├── README.md └── papers ├── aaai_3d_pose.pdf ├── adon.pdf ├── balloon_fitting.pdf ├── bayesian_svd.pdf ├── bound_matrix.pdf ├── calibrated_ptz.pdf ├── conjugately_incorporating.pdf ├── correspondences_projection.pdf ├── dependent_gamma.pdf ├── discriminative_prototype.pdf ├── diversified_hmm.pdf ├── doubly.pdf ├── face_hallucination.pdf ├── fast_sampling_dpp.pdf ├── fitting_ellipses_hierarchically.pdf ├── gps.pdf ├── hello ├── hmm-mio.pdf ├── infinite_authors.pdf ├── infinite_mmsb.pdf ├── infinite_stream_data.pdf ├── iterative_ellipse.pdf ├── joint_action_segmentation.pdf ├── kernel_bayesian.pdf ├── mean_field_dropout.pdf ├── multi_label_learning.pdf ├── multiple_curvature_ellipse.pdf ├── pedestal_motion.pdf ├── random_mixed_field.pdf ├── relative_pairwise.pdf ├── temporal_consistency.pdf ├── time_varying_metric_learning.pdf ├── tracking_multi_experts.pdf └── whiteboard.pdf /README.md: -------------------------------------------------------------------------------- 1 | # Selected Publications 2 | 3 | Selected Subset of Publications, [Full list of 100+ publications from Google Scholar](https://scholar.google.com.au/citations?user=ykOUWa4AAAAJ&hl=en) – In the last decade, nearly all papers's first author is a University of Technology Sydney (UTS) Ph.D. student whom is either principally-supervised by me, or I was the primary technical supervisor at the time of the publication. 4 | 5 | You can download them by clicking the paper title 6 | 7 | 8 | ## Selected Journals ## 9 | 10 | * Jiang S., Li K, **Xu, R.Y.D**., (2020), [Magnitude Bounded Matrix Factorisation for Recommender Systems (preprint)](https://github.com/roboticcam/publications/blob/master/papers/bound_matrix.pdf), *accepted May 2020* ***IEEE Transactions on Knowledge and Data Engineering, IF 3.857*** 11 | 12 | * Li, C., Xie, H., Fan, X, **Xu, R. Y. D**., Van Huffel, S., Mengersen K., (2020), [Kernelized Sparse Bayesian Matrix Factorization (preprint)](https://github.com/roboticcam/publications/blob/master/papers/kernel_bayesian.pdf), *accepted Feb 2020* ***IEEE Transactions on Neural Networks and Learning Systems, IF 11.683*** 13 | 14 | * Li, Y., Li, K., **Xu, R. Y. D**., Wang, X., (2020), [Exploring Temporal Consistency for Human Pose Estimation in Videos](https://github.com/roboticcam/publications/blob/master/papers/temporal_consistency.pdf), *accepted Jan 2020*, 15 | ***Pattern Recognition, IF 5.898*** 16 | 17 | * Li M., **Xu, R. Y. D**., Xin, J., Zhang, K., Jing, J., (2020), [Fast non-rigid points registration with cluster correspondences projection](https://github.com/roboticcam/publications/blob/master/papers/correspondences_projection.pdf), 170, 107425, ***Signal Processing, IF 4.086*** 18 | 19 | * Li, C., Xie, H., Fan, **Xu, R.Y.D**., Van Huffel, S., Mengersen K., (2019), [Image denoising based on nonlocal Bayesian singular value thresholding and Stein's unbiased risk estimator](https://github.com/roboticcam/publications/blob/master/papers/bayesian_svd.pdf), 28 (10), pp. 4899 – 4911 ***IEEE Transactions on Image Processing, IF 6.79*** 20 | 21 | * Jiang S., Li K, **Xu, R.Y.D**., (2019), [Relative Pairwise Relationship Constrained Non-negative Matrix Factorisation](https://github.com/roboticcam/publications/blob/master/papers/relative_pairwise.pdf), Vol. 31, No. 8, pp.1595 – 1609 ***IEEE Transactions on Knowledge and Data Engineering, IF 3.857*** 22 | 23 | * Bargi, A., **Xu, R.Y.D**., & Piccardi, M., (2018), [AdOn HDP-HMM: An Adaptive Online Model for Segmentation and Classification of Sequential Data](https://github.com/roboticcam/publications/blob/master/papers/adon.pdf), 29 (9), pp. 3953 - 3968 ***IEEE Transactions on Neural Networks and Learning Systems IF 11.683*** 24 | 25 | * Xuan, J., Lu, J., Zhang, G., **Xu, R.Y.D**., & Luo, X., (2017) [Doubly Nonparametric Sparse Nonnegative Matrix Factorization based on Dependent Indian Buffet Processes](https://github.com/roboticcam/publications/blob/master/papers/doubly.pdf), Vol 29, NO. 5 pp. 1835 - 1849 ***IEEE Transactions on Neural Networks and Learning Systems IF 11.683*** 26 | 27 | * Li, J., Deng, C., **Xu, R.Y.D**., Tao, D., & Zhao, B., (2017), [Robust Object Tracking with Discrete Graph Based Multiple Experts](https://github.com/roboticcam/publications/blob/master/papers/tracking_multi_experts.pdf), Vol 26, Issue 6, pp. 2736 - 2750, ***IEEE Transactions On Image Processing, IF 6.79*** 28 | 29 | * Xuan, J., Lu, J., Zhang, G., **Xu, R.Y.D**., Luo, X., (2017), [Bayesian Nonparametric Relational Topic Model through Dependent Gamma Processes](https://github.com/roboticcam/publications/blob/master/papers/dependent_gamma.pdf), Vol.29, Issue 7, pp. 1357 – 1369 ***IEEE Transactions on Knowledge and Data Engineering IF 3.857*** 30 | 31 | * Fan, X., **Xu, R.Y.D**., Cao, L., Song. Y., (2017), [Learning Nonparametric Relational Models by Conjugately Incorporating Node Information in a Network](https://github.com/roboticcam/publications/blob/master/papers/conjugately_incorporating.pdf). Vol 47(3), pp. 589 – 599 ***IEEE Transaction on Cybernetics, IF 10.387*** 32 | 33 | * Xuan, J., Lu, J., Zhang, G., **Xu, R.Y.D**., Luo, X., (2017), [A Bayesian Nonparametric Model for Multi-Label Learning](https://github.com/roboticcam/publications/blob/master/papers/multi_label_learning.pdf), Volume 106, Issue 11, pp 1787–1815 ***Machine Learning IF 2.809*** 34 | 35 | * Li, J., Zhao, B., Deng, C., & **Xu, R.Y.D**., (2016), [Time Varying Metric Learning for visual tracking](https://github.com/roboticcam/publications/blob/master/papers/time_varying_metric_learning.pdf), vol. 80, pp. 157-164. ***Pattern Recognition Letters, IF 2.810*** 36 | 37 | * Qiao, M., **Xu, R.Y.D**., Bian, W. & Tao, D. (2016), [Fast sampling for time-varying Determinantal Point Processes](https://github.com/roboticcam/publications/blob/master/papers/fast_sampling_dpp.pdf), vol. 11, no. 1. ***ACM Transactions on Knowledge Discovery from Data, IF 1.000*** 38 | 39 | * Kemp, M., **Xu, R.Y.D**., (2015), [Geometrically-constrained balloon fitting for multiple connected ellipses](https://github.com/roboticcam/publications/blob/master/papers/balloon_fitting.pdf), vol. 48, no. 7, pp. 2198-2208. ***Pattern Recognition, IF 5.898*** 40 | 41 | * Qiao, M., Bian, W., **Xu, R.Y.D**., Tao, D., (2015), [Diversified Hidden Markov Models for Sequential Labeling](https://github.com/roboticcam/publications/blob/master/papers/diversified_hmm.pdf), vol. 27, no. 11, pp. 2947-2960. ***IEEE Transactions on Knowledge and Data Engineering, IF 3.857*** 42 | 43 | * Fan, X., Cao, L., **Xu, R.Y.D**., (2015), [Dynamic Infinite Mixed-Membership Stochastic Blockmodel](https://github.com/roboticcam/publications/blob/master/papers/infinite_mmsb.pdf), Vol. 26, Issue 9, pp. 2072 - 2085, ***IEEE Transactions on Neural Networks and Learning Systems IF 11.683*** 44 | 45 | * Zare Borzeshi, E., Concha, O.P., **Xu, R.Y.D**., & Piccardi, M. (2013), [Joint Action Segmentation and Classification by an Extended Hidden Markov Model](https://github.com/roboticcam/publications/blob/master/papers/joint_action_segmentation.pdf), vol. 20, no. 12, pp. 1207-1210. ***IEEE Signal Processing Letters, IF 3.268*** 46 | 47 | * **Xu, R.Y.D**., & Kemp, M. (2010), [Fitting Multiple Connected Ellipses To An Image Silhouette Hierarchically](https://github.com/roboticcam/publications/blob/master/papers/fitting_ellipses_hierarchically.pdf), vol. 19, no. 7, pp. 1673-1682. ***IEEE Transactions On Image Processing, IF 6.79*** 48 | 49 | * **Xu, R.Y.D**., & Kemp, M. (2010), [An Iterative Approach for Fitting Multiple Connected Ellipse Structure to Silhouette](https://github.com/roboticcam/publications/blob/master/papers/iterative_ellipse.pdf), vol. 31, no. 13, pp. 1860-1867. ***Pattern Recognition Letters, IF 2.810*** 50 | 51 | ## [Permanent arXiv] 52 | 53 | * **Xu, R.Y.D**., [Caron, F](http://www.stats.ox.ac.uk/~caron/)., [Doucet., A](http://www.stats.ox.ac.uk/~doucet/) (2016), Bayesian nonparametric image segmentation using a generalized Swendsen-Wang algorithm, [arXiv:1602.03048](https://arxiv.org/abs/1602.03048) 54 | 55 | ## Selected Conferences papers 56 | 57 | * Huang, W., Du, W., **Xu, R. Y. D**., (2021 