├── Customising Large Language Models.ipynb
├── README.md
├── fake_news_detection.ipynb
├── falcon_finetune.ipynb
└── gemma_training_grpo_connectfour.ipynb
/Customising Large Language Models.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "20f23767",
6 | "metadata": {},
7 | "source": [
8 | "
73% is not too bad for a quick go- the paper said they got between 73% and 83% with DL
"
564 | ]
565 | },
566 | {
567 | "cell_type": "markdown",
568 | "id": "c90884d3",
569 | "metadata": {},
570 | "source": [
571 | ""
443 | ],
444 | "text/html": [
445 | "\n",
446 | " \n",
447 | " \n",
448 | "
\n",
449 | " [10/10 01:33, Epoch 0/1]\n",
450 | "
\n",
451 | " \n",
452 | " \n",
453 | " \n",
454 | " Step | \n",
455 | " Training Loss | \n",
456 | "
\n",
457 | " \n",
458 | " \n",
459 | " \n",
460 | " 1 | \n",
461 | " 1.025000 | \n",
462 | "
\n",
463 | " \n",
464 | " 2 | \n",
465 | " 2.115400 | \n",
466 | "
\n",
467 | " \n",
468 | " 3 | \n",
469 | " 1.343800 | \n",
470 | "
\n",
471 | " \n",
472 | " 4 | \n",
473 | " 2.544700 | \n",
474 | "
\n",
475 | " \n",
476 | " 5 | \n",
477 | " 0.564300 | \n",
478 | "
\n",
479 | " \n",
480 | " 6 | \n",
481 | " 3.495900 | \n",
482 | "
\n",
483 | " \n",
484 | " 7 | \n",
485 | " 1.927200 | \n",
486 | "
\n",
487 | " \n",
488 | " 8 | \n",
489 | " 0.640500 | \n",
490 | "
\n",
491 | " \n",
492 | " 9 | \n",
493 | " 0.759200 | \n",
494 | "
\n",
495 | " \n",
496 | " 10 | \n",
497 | " 1.656900 | \n",
498 | "
\n",
499 | " \n",
500 | "
"
501 | ]
502 | },
503 | "metadata": {}
504 | },
505 | {
506 | "output_type": "execute_result",
507 | "data": {
508 | "text/plain": [
509 | "TrainOutput(global_step=10, training_loss=1.6072865188121797, metrics={'train_runtime': 103.5639, 'train_samples_per_second': 0.386, 'train_steps_per_second': 0.097, 'total_flos': 407425237647360.0, 'train_loss': 1.6072865188121797, 'epoch': 0.0})"
510 | ]
511 | },
512 | "metadata": {},
513 | "execution_count": 64
514 | }
515 | ]
516 | }
517 | ]
518 | }
519 |
--------------------------------------------------------------------------------
/gemma_training_grpo_connectfour.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {
7 | "id": "qaZrW1OHF0KP"
8 | },
9 | "outputs": [],
10 | "source": [
11 | "# %%capture\n",
12 | "import os\n",
13 | "if \"COLAB_\" not in \"\".join(os.environ.keys()):\n",
14 | " !pip install unsloth vllm\n",
15 | "else:\n",
16 | " # [NOTE] Do the below ONLY in Colab! Use [[pip install unsloth vllm]]\n",
17 | " !pip install --no-deps unsloth vllm\n",
18 | "# Install latest Hugging Face for Gemma-3!\n",
19 | "!pip install --no-deps git+https://github.com/huggingface/transformers@v4.49.0-Gemma-3"
20 | ]
21 | },
22 | {
23 | "cell_type": "code",
24 | "execution_count": 2,
25 | "metadata": {
26 | "id": "_urJTB8FGi1S"
27 | },
28 | "outputs": [],
29 | "source": [
30 | "\n",
31 | "#@title Colab Extra Install { display-mode: \"form\" }\n",
32 | "%%capture\n",
33 | "import os\n",
34 | "if \"COLAB_\" not in \"\".join(os.environ.keys()):\n",
35 | " !pip install unsloth vllm\n",
36 | "else:\n",
37 | " !pip install --no-deps unsloth vllm\n",
38 | " # [NOTE] Do the below ONLY in Colab! Use [[pip install unsloth vllm]]\n",
39 | " # Skip restarting message in Colab\n",
40 | " import sys, re, requests; modules = list(sys.modules.keys())\n",
41 | " for x in modules: sys.modules.pop(x) if \"PIL\" in x or \"google\" in x else None\n",
42 | " !pip install --no-deps bitsandbytes accelerate xformers==0.0.29.post3 peft trl triton cut_cross_entropy unsloth_zoo\n",
43 | " !pip install sentencepiece protobuf datasets huggingface_hub hf_transfer\n",
44 | "\n",
45 | " # vLLM requirements - vLLM breaks Colab due to reinstalling numpy\n",
46 | " f = requests.get(\"https://raw.githubusercontent.com/vllm-project/vllm/refs/heads/main/requirements/common.txt\").content\n",
47 | " with open(\"vllm_requirements.txt\", \"wb\") as file:\n",
48 | " file.write(re.sub(rb\"(transformers|numpy|xformers)[^\\n]{1,}\\n\", b\"\", f))\n",
49 | " !pip install -r vllm_requirements.txt\n"
50 | ]
51 | },
52 | {
53 | "cell_type": "code",
54 | "execution_count": null,
55 | "metadata": {
56 | "colab": {
57 | "base_uri": "https://localhost:8080/",
58 | "height": 461,
59 | "referenced_widgets": [
60 | "61fe9da71b97485f92c6ee2380d46b4d",
61 | "50656ef62a804b908bf05493789cc362",
62 | "b5601c72540c4ec9be8cfbe7b577ef65",
63 | "11788b948d5b46bd88de9235bbb3179d",
64 | "915ba23ce31640e4b487d7d402d203d8",
65 | "5e7f4d73b97142448857a67a66c47b34",
66 | "02e45237f0ac4b5ab7c6cd68b09da051",
67 | "7fed1cef573e47d08300438fe4c158e9",
68 | "222df800dad945e199a7ccd8dfbc7a8d",
69 | "58872b9c5b074813af7b6d9bdc9ba60f",
70 | "3a8ee07769a94ea2a7d675bb113ce709",
71 | "72278d146c6a43c88282be435ff8b7ed",
72 | "e4354fcaac5642ae89ce8a3c69d1b68d",
73 | "aea7cfbba79340e98ca0a00ea6e6a5c2",
74 | "adf9b0c5dacb426aa21ae59db45657ca",
75 | "d0a7b3b62181431b9ca9870c167b983e",
76 | "6da8546c83864bd98dd3bc7568de095b",
77 | "39367aac2c894342ab3ed257ac8c2e4f",
78 | "21c5356744e149d6a2d67fdb9830fbeb",
79 | "92bf50844694495daf0abd9f3fb01ef1",
80 | "29c6198a3adb4d909230ed1eb1e3cd74",
81 | "3f956e7672f34276b78e5e0cadaaedbd",
82 | "3abecbd6292a4b4e94e5213616cf2122",
83 | "72d5f442747f4bfda91945c58033ead2",
84 | "34b06389fce04892a242003bf79610ed",
85 | "9f2bda486bea4880829704c05223562e",
86 | "136e78cc0e764bda86121f1383e5bb0b",
87 | "4441bde44ec44063bed8f43ae4a30a4e",
88 | "1e8533a81384457dab93020c702eb2d6",
89 | "5b2d5be5b4134fe080add6f4e48be59f",
90 | "fa2d656a9fd549dfb64e97546e82591d",
91 | "98b2d0f27f4a40c6a09b5eeb8e6deafd",
92 | "edce2515b0cd4d7298064476d43646a1",
93 | "b451038191ef4a9dadecf1140c32fffe",
94 | "fa4045a862034e428ab40009d04d313e",
95 | "d425bdb1be0144d48c43708e61745b4c",
96 | "fb8e26b8d050464595bf725cf2b2e9d3",
97 | "3ace3d3b4baf4599a6673f58088351d4",
98 | "8001fd2f05784a66b7f3aac77fcf2303",
99 | "39323e862d2f4da089cbd7a7a45b378c",
100 | "b3f74dd34648458ca9df0ed01ab0f559",
101 | "81c6f32b33b0420081e0c7b27299a2b8",
102 | "8a9b97f5d64a4781b6d46134bc5ebff8",
103 | "8bbd54857d834502b94847a6903dcdf9",
104 | "fd1d0df20f1c4b3082d4ee128570c4e5",
105 | "218927b46cf148e6903d64e656449a7c",
106 | "954458b7719f442cafd3409ab7a90116",
107 | "ac32520514b34a2fbe86b90fccbf9bae",
108 | "c35c454a893a4edfae1f27a6707cb77c",
109 | "8d3e0594460d4e149c88f1193f5bed6e",
110 | "6f66bbc9f1084c8899c64cefd3b0934a",
111 | "3ffcec797ef542808540f5dd4ed7650b",
112 | "430dbe6044ac4c19a72fb996ddc9fbd1",
113 | "b9e417466b8940a39b9e5755576c1c5c",
114 | "b07788470b864279a763197ae593f1bd",
115 | "6009acf8a81645209f3d94660fdd5fea",
116 | "1d3b2ea61ff54562a38e66b6d8d36a0f",
117 | "d526fa7789664d2f87e9ad1d370cb848",
118 | "9ff84d1955eb474f87e3691ce38c98de",
119 | "2eded99c82784f55b140d8d92b0d9a1c",
120 | "221361471b7d49d7a4e7e23d6c84fe4f",
121 | "00c56ee901c4434583ac71772ed9a7ac",
122 | "525bd5ebb77e45ac8654b01651388c97",
123 | "d84e7c4018c1448d9909cd46b7edf68d",
124 | "b52f5ea85a644ddba56654b59d564db1",
125 | "53f024e3fff24976958b2bf43794c28d",
126 | "c90552efb9e948be970c16b2b56e5042",
127 | "44c5ff8f8c174a1a994062849c8488f7",
128 | "e27560d2924647fb8123edbeac778d6f",
129 | "3a487f0804d34da58bcd2afc2234027e",
130 | "c50e91d15c7a4919bb2d048ef4aa51ef",
131 | "77b0e8db32ce4558961c1871ecd2a147",
132 | "4cf0111ca172405fb7b08f337d82f911",
133 | "c8fb24696fc14bbb81827eb5fad2dbc0",
134 | "63040bada9764ff8b5dac77d22a90008",
135 | "0be87abfc633419c834932c46174e3b9",
136 | "dbc76d5ff39b449691b110d839594912"
137 | ]
138 | },
139 | "id": "WJWGzYdiGmWP",
140 | "outputId": "2bca917a-f14a-4f11-81a6-75652249e418"
141 | },
142 | "outputs": [],
143 | "source": [
144 | "from unsloth import FastModel\n",
145 | "import torch\n",
146 | "max_seq_length = 1024\n",
147 | "\n",
148 | "fourbit_models = [\n",
149 | " # 4bit dynamic quants for superior accuracy and low memory use\n",
150 | " \"unsloth/gemma-3-1b-it-unsloth-bnb-4bit\",\n",
151 | " \"unsloth/gemma-3-4b-it-unsloth-bnb-4bit\",\n",
152 | " \"unsloth/gemma-3-12b-it-unsloth-bnb-4bit\",\n",
153 | " \"unsloth/gemma-3-27b-it-unsloth-bnb-4bit\",\n",
154 | "\n",
155 | " # Other popular models!\n",
156 | " \"unsloth/Llama-3.1-8B\",\n",
157 | " \"unsloth/Llama-3.2-3B\",\n",
158 | " \"unsloth/Llama-3.3-70B\",\n",
159 | " \"unsloth/mistral-7b-instruct-v0.3\",\n",
160 | " \"unsloth/Phi-4\",\n",
161 | "] # More models at https://huggingface.co/unsloth\n",
162 | "\n",
163 | "model, tokenizer = FastModel.from_pretrained(\n",
164 | " model_name = \"unsloth/gemma-3-1b-it\",\n",
165 | " max_seq_length = max_seq_length, # Choose any for long context!\n",
166 | " load_in_4bit = False, # 4 bit quantization to reduce memory\n",
167 | " load_in_8bit = False, # [NEW!] A bit more accurate, uses 2x memory\n",
168 | " full_finetuning = False, # [NEW!] We have full finetuning now!\n",
169 | " # token = \"hf_...\", # use one if using gated models\n",
170 | ")\n",
171 | "\n",
172 | "model = FastModel.get_peft_model(\n",
173 | " model,\n",
174 | " finetune_vision_layers = False, # Turn off for just text!\n",
175 | " finetune_language_layers = True, # Should leave on!\n",
176 | " finetune_attention_modules = True, # Attention good for GRPO\n",
177 | " finetune_mlp_modules = True, # Should leave on always!\n",
178 | "\n",
179 | " r = 8, # Larger = higher accuracy, but might overfit\n",
180 | " lora_alpha = 8, # Recommended alpha == r at least\n",
181 | " lora_dropout = 0,\n",
182 | " bias = \"none\",\n",
183 | " random_state = 3407,\n",
184 | ")"
185 | ]
186 | },
187 | {
188 | "cell_type": "markdown",
189 | "metadata": {
190 | "id": "lOkYETaG_ixw"
191 | },
192 | "source": [
193 | "# Creating our Connect Four Games Dataset"
194 | ]
195 | },
196 | {
197 | "cell_type": "markdown",
198 | "metadata": {
199 | "id": "xlm51ffR_VkY"
200 | },
201 | "source": [
202 | "Below is our method to generate lots of games of connect four. I collect games up to a point where one player wins. I can then ask the model what move it needs to take to win the game if its either X or O! I also then know what the answer should be which I can rewards a model on."
