├── .DS_Store ├── .ipynb_checkpoints └── Day57-58-checkpoint.ipynb ├── Article Published ├── .ipynb_checkpoints │ └── test-checkpoint.ipynb ├── AutoJobSearch │ ├── 20210411 │ │ ├── LinkedIn_Job_DataScience_2021_04_11_Chennai.csv │ │ └── LinkedIn_Job_DataScience_2021_04_11_blr.csv │ ├── 20210419 │ │ ├── LinkedIn_Job_DataScience_2021_04_19_blr.csv │ │ ├── LinkedIn_Job_DataScience_2021_04_19_hyd.csv │ │ └── LinkedIn_Job_DataScience_2021_04_19_mumbai.csv │ ├── .DS_Store │ ├── .ipynb_checkpoints │ │ └── DataScienceJobSearchLinkedin-checkpoint.ipynb │ ├── DataScienceJobSearchLinkedin.ipynb │ └── Driver │ │ ├── .DS_Store │ │ └── chromedriver ├── Data Analysis using Pandas │ ├── Data │ │ ├── SearchTrendData_ModifiedData.xlsx │ │ ├── SearchTrendData_ModifiedData_NewTopic.csv │ │ └── SearchTrendData_ModifiedData_Original.csv │ └── PandasArticle.ipynb └── test.ipynb ├── Data ├── .DS_Store ├── DataAnalyst.csv ├── ForSampling.csv ├── For_Cor_Cov.csv ├── Image │ ├── newImage_10colors.jpg │ ├── stefano-d-andrea-UXIsw4vK1gM-unsplash-2.jpg │ └── stefano-d-andrea-UXIsw4vK1gM-unsplash.jpg ├── MBA │ ├── groceries - groceries.csv │ └── groceries.csv ├── Mall_Customers.csv ├── Stats_Day2_Data.csv ├── clt_data.csv ├── clt_data2.csv ├── country_wise_covid.csv ├── cov_cor_simple_Example.xlsx ├── diabetes.csv ├── framingham.csv ├── heart_failure_clinical_records_dataset.csv └── netflix_titles.csv ├── Day01 - Anaconda Installation └── Day1.ipynb ├── Day02 - Variable and String ├── .ipynb_checkpoints │ └── Day2-checkpoint.ipynb └── Day2.ipynb ├── Day03 - Numeric, Boolean and Operator ├── .ipynb_checkpoints │ └── Day3-checkpoint.ipynb └── Day3.ipynb ├── Day04 - List and Tuple ├── .ipynb_checkpoints │ └── Day4-checkpoint.ipynb └── Day4.ipynb ├── Day05 - Sets and Dictionary ├── .ipynb_checkpoints │ └── Day5-checkpoint.ipynb └── Day5.ipynb ├── Day06 - If-Then-Else and Loop ├── .ipynb_checkpoints │ └── Day6-checkpoint.ipynb └── Day6.ipynb ├── Day07 - Functions and Lambda Functions ├── .ipynb_checkpoints │ └── Day7-checkpoint.ipynb └── Day7.ipynb ├── Day08 - Pandas Intro, Read and Write Dataframe ├── .ipynb_checkpoints │ └── Day8-checkpoint.ipynb ├── Data │ ├── Sample1.csv │ ├── Sample1.txt │ └── Write_to_file.csv └── Day8.ipynb ├── Day09 - Index, Selection and Assignment ├── .ipynb_checkpoints │ └── Day9-checkpoint.ipynb ├── Data │ └── SearchTrendData.csv └── Day9.ipynb ├── Day10 - Iteration and Sorting ├── .ipynb_checkpoints │ └── Day10-checkpoint.ipynb ├── Data │ └── SearchTrendData.csv └── Day10.ipynb ├── Day11 - Aggregation and GroupBy ├── .ipynb_checkpoints │ └── Day11-checkpoint.ipynb ├── Data │ └── SearchTrendData.csv └── Day11.ipynb ├── Day12 - Missing Values and Handling Them ├── .ipynb_checkpoints │ └── Day12-checkpoint.ipynb ├── Data │ └── SearchTrendData_WithMissing.csv └── Day12.ipynb ├── Day13 - Rename and Replace ├── .ipynb_checkpoints │ └── Day13-checkpoint.ipynb ├── Data │ ├── SearchTrendData.csv │ └── SearchTrendData_WithMissing.csv └── Day13.ipynb ├── Day14 - Merging, Joining and Combine ├── .ipynb_checkpoints │ └── Day14-checkpoint.ipynb ├── Data │ ├── SearchTrendData1.csv │ └── SearchTrendData2.csv └── Day14.ipynb ├── Day15 - Summary, Crosstab and Pivot ├── .ipynb_checkpoints │ └── Day15-checkpoint.ipynb ├── Data │ └── SearchTrendData_WithMissing.csv └── Day15.ipynb ├── Day16 - Date, Categorical and Sparse Data ├── .ipynb_checkpoints │ └── Day16-checkpoint.ipynb └── Day16.ipynb ├── Day17 - Pandas Visualizations ├── .ipynb_checkpoints │ └── Day17-checkpoint.ipynb ├── Data │ └── SearchTrendData.csv └── Day17.ipynb ├── Day18 - Numpy Introduction ├── .ipynb_checkpoints │ └── Day18-checkpoint.ipynb └── Day18.ipynb ├── Day19 - Indexing, Slicing, Join and Split ├── .ipynb_checkpoints │ └── Day19-checkpoint.ipynb └── Day19.ipynb ├── Day20 - Iteration, manipulation, Radom and Distribution ├── .ipynb_checkpoints │ └── Day20-checkpoint.ipynb └── Day20.ipynb ├── Day21 - NumPy Operations ├── .ipynb_checkpoints │ └── Day21-checkpoint.ipynb └── Day21.ipynb ├── Day22 - Sort, Search and Filter ├── .ipynb_checkpoints │ └── Day22-checkpoint.ipynb └── Day22.ipynb ├── Day23 - Visualization Part 1 - Basics matplotlib ├── .ipynb_checkpoints │ └── Day23-checkpoint.ipynb └── Day23.ipynb ├── Day24 - Visualization Part 2 - Matplotlib ├── .ipynb_checkpoints │ └── Day24-checkpoint.ipynb └── Day24.ipynb ├── Day25 - Visualization Part 3 - Seaborn and Interactive Charts ├── .ipynb_checkpoints │ └── Day25-checkpoint.ipynb ├── Day25.ipynb └── test.html ├── Day26 - Intro to Stats and Sampling ├── .ipynb_checkpoints │ └── Day26-checkpoint.ipynb └── Day26.ipynb ├── Day27 - Descriptive Stats ├── .ipynb_checkpoints │ └── Day27-checkpoint.ipynb └── Day27.ipynb ├── Day28 - Relationship Stats and Distribution ├── .ipynb_checkpoints │ └── Day28-checkpoint.ipynb └── Day28.ipynb ├── Day29 - Central Limit Theorem ├── .ipynb_checkpoints │ └── Day29-checkpoint.ipynb └── Day29.ipynb ├── Day30 - Inferential Stats ├── .ipynb_checkpoints │ └── Day30-checkpoint.ipynb └── Day30.ipynb ├── Day36 - DB Concepts - Normalization and ER Design └── Day36.sql ├── Day37 - Table Creation and Data Loading ├── Day37.sql └── netflix_titles.csv ├── Day38 - Basic Queries and Filtering └── Day38.sql ├── Day39 - Join and Union ├── Category.csv ├── Day39.sql ├── Film.csv └── Sample.xlsx ├── Day40 - SubQueries - Sequencing and Other Functionalities └── Day40.sql ├── Day41-43 - EDA and Feature Engineering using Titanic Dataset ├── .DS_Store ├── .ipynb_checkpoints │ └── Day41-checkpoint.ipynb ├── Day41-43.ipynb └── test.csv ├── Day44 - SweetViz ├── .DS_Store ├── .ipynb_checkpoints │ └── Day44-checkpoint.ipynb ├── Day44.ipynb ├── Titanic_train_data_analysis.html └── comparison.html ├── Day45 - D-Tale ├── .ipynb_checkpoints │ └── Day45-checkpoint.ipynb └── Day45.ipynb ├── Day46 - Log Transformation ├── .ipynb_checkpoints │ └── Day46-checkpoint.ipynb └── Day46.ipynb ├── Day47 - One Hot Encoding ├── .ipynb_checkpoints │ └── Day47-checkpoint.ipynb └── Day47.ipynb ├── Day48 - Scaling ├── .ipynb_checkpoints │ └── Day48-checkpoint.ipynb └── Day48.ipynb ├── Day49 - Binning ├── .ipynb_checkpoints │ └── Day49-checkpoint.ipynb └── Day49.ipynb ├── Day50 - EDA and Feature Engineering Wrap-up └── .DS_Store ├── Day51-52 - Linear Regression Concept and Implementation ├── .DS_Store ├── .ipynb_checkpoints │ ├── Multivariables-checkpoint.ipynb │ ├── Simple Example1-checkpoint.ipynb │ ├── Simple Example2-checkpoint.ipynb │ └── SimpleImplementation-checkpoint.ipynb ├── Excel_Calc.numbers ├── Multivariables.ipynb ├── Not Used │ ├── Lesson_Script.ipynb │ └── Simple Example1.ipynb ├── Simple Example2.ipynb └── SimpleImplementation.ipynb ├── Day53-54 - Logistic Regression Concepts and Implementation ├── .DS_Store ├── .ipynb_checkpoints │ ├── Example1-checkpoint.ipynb │ └── PredictingHeartDisease-checkpoint.ipynb ├── Example1.ipynb ├── PredictingHeartDisease.ipynb └── framingham.csv ├── Day55-56 - Decision Tree Implementation ├── .ipynb_checkpoints │ └── DecisionTreeImplementation_1-checkpoint.ipynb ├── DecisionTreeData.csv └── DecisionTreeImplementation_1.ipynb ├── Day57-58 - SVM Concept and Implementation ├── .DS_Store ├── .ipynb_checkpoints │ ├── Heart Disease Dataset - SVM-Copy1-checkpoint.ipynb │ ├── Heart Disease Dataset - SVM-checkpoint.ipynb │ └── SimpleExample-checkpoint.ipynb ├── Heart Disease Dataset - SVM.ipynb ├── SimpleExample.ipynb └── framingham.csv ├── Day59-60 - Random Forest Concept and Implementation ├── .DS_Store ├── .ipynb_checkpoints │ └── RF-Implementation - Classification-checkpoint.ipynb └── RF-Implementation - Classification.ipynb ├── Day61-62 - Measuring Model Accuracy ├── .DS_Store ├── .ipynb_checkpoints │ ├── Classification-checkpoint.ipynb │ └── Regression-checkpoint.ipynb ├── Classification.ipynb └── Regression.ipynb ├── Day63 - K Fold Cross Validation ├── .DS_Store ├── .ipynb_checkpoints │ └── Regression-checkpoint.ipynb └── Regression.ipynb ├── Day64-65 - Bagging and Boosting ├── .ipynb_checkpoints │ ├── AdaBoost-checkpoint.ipynb │ └── Bagging-checkpoint.ipynb ├── AdaBoost.ipynb └── Bagging.ipynb ├── Day66-67 - K Means Clustering ├── .ipynb_checkpoints │ ├── Implementing KMeans Algorithm-checkpoint.ipynb │ └── K Means Example 2-checkpoint.ipynb ├── Implementing KMeans Algorithm.ipynb └── K Means Example 2.ipynb ├── Day68-69 - Hierarchical Clustering ├── .ipynb_checkpoints │ └── HierarchicalClustering-checkpoint.ipynb └── HierarchicalClustering.ipynb ├── Day70-71 - Fuzzy C-Means ├── .ipynb_checkpoints │ ├── Fuzzy C Means-checkpoint.ipynb │ └── Image Quantization-checkpoint.ipynb ├── Fuzzy C Means.ipynb └── Image Quantization.ipynb ├── Day72-73 - Market Basket Analysis ├── .ipynb_checkpoints │ └── MarketBasketAnalysis-checkpoint.ipynb └── MarketBasketAnalysis.ipynb └── README.md /.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/.DS_Store -------------------------------------------------------------------------------- /.ipynb_checkpoints/Day57-58-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### A simple SVM example - Linear " 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": null, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "import numpy as np\n", 17 | "from sklearn.svm import SVC" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": null, 23 | "metadata": {}, 24 | "outputs": [], 25 | "source": [ 26 | "X = np.array([[-3, -5], [-2, -2], [1, 3], [2, 4]])\n", 27 | "y = np.array([1, 1, 2, 2])" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 6, 33 | "metadata": {}, 34 | "outputs": [ 35 | { 36 | "data": { 37 | "text/plain": [ 38 | "SVC(kernel='linear')" 39 | ] 40 | }, 41 | "execution_count": 6, 42 | "metadata": {}, 43 | "output_type": "execute_result" 44 | } 45 | ], 46 | "source": [ 47 | "clf = SVC(kernel='linear')\n", 48 | "clf.fit(X, y)" 49 | ] 50 | }, 51 | { 52 | "cell_type": "code", 53 | "execution_count": 11, 54 | "metadata": {}, 55 | "outputs": [], 56 | "source": [ 57 | "prediction = clf.predict([[4,6]])" 58 | ] 59 | }, 60 | { 61 | "cell_type": "code", 62 | "execution_count": 10, 63 | "metadata": {}, 64 | "outputs": [ 65 | { 66 | "data": { 67 | "text/plain": [ 68 | "array([1])" 69 | ] 70 | }, 71 | "execution_count": 10, 72 | "metadata": {}, 73 | "output_type": "execute_result" 74 | } 75 | ], 76 | "source": [ 77 | "prediction" 78 | ] 79 | }, 80 | { 81 | "cell_type": "code", 82 | "execution_count": null, 83 | "metadata": {}, 84 | "outputs": [], 85 | "source": [] 86 | } 87 | ], 88 | "metadata": { 89 | "kernelspec": { 90 | "display_name": "Python 3", 91 | "language": "python", 92 | "name": "python3" 93 | }, 94 | "language_info": { 95 | "codemirror_mode": { 96 | "name": "ipython", 97 | "version": 3 98 | }, 99 | "file_extension": ".py", 100 | "mimetype": "text/x-python", 101 | "name": "python", 102 | "nbconvert_exporter": "python", 103 | "pygments_lexer": "ipython3", 104 | "version": "3.8.5" 105 | } 106 | }, 107 | "nbformat": 4, 108 | "nbformat_minor": 4 109 | } 110 | -------------------------------------------------------------------------------- /Article Published/.ipynb_checkpoints/test-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [], 3 | "metadata": {}, 4 | "nbformat": 4, 5 | "nbformat_minor": 4 6 | } 7 | -------------------------------------------------------------------------------- /Article Published/AutoJobSearch/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Article Published/AutoJobSearch/.DS_Store -------------------------------------------------------------------------------- /Article Published/AutoJobSearch/Driver/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Article Published/AutoJobSearch/Driver/.DS_Store -------------------------------------------------------------------------------- /Article Published/AutoJobSearch/Driver/chromedriver: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Article Published/AutoJobSearch/Driver/chromedriver -------------------------------------------------------------------------------- /Article Published/Data Analysis using Pandas/Data/SearchTrendData_ModifiedData.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Article Published/Data Analysis using Pandas/Data/SearchTrendData_ModifiedData.xlsx -------------------------------------------------------------------------------- /Article Published/Data Analysis using Pandas/Data/SearchTrendData_ModifiedData_NewTopic.csv: -------------------------------------------------------------------------------- 1 | Week,Month,Year,Google_Search_Trend_Topic_DeepLearning 2 | 20/09/2015,9,2015,4 3 | 27/09/2015,9,2015,4 4 | 4/10/2015,10,2015,4 5 | 11/10/2015,10,2015, 6 | 18/10/2015,10,2015,4 7 | 25/10/2015,10,2015,4 8 | 1/11/2015,11,2015,3 9 | 8/11/2015,11,2015,5 10 | 15/11/2015,11,2015,4 11 | 22/11/2015,11,2015,4 12 | 29/11/2015,11,2015,4 13 | 6/12/2015,12,2015,5 14 | 13/12/2015,12,2015, 15 | 20/12/2015,12,2015,4 16 | 27/12/2015,12,2015,3 17 | 3/01/2016,1,2016,4 18 | 10/01/2016,1,2016,4 19 | 17/01/2016,1,2016,6 20 | 24/01/2016,1,2016,7 21 | 31/01/2016,1,2016,6 22 | 7/02/2016,2,2016,5 23 | 14/02/2016,2,2016,5 24 | 21/02/2016,2,2016,5 25 | 28/02/2016,2,2016,5 26 | 6/03/2016,3,2016, 27 | 13/03/2016,3,2016,8 28 | 20/03/2016,3,2016,6 29 | 27/03/2016,3,2016,6 30 | 3/04/2016,4,2016,7 31 | 10/04/2016,4,2016,6 32 | 17/04/2016,4,2016,6 33 | 24/04/2016,4,2016,6 34 | 1/05/2016,5,2016,6 35 | 8/05/2016,5,2016,6 36 | 15/05/2016,5,2016,7 37 | 22/05/2016,5,2016,6 38 | 29/05/2016,5,2016,6 39 | 5/06/2016,6,2016,7 40 | 12/06/2016,6,2016,6 41 | 19/06/2016,6,2016,7 42 | 26/06/2016,6,2016,7 43 | 3/07/2016,7,2016,6 44 | 10/07/2016,7,2016,6 45 | 17/07/2016,7,2016,6 46 | 24/07/2016,7,2016,6 47 | 31/07/2016,7,2016, 48 | 7/08/2016,8,2016,6 49 | 14/08/2016,8,2016,5 50 | 21/08/2016,8,2016,6 51 | 28/08/2016,8,2016,7 52 | 4/09/2016,9,2016,6 53 | 11/09/2016,9,2016,7 54 | 18/09/2016,9,2016,6 55 | 25/09/2016,9,2016,8 56 | 2/10/2016,10,2016,8 57 | 9/10/2016,10,2016,8 58 | 16/10/2016,10,2016,8 59 | 23/10/2016,10,2016,8 60 | 30/10/2016,10,2016,8 61 | 6/11/2016,11,2016,8 62 | 13/11/2016,11,2016,9 63 | 20/11/2016,11,2016,9 64 | 27/11/2016,11,2016,9 65 | 4/12/2016,12,2016, 66 | 11/12/2016,12,2016,9 67 | 18/12/2016,12,2016,9 68 | 25/12/2016,12,2016,7 69 | 1/01/2017,1,2017,9 70 | 8/01/2017,1,2017,10 71 | 15/01/2017,1,2017,10 72 | 22/01/2017,1,2017,10 73 | 29/01/2017,1,2017,10 74 | 5/02/2017,2,2017,10 75 | 12/02/2017,2,2017,11 76 | 19/02/2017,2,2017,11 77 | 