8y+RlPR3v8NF+epVy5cqwUR9DiCr5WABFkz549Zj6RlX1fA7nc0jxERUWZngf9BVWlShVWugZI+cTyTjcBp6GrZzt16mTqF198sWzfvt0Eexro6WNdCa60j8TqJ9HceCfTBN7du3c/5fno6GjzfMWKFQP+Z0FkoMcuAOixg9M2bNgg//vf/07Z/FyHWPOiCyBKlSpl5hjpIgkAhfPCCy+YKQzev1bXrl1boJ8dOnRogQPNQYMGSa1atYrcToQfhmIdRmAHf9u1a5c88cQT5u9UQXgnYs2NJhJu06aNXR81apSZMwTAvzSwe/LJJ83c1ZPpNAj9t10Uulo33OmowHPPPWe+UCJ/BHYh8j9A8yNpNztQXEuWLCnSz51//vl2AGepV6+e3HHHHcyVAxymv37ffPNNWb9+fYHOnzt3rixatEjcpmXLlk43ISzmQy9fvpzAzunADvC3Vq1ayS233FKgc3WoRpOtIjTpNmI9Pu5h6pOvmywJsexXivzpr+uvv/7arNYNd7rLx86dO51uRtghsHM4sPviiy8Y3oLf6D/ms88+2yxsQPhjVSwimS7gmjdvntlzGqenQ/mabopVsQ7TrZeYYwcAgC/N9WetNkbBOowKiq/+AAAALkFgBwAA4BIEdgAAAC5BYAcAAOASLJ4AAIckxiY63QQALkNgBwAO0PQmaY+euhsBABQHQ7EAAAAuQWAHAADgEgR2AOCAo8ePymVjLjOH1gHAH5hjBwAOyM7Jlm/Xf2vXAcAf6LEDAABwCQI7AAAAlyCwAwAAcAkCOwAAAJcgsAMAAHAJVsUGgMfjMeXhw4edbgqAEJV2LE3kzywneq/IjmNlLIDcWfGEFV/kp4SnIGehULZt2ybVq1d3uhkAAMBFtm7dKtWqVcv3HAK7AMjJyZEdO3ZIqVKlpESJEk43J2S+bWiwq38pU1JSnG5O2ON6+hfX07+4nv7F9fSvw2F4PTVUO3LkiJx55pkSFZX/LDqGYgNAL/rpIupIpf+IwuUfUjjgevoX19O/uJ7+xfWM7OtZunTpAp3H4gkAAACXILADAABwCQI7BEV8fLwMGzbMlCg+rqd/cT39i+vpX1xP/4p3+fVk8QQAAIBL0GMHAADgEgR2AAAALkFgBwAA4BIEdvCb7OxseeKJJ6R27dqSkJAgZ511ljzzzDM+W6Bo/cknn5QqVaqYc7p27Srr1693tN2h4scff5RevXqZBJSa2Pqrr77yeb0g1+6PP/6Q6667zuRmKlOmjNxyyy2SmpoqkSi/65mVlSUPP/ywNGvWTJKSksw5N954o0ks7o3rWfC/n94GDx5sznn11Vd9nud6Fu56rl69Wnr37m3yl+nf03bt2smWLVvs148ePSp33nmnlCtXTpKTk+WKK66Q3bt3SyQ63fVMTU2Vf/zjHybHrN4/GzduLG+//bbPOW65ngR28Jvnn39e3nrrLXn99dfNDUkfv/DCC/Lvf//bPkcfv/baa+Yf1E8//WRuVt26dTP/oCJdWlqatGjRQt54441cXy/ItdNfmitXrpSpU6fKpEmTzM3u9ttvl0iU3/VMT0+XX375xXwR0fLLL7+UtWvXml+i3rieBf/7aRk/frwsWLDA/II9Gdez4Nfzt99+k/PPP18aNmwoM2fOlGXLlpm/ryVLlrTPuffee2XixIkyduxYmTVrlvli0q9fvyD+KcLnet53333y3XffyUcffWR+Pw0ZMsQEel9//bX7rqeuigX84bLLLvPcfPPNPs/169fPc91115l6Tk6Op3Llyp6RI0farx88eNATHx/v+eSTT4Le3lCm/zTHjx9vPy7ItVu1apX5uYULF9rnTJ482VOiRAnP9u3bPZHs5OuZm59//tmct3nzZvOY61n467lt2zZP1apVPStWrPDUrFnT88orr9ivcT0Ldz2vvvpqz/XXX5/nz+i//9jYWM/YsWPt51avXm3ea/78+Z5IJrlczyZNmniefvppn+dat27teeyxx1x3Pemxg9+ce+65Mm3aNFm3bp15vHTpUpkzZ4706NHDPN64caPs2rXLDCFadIjh7LPPlvnz5zvW7nBQkGunpQ5vtW3b1j5Hz9ct7rSHD/k7dOiQGcLRa6i4noXfI/uGG26QBx98UJo0aXLK61zPwl3Lb775RurXr2965StWrGj+rXsPLy5evNhMKfC+J2jvXo0aNbif5vH7SXvntm/fbqa1zJgxw/yuuuSSS1x3PQns4DePPPKIXHPNNeYfQ2xsrLRq1cp0d+vwi9LARFWqVMnn5/Sx9RpyV5Brp6X+AvAWExMjZ5xxBtf3NHQ4W+fcDRgwwN47kutZODr1Qq/P3XffnevrXM+C27Nnj5kT9txzz0n37t1lypQp0rdvXzMsqEOESq9ZXFyc/UXEwv00dzolSOfV6Rw7vW56XXXYtlOnTq67njFONwDu8fnnn8vHH38sY8aMMd/YlyxZYgI7nWszcOBAp5sH5Eq/pV911VXmW7zOEUXhaW/HqFGjzHxF7fVE8XvsVJ8+fcy8L9WyZUuZN2+emWPbuXNnh1sYnoHdggULTK9dzZo1zfxOXSihv5+8e+ncgB47+I0OwVi9drraUIdl9KY0YsQI83rlypVNefIqI31svYbcFeTaaanf9L0dP37crETk+uYf1G3evNlM6Ld66xTXs+Bmz55trpUOW2kvnB56Te+//36pVauWOYfrWXDly5c311B7mLw1atTIXhWr1+zYsWNy8OBBn3O4n54qIyNDHn30UXn55ZfNytnmzZubhRNXX321vPjii667ngR28BtdaajzZbxFR0fb3z41DYr+A9F5eJbDhw+b+TUdOnQIenvDSUGunZZ6U9LeE8v06dPN9df5Ocg9qNOUMT/88INJceCN61lw+iVOV21qL711aE+Iftn7/vvvzTlcz4LTIUFNbaIrtb3pnDDtbVJt2rQxU1687wl6vgZ+3E9P/beuR36/n9x0PRmKhd/oN6Fnn33WfGvXodhff/3VfEO6+eabzes6RKNDs//85z+lXr16JljR5fv6C+Dyyy+XSKdzajZs2OCzYEJ/QeocJL2mp7t2+m1e543cdtttZrhGb2T6rVR7UHNLPRHJ11NzAV555ZVm6FDTbmgORmsejb6uv1i5noX7+3lyYKy/JPXLSIMGDcxjrmfhrqcGxdqjpHPAunTpYlJ1aCoOTX1iLZ7SPICaxkN/Rnub77rrLhOEnHPOORJpTnc9O3fubK6p5rDT4FjnKn744Yfmd5TrrqfTy3LhHocPH/bcc889nho1anhKlizpqVOnjllKnpmZ6ZO244knnvBUqlTJpOq46KKLPGvXrnW03aFixowZZmn9ycfAgQMLfO3279/vGTBggCc5OdmTkpLiuemmmzxHjhzxRKL8rufGjRtzfU0P/TkL17Pgfz9PdnK6E8X1LNz1/L//+z9P3bp1zf20RYsWnq+++srnPTIyMjx33HGHp2zZsp7ExERP3759PTt37vREotNdz507d3oGDRrkOfPMM831bNCggeell14y91W3Xc8S+h+ng0sAAAAUH3PsAAAAXILADgAAwCUI7AAAAFyCwA4AAMAlCOwAAABcgsAOAADAJQjsAAAAXILADgAAwCUI7AAggEaPHi1lypQJymfpdlO6dd/JG5kDiBwEdgAiwt69e+Xvf/+72TcyPj7e7GParVs3mTt3rn2OBkVfffWVhKtzzz1Xdu7cafa9BBCZYpxuAAAEwxVXXCHHjh2TDz74QOrUqSO7d++WadOmyf79+8UNsrKyJC4uzgSsACIXPXYAXE+HJmfPni3PP/+8dOnSRWrWrCnt27eXoUOHSu/evc05tWrVMmXfvn1Nz531WL311lty1llnmcCpQYMG8r///e+U9//b3/4mlSpVkpIlS0rTpk1l0qRJefYctm3b1nxOZmZmrufoZz/zzDMyYMAASUpKkqpVq8obb7zhc462Udul7ddznn322VyHYrVH8oILLpDExEQpW7as6aU8cOCAeS0nJ0dGjBghtWvXloSEBGnRooWMGzeuyNcZgPMI7AC4XnJysjl0mDWvYGrhwoWmfP/9981wpvV4/Pjxcs8998j9998vK1asMAHcTTfdJDNmzLCDox49epgA6qOPPpJVq1bJc889J9HR0ad8xtatW6Vjx44m8NMASoeE8zJy5EgTaP3666/yyCOPmDZMnTrV55zhw4ebAHH58uVy8803n/IeS5YskYsuukgaN24s8+fPlzlz5kivXr0kOzvbvK5B3Ycffihvv/22rFy5Uu699165/vrrZdasWYW6vgBCiAcAIsC4ceM8ZcuW9ZQsWdJz7rnneoYOHepZunSpzzl6Sxw/frzPc3rubbfd5vNc//79PZdeeqmpf//9956oqCjP2rVrc/3c999/31O6dGnPmjVrPNWrV/fcfffdnpycnHzbWrNmTU/37t19nrv66qs9PXr08GnrkCFDfM6ZMWOGef7AgQPm8YABAzznnXderp9x9OhRT2JiomfevHk+z99yyy3m5wCEJ3rsAETMHLsdO3bI119/Ld27dzfDlq1btzarVvOzevVqOe+883ye08f6vNUrVq1aNalfv36e75GRkWF66vr16yejRo0yw6Wn06FDh1MeW59p0SHd/Fg9drnZsGGDpKeny8UXX2z3aOqhPXi//fbbadsHIDSxeAJAxND5bxrI6PHEE0/IrbfeKsOGDZNBgwYV+T11btrp6JBr165dzby7Bx980MyZ8wedW1fUtqWmpprym2++OaU9+Q0RAwht9NgBiFg69ywtLc1+HBsba88/szRq1MgnJYrSx/qzqnnz5rJt2zZZt25dnp8TFRVlFly0adPGLN7QnsPTWbBgwSmPtS2FoW3Tlb+50fZrALdlyxapW7euz1G9evVCfQ6A0EGPHQDX05Qm/fv3NwsMNNgpVaqULFq0SF544QXp06ePz2pUDYR0qFWDHl1Fqj1sV111lbRq1cr0uk2cOFG+/PJL+eGHH8zPdO7cWTp16mSGel9++WUTGK1Zs8YMt+qQr0UXU3z88cdmpeuFF15ohoLzS02iwaO27/LLLzeLJsaOHWt61wpDV/02a9ZM7rjjDhk8eLBZ1auLPvRalC9fXh544AGzYEIXgJx//vly6NAh87kpKSkycODAIl1rAA5zepIfAASaLhR45JFHPK1btzYLGXTRQIMGDTyPP/64Jz093T7v66+/9tStW9cTExNjFjBY3nzzTU+dOnU8sbGxnvr163s+/PBDn/ffv3+/56abbvKUK1fOLM5o2rSpZ9KkST6LJyxZWVmefv36eRo1auTZvXt3ru3Vz37qqafMIg1ta+XKlT2jRo067UKPkxdPqJkzZ5oFIPHx8Z4yZcp4unXrZr+uizheffVVcy30z1ahQgXz+qxZs4p4pQE4rYT+x+ngEgAgPj2HQ4YMMQcAFAZz7AAAAFyCwA4AAMAlGIoFAABwCXrsAAAAXILADgAAwCUI7AAAAFyCwA4AAMAlCOwAAABcgsAOAADAJQjsAAAAXILADgAAwCUI7AAAAMQd/h/+UltV8FPnDgAAAABJRU5ErkJggg==",
154 | "text/plain": [
155 | ""
156 | ]
157 | },
158 | "metadata": {},
159 | "output_type": "display_data"
160 | }
161 | ],
162 | "source": [
163 | "plot_pl(out)"
164 | ]
165 | },
166 | {
167 | "cell_type": "code",
168 | "execution_count": 6,
169 | "metadata": {
170 | "ExecuteTime": {
171 | "end_time": "2024-03-12T13:22:34.374344Z",
172 | "start_time": "2024-03-12T13:22:34.372552Z"
173 | }
174 | },
175 | "outputs": [
176 | {
177 | "name": "stdout",
178 | "output_type": "stream",
179 | "text": [
180 | "Probability of profit: 0.599111819020198\n",
181 | "Profit ranges: [(118.87, 136.15)]\n",
182 | "Per leg cost: [4600.0, -5900.0]\n",
183 | "Strategy cost: -1300.0\n",
184 | "Minimum return in the domain: -1300.0000000000146\n",
185 | "Maximum return in the domain: 3009.999999999999\n",
186 | "Implied volatility: [0.47300000000000003, 0.419]\n",
187 | "In the money probability: [0.4895105709759477, 0.4805997906939539]\n",
188 | "Delta: [-0.5216914758915705, 0.5273457614638198]\n",
189 | "Gamma: [0.03882722919950356, 0.02669940508461828]\n",
190 | "Theta: [0.22727438444823292, -0.15634971608107964]\n",
191 | "Vega: [0.09571294014902997, 0.1389462831961853]\n",
192 | "Rho: [-0.022202087247849632, 0.046016214466188525]\n",
193 | "\n"
194 | ]
195 | }
196 | ],
197 | "source": [
198 | "print(out)"
199 | ]
200 | },
201 | {
202 | "cell_type": "code",
203 | "execution_count": null,
204 | "metadata": {},
205 | "outputs": [],
206 | "source": []
207 | }
208 | ],
209 | "metadata": {
210 | "kernelspec": {
211 | "display_name": "Python 3 (ipykernel)",
212 | "language": "python",
213 | "name": "python3"
214 | },
215 | "language_info": {
216 | "codemirror_mode": {
217 | "name": "ipython",
218 | "version": 3
219 | },
220 | "file_extension": ".py",
221 | "mimetype": "text/x-python",
222 | "name": "python",
223 | "nbconvert_exporter": "python",
224 | "pygments_lexer": "ipython3",
225 | "version": "3.11.9"
226 | }
227 | },
228 | "nbformat": 4,
229 | "nbformat_minor": 4
230 | }
231 |
--------------------------------------------------------------------------------
/optionlab.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/rgaveiga/optionlab/b4af9805ea7658b9e0d6d96cc11af83e17c3903d/optionlab.png
--------------------------------------------------------------------------------
/optionlab/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__
2 | old
--------------------------------------------------------------------------------
/optionlab/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | ## OptionLab is...
3 |
4 | ... a Python library designed as a research tool for quickly evaluating options
5 | strategy ideas. It is intended for a wide range of users, from individuals learning
6 | about options trading to developers of quantitative strategies.
7 |
8 | **OptionLab** calculations can produce a number of useful outputs:
9 |
10 | - the profit/loss profile of the strategy on a user-defined target date,
11 |
12 | - the range of stock prices for which the strategy is profitable,
13 |
14 | - the Greeks associated with each leg of the strategy,
15 |
16 | - the resulting debit or credit on the trading account,
17 |
18 | - the maximum and minimum returns within a specified lower and higher price range
19 | of the underlying asset,
20 |
21 | - the expected profit and expected loss, and
22 |
23 | - an estimate of the strategy's probability of profit.
24 |
25 | The probability of profit (PoP) of the strategy on the user-defined target date
26 | is calculated analytically by default using the Black-Scholes model. Alternatively,
27 | the user can provide an array of terminal underlying asset prices obtained from
28 | other sources (e.g., the Heston model, a Laplace distribution, or a Machine Learning/Deep Learning model)
29 | to be used in the calculations instead of the Black-Scholes model. This allows
30 | **OptionLab** to function as a calculator that supports a variety of pricing
31 | models.