203 | ]
204 | },
205 | {
206 | "cell_type": "code",
207 | "execution_count": null,
208 | "metadata": {
209 | "id": "gSUfxDWG_TXg"
210 | },
211 | "outputs": [],
212 | "source": [
213 | "import numpy as np\n",
214 | "import random\n",
215 | "import pandas as pd\n",
216 | "\n",
217 | "ROWS = 6\n",
218 | "COLS = 7\n",
219 | "\n",
220 | "def create_board():\n",
221 | " \"\"\"Creates an empty Connect Four board.\"\"\"\n",
222 | " return np.full((ROWS, COLS), '.', dtype=str)\n",
223 | "\n",
224 | "def drop_piece(board, col, piece):\n",
225 | " \"\"\"Drops a piece in the given column and returns the row where it landed.\"\"\"\n",
226 | " for row in range(ROWS - 1, -1, -1): # start from the bottom row\n",
227 | " if board[row, col] == '.':\n",
228 | " board[row, col] = piece\n",
229 | " return row\n",
230 | " return None # Column is full\n",
231 | "\n",
232 | "def is_winning_move(board, row, col, piece):\n",
233 | " \"\"\"Checks if placing a piece at (row, col) wins the game.\n",
234 | " It checks vertical, horizontal, and both diagonal directions.\"\"\"\n",
235 | " directions = [\n",
236 | " (1, 0), # vertical (down)\n",
237 | " (0, 1), # horizontal (right)\n",
238 | " (1, 1), # diagonal ↘\n",
239 | " (1, -1) # diagonal ↙\n",
240 | " ]\n",
241 | " for dr, dc in directions:\n",
242 | " count = 1 # count the piece just placed\n",
243 | " for d in [-1, 1]: # check both directions along (dr, dc)\n",
244 | " r, c = row + d * dr, col + d * dc\n",
245 | " while 0 <= r < ROWS and 0 <= c < COLS and board[r, c] == piece:\n",
246 | " count += 1\n",
247 | " if count == 4:\n",
248 | " return True\n",
249 | " r += d * dr\n",
250 | " c += d * dc\n",
251 | " return False\n",
252 | "\n",
253 | "def get_almost_winning_boards(num_games=1000):\n",
254 | " \"\"\"\n",
255 | " Simulates games and collects board states that are just one move away from winning.\n",
256 | " For each board state, the function returns a tuple with:\n",
257 | " (board state copy, winning player, winning column)\n",
258 | " \"\"\"\n",
259 | " winning_positions = []\n",
260 | "\n",
261 | " # Run through multiple game simulations.\n",
262 | " for _ in range(num_games):\n",
263 | " board = create_board()\n",
264 | " current_piece = \"X\"\n",
265 | "\n",
266 | " # Simulate moves until board is full or a winning move is found.\n",
267 | " for _ in range(ROWS * COLS):\n",
268 | " available_columns = [c for c in range(COLS) if board[0, c] == '.']\n",
269 | " if not available_columns:\n",
270 | " break # board is full\n",
271 | "\n",
272 | " col = random.choice(available_columns)\n",
273 | " row = drop_piece(board, col, current_piece)\n",
274 | "\n",
275 | " # Check if the last move is a winning move.\n",
276 | " if is_winning_move(board, row, col, current_piece):\n",
277 | " # Remove the winning move to get the board state just before the win.\n",
278 | " board[row, col] = '.'\n",
279 | " # Save the board state, the winning player, and the column to win.\n",
280 | " winning_positions.append((board.copy(), current_piece, col))\n",
281 | " break\n",
282 | "\n",
283 | " # Switch the player.\n",
284 | " current_piece = \"O\" if current_piece == \"X\" else \"X\"\n",
285 | "\n",
286 | " return winning_positions\n",
287 | "\n",
288 | "# Generate board states that are one move away from winning.\n",
289 | "almost_winning_boards = get_almost_winning_boards(num_games=1000)\n",
290 | "\n",
291 | "# Convert board states into a DataFrame with one board per row.\n",
292 | "# Each row will include a label for the game, the winning player, the winning column,\n",
293 | "# and the board rows (from top row 0 to bottom row ROWS-1).\n",
294 | "board_data = []\n",
295 | "for idx, (board, winner, win_col) in enumerate(almost_winning_boards):\n",
296 | " # Convert each row (a numpy array) to a string for display.\n",
297 | " rows_as_str = [\"\".join(row) for row in board]\n",
298 | " board_data.append([f\"Game {idx+1}\", winner, win_col] + rows_as_str)\n",
299 | "\n",
300 | "# Create DataFrame columns: Game, Winning Player, Winning Column, and one column for each board row.\n",
301 | "columns = [\"Game\", \"Winning Player\", \"Winning Column\"] + [f\"Row {i}\" for i in range(ROWS)]\n",
302 | "df = pd.DataFrame(board_data, columns=columns)\n",
303 | "df.to_csv(\"games.csv\")\n"
304 | ]
305 | },
306 | {
307 | "cell_type": "code",
308 | "execution_count": null,
309 | "metadata": {
310 | "id": "joRvKHzX_wtI"
311 | },
312 | "outputs": [],
313 | "source": []
314 | },
315 | {
316 | "cell_type": "markdown",
317 | "metadata": {
318 | "id": "cyJVhyie_yK6"
319 | },
320 | "source": [
321 | "# Training & Rewarding Gemma 1B"
322 | ]
323 | },
324 | {
325 | "cell_type": "markdown",
326 | "metadata": {
327 | "id": "0nkSkVNnAOxT"
328 | },
329 | "source": [
330 | "This section of the code focuses on preparing the Connect Four game data and structuring the interaction with the AI model. It begins by importing necessary libraries like Pandas for data handling and re for regular expressions. The Connect Four game data is loaded from a CSV file named \"games.csv\" into a Pandas DataFrame. To guide the AI, a system prompt is defined, instructing it to provide reasoning and solutions within specific tags.\n",
331 | "\n",
332 | "The format_puzzle function then transforms game states from the DataFrame into prompts for the AI, including a visual representation of the board and instructions. To ensure the AI's responses adhere to the desired format and to extract the predicted move, regular expressions are utilized. Finally, a check_answer function, is sued as part of the reward system, it assesses the accuracy of the AI's predictions during training by comparing them to the correct moves stored in our CSV. This setup lays the groundwork for effectively training and evaluating the AI's performance in playing Connect Four over time.\n",
333 | "\n",
334 | "The core of the training process relies on the GRPO algorithm. GRPO scores the AI's responses using a combination of reward functions which we just mentioned, assessing aspects like output format adherence and prediction accuracy. These scores are then used to calculate gradients that guide the model's learning process. Importantly, training is conducted using LORA (Low-Rank Adaptation), a parameter-efficient fine-tuning technique. LORA enables fine-tuning specific model layers while keeping the majority of the pre-trained weights frozen, leading to faster training and reduced memory requirements. Ultimately, this process aims to enhance the AI's ability to predict winning moves in Connect Four, progressively refining its performance through iterative training and feedback"
335 | ]
336 | },
337 | {
338 | "cell_type": "code",
339 | "execution_count": 7,
340 | "metadata": {
341 | "id": "gHfF21maF0H3"
342 | },
343 | "outputs": [],
344 | "source": [
345 | "import pandas as pd\n",
346 | "import re\n",
347 | "\n",
348 | "# Load the games CSV - this is a automated csv\n",
349 | "df = pd.read_csv(\"games.csv\")\n",
350 | "\n",
351 | "# Format constants for responses\n",
352 | "reasoning_start = \"\"\n",
353 | "reasoning_end = \"\"\n",
354 | "solution_start = \"\"\n",
355 | "solution_end = \"\"\n",
356 | "\n",
357 | "system_prompt = \\\n",
358 | "f\"\"\"You are given a problem.\n",
359 | "Think about the problem and provide your working out.\n",
360 | "Place it between {reasoning_start} and {reasoning_end}.\n",
361 | "Then, provide your solution between {solution_start}{solution_end}\"\"\"\n",
362 | "system_prompt\n",
363 | "\n",
364 | "def format_puzzle(row):\n",
365 | " \"\"\"Formats a Connect 4 board from a DataFrame row into a prompt.\"\"\"\n",
366 | "\n",
367 | " board_rows = [df.loc[row, f'Row {i}'] for i in range(6)] # Display from bottom to top\n",
368 | " board_str = \"1234567\\n \" + \"\\n \".join(board_rows) # Add column numbers at the top\n",
369 | " winning_player = df.loc[row, f'Winning Player']\n",
370 | " winning_column = df.loc[row, f'Winning Column']\n",
371 | " # Create the prompt\n",
372 | " prompt = f\"\"\"\n",
373 | " You are a connect four master.\n",
374 | "\n",
375 | " board position:\n",
376 | " {board_str}\n",
377 | "\n",
378 | " It is {winning_player}'s turn to move. Find where they should move their piece.\n",
379 | " Columns are labelled from 1-7. Choose the best column to win the game.\n",
380 | "\n",
381 | " {reasoning_start}\n",
382 | " As {winning_player} which number column should you place your column to win the game and connect four?\n",
383 | " {reasoning_end}\n",
384 | "\n",
385 | " {solution_start}\"\"\"\n",
386 | "\n",
387 | " return prompt\n",
388 | "\n",
389 | "\n",
390 | "# Compile regex to check that the AI output follows the expected format\n",
391 | "match_format = re.compile(\n",
392 | " rf\"^[\\s]*\"\\\n",
393 | " rf\"{reasoning_start}.+?{reasoning_end}.*?\"\\\n",
394 | " rf\"{solution_start}(.+?){solution_end}\"\\\n",
395 | " rf\"[\\s]*$\",\n",
396 | " flags = re.MULTILINE | re.DOTALL\n",
397 | ")\n",
398 | "\n",
399 | "def extract_move(response):\n",
400 | " \"\"\"Extracts the move number from the AI response.\"\"\"\n",
401 | " move_pattern = re.search(r\"\\b([1-7])\\b\", response) # Look for a single-digit column number\n",
402 | " return move_pattern.group(1) if move_pattern else None\n",
403 | "\n",
404 | "def check_answer(prompts, completions, answer, **kwargs):\n",
405 | " \"\"\"Reward function comparing extracted move with true answer.\"\"\"\n",
406 | " # Handle different completion formats\n",
407 | " responses = []\n",
408 | " for completion in completions:\n",
409 | " if isinstance(completion, list) and len(completion) > 0 and isinstance(completion[0], dict) and \"content\" in completion[0]:\n",
410 | " responses.append(completion[0][\"content\"])\n",
411 | " elif isinstance(completion, dict) and \"content\" in completion:\n",
412 | " responses.append(completion[\"content\"])\n",
413 | " else:\n",
414 | " # Handle case where completion is already a string\n",
415 | " responses.append(completion)\n",
416 | "\n",
417 | " extracted_responses = []\n",
418 | " for r in responses:\n",
419 | " if not isinstance(r, str):\n",
420 | " extracted_responses.append(None)\n",
421 | " continue\n",
422 | "\n",
423 | " match = match_format.search(r)\n",
424 | " if match is not None:\n",
425 | " guess = match.group(1)\n",
426 | " # Further extract the number from the solution section\n",
427 | " num_match = re.search(r\"\\b([1-7])\\b\", guess)\n",
428 | " extracted_responses.append(num_match.group(1) if num_match else None)\n",
429 | " else:\n",
430 | " extracted_responses.append(None)\n",
431 | "\n",
432 | " scores = []\n",
433 | " for guess, true_answer in zip(extracted_responses, answer):\n",
434 | " # Convert true_answer to int, add 1, then convert back to string\n",
435 | " adjusted_true_answer = str(int(true_answer) + 1)\n",
436 | "\n",
437 | " score = 0\n",
438 | " if guess is None:\n",
439 | " scores.append(0)\n",
440 | " continue\n",
441 | " # Correct answer gets 3 points!\n",
442 | " if guess == adjusted_true_answer:\n",
443 | " score += 3.0\n",
444 | " # If stripping whitespace makes them match, reward partially\n",
445 | " elif guess.strip() == adjusted_true_answer.strip():\n",
446 | " score += 1.5\n",
447 | " else:\n",
448 | " # Also check if the answer is close via ratio comparison\n",
449 | " try:\n",
450 | " ratio = float(guess) / float(adjusted_true_answer)\n",
451 | " if 0.9 <= ratio <= 1.1:\n",
452 | " score += 0.5\n",
453 | " elif 0.8 <= ratio <= 1.2:\n",
454 | " score += 0.25\n",
455 | " else:\n",
456 | " score -= 1.0 # Penalize wrong answers\n",
457 | " except:\n",
458 | " score -= 0.5 # Penalize non-numeric or badly formatted answers\n",
459 | " scores.append(score)\n",
460 | " return scores\n",
461 | "\n",
462 | "def match_format_exactly(prompts, completions, answer, **kwargs):\n",
463 | " \"\"\"Reward full credit if the output strictly follows the expected format.\"\"\"\n",
464 | " responses = [comp[0][\"content\"] if isinstance(comp, list) and isinstance(comp[0], dict) else comp for comp in completions]\n",
465 | " scores = []\n",
466 | " for r in responses:\n",
467 | " if match_format.fullmatch(r.strip()):\n",
468 | " scores.append(1.0)\n",
469 | " else:\n",
470 | " scores.append(0.0)\n",
471 | " return scores\n",
472 | "\n",
473 | "\n",
474 | "def match_format_exactly(prompts, completions, answer, **kwargs):\n",
475 | " \"\"\"Reward full credit if the output strictly follows the expected format.\"\"\"\n",
476 | " responses = []\n",
477 | " for completion in completions:\n",
478 | " if isinstance(completion, list) and len(completion) > 0 and isinstance(completion[0], dict) and \"content\" in completion[0]:\n",
479 | " responses.append(completion[0][\"content\"])\n",
480 | " elif isinstance(completion, dict) and \"content\" in completion:\n",
481 | " responses.append(completion[\"content\"])\n",
482 | " else:\n",
483 | " # Handle case where completion is already a string\n",
484 | " responses.append(completion)\n",
485 | "\n",
486 | " scores = []\n",
487 | " for r in responses:\n",
488 | " if isinstance(r, str) and match_format.search(r):\n",
489 | " scores.append(1.0)\n",
490 | " else:\n",
491 | " scores.append(0.0)\n",
492 | " return scores\n",
493 | "\n",
494 | "def match_format_approximately(prompts, completions, answer, **kwargs):\n",
495 | " \"\"\"Reward if key formatting tags are present in the output.\"\"\"\n",
496 | " responses = []\n",
497 | " for completion in completions:\n",