26/02/2017,2,2017,11 78 | 5/03/2017,3,2017,11 79 | 12/03/2017,3,2017,12 80 | 19/03/2017,3,2017,11 81 | 26/03/2017,3,2017,11 82 | 2/04/2017,4,2017,12 83 | 9/04/2017,4,2017, 84 | 16/04/2017,4,2017,12 85 | 23/04/2017,4,2017,12 86 | 30/04/2017,4,2017,11 87 | 7/05/2017,5,2017,12 88 | 14/05/2017,5,2017,12 89 | 21/05/2017,5,2017,12 90 | 28/05/2017,5,2017,11 91 | 4/06/2017,6,2017,11 92 | 11/06/2017,6,2017,11 93 | 18/06/2017,6,2017,11 94 | 25/06/2017,6,2017,12 95 | 2/07/2017,7,2017,11 96 | 9/07/2017,7,2017,12 97 | 16/07/2017,7,2017,13 98 | 23/07/2017,7,2017,12 99 | 30/07/2017,7,2017, 100 | 6/08/2017,8,2017,13 101 | 13/08/2017,8,2017,13 102 | 20/08/2017,8,2017,12 103 | 27/08/2017,8,2017,12 104 | 3/09/2017,9,2017,13 105 | 10/09/2017,9,2017,13 106 | 17/09/2017,9,2017,14 107 | 24/09/2017,9,2017,13 108 | 1/10/2017,10,2017,13 109 | 8/10/2017,10,2017,13 110 | 15/10/2017,10,2017,14 111 | 22/10/2017,10,2017,13 112 | 29/10/2017,10,2017,14 113 | 5/11/2017,11,2017,14 114 | 12/11/2017,11,2017,15 115 | 19/11/2017,11,2017,14 116 | 26/11/2017,11,2017,15 117 | 3/12/2017,12,2017,15 118 | 10/12/2017,12,2017,15 119 | 17/12/2017,12,2017,14 120 | 24/12/2017,12,2017,12 121 | 31/12/2017,12,2017, 122 | 7/01/2018,1,2018,15 123 | 14/01/2018,1,2018,14 124 | 21/01/2018,1,2018,14 125 | 28/01/2018,1,2018,16 126 | 4/02/2018,2,2018,15 127 | 11/02/2018,2,2018,13 128 | 18/02/2018,2,2018,14 129 | 25/02/2018,2,2018,14 130 | 4/03/2018,3,2018,14 131 | 11/03/2018,3,2018,14 132 | 18/03/2018,3,2018,15 133 | 25/03/2018,3,2018,14 134 | 1/04/2018,4,2018,14 135 | 8/04/2018,4,2018,15 136 | 15/04/2018,4,2018,15 137 | 22/04/2018,4,2018,15 138 | 29/04/2018,4,2018,14 139 | 6/05/2018,5,2018,15 140 | 13/05/2018,5,2018, 141 | 20/05/2018,5,2018,14 142 | 27/05/2018,5,2018,14 143 | 3/06/2018,6,2018,14 144 | 10/06/2018,6,2018,14 145 | 17/06/2018,6,2018,14 146 | 24/06/2018,6,2018,14 147 | 1/07/2018,7,2018,13 148 | 8/07/2018,7,2018,14 149 | 15/07/2018,7,2018,14 150 | 22/07/2018,7,2018,13 151 | 29/07/2018,7,2018,14 152 | 5/08/2018,8,2018,13 153 | 12/08/2018,8,2018,12 154 | 19/08/2018,8,2018,14 155 | 26/08/2018,8,2018,14 156 | 2/09/2018,9,2018,14 157 | 9/09/2018,9,2018,14 158 | 16/09/2018,9,2018,15 159 | 23/09/2018,9,2018,15 160 | 30/09/2018,9,2018,15 161 | 7/10/2018,10,2018,15 162 | 14/10/2018,10,2018,15 163 | 21/10/2018,10,2018, 164 | 28/10/2018,10,2018,15 165 | 4/11/2018,11,2018,15 166 | 11/11/2018,11,2018,15 167 | 18/11/2018,11,2018,14 168 | 25/11/2018,11,2018,15 169 | 2/12/2018,12,2018,16 170 | 9/12/2018,12,2018,15 171 | 16/12/2018,12,2018,13 172 | 23/12/2018,12,2018,10 173 | 30/12/2018,12,2018,11 174 | 6/01/2019,1,2019,14 175 | 13/01/2019,1,2019,15 176 | 20/01/2019,1,2019,15 177 | 27/01/2019,1,2019,15 178 | 3/02/2019,2,2019,15 179 | 10/02/2019,2,2019,15 180 | 17/02/2019,2,2019,15 181 | 24/02/2019,2,2019,15 182 | 3/03/2019,3,2019,15 183 | 10/03/2019,3,2019,15 184 | 17/03/2019,3,2019,14 185 | 24/03/2019,3,2019,16 186 | 31/03/2019,3,2019,15 187 | 7/04/2019,4,2019,16 188 | 14/04/2019,4,2019,14 189 | 21/04/2019,4,2019,15 190 | 28/04/2019,4,2019,14 191 | 5/05/2019,5,2019,14 192 | 12/05/2019,5,2019,15 193 | 19/05/2019,5,2019,15 194 | 26/05/2019,5,2019,14 195 | 2/06/2019,6,2019,14 196 | 9/06/2019,6,2019,15 197 | 16/06/2019,6,2019,15 198 | 23/06/2019,6,2019,15 199 | 30/06/2019,6,2019,14 200 | 7/07/2019,7,2019,15 201 | 14/07/2019,7,2019,15 202 | 21/07/2019,7,2019,14 203 | 28/07/2019,7,2019, 204 | 4/08/2019,8,2019,14 205 | 11/08/2019,8,2019,14 206 | 18/08/2019,8,2019,14 207 | 25/08/2019,8,2019,14 208 | 1/09/2019,9,2019,15 209 | 8/09/2019,9,2019,15 210 | 15/09/2019,9,2019,15 211 | 22/09/2019,9,2019,15 212 | 29/09/2019,9,2019,15 213 | 6/10/2019,10,2019,15 214 | 13/10/2019,10,2019,15 215 | 20/10/2019,10,2019,14 216 | 27/10/2019,10,2019,14 217 | 3/11/2019,11,2019,14 218 | 10/11/2019,11,2019,15 219 | 17/11/2019,11,2019,15 220 | 24/11/2019,11,2019,15 221 | 1/12/2019,12,2019,14 222 | 8/12/2019,12,2019,15 223 | 15/12/2019,12,2019,15 224 | 22/12/2019,12,2019,11 225 | 29/12/2019,12,2019,12 226 | 5/01/2020,1,2020,15 227 | 12/01/2020,1,2020,15 228 | 19/01/2020,1,2020,14 229 | 26/01/2020,1,2020,14 230 | 2/02/2020,2,2020, 231 | 9/02/2020,2,2020,16 232 | 16/02/2020,2,2020,16 233 | 23/02/2020,2,2020,16 234 | 1/03/2020,3,2020,15 235 | 8/03/2020,3,2020,14 236 | 15/03/2020,3,2020,12 237 | 22/03/2020,3,2020,12 238 | 29/03/2020,3,2020,13 239 | 5/04/2020,4,2020,13 240 | 12/04/2020,4,2020,14 241 | 19/04/2020,4,2020,15 242 | 26/04/2020,4,2020,15 243 | 3/05/2020,5,2020,15 244 | 10/05/2020,5,2020,15 245 | 17/05/2020,5,2020,15 246 | 24/05/2020,5,2020,15 247 | 31/05/2020,5,2020,14 248 | 7/06/2020,6,2020,15 249 | 14/06/2020,6,2020,15 250 | 21/06/2020,6,2020,14 251 | 28/06/2020,6,2020,14 252 | 5/07/2020,7,2020,14 253 | 12/07/2020,7,2020,15 254 | 19/07/2020,7,2020,14 255 | 26/07/2020,7,2020,14 256 | 2/08/2020,8,2020,13 257 | 9/08/2020,8,2020,13 258 | 16/08/2020,8,2020,14 259 | 23/08/2020,8,2020,14 260 | 30/08/2020,8,2020,14 261 | 6/09/2020,9,2020,14 262 | 13/09/2020,9,2020,14 263 | -------------------------------------------------------------------------------- /Article Published/test.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "dasa\n", 10 | "dsadsa\n", 11 | "dasdas" 12 | ] 13 | } 14 | ], 15 | "metadata": { 16 | "kernelspec": { 17 | "display_name": "Python 3", 18 | "language": "python", 19 | "name": "python3" 20 | }, 21 | "language_info": { 22 | "codemirror_mode": { 23 | "name": "ipython", 24 | "version": 3 25 | }, 26 | "file_extension": ".py", 27 | "mimetype": "text/x-python", 28 | "name": "python", 29 | "nbconvert_exporter": "python", 30 | "pygments_lexer": "ipython3", 31 | "version": "3.8.3" 32 | } 33 | }, 34 | "nbformat": 4, 35 | "nbformat_minor": 4 36 | } 37 | -------------------------------------------------------------------------------- /Data/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Data/.DS_Store -------------------------------------------------------------------------------- /Data/For_Cor_Cov.csv: -------------------------------------------------------------------------------- 1 | Input,Output 2 | 1000,10 3 | 1074,16 4 | 1125,21 5 | 1197,26 6 | 1275,31 7 | 1343,37 8 | 1396,45 9 | 1466,54 10 | 1526,61 11 | 1585,70 12 | 1641,75 13 | 1714,84 14 | 1776,91 15 | 1851,99 16 | 1921,108 17 | 1997,118 18 | 2047,124 19 | 2121,134 20 | 2200,143 21 | 2258,148 22 | 2327,156 23 | 2404,166 24 | 2460,175 25 | 2523,180 26 | 2597,190 27 | 2664,200 28 | 2731,205 29 | 2793,210 30 | 2861,217 31 | 2935,224 32 | 2991,233 33 | 3047,242 34 | 3123,249 35 | 3180,256 36 | 3244,263 37 | 3297,269 38 | 3355,277 39 | 3433,286 40 | 3501,291 41 | 3579,300 42 | 3650,307 43 | 3729,317 44 | 3795,326 45 | 3847,333 46 | 3910,338 47 | 3972,346 48 | 4043,352 49 | 4097,357 50 | 4162,367 51 | 4219,372 52 | 4285,378 53 | 4358,388 54 | 4426,398 55 | 4485,408 56 | 4564,415 57 | 4636,425 58 | 4688,430 59 | 4766,435 60 | 4818,444 61 | 4894,452 62 | 4966,459 63 | 5020,465 64 | 5098,470 65 | 5171,479 66 | 5227,489 67 | 5283,495 68 | 5349,500 69 | 5402,506 70 | 5468,512 71 | 5547,518 72 | 5623,528 73 | 5698,534 74 | 5750,544 75 | 5816,551 76 | 5876,558 77 | 5930,566 78 | 6010,572 79 | 6068,578 80 | 6148,585 81 | 6209,593 82 | 6268,600 83 | 6330,605 84 | 6409,610 85 | 6487,619 86 | 6543,628 87 | 6600,637 88 | 6679,644 89 | 6759,651 90 | 6821,657 91 | 6895,665 92 | 6947,670 93 | 7008,679 94 | 7067,685 95 | 7125,690 96 | 7196,695 97 | 7272,701 98 | 7351,710 99 | 7429,720 100 | 7494,725 101 | 7552,734 102 | -------------------------------------------------------------------------------- /Data/Image/newImage_10colors.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Data/Image/newImage_10colors.jpg -------------------------------------------------------------------------------- /Data/Image/stefano-d-andrea-UXIsw4vK1gM-unsplash-2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Data/Image/stefano-d-andrea-UXIsw4vK1gM-unsplash-2.jpg -------------------------------------------------------------------------------- /Data/Image/stefano-d-andrea-UXIsw4vK1gM-unsplash.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Data/Image/stefano-d-andrea-UXIsw4vK1gM-unsplash.jpg -------------------------------------------------------------------------------- /Data/Mall_Customers.csv: -------------------------------------------------------------------------------- 1 | CustomerID,Gender,Age,Annual Income (k$),Spending Score (1-100) 2 | 1,Male,19,15,39 3 | 2,Male,21,15,81 4 | 3,Female,20,16,6 5 | 4,Female,23,16,77 6 | 5,Female,31,17,40 7 | 6,Female,22,17,76 8 | 7,Female,35,18,6 9 | 8,Female,23,18,94 10 | 9,Male,64,19,3 11 | 10,Female,30,19,72 12 | 11,Male,67,19,14 13 | 12,Female,35,19,99 14 | 13,Female,58,20,15 15 | 14,Female,24,20,77 16 | 15,Male,37,20,13 17 | 16,Male,22,20,79 18 | 17,Female,35,21,35 19 | 18,Male,20,21,66 20 | 19,Male,52,23,29 21 | 20,Female,35,23,98 22 | 21,Male,35,24,35 23 | 22,Male,25,24,73 24 | 23,Female,46,25,5 25 | 24,Male,31,25,73 26 | 25,Female,54,28,14 27 | 26,Male,29,28,82 28 | 27,Female,45,28,32 29 | 28,Male,35,28,61 30 | 29,Female,40,29,31 31 | 30,Female,23,29,87 32 | 31,Male,60,30,4 33 | 32,Female,21,30,73 34 | 33,Male,53,33,4 35 | 34,Male,18,33,92 36 | 35,Female,49,33,14 37 | 36,Female,21,33,81 38 | 37,Female,42,34,17 39 | 38,Female,30,34,73 40 | 39,Female,36,37,26 41 | 40,Female,20,37,75 42 | 41,Female,65,38,35 43 | 42,Male,24,38,92 44 | 43,Male,48,39,36 45 | 44,Female,31,39,61 46 | 45,Female,49,39,28 47 | 46,Female,24,39,65 48 | 47,Female,50,40,55 49 | 48,Female,27,40,47 50 | 49,Female,29,40,42 51 | 50,Female,31,40,42 52 | 51,Female,49,42,52 53 | 52,Male,33,42,60 54 | 53,Female,31,43,54 55 | 54,Male,59,43,60 56 | 55,Female,50,43,45 57 | 56,Male,47,43,41 58 | 57,Female,51,44,50 59 | 58,Male,69,44,46 60 | 59,Female,27,46,51 61 | 60,Male,53,46,46 62 | 61,Male,70,46,56 63 | 62,Male,19,46,55 64 | 63,Female,67,47,52 65 | 64,Female,54,47,59 66 | 65,Male,63,48,51 67 | 66,Male,18,48,59 68 | 67,Female,43,48,50 69 | 68,Female,68,48,48 70 | 69,Male,19,48,59 71 | 70,Female,32,48,47 72 | 71,Male,70,49,55 73 | 72,Female,47,49,42 74 | 73,Female,60,50,49 75 | 74,Female,60,50,56 76 | 75,Male,59,54,47 77 | 76,Male,26,54,54 78 | 77,Female,45,54,53 79 | 78,Male,40,54,48 80 | 79,Female,23,54,52 81 | 80,Female,49,54,42 82 | 81,Male,57,54,51 83 | 82,Male,38,54,55 84 | 83,Male,67,54,41 85 | 84,Female,46,54,44 86 | 85,Female,21,54,57 87 | 86,Male,48,54,46 88 | 87,Female,55,57,58 89 | 88,Female,22,57,55 90 | 89,Female,34,58,60 91 | 90,Female,50,58,46 92 | 91,Female,68,59,55 93 | 92,Male,18,59,41 94 | 93,Male,48,60,49 95 | 94,Female,40,60,40 96 | 95,Female,32,60,42 97 | 96,Male,24,60,52 98 | 97,Female,47,60,47 99 | 98,Female,27,60,50 100 | 99,Male,48,61,42 101 | 100,Male,20,61,49 102 | 101,Female,23,62,41 103 | 102,Female,49,62,48 104 | 103,Male,67,62,59 105 | 104,Male,26,62,55 106 | 105,Male,49,62,56 107 | 106,Female,21,62,42 108 | 107,Female,66,63,50 109 | 108,Male,54,63,46 110 | 109,Male,68,63,43 111 | 110,Male,66,63,48 112 | 111,Male,65,63,52 113 | 112,Female,19,63,54 114 | 113,Female,38,64,42 115 | 114,Male,19,64,46 116 | 115,Female,18,65,48 117 | 116,Female,19,65,50 118 | 117,Female,63,65,43 119 | 118,Female,49,65,59 120 | 119,Female,51,67,43 121 | 120,Female,50,67,57 122 | 121,Male,27,67,56 123 | 122,Female,38,67,40 124 | 123,Female,40,69,58 125 | 124,Male,39,69,91 126 | 125,Female,23,70,29 127 | 126,Female,31,70,77 128 | 127,Male,43,71,35 129 | 128,Male,40,71,95 130 | 129,Male,59,71,11 131 | 130,Male,38,71,75 132 | 131,Male,47,71,9 133 | 132,Male,39,71,75 134 | 133,Female,25,72,34 135 | 134,Female,31,72,71 136 | 135,Male,20,73,5 137 | 136,Female,29,73,88 138 | 137,Female,44,73,7 139 | 138,Male,32,73,73 140 | 139,Male,19,74,10 141 | 140,Female,35,74,72 142 | 141,Female,57,75,5 143 | 142,Male,32,75,93 144 | 143,Female,28,76,40 145 | 144,Female,32,76,87 146 | 145,Male,25,77,12 147 | 146,Male,28,77,97 148 | 147,Male,48,77,36 149 | 148,Female,32,77,74 150 | 149,Female,34,78,22 151 | 150,Male,34,78,90 152 | 151,Male,43,78,17 153 | 152,Male,39,78,88 154 | 153,Female,44,78,20 155 | 154,Female,38,78,76 156 | 155,Female,47,78,16 157 | 156,Female,27,78,89 158 | 157,Male,37,78,1 159 | 158,Female,30,78,78 160 | 159,Male,34,78,1 161 | 160,Female,30,78,73 162 | 161,Female,56,79,35 163 | 162,Female,29,79,83 164 | 163,Male,19,81,5 165 | 164,Female,31,81,93 166 | 165,Male,50,85,26 167 | 166,Female,36,85,75 168 | 167,Male,42,86,20 169 | 168,Female,33,86,95 170 | 169,Female,36,87,27 171 | 170,Male,32,87,63 172 | 171,Male,40,87,13 173 | 172,Male,28,87,75 174 | 173,Male,36,87,10 175 | 174,Male,36,87,92 176 | 175,Female,52,88,13 177 | 176,Female,30,88,86 178 | 177,Male,58,88,15 179 | 178,Male,27,88,69 180 | 179,Male,59,93,14 181 | 180,Male,35,93,90 182 | 181,Female,37,97,32 183 | 182,Female,32,97,86 184 | 183,Male,46,98,15 185 | 184,Female,29,98,88 186 | 185,Female,41,99,39 187 | 186,Male,30,99,97 188 | 187,Female,54,101,24 189 | 188,Male,28,101,68 190 | 189,Female,41,103,17 191 | 190,Female,36,103,85 192 | 191,Female,34,103,23 193 | 192,Female,32,103,69 194 | 193,Male,33,113,8 195 | 194,Female,38,113,91 196 | 195,Female,47,120,16 197 | 196,Female,35,120,79 198 | 197,Female,45,126,28 199 | 198,Male,32,126,74 200 | 199,Male,32,137,18 201 | 200,Male,30,137,83 -------------------------------------------------------------------------------- /Data/cov_cor_simple_Example.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Data/cov_cor_simple_Example.xlsx -------------------------------------------------------------------------------- /Day01 - Anaconda Installation/Day1.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Day 1\n", 8 | "1. Anaconda Installation\n", 9 | "2. Starting Jupyter Notebook\n", 10 | "3. Starting Spyder\n", 11 | "4. How Jupyter and Spyder Work?\n", 12 | "5. Installing Packages in Python\n", 13 | "6. Adding Comments" 14 | ] 15 | }, 16 | { 17 | "cell_type": "code", 18 | "execution_count": 1, 19 | "metadata": {}, 20 | "outputs": [ 21 | { 22 | "name": "stdout", 23 | "output_type": "stream", 24 | "text": [ 25 | "8\n" 26 | ] 27 | } 28 | ], 29 | "source": [ 30 | "# To add comment to the code\n", 31 | "x =3\n", 32 | "y =5\n", 33 | "print(x+y)" 34 | ] 35 | }, 36 | { 37 | "cell_type": "markdown", 38 | "metadata": {}, 39 | "source": [ 40 | "If any issues in launching Jupyter Notebook from the new environment then install below
\n", 41 | "conda install ipykernel