32 |
33 | An advanced feature of **OptionLab** that provides great flexibility in building
34 | complex dynamic strategies is the ability to include previously created positions
35 | as legs in a new strategy. Popular strategies that can benefit from this feature
36 | include the Wheel and Covered Call strategies.
37 |
38 | ## OptionLab is not...
39 |
40 | ... a platform for direct order execution. This capability has not been and
41 | probably will not be implemented.
42 |
43 | Backtesting and trade simulation using Monte Carlo have also not (yet) been
44 | implemented in the API.
45 |
46 | That being said, nothing prevents **OptionLab** from being integrated into an
47 | options quant trader's workflow alongside other tools.
48 |
49 | ## Installation
50 |
51 | The easiest way to install **OptionLab** is using **pip**:
52 |
53 | ```
54 | pip install optionlab
55 | ```
56 |
57 | ## Quickstart
58 |
59 | **OptionLab** is designed with ease of use in mind. An options strategy can be
60 | defined and evaluated with just a few lines of Python code. The API is streamlined,
61 | and the learning curve is minimal.
62 |
63 | The evaluation of a strategy is done by calling the `optionlab.engine.run_strategy`
64 | function provided by the library. This function receives the input data either
65 | as a dictionary or an `optionlab.models.Inputs` object.
66 |
67 | For example, let's say we wanted to calculate the probability of profit for naked
68 | calls on Apple stocks expiring on December 17, 2021. The strategy setup consisted
69 | of selling 100 175.00 strike calls for 1.15 each on November 22, 2021.
70 |
71 | The input data for this strategy can be provided in a dictionary as follows:
72 |
73 | ```python
74 | input_data = {
75 | "stock_price": 164.04,
76 | "start_date": "2021-11-22",
77 | "target_date": "2021-12-17",
78 | "volatility": 0.272,
79 | "interest_rate": 0.0002,
80 | "min_stock": 120,
81 | "max_stock": 200,
82 | "strategy": [
83 | {
84 | "type": "call",
85 | "strike": 175.0,
86 | "premium": 1.15,
87 | "n": 100,
88 | "action":"sell"
89 | }
90 | ],
91 | }
92 | ```
93 |
94 | Alternatively, the input data could be defined as the `optionlab.models.Inputs`
95 | object below:
96 |
97 | ```python
98 | from optionlab import Inputs
99 |
100 | input_data = Inputs(
101 | stock_price = 164.04,
102 | start_date = "2021-11-22",
103 | target_date = "2021-12-17",
104 | volatility = 0.272,
105 | interest_rate = 0.0002,
106 | min_stock = 120,
107 | max_stock = 200,
108 | strategy = [
109 | {
110 | "type": "call",
111 | "strike": 175.0,
112 | "premium": 1.15,
113 | "n": 100,
114 | "action":"sell"
115 | }
116 | ],
117 | )
118 | ```
119 |
120 | In both cases, the strategy itself is a list of dictionaries, where each dictionary
121 | defines a leg in the strategy. The fields in a leg, depending on the type of the
122 | leg, are described in `optionlab.models.Stock`, `optionlab.models.Option`, and
123 | `optionlab.models.ClosedPosition`.
124 |
125 | After defining the input data, we pass it to the `run_strategy` function as shown
126 | below:
127 |
128 | ```python
129 | from optionlab import run_strategy, plot_pl
130 |
131 | out = run_strategy(input_data)
132 |
133 | print(out)
134 |
135 | plot_pl(out)
136 | ```
137 |
138 | The variable `out` is an `optionlab.models.Outputs` object that contains the
139 | results from the calculations. By calling `print` with `out` as an argument,
140 | these results are displayed on screen.
141 |
142 | The `optionlab.plot.plot_pl` function, in turn, takes an `optionlab.models.Outputs`
143 | object as its argument and plots the profit/loss diagram for the strategy.
144 |
145 | ## Examples
146 |
147 | Examples for a number of popular options trading strategies can be found as
148 | Jupyter notebooks in the [examples](https://github.com/rgaveiga/optionlab/tree/main/examples)
149 | directory.
150 | """
151 |
152 | from .models import (
153 | Inputs,
154 | OptionType,
155 | Option,
156 | Outputs,
157 | ClosedPosition,
158 | ArrayInputs,
159 | TheoreticalModelInputs,
160 | BlackScholesModelInputs,
161 | LaplaceInputs,
162 | BlackScholesInfo,
163 | TheoreticalModel,
164 | FloatOrNdarray,
165 | StrategyLeg,
166 | StrategyLegType,
167 | Stock,
168 | Action,
169 | )
170 | from .black_scholes import (
171 | get_itm_probability,
172 | get_implied_vol,
173 | get_option_price,
174 | get_d1,
175 | get_d2,
176 | get_bs_info,
177 | get_vega,
178 | get_delta,
179 | get_gamma,
180 | get_theta,
181 | get_rho,
182 | )
183 | from .engine import run_strategy
184 | from .plot import plot_pl
185 | from .price_array import create_price_array
186 | from .support import (
187 | get_pl_profile,
188 | get_pl_profile_stock,
189 | get_pl_profile_bs,
190 | create_price_seq,
191 | get_pop,
192 | )
193 | from .utils import (
194 | get_nonbusiness_days,
195 | get_pl,
196 | pl_to_csv,
197 | )
198 |
199 |
200 | VERSION = "1.4.3"
201 |
202 | __docformat__ = "markdown"
203 | __version__ = VERSION
204 |
205 |
206 | ALL = (
207 | # models
208 | "Inputs",
209 | "OptionType",
210 | "Option",
211 | "Outputs",
212 | "ClosedPosition",
213 | "ArrayInputs",
214 | "TheoreticalModelInputs",
215 | "BlackScholesModelInputs",
216 | "LaplaceInputs",
217 | "BlackScholesInfo",
218 | "TheoreticalModel",
219 | "FloatOrNdarray",
220 | "StrategyLeg",
221 | "StrategyLegType",
222 | "Stock",
223 | "Action",
224 | # engine
225 | "run_strategy",
226 | # support
227 | "get_pl_profile",
228 | "get_pl_profile_stock",
229 | "get_pl_profile_bs",
230 | "create_price_seq",
231 | "get_pop",
232 | # black_scholes
233 | "get_d1",
234 | "get_d2",
235 | "get_option_price",
236 | "get_itm_probability",
237 | "get_implied_vol",
238 | "get_bs_info",
239 | "get_vega",
240 | "get_delta",
241 | "get_gamma",
242 | "get_theta",
243 | "get_rho",
244 | # plot
245 | "plot_pl",
246 | # price_array
247 | "create_price_array",
248 | # utils
249 | "get_nonbusiness_days",
250 | "get_pl",
251 | "pl_to_csv",
252 | )
253 | """@private"""
254 |
255 |
256 | def __dir__() -> "list[str]":
257 | return list(ALL)
258 |
--------------------------------------------------------------------------------
/optionlab/black_scholes.py:
--------------------------------------------------------------------------------
1 | """
2 | This module defines functions that calculate quantities, such as option prices
3 | and the Greeks, related to the Black-Scholes model.
4 | """
5 |
6 | from __future__ import division
7 |
8 | from scipy import stats
9 | from numpy import exp, round, arange, abs, argmin, pi
10 | from numpy.lib.scimath import log, sqrt
11 |
12 | from optionlab.models import BlackScholesInfo, OptionType, FloatOrNdarray
13 |
14 |
15 | def get_bs_info(
16 | s: float,
17 | x: FloatOrNdarray,
18 | r: float,
19 | vol: float,
20 | years_to_maturity: float,
21 | y: float = 0.0,
22 | ) -> BlackScholesInfo:
23 | """
24 | Provides information about call and put options calculated using the Black-Scholes
25 | formula.
26 |
27 | Parameters
28 | ----------
29 | `s`: stock price.
30 |
31 | `x`: strike price(s).
32 |
33 | `r`: annualized risk-free interest rate.
34 |
35 | `vol`: annualized volatility.
36 |
37 | `years_to_maturity`: time remaining to maturity, in years.
38 |
39 | `y`: annualized dividend yield.
40 |
41 | Returns
42 | -------
43 | Information calculated using the Black-Scholes formula.
44 | """
45 |
46 | d1 = get_d1(s, x, r, vol, years_to_maturity, y)
47 | d2 = get_d2(s, x, r, vol, years_to_maturity, y)
48 | call_price = get_option_price("call", s, x, r, years_to_maturity, d1, d2, y)
49 | put_price = get_option_price("put", s, x, r, years_to_maturity, d1, d2, y)
50 | call_delta = get_delta("call", d1, years_to_maturity, y)
51 | put_delta = get_delta("put", d1, years_to_maturity, y)
52 | call_theta = get_theta("call", s, x, r, vol, years_to_maturity, d1, d2, y)
53 | put_theta = get_theta("put", s, x, r, vol, years_to_maturity, d1, d2, y)
54 | gamma = get_gamma(s, vol, years_to_maturity, d1, y)
55 | vega = get_vega(s, years_to_maturity, d1, y)
56 | call_rho = get_rho("call", x, r, years_to_maturity, d2)
57 | put_rho = get_rho("put", x, r, years_to_maturity, d2)
58 | call_itm_prob = get_itm_probability("call", d2, years_to_maturity, y)
59 | put_itm_prob = get_itm_probability("put", d2, years_to_maturity, y)
60 |
61 | return BlackScholesInfo(
62 | call_price=call_price,
63 | put_price=put_price,
64 | call_delta=call_delta,
65 | put_delta=put_delta,
66 | call_theta=call_theta,
67 | put_theta=put_theta,
68 | gamma=gamma,
69 | vega=vega,
70 | call_rho=call_rho,
71 | put_rho=put_rho,
72 | call_itm_prob=call_itm_prob,
73 | put_itm_prob=put_itm_prob,
74 | )
75 |
76 |
77 | def get_option_price(
78 | option_type: OptionType,
79 | s0: FloatOrNdarray,
80 | x: FloatOrNdarray,
81 | r: float,
82 | years_to_maturity: float,
83 | d1: FloatOrNdarray,
84 | d2: FloatOrNdarray,
85 | y: float = 0.0,
86 | ) -> FloatOrNdarray:
87 | """
88 | Returns the price of an option.
89 |
90 | Parameters
91 | ----------
92 | `option_type`: either *'call'* or *'put'*.
93 |
94 | `s0`: spot price(s) of the underlying asset.
95 |
96 | `x`: strike price(s).
97 |
98 | `r`: annualize risk-free interest rate.
99 |
100 | `years_to_maturity`: time remaining to maturity, in years.
101 |
102 | `d1`: `d1` in Black-Scholes formula.
103 |
104 | `d2`: `d2` in Black-Scholes formula.
105 |
106 | `y`: annualized dividend yield.
107 |
108 | Returns
109 | -------
110 | Option price(s).
111 | """
112 |
113 | s = s0 * exp(-y * years_to_maturity)
114 |
115 | if option_type == "call":
116 | return round(
117 | s * stats.norm.cdf(d1)
118 | - x * exp(-r * years_to_maturity) * stats.norm.cdf(d2),
119 | 2,
120 | )
121 | elif option_type == "put":
122 | return round(
123 | x * exp(-r * years_to_maturity) * stats.norm.cdf(-d2)
124 | - s * stats.norm.cdf(-d1),
125 | 2,
126 | )
127 | else:
128 | raise ValueError("Option type must be either 'call' or 'put'!")
129 |
130 |
131 | def get_delta(
132 | option_type: OptionType,
133 | d1: FloatOrNdarray,
134 | years_to_maturity: float,
135 | y: float = 0.0,
136 | ) -> FloatOrNdarray:
137 | """
138 | Returns the option's Greek Delta.
139 |
140 | Parameters
141 | ----------
142 | `option_type`: either *'call'* or *'put'*.
143 |
144 | `d1`: `d1` in Black-Scholes formula.
145 |
146 | `years_to_maturity`: time remaining to maturity, in years.
147 |
148 | `y`: annualized dividend yield.
149 |
150 | Returns
151 | -------
152 | Option's Greek Delta.
153 | """
154 |
155 | yfac = exp(-y * years_to_maturity)
156 |
157 | if option_type == "call":
158 | return yfac * stats.norm.cdf(d1)
159 | elif option_type == "put":
160 | return yfac * (stats.norm.cdf(d1) - 1.0)
161 | else:
162 | raise ValueError("Option must be either 'call' or 'put'!")
163 |
164 |
165 | def get_gamma(
166 | s0: float,
167 | vol: float,
168 | years_to_maturity: float,
169 | d1: FloatOrNdarray,
170 | y: float = 0.0,
171 | ) -> FloatOrNdarray:
172 | """
173 | Returns the option's Greek Gamma.
174 |
175 | Parameters
176 | ----------
177 | `s0`: spot price of the underlying asset.
178 |
179 | `vol`: annualized volatitily.
180 |
181 | `years_to_maturity`: time remaining to maturity, in years.
182 |
183 | `d1`: `d1` in Black-Scholes formula.
184 |
185 | `y`: annualized divident yield.
186 |
187 | Returns
188 | -------
189 | Option's Greek Gamma.
190 | """
191 |
192 | yfac = exp(-y * years_to_maturity)
193 |
194 | cdf_d1_prime = exp(-0.5 * d1 * d1) / sqrt(2.0 * pi)
195 |
196 | return yfac * cdf_d1_prime / (s0 * vol * sqrt(years_to_maturity))
197 |
198 |
199 | def get_theta(
200 | option_type: OptionType,
201 | s0: float,
202 | x: FloatOrNdarray,
203 | r: float,
204 | vol: float,
205 | years_to_maturity: float,
206 | d1: FloatOrNdarray,
207 | d2: FloatOrNdarray,
208 | y: float = 0.0,
209 | ) -> FloatOrNdarray:
210 | """
211 | Returns the option's Greek Theta.
212 |
213 | Parameters
214 | ----------
215 | `option_type`: either *'call'* or *'put'*.
216 |
217 | `s0`: spot price of the underlying asset.
218 |
219 | `x`: strike price(s).
220 |
221 | `r`: annualized risk-free interest rate.
222 |
223 | `vol`: annualized volatility.
224 |
225 | `years_to_maturity`: time remaining to maturity, in years.
226 |
227 | `d1`: `d1` in Black-Scholes formula.
228 |
229 | `d2`: `d2` in Black-Scholes formula.
230 |
231 | `y`: annualized dividend yield.
232 |
233 | Returns
234 | -------
235 | Option's Greek Theta.
236 | """
237 |
238 | s = s0 * exp(-y * years_to_maturity)
239 |
240 | cdf_d1_prime = exp(-0.5 * d1 * d1) / sqrt(2.0 * pi)
241 |
242 | if option_type == "call":
243 | return -(
244 | s * vol * cdf_d1_prime / (2.0 * sqrt(years_to_maturity))
245 | + r * x * exp(-r * years_to_maturity) * stats.norm.cdf(d2)
246 | - y * s * stats.norm.cdf(d1)
247 | )
248 | elif option_type == "put":
249 | return -(
250 | s * vol * cdf_d1_prime / (2.0 * sqrt(years_to_maturity))
251 | - r * x * exp(-r * years_to_maturity) * stats.norm.cdf(-d2)
252 | + y * s * stats.norm.cdf(-d1)
253 | )
254 | else:
255 | raise ValueError("Option type must be either 'call' or 'put'!")
256 |
257 |
258 | def get_vega(
259 | s0: float,
260 | years_to_maturity: float,
261 | d1: FloatOrNdarray,
262 | y: float = 0.0,
263 | ) -> FloatOrNdarray:
264 | """
265 | Returns the option's Greek Vega.
266 |
267 | Parameters
268 | ----------
269 | `s0`: spot price of the underlying asset.
270 |
271 | `years_to_maturity`: time remaining to maturity, in years.
272 |
273 | `d1`: `d1` in Black-Scholes formula.
274 |
275 | `y`: annualized dividend yield.
276 |
277 | Returns
278 | -------
279 | Option's Greek Vega.
280 | """
281 |
282 | s = s0 * exp(-y * years_to_maturity)
283 |
284 | cdf_d1_prime = exp(-0.5 * d1 * d1) / sqrt(2.0 * pi)
285 |
286 | return s * cdf_d1_prime * sqrt(years_to_maturity) / 100
287 |
288 |
289 | def get_rho(
290 | option_type: OptionType,
291 | x: FloatOrNdarray,
292 | r: float,
293 | years_to_maturity: float,
294 | d2: FloatOrNdarray,
295 | ) -> FloatOrNdarray:
296 | """
297 | Returns the option's Greek Rho.