498 | " if isinstance(completion, list) and len(completion) > 0 and isinstance(completion[0], dict) and \"content\" in completion[0]:\n",
499 | " responses.append(completion[0][\"content\"])\n",
500 | " elif isinstance(completion, dict) and \"content\" in completion:\n",
501 | " responses.append(completion[\"content\"])\n",
502 | " else:\n",
503 | " # Handle case where completion is already a string\n",
504 | " responses.append(completion)\n",
505 | "\n",
506 | " scores = []\n",
507 | " for r in responses:\n",
508 | " if isinstance(r, str) and reasoning_start in r and reasoning_end in r and solution_start in r and solution_end in r:\n",
509 | " scores.append(0.5)\n",
510 | " else:\n",
511 | " scores.append(0.0)\n",
512 | " return scores\n",
513 | "\n",
514 | "def check_numbers(prompts, completions, answer, **kwargs):\n",
515 | " \"\"\"Reward if the extracted number from the output is correct.\"\"\"\n",
516 | " responses = []\n",
517 | " for completion in completions:\n",
518 | " if isinstance(completion, list) and len(completion) > 0 and isinstance(completion[0], dict) and \"content\" in completion[0]:\n",
519 | " responses.append(completion[0][\"content\"])\n",
520 | " elif isinstance(completion, dict) and \"content\" in completion:\n",
521 | " responses.append(completion[\"content\"])\n",
522 | " else:\n",
523 | " # Handle case where completion is already a string\n",
524 | " responses.append(completion)\n",
525 | "\n",
526 | " scores = []\n",
527 | " for r, true in zip(responses, answer):\n",
528 | " if not isinstance(r, str):\n",
529 | " scores.append(0.0)\n",
530 | " continue\n",
531 | "\n",
532 | " num = extract_move(r)\n",
533 | " # Convert true to int, add 1, then convert back to string\n",
534 | " adjusted_true = str(int(true) + 1)\n",
535 | "\n",
536 | " if num == adjusted_true:\n",
537 | " scores.append(1.0)\n",
538 | " else:\n",
539 | " scores.append(0.0)\n",
540 | " return scores\n",
541 | "# Create a simple dataset that cycles through the games CSV\n",
542 | "class ConnectFourDataset:\n",
543 | " def __init__(self, dataframe):\n",
544 | " self.dataframe = dataframe\n",
545 | "\n",
546 | " def __len__(self):\n",
547 | " return len(self.dataframe)\n",
548 | "\n",
549 | " def __getitem__(self, idx):\n",
550 | " prompt = format_puzzle(idx)\n",
551 | " # The answer is the winning column (as a string)\n",
552 | " # Keep as 0-based index from CSV, conversion happens in check functions\n",
553 | " answer = str(self.dataframe.loc[idx, 'Winning Column'])\n",
554 | " return {'prompt': prompt, 'answer': answer}\n",
555 | "\n",
556 | "dataset = ConnectFourDataset(df)"
557 | ]
558 | },
559 | {
560 | "cell_type": "code",
561 | "execution_count": null,
562 | "metadata": {
563 | "colab": {
564 | "base_uri": "https://localhost:8080/",
565 | "height": 1000
566 | },
567 | "id": "yVvVk4BuF0FK",
568 | "outputId": "dfdc5c66-7ef3-4992-c5a5-3018aac18ad6"
569 | },
570 | "outputs": [],
571 | "source": [
572 | "# Set max prompt length and import GRPO trainer components\n",
573 | "max_prompt_length = 256\n",
574 | "\n",
575 | "from trl import GRPOConfig, GRPOTrainer\n",
576 | "\n",
577 | "training_args = GRPOConfig(\n",
578 | " learning_rate = 5e-6,\n",
579 | " adam_beta1 = 0.9,\n",
580 | " adam_beta2 = 0.99,\n",
581 | " weight_decay = 0.1,\n",
582 | " warmup_ratio = 0.1,\n",
583 | " lr_scheduler_type = \"cosine\",\n",
584 | " optim = \"adamw_torch_fused\",\n",
585 | " logging_steps = 1,\n",
586 | " per_device_train_batch_size = 1,\n",
587 | " gradient_accumulation_steps = 1, # Increase to 4 for smoother training if needed\n",
588 | " num_generations = 4, # Decrease if out of memory\n",
589 | " max_prompt_length = max_prompt_length,\n",
590 | " max_completion_length = max_seq_length - max_prompt_length,\n",
591 | " # num_train_epochs = 1, # Uncomment for a full training run\n",
592 | " max_steps = 50,\n",
593 | " save_steps = 50,\n",
594 | " max_grad_norm = 0.1,\n",
595 | " report_to = \"none\", # Can use Weights & Biases if desired\n",
596 | " output_dir = \"outputs\",\n",
597 | ")\n",
598 | "\n",
599 | "trainer = GRPOTrainer(\n",
600 | " model = model,\n",
601 | " processing_class = tokenizer,\n",
602 | " reward_funcs = [\n",
603 | " match_format_exactly,\n",
604 | " match_format_approximately,\n",
605 | " check_answer,\n",
606 | " check_numbers,\n",
607 | " ],\n",
608 | " args = training_args,\n",
609 | " train_dataset = dataset,\n",
610 | ")\n",
611 | "\n",
612 | "# Start training with GRPO!\n",
613 | "trainer.train()"
614 | ]
615 | }
616 | ],
617 | "metadata": {
618 | "accelerator": "GPU",
619 | "colab": {
620 | "gpuType": "T4",
621 | "provenance": []
622 | },
623 | "kernelspec": {
624 | "display_name": "Python 3",
625 | "name": "python3"
626 | },
627 | "language_info": {
628 | "name": "python"
629 | },
630 | "widgets": {
631 | "application/vnd.jupyter.widget-state+json": {
632 | "00c56ee901c4434583ac71772ed9a7ac": {
633 | "model_module": "@jupyter-widgets/controls",
634 | "model_module_version": "1.5.0",
635 | "model_name": "DescriptionStyleModel",
636 | "state": {
637 | "_model_module": "@jupyter-widgets/controls",
638 | "_model_module_version": "1.5.0",
639 | "_model_name": "DescriptionStyleModel",
640 | "_view_count": null,
641 | "_view_module": "@jupyter-widgets/base",
642 | "_view_module_version": "1.2.0",
643 | "_view_name": "StyleView",
644 | "description_width": ""
645 | }
646 | },
647 | "02e45237f0ac4b5ab7c6cd68b09da051": {
648 | "model_module": "@jupyter-widgets/controls",
649 | "model_module_version": "1.5.0",
650 | "model_name": "DescriptionStyleModel",
651 | "state": {
652 | "_model_module": "@jupyter-widgets/controls",
653 | "_model_module_version": "1.5.0",
654 | "_model_name": "DescriptionStyleModel",
655 | "_view_count": null,
656 | "_view_module": "@jupyter-widgets/base",
657 | "_view_module_version": "1.2.0",
658 | "_view_name": "StyleView",
659 | "description_width": ""
660 | }
661 | },
662 | "0be87abfc633419c834932c46174e3b9": {
663 | "model_module": "@jupyter-widgets/base",
664 | "model_module_version": "1.2.0",
665 | "model_name": "LayoutModel",
666 | "state": {
667 | "_model_module": "@jupyter-widgets/base",
668 | "_model_module_version": "1.2.0",
669 | "_model_name": "LayoutModel",
670 | "_view_count": null,
671 | "_view_module": "@jupyter-widgets/base",
672 | "_view_module_version": "1.2.0",
673 | "_view_name": "LayoutView",
674 | "align_content": null,
675 | "align_items": null,
676 | "align_self": null,
677 | "border": null,
678 | "bottom": null,
679 | "display": null,
680 | "flex": null,
681 | "flex_flow": null,
682 | "grid_area": null,
683 | "grid_auto_columns": null,
684 | "grid_auto_flow": null,
685 | "grid_auto_rows": null,
686 | "grid_column": null,
687 | "grid_gap": null,
688 | "grid_row": null,
689 | "grid_template_areas": null,
690 | "grid_template_columns": null,
691 | "grid_template_rows": null,
692 | "height": null,
693 | "justify_content": null,
694 | "justify_items": null,
695 | "left": null,
696 | "margin": null,
697 | "max_height": null,
698 | "max_width": null,
699 | "min_height": null,
700 | "min_width": null,
701 | "object_fit": null,
702 | "object_position": null,
703 | "order": null,
704 | "overflow": null,
705 | "overflow_x": null,
706 | "overflow_y": null,
707 | "padding": null,
708 | "right": null,
709 | "top": null,
710 | "visibility": null,
711 | "width": null
712 | }
713 | },
714 | "11788b948d5b46bd88de9235bbb3179d": {
715 | "model_module": "@jupyter-widgets/controls",
716 | "model_module_version": "1.5.0",
717 | "model_name": "HTMLModel",
718 | "state": {
719 | "_dom_classes": [],
720 | "_model_module": "@jupyter-widgets/controls",
721 | "_model_module_version": "1.5.0",
722 | "_model_name": "HTMLModel",
723 | "_view_count": null,
724 | "_view_module": "@jupyter-widgets/controls",
725 | "_view_module_version": "1.5.0",
726 | "_view_name": "HTMLView",
727 | "description": "",
728 | "description_tooltip": null,
729 | "layout": "IPY_MODEL_58872b9c5b074813af7b6d9bdc9ba60f",
730 | "placeholder": "",
731 | "style": "IPY_MODEL_3a8ee07769a94ea2a7d675bb113ce709",
732 | "value": " 2.00G/2.00G [00:17<00:00, 756MB/s]"
733 | }
734 | },
735 | "136e78cc0e764bda86121f1383e5bb0b": {
736 | "model_module": "@jupyter-widgets/base",
737 | "model_module_version": "1.2.0",
738 | "model_name": "LayoutModel",
739 | "state": {
740 | "_model_module": "@jupyter-widgets/base",
741 | "_model_module_version": "1.2.0",
742 | "_model_name": "LayoutModel",
743 | "_view_count": null,
744 | "_view_module": "@jupyter-widgets/base",
745 | "_view_module_version": "1.2.0",
746 | "_view_name": "LayoutView",
747 | "align_content": null,
748 | "align_items": null,
749 | "align_self": null,
750 | "border": null,
751 | "bottom": null,
752 | "display": null,
753 | "flex": null,
754 | "flex_flow": null,
755 | "grid_area": null,
756 | "grid_auto_columns": null,
757 | "grid_auto_flow": null,
758 | "grid_auto_rows": null,
759 | "grid_column": null,
760 | "grid_gap": null,
761 | "grid_row": null,
762 | "grid_template_areas": null,
763 | "grid_template_columns": null,
764 | "grid_template_rows": null,
765 | "height": null,
766 | "justify_content": null,
767 | "justify_items": null,
768 | "left": null,
769 | "margin": null,
770 | "max_height": null,
771 | "max_width": null,
772 | "min_height": null,
773 | "min_width": null,
774 | "object_fit": null,
775 | "object_position": null,
776 | "order": null,
777 | "overflow": null,
778 | "overflow_x": null,
779 | "overflow_y": null,
780 | "padding": null,
781 | "right": null,
782 | "top": null,
783 | "visibility": null,
784 | "width": null
785 | }
786 | },
787 | "1d3b2ea61ff54562a38e66b6d8d36a0f": {
788 | "model_module": "@jupyter-widgets/controls",
789 | "model_module_version": "1.5.0",
790 | "model_name": "HTMLModel",
791 | "state": {
792 | "_dom_classes": [],
793 | "_model_module": "@jupyter-widgets/controls",
794 | "_model_module_version": "1.5.0",
795 | "_model_name": "HTMLModel",
796 | "_view_count": null,
797 | "_view_module": "@jupyter-widgets/controls",
798 | "_view_module_version": "1.5.0",
799 | "_view_name": "HTMLView",
800 | "description": "",
801 | "description_tooltip": null,
802 | "layout": "IPY_MODEL_221361471b7d49d7a4e7e23d6c84fe4f",
803 | "placeholder": "",
804 | "style": "IPY_MODEL_00c56ee901c4434583ac71772ed9a7ac",
805 | "value": "added_tokens.json: 100%"
806 | }
807 | },
808 | "1e8533a81384457dab93020c702eb2d6": {
809 | "model_module": "@jupyter-widgets/controls",
810 | "model_module_version": "1.5.0",
811 | "model_name": "DescriptionStyleModel",
812 | "state": {
813 | "_model_module": "@jupyter-widgets/controls",
814 | "_model_module_version": "1.5.0",
815 | "_model_name": "DescriptionStyleModel",
816 | "_view_count": null,
817 | "_view_module": "@jupyter-widgets/base",
818 | "_view_module_version": "1.2.0",
819 | "_view_name": "StyleView",
820 | "description_width": ""
821 | }
822 | },
823 | "218927b46cf148e6903d64e656449a7c": {
824 | "model_module": "@jupyter-widgets/controls",
825 | "model_module_version": "1.5.0",
826 | "model_name": "HTMLModel",
827 | "state": {
828 | "_dom_classes": [],
829 | "_model_module": "@jupyter-widgets/controls",
830 | "_model_module_version": "1.5.0",
831 | "_model_name": "HTMLModel",
832 | "_view_count": null,
833 | "_view_module": "@jupyter-widgets/controls",
834 | "_view_module_version": "1.5.0",
835 | "_view_name": "HTMLView",
836 | "description": "",
837 | "description_tooltip": null,
838 | "layout": "IPY_MODEL_8d3e0594460d4e149c88f1193f5bed6e",
839 | "placeholder": "",
840 | "style": "IPY_MODEL_6f66bbc9f1084c8899c64cefd3b0934a",
841 | "value": "tokenizer.json: 100%"
842 | }
843 | },
844 | "21c5356744e149d6a2d67fdb9830fbeb": {
845 | "model_module": "@jupyter-widgets/base",
846 | "model_module_version": "1.2.0",
847 | "model_name": "LayoutModel",
848 | "state": {
849 | "_model_module": "@jupyter-widgets/base",
850 | "_model_module_version": "1.2.0",
851 | "_model_name": "LayoutModel",
852 | "_view_count": null,
853 | "_view_module": "@jupyter-widgets/base",
854 | "_view_module_version": "1.2.0",
855 | "_view_name": "LayoutView",
856 | "align_content": null,
857 | "align_items": null,
858 | "align_self": null,
859 | "border": null,
860 | "bottom": null,
861 | "display": null,
862 | "flex": null,
863 | "flex_flow": null,
864 | "grid_area": null,
865 | "grid_auto_columns": null,
866 | "grid_auto_flow": null,
867 | "grid_auto_rows": null,
868 | "grid_column": null,
869 | "grid_gap": null,
870 | "grid_row": null,
871 | "grid_template_areas": null,
872 | "grid_template_columns": null,
873 | "grid_template_rows": null,
874 | "height": null,
875 | "justify_content": null,
876 | "justify_items": null,
877 | "left": null,
878 | "margin": null,
879 | "max_height": null,
880 | "max_width": null,
881 | "min_height": null,
882 | "min_width": null,
883 | "object_fit": null,
884 | "object_position": null,
885 | "order": null,
886 | "overflow": null,
887 | "overflow_x": null,
888 | "overflow_y": null,
889 | "padding": null,
890 | "right": null,
891 | "top": null,
892 | "visibility": null,
893 | "width": null
894 | }
895 | },
896 | "221361471b7d49d7a4e7e23d6c84fe4f": {
897 | "model_module": "@jupyter-widgets/base",
898 | "model_module_version": "1.2.0",
899 | "model_name": "LayoutModel",
900 | "state": {
901 | "_model_module": "@jupyter-widgets/base",
902 | "_model_module_version": "1.2.0",
903 | "_model_name": "LayoutModel",
904 | "_view_count": null,
905 | "_view_module": "@jupyter-widgets/base",
906 | "_view_module_version": "1.2.0",