\n", 42 | "conda install jupyter" 43 | ] 44 | }, 45 | { 46 | "cell_type": "code", 47 | "execution_count": null, 48 | "metadata": {}, 49 | "outputs": [], 50 | "source": [] 51 | } 52 | ], 53 | "metadata": { 54 | "kernelspec": { 55 | "display_name": "Python 3", 56 | "language": "python", 57 | "name": "python3" 58 | }, 59 | "language_info": { 60 | "codemirror_mode": { 61 | "name": "ipython", 62 | "version": 3 63 | }, 64 | "file_extension": ".py", 65 | "mimetype": "text/x-python", 66 | "name": "python", 67 | "nbconvert_exporter": "python", 68 | "pygments_lexer": "ipython3", 69 | "version": "3.6.9" 70 | } 71 | }, 72 | "nbformat": 4, 73 | "nbformat_minor": 2 74 | } 75 | -------------------------------------------------------------------------------- /Day02 - Variable and String/.ipynb_checkpoints/Day2-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Topics to be covered today\n", 8 | "- Creating Variables\n", 9 | "- Data Types - String\n", 10 | "- Use of Type()\n", 11 | "- Changing Data Types\n", 12 | "- String as Arrray\n", 13 | "- Indexing\n", 14 | "- Sting Length\n", 15 | "- Strip\n", 16 | "- Split\n", 17 | "- Concat\n", 18 | "- Replace" 19 | ] 20 | }, 21 | { 22 | "cell_type": "markdown", 23 | "metadata": {}, 24 | "source": [ 25 | "Creating Variables and checking data type" 26 | ] 27 | }, 28 | { 29 | "cell_type": "code", 30 | "execution_count": 3, 31 | "metadata": {}, 32 | "outputs": [], 33 | "source": [ 34 | "input1 = 10\n", 35 | "input2 = 23.5\n", 36 | "input3 = \"Learn Data Science in 100 Days\"" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "execution_count": 4, 42 | "metadata": {}, 43 | "outputs": [ 44 | { 45 | "data": { 46 | "text/plain": [ 47 | "str" 48 | ] 49 | }, 50 | "execution_count": 4, 51 | "metadata": {}, 52 | "output_type": "execute_result" 53 | } 54 | ], 55 | "source": [ 56 | "type(input3)" 57 | ] 58 | }, 59 | { 60 | "cell_type": "markdown", 61 | "metadata": {}, 62 | "source": [ 63 | "Changing string to numeric data type" 64 | ] 65 | }, 66 | { 67 | "cell_type": "code", 68 | "execution_count": 6, 69 | "metadata": {}, 70 | "outputs": [ 71 | { 72 | "data": { 73 | "text/plain": [ 74 | "float" 75 | ] 76 | }, 77 | "execution_count": 6, 78 | "metadata": {}, 79 | "output_type": "execute_result" 80 | } 81 | ], 82 | "source": [ 83 | "input4 = \"12.25\"\n", 84 | "type(input4)\n", 85 | "type(float(input4))" 86 | ] 87 | }, 88 | { 89 | "cell_type": "markdown", 90 | "metadata": {}, 91 | "source": [ 92 | "Strings are treated like array" 93 | ] 94 | }, 95 | { 96 | "cell_type": "code", 97 | "execution_count": 10, 98 | "metadata": {}, 99 | "outputs": [ 100 | { 101 | "name": "stdout", 102 | "output_type": "stream", 103 | "text": [ 104 | "Learn \n" 105 | ] 106 | } 107 | ], 108 | "source": [ 109 | "print(input3[0:6])" 110 | ] 111 | }, 112 | { 113 | "cell_type": "code", 114 | "execution_count": 11, 115 | "metadata": {}, 116 | "outputs": [ 117 | { 118 | "name": "stdout", 119 | "output_type": "stream", 120 | "text": [ 121 | "ay\n" 122 | ] 123 | } 124 | ], 125 | "source": [ 126 | "print(input3[-3:-1])" 127 | ] 128 | }, 129 | { 130 | "cell_type": "code", 131 | "execution_count": 16, 132 | "metadata": {}, 133 | "outputs": [ 134 | { 135 | "name": "stdout", 136 | "output_type": "stream", 137 | "text": [ 138 | "30\n" 139 | ] 140 | } 141 | ], 142 | "source": [ 143 | "print(len(input3))" 144 | ] 145 | }, 146 | { 147 | "cell_type": "markdown", 148 | "metadata": {}, 149 | "source": [ 150 | "Strip - to remove extra spaces in the beginning and end" 151 | ] 152 | }, 153 | { 154 | "cell_type": "code", 155 | "execution_count": 1, 156 | "metadata": {}, 157 | "outputs": [ 158 | { 159 | "name": "stdout", 160 | "output_type": "stream", 161 | "text": [ 162 | " Data Science \n", 163 | "Data Science\n" 164 | ] 165 | } 166 | ], 167 | "source": [ 168 | "txt = \" Data Science \"\n", 169 | "print(txt)\n", 170 | "txt1 = txt.strip()\n", 171 | "print(txt1)" 172 | ] 173 | }, 174 | { 175 | "cell_type": "markdown", 176 | "metadata": {}, 177 | "source": [ 178 | "Spliting" 179 | ] 180 | }, 181 | { 182 | "cell_type": "code", 183 | "execution_count": 19, 184 | "metadata": {}, 185 | "outputs": [ 186 | { 187 | "name": "stdout", 188 | "output_type": "stream", 189 | "text": [ 190 | "['12', '25']\n" 191 | ] 192 | } 193 | ], 194 | "source": [ 195 | "print(input4.split(\".\"))" 196 | ] 197 | }, 198 | { 199 | "cell_type": "markdown", 200 | "metadata": {}, 201 | "source": [ 202 | "Concatinating" 203 | ] 204 | }, 205 | { 206 | "cell_type": "code", 207 | "execution_count": 3, 208 | "metadata": {}, 209 | "outputs": [ 210 | { 211 | "name": "stdout", 212 | "output_type": "stream", 213 | "text": [ 214 | "Data Science\n" 215 | ] 216 | } 217 | ], 218 | "source": [ 219 | "i1 = \"Data\"\n", 220 | "i2 = \"Science\"\n", 221 | "i3 = i1+\" \"+i2\n", 222 | "print(i3)" 223 | ] 224 | }, 225 | { 226 | "cell_type": "markdown", 227 | "metadata": {}, 228 | "source": [ 229 | "Replacing text" 230 | ] 231 | }, 232 | { 233 | "cell_type": "code", 234 | "execution_count": 4, 235 | "metadata": {}, 236 | "outputs": [ 237 | { 238 | "name": "stdout", 239 | "output_type": "stream", 240 | "text": [ 241 | "As data scientists, our job is to extract information from noise.\n" 242 | ] 243 | } 244 | ], 245 | "source": [ 246 | "txt1 = \"As data scientists, our job is to extract signal from noise.\"\n", 247 | "new_txt = txt1.replace(\"signal\", \"information\")\n", 248 | "print(new_txt)" 249 | ] 250 | }, 251 | { 252 | "cell_type": "markdown", 253 | "metadata": {}, 254 | "source": [ 255 | "To Try\n", 256 | "1. Define a number as a string\n", 257 | "2. Convert the above to numeric\n", 258 | "3. Create a variable with a decimal number\n", 259 | "4. Split the above decimal number into 2 (before decimal and after decimal point)\n", 260 | "5. Copy a random sentence and pass it to a variable\n", 261 | "6. Identify a specific words thats gets repeated and replace it with your name" 262 | ] 263 | }, 264 | { 265 | "cell_type": "code", 266 | "execution_count": null, 267 | "metadata": {}, 268 | "outputs": [], 269 | "source": [] 270 | } 271 | ], 272 | "metadata": { 273 | "kernelspec": { 274 | "display_name": "Python 3", 275 | "language": "python", 276 | "name": "python3" 277 | }, 278 | "language_info": { 279 | "codemirror_mode": { 280 | "name": "ipython", 281 | "version": 3 282 | }, 283 | "file_extension": ".py", 284 | "mimetype": "text/x-python", 285 | "name": "python", 286 | "nbconvert_exporter": "python", 287 | "pygments_lexer": "ipython3", 288 | "version": "3.6.9" 289 | } 290 | }, 291 | "nbformat": 4, 292 | "nbformat_minor": 2 293 | } 294 | -------------------------------------------------------------------------------- /Day02 - Variable and String/Day2.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Topics to be covered today\n", 8 | "- Creating Variables\n", 9 | "- Data Types - String\n", 10 | "- Use of Type()\n", 11 | "- Changing Data Types\n", 12 | "- String as Arrray\n", 13 | "- Indexing\n", 14 | "- Sting Length\n", 15 | "- Strip\n", 16 | "- Split\n", 17 | "- Concat\n", 18 | "- Replace" 19 | ] 20 | }, 21 | { 22 | "cell_type": "markdown", 23 | "metadata": {}, 24 | "source": [ 25 | "Creating Variables and checking data type" 26 | ] 27 | }, 28 | { 29 | "cell_type": "code", 30 | "execution_count": 5, 31 | "metadata": {}, 32 | "outputs": [], 33 | "source": [ 34 | "input1 = 10\n", 35 | "input2 = 23.5\n", 36 | "input3 = \"Learn Data Science in 100 Days\"" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "execution_count": 8, 42 | "metadata": {}, 43 | "outputs": [ 44 | { 45 | "data": { 46 | "text/plain": [ 47 | "str" 48 | ] 49 | }, 50 | "execution_count": 8, 51 | "metadata": {}, 52 | "output_type": "execute_result" 53 | } 54 | ], 55 | "source": [ 56 | "type(input3)" 57 | ] 58 | }, 59 | { 60 | "cell_type": "markdown", 61 | "metadata": {}, 62 | "source": [ 63 | "Changing string to numeric data type" 64 | ] 65 | }, 66 | { 67 | "cell_type": "code", 68 | "execution_count": 14, 69 | "metadata": {}, 70 | "outputs": [ 71 | { 72 | "name": "stdout", 73 | "output_type": "stream", 74 | "text": [ 75 | "\n" 76 | ] 77 | } 78 | ], 79 | "source": [ 80 | "input4 = \"12\"\n", 81 | "type(input4)\n", 82 | "print(type(int(input4)))" 83 | ] 84 | }, 85 | { 86 | "cell_type": "markdown", 87 | "metadata": {}, 88 | "source": [ 89 | "Strings are treated like array" 90 | ] 91 | }, 92 | { 93 | "cell_type": "code", 94 | "execution_count": 23, 95 | "metadata": {}, 96 | "outputs": [ 97 | { 98 | "name": "stdout", 99 | "output_type": "stream", 100 | "text": [ 101 | " Data Science in 100 Days\n" 102 | ] 103 | } 104 | ], 105 | "source": [ 106 | "print(input3[5:])" 107 | ] 108 | }, 109 | { 110 | "cell_type": "code", 111 | "execution_count": 21, 112 | "metadata": {}, 113 | "outputs": [ 114 | { 115 | "name": "stdout", 116 | "output_type": "stream", 117 | "text": [ 118 | "n 100 Days\n" 119 | ] 120 | } 121 | ], 122 | "source": [ 123 | "print(input3[-10:])" 124 | ] 125 | }, 126 | { 127 | "cell_type": "code", 128 | "execution_count": 24, 129 | "metadata": {}, 130 | "outputs": [ 131 | { 132 | "name": "stdout", 133 | "output_type": "stream", 134 | "text": [ 135 | "30\n" 136 | ] 137 | } 138 | ], 139 | "source": [ 140 | "print(len(input3))" 141 | ] 142 | }, 143 | { 144 | "cell_type": "markdown", 145 | "metadata": {}, 146 | "source": [ 147 | "Strip - to remove extra spaces in the beginning and end" 148 | ] 149 | }, 150 | { 151 | "cell_type": "code", 152 | "execution_count": 26, 153 | "metadata": {}, 154 | "outputs": [ 155 | { 156 | "name": "stdout", 157 | "output_type": "stream", 158 | "text": [ 159 | " Data Science \n", 160 | "Data Science\n" 161 | ] 162 | } 163 | ], 164 | "source": [ 165 | "txt = \" Data Science \"\n", 166 | "print(txt)\n", 167 | "txt1 = txt.strip()\n", 168 | "print(txt1)" 169 | ] 170 | }, 171 | { 172 | "cell_type": "markdown", 173 | "metadata": {}, 174 | "source": [ 175 | "Spliting" 176 | ] 177 | }, 178 | { 179 | "cell_type": "code", 180 | "execution_count": 29, 181 | "metadata": {}, 182 | "outputs": [ 183 | { 184 | "name": "stdout", 185 | "output_type": "stream", 186 | "text": [ 187 | "['2020', '09', '01']\n" 188 | ] 189 | } 190 | ], 191 | "source": [ 192 | "input4 = \"2020-09-01\"\n", 193 | "print(input4.split(\"-\"))" 194 | ] 195 | }, 196 | { 197 | "cell_type": "markdown", 198 | "metadata": {}, 199 | "source": [ 200 | "Concatinating" 201 | ] 202 | }, 203 | { 204 | "cell_type": "code", 205 | "execution_count": 33, 206 | "metadata": {}, 207 | "outputs": [ 208 | { 209 | "name": "stdout", 210 | "output_type": "stream", 211 | "text": [ 212 | "Data 12\n" 213 | ] 214 | } 215 | ], 216 | "source": [ 217 | "i1 = \"Data\"\n", 218 | "i2 = \"12\"\n", 219 | "i3 = i1+\" \"+i2\n", 220 | "print(i3)" 221 | ] 222 | }, 223 | { 224 | "cell_type": "markdown", 225 | "metadata": {}, 226 | "source": [ 227 | "Replacing text" 228 | ] 229 | }, 230 | { 231 | "cell_type": "code", 232 | "execution_count": 36, 233 | "metadata": {}, 234 | "outputs": [ 235 | { 236 | "name": "stdout", 237 | "output_type": "stream", 238 | "text": [ 239 | "As data scientists, our job is to extract information from noise. information signal signal\n" 240 | ] 241 | } 242 | ], 243 | "source": [ 244 | "txt1 = \"As data scientists, our job is to extract signal from noise. signal signal signal\"\n", 245 | "new_txt = txt1.replace(\"signal\", \"information\", 2)\n", 246 | "print(new_txt)" 247 | ] 248 | }, 249 | { 250 | "cell_type": "markdown", 251 | "metadata": {}, 252 | "source": [ 253 | "To Try\n", 254 | "1. Define a number as a string\n", 255 | "2. Convert the above to numeric\n", 256 | "3. Create a variable with a decimal number\n", 257 | "4. Split the above decimal number into 2 (before decimal and after decimal point)\n", 258 | "5. Copy a random sentence and pass it to a variable\n", 259 | "6. Identify a specific words thats gets repeated and replace it with your name" 260 | ] 261 | } 262 | ], 263 | "metadata": { 264 | "kernelspec": { 265 | "display_name": "Python 3", 266 | "language": "python", 267 | "name": "python3" 268 | }, 269 | "language_info": { 270 | "codemirror_mode": { 271 | "name": "ipython", 272 | "version": 3 273 | }, 274 | "file_extension": ".py", 275 | "mimetype": "text/x-python", 276 | "name": "python", 277 | "nbconvert_exporter": "python", 278 | "pygments_lexer": "ipython3", 279 | "version": "3.8.5" 280 | } 281 | }, 282 | "nbformat": 4, 283 | "nbformat_minor": 2 284 | } 285 | -------------------------------------------------------------------------------- /Day03 - Numeric, Boolean and Operator/.ipynb_checkpoints/Day3-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Topics to be covered today\n", 8 | "1. Numeric data type (Integer and Float)\n", 9 | "2. Boolean\n", 10 | "3. Operators\n" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": {}, 16 | "source": [ 17 | "1a. Define variable and find data type" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": 46, 23 | "metadata": {}, 24 | "outputs": [ 25 | { 26 | "name": "stdout", 27 | "output_type": "stream", 28 | "text": [ 29 | "\n", 30 | "\n" 31 | ] 32 | } 33 | ], 34 | "source": [ 35 | "input1 = 20\n", 36 | "print(type(input1))\n", 37 | "# Pass a decimal value\n", 38 | "input2 = 3.14\n", 39 | "print(type(input2))" 40 | ] 41 | }, 42 | { 43 | "cell_type": "markdown", 44 | "metadata": {}, 45 | "source": [ 46 | "1b. Casting (Changing) to a different datatype" 47 | ] 48 | }, 49 | { 50 | "cell_type": "code", 51 | "execution_count": 47, 52 | "metadata": {}, 53 | "outputs": [ 54 | { 55 | "name": "stdout", 56 | "output_type": "stream", 57 | "text": [ 58 | "20.0\n" 59 | ] 60 | } 61 | ], 62 | "source": [ 63 | "new_i1 = float(input1)\n", 64 | "print(new_i1)" 65 | ] 66 | }, 67 | { 68 | "cell_type": "code", 69 | "execution_count": null, 70 | "metadata": {}, 71 | "outputs": [], 72 | "source": [ 73 | "type(input2)" 74 | ] 75 | }, 76 | { 77 | "cell_type": "code", 78 | "execution_count": 48, 79 | "metadata": {}, 80 | "outputs": [ 81 | { 82 | "name": "stdout", 83 | "output_type": "stream", 84 | "text": [ 85 | "3\n" 86 | ] 87 | } 88 | ], 89 | "source": [ 90 | "new_i2 = int(input2)\n", 91 | "print(new_i2)" 92 | ] 93 | }, 94 | { 95 | "cell_type": "code", 96 | "execution_count": 49, 97 | "metadata": {}, 98 | "outputs": [ 99 | { 100 | "name": "stdout", 101 | "output_type": "stream", 102 | "text": [ 103 | "3\n" 104 | ] 105 | } 106 | ], 107 | "source": [ 108 | "#What if it is 3.94\n", 109 | "input3 = 3.94\n", 110 | "new_i3 = int(input3)\n", 111 | "print(new_i3)" 112 | ] 113 | }, 114 | { 115 | "cell_type": "markdown", 116 | "metadata": {}, 117 | "source": [ 118 | "2. Boolean Operator" 119 | ] 120 | }, 121 | { 122 | "cell_type": "code", 123 | "execution_count": 51, 124 | "metadata": {}, 125 | "outputs": [ 126 | { 127 | "name": "stdout", 128 | "output_type": "stream", 129 | "text": [ 130 | "False\n" 131 | ] 132 | } 133 | ], 134 | "source": [ 135 | "#boolean\n", 136 | "print(input1 < input2)" 137 | ] 138 | }, 139 | { 140 | "cell_type": "code", 141 | "execution_count": 52, 142 | "metadata": {}, 143 | "outputs": [ 144 | { 145 | "name": "stdout", 146 | "output_type": "stream", 147 | "text": [ 148 | "True\n" 149 | ] 150 | } 151 | ], 152 | "source": [ 153 | "print(bool(input1))" 154 | ] 155 | }, 156 | { 157 | "cell_type": "code", 158 | "execution_count": 54, 159 | "metadata": {}, 160 | "outputs": [ 161 | { 162 | "name": "stdout", 163 | "output_type": "stream", 164 | "text": [ 165 | "True\n" 166 | ] 167 | } 168 | ], 169 | "source": [ 170 | "input4 = None\n", 171 | "print(bool(input4))" 172 | ] 173 | }, 174 | { 175 | "cell_type": "code", 176 | "execution_count": 56, 177 | "metadata": {}, 178 | "outputs": [ 179 | { 180 | "name": "stdout", 181 | "output_type": "stream", 182 | "text": [ 183 | "True\n", 184 | "False\n" 185 | ] 186 | } 187 | ], 188 | "source": [ 189 | "input5 = [1,2,3,4,5]\n", 190 | "print(bool(input5))\n", 191 | "#now create an emply array\n", 192 | "input6 = []\n", 193 | "print(bool(input6))" 194 | ] 195 | }, 196 | { 197 | "cell_type": "code", 198 | "execution_count": null, 199 | "metadata": {}, 200 | "outputs": [], 201 | "source": [ 202 | "a = None\n", 203 | "print(bool(a))\n", 204 | "# pass with 0, None and None1 as string" 205 | ] 206 | }, 207 | { 208 | "cell_type": "markdown", 209 | "metadata": {}, 210 | "source": [ 211 | "3a. Arthimetic operator