298 |
299 | Parameters
300 | ----------
301 | `option_type`: either *'call'* or *'put'*.
302 |
303 | `x`: strike price(s).
304 |
305 | `r`: annualized risk-free interest rate.
306 |
307 | `years_to_maturity`: time remaining to maturity, in years.
308 |
309 | `d2`: `d2` in Black-Scholes formula.
310 |
311 | Returns
312 | -------
313 | Option's Greek Rho.
314 | """
315 |
316 | if option_type == "call":
317 | return (
318 | x
319 | * years_to_maturity
320 | * exp(-r * years_to_maturity)
321 | * stats.norm.cdf(d2)
322 | / 100
323 | )
324 | elif option_type == "put":
325 | return (
326 | -x
327 | * years_to_maturity
328 | * exp(-r * years_to_maturity)
329 | * stats.norm.cdf(-d2)
330 | / 100
331 | )
332 | else:
333 | raise ValueError("Option must be either 'call' or 'put'!")
334 |
335 |
336 | def get_d1(
337 | s0: FloatOrNdarray,
338 | x: FloatOrNdarray,
339 | r: float,
340 | vol: FloatOrNdarray,
341 | years_to_maturity: float,
342 | y: float = 0.0,
343 | ) -> FloatOrNdarray:
344 | """
345 | Returns `d1` used in Black-Scholes formula.
346 |
347 | Parameters
348 | ----------
349 | `s0`: spot price(s) of the underlying asset.
350 |
351 | `x`: strike price(s).
352 |
353 | `r`: annualized risk-free interest rate.
354 |
355 | `vol`: annualized volatility(ies).
356 |
357 | `years_to_maturity`: time remaining to maturity, in years.
358 |
359 | `y`: annualized divident yield.
360 |
361 | Returns
362 | -------
363 | `d1` in Black-Scholes formula.
364 | """
365 |
366 | return (log(s0 / x) + (r - y + vol * vol / 2.0) * years_to_maturity) / (
367 | vol * sqrt(years_to_maturity)
368 | )
369 |
370 |
371 | def get_d2(
372 | s0: FloatOrNdarray,
373 | x: FloatOrNdarray,
374 | r: float,
375 | vol: FloatOrNdarray,
376 | years_to_maturity: float,
377 | y: float = 0.0,
378 | ) -> FloatOrNdarray:
379 | """
380 | Returns `d2` used in Black-Scholes formula.
381 |
382 | Parameters
383 | ----------
384 | `s0`: spot price(s) of the underlying asset.
385 |
386 | `x`: strike price(s).
387 |
388 | `r`: annualized risk-free interest rate.
389 |
390 | `vol`: annualized volatility(ies).
391 |
392 | `years_to_maturity`: time remaining to maturity, in years.
393 |
394 | `y`: annualized divident yield.
395 |
396 | Returns
397 | -------
398 | `d2` in Black-Scholes formula.
399 | """
400 |
401 | return (log(s0 / x) + (r - y - vol * vol / 2.0) * years_to_maturity) / (
402 | vol * sqrt(years_to_maturity)
403 | )
404 |
405 |
406 | def get_implied_vol(
407 | option_type: OptionType,
408 | oprice: float,
409 | s0: float,
410 | x: float,
411 | r: float,
412 | years_to_maturity: float,
413 | y: float = 0.0,
414 | ) -> float:
415 | """
416 | Returns the implied volatility of an option.
417 |
418 | Parameters
419 | ----------
420 | `option_type`: either *'call'* or *'put'*.
421 |
422 | `oprice`: market price of an option.
423 |
424 | `s0`: spot price of the underlying asset.
425 |
426 | `x`: strike price.
427 |
428 | `r`: annualized risk-free interest rate.
429 |
430 | `years_to_maturity`: time remaining to maturity, in years.
431 |
432 | `y`: annualized dividend yield.
433 |
434 | Returns
435 | -------
436 | Option's implied volatility.
437 | """
438 |
439 | vol = 0.001 * arange(1, 1001)
440 | d1 = get_d1(s0, x, r, vol, years_to_maturity, y)
441 | d2 = get_d2(s0, x, r, vol, years_to_maturity, y)
442 | dopt = abs(
443 | get_option_price(option_type, s0, x, r, years_to_maturity, d1, d2, y) - oprice
444 | )
445 |
446 | return vol[argmin(dopt)]
447 |
448 |
449 | def get_itm_probability(
450 | option_type: OptionType,
451 | d2: FloatOrNdarray,
452 | years_to_maturity: float,
453 | y: float = 0.0,
454 | ) -> FloatOrNdarray:
455 | """
456 | Returns the probability(ies) that the option(s) will expire in-the-money (ITM).
457 |
458 | Parameters
459 | ----------
460 | `option_type`: either *'call'* or *'put'*.
461 |
462 | `d2`: `d2` in Black-Scholes formula.
463 |
464 | `years_to_maturity`: time remaining to maturity, in years.
465 |
466 | `y`: annualized dividend yield.
467 |
468 | Returns
469 | -------
470 | Probability(ies) that the option(s) will expire in-the-money (ITM).
471 | """
472 |
473 | yfac = exp(-y * years_to_maturity)
474 |
475 | if option_type == "call":
476 | return yfac * stats.norm.cdf(d2)
477 | elif option_type == "put":
478 | return yfac * stats.norm.cdf(-d2)
479 | else:
480 | raise ValueError("Option type must be either 'call' or 'put'!")
481 |
--------------------------------------------------------------------------------
/optionlab/engine.py:
--------------------------------------------------------------------------------
1 | """
2 | This module defines the `run_strategy` function.
3 |
4 | Given input data provided as either an `optionlab.models.Inputs` object or a dictionary,
5 | `run_strategy` returns the results of an options strategy calculation (e.g., the
6 | probability of profit on the target date) as an `optionlab.models.Outputs` object.
7 | """
8 |
9 | from __future__ import division
10 | from __future__ import print_function
11 |
12 | import datetime as dt
13 |
14 | from numpy import zeros, array
15 |
16 |
17 | from optionlab.black_scholes import get_bs_info, get_implied_vol
18 | from optionlab.models import (
19 | Inputs,
20 | Action,
21 | Option,
22 | Stock,
23 | ClosedPosition,
24 | Outputs,
25 | BlackScholesModelInputs,
26 | ArrayInputs,
27 | OptionType,
28 | EngineData,
29 | PoPOutputs,
30 | )
31 | from optionlab.support import (
32 | get_pl_profile,
33 | get_pl_profile_stock,
34 | get_pl_profile_bs,
35 | create_price_seq,
36 | get_pop,
37 | )
38 | from optionlab.utils import get_nonbusiness_days
39 |
40 |
41 | def run_strategy(inputs_data: Inputs | dict) -> Outputs:
42 | """
43 | Runs the calculation for a strategy.
44 |
45 | Parameters
46 | ----------
47 | `inputs_data`: input data used in the strategy calculation.
48 |
49 | Returns
50 | -------
51 | Output data from the strategy calculation.
52 | """
53 |
54 | inputs = (
55 | inputs_data
56 | if isinstance(inputs_data, Inputs)
57 | else Inputs.model_validate(inputs_data)
58 | )
59 |
60 | data = _init_inputs(inputs)
61 |
62 | data = _run(data)
63 |
64 | return _generate_outputs(data)
65 |
66 |
67 | def _init_inputs(inputs: Inputs) -> EngineData:
68 | data = EngineData(
69 | stock_price_array=create_price_seq(inputs.min_stock, inputs.max_stock),
70 | terminal_stock_prices=inputs.array if inputs.model == "array" else array([]),
71 | inputs=inputs,
72 | )
73 |
74 | data.days_in_year = (
75 | inputs.business_days_in_year if inputs.discard_nonbusiness_days else 365
76 | )
77 |
78 | if inputs.start_date and inputs.target_date:
79 | if inputs.discard_nonbusiness_days:
80 | n_discarded_days = get_nonbusiness_days(
81 | inputs.start_date, inputs.target_date, inputs.country
82 | )
83 | else:
84 | n_discarded_days = 0
85 |
86 | data.days_to_target = (
87 | (inputs.target_date - inputs.start_date).days + 1 - n_discarded_days
88 | )
89 | else:
90 | data.days_to_target = inputs.days_to_target_date
91 |
92 | for i, strategy in enumerate(inputs.strategy):
93 | data.type.append(strategy.type)
94 |
95 | if isinstance(strategy, Option):
96 | data.strike.append(strategy.strike)
97 | data.premium.append(strategy.premium)
98 | data.n.append(strategy.n)
99 | data.action.append(strategy.action)
100 | data.previous_position.append(strategy.prev_pos or 0.0)
101 |
102 | if not strategy.expiration:
103 | data.days_to_maturity.append(data.days_to_target)
104 | data.use_bs.append(False)
105 | elif isinstance(strategy.expiration, dt.date) and inputs.start_date:
106 | if inputs.discard_nonbusiness_days:
107 | n_discarded_days = get_nonbusiness_days(
108 | inputs.start_date, strategy.expiration, inputs.country
109 | )
110 | else:
111 | n_discarded_days = 0
112 |
113 | data.days_to_maturity.append(
114 | (strategy.expiration - inputs.start_date).days
115 | + 1
116 | - n_discarded_days
117 | )
118 |
119 | data.use_bs.append(strategy.expiration != inputs.target_date)
120 | elif isinstance(strategy.expiration, int):
121 | if strategy.expiration >= data.days_to_target:
122 | data.days_to_maturity.append(strategy.expiration)
123 |
124 | data.use_bs.append(strategy.expiration != data.days_to_target)
125 | else:
126 | raise ValueError(
127 | "Days remaining to maturity must be greater than or equal to the number of days remaining to the target date!"
128 | )
129 | else:
130 | raise ValueError("Expiration must be a date, an int or None.")
131 |
132 | elif isinstance(strategy, Stock):
133 | data.n.append(strategy.n)
134 | data.action.append(strategy.action)
135 | data.previous_position.append(strategy.prev_pos or 0.0)
136 | data.strike.append(0.0)
137 | data.premium.append(0.0)
138 | data.use_bs.append(False)
139 | data.days_to_maturity.append(-1)
140 |
141 | elif isinstance(strategy, ClosedPosition):
142 | data.previous_position.append(strategy.prev_pos)
143 | data.strike.append(0.0)
144 | data.n.append(0)
145 | data.premium.append(0.0)
146 | data.action.append("n/a")
147 | data.use_bs.append(False)
148 | data.days_to_maturity.append(-1)
149 | else:
150 | raise ValueError("Type must be 'call', 'put', 'stock' or 'closed'!")
151 |
152 | return data
153 |
154 |
155 | def _run(data: EngineData) -> EngineData:
156 | inputs = data.inputs
157 |
158 | time_to_target = data.days_to_target / data.days_in_year
159 | data.cost = [0.0] * len(data.type)
160 |
161 | data.profit = zeros((len(data.type), data.stock_price_array.shape[0]))
162 | data.strategy_profit = zeros(data.stock_price_array.shape[0])
163 |
164 | if inputs.model == "array":
165 | data.profit_mc = zeros((len(data.type), data.terminal_stock_prices.shape[0]))
166 | data.strategy_profit_mc = zeros(data.terminal_stock_prices.shape[0])
167 |
168 | pop_inputs: BlackScholesModelInputs | ArrayInputs
169 | pop_out: PoPOutputs
170 |
171 | for i, type in enumerate(data.type):
172 | if type in ("call", "put"):
173 | _run_option_calcs(data, i)
174 | elif type == "stock":
175 | _run_stock_calcs(data, i)
176 | elif type == "closed":
177 | _run_closed_position_calcs(data, i)
178 |
179 | data.strategy_profit += data.profit[i]
180 |
181 | if inputs.model == "array":
182 | data.strategy_profit_mc += data.profit_mc[i]
183 |
184 | if inputs.model == "black-scholes":
185 | pop_inputs = BlackScholesModelInputs(
186 | stock_price=inputs.stock_price,
187 | volatility=inputs.volatility,
188 | years_to_target_date=time_to_target,
189 | interest_rate=inputs.interest_rate,
190 | dividend_yield=inputs.dividend_yield,
191 | )
192 | elif inputs.model == "array":
193 | pop_inputs = ArrayInputs(array=data.strategy_profit_mc)
194 | else:
195 | raise ValueError("Model is not valid!")