907 | "_view_name": "LayoutView",
908 | "align_content": null,
909 | "align_items": null,
910 | "align_self": null,
911 | "border": null,
912 | "bottom": null,
913 | "display": null,
914 | "flex": null,
915 | "flex_flow": null,
916 | "grid_area": null,
917 | "grid_auto_columns": null,
918 | "grid_auto_flow": null,
919 | "grid_auto_rows": null,
920 | "grid_column": null,
921 | "grid_gap": null,
922 | "grid_row": null,
923 | "grid_template_areas": null,
924 | "grid_template_columns": null,
925 | "grid_template_rows": null,
926 | "height": null,
927 | "justify_content": null,
928 | "justify_items": null,
929 | "left": null,
930 | "margin": null,
931 | "max_height": null,
932 | "max_width": null,
933 | "min_height": null,
934 | "min_width": null,
935 | "object_fit": null,
936 | "object_position": null,
937 | "order": null,
938 | "overflow": null,
939 | "overflow_x": null,
940 | "overflow_y": null,
941 | "padding": null,
942 | "right": null,
943 | "top": null,
944 | "visibility": null,
945 | "width": null
946 | }
947 | },
948 | "222df800dad945e199a7ccd8dfbc7a8d": {
949 | "model_module": "@jupyter-widgets/controls",
950 | "model_module_version": "1.5.0",
951 | "model_name": "ProgressStyleModel",
952 | "state": {
953 | "_model_module": "@jupyter-widgets/controls",
954 | "_model_module_version": "1.5.0",
955 | "_model_name": "ProgressStyleModel",
956 | "_view_count": null,
957 | "_view_module": "@jupyter-widgets/base",
958 | "_view_module_version": "1.2.0",
959 | "_view_name": "StyleView",
960 | "bar_color": null,
961 | "description_width": ""
962 | }
963 | },
964 | "29c6198a3adb4d909230ed1eb1e3cd74": {
965 | "model_module": "@jupyter-widgets/base",
966 | "model_module_version": "1.2.0",
967 | "model_name": "LayoutModel",
968 | "state": {
969 | "_model_module": "@jupyter-widgets/base",
970 | "_model_module_version": "1.2.0",
971 | "_model_name": "LayoutModel",
972 | "_view_count": null,
973 | "_view_module": "@jupyter-widgets/base",
974 | "_view_module_version": "1.2.0",
975 | "_view_name": "LayoutView",
976 | "align_content": null,
977 | "align_items": null,
978 | "align_self": null,
979 | "border": null,
980 | "bottom": null,
981 | "display": null,
982 | "flex": null,
983 | "flex_flow": null,
984 | "grid_area": null,
985 | "grid_auto_columns": null,
986 | "grid_auto_flow": null,
987 | "grid_auto_rows": null,
988 | "grid_column": null,
989 | "grid_gap": null,
990 | "grid_row": null,
991 | "grid_template_areas": null,
992 | "grid_template_columns": null,
993 | "grid_template_rows": null,
994 | "height": null,
995 | "justify_content": null,
996 | "justify_items": null,
997 | "left": null,
998 | "margin": null,
999 | "max_height": null,
1000 | "max_width": null,
1001 | "min_height": null,
1002 | "min_width": null,
1003 | "object_fit": null,
1004 | "object_position": null,
1005 | "order": null,
1006 | "overflow": null,
1007 | "overflow_x": null,
1008 | "overflow_y": null,
1009 | "padding": null,
1010 | "right": null,
1011 | "top": null,
1012 | "visibility": null,
1013 | "width": null
1014 | }
1015 | },
1016 | "2eded99c82784f55b140d8d92b0d9a1c": {
1017 | "model_module": "@jupyter-widgets/base",
1018 | "model_module_version": "1.2.0",
1019 | "model_name": "LayoutModel",
1020 | "state": {
1021 | "_model_module": "@jupyter-widgets/base",
1022 | "_model_module_version": "1.2.0",
1023 | "_model_name": "LayoutModel",
1024 | "_view_count": null,
1025 | "_view_module": "@jupyter-widgets/base",
1026 | "_view_module_version": "1.2.0",
1027 | "_view_name": "LayoutView",
1028 | "align_content": null,
1029 | "align_items": null,
1030 | "align_self": null,
1031 | "border": null,
1032 | "bottom": null,
1033 | "display": null,
1034 | "flex": null,
1035 | "flex_flow": null,
1036 | "grid_area": null,
1037 | "grid_auto_columns": null,
1038 | "grid_auto_flow": null,
1039 | "grid_auto_rows": null,
1040 | "grid_column": null,
1041 | "grid_gap": null,
1042 | "grid_row": null,
1043 | "grid_template_areas": null,
1044 | "grid_template_columns": null,
1045 | "grid_template_rows": null,
1046 | "height": null,
1047 | "justify_content": null,
1048 | "justify_items": null,
1049 | "left": null,
1050 | "margin": null,
1051 | "max_height": null,
1052 | "max_width": null,
1053 | "min_height": null,
1054 | "min_width": null,
1055 | "object_fit": null,
1056 | "object_position": null,
1057 | "order": null,
1058 | "overflow": null,
1059 | "overflow_x": null,
1060 | "overflow_y": null,
1061 | "padding": null,
1062 | "right": null,
1063 | "top": null,
1064 | "visibility": null,
1065 | "width": null
1066 | }
1067 | },
1068 | "34b06389fce04892a242003bf79610ed": {
1069 | "model_module": "@jupyter-widgets/controls",
1070 | "model_module_version": "1.5.0",
1071 | "model_name": "FloatProgressModel",
1072 | "state": {
1073 | "_dom_classes": [],
1074 | "_model_module": "@jupyter-widgets/controls",
1075 | "_model_module_version": "1.5.0",
1076 | "_model_name": "FloatProgressModel",
1077 | "_view_count": null,
1078 | "_view_module": "@jupyter-widgets/controls",
1079 | "_view_module_version": "1.5.0",
1080 | "_view_name": "ProgressView",
1081 | "bar_style": "success",
1082 | "description": "",
1083 | "description_tooltip": null,
1084 | "layout": "IPY_MODEL_5b2d5be5b4134fe080add6f4e48be59f",
1085 | "max": 1157007,
1086 | "min": 0,
1087 | "orientation": "horizontal",
1088 | "style": "IPY_MODEL_fa2d656a9fd549dfb64e97546e82591d",
1089 | "value": 1157007
1090 | }
1091 | },
1092 | "39323e862d2f4da089cbd7a7a45b378c": {
1093 | "model_module": "@jupyter-widgets/controls",
1094 | "model_module_version": "1.5.0",
1095 | "model_name": "DescriptionStyleModel",
1096 | "state": {
1097 | "_model_module": "@jupyter-widgets/controls",
1098 | "_model_module_version": "1.5.0",
1099 | "_model_name": "DescriptionStyleModel",
1100 | "_view_count": null,
1101 | "_view_module": "@jupyter-widgets/base",
1102 | "_view_module_version": "1.2.0",
1103 | "_view_name": "StyleView",
1104 | "description_width": ""
1105 | }
1106 | },
1107 | "39367aac2c894342ab3ed257ac8c2e4f": {
1108 | "model_module": "@jupyter-widgets/controls",
1109 | "model_module_version": "1.5.0",
1110 | "model_name": "DescriptionStyleModel",
1111 | "state": {
1112 | "_model_module": "@jupyter-widgets/controls",
1113 | "_model_module_version": "1.5.0",
1114 | "_model_name": "DescriptionStyleModel",
1115 | "_view_count": null,
1116 | "_view_module": "@jupyter-widgets/base",
1117 | "_view_module_version": "1.2.0",
1118 | "_view_name": "StyleView",
1119 | "description_width": ""
1120 | }
1121 | },
1122 | "3a487f0804d34da58bcd2afc2234027e": {
1123 | "model_module": "@jupyter-widgets/controls",
1124 | "model_module_version": "1.5.0",
1125 | "model_name": "HTMLModel",
1126 | "state": {
1127 | "_dom_classes": [],
1128 | "_model_module": "@jupyter-widgets/controls",
1129 | "_model_module_version": "1.5.0",
1130 | "_model_name": "HTMLModel",
1131 | "_view_count": null,
1132 | "_view_module": "@jupyter-widgets/controls",
1133 | "_view_module_version": "1.5.0",
1134 | "_view_name": "HTMLView",
1135 | "description": "",
1136 | "description_tooltip": null,
1137 | "layout": "IPY_MODEL_0be87abfc633419c834932c46174e3b9",
1138 | "placeholder": "",
1139 | "style": "IPY_MODEL_dbc76d5ff39b449691b110d839594912",
1140 | "value": " 670/670 [00:00<00:00, 60.3kB/s]"
1141 | }
1142 | },
1143 | "3a8ee07769a94ea2a7d675bb113ce709": {
1144 | "model_module": "@jupyter-widgets/controls",
1145 | "model_module_version": "1.5.0",
1146 | "model_name": "DescriptionStyleModel",
1147 | "state": {
1148 | "_model_module": "@jupyter-widgets/controls",
1149 | "_model_module_version": "1.5.0",
1150 | "_model_name": "DescriptionStyleModel",
1151 | "_view_count": null,
1152 | "_view_module": "@jupyter-widgets/base",
1153 | "_view_module_version": "1.2.0",
1154 | "_view_name": "StyleView",
1155 | "description_width": ""
1156 | }
1157 | },
1158 | "3abecbd6292a4b4e94e5213616cf2122": {
1159 | "model_module": "@jupyter-widgets/controls",
1160 | "model_module_version": "1.5.0",
1161 | "model_name": "HBoxModel",
1162 | "state": {
1163 | "_dom_classes": [],
1164 | "_model_module": "@jupyter-widgets/controls",
1165 | "_model_module_version": "1.5.0",
1166 | "_model_name": "HBoxModel",
1167 | "_view_count": null,
1168 | "_view_module": "@jupyter-widgets/controls",
1169 | "_view_module_version": "1.5.0",
1170 | "_view_name": "HBoxView",
1171 | "box_style": "",
1172 | "children": [
1173 | "IPY_MODEL_72d5f442747f4bfda91945c58033ead2",
1174 | "IPY_MODEL_34b06389fce04892a242003bf79610ed",
1175 | "IPY_MODEL_9f2bda486bea4880829704c05223562e"
1176 | ],
1177 | "layout": "IPY_MODEL_136e78cc0e764bda86121f1383e5bb0b"
1178 | }
1179 | },
1180 | "3ace3d3b4baf4599a6673f58088351d4": {
1181 | "model_module": "@jupyter-widgets/base",
1182 | "model_module_version": "1.2.0",
1183 | "model_name": "LayoutModel",
1184 | "state": {
1185 | "_model_module": "@jupyter-widgets/base",
1186 | "_model_module_version": "1.2.0",
1187 | "_model_name": "LayoutModel",
1188 | "_view_count": null,
1189 | "_view_module": "@jupyter-widgets/base",
1190 | "_view_module_version": "1.2.0",
1191 | "_view_name": "LayoutView",
1192 | "align_content": null,
1193 | "align_items": null,
1194 | "align_self": null,
1195 | "border": null,
1196 | "bottom": null,
1197 | "display": null,
1198 | "flex": null,
1199 | "flex_flow": null,
1200 | "grid_area": null,
1201 | "grid_auto_columns": null,
1202 | "grid_auto_flow": null,
1203 | "grid_auto_rows": null,
1204 | "grid_column": null,
1205 | "grid_gap": null,
1206 | "grid_row": null,
1207 | "grid_template_areas": null,
1208 | "grid_template_columns": null,
1209 | "grid_template_rows": null,
1210 | "height": null,
1211 | "justify_content": null,
1212 | "justify_items": null,
1213 | "left": null,
1214 | "margin": null,
1215 | "max_height": null,
1216 | "max_width": null,
1217 | "min_height": null,
1218 | "min_width": null,
1219 | "object_fit": null,
1220 | "object_position": null,
1221 | "order": null,
1222 | "overflow": null,
1223 | "overflow_x": null,
1224 | "overflow_y": null,
1225 | "padding": null,
1226 | "right": null,
1227 | "top": null,
1228 | "visibility": null,
1229 | "width": null
1230 | }
1231 | },
1232 | "3f956e7672f34276b78e5e0cadaaedbd": {
1233 | "model_module": "@jupyter-widgets/controls",
1234 | "model_module_version": "1.5.0",
1235 | "model_name": "DescriptionStyleModel",
1236 | "state": {
1237 | "_model_module": "@jupyter-widgets/controls",
1238 | "_model_module_version": "1.5.0",
1239 | "_model_name": "DescriptionStyleModel",
1240 | "_view_count": null,
1241 | "_view_module": "@jupyter-widgets/base",
1242 | "_view_module_version": "1.2.0",
1243 | "_view_name": "StyleView",
1244 | "description_width": ""
1245 | }
1246 | },
1247 | "3ffcec797ef542808540f5dd4ed7650b": {
1248 | "model_module": "@jupyter-widgets/base",
1249 | "model_module_version": "1.2.0",
1250 | "model_name": "LayoutModel",
1251 | "state": {
1252 | "_model_module": "@jupyter-widgets/base",
1253 | "_model_module_version": "1.2.0",
1254 | "_model_name": "LayoutModel",
1255 | "_view_count": null,
1256 | "_view_module": "@jupyter-widgets/base",
1257 | "_view_module_version": "1.2.0",
1258 | "_view_name": "LayoutView",
1259 | "align_content": null,
1260 | "align_items": null,
1261 | "align_self": null,
1262 | "border": null,
1263 | "bottom": null,
1264 | "display": null,
1265 | "flex": null,
1266 | "flex_flow": null,
1267 | "grid_area": null,
1268 | "grid_auto_columns": null,
1269 | "grid_auto_flow": null,
1270 | "grid_auto_rows": null,
1271 | "grid_column": null,
1272 | "grid_gap": null,
1273 | "grid_row": null,
1274 | "grid_template_areas": null,
1275 | "grid_template_columns": null,
1276 | "grid_template_rows": null,
1277 | "height": null,
1278 | "justify_content": null,
1279 | "justify_items": null,
1280 | "left": null,
1281 | "margin": null,
1282 | "max_height": null,
1283 | "max_width": null,
1284 | "min_height": null,
1285 | "min_width": null,
1286 | "object_fit": null,
1287 | "object_position": null,
1288 | "order": null,
1289 | "overflow": null,
1290 | "overflow_x": null,
1291 | "overflow_y": null,
1292 | "padding": null,
1293 | "right": null,
1294 | "top": null,
1295 | "visibility": null,
1296 | "width": null
1297 | }
1298 | },
1299 | "430dbe6044ac4c19a72fb996ddc9fbd1": {
1300 | "model_module": "@jupyter-widgets/controls",
1301 | "model_module_version": "1.5.0",
1302 | "model_name": "ProgressStyleModel",
1303 | "state": {
1304 | "_model_module": "@jupyter-widgets/controls",
1305 | "_model_module_version": "1.5.0",
1306 | "_model_name": "ProgressStyleModel",
1307 | "_view_count": null,
1308 | "_view_module": "@jupyter-widgets/base",
1309 | "_view_module_version": "1.2.0",
1310 | "_view_name": "StyleView",
1311 | "bar_color": null,
1312 | "description_width": ""
1313 | }
1314 | },
1315 | "4441bde44ec44063bed8f43ae4a30a4e": {
1316 | "model_module": "@jupyter-widgets/base",
1317 | "model_module_version": "1.2.0",
1318 | "model_name": "LayoutModel",
1319 | "state": {
1320 | "_model_module": "@jupyter-widgets/base",
1321 | "_model_module_version": "1.2.0",
1322 | "_model_name": "LayoutModel",
1323 | "_view_count": null,
1324 | "_view_module": "@jupyter-widgets/base",
1325 | "_view_module_version": "1.2.0",
1326 | "_view_name": "LayoutView",
1327 | "align_content": null,
1328 | "align_items": null,
1329 | "align_self": null,
1330 | "border": null,
1331 | "bottom": null,
1332 | "display": null,
1333 | "flex": null,
1334 | "flex_flow": null,
1335 | "grid_area": null,
1336 | "grid_auto_columns": null,