\n", 212 | " To Try - Division, addition, subtraction, mod and exp" 213 | ] 214 | }, 215 | { 216 | "cell_type": "code", 217 | "execution_count": 65, 218 | "metadata": {}, 219 | "outputs": [ 220 | { 221 | "name": "stdout", 222 | "output_type": "stream", 223 | "text": [ 224 | "1\n" 225 | ] 226 | } 227 | ], 228 | "source": [ 229 | "#Operators\n", 230 | "#Arithmetic Operators\n", 231 | "x = 11\n", 232 | "y = 2\n", 233 | "print(x%y)\n" 234 | ] 235 | }, 236 | { 237 | "cell_type": "markdown", 238 | "metadata": {}, 239 | "source": [ 240 | "3b. Assignment Operator" 241 | ] 242 | }, 243 | { 244 | "cell_type": "code", 245 | "execution_count": 69, 246 | "metadata": {}, 247 | "outputs": [ 248 | { 249 | "name": "stdout", 250 | "output_type": "stream", 251 | "text": [ 252 | "1000\n" 253 | ] 254 | } 255 | ], 256 | "source": [ 257 | "#Assignment Operators\n", 258 | "x = 10\n", 259 | "x **= 3\n", 260 | "#x=x+3\n", 261 | "print(x)" 262 | ] 263 | }, 264 | { 265 | "cell_type": "markdown", 266 | "metadata": {}, 267 | "source": [ 268 | "3c. Comparison Operator" 269 | ] 270 | }, 271 | { 272 | "cell_type": "code", 273 | "execution_count": 73, 274 | "metadata": {}, 275 | "outputs": [ 276 | { 277 | "name": "stdout", 278 | "output_type": "stream", 279 | "text": [ 280 | "False\n" 281 | ] 282 | } 283 | ], 284 | "source": [ 285 | "#Comparison Operators\n", 286 | "x = 11\n", 287 | "y = 2\n", 288 | "print(x<=y)\n", 289 | "# Equal, Not Equal, Greater than, less than, Greater or equal and less than equal" 290 | ] 291 | }, 292 | { 293 | "cell_type": "markdown", 294 | "metadata": {}, 295 | "source": [ 296 | "3d. Logical Operator" 297 | ] 298 | }, 299 | { 300 | "cell_type": "code", 301 | "execution_count": 76, 302 | "metadata": {}, 303 | "outputs": [ 304 | { 305 | "name": "stdout", 306 | "output_type": "stream", 307 | "text": [ 308 | "True\n" 309 | ] 310 | } 311 | ], 312 | "source": [ 313 | "#Logical Operators\n", 314 | "x = 5\n", 315 | "print(x > 10 or x < 15)\n", 316 | "# or and not" 317 | ] 318 | }, 319 | { 320 | "cell_type": "markdown", 321 | "metadata": {}, 322 | "source": [ 323 | "3e. Is and In Operators" 324 | ] 325 | }, 326 | { 327 | "cell_type": "code", 328 | "execution_count": 81, 329 | "metadata": {}, 330 | "outputs": [ 331 | { 332 | "name": "stdout", 333 | "output_type": "stream", 334 | "text": [ 335 | "False\n", 336 | "False\n" 337 | ] 338 | } 339 | ], 340 | "source": [ 341 | "# is and in operators\n", 342 | "x = ['addition', 'subtraction', 'multiplication', 'division']\n", 343 | "y = ['addition', 'subtraction', 'multiplication', 'division']\n", 344 | "z = y\n", 345 | "print(x is y)\n", 346 | "print(\"addition\" in x)\n", 347 | "#print(z)" 348 | ] 349 | }, 350 | { 351 | "cell_type": "markdown", 352 | "metadata": {}, 353 | "source": [ 354 | "To Try\n", 355 | "1. Create a float variable and convert it to integer\n", 356 | "2. Multiple a float value with integer and check the data type of the resultant value\n", 357 | "3. Create 2 variable with a integer and float value and use Boolean to check if the first one is greater than the second variable\n" 358 | ] 359 | } 360 | ], 361 | "metadata": { 362 | "kernelspec": { 363 | "display_name": "Python 3", 364 | "language": "python", 365 | "name": "python3" 366 | }, 367 | "language_info": { 368 | "codemirror_mode": { 369 | "name": "ipython", 370 | "version": 3 371 | }, 372 | "file_extension": ".py", 373 | "mimetype": "text/x-python", 374 | "name": "python", 375 | "nbconvert_exporter": "python", 376 | "pygments_lexer": "ipython3", 377 | "version": "3.7.4" 378 | } 379 | }, 380 | "nbformat": 4, 381 | "nbformat_minor": 2 382 | } 383 | -------------------------------------------------------------------------------- /Day03 - Numeric, Boolean and Operator/Day3.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Topics to be covered today\n", 8 | "1. Numeric data type (Integer and Float)\n", 9 | "2. Boolean\n", 10 | "3. Operators\n" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": {}, 16 | "source": [ 17 | "1a. Define variable and find data type" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": 46, 23 | "metadata": {}, 24 | "outputs": [ 25 | { 26 | "name": "stdout", 27 | "output_type": "stream", 28 | "text": [ 29 | "\n", 30 | "\n" 31 | ] 32 | } 33 | ], 34 | "source": [ 35 | "input1 = 20\n", 36 | "print(type(input1))\n", 37 | "# Pass a decimal value\n", 38 | "input2 = 3.14\n", 39 | "print(type(input2))" 40 | ] 41 | }, 42 | { 43 | "cell_type": "markdown", 44 | "metadata": {}, 45 | "source": [ 46 | "1b. Casting (Changing) to a different datatype" 47 | ] 48 | }, 49 | { 50 | "cell_type": "code", 51 | "execution_count": 47, 52 | "metadata": {}, 53 | "outputs": [ 54 | { 55 | "name": "stdout", 56 | "output_type": "stream", 57 | "text": [ 58 | "20.0\n" 59 | ] 60 | } 61 | ], 62 | "source": [ 63 | "new_i1 = float(input1)\n", 64 | "print(new_i1)" 65 | ] 66 | }, 67 | { 68 | "cell_type": "code", 69 | "execution_count": null, 70 | "metadata": {}, 71 | "outputs": [], 72 | "source": [ 73 | "type(input2)" 74 | ] 75 | }, 76 | { 77 | "cell_type": "code", 78 | "execution_count": 48, 79 | "metadata": {}, 80 | "outputs": [ 81 | { 82 | "name": "stdout", 83 | "output_type": "stream", 84 | "text": [ 85 | "3\n" 86 | ] 87 | } 88 | ], 89 | "source": [ 90 | "new_i2 = int(input2)\n", 91 | "print(new_i2)" 92 | ] 93 | }, 94 | { 95 | "cell_type": "code", 96 | "execution_count": 49, 97 | "metadata": {}, 98 | "outputs": [ 99 | { 100 | "name": "stdout", 101 | "output_type": "stream", 102 | "text": [ 103 | "3\n" 104 | ] 105 | } 106 | ], 107 | "source": [ 108 | "#What if it is 3.94\n", 109 | "input3 = 3.94\n", 110 | "new_i3 = int(input3)\n", 111 | "print(new_i3)" 112 | ] 113 | }, 114 | { 115 | "cell_type": "markdown", 116 | "metadata": {}, 117 | "source": [ 118 | "2. Boolean Operator" 119 | ] 120 | }, 121 | { 122 | "cell_type": "code", 123 | "execution_count": 51, 124 | "metadata": {}, 125 | "outputs": [ 126 | { 127 | "name": "stdout", 128 | "output_type": "stream", 129 | "text": [ 130 | "False\n" 131 | ] 132 | } 133 | ], 134 | "source": [ 135 | "#boolean\n", 136 | "print(input1 < input2)" 137 | ] 138 | }, 139 | { 140 | "cell_type": "code", 141 | "execution_count": 52, 142 | "metadata": {}, 143 | "outputs": [ 144 | { 145 | "name": "stdout", 146 | "output_type": "stream", 147 | "text": [ 148 | "True\n" 149 | ] 150 | } 151 | ], 152 | "source": [ 153 | "print(bool(input1))" 154 | ] 155 | }, 156 | { 157 | "cell_type": "code", 158 | "execution_count": 54, 159 | "metadata": {}, 160 | "outputs": [ 161 | { 162 | "name": "stdout", 163 | "output_type": "stream", 164 | "text": [ 165 | "True\n" 166 | ] 167 | } 168 | ], 169 | "source": [ 170 | "input4 = None\n", 171 | "print(bool(input4))" 172 | ] 173 | }, 174 | { 175 | "cell_type": "code", 176 | "execution_count": 56, 177 | "metadata": {}, 178 | "outputs": [ 179 | { 180 | "name": "stdout", 181 | "output_type": "stream", 182 | "text": [ 183 | "True\n", 184 | "False\n" 185 | ] 186 | } 187 | ], 188 | "source": [ 189 | "input5 = [1,2,3,4,5]\n", 190 | "print(bool(input5))\n", 191 | "#now create an emply array\n", 192 | "input6 = []\n", 193 | "print(bool(input6))" 194 | ] 195 | }, 196 | { 197 | "cell_type": "code", 198 | "execution_count": null, 199 | "metadata": {}, 200 | "outputs": [], 201 | "source": [ 202 | "a = None\n", 203 | "print(bool(a))\n", 204 | "# pass with 0, None and None1 as string" 205 | ] 206 | }, 207 | { 208 | "cell_type": "markdown", 209 | "metadata": {}, 210 | "source": [ 211 | "3a. Arthimetic operator
\n", 212 | " To Try - Division, addition, subtraction, mod and exp" 213 | ] 214 | }, 215 | { 216 | "cell_type": "code", 217 | "execution_count": 65, 218 | "metadata": {}, 219 | "outputs": [ 220 | { 221 | "name": "stdout", 222 | "output_type": "stream", 223 | "text": [ 224 | "1\n" 225 | ] 226 | } 227 | ], 228 | "source": [ 229 | "#Operators\n", 230 | "#Arithmetic Operators\n", 231 | "x = 11\n", 232 | "y = 2\n", 233 | "print(x%y)\n" 234 | ] 235 | }, 236 | { 237 | "cell_type": "markdown", 238 | "metadata": {}, 239 | "source": [ 240 | "3b. Assignment Operator" 241 | ] 242 | }, 243 | { 244 | "cell_type": "code", 245 | "execution_count": 69, 246 | "metadata": {}, 247 | "outputs": [ 248 | { 249 | "name": "stdout", 250 | "output_type": "stream", 251 | "text": [ 252 | "1000\n" 253 | ] 254 | } 255 | ], 256 | "source": [ 257 | "#Assignment Operators\n", 258 | "x = 10\n", 259 | "x **= 3\n", 260 | "#x=x+3\n", 261 | "print(x)" 262 | ] 263 | }, 264 | { 265 | "cell_type": "markdown", 266 | "metadata": {}, 267 | "source": [ 268 | "3c. Comparison Operator" 269 | ] 270 | }, 271 | { 272 | "cell_type": "code", 273 | "execution_count": 73, 274 | "metadata": {}, 275 | "outputs": [ 276 | { 277 | "name": "stdout", 278 | "output_type": "stream", 279 | "text": [ 280 | "False\n" 281 | ] 282 | } 283 | ], 284 | "source": [ 285 | "#Comparison Operators\n", 286 | "x = 11\n", 287 | "y = 2\n", 288 | "print(x<=y)\n", 289 | "# Equal, Not Equal, Greater than, less than, Greater or equal and less than equal" 290 | ] 291 | }, 292 | { 293 | "cell_type": "markdown", 294 | "metadata": {}, 295 | "source": [ 296 | "3d. Logical Operator" 297 | ] 298 | }, 299 | { 300 | "cell_type": "code", 301 | "execution_count": 76, 302 | "metadata": {}, 303 | "outputs": [ 304 | { 305 | "name": "stdout", 306 | "output_type": "stream", 307 | "text": [ 308 | "True\n" 309 | ] 310 | } 311 | ], 312 | "source": [ 313 | "#Logical Operators\n", 314 | "x = 5\n", 315 | "print(x > 10 or x < 15)\n", 316 | "# or and not" 317 | ] 318 | }, 319 | { 320 | "cell_type": "markdown", 321 | "metadata": {}, 322 | "source": [ 323 | "3e. Is and In Operators" 324 | ] 325 | }, 326 | { 327 | "cell_type": "code", 328 | "execution_count": 81, 329 | "metadata": {}, 330 | "outputs": [ 331 | { 332 | "name": "stdout", 333 | "output_type": "stream", 334 | "text": [ 335 | "False\n", 336 | "False\n" 337 | ] 338 | } 339 | ], 340 | "source": [ 341 | "# is and in operators\n", 342 | "x = ['addition', 'subtraction', 'multiplication', 'division']\n", 343 | "y = ['addition', 'subtraction', 'multiplication', 'division']\n", 344 | "z = y\n", 345 | "print(x is y)\n", 346 | "print(\"addition\" in x)\n", 347 | "#print(z)" 348 | ] 349 | }, 350 | { 351 | "cell_type": "markdown", 352 | "metadata": {}, 353 | "source": [ 354 | "To Try\n", 355 | "1. Create a float variable and convert it to integer\n", 356 | "2. Multiple a float value with integer and check the data type of the resultant value\n", 357 | "3. Create 2 variable with a integer and float value and use Boolean to check if the first one is greater than the second variable\n" 358 | ] 359 | } 360 | ], 361 | "metadata": { 362 | "kernelspec": { 363 | "display_name": "Python 3", 364 | "language": "python", 365 | "name": "python3" 366 | }, 367 | "language_info": { 368 | "codemirror_mode": { 369 | "name": "ipython", 370 | "version": 3 371 | }, 372 | "file_extension": ".py", 373 | "mimetype": "text/x-python", 374 | "name": "python", 375 | "nbconvert_exporter": "python", 376 | "pygments_lexer": "ipython3", 377 | "version": "3.6.9" 378 | } 379 | }, 380 | "nbformat": 4, 381 | "nbformat_minor": 2 382 | } 383 | -------------------------------------------------------------------------------- /Day06 - If-Then-Else and Loop/.ipynb_checkpoints/Day6-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Topics covered today are\n", 8 | "1. If Condition\n", 9 | "2. For Loop\n", 10 | "3. While Loop" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": {}, 16 | "source": [ 17 | "1. If Condition" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": 14, 23 | "metadata": {}, 24 | "outputs": [ 25 | { 26 | "name": "stdout", 27 | "output_type": "stream", 28 | "text": [ 29 | "a is greater than b\n" 30 | ] 31 | } 32 | ], 33 | "source": [ 34 | "a = 101\n", 35 | "b = 100\n", 36 | "\n", 37 | "if a>b: \n", 38 | " print(\"a is greater than b\")\n", 39 | "elif a==b:\n", 40 | " print(\"a is equal to b\")\n", 41 | "else:\n", 42 | " print(\"a is less than b\")\n", 43 | " " 44 | ] 45 | }, 46 | { 47 | "cell_type": "markdown", 48 | "metadata": {}, 49 | "source": [ 50 | "2. For Loop" 51 | ] 52 | }, 53 | { 54 | "cell_type": "code", 55 | "execution_count": 18, 56 | "metadata": {}, 57 | "outputs": [ 58 | { 59 | "name": "stdout", 60 | "output_type": "stream", 61 | "text": [ 62 | "[0, 1, 2, 3, 4]\n", 63 | "Apple\n", 64 | "Google\n", 65 | "Microsoft\n", 66 | "Amazon\n", 67 | "Tesla\n" 68 | ] 69 | } 70 | ], 71 | "source": [ 72 | "a = ['Apple', 'Google', 'Microsoft', 'Amazon', 'Tesla']\n", 73 | "\n", 74 | "print(list(range(len(a))))\n", 75 | "for i in range(len(a)):\n", 76 | " print(a[i])" 77 | ] 78 | }, 79 | { 80 | "cell_type": "code", 81 | "execution_count": 19, 82 | "metadata": {}, 83 | "outputs": [ 84 | { 85 | "name": "stdout", 86 | "output_type": "stream", 87 | "text": [ 88 | "11\n", 89 | "12\n", 90 | "13\n", 91 | "14\n", 92 | "15\n", 93 | "16\n", 94 | "17\n", 95 | "18\n", 96 | "19\n", 97 | "20\n", 98 | "21\n", 99 | "22\n", 100 | "23\n", 101 | "24\n" 102 | ] 103 | } 104 | ], 105 | "source": [ 106 | "a = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]\n", 107 | "for i in a:\n", 108 | " print(i)" 109 | ] 110 | }, 111 | { 112 | "cell_type": "code", 113 | "execution_count": 21, 114 | "metadata": {}, 115 | "outputs": [ 116 | { 117 | "name": "stdout", 118 | "output_type": "stream", 119 | "text": [ 120 | "11\n", 121 | "13\n", 122 | "15\n", 123 | "17\n", 124 | "19\n", 125 | "21\n", 126 | "23\n" 127 | ] 128 | } 129 | ], 130 | "source": [ 131 | "a = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]\n", 132 | "#print(len(a))\n", 133 | "for i in range(0, len(a), 2): # starts from index 0 and till len(a) minus 1 and skips every alternate number\n", 134 | " print(a[i])" 135 | ] 136 | }, 137 | { 138 | "cell_type": "code", 139 | "execution_count": 22, 140 | "metadata": {}, 141 | "outputs": [ 142 | { 143 | "name": "stdout", 144 | "output_type": "stream", 145 | "text": [ 146 | "21\n", 147 | "22\n", 148 | "23\n", 149 | "24\n", 150 | "25\n" 151 | ] 152 | } 153 | ], 154 | "source": [ 155 | "a = [11, 12, 13, 14, 15]\n", 156 | "for i in range(0, len(a)):\n", 157 | " x = a[i]\n", 158 | " x += 10\n", 159 | " print(x)" 160 | ] 161 | }, 162 | { 163 | "cell_type": "markdown", 164 | "metadata": {}, 165 | "source": [ 166 | "3. While Loop" 167 | ] 168 | }, 169 | { 170 | "cell_type": "code", 171 | "execution_count": 25, 172 | "metadata": {}, 173 | "outputs": [ 174 | { 175 | "name": "stdout", 176 | "output_type": "stream", 177 | "text": [ 178 | "245\n" 179 | ] 180 | } 181 | ], 182 | "source": [ 183 | "a = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]\n", 184 | "i= 0\n", 185 | "total = 0\n", 186 | "while i < len(a):\n", 187 | " total = total + a[i]\n", 188 | " i+=1\n", 189 | "print(total)" 190 | ] 191 | }, 192 | { 193 | "cell_type": "markdown", 194 | "metadata": {}, 195 | "source": [ 196 | "#### Examples to try out\n", 197 | "1. Create a list with few random values and use a for loop to check if all the items of the list are integer\n", 198 | "2. Create a list with integer values and use loop (try both for and while loop) to go through the items in the list and print if they are odd or even number\n", 199 | "3. Create a numberic list and find the multiple of the all the elements in the list" 200 | ] 201 | }, 202 | { 203 | "cell_type": "code", 204 | "execution_count": null, 205 | "metadata": {}, 206 | "outputs": [], 207 | "source": [] 208 | } 209 | ], 210 | "metadata": { 211 | "kernelspec": { 212 | "display_name": "Python 3", 213 | "language": "python", 214 | "name": "python3" 215 | }, 216 | "language_info": { 217 | "codemirror_mode": { 218 | "name": "ipython", 219 | "version": 3 220 | }, 221 | "file_extension": ".py", 222 | "mimetype": "text/x-python", 223 | "name": "python", 224 | "nbconvert_exporter": "python", 225 | "pygments_lexer": "ipython3", 226 | "version": "3.8.5" 227 | } 228 | }, 229 | "nbformat": 4, 230 | "nbformat_minor": 2 231 | } 232 | -------------------------------------------------------------------------------- /Day06 - If-Then-Else and Loop/Day6.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Topics covered today are\n", 8 | "1. If Condition\n", 9 | "2. For Loop\n", 10 | "3. While Loop" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": {}, 16 | "source": [ 17 | "1. If Condition" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": 14, 23 | "metadata": {}, 24 | "outputs": [ 25 | { 26 | "name": "stdout", 27 | "output_type": "stream", 28 | "text": [ 29 | "a is greater than b\n" 30 | ] 31 | } 32 | ], 33 | "source": [ 34 | "a = 101\n", 35 | "b = 100\n", 36 | "\n", 37 | "if a>b: \n", 38 | " print(\"a is greater than b\")\n", 39 | "elif a==b:\n", 40 | " print(\"a is equal to b\")\n", 41 | "else:\n", 42 | " print(\"a is less than b\")\n", 43 | " " 44 | ] 45 | }, 46 | { 47 | "cell_type": "markdown", 48 | "metadata": {}, 49 | "source": [ 50 | "2. For Loop" 51 | ] 52 | }, 53 | { 54 | "cell_type": "code", 55 | "execution_count": 18, 56 | "metadata": {}, 57 | "outputs": [ 58 | { 59 | "name": "stdout", 60 | "output_type": "stream", 61 | "text": [ 62 | "[0, 1, 2, 3, 4]\n", 63 | "Apple\n", 64 | "Google\n", 65 | "Microsoft\n", 66 | "Amazon\n", 67 | "Tesla\n" 68 | ] 69 | } 70 | ], 71 | "source": [ 72 | "a = ['Apple', 'Google', 'Microsoft', 'Amazon', 'Tesla']\n", 73 | "\n", 74 | "print(list(range(len(a))))\n", 75 | "for i in range(len(a)):\n", 76 | " print(a[i])" 77 | ] 78 | }, 79 | { 80 | "cell_type": "code", 81 | "execution_count": 19, 82 | "metadata": {}, 83 | "outputs": [ 84 | { 85 | "name": "stdout", 86 | "output_type": "stream", 87 | "text": [ 88 | "11\n", 89 | "12\n", 90 | "13\n", 91 | "14\n", 92 | "15\n", 93 | "16\n", 94 | "17\n", 95 | "18\n", 96 | "19\n", 97 | "20\n", 98 | "21\n", 99 | "22\n", 100 | "23\n", 101 | "24\n" 102 | ] 103 | } 104 | ], 105 | "source": [ 106 | "a = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]\n", 107 | "for i in a:\n", 108 | " print(i)" 109 | ] 110 | }, 111 | { 112 | "cell_type": "code", 113 | "execution_count": 21, 114 | "metadata": {}, 115 | "outputs": [ 116 | { 117 | "name": "stdout", 118 | "output_type": "stream", 119 | "text": [ 120 | "11\n", 121 | "13\n", 122 | "15\n", 123 | "17\n", 124 | "19\n", 125 | "21\n", 126 | "23\n" 127 | ] 128 | } 129 | ], 130 | "source": [ 131 | "a = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]\n", 132 | "#print(len(a))\n", 133 | "for i in range(0, len(a), 2): # starts from index 0 and till len(a) minus 1 and skips every alternate number\n", 134 | " print(a[i])" 135 | ] 136 | }, 137 | { 138 | "cell_type": "code", 139 | "execution_count": 22, 140 | "metadata": {}, 141 | "outputs": [ 142 | { 143 | "name": "stdout", 144 | "output_type": "stream", 145 | "text": [ 146 | "21\n", 147 | "22\n", 148 | "23\n", 149 | "24\n", 150 | "25\n" 151 | ] 152 | } 153 | ], 154 | "source": [ 155 | "a = [11, 12, 13, 14, 15]\n", 156 | "for i in range(0, len(a)):\n", 157 | " x = a[i]\n", 158 | " x += 10\n", 159 | " print(x)" 160 | ] 161 | }, 162 | { 163 | "cell_type": "markdown", 164 | "metadata": {}, 165 | "source": [ 166 | "3. While Loop" 167 | ] 168 | }, 169 | { 170 | "cell_type": "code", 171 | "execution_count": 25, 172 | "metadata": {}, 173 | "outputs": [ 174 | { 175 | "name": "stdout", 176 | "output_type": "stream", 177 | "text": [ 178 | "245\n" 179 | ] 180 | } 181 | ], 182 | "source": [ 183 | "a = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]\n", 184 | "i= 0\n", 185 | "total = 0\n", 186 | "while i < len(a):\n", 187 | " total = total + a[i]\n", 188 | " i+=1\n", 189 | "print(total)" 190 | ] 191 | }, 192 | { 193 | "cell_type": "markdown", 194 | "metadata": {}, 195 | "source": [ 196 | "#### Examples to try out\n", 197 | "1. Create a list with few random values and use a for loop to check if all the items of the list are integer\n", 198 | "2. Create a list with integer values and use loop (try both for and while loop) to go through the items in the list and print if they are odd or even number\n", 199 | "3. Create a numberic list and find the multiple of the all the elements in the list" 200 | ] 201 | }, 202 | { 203 | "cell_type": "code", 204 | "execution_count": null, 205 | "metadata": {}, 206 | "outputs": [], 207 | "source": [] 208 | } 209 | ], 210 | "metadata": { 211 | "kernelspec": { 212 | "display_name": "Python 3", 213 | "language": "python", 214 | "name": "python3" 215 | }, 216 | "language_info": { 217 | "codemirror_mode": { 218 | "name": "ipython", 219 | "version": 3 220 | }, 221 | "file_extension": ".py", 222 | "mimetype": "text/x-python", 223 | "name": "python", 224 | "nbconvert_exporter": "python", 225 | "pygments_lexer": "ipython3", 226 | "version": "3.8.5" 227 | } 228 | }, 229 | "nbformat": 4, 230 | "nbformat_minor": 2 231 | } 232 | -------------------------------------------------------------------------------- /Day07 - Functions and Lambda Functions/.ipynb_checkpoints/Day7-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Topics to be covered today\n", 8 | "1. Functions\n", 9 | "2. Lambda Function" 10 | ] 11 | }, 12 | { 13 | "cell_type": "markdown", 14 | "metadata": {}, 15 | "source": [ 16 | "1a. Function Introduction\n", 17 | "- Can be called multiple times" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": 15, 23 | "metadata": {}, 24 | "outputs": [ 25 | { 26 | "name": "stdout", 27 | "output_type": "stream", 28 | "text": [ 29 | "This is outside function\n" 30 | ] 31 | } 32 | ], 33 | "source": [ 34 | "def func():\n", 35 | " print(\"Hi\")\n", 36 | " print(\"Bye\") # Both should be aligned\n", 37 | "print(\"This is outside function\")" 38 | ] 39 | }, 40 | { 41 | "cell_type": "code", 42 | "execution_count": 16, 43 | "metadata": {}, 44 | "outputs": [ 45 | { 46 | "name": "stdout", 47 | "output_type": "stream", 48 | "text": [ 49 | "Hi\n", 50 | "Bye\n" 51 | ] 52 | } 53 | ], 54 | "source": [ 55 | "func()" 56 | ] 57 | }, 58 | { 59 | "cell_type": "markdown", 60 | "metadata": {}, 61 | "source": [ 62 | "1b. Function to perform arithmetic function" 63 | ] 64 | }, 65 | { 66 | "cell_type": "code", 67 | "execution_count": 20, 68 | "metadata": {}, 69 | "outputs": [], 70 | "source": [ 71 | "def add_func(x):\n", 72 | " return x+20\n", 73 | "\n", 74 | "# Try square and multiplication" 75 | ] 76 | }, 77 | { 78 | "cell_type": "code", 79 | "execution_count": 21, 80 | "metadata": {}, 81 | "outputs": [ 82 | { 83 | "name": "stdout", 84 | "output_type": "stream", 85 | "text": [ 86 | "25\n", 87 | "30\n" 88 | ] 89 | } 90 | ], 91 | "source": [ 92 | "print(add_func(5))\n", 93 | "print(add_func(10))" 94 | ] 95 | }, 96 | { 97 | "cell_type": "code", 98 | "execution_count": 23, 99 | "metadata": {}, 100 | "outputs": [ 101 | { 102 | "ename": "TypeError", 103 | "evalue": "add_func() missing 1 required positional argument: 'x'", 104 | "output_type": "error", 105 | "traceback": [ 106 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", 107 | "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", 108 | "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m#print(add_func(\"10\"))\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0madd_func\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", 109 | "\u001b[1;31mTypeError\u001b[0m: add_func() missing 1 required positional argument: 'x'" 110 | ] 111 | } 112 | ], 113 | "source": [ 114 | "#print(add_func(\"10\"))\n", 115 | "#print(add_func())" 116 | ] 117 | }, 118 | { 119 | "cell_type": "markdown", 120 | "metadata": {}, 121 | "source": [ 122 | "1c. Multiply elements in a list" 123 | ] 124 | }, 125 | { 126 | "cell_type": "code", 127 | "execution_count": null, 128 | "metadata": {}, 129 | "outputs": [], 130 | "source": [ 131 | "def multi_func(*values):\n", 132 | " n = 1\n", 133 | " for item in values:\n", 134 | " n *= item\n", 135 | " return n" 136 | ] 137 | }, 138 | { 139 | "cell_type": "code", 140 | "execution_count": 24, 141 | "metadata": {}, 142 | "outputs": [ 143 | { 144 | "data": { 145 | "text/plain": [ 146 | "120" 147 | ] 148 | }, 149 | "execution_count": 24, 150 | "metadata": {}, 151 | "output_type": "execute_result" 152 | } 153 | ], 154 | "source": [ 155 | "multi_func(2,3,4,5)" 156 | ] 157 | }, 158 | { 159 | "cell_type": "markdown", 160 | "metadata": {}, 161 | "source": [ 162 | "2a. Lambda Function Introduction\n", 163 | "\n", 164 | "Lambda Functions:\n", 165 | "- Single use functions\n", 166 | "- One line function\n", 167 | "- Syntax: lambda argument:expression (where expression is the value that gets returned)" 168 | ] 169 | }, 170 | { 171 | "cell_type": "code", 172 | "execution_count": 26, 173 | "metadata": {}, 174 | "outputs": [ 175 | { 176 | "name": "stdout", 177 | "output_type": "stream", 178 | "text": [ 179 | "55\n" 180 | ] 181 | } 182 | ], 183 | "source": [ 184 | "lb_fn = lambda x: x + 5\n", 185 | "print(lb_fn(50))" 186 | ] 187 | }, 188 | { 189 | "cell_type": "code", 190 | "execution_count": 27, 191 | "metadata": {}, 192 | "outputs": [ 193 | { 194 | "name": "stdout", 195 | "output_type": "stream", 196 | "text": [ 197 | "25\n" 198 | ] 199 | } 200 | ], 201 | "source": [ 202 | "lb_fn = lambda x: x*5\n", 203 | "print(lb_fn(5))" 204 | ] 205 | }, 206 | { 207 | "cell_type": "markdown", 208 | "metadata": {}, 209 | "source": [ 210 | "2b. Passing Lambda as an argument" 211 | ] 212 | }, 213 | { 214 | "cell_type": "code", 215 | "execution_count": 29, 216 | "metadata": {}, 217 | "outputs": [ 218 | { 219 | "name": "stdout", 220 | "output_type": "stream", 221 | "text": [ 222 | "[('Apple', 1111), ('Google', 2222), ('Microsoft', 3333), ('Amazon', 4444), ('Tesla', 5555)]\n" 223 | ] 224 | } 225 | ], 226 | "source": [ 227 | "comp_list = [('Apple', 1111), ('Google', 2222), ('Microsoft', 3333), ('Amazon', 4444), ('Tesla', 5555)]\n", 228 | "comp_list.sort(key = lambda x: x[1])\n", 229 | "print(comp_list)" 230 | ] 231 | }, 232 | { 233 | "cell_type": "markdown", 234 | "metadata": {}, 235 | "source": [ 236 | "2c. Using Lamda for filtering" 237 | ] 238 | }, 239 | { 240 | "cell_type": "code", 241 | "execution_count": 31, 242 | "metadata": {}, 243 | "outputs": [ 244 | { 245 | "name": "stdout", 246 | "output_type": "stream", 247 | "text": [ 248 | "[3, 6, 9]\n" 249 | ] 250 | } 251 | ], 252 | "source": [ 253 | "numbers = [1,2,3,4,5,6,7,8,9,10]\n", 254 | "even_num = list(filter(lambda x: x%3 == 0, numbers))\n", 255 | "print(even_num)" 256 | ] 257 | }, 258 | { 259 | "cell_type": "markdown", 260 | "metadata": {}, 261 | "source": [ 262 | "#### Example to try\n", 263 | "1. Create a function to add two number (Hint - Pass 2 values to the function)\n", 264 | "2. Create an list with number from 1 to 100 and use lambda function to filter all the elements that are divible by 3\n", 265 | "3. Create a List of Dictionary and use lambda function to sort them" 266 | ] 267 | }, 268 | { 269 | "cell_type": "code", 270 | "execution_count": null, 271 | "metadata": {}, 272 | "outputs": [], 273 | "source": [] 274 | } 275 | ], 276 | "metadata": { 277 | "kernelspec": { 278 | "display_name": "Python 3", 279 | "language": "python", 280 | "name": "python3" 281 | }, 282 | "language_info": { 283 | "codemirror_mode": { 284 | "name": "ipython", 285 | "version": 3 286 | }, 287 | "file_extension": ".py", 288 | "mimetype": "text/x-python", 289 | "name": "python", 290 | "nbconvert_exporter": "python", 291 | "pygments_lexer": "ipython3", 292 | "version": "3.8.5" 293 | } 294 | }, 295 | "nbformat": 4, 296 | "nbformat_minor": 2 297 | } 298 | -------------------------------------------------------------------------------- /Day07 - Functions and Lambda Functions/Day7.