196 |
197 | pop_out = get_pop(data.stock_price_array, data.strategy_profit, pop_inputs)
198 |
199 | data.profit_probability = pop_out.probability_of_reaching_target
200 | data.expected_profit = pop_out.expected_return_above_target
201 | data.expected_loss = pop_out.expected_return_below_target
202 | data.profit_ranges = pop_out.reaching_target_range
203 |
204 | if inputs.profit_target is not None and inputs.profit_target > 0.01:
205 | pop_out_prof_targ = get_pop(
206 | data.stock_price_array,
207 | data.strategy_profit,
208 | pop_inputs,
209 | inputs.profit_target,
210 | )
211 | data.profit_target_probability = (
212 | pop_out_prof_targ.probability_of_reaching_target
213 | )
214 | data.profit_target_ranges = pop_out_prof_targ.reaching_target_range
215 |
216 | if inputs.loss_limit is not None and inputs.loss_limit < 0.0:
217 | pop_out_loss_lim = get_pop(
218 | data.stock_price_array,
219 | data.strategy_profit,
220 | pop_inputs,
221 | inputs.loss_limit + 0.01,
222 | )
223 | data.loss_limit_probability = pop_out_loss_lim.probability_of_missing_target
224 | data.loss_limit_ranges = pop_out_loss_lim.missing_target_range
225 |
226 | return data
227 |
228 |
229 | def _run_option_calcs(data: EngineData, i: int) -> EngineData:
230 | inputs = data.inputs
231 | action: Action = data.action[i] # type: ignore
232 | type: OptionType = data.type[i] # type: ignore
233 |
234 | if data.previous_position[i] < 0.0:
235 | # Previous position is closed
236 | data.implied_volatility.append(0.0)
237 | data.itm_probability.append(0.0)
238 | data.delta.append(0.0)
239 | data.gamma.append(0.0)
240 | data.vega.append(0.0)
241 | data.theta.append(0.0)
242 | data.rho.append(0.0)
243 |
244 | cost = (data.premium[i] + data.previous_position[i]) * data.n[i]
245 |
246 | if data.action[i] == "buy":
247 | cost *= -1.0
248 |
249 | data.cost[i] = cost
250 | data.profit[i] += cost
251 |
252 | if inputs.model == "array":
253 | data.profit_mc[i] += cost
254 |
255 | return data
256 |
257 | time_to_maturity = data.days_to_maturity[i] / data.days_in_year
258 | bs = get_bs_info(
259 | inputs.stock_price,
260 | data.strike[i],
261 | inputs.interest_rate,
262 | inputs.volatility,
263 | time_to_maturity,
264 | inputs.dividend_yield,
265 | )
266 |
267 | data.gamma.append(
268 | float(bs.gamma)
269 | ) # TODO: This is required because of mypy. Check later for workarounds, maybe using zero-dimensional numpy arrays
270 | data.vega.append(float(bs.vega))
271 |
272 | data.implied_volatility.append(
273 | float(
274 | get_implied_vol(
275 | type,
276 | data.premium[i],
277 | inputs.stock_price,
278 | data.strike[i],
279 | inputs.interest_rate,
280 | time_to_maturity,
281 | inputs.dividend_yield,
282 | )
283 | )
284 | )
285 |
286 | negative_multiplier = 1 if data.action[i] == "buy" else -1
287 |
288 | if type == "call":
289 | data.itm_probability.append(float(bs.call_itm_prob))
290 | data.delta.append(float(bs.call_delta * negative_multiplier))
291 | data.theta.append(
292 | float(bs.call_theta / data.days_in_year * negative_multiplier)
293 | )
294 | data.rho.append(float(bs.call_rho * negative_multiplier))
295 | else:
296 | data.itm_probability.append(float(bs.put_itm_prob))
297 | data.delta.append(float(bs.put_delta * negative_multiplier))
298 | data.theta.append(float(bs.put_theta / data.days_in_year * negative_multiplier))
299 | data.rho.append(float(bs.put_rho * negative_multiplier))
300 |
301 | if data.previous_position[i] > 0.0: # Premium of the open position
302 | opt_value = data.previous_position[i]
303 | else: # Current premium
304 | opt_value = data.premium[i]
305 |
306 | if data.use_bs[i]:
307 | target_to_maturity = (
308 | data.days_to_maturity[i] - data.days_to_target
309 | ) / data.days_in_year # To consider the expiration date as a trading day
310 |
311 | data.profit[i], data.cost[i] = get_pl_profile_bs(
312 | type,
313 | action,
314 | data.strike[i],
315 | opt_value,
316 | inputs.interest_rate,
317 | target_to_maturity,
318 | inputs.volatility,
319 | data.n[i],
320 | data.stock_price_array,
321 | inputs.dividend_yield,
322 | inputs.opt_commission,
323 | )
324 |
325 | if inputs.model == "array":
326 | data.profit_mc[i] = get_pl_profile_bs(
327 | type,
328 | action,
329 | data.strike[i],
330 | opt_value,
331 | inputs.interest_rate,
332 | target_to_maturity,
333 | inputs.interest_rate,
334 | data.n[i],
335 | data.terminal_stock_prices,
336 | inputs.dividend_yield,
337 | inputs.opt_commission,
338 | )[0]
339 | else:
340 | data.profit[i], data.cost[i] = get_pl_profile(
341 | type,
342 | action,
343 | data.strike[i],
344 | opt_value,
345 | data.n[i],
346 | data.stock_price_array,
347 | inputs.opt_commission,
348 | )
349 |
350 | if inputs.model == "array":
351 | data.profit_mc[i] = get_pl_profile(
352 | type,
353 | action,
354 | data.strike[i],
355 | opt_value,
356 | data.n[i],
357 | data.terminal_stock_prices,
358 | inputs.opt_commission,
359 | )[0]
360 |
361 | return data
362 |
363 |
364 | def _run_stock_calcs(data: EngineData, i: int) -> EngineData:
365 | inputs = data.inputs
366 | action: Action = data.action[i] # type: ignore
367 |
368 | if action == "buy":
369 | data.delta.append(1.0)
370 | else:
371 | data.delta.append(-1.0)
372 |
373 | data.itm_probability.append(1.0)
374 | data.implied_volatility.append(0.0)
375 | data.gamma.append(0.0)
376 | data.vega.append(0.0)
377 | data.rho.append(0.0)
378 | data.theta.append(0.0)
379 |
380 | if data.previous_position[i] < 0.0: # Previous position is closed
381 | costtmp = (inputs.stock_price + data.previous_position[i]) * data.n[i]
382 |
383 | if data.action[i] == "buy":
384 | costtmp *= -1.0
385 |
386 | data.cost[i] = costtmp
387 | data.profit[i] += costtmp
388 |
389 | if inputs.model == "array":
390 | data.profit_mc[i] += costtmp
391 |
392 | return data
393 |
394 | if data.previous_position[i] > 0.0: # Stock price at previous position
395 | stockpos = data.previous_position[i]
396 | else: # Spot price of the stock at start date
397 | stockpos = inputs.stock_price
398 |
399 | data.profit[i], data.cost[i] = get_pl_profile_stock(
400 | stockpos,
401 | action,
402 | data.n[i],
403 | data.stock_price_array,
404 | inputs.stock_commission,
405 | )
406 |
407 | if inputs.model == "array":
408 | data.profit_mc[i] = get_pl_profile_stock(
409 | stockpos,
410 | action,
411 | data.n[i],
412 | data.terminal_stock_prices,
413 | inputs.stock_commission,
414 | )[0]
415 |
416 | return data
417 |
418 |
419 | def _run_closed_position_calcs(data: EngineData, i: int) -> EngineData:
420 | inputs = data.inputs
421 |
422 | data.implied_volatility.append(0.0)
423 | data.itm_probability.append(0.0)
424 | data.delta.append(0.0)
425 | data.gamma.append(0.0)
426 | data.vega.append(0.0)
427 | data.rho.append(0.0)
428 | data.theta.append(0.0)
429 |
430 | data.cost[i] = data.previous_position[i]
431 | data.profit[i] += data.previous_position[i]
432 |
433 | if inputs.model == "array":
434 | data.profit_mc[i] += data.previous_position[i]
435 |
436 | return data
437 |
438 |
439 | def _generate_outputs(data: EngineData) -> Outputs:
440 | return Outputs(
441 | inputs=data.inputs,
442 | data=data,
443 | probability_of_profit=data.profit_probability,
444 | expected_profit=data.expected_profit,
445 | expected_loss=data.expected_loss,
446 | strategy_cost=sum(data.cost),
447 | per_leg_cost=data.cost,
448 | profit_ranges=data.profit_ranges,
449 | minimum_return_in_the_domain=data.strategy_profit.min(),
450 | maximum_return_in_the_domain=data.strategy_profit.max(),
451 | implied_volatility=data.implied_volatility,
452 | in_the_money_probability=data.itm_probability,
453 | delta=data.delta,
454 | gamma=data.gamma,
455 | theta=data.theta,
456 | vega=data.vega,
457 | rho=data.rho,
458 | probability_of_profit_target=data.profit_target_probability,
459 | probability_of_loss_limit=data.loss_limit_probability,
460 | profit_target_ranges=data.profit_target_ranges,
461 | loss_limit_ranges=data.loss_limit_ranges,
462 | )
463 |
--------------------------------------------------------------------------------
/optionlab/models.py:
--------------------------------------------------------------------------------
1 | """
2 | This module primarily implements Pydantic models that represent inputs and outputs
3 | of strategy calculations. It also implements constants and custom types.
4 |
5 | From the user's point of view, the two most important classes that they will use
6 | to provide input and subsequently process calculation results are `Inputs` and
7 | `Outputs`, respectively.
8 | """
9 |
10 | import datetime as dt
11 | from typing import Literal, Optional
12 |
13 | import numpy as np
14 | from pydantic import BaseModel, Field, field_validator, model_validator, ConfigDict
15 |
16 | OptionType = Literal["call", "put"]
17 | """Option type in a strategy leg."""
18 |
19 | Action = Literal["buy", "sell"]
20 | """Action taken in in a strategy leg."""
21 |
22 | StrategyLegType = Literal["stock"] | OptionType | Literal["closed"]
23 | """Type of strategy leg."""
24 |
25 | TheoreticalModel = Literal["black-scholes", "array"]
26 | """
27 | Theoretical model used in probability of profit (PoP) calculations.
28 | """
29 |
30 | Range = tuple[float, float]
31 | """Range boundaries."""
32 |
33 | FloatOrNdarray = float | np.ndarray
34 | """Float or numpy array custom type."""
35 |
36 |
37 | def init_empty_array() -> np.ndarray:
38 | """@private"""
39 |
40 | return np.array([])
41 |
42 |
43 | class Stock(BaseModel):
44 | """Defines the attributes of a stock leg in a strategy."""
45 |
46 | type: Literal["stock"] = "stock"
47 | """It must be *'stock'*."""
48 |
49 | n: int = Field(gt=0)
50 | """Number of shares."""
51 |
52 | action: Action
53 | """Either *'buy'* or *'sell'*."""
54 |
55 | prev_pos: Optional[float] = None
56 | """
57 | Stock price effectively paid or received in a previously opened position.
58 |
59 | - If positive, the position remains open and the payoff calculation considers
60 | this price instead of the current stock price.
61 |
62 | - If negative, the position is closed and the difference between this price
63 | and the current price is included in the payoff calculation.
64 |
65 | The default is `None`, which means this stock position is not a previously
66 | opened position.
67 | """
68 |
69 |
70 | class Option(BaseModel):
71 | """Defines the attributes of an option leg in a strategy."""
72 |
73 | type: OptionType
74 | """Either *'call'* or *'put'*."""
75 |
76 | strike: float = Field(gt=0)
77 | """Strike price."""
78 |
79 | premium: float = Field(gt=0)
80 | """Option premium."""
81 |
82 | action: Action
83 | """Either *'buy'* or *'sell'*."""
84 |
85 | n: int = Field(gt=0)
86 | """Number of options."""
87 |
88 | prev_pos: Optional[float] = None
89 | """
90 | Premium effectively paid or received in a previously opened position.
91 |
92 | - If positive, the position remains open and the payoff calculation considers
93 | this price instead of the current price of the option.
94 |
95 | - If negative, the position is closed and the difference between this price
96 | and the current price is included in the payoff calculation.
97 |
98 | The default is `None`, which means this option position is not a previously
99 | opened position.
100 | """
101 |
102 | expiration: dt.date | int | None = None
103 | """
104 | Expiration date or number of days remaining to expiration.
105 |
106 | The default is `None`, which means the expiration is the same as `Inputs.target_date`
107 | or `Inputs.days_to_target_date`.
108 | """
109 |
110 | @field_validator("expiration")
111 | def validate_expiration(cls, v: dt.date | int | None) -> dt.date | int | None:
112 | """@private"""
113 |
114 | if isinstance(v, int) and v <= 0:
115 | raise ValueError("If expiration is an integer, it must be greater than 0.")
116 | return v
117 |
118 |
119 | class ClosedPosition(BaseModel):
120 | """Defines the attributes of a previously closed position in a strategy."""
121 |
122 | type: Literal["closed"] = "closed"
123 | """It must be *'closed'*."""
124 |
125 | prev_pos: float
126 | """
127 | The total amount of the closed position.
128 |
129 | - If positive, it resulted in a profit.
130 |
131 | - If negative, it incurred a loss.
132 |
133 | This amount will be added to the payoff and taken into account in the strategy
134 | calculations.
135 | """
136 |
137 |
138 | StrategyLeg = Stock | Option | ClosedPosition
139 | """Leg in a strategy."""
140 |
141 |
142 | class TheoreticalModelInputs(BaseModel):
143 | """Inputs for calculations, such as the probability of profit (PoP)."""
144 |
145 | stock_price: float = Field(gt=0.0)
146 | """Stock price."""
147 |
148 | volatility: float = Field(gt=0.0)
149 | """Annualized volatility of the underlying asset."""
150 |
151 | years_to_target_date: float = Field(ge=0.0)
152 | """Time remaining until target date, in years."""
153 |
154 |
155 | class BlackScholesModelInputs(TheoreticalModelInputs):
156 | """Defines the input data for the calculations using the Black-Scholes model."""
157 |
158 | model: Literal["black-scholes"] = "black-scholes"
159 | """It must be *'black-scholes'*."""
160 |
161 | interest_rate: float = Field(0.0, ge=0.0)
162 | """
163 | Annualized risk-free interest rate.
164 |
165 | The default is 0.0.
166 | """
167 |
168 | dividend_yield: float = Field(0.0, ge=0.0, le=1.0)
169 | """
170 | Annualized dividend yield.
171 |
172 | The default is 0.0.
173 | """
174 |
175 | __hash__ = object.__hash__
176 |
177 |
178 | class LaplaceInputs(TheoreticalModelInputs):
179 | """
180 | Defines the input data for the calculations using a log-Laplace distribution of
181 | stock prices.
182 | """
183 |
184 | model: Literal["laplace"] = "laplace"
185 | """It must be '*laplace*'."""
186 |
187 | mu: float
188 | """Annualized return of the underlying asset."""
189 |
190 | __hash__ = object.__hash__
191 |
192 |
193 | class ArrayInputs(BaseModel):
194 | """
195 | Defines the input data for the calculations when using an array of strategy
196 | returns.
197 | """
198 |
199 | model: Literal["array"] = "array"
200 | """It must be *'array*'."""
201 |
202 | array: np.ndarray
203 | """Array of strategy returns."""
204 |
205 | model_config = ConfigDict(arbitrary_types_allowed=True)
206 |
207 | @field_validator("array", mode="before")
208 | @classmethod
209 | def validate_arrays(cls, v: np.ndarray | list[float]) -> np.ndarray:
210 | """@private"""
211 |
212 | arr = np.asarray(v)
213 | if arr.shape[0] == 0:
214 | raise ValueError("The array is empty!")
215 | return arr
216 |
217 |
218 | class Inputs(BaseModel):
219 | """Defines the input data for a strategy calculation."""
220 |
221 | stock_price: float = Field(gt=0.0)
222 | """Spot price of the underlying."""
223 |
224 | volatility: float = Field(ge=0.0)
225 | """Annualized volatility."""
226 |
227 | interest_rate: float = Field(ge=0.0)
228 | """Annualized risk-free interest rate."""
229 |
230 | min_stock: float = Field(ge=0.0)
231 | """Minimum value of the stock in the stock price domain."""
232 |
233 | max_stock: float = Field(ge=0.0)
234 | """Maximum value of the stock in the stock price domain."""
235 |
236 | strategy: list[StrategyLeg] = Field(..., min_length=1)
237 | """A list of strategy legs."""
238 |
239 | dividend_yield: float = Field(0.0, ge=0.0)
240 | """
241 | Annualized dividend yield.
242 |
243 | The default is 0.0.
244 | """
245 |
246 | profit_target: Optional[float] = None
247 | """
248 | Target profit level.
249 |
250 | The default is `None`, which means it is not calculated.
251 | """
252 |
253 | loss_limit: Optional[float] = None
254 | """
255 | Limit loss level.
256 |
257 | The default is `None`, which means it is not calculated.
258 | """
259 |
260 | opt_commission: float = 0.0
261 | """
262 | Brokerage commission for options transactions.
263 |
264 | The default is 0.0.
265 | """
266 |
267 | stock_commission: float = 0.0
268 | """
269 | Brokerage commission for stocks transactions.
270 |
271 | The default is 0.0.
272 | """
273 |
274 | discard_nonbusiness_days: bool = True
275 | """
276 | Discards weekends and holidays when counting the number of days between
277 | two dates.
278 |
279 | The default is `True`.
280 | """
281 |
282 | business_days_in_year: int = 252
283 | """
284 | Number of business days in a year.
285 |
286 | The default is 252.
287 | """
288 |
289 | country: str = "US"
290 | """
291 | Country whose holidays will be counted if `discard_nonbusinessdays` is
292 | set to `True`.
293 |
294 | The default is '*US*'.
295 | """
296 |
297 | start_date: dt.date | None = None
298 | """
299 | Start date in the calculations.
300 |
301 | If not provided, `days_to_target_date` must be provided.
302 | """
303 |
304 | target_date: dt.date | None = None
305 | """
306 | Target date in the calculations.
307 |
308 | If not provided, `days_to_target_date` must be provided.
309 | """
310 |
311 | days_to_target_date: int = Field(0, ge=0)
312 | """
313 | Days remaining to the target date.
314 |
315 | If not provided, `start_date` and `target_date` must be provided.
316 | """
317 |
318 | model: TheoreticalModel = "black-scholes"
319 | """
320 | Theoretical model used in the calculations of probability of profit.
321 |
322 | It can be *'black-scholes'* or *'array*'.
323 | """
324 |
325 | array: np.ndarray = Field(default_factory=init_empty_array)
326 | """
327 | Array of terminal stock prices.
328 |
329 | The default is an empty array.
330 | """
331 |
332 | model_config = ConfigDict(arbitrary_types_allowed=True)
333 |
334 | @field_validator("strategy")
335 | @classmethod
336 | def validate_strategy(cls, v: list[StrategyLeg]) -> list[StrategyLeg]:
337 | """@private"""
338 |
339 | types = [strategy.type for strategy in v]
340 | if types.count("closed") > 1:
341 | raise ValueError("Only one position of type 'closed' is allowed!")
342 | return v
343 |
344 | @model_validator(mode="after")
345 | def validate_dates(self) -> "Inputs":
346 | """@private"""
347 |
348 | expiration_dates = [
349 | strategy.expiration
350 | for strategy in self.strategy
351 | if isinstance(strategy, Option) and isinstance(strategy.expiration, dt.date)
352 | ]
353 | if self.start_date and self.target_date:
354 | if any(
355 | expiration_date < self.target_date
356 | for expiration_date in expiration_dates
357 | ):
358 | raise ValueError("Expiration dates must be after or on target date!")
359 | if self.start_date >= self.target_date:
360 | raise ValueError("Start date must be before target date!")
361 | return self
362 | if self.days_to_target_date:
363 | if len(expiration_dates) > 0:
364 | raise ValueError(
365 | "You can't mix a strategy expiration with a days_to_target_date."