1337 | "grid_auto_flow": null,
1338 | "grid_auto_rows": null,
1339 | "grid_column": null,
1340 | "grid_gap": null,
1341 | "grid_row": null,
1342 | "grid_template_areas": null,
1343 | "grid_template_columns": null,
1344 | "grid_template_rows": null,
1345 | "height": null,
1346 | "justify_content": null,
1347 | "justify_items": null,
1348 | "left": null,
1349 | "margin": null,
1350 | "max_height": null,
1351 | "max_width": null,
1352 | "min_height": null,
1353 | "min_width": null,
1354 | "object_fit": null,
1355 | "object_position": null,
1356 | "order": null,
1357 | "overflow": null,
1358 | "overflow_x": null,
1359 | "overflow_y": null,
1360 | "padding": null,
1361 | "right": null,
1362 | "top": null,
1363 | "visibility": null,
1364 | "width": null
1365 | }
1366 | },
1367 | "44c5ff8f8c174a1a994062849c8488f7": {
1368 | "model_module": "@jupyter-widgets/controls",
1369 | "model_module_version": "1.5.0",
1370 | "model_name": "HTMLModel",
1371 | "state": {
1372 | "_dom_classes": [],
1373 | "_model_module": "@jupyter-widgets/controls",
1374 | "_model_module_version": "1.5.0",
1375 | "_model_name": "HTMLModel",
1376 | "_view_count": null,
1377 | "_view_module": "@jupyter-widgets/controls",
1378 | "_view_module_version": "1.5.0",
1379 | "_view_name": "HTMLView",
1380 | "description": "",
1381 | "description_tooltip": null,
1382 | "layout": "IPY_MODEL_77b0e8db32ce4558961c1871ecd2a147",
1383 | "placeholder": "",
1384 | "style": "IPY_MODEL_4cf0111ca172405fb7b08f337d82f911",
1385 | "value": "special_tokens_map.json: 100%"
1386 | }
1387 | },
1388 | "4cf0111ca172405fb7b08f337d82f911": {
1389 | "model_module": "@jupyter-widgets/controls",
1390 | "model_module_version": "1.5.0",
1391 | "model_name": "DescriptionStyleModel",
1392 | "state": {
1393 | "_model_module": "@jupyter-widgets/controls",
1394 | "_model_module_version": "1.5.0",
1395 | "_model_name": "DescriptionStyleModel",
1396 | "_view_count": null,
1397 | "_view_module": "@jupyter-widgets/base",
1398 | "_view_module_version": "1.2.0",
1399 | "_view_name": "StyleView",
1400 | "description_width": ""
1401 | }
1402 | },
1403 | "50656ef62a804b908bf05493789cc362": {
1404 | "model_module": "@jupyter-widgets/controls",
1405 | "model_module_version": "1.5.0",
1406 | "model_name": "HTMLModel",
1407 | "state": {
1408 | "_dom_classes": [],
1409 | "_model_module": "@jupyter-widgets/controls",
1410 | "_model_module_version": "1.5.0",
1411 | "_model_name": "HTMLModel",
1412 | "_view_count": null,
1413 | "_view_module": "@jupyter-widgets/controls",
1414 | "_view_module_version": "1.5.0",
1415 | "_view_name": "HTMLView",
1416 | "description": "",
1417 | "description_tooltip": null,
1418 | "layout": "IPY_MODEL_5e7f4d73b97142448857a67a66c47b34",
1419 | "placeholder": "",
1420 | "style": "IPY_MODEL_02e45237f0ac4b5ab7c6cd68b09da051",
1421 | "value": "model.safetensors: 100%"
1422 | }
1423 | },
1424 | "525bd5ebb77e45ac8654b01651388c97": {
1425 | "model_module": "@jupyter-widgets/base",
1426 | "model_module_version": "1.2.0",
1427 | "model_name": "LayoutModel",
1428 | "state": {
1429 | "_model_module": "@jupyter-widgets/base",
1430 | "_model_module_version": "1.2.0",
1431 | "_model_name": "LayoutModel",
1432 | "_view_count": null,
1433 | "_view_module": "@jupyter-widgets/base",
1434 | "_view_module_version": "1.2.0",
1435 | "_view_name": "LayoutView",
1436 | "align_content": null,
1437 | "align_items": null,
1438 | "align_self": null,
1439 | "border": null,
1440 | "bottom": null,
1441 | "display": null,
1442 | "flex": null,
1443 | "flex_flow": null,
1444 | "grid_area": null,
1445 | "grid_auto_columns": null,
1446 | "grid_auto_flow": null,
1447 | "grid_auto_rows": null,
1448 | "grid_column": null,
1449 | "grid_gap": null,
1450 | "grid_row": null,
1451 | "grid_template_areas": null,
1452 | "grid_template_columns": null,
1453 | "grid_template_rows": null,
1454 | "height": null,
1455 | "justify_content": null,
1456 | "justify_items": null,
1457 | "left": null,
1458 | "margin": null,
1459 | "max_height": null,
1460 | "max_width": null,
1461 | "min_height": null,
1462 | "min_width": null,
1463 | "object_fit": null,
1464 | "object_position": null,
1465 | "order": null,
1466 | "overflow": null,
1467 | "overflow_x": null,
1468 | "overflow_y": null,
1469 | "padding": null,
1470 | "right": null,
1471 | "top": null,
1472 | "visibility": null,
1473 | "width": null
1474 | }
1475 | },
1476 | "53f024e3fff24976958b2bf43794c28d": {
1477 | "model_module": "@jupyter-widgets/controls",
1478 | "model_module_version": "1.5.0",
1479 | "model_name": "DescriptionStyleModel",
1480 | "state": {
1481 | "_model_module": "@jupyter-widgets/controls",
1482 | "_model_module_version": "1.5.0",
1483 | "_model_name": "DescriptionStyleModel",
1484 | "_view_count": null,
1485 | "_view_module": "@jupyter-widgets/base",
1486 | "_view_module_version": "1.2.0",
1487 | "_view_name": "StyleView",
1488 | "description_width": ""
1489 | }
1490 | },
1491 | "58872b9c5b074813af7b6d9bdc9ba60f": {
1492 | "model_module": "@jupyter-widgets/base",
1493 | "model_module_version": "1.2.0",
1494 | "model_name": "LayoutModel",
1495 | "state": {
1496 | "_model_module": "@jupyter-widgets/base",
1497 | "_model_module_version": "1.2.0",
1498 | "_model_name": "LayoutModel",
1499 | "_view_count": null,
1500 | "_view_module": "@jupyter-widgets/base",
1501 | "_view_module_version": "1.2.0",
1502 | "_view_name": "LayoutView",
1503 | "align_content": null,
1504 | "align_items": null,
1505 | "align_self": null,
1506 | "border": null,
1507 | "bottom": null,
1508 | "display": null,
1509 | "flex": null,
1510 | "flex_flow": null,
1511 | "grid_area": null,
1512 | "grid_auto_columns": null,
1513 | "grid_auto_flow": null,
1514 | "grid_auto_rows": null,
1515 | "grid_column": null,
1516 | "grid_gap": null,
1517 | "grid_row": null,
1518 | "grid_template_areas": null,
1519 | "grid_template_columns": null,
1520 | "grid_template_rows": null,
1521 | "height": null,
1522 | "justify_content": null,
1523 | "justify_items": null,
1524 | "left": null,
1525 | "margin": null,
1526 | "max_height": null,
1527 | "max_width": null,
1528 | "min_height": null,
1529 | "min_width": null,
1530 | "object_fit": null,
1531 | "object_position": null,
1532 | "order": null,
1533 | "overflow": null,
1534 | "overflow_x": null,
1535 | "overflow_y": null,
1536 | "padding": null,
1537 | "right": null,
1538 | "top": null,
1539 | "visibility": null,
1540 | "width": null
1541 | }
1542 | },
1543 | "5b2d5be5b4134fe080add6f4e48be59f": {
1544 | "model_module": "@jupyter-widgets/base",
1545 | "model_module_version": "1.2.0",
1546 | "model_name": "LayoutModel",
1547 | "state": {
1548 | "_model_module": "@jupyter-widgets/base",
1549 | "_model_module_version": "1.2.0",
1550 | "_model_name": "LayoutModel",
1551 | "_view_count": null,
1552 | "_view_module": "@jupyter-widgets/base",
1553 | "_view_module_version": "1.2.0",
1554 | "_view_name": "LayoutView",
1555 | "align_content": null,
1556 | "align_items": null,
1557 | "align_self": null,
1558 | "border": null,
1559 | "bottom": null,
1560 | "display": null,
1561 | "flex": null,
1562 | "flex_flow": null,
1563 | "grid_area": null,
1564 | "grid_auto_columns": null,
1565 | "grid_auto_flow": null,
1566 | "grid_auto_rows": null,
1567 | "grid_column": null,
1568 | "grid_gap": null,
1569 | "grid_row": null,
1570 | "grid_template_areas": null,
1571 | "grid_template_columns": null,
1572 | "grid_template_rows": null,
1573 | "height": null,
1574 | "justify_content": null,
1575 | "justify_items": null,
1576 | "left": null,
1577 | "margin": null,
1578 | "max_height": null,
1579 | "max_width": null,
1580 | "min_height": null,
1581 | "min_width": null,
1582 | "object_fit": null,
1583 | "object_position": null,
1584 | "order": null,
1585 | "overflow": null,
1586 | "overflow_x": null,
1587 | "overflow_y": null,
1588 | "padding": null,
1589 | "right": null,
1590 | "top": null,
1591 | "visibility": null,
1592 | "width": null
1593 | }
1594 | },
1595 | "5e7f4d73b97142448857a67a66c47b34": {
1596 | "model_module": "@jupyter-widgets/base",
1597 | "model_module_version": "1.2.0",
1598 | "model_name": "LayoutModel",
1599 | "state": {
1600 | "_model_module": "@jupyter-widgets/base",
1601 | "_model_module_version": "1.2.0",
1602 | "_model_name": "LayoutModel",
1603 | "_view_count": null,
1604 | "_view_module": "@jupyter-widgets/base",
1605 | "_view_module_version": "1.2.0",
1606 | "_view_name": "LayoutView",
1607 | "align_content": null,
1608 | "align_items": null,
1609 | "align_self": null,
1610 | "border": null,
1611 | "bottom": null,
1612 | "display": null,
1613 | "flex": null,
1614 | "flex_flow": null,
1615 | "grid_area": null,
1616 | "grid_auto_columns": null,
1617 | "grid_auto_flow": null,
1618 | "grid_auto_rows": null,
1619 | "grid_column": null,
1620 | "grid_gap": null,
1621 | "grid_row": null,
1622 | "grid_template_areas": null,
1623 | "grid_template_columns": null,
1624 | "grid_template_rows": null,
1625 | "height": null,
1626 | "justify_content": null,
1627 | "justify_items": null,
1628 | "left": null,
1629 | "margin": null,
1630 | "max_height": null,
1631 | "max_width": null,
1632 | "min_height": null,
1633 | "min_width": null,
1634 | "object_fit": null,
1635 | "object_position": null,
1636 | "order": null,
1637 | "overflow": null,
1638 | "overflow_x": null,
1639 | "overflow_y": null,
1640 | "padding": null,
1641 | "right": null,
1642 | "top": null,
1643 | "visibility": null,
1644 | "width": null
1645 | }
1646 | },
1647 | "6009acf8a81645209f3d94660fdd5fea": {
1648 | "model_module": "@jupyter-widgets/controls",
1649 | "model_module_version": "1.5.0",
1650 | "model_name": "HBoxModel",
1651 | "state": {
1652 | "_dom_classes": [],
1653 | "_model_module": "@jupyter-widgets/controls",
1654 | "_model_module_version": "1.5.0",
1655 | "_model_name": "HBoxModel",
1656 | "_view_count": null,
1657 | "_view_module": "@jupyter-widgets/controls",
1658 | "_view_module_version": "1.5.0",
1659 | "_view_name": "HBoxView",
1660 | "box_style": "",
1661 | "children": [
1662 | "IPY_MODEL_1d3b2ea61ff54562a38e66b6d8d36a0f",
1663 | "IPY_MODEL_d526fa7789664d2f87e9ad1d370cb848",
1664 | "IPY_MODEL_9ff84d1955eb474f87e3691ce38c98de"
1665 | ],
1666 | "layout": "IPY_MODEL_2eded99c82784f55b140d8d92b0d9a1c"
1667 | }
1668 | },
1669 | "61fe9da71b97485f92c6ee2380d46b4d": {
1670 | "model_module": "@jupyter-widgets/controls",
1671 | "model_module_version": "1.5.0",
1672 | "model_name": "HBoxModel",
1673 | "state": {
1674 | "_dom_classes": [],
1675 | "_model_module": "@jupyter-widgets/controls",
1676 | "_model_module_version": "1.5.0",
1677 | "_model_name": "HBoxModel",
1678 | "_view_count": null,
1679 | "_view_module": "@jupyter-widgets/controls",
1680 | "_view_module_version": "1.5.0",
1681 | "_view_name": "HBoxView",
1682 | "box_style": "",
1683 | "children": [
1684 | "IPY_MODEL_50656ef62a804b908bf05493789cc362",
1685 | "IPY_MODEL_b5601c72540c4ec9be8cfbe7b577ef65",
1686 | "IPY_MODEL_11788b948d5b46bd88de9235bbb3179d"
1687 | ],
1688 | "layout": "IPY_MODEL_915ba23ce31640e4b487d7d402d203d8"
1689 | }
1690 | },
1691 | "63040bada9764ff8b5dac77d22a90008": {
1692 | "model_module": "@jupyter-widgets/controls",
1693 | "model_module_version": "1.5.0",
1694 | "model_name": "ProgressStyleModel",
1695 | "state": {
1696 | "_model_module": "@jupyter-widgets/controls",
1697 | "_model_module_version": "1.5.0",
1698 | "_model_name": "ProgressStyleModel",
1699 | "_view_count": null,
1700 | "_view_module": "@jupyter-widgets/base",
1701 | "_view_module_version": "1.2.0",
1702 | "_view_name": "StyleView",
1703 | "bar_color": null,
1704 | "description_width": ""
1705 | }
1706 | },
1707 | "6da8546c83864bd98dd3bc7568de095b": {
1708 | "model_module": "@jupyter-widgets/base",
1709 | "model_module_version": "1.2.0",
1710 | "model_name": "LayoutModel",
1711 | "state": {
1712 | "_model_module": "@jupyter-widgets/base",
1713 | "_model_module_version": "1.2.0",
1714 | "_model_name": "LayoutModel",
1715 | "_view_count": null,
1716 | "_view_module": "@jupyter-widgets/base",
1717 | "_view_module_version": "1.2.0",
1718 | "_view_name": "LayoutView",
1719 | "align_content": null,
1720 | "align_items": null,
1721 | "align_self": null,
1722 | "border": null,
1723 | "bottom": null,
1724 | "display": null,
1725 | "flex": null,
1726 | "flex_flow": null,
1727 | "grid_area": null,
1728 | "grid_auto_columns": null,
1729 | "grid_auto_flow": null,
1730 | "grid_auto_rows": null,
1731 | "grid_column": null,
1732 | "grid_gap": null,
1733 | "grid_row": null,
1734 | "grid_template_areas": null,
1735 | "grid_template_columns": null,
1736 | "grid_template_rows": null,
1737 | "height": null,
1738 | "justify_content": null,
1739 | "justify_items": null,
1740 | "left": null,
1741 | "margin": null,
1742 | "max_height": null,
1743 | "max_width": null,
1744 | "min_height": null,
1745 | "min_width": null,
1746 | "object_fit": null,
1747 | "object_position": null,
1748 | "order": null,
1749 | "overflow": null,
1750 | "overflow_x": null,
1751 | "overflow_y": null,
1752 | "padding": null,
1753 | "right": null,
1754 | "top": null,
1755 | "visibility": null,
1756 | "width": null
1757 | }
1758 | },
1759 | "6f66bbc9f1084c8899c64cefd3b0934a": {
1760 | "model_module": "@jupyter-widgets/controls",
1761 | "model_module_version": "1.5.0",
1762 | "model_name": "DescriptionStyleModel",
1763 | "state": {
1764 | "_model_module": "@jupyter-widgets/controls",
1765 | "_model_module_version": "1.5.0",
1766 | "_model_name": "DescriptionStyleModel",
1767 | "_view_count": null,