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Topics to be covered today\n", 8 | "1. Functions\n", 9 | "2. Lambda Function" 10 | ] 11 | }, 12 | { 13 | "cell_type": "markdown", 14 | "metadata": {}, 15 | "source": [ 16 | "1a. Function Introduction\n", 17 | "- Can be called multiple times" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": 15, 23 | "metadata": {}, 24 | "outputs": [ 25 | { 26 | "name": "stdout", 27 | "output_type": "stream", 28 | "text": [ 29 | "This is outside function\n" 30 | ] 31 | } 32 | ], 33 | "source": [ 34 | "def func():\n", 35 | " print(\"Hi\")\n", 36 | " print(\"Bye\") # Both should be aligned\n", 37 | "print(\"This is outside function\")" 38 | ] 39 | }, 40 | { 41 | "cell_type": "code", 42 | "execution_count": 16, 43 | "metadata": {}, 44 | "outputs": [ 45 | { 46 | "name": "stdout", 47 | "output_type": "stream", 48 | "text": [ 49 | "Hi\n", 50 | "Bye\n" 51 | ] 52 | } 53 | ], 54 | "source": [ 55 | "func()" 56 | ] 57 | }, 58 | { 59 | "cell_type": "markdown", 60 | "metadata": {}, 61 | "source": [ 62 | "1b. Function to perform arithmetic function" 63 | ] 64 | }, 65 | { 66 | "cell_type": "code", 67 | "execution_count": 20, 68 | "metadata": {}, 69 | "outputs": [], 70 | "source": [ 71 | "def add_func(x):\n", 72 | " return x+20\n", 73 | "\n", 74 | "# Try square and multiplication" 75 | ] 76 | }, 77 | { 78 | "cell_type": "code", 79 | "execution_count": 21, 80 | "metadata": {}, 81 | "outputs": [ 82 | { 83 | "name": "stdout", 84 | "output_type": "stream", 85 | "text": [ 86 | "25\n", 87 | "30\n" 88 | ] 89 | } 90 | ], 91 | "source": [ 92 | "print(add_func(5))\n", 93 | "print(add_func(10))" 94 | ] 95 | }, 96 | { 97 | "cell_type": "code", 98 | "execution_count": 23, 99 | "metadata": {}, 100 | "outputs": [ 101 | { 102 | "ename": "TypeError", 103 | "evalue": "add_func() missing 1 required positional argument: 'x'", 104 | "output_type": "error", 105 | "traceback": [ 106 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", 107 | "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", 108 | "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m#print(add_func(\"10\"))\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0madd_func\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", 109 | "\u001b[1;31mTypeError\u001b[0m: add_func() missing 1 required positional argument: 'x'" 110 | ] 111 | } 112 | ], 113 | "source": [ 114 | "#print(add_func(\"10\"))\n", 115 | "#print(add_func())" 116 | ] 117 | }, 118 | { 119 | "cell_type": "markdown", 120 | "metadata": {}, 121 | "source": [ 122 | "1c. Multiply elements in a list" 123 | ] 124 | }, 125 | { 126 | "cell_type": "code", 127 | "execution_count": null, 128 | "metadata": {}, 129 | "outputs": [], 130 | "source": [ 131 | "def multi_func(*values):\n", 132 | " n = 1\n", 133 | " for item in values:\n", 134 | " n *= item\n", 135 | " return n" 136 | ] 137 | }, 138 | { 139 | "cell_type": "code", 140 | "execution_count": 24, 141 | "metadata": {}, 142 | "outputs": [ 143 | { 144 | "data": { 145 | "text/plain": [ 146 | "120" 147 | ] 148 | }, 149 | "execution_count": 24, 150 | "metadata": {}, 151 | "output_type": "execute_result" 152 | } 153 | ], 154 | "source": [ 155 | "multi_func(2,3,4,5)" 156 | ] 157 | }, 158 | { 159 | "cell_type": "markdown", 160 | "metadata": {}, 161 | "source": [ 162 | "2a. Lambda Function Introduction\n", 163 | "\n", 164 | "Lambda Functions:\n", 165 | "- Single use functions\n", 166 | "- One line function\n", 167 | "- Syntax: lambda argument:expression (where expression is the value that gets returned)" 168 | ] 169 | }, 170 | { 171 | "cell_type": "code", 172 | "execution_count": 26, 173 | "metadata": {}, 174 | "outputs": [ 175 | { 176 | "name": "stdout", 177 | "output_type": "stream", 178 | "text": [ 179 | "55\n" 180 | ] 181 | } 182 | ], 183 | "source": [ 184 | "lb_fn = lambda x: x + 5\n", 185 | "print(lb_fn(50))" 186 | ] 187 | }, 188 | { 189 | "cell_type": "code", 190 | "execution_count": 27, 191 | "metadata": {}, 192 | "outputs": [ 193 | { 194 | "name": "stdout", 195 | "output_type": "stream", 196 | "text": [ 197 | "25\n" 198 | ] 199 | } 200 | ], 201 | "source": [ 202 | "lb_fn = lambda x: x*5\n", 203 | "print(lb_fn(5))" 204 | ] 205 | }, 206 | { 207 | "cell_type": "markdown", 208 | "metadata": {}, 209 | "source": [ 210 | "2b. Passing Lambda as an argument" 211 | ] 212 | }, 213 | { 214 | "cell_type": "code", 215 | "execution_count": 29, 216 | "metadata": {}, 217 | "outputs": [ 218 | { 219 | "name": "stdout", 220 | "output_type": "stream", 221 | "text": [ 222 | "[('Apple', 1111), ('Google', 2222), ('Microsoft', 3333), ('Amazon', 4444), ('Tesla', 5555)]\n" 223 | ] 224 | } 225 | ], 226 | "source": [ 227 | "comp_list = [('Apple', 1111), ('Google', 2222), ('Microsoft', 3333), ('Amazon', 4444), ('Tesla', 5555)]\n", 228 | "comp_list.sort(key = lambda x: x[1])\n", 229 | "print(comp_list)" 230 | ] 231 | }, 232 | { 233 | "cell_type": "markdown", 234 | "metadata": {}, 235 | "source": [ 236 | "2c. Using Lamda for filtering" 237 | ] 238 | }, 239 | { 240 | "cell_type": "code", 241 | "execution_count": 31, 242 | "metadata": {}, 243 | "outputs": [ 244 | { 245 | "name": "stdout", 246 | "output_type": "stream", 247 | "text": [ 248 | "[3, 6, 9]\n" 249 | ] 250 | } 251 | ], 252 | "source": [ 253 | "numbers = [1,2,3,4,5,6,7,8,9,10]\n", 254 | "even_num = list(filter(lambda x: x%3 == 0, numbers))\n", 255 | "print(even_num)" 256 | ] 257 | }, 258 | { 259 | "cell_type": "markdown", 260 | "metadata": {}, 261 | "source": [ 262 | "#### Example to try\n", 263 | "1. Create a function to add two number (Hint - Pass 2 values to the function)\n", 264 | "2. Create an list with number from 1 to 100 and use lambda function to filter all the elements that are divible by 3\n", 265 | "3. Create a List of Dictionary and use lambda function to sort them" 266 | ] 267 | }, 268 | { 269 | "cell_type": "code", 270 | "execution_count": null, 271 | "metadata": {}, 272 | "outputs": [], 273 | "source": [] 274 | } 275 | ], 276 | "metadata": { 277 | "kernelspec": { 278 | "display_name": "Python 3", 279 | "language": "python", 280 | "name": "python3" 281 | }, 282 | "language_info": { 283 | "codemirror_mode": { 284 | "name": "ipython", 285 | "version": 3 286 | }, 287 | "file_extension": ".py", 288 | "mimetype": "text/x-python", 289 | "name": "python", 290 | "nbconvert_exporter": "python", 291 | "pygments_lexer": "ipython3", 292 | "version": "3.8.5" 293 | } 294 | }, 295 | "nbformat": 4, 296 | "nbformat_minor": 2 297 | } 298 | -------------------------------------------------------------------------------- /Day08 - Pandas Intro, Read and Write Dataframe/Data/Sample1.csv: -------------------------------------------------------------------------------- 1 | Companies,Seq 2 | Apple,1111 3 | Google,2222 4 | Facebook,3333 5 | Amazon,4444 6 | -------------------------------------------------------------------------------- /Day08 - Pandas Intro, Read and Write Dataframe/Data/Sample1.txt: -------------------------------------------------------------------------------- 1 | Companies Seq 2 | Apple 1111 3 | Google 2222 4 | Facebook 3333 5 | Amazon 4444 6 | -------------------------------------------------------------------------------- /Day08 - Pandas Intro, Read and Write Dataframe/Data/Write_to_file.csv: -------------------------------------------------------------------------------- 1 | Company,Seq 2 | Apple,111 3 | Facebook,222 4 | Google,333 5 | Amazon,444 6 | -------------------------------------------------------------------------------- /Day09 - Index, Selection and Assignment/Data/SearchTrendData.csv: -------------------------------------------------------------------------------- 1 | Week,eLearning,DataScience,MachineLearning,ArtificialIntelligence,DeepLearning 2 | 20/09/2015,32,9,11,11,4 3 | 27/09/2015,35,10,11,11,4 4 | 4/10/2015,38,10,12,11,4 5 | 11/10/2015,37,9,12,10,4 6 | 18/10/2015,38,9,12,10,4 7 | 25/10/2015,38,10,12,11,4 8 | 1/11/2015,37,9,13,11,3 9 | 8/11/2015,35,8,14,12,5 10 | 15/11/2015,35,9,13,12,4 11 | 22/11/2015,31,8,12,10,4 12 | 29/11/2015,35,9,13,11,4 13 | 6/12/2015,33,9,13,12,5 14 | 13/12/2015,30,9,14,11,5 15 | 20/12/2015,17,7,11,9,4 16 | 27/12/2015,17,7,10,9,3 17 | 3/01/2016,24,10,12,14,4 18 | 10/01/2016,26,9,12,12,4 19 | 17/01/2016,26,11,13,11,6 20 | 24/01/2016,28,11,15,12,7 21 | 31/01/2016,28,11,14,11,6 22 | 7/02/2016,28,10,13,11,5 23 | 14/02/2016,30,10,13,10,5 24 | 21/02/2016,30,10,14,12,5 25 | 28/02/2016,30,10,13,11,5 26 | 6/03/2016,30,10,15,13,7 27 | 13/03/2016,27,10,15,13,8 28 | 20/03/2016,27,9,14,12,6 29 | 27/03/2016,29,9,14,12,6 30 | 3/04/2016,29,10,15,12,7 31 | 10/04/2016,29,10,14,11,6 32 | 17/04/2016,29,10,15,12,6 33 | 24/04/2016,28,10,14,12,6 34 | 1/05/2016,26,9,14,12,6 35 | 8/05/2016,28,11,15,12,6 36 | 15/05/2016,27,10,15,13,7 37 | 22/05/2016,27,10,16,12,6 38 | 29/05/2016,25,10,14,11,6 39 | 5/06/2016,25,11,15,11,7 40 | 12/06/2016,25,10,16,10,6 41 | 19/06/2016,21,10,16,10,7 42 | 26/06/2016,20,10,15,10,7 43 | 3/07/2016,17,9,14,10,6 44 | 10/07/2016,19,10,14,9,6 45 | 17/07/2016,18,10,15,9,6 46 | 24/07/2016,17,9,14,9,6 47 | 31/07/2016,18,11,15,9,6 48 | 7/08/2016,16,10,15,9,6 49 | 14/08/2016,15,10,12,8,5 50 | 21/08/2016,19,12,16,10,6 51 | 28/08/2016,21,13,15,10,7 52 | 4/09/2016,26,13,16,11,6 53 | 11/09/2016,29,14,17,11,7 54 | 18/09/2016,32,14,19,12,6 55 | 25/09/2016,33,13,18,12,8 56 | 2/10/2016,36,12,17,13,8 57 | 9/10/2016,38,12,18,16,8 58 | 16/10/2016,36,13,20,14,8 59 | 23/10/2016,35,13,19,14,8 60 | 30/10/2016,34,13,20,14,8 61 | 6/11/2016,32,13,18,14,8 62 | 13/11/2016,30,13,21,14,9 63 | 20/11/2016,28,12,21,14,9 64 | 27/11/2016,30,14,22,15,9 65 | 4/12/2016,30,13,22,16,10 66 | 11/12/2016,28,14,21,15,9 67 | 18/12/2016,22,11,20,13,9 68 | 25/12/2016,17,10,15,12,7 69 | 1/01/2017,21,13,20,14,9 70 | 8/01/2017,29,15,23,15,10 71 | 15/01/2017,26,15,23,14,10 72 | 22/01/2017,25,15,23,15,10 73 | 29/01/2017,25,16,23,14,10 74 | 5/02/2017,28,16,23,15,10 75 | 12/02/2017,27,15,25,15,11 76 | 19/02/2017,29,16,24,16,11 77 | 26/02/2017,31,17,27,15,11 78 | 5/03/2017,30,16,26,16,11 79 | 12/03/2017,29,16,26,17,12 80 | 19/03/2017,31,16,25,15,11 81 | 26/03/2017,32,16,28,17,11 82 | 2/04/2017,30,17,27,17,12 83 | 9/04/2017,28,15,26,16,11 84 | 16/04/2017,26,16,26,16,12 85 | 23/04/2017,30,16,27,18,12 86 | 30/04/2017,28,15,27,17,11 87 | 7/05/2017,26,17,27,16,12 88 | 14/05/2017,26,16,29,18,12 89 | 21/05/2017,24,17,29,18,12 90 | 28/05/2017,25,16,27,15,11 91 | 4/06/2017,25,15,29,14,11 92 | 11/06/2017,24,16,28,15,11 93 | 18/06/2017,20,16,28,14,11 94 | 25/06/2017,19,16,28,15,12 95 | 2/07/2017,21,15,27,14,11 96 | 9/07/2017,19,16,29,15,12 97 | 16/07/2017,18,16,28,16,13 98 | 23/07/2017,17,17,28,18,12 99 | 30/07/2017,16,17,29,23,12 100 | 6/08/2017,15,17,27,18,13 101 | 13/08/2017,15,16,28,17,13 102 | 20/08/2017,18,18,27,17,12 103 | 27/08/2017,19,18,28,17,12 104 | 3/09/2017,24,19,30,23,13 105 | 10/09/2017,27,20,31,21,13 106 | 17/09/2017,32,20,32,20,14 107 | 24/09/2017,34,20,31,20,13 108 | 1/10/2017,35,19,33,20,13 109 | 8/10/2017,35,20,34,22,13 110 | 15/10/2017,36,20,32,21,14 111 | 22/10/2017,34,20,35,26,13 112 | 29/10/2017,33,21,35,24,14 113 | 5/11/2017,33,21,37,25,14 114 | 12/11/2017,31,20,35,24,15 115 | 19/11/2017,29,17,33,22,14 116 | 26/11/2017,29,19,35,25,15 117 | 3/12/2017,30,20,36,25,15 118 | 10/12/2017,30,20,37,23,15 119 | 17/12/2017,24,17,32,19,14 120 | 24/12/2017,16,14,26,17,12 121 | 31/12/2017,18,19,30,20,13 122 | 7/01/2018,29,22,32,21,15 123 | 14/01/2018,27,21,34,30,14 124 | 21/01/2018,27,21,34,29,14 125 | 28/01/2018,26,22,36,27,16 126 | 4/02/2018,27,20,35,24,15 127 | 11/02/2018,27,21,34,24,13 128 | 18/02/2018,30,21,35,24,14 129 | 25/02/2018,33,21,36,24,14 130 | 4/03/2018,34,22,37,23,14 131 | 11/03/2018,34,22,36,24,14 132 | 18/03/2018,37,23,37,23,15 133 | 25/03/2018,36,22,36,21,14 134 | 1/04/2018,30,22,36,21,14 135 | 8/04/2018,33,23,36,23,15 136 | 15/04/2018,32,21,36,24,15 137 | 22/04/2018,33,22,37,23,15 138 | 29/04/2018,31,22,35,22,14 139 | 6/05/2018,31,21,37,25,15 140 | 13/05/2018,32,22,37,23,15 141 | 20/05/2018,30,23,37,22,14 142 | 27/05/2018,29,22,34,21,14 143 | 3/06/2018,30,23,37,21,14 144 | 10/06/2018,25,21,36,19,14 145 | 17/06/2018,24,21,36,17,14 146 | 24/06/2018,24,21,35,19,14 147 | 1/07/2018,24,20,34,18,13 148 | 8/07/2018,21,23,36,19,14 149 | 15/07/2018,21,23,36,19,14 150 | 22/07/2018,18,22,36,20,13 151 | 29/07/2018,17,23,36,20,14 152 | 5/08/2018,18,23,37,20,13 153 | 12/08/2018,17,22,36,19,12 154 | 19/08/2018,19,24,37,18,14 155 | 26/08/2018,23,26,38,20,14 156 | 2/09/2018,28,27,37,21,14 157 | 9/09/2018,34,25,38,22,14 158 | 16/09/2018,39,25,40,22,15 159 | 23/09/2018,38,25,39,23,15 160 | 30/09/2018,44,26,39,21,15 161 | 7/10/2018,43,26,39,22,15 162 | 14/10/2018,45,26,39,23,15 163 | 21/10/2018,42,26,40,24,15 164 | 28/10/2018,39,24,39,23,15 165 | 4/11/2018,37,24,36,21,15 166 | 11/11/2018,41,26,39,25,15 167 | 18/11/2018,35,23,37,22,14 168 | 25/11/2018,38,26,41,24,15 169 | 2/12/2018,38,26,42,24,16 170 | 9/12/2018,35,26,40,22,15 171 | 16/12/2018,30,23,37,23,13 172 | 23/12/2018,19,19,28,17,10 173 | 30/12/2018,20,22,31,18,11 174 | 6/01/2019,30,29,37,22,14 175 | 13/01/2019,31,29,37,24,15 176 | 20/01/2019,30,28,39,22,15 177 | 27/01/2019,29,28,40,23,15 178 | 3/02/2019,29,29,41,23,15 179 | 10/02/2019,32,28,40,24,15 180 | 17/02/2019,35,30,42,25,15 181 | 24/02/2019,38,29,41,23,15 182 | 3/03/2019,36,28,42,23,15 183 | 10/03/2019,39,27,40,23,15 184 | 17/03/2019,41,28,41,23,14 185 | 24/03/2019,38,30,41,24,16 186 | 31/03/2019,41,29,41,23,15 187 | 7/04/2019,38,28,41,23,16 188 | 14/04/2019,36,27,37,21,14 189 | 21/04/2019,36,27,39,23,15 190 | 28/04/2019,36,27,39,24,14 191 | 5/05/2019,36,28,41,23,14 192 | 12/05/2019,37,29,41,24,15 193 | 19/05/2019,35,30,39,22,15 194 | 26/05/2019,32,29,38,21,14 195 | 2/06/2019,27,29,40,21,14 196 | 9/06/2019,27,30,42,22,15 197 | 16/06/2019,32,31,41,24,15 198 | 23/06/2019,28,30,41,22,15 199 | 30/06/2019,32,29,40,21,14 