366 | )
367 | return self
368 | raise ValueError(
369 | "Either start_date and target_date or days_to_maturity must be provided"
370 | )
371 |
372 | @model_validator(mode="after")
373 | def validate_model_array(self) -> "Inputs":
374 | """@private"""
375 |
376 | if self.model != "array":
377 | return self
378 | elif self.array is None:
379 | raise ValueError(
380 | "Array of terminal stock prices must be provided if model is 'array'."
381 | )
382 | elif self.array.shape[0] == 0:
383 | raise ValueError(
384 | "Array of terminal stock prices must be provided if model is 'array'."
385 | )
386 | return self
387 |
388 |
389 | class BlackScholesInfo(BaseModel):
390 | """Defines the data returned by a calculation using the Black-Scholes model."""
391 |
392 | call_price: FloatOrNdarray
393 | """Price of a call option."""
394 |
395 | put_price: FloatOrNdarray
396 | """Price of a put option."""
397 |
398 | call_delta: FloatOrNdarray
399 | """Delta of a call option."""
400 |
401 | put_delta: FloatOrNdarray
402 | """Delta of a put option."""
403 |
404 | call_theta: FloatOrNdarray
405 | """Theta of a call option."""
406 |
407 | put_theta: FloatOrNdarray
408 | """Theta of a put option."""
409 |
410 | gamma: FloatOrNdarray
411 | """Gamma of an option."""
412 |
413 | vega: FloatOrNdarray
414 | """Vega of an option."""
415 |
416 | call_rho: FloatOrNdarray
417 | """Rho of a call option."""
418 |
419 | put_rho: FloatOrNdarray
420 | """Rho of a put option."""
421 |
422 | call_itm_prob: FloatOrNdarray
423 | """Probability of expiring in-the-money probability of a call option."""
424 |
425 | put_itm_prob: FloatOrNdarray
426 | """Probability of expiring in-the-money of a put option."""
427 |
428 | model_config = ConfigDict(arbitrary_types_allowed=True)
429 |
430 |
431 | class EngineDataResults(BaseModel):
432 | """@private"""
433 |
434 | stock_price_array: np.ndarray
435 | terminal_stock_prices: np.ndarray = Field(default_factory=init_empty_array)
436 | profit: np.ndarray = Field(default_factory=init_empty_array)
437 | profit_mc: np.ndarray = Field(default_factory=init_empty_array)
438 | strategy_profit: np.ndarray = Field(default_factory=init_empty_array)
439 | strategy_profit_mc: np.ndarray = Field(default_factory=init_empty_array)
440 | strike: list[float] = []
441 | premium: list[float] = []
442 | n: list[int] = []
443 | action: list[Action | Literal["n/a"]] = []
444 | type: list[StrategyLegType] = []
445 |
446 | model_config = ConfigDict(arbitrary_types_allowed=True)
447 |
448 |
449 | class EngineData(EngineDataResults):
450 | """@private"""
451 |
452 | inputs: Inputs
453 | previous_position: list[float] = []
454 | use_bs: list[bool] = []
455 | profit_ranges: list[Range] = []
456 | profit_target_ranges: list[Range] = []
457 | loss_limit_ranges: list[Range] = []
458 | days_to_maturity: list[int] = []
459 | days_in_year: int = 365
460 | days_to_target: int = 30
461 | implied_volatility: list[float] = []
462 | itm_probability: list[float] = []
463 | delta: list[float] = []
464 | gamma: list[float] = []
465 | vega: list[float] = []
466 | rho: list[float] = []
467 | theta: list[float] = []
468 | cost: list[float] = []
469 | profit_probability: float = 0.0
470 | profit_target_probability: float = 0.0
471 | loss_limit_probability: float = 0.0
472 | expected_profit: Optional[float] = None
473 | expected_loss: Optional[float] = None
474 |
475 |
476 | class Outputs(BaseModel):
477 | """
478 | Defines the output data from a strategy calculation.
479 | """
480 |
481 | probability_of_profit: float
482 | """
483 | Probability of the strategy yielding at least $0.01.
484 | """
485 |
486 | profit_ranges: list[Range]
487 | """
488 | A list of minimum and maximum stock prices defining ranges in which the
489 | strategy makes at least $0.01.
490 | """
491 |
492 | expected_profit: Optional[float] = None
493 | """
494 | Expected profit when the strategy is profitable.
495 |
496 | The default is `None`.
497 | """
498 |
499 | expected_loss: Optional[float] = None
500 | """
501 | Expected loss when the strategy is not profitable.
502 |
503 | The default is `None`.
504 | """
505 |
506 | per_leg_cost: list[float]
507 | """
508 | List of leg costs.
509 | """
510 |
511 | strategy_cost: float
512 | """
513 | Total strategy cost.
514 | """
515 |
516 | minimum_return_in_the_domain: float
517 | """
518 | Minimum return of the strategy within the stock price domain.
519 | """
520 |
521 | maximum_return_in_the_domain: float
522 | """
523 | Maximum return of the strategy within the stock price domain.
524 | """
525 |
526 | implied_volatility: list[float]
527 | """
528 | List of implied volatilities, one per strategy leg.
529 | """
530 |
531 | in_the_money_probability: list[float]
532 | """
533 | List of probabilities of legs expiring in-the-money (ITM).
534 | """
535 |
536 | delta: list[float]
537 | """
538 | List of Delta values, one per strategy leg.
539 | """
540 |
541 | gamma: list[float]
542 | """
543 | List of Gamma values, one per strategy leg.
544 | """
545 |
546 | theta: list[float]
547 | """
548 | List of Theta values, one per strategy leg.
549 | """
550 |
551 | vega: list[float]
552 | """
553 | List of Vega values, one per strategy leg.
554 | """
555 |
556 | rho: list[float]
557 | """
558 | List of Rho values, one per strategy leg.
559 | """
560 |
561 | probability_of_profit_target: float = 0.0
562 | """
563 | Probability of the strategy yielding at least the profit target.
564 |
565 | The default is 0.0.
566 | """
567 |
568 | profit_target_ranges: list[Range] = []
569 | """
570 | List of minimum and maximum stock prices defining ranges in which the
571 | strategy makes at least the profit target.
572 |
573 | The default is [].
574 | """
575 |
576 | probability_of_loss_limit: float = 0.0
577 | """
578 | Probability of the strategy losing at least the loss limit.
579 |
580 | The default is 0.0.
581 | """
582 |
583 | loss_limit_ranges: list[Range] = []
584 | """
585 | List of minimum and maximum stock prices defining ranges where the
586 | strategy loses at least the loss limit.
587 |
588 | The default is [].
589 | """
590 |
591 | inputs: Inputs
592 | """@private"""
593 |
594 | data: EngineDataResults
595 | """@private"""
596 |
597 | def __str__(self):
598 | s = ""
599 |
600 | for key, value in self.model_dump(
601 | exclude={"data", "inputs"},
602 | exclude_none=True,
603 | exclude_defaults=True,
604 | ).items():
605 | s += f"{key.capitalize().replace('_',' ')}: {value}\n"
606 |
607 | return s
608 |
609 |
610 | class PoPOutputs(BaseModel):
611 | """
612 | Defines the output data from a probability of profit (PoP) calculation.
613 | """
614 |
615 | probability_of_reaching_target: float = 0.0
616 | """
617 | Probability that the strategy return will be equal or greater than the
618 | target.
619 |
620 | The default is 0.0.
621 | """
622 |
623 | probability_of_missing_target: float = 0.0
624 | """
625 | Probability that the strategy return will be less than the target.
626 |
627 | The default is 0.0.
628 | """
629 |
630 | reaching_target_range: list[Range] = []
631 | """
632 | Range of stock prices where the strategy return is equal or greater than
633 | the target.
634 |
635 | The default is [].
636 | """
637 |
638 | missing_target_range: list[Range] = []
639 | """
640 | Range of stock prices where the strategy return is less than the target.
641 |
642 | The default is [].
643 | """
644 |
645 | expected_return_above_target: Optional[float] = None
646 | """
647 | Expected value of the strategy return when the return is equal or greater
648 | than the target.
649 |
650 | The default is `None`.
651 | """
652 |
653 | expected_return_below_target: Optional[float] = None
654 | """
655 | Expected value of the strategy return when the return is less than the
656 | target.
657 |
658 | The default is `None`.
659 | """
660 |
--------------------------------------------------------------------------------
/optionlab/plot.py:
--------------------------------------------------------------------------------
1 | """
2 | This module implements the `plot_pl` function, which displays the profit/loss diagram
3 | of an options trading strategy.
4 | """
5 |
6 | from __future__ import division
7 | from __future__ import print_function
8 |
9 | import matplotlib.pyplot as plt
10 | from matplotlib import rcParams
11 | from numpy import zeros, full
12 |
13 | from optionlab.models import Outputs
14 |
15 |
16 | def plot_pl(outputs: Outputs) -> None:
17 | """
18 | Displays the strategy's profit/loss diagram.
19 |
20 | Parameters
21 | ----------
22 | `outputs`: output data from a strategy calculation with `optionlab.engine.run_strategy`.
23 |
24 | Returns
25 | -------
26 | `None`.
27 | """
28 |
29 | st = outputs.data
30 | inputs = outputs.inputs
31 |
32 | if len(st.strategy_profit) == 0:
33 | raise RuntimeError(
34 | "Before plotting the profit/loss profile diagram, you must run a calculation!"
35 | )
36 |
37 | rcParams.update({"figure.autolayout": True})
38 |
39 | zero_line = zeros(st.stock_price_array.shape[0])
40 | strike_call_buy = []
41 | strike_put_buy = []
42 | zero_call_buy = []
43 | zero_put_buy = []
44 | strike_call_sell = []
45 | strike_put_sell = []
46 | zero_call_sell = []
47 | zero_put_sell = []
48 | comment = "Profit/Loss diagram:\n--------------------\n"
49 | comment += "The vertical green dashed line corresponds to the position "
50 | comment += "of the stock's spot price. The right and left arrow "
51 | comment += "markers indicate the strike prices of calls and puts, "
52 | comment += "respectively, with blue representing long and red representing "
53 | comment += "short positions."
54 |
55 | plt.axvline(inputs.stock_price, ls="--", color="green")
56 | plt.xlabel("Stock price")
57 | plt.ylabel("Profit/Loss")
58 | plt.xlim(st.stock_price_array.min(), st.stock_price_array.max())
59 |
60 | for i, strike in enumerate(st.strike):
61 | if strike == 0.0:
62 | continue
63 |
64 | if st.type[i] == "call":
65 | if st.action[i] == "buy":
66 | strike_call_buy.append(strike)
67 | zero_call_buy.append(0.0)
68 | elif st.action[i] == "sell":
69 | strike_call_sell.append(strike)
70 | zero_call_sell.append(0.0)
71 | elif st.type[i] == "put":
72 | if st.action[i] == "buy":
73 | strike_put_buy.append(strike)
74 | zero_put_buy.append(0.0)
75 | elif st.action[i] == "sell":
76 | strike_put_sell.append(strike)
77 | zero_put_sell.append(0.0)
78 |
79 | target_line = None
80 | if inputs.profit_target is not None:
81 | comment += " The blue dashed line represents the profit target level."
82 | target_line = full(st.stock_price_array.shape[0], inputs.profit_target)
83 |
84 | loss_line = None
85 | if inputs.loss_limit is not None:
86 | comment += " The red dashed line represents the loss limit level."
87 | loss_line = full(st.stock_price_array.shape[0], inputs.loss_limit)
88 |
89 | print(comment)
90 |
91 | if loss_line is not None and target_line is not None:
92 | plt.plot(
93 | st.stock_price_array,
94 | zero_line,
95 | "m--",
96 | st.stock_price_array,
97 | loss_line,
98 | "r--",
99 | st.stock_price_array,
100 | target_line,
101 | "b--",
102 | st.stock_price_array,
103 | st.strategy_profit,
104 | "k-",
105 | strike_call_buy,
106 | zero_call_buy,
107 | "b>",
108 | strike_put_buy,
109 | zero_put_buy,
110 | "b<",
111 | strike_call_sell,
112 | zero_call_sell,
113 | "r>",
114 | strike_put_sell,
115 | zero_put_sell,
116 | "r<",
117 | markersize=10,
118 | )
119 | elif loss_line is not None:
120 | plt.plot(
121 | st.stock_price_array,
122 | zero_line,
123 | "m--",
124 | st.stock_price_array,
125 | loss_line,
126 | "r--",
127 | st.stock_price_array,
128 | st.strategy_profit,
129 | "k-",
130 | strike_call_buy,
131 | zero_call_buy,
132 | "b>",
133 | strike_put_buy,
134 | zero_put_buy,
135 | "b<",
136 | strike_call_sell,
137 | zero_call_sell,
138 | "r>",
139 | strike_put_sell,
140 | zero_put_sell,
141 | "r<",
142 | markersize=10,
143 | )
144 | elif target_line is not None:
145 | plt.plot(
146 | st.stock_price_array,
147 | zero_line,
148 | "m--",
149 | st.stock_price_array,
150 | target_line,
151 | "b--",
152 | st.stock_price_array,
153 | st.strategy_profit,
154 | "k-",
155 | strike_call_buy,
156 | zero_call_buy,
157 | "b>",
158 | strike_put_buy,
159 | zero_put_buy,
160 | "b<",
161 | strike_call_sell,
162 | zero_call_sell,
163 | "r>",
164 | strike_put_sell,
165 | zero_put_sell,
166 | "r<",
167 | markersize=10,
168 | )
169 | else:
170 | plt.plot(
171 | st.stock_price_array,
172 | zero_line,
173 | "m--",
174 | st.stock_price_array,
175 | st.strategy_profit,
176 | "k-",
177 | strike_call_buy,
178 | zero_call_buy,
179 | "b>",
180 | strike_put_buy,
181 | zero_put_buy,
182 | "b<",
183 | strike_call_sell,
184 | zero_call_sell,
185 | "r>",
186 | strike_put_sell,
187 | zero_put_sell,
188 | "r<",
189 | markersize=10,
190 | )
191 |
--------------------------------------------------------------------------------
/optionlab/price_array.py:
--------------------------------------------------------------------------------
1 | """
2 | This module defines the `create_price_array` function, which calculates terminal
3 | prices from numerical simulations of multiple stock paths.
4 |
5 | The terminal price array can later be used to calculate the probability of profit
6 | (PoP) of a strategy using the `optionlab.engine.run_strategy` function.
7 | """
8 |
9 | from functools import lru_cache
10 |
11 | import numpy as np
12 | from numpy import exp
13 | from numpy.random import seed as np_seed_number, normal, laplace
14 | from numpy.lib.scimath import log, sqrt
15 |
16 | from optionlab.models import BlackScholesModelInputs, LaplaceInputs
17 |
18 |
19 | def create_price_array(
20 | inputs_data: BlackScholesModelInputs | LaplaceInputs | dict,
21 | n: int = 100_000,
22 | seed: int | None = None,
23 | ) -> np.ndarray:
24 | """
25 | Generates terminal stock prices.
26 |
27 | Parameters
28 | ----------
29 | `inputs_data`: input data used to generate the terminal stock prices.
30 |
31 | `n`: number of terminal stock prices.
32 |
33 | `seed`: seed for random number generation.
34 |
35 | Returns
36 | -------
37 | Array of terminal prices.
38 | """
39 |
40 | inputs: BlackScholesModelInputs | LaplaceInputs
41 |
42 | if isinstance(inputs_data, dict):
43 | input_type = inputs_data["model"]
44 |
45 | if input_type == "black-scholes":
46 | inputs = BlackScholesModelInputs.model_validate(inputs_data)
47 | elif input_type == "laplace":
48 | inputs = LaplaceInputs.model_validate(inputs_data)
49 | else:
50 | raise ValueError("Inputs are not valid!")
51 | else:
52 | inputs = inputs_data
53 |
54 | if isinstance(inputs, BlackScholesModelInputs):
55 | input_type = "black-scholes"
56 | elif isinstance(inputs, LaplaceInputs):
57 | input_type = "laplace"
58 | else:
59 | raise ValueError("Inputs are not valid!")