1768 | "_view_module": "@jupyter-widgets/base",
1769 | "_view_module_version": "1.2.0",
1770 | "_view_name": "StyleView",
1771 | "description_width": ""
1772 | }
1773 | },
1774 | "72278d146c6a43c88282be435ff8b7ed": {
1775 | "model_module": "@jupyter-widgets/controls",
1776 | "model_module_version": "1.5.0",
1777 | "model_name": "HBoxModel",
1778 | "state": {
1779 | "_dom_classes": [],
1780 | "_model_module": "@jupyter-widgets/controls",
1781 | "_model_module_version": "1.5.0",
1782 | "_model_name": "HBoxModel",
1783 | "_view_count": null,
1784 | "_view_module": "@jupyter-widgets/controls",
1785 | "_view_module_version": "1.5.0",
1786 | "_view_name": "HBoxView",
1787 | "box_style": "",
1788 | "children": [
1789 | "IPY_MODEL_e4354fcaac5642ae89ce8a3c69d1b68d",
1790 | "IPY_MODEL_aea7cfbba79340e98ca0a00ea6e6a5c2",
1791 | "IPY_MODEL_adf9b0c5dacb426aa21ae59db45657ca"
1792 | ],
1793 | "layout": "IPY_MODEL_d0a7b3b62181431b9ca9870c167b983e"
1794 | }
1795 | },
1796 | "72d5f442747f4bfda91945c58033ead2": {
1797 | "model_module": "@jupyter-widgets/controls",
1798 | "model_module_version": "1.5.0",
1799 | "model_name": "HTMLModel",
1800 | "state": {
1801 | "_dom_classes": [],
1802 | "_model_module": "@jupyter-widgets/controls",
1803 | "_model_module_version": "1.5.0",
1804 | "_model_name": "HTMLModel",
1805 | "_view_count": null,
1806 | "_view_module": "@jupyter-widgets/controls",
1807 | "_view_module_version": "1.5.0",
1808 | "_view_name": "HTMLView",
1809 | "description": "",
1810 | "description_tooltip": null,
1811 | "layout": "IPY_MODEL_4441bde44ec44063bed8f43ae4a30a4e",
1812 | "placeholder": "",
1813 | "style": "IPY_MODEL_1e8533a81384457dab93020c702eb2d6",
1814 | "value": "tokenizer_config.json: 100%"
1815 | }
1816 | },
1817 | "77b0e8db32ce4558961c1871ecd2a147": {
1818 | "model_module": "@jupyter-widgets/base",
1819 | "model_module_version": "1.2.0",
1820 | "model_name": "LayoutModel",
1821 | "state": {
1822 | "_model_module": "@jupyter-widgets/base",
1823 | "_model_module_version": "1.2.0",
1824 | "_model_name": "LayoutModel",
1825 | "_view_count": null,
1826 | "_view_module": "@jupyter-widgets/base",
1827 | "_view_module_version": "1.2.0",
1828 | "_view_name": "LayoutView",
1829 | "align_content": null,
1830 | "align_items": null,
1831 | "align_self": null,
1832 | "border": null,
1833 | "bottom": null,
1834 | "display": null,
1835 | "flex": null,
1836 | "flex_flow": null,
1837 | "grid_area": null,
1838 | "grid_auto_columns": null,
1839 | "grid_auto_flow": null,
1840 | "grid_auto_rows": null,
1841 | "grid_column": null,
1842 | "grid_gap": null,
1843 | "grid_row": null,
1844 | "grid_template_areas": null,
1845 | "grid_template_columns": null,
1846 | "grid_template_rows": null,
1847 | "height": null,
1848 | "justify_content": null,
1849 | "justify_items": null,
1850 | "left": null,
1851 | "margin": null,
1852 | "max_height": null,
1853 | "max_width": null,
1854 | "min_height": null,
1855 | "min_width": null,
1856 | "object_fit": null,
1857 | "object_position": null,
1858 | "order": null,
1859 | "overflow": null,
1860 | "overflow_x": null,
1861 | "overflow_y": null,
1862 | "padding": null,
1863 | "right": null,
1864 | "top": null,
1865 | "visibility": null,
1866 | "width": null
1867 | }
1868 | },
1869 | "7fed1cef573e47d08300438fe4c158e9": {
1870 | "model_module": "@jupyter-widgets/base",
1871 | "model_module_version": "1.2.0",
1872 | "model_name": "LayoutModel",
1873 | "state": {
1874 | "_model_module": "@jupyter-widgets/base",
1875 | "_model_module_version": "1.2.0",
1876 | "_model_name": "LayoutModel",
1877 | "_view_count": null,
1878 | "_view_module": "@jupyter-widgets/base",
1879 | "_view_module_version": "1.2.0",
1880 | "_view_name": "LayoutView",
1881 | "align_content": null,
1882 | "align_items": null,
1883 | "align_self": null,
1884 | "border": null,
1885 | "bottom": null,
1886 | "display": null,
1887 | "flex": null,
1888 | "flex_flow": null,
1889 | "grid_area": null,
1890 | "grid_auto_columns": null,
1891 | "grid_auto_flow": null,
1892 | "grid_auto_rows": null,
1893 | "grid_column": null,
1894 | "grid_gap": null,
1895 | "grid_row": null,
1896 | "grid_template_areas": null,
1897 | "grid_template_columns": null,
1898 | "grid_template_rows": null,
1899 | "height": null,
1900 | "justify_content": null,
1901 | "justify_items": null,
1902 | "left": null,
1903 | "margin": null,
1904 | "max_height": null,
1905 | "max_width": null,
1906 | "min_height": null,
1907 | "min_width": null,
1908 | "object_fit": null,
1909 | "object_position": null,
1910 | "order": null,
1911 | "overflow": null,
1912 | "overflow_x": null,
1913 | "overflow_y": null,
1914 | "padding": null,
1915 | "right": null,
1916 | "top": null,
1917 | "visibility": null,
1918 | "width": null
1919 | }
1920 | },
1921 | "8001fd2f05784a66b7f3aac77fcf2303": {
1922 | "model_module": "@jupyter-widgets/base",
1923 | "model_module_version": "1.2.0",
1924 | "model_name": "LayoutModel",
1925 | "state": {
1926 | "_model_module": "@jupyter-widgets/base",
1927 | "_model_module_version": "1.2.0",
1928 | "_model_name": "LayoutModel",
1929 | "_view_count": null,
1930 | "_view_module": "@jupyter-widgets/base",
1931 | "_view_module_version": "1.2.0",
1932 | "_view_name": "LayoutView",
1933 | "align_content": null,
1934 | "align_items": null,
1935 | "align_self": null,
1936 | "border": null,
1937 | "bottom": null,
1938 | "display": null,
1939 | "flex": null,
1940 | "flex_flow": null,
1941 | "grid_area": null,
1942 | "grid_auto_columns": null,
1943 | "grid_auto_flow": null,
1944 | "grid_auto_rows": null,
1945 | "grid_column": null,
1946 | "grid_gap": null,
1947 | "grid_row": null,
1948 | "grid_template_areas": null,
1949 | "grid_template_columns": null,
1950 | "grid_template_rows": null,
1951 | "height": null,
1952 | "justify_content": null,
1953 | "justify_items": null,
1954 | "left": null,
1955 | "margin": null,
1956 | "max_height": null,
1957 | "max_width": null,
1958 | "min_height": null,
1959 | "min_width": null,
1960 | "object_fit": null,
1961 | "object_position": null,
1962 | "order": null,
1963 | "overflow": null,
1964 | "overflow_x": null,
1965 | "overflow_y": null,
1966 | "padding": null,
1967 | "right": null,
1968 | "top": null,
1969 | "visibility": null,
1970 | "width": null
1971 | }
1972 | },
1973 | "81c6f32b33b0420081e0c7b27299a2b8": {
1974 | "model_module": "@jupyter-widgets/controls",
1975 | "model_module_version": "1.5.0",
1976 | "model_name": "ProgressStyleModel",
1977 | "state": {
1978 | "_model_module": "@jupyter-widgets/controls",
1979 | "_model_module_version": "1.5.0",
1980 | "_model_name": "ProgressStyleModel",
1981 | "_view_count": null,
1982 | "_view_module": "@jupyter-widgets/base",
1983 | "_view_module_version": "1.2.0",
1984 | "_view_name": "StyleView",
1985 | "bar_color": null,
1986 | "description_width": ""
1987 | }
1988 | },
1989 | "8a9b97f5d64a4781b6d46134bc5ebff8": {
1990 | "model_module": "@jupyter-widgets/base",
1991 | "model_module_version": "1.2.0",
1992 | "model_name": "LayoutModel",
1993 | "state": {
1994 | "_model_module": "@jupyter-widgets/base",
1995 | "_model_module_version": "1.2.0",
1996 | "_model_name": "LayoutModel",
1997 | "_view_count": null,
1998 | "_view_module": "@jupyter-widgets/base",
1999 | "_view_module_version": "1.2.0",
2000 | "_view_name": "LayoutView",
2001 | "align_content": null,
2002 | "align_items": null,
2003 | "align_self": null,
2004 | "border": null,
2005 | "bottom": null,
2006 | "display": null,
2007 | "flex": null,
2008 | "flex_flow": null,
2009 | "grid_area": null,
2010 | "grid_auto_columns": null,
2011 | "grid_auto_flow": null,
2012 | "grid_auto_rows": null,
2013 | "grid_column": null,
2014 | "grid_gap": null,
2015 | "grid_row": null,
2016 | "grid_template_areas": null,
2017 | "grid_template_columns": null,
2018 | "grid_template_rows": null,
2019 | "height": null,
2020 | "justify_content": null,
2021 | "justify_items": null,
2022 | "left": null,
2023 | "margin": null,
2024 | "max_height": null,
2025 | "max_width": null,
2026 | "min_height": null,
2027 | "min_width": null,
2028 | "object_fit": null,
2029 | "object_position": null,
2030 | "order": null,
2031 | "overflow": null,
2032 | "overflow_x": null,
2033 | "overflow_y": null,
2034 | "padding": null,
2035 | "right": null,
2036 | "top": null,
2037 | "visibility": null,
2038 | "width": null
2039 | }
2040 | },
2041 | "8bbd54857d834502b94847a6903dcdf9": {
2042 | "model_module": "@jupyter-widgets/controls",
2043 | "model_module_version": "1.5.0",
2044 | "model_name": "DescriptionStyleModel",
2045 | "state": {
2046 | "_model_module": "@jupyter-widgets/controls",
2047 | "_model_module_version": "1.5.0",
2048 | "_model_name": "DescriptionStyleModel",
2049 | "_view_count": null,
2050 | "_view_module": "@jupyter-widgets/base",
2051 | "_view_module_version": "1.2.0",
2052 | "_view_name": "StyleView",
2053 | "description_width": ""
2054 | }
2055 | },
2056 | "8d3e0594460d4e149c88f1193f5bed6e": {
2057 | "model_module": "@jupyter-widgets/base",
2058 | "model_module_version": "1.2.0",
2059 | "model_name": "LayoutModel",
2060 | "state": {
2061 | "_model_module": "@jupyter-widgets/base",
2062 | "_model_module_version": "1.2.0",
2063 | "_model_name": "LayoutModel",
2064 | "_view_count": null,
2065 | "_view_module": "@jupyter-widgets/base",
2066 | "_view_module_version": "1.2.0",
2067 | "_view_name": "LayoutView",
2068 | "align_content": null,
2069 | "align_items": null,
2070 | "align_self": null,
2071 | "border": null,
2072 | "bottom": null,
2073 | "display": null,
2074 | "flex": null,
2075 | "flex_flow": null,
2076 | "grid_area": null,
2077 | "grid_auto_columns": null,
2078 | "grid_auto_flow": null,
2079 | "grid_auto_rows": null,
2080 | "grid_column": null,
2081 | "grid_gap": null,
2082 | "grid_row": null,
2083 | "grid_template_areas": null,
2084 | "grid_template_columns": null,
2085 | "grid_template_rows": null,
2086 | "height": null,
2087 | "justify_content": null,
2088 | "justify_items": null,
2089 | "left": null,
2090 | "margin": null,
2091 | "max_height": null,
2092 | "max_width": null,
2093 | "min_height": null,
2094 | "min_width": null,
2095 | "object_fit": null,
2096 | "object_position": null,
2097 | "order": null,
2098 | "overflow": null,
2099 | "overflow_x": null,
2100 | "overflow_y": null,
2101 | "padding": null,
2102 | "right": null,
2103 | "top": null,
2104 | "visibility": null,
2105 | "width": null
2106 | }
2107 | },
2108 | "915ba23ce31640e4b487d7d402d203d8": {
2109 | "model_module": "@jupyter-widgets/base",
2110 | "model_module_version": "1.2.0",
2111 | "model_name": "LayoutModel",
2112 | "state": {
2113 | "_model_module": "@jupyter-widgets/base",
2114 | "_model_module_version": "1.2.0",
2115 | "_model_name": "LayoutModel",
2116 | "_view_count": null,
2117 | "_view_module": "@jupyter-widgets/base",
2118 | "_view_module_version": "1.2.0",
2119 | "_view_name": "LayoutView",
2120 | "align_content": null,
2121 | "align_items": null,
2122 | "align_self": null,
2123 | "border": null,
2124 | "bottom": null,
2125 | "display": null,
2126 | "flex": null,
2127 | "flex_flow": null,
2128 | "grid_area": null,
2129 | "grid_auto_columns": null,
2130 | "grid_auto_flow": null,
2131 | "grid_auto_rows": null,
2132 | "grid_column": null,
2133 | "grid_gap": null,
2134 | "grid_row": null,
2135 | "grid_template_areas": null,
2136 | "grid_template_columns": null,
2137 | "grid_template_rows": null,
2138 | "height": null,
2139 | "justify_content": null,
2140 | "justify_items": null,
2141 | "left": null,
2142 | "margin": null,
2143 | "max_height": null,
2144 | "max_width": null,
2145 | "min_height": null,
2146 | "min_width": null,
2147 | "object_fit": null,
2148 | "object_position": null,
2149 | "order": null,
2150 | "overflow": null,
2151 | "overflow_x": null,
2152 | "overflow_y": null,
2153 | "padding": null,
2154 | "right": null,
2155 | "top": null,
2156 | "visibility": null,
2157 | "width": null
2158 | }
2159 | },
2160 | "92bf50844694495daf0abd9f3fb01ef1": {
2161 | "model_module": "@jupyter-widgets/controls",
2162 | "model_module_version": "1.5.0",
2163 | "model_name": "ProgressStyleModel",
2164 | "state": {
2165 | "_model_module": "@jupyter-widgets/controls",
2166 | "_model_module_version": "1.5.0",
2167 | "_model_name": "ProgressStyleModel",
2168 | "_view_count": null,
2169 | "_view_module": "@jupyter-widgets/base",
2170 | "_view_module_version": "1.2.0",
2171 | "_view_name": "StyleView",
2172 | "bar_color": null,
2173 | "description_width": ""
2174 | }
2175 | },
2176 | "954458b7719f442cafd3409ab7a90116": {
2177 | "model_module": "@jupyter-widgets/controls",
2178 | "model_module_version": "1.5.0",
2179 | "model_name": "FloatProgressModel",
2180 | "state": {
2181 | "_dom_classes": [],
2182 | "_model_module": "@jupyter-widgets/controls",
2183 | "_model_module_version": "1.5.0",
2184 | "_model_name": "FloatProgressModel",
2185 | "_view_count": null,
2186 | "_view_module": "@jupyter-widgets/controls",
2187 | "_view_module_version": "1.5.0",
2188 | "_view_name": "ProgressView",
2189 | "bar_style": "success",
2190 | "description": "",
2191 | "description_tooltip": null,
2192 | "layout": "IPY_MODEL_3ffcec797ef542808540f5dd4ed7650b",
2193 | "max": 33384568,
2194 | "min": 0,
2195 | "orientation": "horizontal",
2196 | "style": "IPY_MODEL_430dbe6044ac4c19a72fb996ddc9fbd1",
2197 | "value": 33384568
2198 | }
2199 | },
2200 | "98b2d0f27f4a40c6a09b5eeb8e6deafd": {
2201 | "model_module": "@jupyter-widgets/base",
2202 | "model_module_version": "1.2.0",
2203 | "model_name": "LayoutModel",