to appear), [On the Neural Tangent Kernel of Deep Networks with Orthogonal Initialization (preprint)](https://arxiv.org/pdf/2004.05867.pdf), International Joint Conference on Artificial Intelligence, (**IJCAI 2021**) 58 | 59 | * Markos, C., Yu, J, **Xu, R. Y. D**., (2021 to appear), [Capturing Uncertainty in Unsupervised GPS Trajectory Segmentation Using Bayesian Deep Learning (preprint)](https://github.com/roboticcam/publications/blob/master/papers/gps.pdf), Association for the Advancement of Artificial Intelligence (**AAAI 2021**) 60 | 61 | * Huang, C., Jiang, S., Li, Y., Zhang, Z., Traish, J., Deng, C., Ferguson, S., **Xu, R. Y. D**., [End-to-end Dynamic Matching Network for Multi-view Multi-person 3D Pose Estimation](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123730477.pdf), European Conference on Computer Vision (ECCV), 477-493 (**ECCV 2020**) 62 | 63 | * Huang, W., **Xu, R. Y. D**., Du, W., Zeng Y., and Zhao Y., (2020), [Mean field theory for deep dropout networks: digging up gradient backpropagation deeply (preprint)](https://github.com/roboticcam/publications/blob/master/papers/mean_field_dropout.pdf), the 24th European Conference on Artificial Intelligence (**ECAI 2020**) 64 | 65 | * Li, Y., Li., K, Jiang., S, Zhang., Z Y, Huang., C Z T and **Xu, R. Y. D**., (2020), [Geometry Self-Supervised method for 3D Human Pose](https://github.com/roboticcam/publications/blob/master/papers/aaai_3d_pose.pdf), Association for the Advancement of Artificial Intelligence (**AAAI 2020**) 66 | 67 | * Huang, W., **Xu, R.Y.D**., Oppermann, I., (2019), [Realistic Image Generation using Region-phrase Attention](http://proceedings.mlr.press/v101/huang19a/huang19a.pdf), Asian Conference eon Machine Learning, PMLR 101:284-299, 2019, (**ACML 2019**) 68 | 69 | * Huang, W., **Xu, R.Y.D**., Oppermann, I., (2019), [Efficient Diversified Mini-Batch Selection using Variable High-layer Features](http://proceedings.mlr.press/v101/huang19b/huang19b.pdf), Asian Conference on Machine Learning, PMLR 101:300-315, 2019, (**ACML 2019**) 70 | 71 | * Fan., X, **Xu., R. Y. D**., Cao., L (2016), [Copula Mixed-Membership Stochastic Blockmodel](https://www.ijcai.org/Proceedings/16/Papers/210.pdf), International Joint Conference on Artificial Intelligence, (**IJCAI 2016**) 72 | 73 | * Li, Q, Bian., W, **Xu., R. Y. D**., You., J and Tao., D (2016), [Random Mixed Field Model for Mixed-Attribute Data Restoration](https://github.com/roboticcam/publications/blob/master/papers/random_mixed_field.pdf), Association for the Advancement of Artificial Intelligence (**AAAI 2016**) 74 | 75 | * Xuan, J., Lu, J., Zhang, G., **Xu, R.Y.D**., Luo, X.,(2015), [Infinite Author Topic Model based on Mixed Gamma-Negative Binomial Process](https://github.com/roboticcam/publications/blob/master/papers/infinite_authors.pdf), IEEE International Conference on Data Mining (**ICDM 2015**) 76 | 77 | * Li, M., **Xu, R. Y.D**., & He, X.J. 2015, [Face hallucination based on Nonparametric Bayesian learning](https://github.com/roboticcam/publications/blob/master/papers/face_hallucination.pdf), IEEE International Conference on Image Processing, (**ICIP 2015**) Quebec City, Canada, pp. 986-990. 78 | 79 | * Bargi, A., **Xu, R. Y. D**., [Ghahramani Z](http://mlg.eng.cam.ac.uk/zoubin/), Piccardi., M (2014), [A non-parametric conditional factor regression model for high-dimensional input and response](http://proceedings.mlr.press/v33/bargi14.pdf), Seventeenth International Conference on Artificial Intelligence and Statistics (**AISTAT 2014**), pp.77-85 80 | 81 | * Bargi A., **Xu, R. Y. D**., Piccardi M, (2014), [An Infinite Adaptive Online Learning Model for Segmentation and Classification of Streaming Data](https://github.com/roboticcam/publications/blob/master/papers/infinite_stream_data.pdf), International Conference on Pattern Recognition (**ICPR 2014**) 82 | 83 | * Borzeshi, E., Piccardi, M, **Xu, R. Y. D**.,(2011) [A discriminative prototype selection approach for graph embedding in human action recognition](https://github.com/roboticcam/publications/blob/master/papers/discriminative_prototype.pdf), 