60 |
61 | np_seed_number(seed)
62 |
63 | if input_type == "black-scholes":
64 | arr = _get_array_price_from_BS(inputs, n)
65 | elif input_type == "laplace":
66 | arr = _get_array_price_from_laplace(inputs, n)
67 |
68 | np_seed_number(None)
69 |
70 | return arr
71 |
72 |
73 | @lru_cache
74 | def _get_array_price_from_BS(inputs: BlackScholesModelInputs, n: int) -> np.ndarray:
75 | return exp(
76 | normal(
77 | (
78 | log(inputs.stock_price)
79 | + (
80 | inputs.interest_rate
81 | - inputs.dividend_yield
82 | - 0.5 * inputs.volatility * inputs.volatility
83 | )
84 | * inputs.years_to_target_date
85 | ),
86 | inputs.volatility * sqrt(inputs.years_to_target_date),
87 | n,
88 | )
89 | )
90 |
91 |
92 | @lru_cache
93 | def _get_array_price_from_laplace(inputs: LaplaceInputs, n: int) -> np.ndarray:
94 | return exp(
95 | laplace(
96 | (log(inputs.stock_price) + inputs.mu * inputs.years_to_target_date),
97 | (inputs.volatility * sqrt(inputs.years_to_target_date)) / sqrt(2.0),
98 | n,
99 | )
100 | )
101 |
--------------------------------------------------------------------------------
/optionlab/support.py:
--------------------------------------------------------------------------------
1 | """
2 | This module implements a number of helper functions that are not intended to be
3 | called directly by users, but rather support functionalities within the
4 | `optionlab.engine.run_strategy` function.
5 | """
6 |
7 | from __future__ import division
8 |
9 | from functools import lru_cache
10 |
11 | from typing import Optional
12 |
13 | import numpy as np
14 | from numpy import abs, round, arange
15 | from numpy.lib.scimath import log, sqrt
16 | from scipy import stats
17 |
18 | from optionlab.black_scholes import get_d1, get_d2, get_option_price
19 | from optionlab.models import (
20 | OptionType,
21 | Action,
22 | BlackScholesModelInputs,
23 | ArrayInputs,
24 | Range,
25 | PoPOutputs,
26 | FloatOrNdarray,
27 | )
28 |
29 |
30 | def get_pl_profile(
31 | option_type: OptionType,
32 | action: Action,
33 | x: float,
34 | val: float,
35 | n: int,
36 | s: np.ndarray,
37 | commission: float = 0.0,
38 | ) -> tuple[np.ndarray, float]:
39 | """
40 | Returns the profit/loss profile and cost of an options trade at expiration.
41 |
42 | Parameters
43 | ----------
44 | `option_type`: either *'call'* or *'put'*.
45 |
46 | `action`: either *'buy'* or *'sell'*.
47 |
48 | `x`: strike price.
49 |
50 | `val`: option price.
51 |
52 | `n`: number of options.
53 |
54 | `s`: array of stock prices.
55 |
56 | `commission`: brokerage commission.
57 |
58 | Returns
59 | -------
60 | Profit/loss profile and cost of an option trade at expiration.
61 | """
62 |
63 | if action == "buy":
64 | cost = -val
65 | elif action == "sell":
66 | cost = val
67 | else:
68 | raise ValueError("Action must be either 'buy' or 'sell'!")
69 |
70 | if option_type in ("call", "put"):
71 | return (
72 | n * _get_pl_option(option_type, val, action, s, x) - commission,
73 | n * cost - commission,
74 | )
75 | else:
76 | raise ValueError("Option type must be either 'call' or 'put'!")
77 |
78 |
79 | def get_pl_profile_stock(
80 | s0: float, action: Action, n: int, s: np.ndarray, commission: float = 0.0
81 | ) -> tuple[np.ndarray, float]:
82 | """
83 | Returns the profit/loss profile and cost of a stock position.
84 |
85 | Parameters
86 | ----------
87 | `s0`: initial stock price.
88 |
89 | `action`: either *'buy'* or *'sell'*.
90 |
91 | `n`: number of shares.
92 |
93 | `s`: array of stock prices.
94 |
95 | `commission`: brokerage commission.
96 |
97 | Returns
98 | -------
99 | Profit/loss profile and cost of a stock position.
100 | """
101 |
102 | if action == "buy":
103 | cost = -s0
104 | elif action == "sell":
105 | cost = s0
106 | else:
107 | raise ValueError("Action must be either 'buy' or 'sell'!")
108 |
109 | return n * _get_pl_stock(s0, action, s) - commission, n * cost - commission
110 |
111 |
112 | def get_pl_profile_bs(
113 | option_type: OptionType,
114 | action: Action,
115 | x: float,
116 | val: float,
117 | r: float,
118 | target_to_maturity_years: float,
119 | volatility: float,
120 | n: int,
121 | s: np.ndarray,
122 | y: float = 0.0,
123 | commission: float = 0.0,
124 | ) -> tuple[FloatOrNdarray, float]:
125 | """
126 | Returns the profit/loss profile and cost of an options trade on a target date
127 | before expiration using the Black-Scholes model for option pricing.
128 |
129 | Parameters
130 | ----------
131 | `option_type`: either *'call'* or *'put'*.
132 |
133 | `action`: either *'buy'* or *'sell'*.
134 |
135 | `x`: strike price.
136 |
137 | `val`: initial option price.
138 |
139 | `r`: annualized risk-free interest rate.
140 |
141 | `target_to_maturity_years`: time remaining to maturity from the target date,
142 | in years.
143 |
144 | `volatility`: annualized volatility of the underlying asset.
145 |
146 | `n`: number of options.
147 |
148 | `s`: array of stock prices.
149 |
150 | `y`: annualized dividend yield.
151 |
152 | `commission`: brokerage commission.
153 |
154 | Returns
155 | -------
156 | Profit/loss profile and cost of an option trade before expiration.
157 | """
158 |
159 | if action == "buy":
160 | cost = -val
161 | fac = 1
162 | elif action == "sell":
163 | cost = val
164 | fac = -1
165 | else:
166 | raise ValueError("Action must be either 'buy' or 'sell'!")
167 |
168 | d1: FloatOrNdarray = get_d1(s, x, r, volatility, target_to_maturity_years, y)
169 | d2: FloatOrNdarray = get_d2(s, x, r, volatility, target_to_maturity_years, y)
170 | calcprice: FloatOrNdarray = get_option_price(
171 | option_type, s, x, r, target_to_maturity_years, d1, d2, y
172 | )
173 | profile: FloatOrNdarray = fac * n * (calcprice - val) - commission
174 |
175 | return profile, n * cost - commission
176 |
177 |
178 | @lru_cache
179 | def create_price_seq(min_price: float, max_price: float) -> np.ndarray:
180 | """
181 | Generates a sequence of stock prices from a minimum to a maximum price with
182 | increment $0.01.
183 |
184 | Parameters
185 | ----------
186 | `min_price`: minimum stock price in the range.
187 |
188 | `max_price`: maximum stock price in the range.
189 |
190 | Returns
191 | -------
192 | Array of sequential stock prices.
193 | """
194 |
195 | if max_price > min_price:
196 | return round((arange((max_price - min_price) * 100 + 1) * 0.01 + min_price), 2)
197 | else:
198 | raise ValueError("Maximum price cannot be less than minimum price!")
199 |
200 |
201 | def get_pop(
202 | s: np.ndarray,
203 | profit: np.ndarray,
204 | inputs_data: BlackScholesModelInputs | ArrayInputs,
205 | target: float = 0.01,
206 | ) -> PoPOutputs:
207 | """
208 | Estimates the probability of profit (PoP) of an options trading strategy.
209 |
210 | Parameters
211 | ----------
212 | `s`: array of stock prices.
213 |
214 | `profit`: array of profits and losses.
215 |
216 | `inputs_data`: input data used to estimate the probability of profit.
217 |
218 | `target`: target return.
219 |
220 | Returns
221 | -------
222 | Outputs of a probability of profit (PoP) calculation.
223 | """
224 |
225 | probability_of_reaching_target: float
226 | probability_of_missing_target: float
227 |
228 | expected_return_above_target: Optional[float] = None
229 | expected_return_below_target: Optional[float] = None
230 |
231 | t_ranges = _get_profit_range(s, profit, target)
232 |
233 | reaching_target_range = t_ranges[0] if t_ranges[0] != [(0.0, 0.0)] else []
234 | missing_target_range = t_ranges[1] if t_ranges[1] != [(0.0, 0.0)] else []
235 |
236 | if isinstance(inputs_data, BlackScholesModelInputs):
237 | (
238 | probability_of_reaching_target,
239 | expected_return_above_target,
240 | probability_of_missing_target,
241 | expected_return_below_target,
242 | ) = _get_pop_bs(s, profit, inputs_data, t_ranges)
243 | elif isinstance(inputs_data, ArrayInputs):
244 | (
245 | probability_of_reaching_target,
246 | expected_return_above_target,
247 | probability_of_missing_target,
248 | expected_return_below_target,
249 | ) = _get_pop_array(inputs_data, target)
250 |
251 | return PoPOutputs(
252 | probability_of_reaching_target=probability_of_reaching_target,
253 | probability_of_missing_target=probability_of_missing_target,
254 | reaching_target_range=reaching_target_range,
255 | missing_target_range=missing_target_range,
256 | expected_return_above_target=expected_return_above_target,
257 | expected_return_below_target=expected_return_below_target,
258 | )
259 |
260 |
261 | def _get_pl_option(
262 | option_type: OptionType, opvalue: float, action: Action, s: np.ndarray, x: float
263 | ) -> np.ndarray:
264 | """
265 | Returns the profit or loss profile of an option leg at expiration.
266 |
267 | Parameters
268 | ----------
269 | `option_type`: either *'call'* or *'put'*.
270 |
271 | `opvalue`: option price.
272 |
273 | `action`: either *'buy'* or *'sell'*.
274 |
275 | `s`: array of stock prices.
276 |
277 | `x`: strike price.
278 |
279 | Returns
280 | -------
281 | Profit or loss profile of an option leg at expiration.
282 | """
283 |
284 | if action == "sell":
285 | return opvalue - _get_payoff(option_type, s, x)
286 | elif action == "buy":
287 | return _get_payoff(option_type, s, x) - opvalue
288 | else:
289 | raise ValueError("Action must be either 'sell' or 'buy'!")
290 |
291 |
292 | def _get_payoff(option_type: OptionType, s: np.ndarray, x: float) -> np.ndarray:
293 | """
294 | Returns the payoff of an option leg at expiration.
295 |
296 | Parameters
297 | ----------
298 | `option_type`: either *'call'* or *'put'*.
299 |
300 | `s`: array of stock prices.
301 |
302 | `x`: strike price.
303 |
304 | Returns
305 | -------
306 | Payoff of an option leg at expiration.
307 | """
308 |
309 | if option_type == "call":
310 | return (s - x + abs(s - x)) / 2.0
311 | elif option_type == "put":
312 | return (x - s + abs(x - s)) / 2.0
313 | else:
314 | raise ValueError("Option type must be either 'call' or 'put'!")
315 |
316 |
317 | def _get_pl_stock(s0: float, action: Action, s: np.ndarray) -> np.ndarray:
318 | """
319 | Returns the profit or loss profile of a stock position.
320 |
321 | Parameters
322 | ----------
323 | `s0`: spot price of the underlying asset.
324 |
325 | `action`: either *'buy'* or *'sell'*.
326 |
327 | `s`: array of stock prices.
328 |
329 | Returns
330 | -------
331 | Profit or loss profile of a stock position.
332 | """
333 |
334 | if action == "sell":
335 | return s0 - s
336 | elif action == "buy":
337 | return s - s0
338 | else:
339 | raise ValueError("Action must be either 'sell' or 'buy'!")
340 |
341 |
342 | def _get_pop_bs(
343 | s: np.ndarray,
344 | profit: np.ndarray,
345 | inputs: BlackScholesModelInputs,
346 | profit_range: tuple[list[Range], list[Range]],
347 | ) -> tuple[float, Optional[float], float, Optional[float]]:
348 | """
349 | Estimates the probability of profit (PoP) of an options trading strategy using
350 | the Black-Scholes model.
351 |
352 | Parameters
353 | ----------
354 | `s`: array of stock prices.
355 |
356 | `profit`: array of profits and losses.
357 |
358 | `inputs`: input data used to estimate the probability of profit.
359 |
360 | `profit_range`: lists of stock price pairs defining the profit and loss
361 | ranges.
362 |
363 | Returns
364 | -------
365 | Probability of reaching the return target, expected value above the target,
366 | probability of missing the return target, and expected value below the
367 | target.
368 | """
369 |
370 | expected_return_above_target = None
371 | expected_return_below_target = None
372 |
373 | sigma = (
374 | inputs.volatility * sqrt(inputs.years_to_target_date)
375 | if inputs.volatility > 0.0
376 | else 1e-10
377 | )
378 |
379 | for i, t in enumerate(profit_range):
380 | prob = 0.0
381 |
382 | if t != [(0.0, 0.0)]:
383 | for p_range in t:
384 | lval = log(p_range[0]) if p_range[0] > 0.0 else -float("inf")
385 | hval = log(p_range[1])
386 | drift = (
387 | inputs.interest_rate
388 | - inputs.dividend_yield
389 | - 0.5 * inputs.volatility * inputs.volatility
390 | ) * inputs.years_to_target_date
391 | m = log(inputs.stock_price) + drift
392 | prob += stats.norm.cdf((hval - m) / sigma) - stats.norm.cdf(
393 | (lval - m) / sigma
394 | )
395 |
396 | if i == 0:
397 | probability_of_reaching_target = prob
398 | else:
399 | probability_of_missing_target = prob
400 |
401 | return (
402 | probability_of_reaching_target,
403 | expected_return_above_target,
404 | probability_of_missing_target,
405 | expected_return_below_target,
406 | )
407 |
408 |
409 | def _get_pop_array(
410 | inputs: ArrayInputs, target: float
411 | ) -> tuple[float, Optional[float], float, Optional[float]]:
412 | """
413 | Estimates the probability of profit (PoP) of an options trading strategy using
414 | an array of terminal stock prices.
415 |
416 | Parameters
417 | ----------
418 | `inputs`: input data used to estimate the probability of profit.
419 |
420 | `target`: target return.
421 |
422 | Returns
423 | -------
424 | Probability of reaching the target return, expected value above the target,
425 | probability of missing the target return, and expected value below the
426 | target.
427 | """
428 |
429 | if inputs.array.shape[0] == 0:
430 | raise ValueError("The array is empty!")
431 |
432 | tmp1 = inputs.array[inputs.array >= target]
433 | tmp2 = inputs.array[inputs.array < target]
434 |
435 | probability_of_reaching_target = tmp1.shape[0] / inputs.array.shape[0]
436 | probability_of_missing_target = 1.0 - probability_of_reaching_target
437 |
438 | expected_return_above_target = round(tmp1.mean(), 2) if tmp1.shape[0] > 0 else None
439 | expected_return_below_target = round(tmp2.mean(), 2) if tmp2.shape[0] > 0 else None
440 |
441 | return (
442 | probability_of_reaching_target,
443 | expected_return_above_target,
444 | probability_of_missing_target,
445 | expected_return_below_target,
446 | )
447 |
448 |
449 | def _get_profit_range(
450 | s: np.ndarray, profit: np.ndarray, target: float = 0.01
451 | ) -> tuple[list[Range], list[Range]]:
452 | """
453 | Returns lists of stock price ranges: one representing the ranges where the
454 | options trade returns are equal to or greater than the target, and the other
455 | representing the ranges where they fall short.
456 |
457 | Parameters
458 | ----------
459 | `s`: array of stock prices.
460 |
461 | `profit`: array of profits and losses.
462 |
463 | `target`: target profit.
464 |
465 | Returns
466 | -------
467 | Lists of stock price pairs.
468 | """
469 |
470 | profit_range = []
471 | loss_range = []
472 |
473 | crossings = _get_sign_changes(profit, target)
474 | n_crossings = len(crossings)
475 |
476 | if n_crossings == 0:
477 | if profit[0] >= target:
478 | return [(0.0, float("inf"))], [(0.0, 0.0)]
479 | else:
480 | return [(0.0, 0.0)], [(0.0, float("inf"))]
481 |
482 | lb_profit = hb_profit = None
483 | lb_loss = hb_loss = None
484 |
485 | for i, index in enumerate(crossings):
486 | if i == 0:
487 | if profit[index] < profit[index - 1]:
488 | lb_profit = 0.0
489 | hb_profit = s[index - 1]
490 | lb_loss = s[index]
491 |
492 | if n_crossings == 1:
493 | hb_loss = float("inf")
494 | else:
495 | lb_profit = s[index]
496 | lb_loss = 0.0
497 | hb_loss = s[index - 1]
498 |
499 | if n_crossings == 1:
500 | hb_profit = float("inf")
501 | elif i == n_crossings - 1:
502 | if profit[index] > profit[index - 1]:
503 | lb_profit = s[index]
504 | hb_profit = float("inf")
505 | hb_loss = s[index - 1]
506 | else:
507 | hb_profit = s[index - 1]
508 | lb_loss = s[index]
509 | hb_loss = float("inf")
510 | else:
511 | if profit[index] > profit[index - 1]:
512 | lb_profit = s[index]
513 | hb_loss = s[index - 1]
514 | else:
515 | hb_profit = s[index - 1]
516 | lb_loss = s[index]
517 |
518 | if lb_profit is not None and hb_profit is not None:
519 | profit_range.append((lb_profit, hb_profit))
520 |
521 | lb_profit = hb_profit = None
522 |
523 | if lb_loss is not None and hb_loss is not None:
524 | loss_range.append((lb_loss, hb_loss))
525 |
526 | lb_loss = hb_loss = None
527 |
528 | return profit_range, loss_range
529 |
530 |
531 | def _get_sign_changes(profit: np.ndarray, target: float) -> list[int]:
532 | """
533 | Returns a list of the indices in the array of profits where the sign changes.