2204 | "state": {
2205 | "_model_module": "@jupyter-widgets/base",
2206 | "_model_module_version": "1.2.0",
2207 | "_model_name": "LayoutModel",
2208 | "_view_count": null,
2209 | "_view_module": "@jupyter-widgets/base",
2210 | "_view_module_version": "1.2.0",
2211 | "_view_name": "LayoutView",
2212 | "align_content": null,
2213 | "align_items": null,
2214 | "align_self": null,
2215 | "border": null,
2216 | "bottom": null,
2217 | "display": null,
2218 | "flex": null,
2219 | "flex_flow": null,
2220 | "grid_area": null,
2221 | "grid_auto_columns": null,
2222 | "grid_auto_flow": null,
2223 | "grid_auto_rows": null,
2224 | "grid_column": null,
2225 | "grid_gap": null,
2226 | "grid_row": null,
2227 | "grid_template_areas": null,
2228 | "grid_template_columns": null,
2229 | "grid_template_rows": null,
2230 | "height": null,
2231 | "justify_content": null,
2232 | "justify_items": null,
2233 | "left": null,
2234 | "margin": null,
2235 | "max_height": null,
2236 | "max_width": null,
2237 | "min_height": null,
2238 | "min_width": null,
2239 | "object_fit": null,
2240 | "object_position": null,
2241 | "order": null,
2242 | "overflow": null,
2243 | "overflow_x": null,
2244 | "overflow_y": null,
2245 | "padding": null,
2246 | "right": null,
2247 | "top": null,
2248 | "visibility": null,
2249 | "width": null
2250 | }
2251 | },
2252 | "9f2bda486bea4880829704c05223562e": {
2253 | "model_module": "@jupyter-widgets/controls",
2254 | "model_module_version": "1.5.0",
2255 | "model_name": "HTMLModel",
2256 | "state": {
2257 | "_dom_classes": [],
2258 | "_model_module": "@jupyter-widgets/controls",
2259 | "_model_module_version": "1.5.0",
2260 | "_model_name": "HTMLModel",
2261 | "_view_count": null,
2262 | "_view_module": "@jupyter-widgets/controls",
2263 | "_view_module_version": "1.5.0",
2264 | "_view_name": "HTMLView",
2265 | "description": "",
2266 | "description_tooltip": null,
2267 | "layout": "IPY_MODEL_98b2d0f27f4a40c6a09b5eeb8e6deafd",
2268 | "placeholder": "",
2269 | "style": "IPY_MODEL_edce2515b0cd4d7298064476d43646a1",
2270 | "value": " 1.16M/1.16M [00:00<00:00, 7.96MB/s]"
2271 | }
2272 | },
2273 | "9ff84d1955eb474f87e3691ce38c98de": {
2274 | "model_module": "@jupyter-widgets/controls",
2275 | "model_module_version": "1.5.0",
2276 | "model_name": "HTMLModel",
2277 | "state": {
2278 | "_dom_classes": [],
2279 | "_model_module": "@jupyter-widgets/controls",
2280 | "_model_module_version": "1.5.0",
2281 | "_model_name": "HTMLModel",
2282 | "_view_count": null,
2283 | "_view_module": "@jupyter-widgets/controls",
2284 | "_view_module_version": "1.5.0",
2285 | "_view_name": "HTMLView",
2286 | "description": "",
2287 | "description_tooltip": null,
2288 | "layout": "IPY_MODEL_b52f5ea85a644ddba56654b59d564db1",
2289 | "placeholder": "",
2290 | "style": "IPY_MODEL_53f024e3fff24976958b2bf43794c28d",
2291 | "value": " 35.0/35.0 [00:00<00:00, 3.47kB/s]"
2292 | }
2293 | },
2294 | "ac32520514b34a2fbe86b90fccbf9bae": {
2295 | "model_module": "@jupyter-widgets/controls",
2296 | "model_module_version": "1.5.0",
2297 | "model_name": "HTMLModel",
2298 | "state": {
2299 | "_dom_classes": [],
2300 | "_model_module": "@jupyter-widgets/controls",
2301 | "_model_module_version": "1.5.0",
2302 | "_model_name": "HTMLModel",
2303 | "_view_count": null,
2304 | "_view_module": "@jupyter-widgets/controls",
2305 | "_view_module_version": "1.5.0",
2306 | "_view_name": "HTMLView",
2307 | "description": "",
2308 | "description_tooltip": null,
2309 | "layout": "IPY_MODEL_b9e417466b8940a39b9e5755576c1c5c",
2310 | "placeholder": "",
2311 | "style": "IPY_MODEL_b07788470b864279a763197ae593f1bd",
2312 | "value": " 33.4M/33.4M [00:00<00:00, 132MB/s]"
2313 | }
2314 | },
2315 | "adf9b0c5dacb426aa21ae59db45657ca": {
2316 | "model_module": "@jupyter-widgets/controls",
2317 | "model_module_version": "1.5.0",
2318 | "model_name": "HTMLModel",
2319 | "state": {
2320 | "_dom_classes": [],
2321 | "_model_module": "@jupyter-widgets/controls",
2322 | "_model_module_version": "1.5.0",
2323 | "_model_name": "HTMLModel",
2324 | "_view_count": null,
2325 | "_view_module": "@jupyter-widgets/controls",
2326 | "_view_module_version": "1.5.0",
2327 | "_view_name": "HTMLView",
2328 | "description": "",
2329 | "description_tooltip": null,
2330 | "layout": "IPY_MODEL_29c6198a3adb4d909230ed1eb1e3cd74",
2331 | "placeholder": "",
2332 | "style": "IPY_MODEL_3f956e7672f34276b78e5e0cadaaedbd",
2333 | "value": " 215/215 [00:00<00:00, 15.8kB/s]"
2334 | }
2335 | },
2336 | "aea7cfbba79340e98ca0a00ea6e6a5c2": {
2337 | "model_module": "@jupyter-widgets/controls",
2338 | "model_module_version": "1.5.0",
2339 | "model_name": "FloatProgressModel",
2340 | "state": {
2341 | "_dom_classes": [],
2342 | "_model_module": "@jupyter-widgets/controls",
2343 | "_model_module_version": "1.5.0",
2344 | "_model_name": "FloatProgressModel",
2345 | "_view_count": null,
2346 | "_view_module": "@jupyter-widgets/controls",
2347 | "_view_module_version": "1.5.0",
2348 | "_view_name": "ProgressView",
2349 | "bar_style": "success",
2350 | "description": "",
2351 | "description_tooltip": null,
2352 | "layout": "IPY_MODEL_21c5356744e149d6a2d67fdb9830fbeb",
2353 | "max": 215,
2354 | "min": 0,
2355 | "orientation": "horizontal",
2356 | "style": "IPY_MODEL_92bf50844694495daf0abd9f3fb01ef1",
2357 | "value": 215
2358 | }
2359 | },
2360 | "b07788470b864279a763197ae593f1bd": {
2361 | "model_module": "@jupyter-widgets/controls",
2362 | "model_module_version": "1.5.0",
2363 | "model_name": "DescriptionStyleModel",
2364 | "state": {
2365 | "_model_module": "@jupyter-widgets/controls",
2366 | "_model_module_version": "1.5.0",
2367 | "_model_name": "DescriptionStyleModel",
2368 | "_view_count": null,
2369 | "_view_module": "@jupyter-widgets/base",
2370 | "_view_module_version": "1.2.0",
2371 | "_view_name": "StyleView",
2372 | "description_width": ""
2373 | }
2374 | },
2375 | "b3f74dd34648458ca9df0ed01ab0f559": {
2376 | "model_module": "@jupyter-widgets/base",
2377 | "model_module_version": "1.2.0",
2378 | "model_name": "LayoutModel",
2379 | "state": {
2380 | "_model_module": "@jupyter-widgets/base",
2381 | "_model_module_version": "1.2.0",
2382 | "_model_name": "LayoutModel",
2383 | "_view_count": null,
2384 | "_view_module": "@jupyter-widgets/base",
2385 | "_view_module_version": "1.2.0",
2386 | "_view_name": "LayoutView",
2387 | "align_content": null,
2388 | "align_items": null,
2389 | "align_self": null,
2390 | "border": null,
2391 | "bottom": null,
2392 | "display": null,
2393 | "flex": null,
2394 | "flex_flow": null,
2395 | "grid_area": null,
2396 | "grid_auto_columns": null,
2397 | "grid_auto_flow": null,
2398 | "grid_auto_rows": null,
2399 | "grid_column": null,
2400 | "grid_gap": null,
2401 | "grid_row": null,
2402 | "grid_template_areas": null,
2403 | "grid_template_columns": null,
2404 | "grid_template_rows": null,
2405 | "height": null,
2406 | "justify_content": null,
2407 | "justify_items": null,
2408 | "left": null,
2409 | "margin": null,
2410 | "max_height": null,
2411 | "max_width": null,
2412 | "min_height": null,
2413 | "min_width": null,
2414 | "object_fit": null,
2415 | "object_position": null,
2416 | "order": null,
2417 | "overflow": null,
2418 | "overflow_x": null,
2419 | "overflow_y": null,
2420 | "padding": null,
2421 | "right": null,
2422 | "top": null,
2423 | "visibility": null,
2424 | "width": null
2425 | }
2426 | },
2427 | "b451038191ef4a9dadecf1140c32fffe": {
2428 | "model_module": "@jupyter-widgets/controls",
2429 | "model_module_version": "1.5.0",
2430 | "model_name": "HBoxModel",
2431 | "state": {
2432 | "_dom_classes": [],
2433 | "_model_module": "@jupyter-widgets/controls",
2434 | "_model_module_version": "1.5.0",
2435 | "_model_name": "HBoxModel",
2436 | "_view_count": null,
2437 | "_view_module": "@jupyter-widgets/controls",
2438 | "_view_module_version": "1.5.0",
2439 | "_view_name": "HBoxView",
2440 | "box_style": "",
2441 | "children": [
2442 | "IPY_MODEL_fa4045a862034e428ab40009d04d313e",
2443 | "IPY_MODEL_d425bdb1be0144d48c43708e61745b4c",
2444 | "IPY_MODEL_fb8e26b8d050464595bf725cf2b2e9d3"
2445 | ],
2446 | "layout": "IPY_MODEL_3ace3d3b4baf4599a6673f58088351d4"
2447 | }
2448 | },
2449 | "b52f5ea85a644ddba56654b59d564db1": {
2450 | "model_module": "@jupyter-widgets/base",
2451 | "model_module_version": "1.2.0",
2452 | "model_name": "LayoutModel",
2453 | "state": {
2454 | "_model_module": "@jupyter-widgets/base",
2455 | "_model_module_version": "1.2.0",
2456 | "_model_name": "LayoutModel",
2457 | "_view_count": null,
2458 | "_view_module": "@jupyter-widgets/base",
2459 | "_view_module_version": "1.2.0",
2460 | "_view_name": "LayoutView",
2461 | "align_content": null,
2462 | "align_items": null,
2463 | "align_self": null,
2464 | "border": null,
2465 | "bottom": null,
2466 | "display": null,
2467 | "flex": null,
2468 | "flex_flow": null,
2469 | "grid_area": null,
2470 | "grid_auto_columns": null,
2471 | "grid_auto_flow": null,
2472 | "grid_auto_rows": null,
2473 | "grid_column": null,
2474 | "grid_gap": null,
2475 | "grid_row": null,
2476 | "grid_template_areas": null,
2477 | "grid_template_columns": null,
2478 | "grid_template_rows": null,
2479 | "height": null,
2480 | "justify_content": null,
2481 | "justify_items": null,
2482 | "left": null,
2483 | "margin": null,
2484 | "max_height": null,
2485 | "max_width": null,
2486 | "min_height": null,
2487 | "min_width": null,
2488 | "object_fit": null,
2489 | "object_position": null,
2490 | "order": null,
2491 | "overflow": null,
2492 | "overflow_x": null,
2493 | "overflow_y": null,
2494 | "padding": null,
2495 | "right": null,
2496 | "top": null,
2497 | "visibility": null,
2498 | "width": null
2499 | }
2500 | },
2501 | "b5601c72540c4ec9be8cfbe7b577ef65": {
2502 | "model_module": "@jupyter-widgets/controls",
2503 | "model_module_version": "1.5.0",
2504 | "model_name": "FloatProgressModel",
2505 | "state": {
2506 | "_dom_classes": [],
2507 | "_model_module": "@jupyter-widgets/controls",
2508 | "_model_module_version": "1.5.0",
2509 | "_model_name": "FloatProgressModel",
2510 | "_view_count": null,
2511 | "_view_module": "@jupyter-widgets/controls",
2512 | "_view_module_version": "1.5.0",
2513 | "_view_name": "ProgressView",
2514 | "bar_style": "danger",
2515 | "description": "",
2516 | "description_tooltip": null,
2517 | "layout": "IPY_MODEL_7fed1cef573e47d08300438fe4c158e9",
2518 | "max": 1999811208,
2519 | "min": 0,
2520 | "orientation": "horizontal",
2521 | "style": "IPY_MODEL_222df800dad945e199a7ccd8dfbc7a8d",
2522 | "value": 1999811018
2523 | }
2524 | },
2525 | "b9e417466b8940a39b9e5755576c1c5c": {
2526 | "model_module": "@jupyter-widgets/base",
2527 | "model_module_version": "1.2.0",
2528 | "model_name": "LayoutModel",
2529 | "state": {
2530 | "_model_module": "@jupyter-widgets/base",
2531 | "_model_module_version": "1.2.0",
2532 | "_model_name": "LayoutModel",
2533 | "_view_count": null,
2534 | "_view_module": "@jupyter-widgets/base",
2535 | "_view_module_version": "1.2.0",
2536 | "_view_name": "LayoutView",
2537 | "align_content": null,
2538 | "align_items": null,
2539 | "align_self": null,
2540 | "border": null,
2541 | "bottom": null,
2542 | "display": null,
2543 | "flex": null,
2544 | "flex_flow": null,
2545 | "grid_area": null,
2546 | "grid_auto_columns": null,
2547 | "grid_auto_flow": null,
2548 | "grid_auto_rows": null,
2549 | "grid_column": null,
2550 | "grid_gap": null,
2551 | "grid_row": null,
2552 | "grid_template_areas": null,
2553 | "grid_template_columns": null,
2554 | "grid_template_rows": null,
2555 | "height": null,
2556 | "justify_content": null,
2557 | "justify_items": null,
2558 | "left": null,
2559 | "margin": null,
2560 | "max_height": null,
2561 | "max_width": null,
2562 | "min_height": null,
2563 | "min_width": null,
2564 | "object_fit": null,
2565 | "object_position": null,
2566 | "order": null,
2567 | "overflow": null,
2568 | "overflow_x": null,
2569 | "overflow_y": null,
2570 | "padding": null,
2571 | "right": null,
2572 | "top": null,
2573 | "visibility": null,
2574 | "width": null
2575 | }
2576 | },
2577 | "c35c454a893a4edfae1f27a6707cb77c": {
2578 | "model_module": "@jupyter-widgets/base",
2579 | "model_module_version": "1.2.0",
2580 | "model_name": "LayoutModel",
2581 | "state": {
2582 | "_model_module": "@jupyter-widgets/base",
2583 | "_model_module_version": "1.2.0",
2584 | "_model_name": "LayoutModel",
2585 | "_view_count": null,
2586 | "_view_module": "@jupyter-widgets/base",
2587 | "_view_module_version": "1.2.0",
2588 | "_view_name": "LayoutView",
2589 | "align_content": null,
2590 | "align_items": null,
2591 | "align_self": null,
2592 | "border": null,
2593 | "bottom": null,
2594 | "display": null,
2595 | "flex": null,
2596 | "flex_flow": null,
2597 | "grid_area": null,
2598 | "grid_auto_columns": null,
2599 | "grid_auto_flow": null,
2600 | "grid_auto_rows": null,
2601 | "grid_column": null,
2602 | "grid_gap": null,
2603 | "grid_row": null,
2604 | "grid_template_areas": null,
2605 | "grid_template_columns": null,
2606 | "grid_template_rows": null,
2607 | "height": null,
2608 | "justify_content": null,
2609 | "justify_items": null,
2610 | "left": null,
2611 | "margin": null,
2612 | "max_height": null,
2613 | "max_width": null,
2614 | "min_height": null,
2615 | "min_width": null,
2616 | "object_fit": null,
2617 | "object_position": null,
2618 | "order": null,
2619 | "overflow": null,
2620 | "overflow_x": null,
2621 | "overflow_y": null,
2622 | "padding": null,
2623 | "right": null,