200 | 7/07/2019,27,31,40,22,15 201 | 14/07/2019,23,31,41,23,15 202 | 21/07/2019,22,31,40,22,14 203 | 28/07/2019,20,31,39,22,13 204 | 4/08/2019,20,30,38,21,14 205 | 11/08/2019,19,31,39,21,14 206 | 18/08/2019,26,35,43,22,14 207 | 25/08/2019,27,37,43,22,14 208 | 1/09/2019,33,34,40,22,15 209 | 8/09/2019,42,36,44,25,15 210 | 15/09/2019,44,37,45,25,15 211 | 22/09/2019,45,35,46,26,15 212 | 29/09/2019,55,34,43,23,15 213 | 6/10/2019,53,34,43,24,15 214 | 13/10/2019,55,34,44,24,15 215 | 20/10/2019,52,32,42,23,14 216 | 27/10/2019,48,31,39,22,14 217 | 3/11/2019,49,34,44,25,14 218 | 10/11/2019,47,33,43,24,15 219 | 17/11/2019,46,34,45,27,15 220 | 24/11/2019,42,30,41,24,15 221 | 1/12/2019,43,34,43,24,14 222 | 8/12/2019,43,32,44,25,15 223 | 15/12/2019,38,32,42,22,15 224 | 22/12/2019,24,26,33,17,11 225 | 29/12/2019,23,29,33,19,12 226 | 5/01/2020,38,35,42,25,15 227 | 12/01/2020,34,35,42,25,15 228 | 19/01/2020,31,36,44,24,14 229 | 26/01/2020,30,35,43,24,14 230 | 2/02/2020,34,36,44,24,15 231 | 9/02/2020,37,38,44,25,16 232 | 16/02/2020,43,38,46,26,16 233 | 23/02/2020,42,38,46,26,16 234 | 1/03/2020,48,37,44,25,15 235 | 8/03/2020,57,34,39,23,14 236 | 15/03/2020,98,29,34,19,12 237 | 22/03/2020,100,28,33,19,12 238 | 29/03/2020,97,30,35,19,13 239 | 5/04/2020,100,32,38,21,13 240 | 12/04/2020,94,34,41,22,14 241 | 19/04/2020,98,32,41,21,15 242 | 26/04/2020,86,33,41,20,15 243 | 3/05/2020,86,31,41,22,15 244 | 10/05/2020,83,33,40,22,15 245 | 17/05/2020,66,33,40,21,15 246 | 24/05/2020,57,32,40,20,15 247 | 31/05/2020,65,33,41,21,14 248 | 7/06/2020,69,33,41,20,15 249 | 14/06/2020,61,33,40,21,15 250 | 21/06/2020,61,34,41,20,14 251 | 28/06/2020,59,35,38,20,14 252 | 5/07/2020,55,35,39,19,14 253 | 12/07/2020,58,36,40,21,15 254 | 19/07/2020,55,36,40,21,14 255 | 26/07/2020,43,34,39,20,14 256 | 2/08/2020,44,34,37,20,13 257 | 9/08/2020,44,35,38,21,13 258 | 16/08/2020,41,36,40,22,14 259 | 23/08/2020,49,39,40,21,14 260 | 30/08/2020,62,37,40,21,14 261 | 6/09/2020,74,38,42,24,14 262 | 13/09/2020,80,39,39,21,14 263 | -------------------------------------------------------------------------------- /Day10 - Iteration and Sorting/.ipynb_checkpoints/Day10-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Topics Covered\n", 8 | "- Iteration\n", 9 | "- Sorting" 10 | ] 11 | }, 12 | { 13 | "cell_type": "code", 14 | "execution_count": null, 15 | "metadata": {}, 16 | "outputs": [], 17 | "source": [ 18 | "#import pandas library and provide alias name as pd\n", 19 | "import pandas as pd\n", 20 | "\n", 21 | "trend_data = pd.read_csv('Data/SearchTrendData.csv')\n", 22 | "trend_data.head(5)" 23 | ] 24 | }, 25 | { 26 | "cell_type": "markdown", 27 | "metadata": {}, 28 | "source": [ 29 | "1. Iteration" 30 | ] 31 | }, 32 | { 33 | "cell_type": "markdown", 34 | "metadata": {}, 35 | "source": [ 36 | "1a. Iterates through each row in the data frame" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "execution_count": null, 42 | "metadata": {}, 43 | "outputs": [], 44 | "source": [ 45 | "for row_index,row in trend_data.iterrows():\n", 46 | " print(row_index,row)" 47 | ] 48 | }, 49 | { 50 | "cell_type": "markdown", 51 | "metadata": {}, 52 | "source": [ 53 | "1b. Iterates through each column as key value pair" 54 | ] 55 | }, 56 | { 57 | "cell_type": "code", 58 | "execution_count": null, 59 | "metadata": {}, 60 | "outputs": [], 61 | "source": [ 62 | "for key,value in trend_data.iteritems():\n", 63 | " print(key,value)" 64 | ] 65 | }, 66 | { 67 | "cell_type": "markdown", 68 | "metadata": {}, 69 | "source": [ 70 | "1c. Considers each row as a tuple and iterates through them" 71 | ] 72 | }, 73 | { 74 | "cell_type": "code", 75 | "execution_count": null, 76 | "metadata": {}, 77 | "outputs": [], 78 | "source": [ 79 | "for row_tuple in trend_data.itertuples():\n", 80 | " print(row_tuple)" 81 | ] 82 | }, 83 | { 84 | "cell_type": "markdown", 85 | "metadata": {}, 86 | "source": [ 87 | "2. Sorting" 88 | ] 89 | }, 90 | { 91 | "cell_type": "code", 92 | "execution_count": null, 93 | "metadata": {}, 94 | "outputs": [], 95 | "source": [ 96 | "sorted_data = trend_data.sort_index(ascending=False)\n", 97 | "print(sorted_data)" 98 | ] 99 | }, 100 | { 101 | "cell_type": "markdown", 102 | "metadata": {}, 103 | "source": [ 104 | "2b. Sorting by column" 105 | ] 106 | }, 107 | { 108 | "cell_type": "code", 109 | "execution_count": null, 110 | "metadata": {}, 111 | "outputs": [], 112 | "source": [ 113 | "sorted_data=trend_data.sort_index(axis=1)\n", 114 | "print(sorted_data)" 115 | ] 116 | }, 117 | { 118 | "cell_type": "markdown", 119 | "metadata": {}, 120 | "source": [ 121 | "2c. Sort by values of a specific column" 122 | ] 123 | }, 124 | { 125 | "cell_type": "code", 126 | "execution_count": null, 127 | "metadata": {}, 128 | "outputs": [], 129 | "source": [ 130 | "sorted_data = trend_data.sort_values(by='DataScience')\n", 131 | "print(sorted_data)" 132 | ] 133 | }, 134 | { 135 | "cell_type": "code", 136 | "execution_count": null, 137 | "metadata": {}, 138 | "outputs": [], 139 | "source": [ 140 | "sorted_data = trend_data.sort_values(by='DataScience', ascending=False)\n", 141 | "print(sorted_data)" 142 | ] 143 | }, 144 | { 145 | "cell_type": "markdown", 146 | "metadata": {}, 147 | "source": [ 148 | "2d. Sorting by a combination of columns" 149 | ] 150 | }, 151 | { 152 | "cell_type": "code", 153 | "execution_count": null, 154 | "metadata": {}, 155 | "outputs": [], 156 | "source": [ 157 | "sorted_data = trend_data.sort_values(by=['DataScience','MachineLearning'])\n", 158 | "print(sorted_data)" 159 | ] 160 | }, 161 | { 162 | "cell_type": "markdown", 163 | "metadata": {}, 164 | "source": [ 165 | "2e. What kind of sorting algorithm to be used
\n", 166 | "The options avaiable are \n", 167 | "- mergesort\n", 168 | "- heapsort\n", 169 | "- quicksort\n", 170 | "It's better to go with the default one 'mergesort' as it is more stable" 171 | ] 172 | }, 173 | { 174 | "cell_type": "code", 175 | "execution_count": null, 176 | "metadata": {}, 177 | "outputs": [], 178 | "source": [ 179 | "sorted_data = trend_data.sort_values(by='DataScience' ,kind='mergesort')\n", 180 | "print(sorted_data)" 181 | ] 182 | }, 183 | { 184 | "cell_type": "markdown", 185 | "metadata": {}, 186 | "source": [ 187 | "#### To Try\n", 188 | "- Sort based on eLearning and Deep Learning\n", 189 | "- Filter the last 50 weeks and sort based on the Data Scice trend score\n", 190 | "- Print on the rows(Weeks) where the trand score for atleast one item is over 40\n", 191 | "- Try the above worked example on a different dataset" 192 | ] 193 | }, 194 | { 195 | "cell_type": "code", 196 | "execution_count": null, 197 | "metadata": {}, 198 | "outputs": [], 199 | "source": [] 200 | } 201 | ], 202 | "metadata": { 203 | "kernelspec": { 204 | "display_name": "Python 3", 205 | "language": "python", 206 | "name": "python3" 207 | }, 208 | "language_info": { 209 | "codemirror_mode": { 210 | "name": "ipython", 211 | "version": 3 212 | }, 213 | "file_extension": ".py", 214 | "mimetype": "text/x-python", 215 | "name": "python", 216 | "nbconvert_exporter": "python", 217 | "pygments_lexer": "ipython3", 218 | "version": "3.8.5" 219 | } 220 | }, 221 | "nbformat": 4, 222 | "nbformat_minor": 4 223 | } 224 | -------------------------------------------------------------------------------- /Day10 - Iteration and Sorting/Data/SearchTrendData.csv: -------------------------------------------------------------------------------- 1 | Week,eLearning,DataScience,MachineLearning,ArtificialIntelligence,DeepLearning 2 | 20/09/2015,32,9,11,11,4 3 | 27/09/2015,35,10,11,11,4 4 | 4/10/2015,38,10,12,11,4 5 | 11/10/2015,37,9,12,10,4 6 | 18/10/2015,38,9,12,10,4 7 | 25/10/2015,38,10,12,11,4 8 | 1/11/2015,37,9,13,11,3 9 | 8/11/2015,35,8,14,12,5 10 | 15/11/2015,35,9,13,12,4 11 | 22/11/2015,31,8,12,10,4 12 | 29/11/2015,35,9,13,11,4 13 | 6/12/2015,33,9,13,12,5 14 | 13/12/2015,30,9,14,11,5 15 | 20/12/2015,17,7,11,9,4 16 | 27/12/2015,17,7,10,9,3 17 | 3/01/2016,24,10,12,14,4 18 | 10/01/2016,26,9,12,12,4 19 | 17/01/2016,26,11,13,11,6 20 | 24/01/2016,28,11,15,12,7 21 | 31/01/2016,28,11,14,11,6 22 | 7/02/2016,28,10,13,11,5 23 | 14/02/2016,30,10,13,10,5 24 | 21/02/2016,30,10,14,12,5 25 | 28/02/2016,30,10,13,11,5 26 | 6/03/2016,30,10,15,13,7 27 | 13/03/2016,27,10,15,13,8 28 | 20/03/2016,27,9,14,12,6 29 | 27/03/2016,29,9,14,12,6 30 | 3/04/2016,29,10,15,12,7 31 | 10/04/2016,29,10,14,11,6 32 | 17/04/2016,29,10,15,12,6 33 | 24/04/2016,28,10,14,12,6 34 | 1/05/2016,26,9,14,12,6 35 | 8/05/2016,28,11,15,12,6 36 | 15/05/2016,27,10,15,13,7 37 | 22/05/2016,27,10,16,12,6 38 | 29/05/2016,25,10,14,11,6 39 | 5/06/2016,25,11,15,11,7 40 | 12/06/2016,25,10,16,10,6 41 | 19/06/2016,21,10,16,10,7 42 | 26/06/2016,20,10,15,10,7 43 | 3/07/2016,17,9,14,10,6 44 | 10/07/2016,19,10,14,9,6 45 | 17/07/2016,18,10,15,9,6 46 | 24/07/2016,17,9,14,9,6 47 | 31/07/2016,18,11,15,9,6 48 | 7/08/2016,16,10,15,9,6 49 | 14/08/2016,15,10,12,8,5 50 | 21/08/2016,19,12,16,10,6 51 | 28/08/2016,21,13,15,10,7 52 | 4/09/2016,26,13,16,11,6 53 | 11/09/2016,29,14,17,11,7 54 | 18/09/2016,32,14,19,12,6 55 | 25/09/2016,33,13,18,12,8 56 | 2/10/2016,36,12,17,13,8 57 | 9/10/2016,38,12,18,16,8 58 | 16/10/2016,36,13,20,14,8 59 | 23/10/2016,35,13,19,14,8 60 | 30/10/2016,34,13,20,14,8 61 | 6/11/2016,32,13,18,14,8 62 | 13/11/2016,30,13,21,14,9 63 | 20/11/2016,28,12,21,14,9 64 | 27/11/2016,30,14,22,15,9 65 | 4/12/2016,30,13,22,16,10 66 | 11/12/2016,28,14,21,15,9 67 | 18/12/2016,22,11,20,13,9 68 | 25/12/2016,17,10,15,12,7 69 | 1/01/2017,21,13,20,14,9 70 | 8/01/2017,29,15,23,15,10 71 | 15/01/2017,26,15,23,14,10 72 | 22/01/2017,25,15,23,15,10 73 | 29/01/2017,25,16,23,14,10 74 | 5/02/2017,28,16,23,15,10 75 | 12/02/2017,27,15,25,15,11 76 | 19/02/2017,29,16,24,16,11 77 | 26/02/2017,31,17,27,15,11 78 | 5/03/2017,30,16,26,16,11 79 | 12/03/2017,29,16,26,17,12 80 | 19/03/2017,31,16,25,15,11 81 | 26/03/2017,32,16,28,17,11 82 | 2/04/2017,30,17,27,17,12 83 | 9/04/2017,28,15,26,16,11 84 | 16/04/2017,26,16,26,16,12 85 | 23/04/2017,30,16,27,18,12 86 | 30/04/2017,28,15,27,17,11 87 | 7/05/2017,26,17,27,16,12 88 | 14/05/2017,26,16,29,18,12 89 | 21/05/2017,24,17,29,18,12 90 | 28/05/2017,25,16,27,15,11 91 | 4/06/2017,25,15,29,14,11 92 | 11/06/2017,24,16,28,15,11 93 | 18/06/2017,20,16,28,14,11 94 | 25/06/2017,19,16,28,15,12 95 | 2/07/2017,21,15,27,14,11 96 | 9/07/2017,19,16,29,15,12 97 | 16/07/2017,18,16,28,16,13 98 | 23/07/2017,17,17,28,18,12 99 | 30/07/2017,16,17,29,23,12 100 | 6/08/2017,15,17,27,18,13 101 | 13/08/2017,15,16,28,17,13 102 | 20/08/2017,18,18,27,17,12 103 | 27/08/2017,19,18,28,17,12 104 | 3/09/2017,24,19,30,23,13 105 | 10/09/2017,27,20,31,21,13 106 | 17/09/2017,32,20,32,20,14 107 | 24/09/2017,34,20,31,20,13 108 | 1/10/2017,35,19,33,20,13 109 | 8/10/2017,35,20,34,22,13 110 | 15/10/2017,36,20,32,21,14 111 | 22/10/2017,34,20,35,26,13 112 | 29/10/2017,33,21,35,24,14 113 | 5/11/2017,33,21,37,25,14 114 | 12/11/2017,31,20,35,24,15 115 | 19/11/2017,29,17,33,22,14 116 | 26/11/2017,29,19,35,25,15 117 | 3/12/2017,30,20,36,25,15 118 | 10/12/2017,30,20,37,23,15 119 | 17/12/2017,24,17,32,19,14 120 | 24/12/2017,16,14,26,17,12 121 | 31/12/2017,18,19,30,20,13 122 | 7/01/2018,29,22,32,21,15 123 | 14/01/2018,27,21,34,30,14 124 | 21/01/2018,27,21,34,29,14 125 | 28/01/2018,26,22,36,27,16 126 | 4/02/2018,27,20,35,24,15 127 | 11/02/2018,27,21,34,24,13 128 | 18/02/2018,30,21,35,24,14 129 | 25/02/2018,33,21,36,24,14 130 | 4/03/2018,34,22,37,23,14 131 | 11/03/2018,34,22,36,24,14 132 | 18/03/2018,37,23,37,23,15 133 | 25/03/2018,36,22,36,21,14 134 | 1/04/2018,30,22,36,21,14 135 | 8/04/2018,33,23,36,23,15 136 | 15/04/2018,32,21,36,24,15 137 | 22/04/2018,33,22,37,23,15 138 | 29/04/2018,31,22,35,22,14 139 | 6/05/2018,31,21,37,25,15 140 | 13/05/2018,32,22,37,23,15 141 | 20/05/2018,30,23,37,22,14 142 | 27/05/2018,29,22,34,21,14 143 | 3/06/2018,30,23,37,21,14 144 | 10/06/2018,25,21,36,19,14 145 | 17/06/2018,24,21,36,17,14 146 | 24/06/2018,24,21,35,19,14 147 | 1/07/2018,24,20,34,18,13 148 | 8/07/2018,21,23,36,19,14 149 | 15/07/2018,21,23,36,19,14 150 | 22/07/2018,18,22,36,20,13 151 | 29/07/2018,17,23,36,20,14 152 | 5/08/2018,18,23,37,20,13 153 | 12/08/2018,17,22,36,19,12 154 | 19/08/2018,19,24,37,18,14 155 | 26/08/2018,23,26,38,20,14 156 | 2/09/2018,28,27,37,21,14 157 | 9/09/2018,34,25,38,22,14 158 | 16/09/2018,39,25,40,22,15 159 | 23/09/2018,38,25,39,23,15 160 | 30/09/2018,44,26,39,21,15 161 | 7/10/2018,43,26,39,22,15 162 | 14/10/2018,45,26,39,23,15 163 | 21/10/2018,42,26,40,24,15 164 | 28/10/2018,39,24,39,23,15 165 | 4/11/2018,37,24,36,21,15 166 | 11/11/2018,41,26,39,25,15 167 | 18/11/2018,35,23,37,22,14 168 | 25/11/2018,38,26,41,24,15 169 | 2/12/2018,38,26,42,24,16 170 | 9/12/2018,35,26,40,22,15 171 | 16/12/2018,30,23,37,23,13 172 | 23/12/2018,19,19,28,17,10 173 | 30/12/2018,20,22,31,18,11 174 | 6/01/2019,30,29,37,22,14 175 | 13/01/2019,31,29,37,24,15 176 | 20/01/2019,30,28,39,22,15 177 | 27/01/2019,29,28,40,23,15 178 | 3/02/2019,29,29,41,23,15 179 | 10/02/2019,32,28,40,24,15 180 | 17/02/2019,35,30,42,25,15 181 | 24/02/2019,38,29,41,23,15 182 | 3/03/2019,36,28,42,23,15 183 | 10/03/2019,39,27,40,23,15 184 | 17/03/2019,41,28,41,23,14 185 | 24/03/2019,38,30,41,24,16 186 | 31/03/2019,41,29,41,23,15 187 | 7/04/2019,38,28,41,23,16 188 | 14/04/2019,36,27,37,21,14 189 | 21/04/2019,36,27,39,23,15 190 | 28/04/2019,36,27,39,24,14 191 | 5/05/2019,36,28,41,23,14 192 | 12/05/2019,37,29,41,24,15 193 | 19/05/2019,35,30,39,22,15 194 | 26/05/2019,32,29,38,21,14 195 | 2/06/2019,27,29,40,21,14 196 | 9/06/2019,27,30,42,22,15 197 | 16/06/2019,32,31,41,24,15 198 | 23/06/2019,28,30,41,22,15 199 | 30/06/2019,32,29,40,21,14 200 | 7/07/2019,27,31,40,22,15 201 | 14/07/2019,23,31,41,23,15 202 | 21/07/2019,22,31,40,22,14 203 | 28/07/2019,20,31,39,22,13 204 | 4/08/2019,20,30,38,21,14 205 | 11/08/2019,19,31,39,21,14 206 | 18/08/2019,26,35,43,22,14 207 | 25/08/2019,27,37,43,22,14 208 | 1/09/2019,33,34,40,22,15 209 | 8/09/2019,42,36,44,25,15 210 | 15/09/2019,44,37,45,25,15 211 | 22/09/2019,45,35,46,26,15 212 | 29/09/2019,55,34,43,23,15 213 | 6/10/2019,53,34,43,24,15 214 | 13/10/2019,55,34,44,24,15 215 | 20/10/2019,52,32,42,23,14 216 | 27/10/2019,48,31,39,22,14 217 | 3/11/2019,49,34,44,25,14 218 | 10/11/2019,47,33,43,24,15 219 | 17/11/2019,46,34,45,27,15 220 | 24/11/2019,42,30,41,24,15 221 | 1/12/2019,43,34,43,24,14 222 | 8/12/2019,43,32,44,25,15 223 | 15/12/2019,38,32,42,22,15 224 | 