2011 IEEE International Conference on Computer Vision Workshops 84 | 85 | * Borzeshi, E., Piccardi, M, **Xu, R. Y. D**., (2011) [HMM-MIO: an enhanced hidden Markov model for action recognition](https://github.com/roboticcam/publications/blob/master/papers/hmm-mio.pdf), 2011 CVPR Workshops 86 | 87 | * **Xu, R. Y. D**., Kemp, M., (2009), [Multiple Curvature Based Approach to Human Upper Body Parts Detection with Connected Ellipse Model Fine-Tuning](https://github.com/roboticcam/publications/blob/master/papers/multiple_curvature_ellipse.pdf), IEEE International Conference on Image Processing (**ICIP2009**), Cairo Egypt 88 | 89 | * **Xu, R. Y. D**., Brown, J., Traish, J., Dezwa, D., (2008), [A Computer Vision Based Camera Pedestal's Vertical Motion Control](https://github.com/roboticcam/publications/blob/master/papers/pedestal_motion.pdf), International Conference on Pattern Recognition (**ICPR 2008**), Florida, USA 90 | 91 | * **Xu, R. Y. D**., (2008), [A Computer Vision based Whiteboard Capture System](https://github.com/roboticcam/publications/blob/master/papers/whiteboard.pdf), IEEE Workshop on Application of Computer Vision (**WACV 2008**), Colorado, USA 92 | 93 | * **Xu, R. Y. D**., Gao, J., Antolovich, M., (2008), [Novel Methods for High-Resolution Facial Image Capture using Calibrated PTZ and Static Cameras](https://github.com/roboticcam/publications/blob/master/papers/calibrated_ptz.pdf), IEEE International Conference on Multimedia & Expo (**ICME 2008**), Hanover, Germany: 45-48. 94 | 95 | * Allen, J. G., **Xu, R. Y. D**., Jin, J., (2003), [Object Tracking Using CamShift Algorithm and Multiple Quantized Feature Spaces](https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV36Allen.pdf), Pan-Sydney Area Workshop on Visual Information Processing (VIP2003), Sydney, Australia: 3-7 **480+** Google citations 96 | -------------------------------------------------------------------------------- /papers/aaai_3d_pose.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/aaai_3d_pose.pdf -------------------------------------------------------------------------------- /papers/adon.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/adon.pdf -------------------------------------------------------------------------------- /papers/balloon_fitting.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/balloon_fitting.pdf -------------------------------------------------------------------------------- /papers/bayesian_svd.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/bayesian_svd.pdf -------------------------------------------------------------------------------- /papers/bound_matrix.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/bound_matrix.pdf -------------------------------------------------------------------------------- /papers/calibrated_ptz.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/calibrated_ptz.pdf -------------------------------------------------------------------------------- /papers/conjugately_incorporating.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/conjugately_incorporating.pdf -------------------------------------------------------------------------------- /papers/correspondences_projection.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/correspondences_projection.pdf -------------------------------------------------------------------------------- /papers/dependent_gamma.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/dependent_gamma.pdf -------------------------------------------------------------------------------- /papers/discriminative_prototype.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/discriminative_prototype.pdf -------------------------------------------------------------------------------- /papers/diversified_hmm.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/diversified_hmm.pdf -------------------------------------------------------------------------------- /papers/doubly.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/doubly.pdf -------------------------------------------------------------------------------- /papers/face_hallucination.