534 |
535 | Parameters
536 | ----------
537 | `profit`: array of profits and losses.
538 |
539 | `target`: target profit.
540 |
541 | Returns
542 | -------
543 | List of indices.
544 | """
545 |
546 | p_temp = profit - target + 1e-10
547 |
548 | sign_changes = (np.sign(p_temp[:-1]) * np.sign(p_temp[1:])) < 0
549 |
550 | return list(np.where(sign_changes)[0] + 1)
551 |
--------------------------------------------------------------------------------
/optionlab/utils.py:
--------------------------------------------------------------------------------
1 | """
2 | This module defines utility functions.
3 | """
4 |
5 | from __future__ import division
6 |
7 | import datetime as dt
8 | from datetime import timedelta
9 | from functools import lru_cache
10 |
11 | import numpy as np
12 | from holidays import country_holidays
13 |
14 | from optionlab.models import Outputs
15 |
16 |
17 | @lru_cache
18 | def get_nonbusiness_days(
19 | start_date: dt.date, end_date: dt.date, country: str = "US"
20 | ) -> int:
21 | """
22 | Returns the number of non-business days (i.e., weekends and holidays) between
23 | the start and end date.
24 |
25 | Parameters
26 | ----------
27 | `start_date`: start date.
28 |
29 | `end_date`: end date.
30 |
31 | `country`: country of the stock exchange.
32 |
33 | Returns
34 | -------
35 | Number of weekends and holidays between the start and end date.
36 | """
37 |
38 | if end_date > start_date:
39 | n_days = (end_date - start_date).days
40 | else:
41 | raise ValueError("End date must be after start date!")
42 |
43 | nonbusiness_days: int = 0
44 | holidays = country_holidays(country)
45 |
46 | for i in range(n_days):
47 | current_date = start_date + timedelta(days=i)
48 |
49 | if current_date.weekday() >= 5 or current_date.strftime("%Y-%m-%d") in holidays:
50 | nonbusiness_days += 1
51 |
52 | return nonbusiness_days
53 |
54 |
55 | def get_pl(outputs: Outputs, leg: int | None = None) -> tuple[np.ndarray, np.ndarray]:
56 | """
57 | Returns the stock prices and the corresponding profit/loss profile of either
58 | a leg or the whole strategy.
59 |
60 | Parameters
61 | ----------
62 | `outputs`: output data from a strategy calculation.
63 |
64 | `leg`: index of a strategy leg. The default is `None`, which means the whole
65 | strategy.
66 |
67 | Returns
68 | -------
69 | Array of stock prices and array or profits/losses.
70 | """
71 |
72 | if outputs.data.profit.size > 0 and leg and leg < outputs.data.profit.shape[0]:
73 | return outputs.data.stock_price_array, outputs.data.profit[leg]
74 |
75 | return outputs.data.stock_price_array, outputs.data.strategy_profit
76 |
77 |
78 | def pl_to_csv(
79 | outputs: Outputs, filename: str = "pl.csv", leg: int | None = None
80 | ) -> None:
81 | """
82 | Saves the stock prices and corresponding profit/loss profile of either a leg
83 | or the whole strategy to a CSV file.
84 |
85 | Parameters
86 | ----------
87 | `outputs`: output data from a strategy calculation.
88 |
89 | `filename`: name of the CSV file.
90 |
91 | `leg`: index of a strategy leg. The default is `None`, which means the whole
92 | strategy.
93 |
94 | Returns
95 | -------
96 | `None`.
97 | """
98 |
99 | if outputs.data.profit.size > 0 and leg and leg < outputs.data.profit.shape[0]:
100 | arr = np.stack((outputs.data.stock_price_array, outputs.data.profit[leg]))
101 | else:
102 | arr = np.stack((outputs.data.stock_price_array, outputs.data.strategy_profit))
103 |
104 | np.savetxt(
105 | filename, arr.transpose(), delimiter=",", header="StockPrice,Profit/Loss"
106 | )
107 |
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [tool.poetry]
2 | name = "optionlab"
3 | version = "1.4.3"
4 | description = "Python library for evaluating options trading strategies"
5 | authors = ["Roberto Gomes, PhD "]
6 | readme = "README.md"
7 |
8 | [tool.poetry.dependencies]
9 | python = "^3.10"
10 | scipy = "^1.12.0"
11 | pandas = "^2.2.1"
12 | matplotlib = "^3.8.3"
13 | pydantic = "^2.9"
14 | holidays = "^0.44"
15 | jupyter = "^1.0.0"
16 |
17 | [tool.poetry.group.dev.dependencies]
18 | mypy = "^1.14.0"
19 | black = {extras = ["jupyter"], version = "^24.2.0"}
20 | pytest = "^8.0.2"
21 | pytest-benchmark = "^4.0.0"
22 | ruff = "^0.3.2"
23 |
24 | [build-system]
25 | requires = ["poetry-core"]
26 | build-backend = "poetry.core.masonry.api"
27 |
--------------------------------------------------------------------------------
/tests/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__
--------------------------------------------------------------------------------
/tests/__init__.py:
--------------------------------------------------------------------------------
1 | from pathlib import Path
2 |
3 | TEST_DIR = Path(__file__).parent
4 |
--------------------------------------------------------------------------------
/tests/conftest.py:
--------------------------------------------------------------------------------
1 | import pytest
2 | import datetime as dt
3 |
4 |
5 | @pytest.fixture
6 | def nvidia():
7 | stockprice = 168.99
8 | return dict(
9 | stock_price=stockprice,
10 | volatility=0.483,
11 | start_date=dt.date(2023, 1, 16),
12 | target_date=dt.date(2023, 2, 17),
13 | interest_rate=0.045,
14 | min_stock=stockprice - 100.0,
15 | max_stock=stockprice + 100.0,
16 | )
17 |
--------------------------------------------------------------------------------
/tests/test_core.py:
--------------------------------------------------------------------------------
1 | import pytest
2 |
3 | from optionlab import Inputs, Outputs, BlackScholesModelInputs, LaplaceInputs
4 | from optionlab import run_strategy
5 | from optionlab import create_price_array
6 | from optionlab import get_bs_info
7 |
8 |
9 | COVERED_CALL_RESULT = {
10 | "probability_of_profit": 0.5472008423945267,
11 | "profit_ranges": [(164.9, float("inf"))],
12 | "per_leg_cost": [-16899.0, 409.99999999999994],
13 | "strategy_cost": -16489.0,
14 | "minimum_return_in_the_domain": -9590.000000000002,
15 | "maximum_return_in_the_domain": 2011.0,
16 | "implied_volatility": [0.0, 0.456],
17 | "in_the_money_probability": [1.0, 0.256866624586934],
18 | "delta": [1.0, -0.30713817729665704],
19 | "gamma": [0.0, 0.013948977387090415],
20 | "theta": [0.0, 0.19283555235589467],
21 | "vega": [0.0, 0.1832408146218486],
22 | "rho": [0.0, -0.04506390742751745],
23 | }
24 |
25 | PROB_100_ITM_RESULT = {
26 | "probability_of_profit": 1.0,
27 | "profit_ranges": [(0.0, float("inf"))],
28 | "per_leg_cost": [-750.0, 990.0],
29 | "strategy_cost": 240.0,
30 | "minimum_return_in_the_domain": 240.0,
31 | "maximum_return_in_the_domain": 740.0000000000018,
32 | "implied_volatility": [0.494, 0.482],
33 | "in_the_money_probability": [0.54558925139931, 0.465831136209786],
34 | "delta": [0.6039490632362865, -0.525237550169406],
35 | "gamma": [0.015297136732317718, 0.015806160944019643],
36 | "theta": [-0.21821351060901806, 0.22301627833773927],
37 | "vega": [0.20095091693287098, 0.20763771616023433],
38 | "rho": [0.08536880237502181, -0.07509774107468528],
39 | }
40 |
41 | PROB_NAKED_CALL = {
42 | "probability_of_profit": 0.8389215512144531,
43 | "profit_ranges": [(0.0, 176.14)],
44 | "per_leg_cost": [114.99999999999999],
45 | "strategy_cost": 114.99999999999999,
46 | "minimum_return_in_the_domain": -6991.999999999999,
47 | "maximum_return_in_the_domain": 114.99999999999999,
48 | "implied_volatility": [0.256],
49 | "in_the_money_probability": [0.1832371984432129],
50 | "delta": [-0.20371918274704337],
51 | "gamma": [0.023104402361599465],
52 | "theta": [0.091289876347897],
53 | "vega": [0.12750177318341913],
54 | "rho": [-0.02417676577711979],
55 | "probability_of_profit_target": 0.8197909190785164,
56 | "profit_target_ranges": [(0.0, 175.15)],
57 | "probability_of_loss_limit": 0.14307836806156238,
58 | "loss_limit_ranges": [(177.15, float("inf"))],
59 | }
60 |
61 |
62 | def test_black_scholes():
63 | stock_price = 100.0
64 | strike = 105.0
65 | interest_rate = 1.0
66 | dividend_yield = 0.0
67 | volatility = 20.0
68 | days_to_maturity = 60
69 |
70 | interest_rate = interest_rate / 100
71 | dividend_yield = dividend_yield / 100
72 | volatility = volatility / 100
73 | time_to_maturity = days_to_maturity / 365
74 |
75 | bs = get_bs_info(
76 | stock_price, strike, interest_rate, volatility, time_to_maturity, dividend_yield
77 | )
78 |
79 | assert bs.call_price == 1.44
80 | assert bs.call_delta == 0.2942972000055033
81 | assert bs.call_theta == -8.780589609657586
82 | assert bs.call_rho == 0.04600635174517672
83 | assert bs.call_itm_prob == 0.2669832523577367
84 | assert bs.put_price == 6.27
85 | assert bs.put_delta == -0.7057027999944967
86 | assert bs.put_theta == -7.732314219179215
87 | assert bs.put_rho == -0.12631289052524033
88 | assert bs.put_itm_prob == 0.7330167476422633
89 | assert bs.gamma == 0.042503588182705464
90 | assert bs.vega == 0.13973782416231934
91 |
92 |
93 | def test_covered_call(nvidia):
94 | # https://medium.com/@rgaveiga/python-for-options-trading-2-mixing-options-and-stocks-1e9f59f388f
95 |
96 | inputs = Inputs.model_validate(
97 | nvidia
98 | | {
99 | # The covered call strategy is defined
100 | "strategy": [
101 | {"type": "stock", "n": 100, "action": "buy"},
102 | {
103 | "type": "call",
104 | "strike": 185.0,
105 | "premium": 4.1,
106 | "n": 100,
107 | "action": "sell",
108 | "expiration": nvidia["target_date"],
109 | },
110 | ],
111 | }
112 | )
113 |
114 | outputs = run_strategy(inputs)
115 |
116 | assert isinstance(outputs, Outputs)
117 | assert outputs.model_dump(
118 | exclude={"data", "inputs"},
119 | exclude_none=True,
120 | exclude_defaults=True,
121 | ) == pytest.approx(COVERED_CALL_RESULT)
122 |
123 |
124 | def test_covered_call_w_days_to_target(nvidia):
125 | inputs = Inputs.model_validate(
126 | nvidia
127 | | {
128 | "start_date": None,
129 | "target_date": None,
130 | "days_to_target_date": 24, # 32 days minus 9 non-business days plus 1 to consider the expiration date
131 | "strategy": [
132 | {"type": "stock", "n": 100, "action": "buy"},
133 | {
134 | "type": "call",
135 | "strike": 185.0,
136 | "premium": 4.1,
137 | "n": 100,
138 | "action": "sell",
139 | },
140 | ],
141 | }
142 | )
143 |
144 | outputs = run_strategy(inputs)
145 |
146 | # Print useful information on screen
147 | assert isinstance(outputs, Outputs)
148 | assert outputs.model_dump(
149 | exclude={"data", "inputs"},
150 | exclude_none=True,
151 | exclude_defaults=True,
152 | ) == pytest.approx(COVERED_CALL_RESULT)
153 |
154 |
155 | def test_covered_call_w_prev_position(nvidia):
156 | # https://medium.com/@rgaveiga/python-for-options-trading-2-mixing-options-and-stocks-1e9f59f388f
157 |
158 | inputs = Inputs.model_validate(
159 | nvidia
160 | | {
161 | # The covered call strategy is defined
162 | "strategy": [
163 | {"type": "stock", "n": 100, "action": "buy", "prev_pos": 158.99},
164 | {
165 | "type": "call",
166 | "strike": 185.0,
167 | "premium": 4.1,
168 | "n": 100,
169 | "action": "sell",
170 | "expiration": nvidia["target_date"],
171 | },
172 | ]
173 | }
174 | )
175 |
176 | outputs = run_strategy(inputs)
177 |
178 | assert outputs.model_dump(
179 | exclude={"data", "inputs"},
180 | exclude_none=True,
181 | exclude_defaults=True,
182 | ) == {
183 | "probability_of_profit": 0.7048129541301169,
184 | "profit_ranges": [(154.9, float("inf"))],
185 | "per_leg_cost": [-15899.0, 409.99999999999994],
186 | "strategy_cost": -15489.0,
187 | "minimum_return_in_the_domain": -8590.000000000002,
188 | "maximum_return_in_the_domain": 3011.0,
189 | "implied_volatility": [0.0, 0.456],
190 | "in_the_money_probability": [1.0, 0.256866624586934],
191 | "delta": [1.0, -0.30713817729665704],
192 | "gamma": [0.0, 0.013948977387090415],
193 | "theta": [0.0, 0.19283555235589467],
194 | "vega": [0.0, 0.1832408146218486],
195 | "rho": [0.0, -0.04506390742751745],
196 | }
197 |
198 |
199 | def test_100_perc_itm(nvidia):
200 | # https://medium.com/@rgaveiga/python-for-options-trading-3-a-trade-with-100-probability-of-profit-886e934addbf
201 |
202 | inputs = Inputs.model_validate(
203 | nvidia
204 | | {
205 | # The covered call strategy is defined
206 | "strategy": [
207 | {
208 | "type": "call",
209 | "strike": 165.0,
210 | "premium": 12.65,
211 | "n": 100,
212 | "action": "buy",
213 | "prev_pos": 7.5,
214 | "expiration": nvidia["target_date"],
215 | },
216 | {
217 | "type": "call",
218 | "strike": 170.0,
219 | "premium": 9.9,
220 | "n": 100,
221 | "action": "sell",
222 | "expiration": nvidia["target_date"],
223 | },
224 | ]
225 | }
226 | )
227 |
228 | outputs = run_strategy(inputs)
229 |
230 | assert outputs.model_dump(
231 | exclude={"data", "inputs"},
232 | exclude_none=True,
233 | exclude_defaults=True,
234 | ) == pytest.approx(PROB_100_ITM_RESULT)
235 |
236 |
237 | def test_naked_call():
238 | inputs = Inputs.model_validate(
239 | {
240 | "stock_price": 164.04,
241 | "volatility": 0.272,
242 | "start_date": "2021-11-22",
243 | "target_date": "2021-12-17",
244 | "interest_rate": 0.0002,
245 | "min_stock": 82.02,
246 | "max_stock": 246.06,
247 | "profit_target": 100.0,
248 | "loss_limit": -100.0,
249 | "model": "black-scholes",
250 | # The naked call strategy is defined
251 | "strategy": [
252 | {
253 | "type": "call",
254 | "strike": 175.00,
255 | "premium": 1.15,
256 | "n": 100,
257 | "action": "sell",
258 | }
259 | ],
260 | }
261 | )
262 |
263 | outputs = run_strategy(inputs)
264 |
265 | assert isinstance(outputs, Outputs)
266 | assert outputs.model_dump(
267 | exclude={"data", "inputs"}, exclude_none=True
