├── GLNet_Code.zip └── README.md /GLNet_Code.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rmcong/GLNet_TCYB2022/HEAD/GLNet_Code.zip -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # GLNet_TCYB2022 2 | Runmin Cong, Ning Yang, Chongyi Li, Huazhu Fu, Yao Zhao, Qingming Huang, and Sam Kwong, Global-and-local collaborative learning for co-Salient object detection, IEEE Transactions on Cybernetics, 2022. 3 | 4 | Project: https://rmcong.github.io/proj_GLNet.html 5 | 6 | # Results of GLNet: 7 | * Results: 8 | - We provide the resutls of our GLNet on Cosal2015, iCoseg, and MSRC. 9 | ``` 10 | Baidu Cloud: https://pan.baidu.com/s/1sXBc4H3fKK8Y8ceaU4AjSQ Password: 0224 11 | ``` 12 | 13 | 14 | # Pytorch Code of GLNet: 15 | * Pytorch implementation of GLNet 16 | * Pretrained model: 17 | - We provide our testing code. If you test our model, please download the pretrained model, unzip it, and put the checkpoint `model_GLNet.pth` to `Checkpoints/trained/` folder 18 | and put the pretrained backbone `backbone_v.pth` to `Checkpoints/warehouse/` folder. 19 | - Pretrained model download: 20 | ``` 21 | Baidu Cloud: https://pan.baidu.com/s/1sXBc4H3fKK8Y8ceaU4AjSQ Password: 0224 22 | ``` 23 | 24 | ## Requirements 25 | 26 | * Python 3.7 27 | * Pytorch 1.5.1 28 | * torchvision 29 | 30 | ## Data Preprocessing 31 | * We resize the images of original test datasets. Please download the resized data, and put the data to `Data/` folder. 32 | * Resized test datasets: 33 | ``` 34 | Baidu Cloud: https://pan.baidu.com/s/1sXBc4H3fKK8Y8ceaU4AjSQ Password: 0224 35 | ``` 36 | 37 | ## Test 38 | ``` 39 | python test.py 40 | ``` 41 | 42 | * You can find the results in the `'Outputs/'` folder. 43 | 44 | # If you use our GLNet, please cite our paper: 45 | 46 | @article{GLNet, 47 | title={Global-and-local collaborative learning for co-Salient object detection}, 48 | author={Cong, Runmin and Yang, Ning and Li, Chongyi and Fu, Huazhu and Zhao, Yao and Huang, Qingming and Kwong, Sam}, 49 | journal={IEEE Trans. Cybern.}, 50 | year={early access, doi: 10.1109/TCYB.2022.3169431}, 51 | publisher={IEEE} 52 | } 53 | 54 | # Contact Us: 55 | If you have any questions, please contact Runmin Cong (rmcong@bjtu.edu.cn) or Ning Yang (ningyang@bjtu.edu.cn). 56 | --------------------------------------------------------------------------------