2624 | "top": null,
2625 | "visibility": null,
2626 | "width": null
2627 | }
2628 | },
2629 | "c50e91d15c7a4919bb2d048ef4aa51ef": {
2630 | "model_module": "@jupyter-widgets/base",
2631 | "model_module_version": "1.2.0",
2632 | "model_name": "LayoutModel",
2633 | "state": {
2634 | "_model_module": "@jupyter-widgets/base",
2635 | "_model_module_version": "1.2.0",
2636 | "_model_name": "LayoutModel",
2637 | "_view_count": null,
2638 | "_view_module": "@jupyter-widgets/base",
2639 | "_view_module_version": "1.2.0",
2640 | "_view_name": "LayoutView",
2641 | "align_content": null,
2642 | "align_items": null,
2643 | "align_self": null,
2644 | "border": null,
2645 | "bottom": null,
2646 | "display": null,
2647 | "flex": null,
2648 | "flex_flow": null,
2649 | "grid_area": null,
2650 | "grid_auto_columns": null,
2651 | "grid_auto_flow": null,
2652 | "grid_auto_rows": null,
2653 | "grid_column": null,
2654 | "grid_gap": null,
2655 | "grid_row": null,
2656 | "grid_template_areas": null,
2657 | "grid_template_columns": null,
2658 | "grid_template_rows": null,
2659 | "height": null,
2660 | "justify_content": null,
2661 | "justify_items": null,
2662 | "left": null,
2663 | "margin": null,
2664 | "max_height": null,
2665 | "max_width": null,
2666 | "min_height": null,
2667 | "min_width": null,
2668 | "object_fit": null,
2669 | "object_position": null,
2670 | "order": null,
2671 | "overflow": null,
2672 | "overflow_x": null,
2673 | "overflow_y": null,
2674 | "padding": null,
2675 | "right": null,
2676 | "top": null,
2677 | "visibility": null,
2678 | "width": null
2679 | }
2680 | },
2681 | "c8fb24696fc14bbb81827eb5fad2dbc0": {
2682 | "model_module": "@jupyter-widgets/base",
2683 | "model_module_version": "1.2.0",
2684 | "model_name": "LayoutModel",
2685 | "state": {
2686 | "_model_module": "@jupyter-widgets/base",
2687 | "_model_module_version": "1.2.0",
2688 | "_model_name": "LayoutModel",
2689 | "_view_count": null,
2690 | "_view_module": "@jupyter-widgets/base",
2691 | "_view_module_version": "1.2.0",
2692 | "_view_name": "LayoutView",
2693 | "align_content": null,
2694 | "align_items": null,
2695 | "align_self": null,
2696 | "border": null,
2697 | "bottom": null,
2698 | "display": null,
2699 | "flex": null,
2700 | "flex_flow": null,
2701 | "grid_area": null,
2702 | "grid_auto_columns": null,
2703 | "grid_auto_flow": null,
2704 | "grid_auto_rows": null,
2705 | "grid_column": null,
2706 | "grid_gap": null,
2707 | "grid_row": null,
2708 | "grid_template_areas": null,
2709 | "grid_template_columns": null,
2710 | "grid_template_rows": null,
2711 | "height": null,
2712 | "justify_content": null,
2713 | "justify_items": null,
2714 | "left": null,
2715 | "margin": null,
2716 | "max_height": null,
2717 | "max_width": null,
2718 | "min_height": null,
2719 | "min_width": null,
2720 | "object_fit": null,
2721 | "object_position": null,
2722 | "order": null,
2723 | "overflow": null,
2724 | "overflow_x": null,
2725 | "overflow_y": null,
2726 | "padding": null,
2727 | "right": null,
2728 | "top": null,
2729 | "visibility": null,
2730 | "width": null
2731 | }
2732 | },
2733 | "c90552efb9e948be970c16b2b56e5042": {
2734 | "model_module": "@jupyter-widgets/controls",
2735 | "model_module_version": "1.5.0",
2736 | "model_name": "HBoxModel",
2737 | "state": {
2738 | "_dom_classes": [],
2739 | "_model_module": "@jupyter-widgets/controls",
2740 | "_model_module_version": "1.5.0",
2741 | "_model_name": "HBoxModel",
2742 | "_view_count": null,
2743 | "_view_module": "@jupyter-widgets/controls",
2744 | "_view_module_version": "1.5.0",
2745 | "_view_name": "HBoxView",
2746 | "box_style": "",
2747 | "children": [
2748 | "IPY_MODEL_44c5ff8f8c174a1a994062849c8488f7",
2749 | "IPY_MODEL_e27560d2924647fb8123edbeac778d6f",
2750 | "IPY_MODEL_3a487f0804d34da58bcd2afc2234027e"
2751 | ],
2752 | "layout": "IPY_MODEL_c50e91d15c7a4919bb2d048ef4aa51ef"
2753 | }
2754 | },
2755 | "d0a7b3b62181431b9ca9870c167b983e": {
2756 | "model_module": "@jupyter-widgets/base",
2757 | "model_module_version": "1.2.0",
2758 | "model_name": "LayoutModel",
2759 | "state": {
2760 | "_model_module": "@jupyter-widgets/base",
2761 | "_model_module_version": "1.2.0",
2762 | "_model_name": "LayoutModel",
2763 | "_view_count": null,
2764 | "_view_module": "@jupyter-widgets/base",
2765 | "_view_module_version": "1.2.0",
2766 | "_view_name": "LayoutView",
2767 | "align_content": null,
2768 | "align_items": null,
2769 | "align_self": null,
2770 | "border": null,
2771 | "bottom": null,
2772 | "display": null,
2773 | "flex": null,
2774 | "flex_flow": null,
2775 | "grid_area": null,
2776 | "grid_auto_columns": null,
2777 | "grid_auto_flow": null,
2778 | "grid_auto_rows": null,
2779 | "grid_column": null,
2780 | "grid_gap": null,
2781 | "grid_row": null,
2782 | "grid_template_areas": null,
2783 | "grid_template_columns": null,
2784 | "grid_template_rows": null,
2785 | "height": null,
2786 | "justify_content": null,
2787 | "justify_items": null,
2788 | "left": null,
2789 | "margin": null,
2790 | "max_height": null,
2791 | "max_width": null,
2792 | "min_height": null,
2793 | "min_width": null,
2794 | "object_fit": null,
2795 | "object_position": null,
2796 | "order": null,
2797 | "overflow": null,
2798 | "overflow_x": null,
2799 | "overflow_y": null,
2800 | "padding": null,
2801 | "right": null,
2802 | "top": null,
2803 | "visibility": null,
2804 | "width": null
2805 | }
2806 | },
2807 | "d425bdb1be0144d48c43708e61745b4c": {
2808 | "model_module": "@jupyter-widgets/controls",
2809 | "model_module_version": "1.5.0",
2810 | "model_name": "FloatProgressModel",
2811 | "state": {
2812 | "_dom_classes": [],
2813 | "_model_module": "@jupyter-widgets/controls",
2814 | "_model_module_version": "1.5.0",
2815 | "_model_name": "FloatProgressModel",
2816 | "_view_count": null,
2817 | "_view_module": "@jupyter-widgets/controls",
2818 | "_view_module_version": "1.5.0",
2819 | "_view_name": "ProgressView",
2820 | "bar_style": "success",
2821 | "description": "",
2822 | "description_tooltip": null,
2823 | "layout": "IPY_MODEL_b3f74dd34648458ca9df0ed01ab0f559",
2824 | "max": 4689074,
2825 | "min": 0,
2826 | "orientation": "horizontal",
2827 | "style": "IPY_MODEL_81c6f32b33b0420081e0c7b27299a2b8",
2828 | "value": 4689074
2829 | }
2830 | },
2831 | "d526fa7789664d2f87e9ad1d370cb848": {
2832 | "model_module": "@jupyter-widgets/controls",
2833 | "model_module_version": "1.5.0",
2834 | "model_name": "FloatProgressModel",
2835 | "state": {
2836 | "_dom_classes": [],
2837 | "_model_module": "@jupyter-widgets/controls",
2838 | "_model_module_version": "1.5.0",
2839 | "_model_name": "FloatProgressModel",
2840 | "_view_count": null,
2841 | "_view_module": "@jupyter-widgets/controls",
2842 | "_view_module_version": "1.5.0",
2843 | "_view_name": "ProgressView",
2844 | "bar_style": "success",
2845 | "description": "",
2846 | "description_tooltip": null,
2847 | "layout": "IPY_MODEL_525bd5ebb77e45ac8654b01651388c97",
2848 | "max": 35,
2849 | "min": 0,
2850 | "orientation": "horizontal",
2851 | "style": "IPY_MODEL_d84e7c4018c1448d9909cd46b7edf68d",
2852 | "value": 35
2853 | }
2854 | },
2855 | "d84e7c4018c1448d9909cd46b7edf68d": {
2856 | "model_module": "@jupyter-widgets/controls",
2857 | "model_module_version": "1.5.0",
2858 | "model_name": "ProgressStyleModel",
2859 | "state": {
2860 | "_model_module": "@jupyter-widgets/controls",
2861 | "_model_module_version": "1.5.0",
2862 | "_model_name": "ProgressStyleModel",
2863 | "_view_count": null,
2864 | "_view_module": "@jupyter-widgets/base",
2865 | "_view_module_version": "1.2.0",
2866 | "_view_name": "StyleView",
2867 | "bar_color": null,
2868 | "description_width": ""
2869 | }
2870 | },
2871 | "dbc76d5ff39b449691b110d839594912": {
2872 | "model_module": "@jupyter-widgets/controls",
2873 | "model_module_version": "1.5.0",
2874 | "model_name": "DescriptionStyleModel",
2875 | "state": {
2876 | "_model_module": "@jupyter-widgets/controls",
2877 | "_model_module_version": "1.5.0",
2878 | "_model_name": "DescriptionStyleModel",
2879 | "_view_count": null,
2880 | "_view_module": "@jupyter-widgets/base",
2881 | "_view_module_version": "1.2.0",
2882 | "_view_name": "StyleView",
2883 | "description_width": ""
2884 | }
2885 | },
2886 | "e27560d2924647fb8123edbeac778d6f": {
2887 | "model_module": "@jupyter-widgets/controls",
2888 | "model_module_version": "1.5.0",
2889 | "model_name": "FloatProgressModel",
2890 | "state": {
2891 | "_dom_classes": [],
2892 | "_model_module": "@jupyter-widgets/controls",
2893 | "_model_module_version": "1.5.0",
2894 | "_model_name": "FloatProgressModel",
2895 | "_view_count": null,
2896 | "_view_module": "@jupyter-widgets/controls",
2897 | "_view_module_version": "1.5.0",
2898 | "_view_name": "ProgressView",
2899 | "bar_style": "success",
2900 | "description": "",
2901 | "description_tooltip": null,
2902 | "layout": "IPY_MODEL_c8fb24696fc14bbb81827eb5fad2dbc0",
2903 | "max": 670,
2904 | "min": 0,
2905 | "orientation": "horizontal",
2906 | "style": "IPY_MODEL_63040bada9764ff8b5dac77d22a90008",
2907 | "value": 670
2908 | }
2909 | },
2910 | "e4354fcaac5642ae89ce8a3c69d1b68d": {
2911 | "model_module": "@jupyter-widgets/controls",
2912 | "model_module_version": "1.5.0",
2913 | "model_name": "HTMLModel",
2914 | "state": {
2915 | "_dom_classes": [],
2916 | "_model_module": "@jupyter-widgets/controls",
2917 | "_model_module_version": "1.5.0",
2918 | "_model_name": "HTMLModel",
2919 | "_view_count": null,
2920 | "_view_module": "@jupyter-widgets/controls",
2921 | "_view_module_version": "1.5.0",
2922 | "_view_name": "HTMLView",
2923 | "description": "",
2924 | "description_tooltip": null,
2925 | "layout": "IPY_MODEL_6da8546c83864bd98dd3bc7568de095b",
2926 | "placeholder": "",
2927 | "style": "IPY_MODEL_39367aac2c894342ab3ed257ac8c2e4f",
2928 | "value": "generation_config.json: 100%"
2929 | }
2930 | },
2931 | "edce2515b0cd4d7298064476d43646a1": {
2932 | "model_module": "@jupyter-widgets/controls",
2933 | "model_module_version": "1.5.0",
2934 | "model_name": "DescriptionStyleModel",
2935 | "state": {
2936 | "_model_module": "@jupyter-widgets/controls",
2937 | "_model_module_version": "1.5.0",
2938 | "_model_name": "DescriptionStyleModel",
2939 | "_view_count": null,
2940 | "_view_module": "@jupyter-widgets/base",
2941 | "_view_module_version": "1.2.0",
2942 | "_view_name": "StyleView",
2943 | "description_width": ""
2944 | }
2945 | },
2946 | "fa2d656a9fd549dfb64e97546e82591d": {
2947 | "model_module": "@jupyter-widgets/controls",
2948 | "model_module_version": "1.5.0",
2949 | "model_name": "ProgressStyleModel",
2950 | "state": {
2951 | "_model_module": "@jupyter-widgets/controls",
2952 | "_model_module_version": "1.5.0",
2953 | "_model_name": "ProgressStyleModel",
2954 | "_view_count": null,
2955 | "_view_module": "@jupyter-widgets/base",
2956 | "_view_module_version": "1.2.0",
2957 | "_view_name": "StyleView",
2958 | "bar_color": null,
2959 | "description_width": ""
2960 | }
2961 | },
2962 | "fa4045a862034e428ab40009d04d313e": {
2963 | "model_module": "@jupyter-widgets/controls",
2964 | "model_module_version": "1.5.0",
2965 | "model_name": "HTMLModel",
2966 | "state": {
2967 | "_dom_classes": [],
2968 | "_model_module": "@jupyter-widgets/controls",
2969 | "_model_module_version": "1.5.0",
2970 | "_model_name": "HTMLModel",
2971 | "_view_count": null,
2972 | "_view_module": "@jupyter-widgets/controls",
2973 | "_view_module_version": "1.5.0",
2974 | "_view_name": "HTMLView",
2975 | "description": "",
2976 | "description_tooltip": null,
2977 | "layout": "IPY_MODEL_8001fd2f05784a66b7f3aac77fcf2303",
2978 | "placeholder": "",
2979 | "style": "IPY_MODEL_39323e862d2f4da089cbd7a7a45b378c",
2980 | "value": "tokenizer.model: 100%"
2981 | }
2982 | },
2983 | "fb8e26b8d050464595bf725cf2b2e9d3": {
2984 | "model_module": "@jupyter-widgets/controls",
2985 | "model_module_version": "1.5.0",
2986 | "model_name": "HTMLModel",
2987 | "state": {
2988 | "_dom_classes": [],
2989 | "_model_module": "@jupyter-widgets/controls",
2990 | "_model_module_version": "1.5.0",
2991 | "_model_name": "HTMLModel",
2992 | "_view_count": null,
2993 | "_view_module": "@jupyter-widgets/controls",
2994 | "_view_module_version": "1.5.0",
2995 | "_view_name": "HTMLView",
2996 | "description": "",
2997 | "description_tooltip": null,
2998 | "layout": "IPY_MODEL_8a9b97f5d64a4781b6d46134bc5ebff8",
2999 | "placeholder": "",
3000 | "style": "IPY_MODEL_8bbd54857d834502b94847a6903dcdf9",
3001 | "value": " 4.69M/4.69M [00:00<00:00, 21.2MB/s]"
3002 | }
3003 | },
3004 | "fd1d0df20f1c4b3082d4ee128570c4e5": {
3005 | "model_module": "@jupyter-widgets/controls",
3006 | "model_module_version": "1.5.0",
3007 | "model_name": "HBoxModel",
3008 | "state": {
3009 | "_dom_classes": [],
3010 | "_model_module": "@jupyter-widgets/controls",
3011 | "_model_module_version": "1.5.0",
3012 | "_model_name": "HBoxModel",
3013 | "_view_count": null,
3014 | "_view_module": "@jupyter-widgets/controls",
3015 | "_view_module_version": "1.5.0",
3016 | "_view_name": "HBoxView",
3017 | "box_style": "",
3018 | "children": [
3019 | "IPY_MODEL_218927b46cf148e6903d64e656449a7c",
3020 | "IPY_MODEL_954458b7719f442cafd3409ab7a90116",
3021 | "IPY_MODEL_ac32520514b34a2fbe86b90fccbf9bae"
3022 | ],
3023 | "layout": "IPY_MODEL_c35c454a893a4edfae1f27a6707cb77c"
3024 | }
3025 | }
3026 | }
3027 | }
3028 | },
3029 | "nbformat": 4,
3030 | "nbformat_minor": 0
3031 | }
3032 |
--------------------------------------------------------------------------------