268 | ) == pytest.approx(PROB_NAKED_CALL)
269 |
270 |
271 | def test_3_legs(nvidia):
272 | inputs = Inputs.model_validate(
273 | nvidia
274 | | {
275 | "strategy": [
276 | {"type": "stock", "n": 100, "action": "buy", "prev_pos": 158.99},
277 | {
278 | "type": "call",
279 | "strike": 165.0,
280 | "premium": 12.65,
281 | "n": 100,
282 | "action": "buy",
283 | "prev_pos": 7.5,
284 | "expiration": nvidia["target_date"],
285 | },
286 | {
287 | "type": "call",
288 | "strike": 170.0,
289 | "premium": 9.9,
290 | "n": 100,
291 | "action": "sell",
292 | "expiration": nvidia["target_date"],
293 | },
294 | ]
295 | }
296 | )
297 |
298 | outputs = run_strategy(inputs)
299 |
300 | assert outputs.model_dump(
301 | exclude={"data", "inputs"},
302 | exclude_none=True,
303 | exclude_defaults=True,
304 | ) == {
305 | "probability_of_profit": 0.6790581742719213,
306 | "profit_ranges": [(156.6, float("inf"))],
307 | "per_leg_cost": [-15899.0, -750.0, 990.0],
308 | "strategy_cost": -15659.0,
309 | "minimum_return_in_the_domain": -8760.000000000002,
310 | "maximum_return_in_the_domain": 11740.0,
311 | "implied_volatility": [0.0, 0.494, 0.482],
312 | "in_the_money_probability": [1.0, 0.54558925139931, 0.465831136209786],
313 | "delta": [1.0, 0.6039490632362865, -0.525237550169406],
314 | "gamma": [0.0, 0.015297136732317718, 0.015806160944019643],
315 | "theta": [0.0, -0.21821351060901806, 0.22301627833773927],
316 | "vega": [0.0, 0.20095091693287098, 0.20763771616023433],
317 | "rho": [0.0, 0.08536880237502181, -0.07509774107468528],
318 | }
319 |
320 |
321 | def test_run_with_mc_array(nvidia):
322 | arr = create_price_array(
323 | inputs_data=BlackScholesModelInputs(
324 | stock_price=168.99,
325 | volatility=0.483,
326 | interest_rate=0.045,
327 | years_to_target_date=24 / 365,
328 | ),
329 | seed=0,
330 | )
331 |
332 | inputs = Inputs.model_validate(
333 | nvidia
334 | | {
335 | "model": "array",
336 | "array": arr,
337 | "strategy": [
338 | {"type": "stock", "n": 100, "action": "buy"},
339 | {
340 | "type": "call",
341 | "strike": 185.0,
342 | "premium": 4.1,
343 | "n": 100,
344 | "action": "sell",
345 | "expiration": nvidia["target_date"],
346 | },
347 | ],
348 | }
349 | )
350 |
351 | outputs = run_strategy(inputs)
352 |
353 | assert outputs.model_dump(
354 | exclude={"data", "inputs"},
355 | exclude_none=True,
356 | exclude_defaults=True,
357 | ) == pytest.approx(
358 | {
359 | "probability_of_profit": 0.56564,
360 | "profit_ranges": [(164.9, float("inf"))],
361 | "expected_profit": 1356.3702804556585,
362 | "expected_loss": -1407.9604829624866,
363 | "per_leg_cost": [-16899.0, 409.99999999999994],
364 | "strategy_cost": -16489.0,
365 | "minimum_return_in_the_domain": -9590.000000000002,
366 | "maximum_return_in_the_domain": 2011.0,
367 | "implied_volatility": [0.0, 0.456],
368 | "in_the_money_probability": [1.0, 0.256866624586934],
369 | "delta": [1.0, -0.30713817729665704],
370 | "gamma": [0.0, 0.013948977387090415],
371 | "theta": [0.0, 0.19283555235589467],
372 | "vega": [0.0, 0.1832408146218486],
373 | "rho": [0.0, -0.04506390742751745],
374 | },
375 | rel=0.05,
376 | )
377 |
378 |
379 | def test_covered_call_w_laplace_distribution(nvidia):
380 | arr = create_price_array(
381 | inputs_data=LaplaceInputs(
382 | stock_price=168.99,
383 | volatility=0.483,
384 | years_to_target_date=24 / 365,
385 | mu=-0.07,
386 | ),
387 | seed=0,
388 | )
389 |
390 | inputs = Inputs.model_validate(
391 | nvidia
392 | | {
393 | "model": "array",
394 | "array": arr,
395 | "strategy": [
396 | {"type": "stock", "n": 100, "action": "buy"},
397 | {
398 | "type": "call",
399 | "strike": 185.0,
400 | "premium": 4.1,
401 | "n": 100,
402 | "action": "sell",
403 | "expiration": nvidia["target_date"],
404 | },
405 | ],
406 | }
407 | )
408 |
409 | outputs = run_strategy(inputs)
410 |
411 | # Print useful information on screen
412 | assert isinstance(outputs, Outputs)
413 | assert outputs.model_dump(
414 | exclude={"data", "inputs"},
415 | exclude_none=True,
416 | exclude_defaults=True,
417 | ) == pytest.approx(
418 | {
419 | "probability_of_profit": 0.60194,
420 | "profit_ranges": [(164.9, float("inf"))],
421 | "per_leg_cost": [-16899.0, 409.99999999999994],
422 | "strategy_cost": -16489.0,
423 | "minimum_return_in_the_domain": -9590.000000000002,
424 | "maximum_return_in_the_domain": 2011.0,
425 | "implied_volatility": [0.0, 0.456],
426 | "in_the_money_probability": [1.0, 0.256866624586934],
427 | "delta": [1.0, -0.30713817729665704],
428 | "gamma": [0.0, 0.013948977387090415],
429 | "theta": [0.0, 0.19283555235589467],
430 | "vega": [0.0, 0.1832408146218486],
431 | "rho": [0.0, -0.04506390742751745],
432 | "expected_profit": 1148.25,
433 | "expected_loss": -1333.85,
434 | }
435 | )
436 |
437 |
438 | def test_calendar_spread():
439 | stock_price = 127.14 # Apple stock
440 | volatility = 0.427
441 | start_date = "2021-01-18"
442 | target_date = "2021-01-29"
443 | interest_rate = 0.0009
444 | min_stock = stock_price - round(stock_price * 0.5, 2)
445 | max_stock = stock_price + round(stock_price * 0.5, 2)
446 | strategy = [
447 | {
448 | "type": "call",
449 | "strike": 127.00,
450 | "premium": 4.60,
451 | "n": 1000,
452 | "action": "sell",
453 | },
454 | {
455 | "type": "call",
456 | "strike": 127.00,
457 | "premium": 5.90,
458 | "n": 1000,
459 | "action": "buy",
460 | "expiration": "2021-02-12",
461 | },
462 | ]
463 |
464 | inputs = {
465 | "stock_price": stock_price,
466 | "start_date": start_date,
467 | "target_date": target_date,
468 | "volatility": volatility,
469 | "interest_rate": interest_rate,
470 | "min_stock": min_stock,
471 | "max_stock": max_stock,
472 | "strategy": strategy,
473 | }
474 |
475 | outputs = run_strategy(inputs)
476 |
477 | assert outputs.model_dump(
478 | exclude={"data", "inputs"}, exclude_none=True, exclude_defaults=True
479 | ) == {
480 | "probability_of_profit": 0.599111819020198,
481 | "profit_ranges": [(118.87, 136.15)],
482 | "per_leg_cost": [4600.0, -5900.0],
483 | "strategy_cost": -1300.0,
484 | "minimum_return_in_the_domain": -1300.0000000000146,
485 | "maximum_return_in_the_domain": 3009.999999999999,
486 | "implied_volatility": [0.47300000000000003, 0.419],
487 | "in_the_money_probability": [0.4895105709759477, 0.4805997906939539],
488 | "delta": [-0.5216914758915705, 0.5273457614638198],
489 | "gamma": [0.03882722919950356, 0.02669940508461828],
490 | "theta": [0.22727438444823292, -0.15634971608107964],
491 | "vega": [0.09571294014902997, 0.1389462831961853],
492 | "rho": [-0.022202087247849632, 0.046016214466188525],
493 | }
494 |
--------------------------------------------------------------------------------
/tests/test_misc.py:
--------------------------------------------------------------------------------
1 | import datetime as dt
2 | import time
3 |
4 | import pytest
5 |
6 | from optionlab.models import BlackScholesModelInputs
7 | from optionlab.price_array import create_price_array, _get_array_price_from_BS
8 | from optionlab.utils import get_nonbusiness_days
9 |
10 |
11 | def test_holidays():
12 | start_date = dt.date(2024, 1, 1)
13 | end_date = dt.date(2024, 12, 31)
14 |
15 | us_nonbusiness_days = get_nonbusiness_days(start_date, end_date, country="US")
16 |
17 | assert us_nonbusiness_days == 115
18 |
19 | china_nonbusiness_days = get_nonbusiness_days(start_date, end_date, country="China")
20 |
21 | assert china_nonbusiness_days == 123
22 |
23 | brazil_nonbusiness_days = get_nonbusiness_days(
24 | start_date, end_date, country="Brazil"
25 | )
26 |
27 | assert brazil_nonbusiness_days == 109
28 |
29 | germany_nonbusiness_days = get_nonbusiness_days(
30 | start_date, end_date, country="Germany"
31 | )
32 |
33 | assert germany_nonbusiness_days == 113
34 |
35 | uk_nonbusiness_days = get_nonbusiness_days(start_date, end_date, country="UK")
36 |
37 | assert uk_nonbusiness_days == 110
38 |
39 |
40 | @pytest.mark.benchmark
41 | def test_holidays_benchmark(days: int = 366):
42 | start_date = dt.date(2024, 1, 1)
43 |
44 | for i in range(days):
45 | end_date = start_date + dt.timedelta(days=1)
46 |
47 | get_nonbusiness_days(start_date, end_date, country="US")
48 |
49 |
50 | def test_benchmark_holidays(benchmark):
51 | start_time = time.time()
52 | benchmark(test_holidays_benchmark)
53 |
54 | assert time.time() - start_time < 2 # takes avg. ~1.1ms on M1
55 |
56 |
57 | def test_cache_price_samples():
58 | _get_array_price_from_BS.cache_clear()
59 |
60 | stock_price = 168.99
61 | volatility = 0.483
62 | interest_rate = 0.045
63 | years_to_target = 24 / 365
64 |
65 | sample1 = create_price_array(
66 | inputs_data=BlackScholesModelInputs(
67 | stock_price=stock_price,
68 | volatility=volatility,
69 | interest_rate=interest_rate,
70 | years_to_target_date=years_to_target,
71 | ),
72 | seed=0,
73 | )
74 |
75 | # cache_info1 = create_price_samples.cache_info()
76 | # assert cache_info1.misses == 1
77 | # assert cache_info1.hits == 0
78 | # assert cache_info1.currsize == 1
79 | assert sample1.sum() == pytest.approx(16951655.848562226, rel=0.01)
80 |
81 | sample2 = create_price_array(
82 | inputs_data=BlackScholesModelInputs(
83 | stock_price=stock_price,
84 | volatility=volatility,
85 | interest_rate=interest_rate,
86 | years_to_target_date=years_to_target,
87 | ),
88 | seed=1,
89 | )
90 |
91 | # cache_info2 = create_price_samples.cache_info()
92 | # assert cache_info2.misses == 2
93 | # assert cache_info2.hits == 0
94 | # assert cache_info2.currsize == 2
95 | assert sample2.sum() == pytest.approx(16959678.71517979, rel=0.01)
96 |
97 | stock_price = 167.0
98 |
99 | sample3 = create_price_array(
100 | inputs_data={
101 | "model": "black-scholes",
102 | "stock_price": stock_price,
103 | "volatility": volatility,
104 | "interest_rate": interest_rate,
105 | "years_to_target_date": years_to_target,
106 | },
107 | seed=0,
108 | )
109 |
110 | # cache_info3 = create_price_samples.cache_info()
111 | # assert cache_info3.misses == 2
112 | # assert cache_info3.hits == 1
113 | # assert cache_info3.currsize == 2
114 | assert sample3.sum() == pytest.approx(16752035.781465728, rel=0.01)
115 |
116 | sample4 = create_price_array(
117 | inputs_data={
118 | "model": "laplace",
119 | "stock_price": 168.99,
120 | "volatility": 0.483,
121 | "mu": 0.05,
122 | "years_to_target_date": 24 / 365,
123 | },
124 | seed=0,
125 | )
126 |
127 | # cache_info4 = create_price_samples.cache_info()
128 | # assert cache_info4.misses == 3
129 | # assert cache_info4.hits == 1
130 | # assert cache_info4.currsize == 3
131 | assert sample4.sum() == pytest.approx(17083995.574185822, rel=0.01)
132 |
--------------------------------------------------------------------------------
/tests/test_models.py:
--------------------------------------------------------------------------------
1 | import datetime as dt
2 |
3 | import pytest
4 |
5 | from optionlab.models import Inputs
6 | from numpy import array
7 |
8 |
9 | def test_only_one_closed_position(nvidia):
10 | inputs = nvidia | {
11 | # The covered call strategy is defined
12 | "strategy": [
13 | {"type": "closed", "prev_pos": 100},
14 | {"type": "closed", "prev_pos": 100},
15 | ],
16 | }
17 |
18 | with pytest.raises(ValueError) as err:
19 | Inputs.model_validate(inputs)
20 |
21 | assert "Only one position of type 'closed' is allowed!" in str(err.value)
22 |
23 |
24 | def test_validate_dates(nvidia):
25 | strategy = [{"type": "closed", "prev_pos": 100}]
26 | inputs = nvidia | {
27 | "start_date": dt.date(2023, 1, 14),
28 | "target_date": dt.date(2023, 1, 10),
29 | "strategy": strategy,
30 | }
31 |
32 | with pytest.raises(ValueError) as err:
33 | Inputs.model_validate(inputs)
34 |
35 | assert "Start date must be before target date!" in str(err.value)
36 |
37 | inputs = nvidia | {
38 | "start_date": dt.date(2023, 1, 14),
39 | "target_date": dt.date(2023, 1, 17),
40 | "strategy": [
41 | {
42 | "type": "call",
43 | "strike": 185.0,
44 | "premium": 4.1,
45 | "n": 100,
46 | "action": "sell",
47 | "expiration": dt.date(2023, 1, 16),
48 | }
49 | ],
50 | }
51 |
52 | with pytest.raises(ValueError) as err:
53 | Inputs.model_validate(inputs)
54 |
55 | assert "Expiration dates must be after or on target date!" in str(err.value)
56 |
57 | inputs = nvidia | {
58 | "start_date": None,
59 | "target_date": None,
60 | "days_to_target_date": 30,
61 | "strategy": [
62 | {"type": "stock", "n": 100, "action": "buy"},
63 | {
64 | "type": "call",
65 | "strike": 185.0,
66 | "premium": 4.1,
67 | "n": 100,
68 | "action": "sell",
69 | "expiration": dt.date(2023, 1, 17),
70 | },
71 | ],
72 | }
73 |
74 | with pytest.raises(ValueError) as err:
75 | Inputs.model_validate(inputs)
76 |
77 | assert "You can't mix a strategy expiration with a days_to_target_date." in str(
78 | err.value
79 | )
80 |
81 |
82 | def test_array_distribution_with_no_array(nvidia):
83 | inputs = nvidia | {
84 | "model": "array",
85 | "strategy": [
86 | {"type": "closed", "prev_pos": 100},
87 | ],
88 | }
89 |
90 | with pytest.raises(ValueError) as err:
91 | Inputs.model_validate(inputs)
92 |
93 | assert (
94 | "Array of terminal stock prices must be provided if model is 'array'."
95 | in str(err.value)
96 | )
97 |
98 | inputs |= {"array": array([])}
99 |
100 | with pytest.raises(ValueError) as err:
101 | Inputs.model_validate(inputs)
102 |
103 | assert (
104 | "Array of terminal stock prices must be provided if model is 'array'."
105 | in str(err.value)
106 | )
107 |
--------------------------------------------------------------------------------