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/face_hallucination.pdf -------------------------------------------------------------------------------- /papers/fast_sampling_dpp.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/fast_sampling_dpp.pdf -------------------------------------------------------------------------------- /papers/fitting_ellipses_hierarchically.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/fitting_ellipses_hierarchically.pdf -------------------------------------------------------------------------------- /papers/gps.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/gps.pdf -------------------------------------------------------------------------------- /papers/hello: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /papers/hmm-mio.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/hmm-mio.pdf -------------------------------------------------------------------------------- /papers/infinite_authors.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/infinite_authors.pdf -------------------------------------------------------------------------------- /papers/infinite_mmsb.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/infinite_mmsb.pdf -------------------------------------------------------------------------------- /papers/infinite_stream_data.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/infinite_stream_data.pdf -------------------------------------------------------------------------------- /papers/iterative_ellipse.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/iterative_ellipse.pdf -------------------------------------------------------------------------------- /papers/joint_action_segmentation.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/joint_action_segmentation.pdf -------------------------------------------------------------------------------- /papers/kernel_bayesian.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/kernel_bayesian.pdf -------------------------------------------------------------------------------- /papers/mean_field_dropout.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/mean_field_dropout.pdf -------------------------------------------------------------------------------- /papers/multi_label_learning.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/multi_label_learning.pdf -------------------------------------------------------------------------------- /papers/multiple_curvature_ellipse.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/multiple_curvature_ellipse.pdf -------------------------------------------------------------------------------- /papers/pedestal_motion.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/pedestal_motion.pdf -------------------------------------------------------------------------------- /papers/random_mixed_field.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/random_mixed_field.pdf -------------------------------------------------------------------------------- /papers/relative_pairwise.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/relative_pairwise.pdf -------------------------------------------------------------------------------- /papers/temporal_consistency.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/temporal_consistency.pdf -------------------------------------------------------------------------------- /papers/time_varying_metric_learning.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/time_varying_metric_learning.pdf -------------------------------------------------------------------------------- /papers/tracking_multi_experts.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/tracking_multi_experts.pdf -------------------------------------------------------------------------------- /papers/whiteboard.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/roboticcam/publications/da0948729fa92cc962bb7cc484534451cd11972b/papers/whiteboard.pdf --------------------------------------------------------------------------------