22/12/2019,24,26,33,17,11 225 | 29/12/2019,23,29,33,19,12 226 | 5/01/2020,38,35,42,25,15 227 | 12/01/2020,34,35,42,25,15 228 | 19/01/2020,31,36,44,24,14 229 | 26/01/2020,30,35,43,24,14 230 | 2/02/2020,34,36,44,24,15 231 | 9/02/2020,37,38,44,25,16 232 | 16/02/2020,43,38,46,26,16 233 | 23/02/2020,42,38,46,26,16 234 | 1/03/2020,48,37,44,25,15 235 | 8/03/2020,57,34,39,23,14 236 | 15/03/2020,98,29,34,19,12 237 | 22/03/2020,100,28,33,19,12 238 | 29/03/2020,97,30,35,19,13 239 | 5/04/2020,100,32,38,21,13 240 | 12/04/2020,94,34,41,22,14 241 | 19/04/2020,98,32,41,21,15 242 | 26/04/2020,86,33,41,20,15 243 | 3/05/2020,86,31,41,22,15 244 | 10/05/2020,83,33,40,22,15 245 | 17/05/2020,66,33,40,21,15 246 | 24/05/2020,57,32,40,20,15 247 | 31/05/2020,65,33,41,21,14 248 | 7/06/2020,69,33,41,20,15 249 | 14/06/2020,61,33,40,21,15 250 | 21/06/2020,61,34,41,20,14 251 | 28/06/2020,59,35,38,20,14 252 | 5/07/2020,55,35,39,19,14 253 | 12/07/2020,58,36,40,21,15 254 | 19/07/2020,55,36,40,21,14 255 | 26/07/2020,43,34,39,20,14 256 | 2/08/2020,44,34,37,20,13 257 | 9/08/2020,44,35,38,21,13 258 | 16/08/2020,41,36,40,22,14 259 | 23/08/2020,49,39,40,21,14 260 | 30/08/2020,62,37,40,21,14 261 | 6/09/2020,74,38,42,24,14 262 | 13/09/2020,80,39,39,21,14 263 | -------------------------------------------------------------------------------- /Day11 - Aggregation and GroupBy/Data/SearchTrendData.csv: -------------------------------------------------------------------------------- 1 | Week,eLearning,DataScience,MachineLearning,ArtificialIntelligence,DeepLearning 2 | 20/09/2015,32,9,11,11,4 3 | 27/09/2015,35,10,11,11,4 4 | 4/10/2015,38,10,12,11,4 5 | 11/10/2015,37,9,12,10,4 6 | 18/10/2015,38,9,12,10,4 7 | 25/10/2015,38,10,12,11,4 8 | 1/11/2015,37,9,13,11,3 9 | 8/11/2015,35,8,14,12,5 10 | 15/11/2015,35,9,13,12,4 11 | 22/11/2015,31,8,12,10,4 12 | 29/11/2015,35,9,13,11,4 13 | 6/12/2015,33,9,13,12,5 14 | 13/12/2015,30,9,14,11,5 15 | 20/12/2015,17,7,11,9,4 16 | 27/12/2015,17,7,10,9,3 17 | 3/01/2016,24,10,12,14,4 18 | 10/01/2016,26,9,12,12,4 19 | 17/01/2016,26,11,13,11,6 20 | 24/01/2016,28,11,15,12,7 21 | 31/01/2016,28,11,14,11,6 22 | 7/02/2016,28,10,13,11,5 23 | 14/02/2016,30,10,13,10,5 24 | 21/02/2016,30,10,14,12,5 25 | 28/02/2016,30,10,13,11,5 26 | 6/03/2016,30,10,15,13,7 27 | 13/03/2016,27,10,15,13,8 28 | 20/03/2016,27,9,14,12,6 29 | 27/03/2016,29,9,14,12,6 30 | 3/04/2016,29,10,15,12,7 31 | 10/04/2016,29,10,14,11,6 32 | 17/04/2016,29,10,15,12,6 33 | 24/04/2016,28,10,14,12,6 34 | 1/05/2016,26,9,14,12,6 35 | 8/05/2016,28,11,15,12,6 36 | 15/05/2016,27,10,15,13,7 37 | 22/05/2016,27,10,16,12,6 38 | 29/05/2016,25,10,14,11,6 39 | 5/06/2016,25,11,15,11,7 40 | 12/06/2016,25,10,16,10,6 41 | 19/06/2016,21,10,16,10,7 42 | 26/06/2016,20,10,15,10,7 43 | 3/07/2016,17,9,14,10,6 44 | 10/07/2016,19,10,14,9,6 45 | 17/07/2016,18,10,15,9,6 46 | 24/07/2016,17,9,14,9,6 47 | 31/07/2016,18,11,15,9,6 48 | 7/08/2016,16,10,15,9,6 49 | 14/08/2016,15,10,12,8,5 50 | 21/08/2016,19,12,16,10,6 51 | 28/08/2016,21,13,15,10,7 52 | 4/09/2016,26,13,16,11,6 53 | 11/09/2016,29,14,17,11,7 54 | 18/09/2016,32,14,19,12,6 55 | 25/09/2016,33,13,18,12,8 56 | 2/10/2016,36,12,17,13,8 57 | 9/10/2016,38,12,18,16,8 58 | 16/10/2016,36,13,20,14,8 59 | 23/10/2016,35,13,19,14,8 60 | 30/10/2016,34,13,20,14,8 61 | 6/11/2016,32,13,18,14,8 62 | 13/11/2016,30,13,21,14,9 63 | 20/11/2016,28,12,21,14,9 64 | 27/11/2016,30,14,22,15,9 65 | 4/12/2016,30,13,22,16,10 66 | 11/12/2016,28,14,21,15,9 67 | 18/12/2016,22,11,20,13,9 68 | 25/12/2016,17,10,15,12,7 69 | 1/01/2017,21,13,20,14,9 70 | 8/01/2017,29,15,23,15,10 71 | 15/01/2017,26,15,23,14,10 72 | 22/01/2017,25,15,23,15,10 73 | 29/01/2017,25,16,23,14,10 74 | 5/02/2017,28,16,23,15,10 75 | 12/02/2017,27,15,25,15,11 76 | 19/02/2017,29,16,24,16,11 77 | 26/02/2017,31,17,27,15,11 78 | 5/03/2017,30,16,26,16,11 79 | 12/03/2017,29,16,26,17,12 80 | 19/03/2017,31,16,25,15,11 81 | 26/03/2017,32,16,28,17,11 82 | 2/04/2017,30,17,27,17,12 83 | 9/04/2017,28,15,26,16,11 84 | 16/04/2017,26,16,26,16,12 85 | 23/04/2017,30,16,27,18,12 86 | 30/04/2017,28,15,27,17,11 87 | 7/05/2017,26,17,27,16,12 88 | 14/05/2017,26,16,29,18,12 89 | 21/05/2017,24,17,29,18,12 90 | 28/05/2017,25,16,27,15,11 91 | 4/06/2017,25,15,29,14,11 92 | 11/06/2017,24,16,28,15,11 93 | 18/06/2017,20,16,28,14,11 94 | 25/06/2017,19,16,28,15,12 95 | 2/07/2017,21,15,27,14,11 96 | 9/07/2017,19,16,29,15,12 97 | 16/07/2017,18,16,28,16,13 98 | 23/07/2017,17,17,28,18,12 99 | 30/07/2017,16,17,29,23,12 100 | 6/08/2017,15,17,27,18,13 101 | 13/08/2017,15,16,28,17,13 102 | 20/08/2017,18,18,27,17,12 103 | 27/08/2017,19,18,28,17,12 104 | 3/09/2017,24,19,30,23,13 105 | 10/09/2017,27,20,31,21,13 106 | 17/09/2017,32,20,32,20,14 107 | 24/09/2017,34,20,31,20,13 108 | 1/10/2017,35,19,33,20,13 109 | 8/10/2017,35,20,34,22,13 110 | 15/10/2017,36,20,32,21,14 111 | 22/10/2017,34,20,35,26,13 112 | 29/10/2017,33,21,35,24,14 113 | 5/11/2017,33,21,37,25,14 114 | 12/11/2017,31,20,35,24,15 115 | 19/11/2017,29,17,33,22,14 116 | 26/11/2017,29,19,35,25,15 117 | 3/12/2017,30,20,36,25,15 118 | 10/12/2017,30,20,37,23,15 119 | 17/12/2017,24,17,32,19,14 120 | 24/12/2017,16,14,26,17,12 121 | 31/12/2017,18,19,30,20,13 122 | 7/01/2018,29,22,32,21,15 123 | 14/01/2018,27,21,34,30,14 124 | 21/01/2018,27,21,34,29,14 125 | 28/01/2018,26,22,36,27,16 126 | 4/02/2018,27,20,35,24,15 127 | 11/02/2018,27,21,34,24,13 128 | 18/02/2018,30,21,35,24,14 129 | 25/02/2018,33,21,36,24,14 130 | 4/03/2018,34,22,37,23,14 131 | 11/03/2018,34,22,36,24,14 132 | 18/03/2018,37,23,37,23,15 133 | 25/03/2018,36,22,36,21,14 134 | 1/04/2018,30,22,36,21,14 135 | 8/04/2018,33,23,36,23,15 136 | 15/04/2018,32,21,36,24,15 137 | 22/04/2018,33,22,37,23,15 138 | 29/04/2018,31,22,35,22,14 139 | 6/05/2018,31,21,37,25,15 140 | 13/05/2018,32,22,37,23,15 141 | 20/05/2018,30,23,37,22,14 142 | 27/05/2018,29,22,34,21,14 143 | 3/06/2018,30,23,37,21,14 144 | 10/06/2018,25,21,36,19,14 145 | 17/06/2018,24,21,36,17,14 146 | 24/06/2018,24,21,35,19,14 147 | 1/07/2018,24,20,34,18,13 148 | 8/07/2018,21,23,36,19,14 149 | 15/07/2018,21,23,36,19,14 150 | 22/07/2018,18,22,36,20,13 151 | 29/07/2018,17,23,36,20,14 152 | 5/08/2018,18,23,37,20,13 153 | 12/08/2018,17,22,36,19,12 154 | 19/08/2018,19,24,37,18,14 155 | 26/08/2018,23,26,38,20,14 156 | 2/09/2018,28,27,37,21,14 157 | 9/09/2018,34,25,38,22,14 158 | 16/09/2018,39,25,40,22,15 159 | 23/09/2018,38,25,39,23,15 160 | 30/09/2018,44,26,39,21,15 161 | 7/10/2018,43,26,39,22,15 162 | 14/10/2018,45,26,39,23,15 163 | 21/10/2018,42,26,40,24,15 164 | 28/10/2018,39,24,39,23,15 165 | 4/11/2018,37,24,36,21,15 166 | 11/11/2018,41,26,39,25,15 167 | 18/11/2018,35,23,37,22,14 168 | 25/11/2018,38,26,41,24,15 169 | 2/12/2018,38,26,42,24,16 170 | 9/12/2018,35,26,40,22,15 171 | 16/12/2018,30,23,37,23,13 172 | 23/12/2018,19,19,28,17,10 173 | 30/12/2018,20,22,31,18,11 174 | 6/01/2019,30,29,37,22,14 175 | 13/01/2019,31,29,37,24,15 176 | 20/01/2019,30,28,39,22,15 177 | 27/01/2019,29,28,40,23,15 178 | 3/02/2019,29,29,41,23,15 179 | 10/02/2019,32,28,40,24,15 180 | 17/02/2019,35,30,42,25,15 181 | 24/02/2019,38,29,41,23,15 182 | 3/03/2019,36,28,42,23,15 183 | 10/03/2019,39,27,40,23,15 184 | 17/03/2019,41,28,41,23,14 185 | 24/03/2019,38,30,41,24,16 186 | 31/03/2019,41,29,41,23,15 187 | 7/04/2019,38,28,41,23,16 188 | 14/04/2019,36,27,37,21,14 189 | 21/04/2019,36,27,39,23,15 190 | 28/04/2019,36,27,39,24,14 191 | 5/05/2019,36,28,41,23,14 192 | 12/05/2019,37,29,41,24,15 193 | 19/05/2019,35,30,39,22,15 194 | 26/05/2019,32,29,38,21,14 195 | 2/06/2019,27,29,40,21,14 196 | 9/06/2019,27,30,42,22,15 197 | 16/06/2019,32,31,41,24,15 198 | 23/06/2019,28,30,41,22,15 199 | 30/06/2019,32,29,40,21,14 200 | 7/07/2019,27,31,40,22,15 201 | 14/07/2019,23,31,41,23,15 202 | 21/07/2019,22,31,40,22,14 203 | 28/07/2019,20,31,39,22,13 204 | 4/08/2019,20,30,38,21,14 205 | 11/08/2019,19,31,39,21,14 206 | 18/08/2019,26,35,43,22,14 207 | 25/08/2019,27,37,43,22,14 208 | 1/09/2019,33,34,40,22,15 209 | 8/09/2019,42,36,44,25,15 210 | 15/09/2019,44,37,45,25,15 211 | 22/09/2019,45,35,46,26,15 212 | 29/09/2019,55,34,43,23,15 213 | 6/10/2019,53,34,43,24,15 214 | 13/10/2019,55,34,44,24,15 215 | 20/10/2019,52,32,42,23,14 216 | 27/10/2019,48,31,39,22,14 217 | 3/11/2019,49,34,44,25,14 218 | 10/11/2019,47,33,43,24,15 219 | 17/11/2019,46,34,45,27,15 220 | 24/11/2019,42,30,41,24,15 221 | 1/12/2019,43,34,43,24,14 222 | 8/12/2019,43,32,44,25,15 223 | 15/12/2019,38,32,42,22,15 224 | 22/12/2019,24,26,33,17,11 225 | 29/12/2019,23,29,33,19,12 226 | 5/01/2020,38,35,42,25,15 227 | 12/01/2020,34,35,42,25,15 228 | 19/01/2020,31,36,44,24,14 229 | 26/01/2020,30,35,43,24,14 230 | 2/02/2020,34,36,44,24,15 231 | 9/02/2020,37,38,44,25,16 232 | 16/02/2020,43,38,46,26,16 233 | 23/02/2020,42,38,46,26,16 234 | 1/03/2020,48,37,44,25,15 235 | 8/03/2020,57,34,39,23,14 236 | 15/03/2020,98,29,34,19,12 237 | 22/03/2020,100,28,33,19,12 238 | 29/03/2020,97,30,35,19,13 239 | 5/04/2020,100,32,38,21,13 240 | 12/04/2020,94,34,41,22,14 241 | 19/04/2020,98,32,41,21,15 242 | 26/04/2020,86,33,41,20,15 243 | 3/05/2020,86,31,41,22,15 244 | 10/05/2020,83,33,40,22,15 245 | 17/05/2020,66,33,40,21,15 246 | 24/05/2020,57,32,40,20,15 247 | 31/05/2020,65,33,41,21,14 248 | 7/06/2020,69,33,41,20,15 249 | 14/06/2020,61,33,40,21,15 250 | 21/06/2020,61,34,41,20,14 251 | 28/06/2020,59,35,38,20,14 252 | 5/07/2020,55,35,39,19,14 253 | 12/07/2020,58,36,40,21,15 254 | 19/07/2020,55,36,40,21,14 255 | 26/07/2020,43,34,39,20,14 256 | 2/08/2020,44,34,37,20,13 257 | 9/08/2020,44,35,38,21,13 258 | 16/08/2020,41,36,40,22,14 259 | 23/08/2020,49,39,40,21,14 260 | 30/08/2020,62,37,40,21,14 261 | 6/09/2020,74,38,42,24,14 262 | 13/09/2020,80,39,39,21,14 263 | -------------------------------------------------------------------------------- /Day12 - Missing Values and Handling Them/Data/SearchTrendData_WithMissing.csv: -------------------------------------------------------------------------------- 1 | Week,eLearning,DataScience,MachineLearning,ArtificialIntelligence,DeepLearning 2 | 20/09/2015,32,9,11,11,4 3 | 27/09/2015,35,10,11,11,4 4 | 4/10/2015,38,10,12,11,4 5 | 11/10/2015,37,9,12,10,4 6 | 18/10/2015,38,9,12,10,4 7 | 25/10/2015,38,10,,11,4 8 | 1/11/2015,37,9,13,11,3 9 | 8/11/2015,35,8,14,12,5 10 | 15/11/2015,35,9,13,12,4 11 | 22/11/2015,31,8,12,10,4 12 | 29/11/2015,,9,13,11,4 13 | 6/12/2015,33,9,13,12,5 14 | 13/12/2015,30,9,14,11, 15 | 20/12/2015,17,7,11,9,4 16 | 27/12/2015,17,7,10,9,3 17 | 3/01/2016,24,10,12,14,4 18 | 10/01/2016,26,9,12,12,4 19 | 17/01/2016,26,11,13,11,6 20 | 24/01/2016,28,11,15,12,7 21 | 31/01/2016,28,11,14,11,6 22 | 7/02/2016,28,10,,11,5 23 | 14/02/2016,30,10,13,10,5 24 | 21/02/2016,,10,14,12,5 25 | 28/02/2016,30,10,13,11,5 26 | 6/03/2016,30,10,15,13, 27 | 13/03/2016,27,10,15,13,8 28 | 20/03/2016,27,9,14,12,6 29 | 27/03/2016,29,9,14,12,6 30 | 3/04/2016,29,10,15,,7 31 | 10/04/2016,,10,14,11,6 32 | 17/04/2016,29,10,15,12,6 33 | 24/04/2016,28,10,14,12,6 34 | 1/05/2016,26,9,14,12,6 35 | 8/05/2016,28,11,15,12,6 36 | 15/05/2016,27,10,15,13,7 37 | 22/05/2016,27,,16,12,6 38 | 29/05/2016,25,10,14,11,6 39 | 5/06/2016,25,11,15,11,7 40 | 12/06/2016,25,10,16,10,6 41 | 19/06/2016,21,10,16,10,7 42 | 26/06/2016,20,10,15,10,7 43 | 3/07/2016,17,9,14,10,6 44 | 10/07/2016,19,10,14,9,6 45 | 17/07/2016,18,10,15,9,6 46 | 24/07/2016,17,9,14,9,6 47 | 31/07/2016,18,11,15,9, 48 | 7/08/2016,16,10,15,9,6 49 | 14/08/2016,15,10,12,8,5 50 | 21/08/2016,19,12,16,10,6 51 | 28/08/2016,21,13,15,10,7 52 | 4/09/2016,26,13,16,11,6 53 | 11/09/2016,29,14,17,11,7 54 | 18/09/2016,32,14,19,12,6 55 | 25/09/2016,33,13,18,12,8 56 | 2/10/2016,36,12,17,13,8 57 | 9/10/2016,38,12,18,16,8 58 | 16/10/2016,36,13,20,14,8 59 | 23/10/2016,35,13,19,14,8 60 | 30/10/2016,34,13,20,14,8 61 | 6/11/2016,32,13,18,14,8 62 | 13/11/2016,30,13,21,14,9 63 | 20/11/2016,,12,21,14,9 64 | 27/11/2016,30,14,22,15,9 65 | 4/12/2016,30,13,22,16, 66 | 11/12/2016,28,14,21,15,9 67 | 18/12/2016,22,11,20,13,9 68 | 25/12/2016,17,,15,12,7 69 | 1/01/2017,21,13,20,,9 70 | 8/01/2017,29,15,23,15,10 71 | 15/01/2017,26,15,23,14,10 72 | 22/01/2017,25,15,23,15,10 73 | 29/01/2017,25,16,23,14,10 74 | 5/02/2017,28,16,23,15,10 75 | 12/02/2017,,15,25,15,11 76 | 19/02/2017,29,16,24,16,11 77 | 26/02/2017,31,17,27,15,11 78 | 5/03/2017,30,16,26,16,11 79 | 12/03/2017,29,16,26,17,12 80 | 19/03/2017,31,16,25,15,11 81 | 26/03/2017,32,16,28,17,11 82 | 2/04/2017,30,17,27,17,12 83 | 9/04/2017,28,15,26,16, 84 | 16/04/2017,26,16,26,16,12 85 | 23/04/2017,30,16,27,18,12 86 | 30/04/2017,28,15,27,17,11 87 | 7/05/2017,26,17,27,16,12 88 | 14/05/2017,26,16,,18,12 89 | 21/05/2017,24,17,29,18,12 90 | 28/05/2017,25,16,27,15,11 91 | 4/06/2017,25,15,29,14,11 92 | 11/06/2017,24,16,28,15,11 93 | 18/06/2017,,,28,14,11 94 | 25/06/2017,19,16,28,15,12 95 | 2/07/2017,21,15,27,14,11 96 | 9/07/2017,19,16,29,15,12 97 | 16/07/2017,18,16,28,16,13 98 | 23/07/2017,17,17,28,18,12 99 | 30/07/2017,16,17,29,23, 100 | 6/08/2017,15,17,27,18,13 101 | 13/08/2017,15,16,28,17,13 102 | 20/08/2017,,18,27,17,12 103 | 27/08/2017,19,18,28,17,12 104 | 3/09/2017,24,19,30,23,13 105 | 10/09/2017,27,20,31,21,13 106 | 17/09/2017,32,20,32,20,14 107 | 24/09/2017,34,20,31,20,13 108 | 1/10/2017,35,19,33,20,13 109 | 8/10/2017,35,20,34,22,13 110 | 15/10/2017,36,20,32,21,14 111 | 22/10/2017,34,20,35,26,13 112 | 29/10/2017,33,21,35,24,14 113 | 5/11/2017,33,,37,,14 114 | 12/11/2017,31,20,35,24,15 115 | 19/11/2017,29,17,33,22,14 116 | 26/11/2017,29,19,35,25,15 117 | 3/12/2017,30,20,36,25,15 118 | 10/12/2017,30,20,37,23,15 119 | 17/12/2017,24,17,32,19,14 120 | 24/12/2017,16,14,26,17,12 121 | 31/12/2017,,19,30,20, 122 | 7/01/2018,29,22,32,21,15 123 | 14/01/2018,27,21,34,30,14 124 | 21/01/2018,27,21,34,29,14 125 | 28/01/2018,26,22,36,27,16 126 | 4/02/2018,27,20,35,24,15 127 | 11/02/2018,27,21,34,24,13 128 | 18/02/2018,30,21,35,24,14 129 | 25/02/2018,33,21,36,24,14 130 | 4/03/2018,34,22,37,23,14 131 | 11/03/2018,34,22,36,24,14 132 | 18/03/2018,37,23,37,23,15 133 | 25/03/2018,36,22,36,21,14 134 | 1/04/2018,30,22,36,21,14 135 | 8/04/2018,33,23,36,23,15 136 | 15/04/2018,32,,36,24,15 137 | 22/04/2018,,22,37,23,15 138 | 29/04/2018,31,22,35,22,14 139 | 6/05/2018,31,21,37,25,15 140 | 13/05/2018,32,22,37,23, 141 | 20/05/2018,30,23,37,22,14 142 | 27/05/2018,29,22,34,21,14 143 | 3/06/2018,30,23,37,21,14 144 | 10/06/2018,25,21,36,19,14 145 | 17/06/2018,24,21,36,17,14 146 | 24/06/2018,24,21,35,19,14 147 | 1/07/2018,24,20,34,18,13 148 | 8/07/2018,21,23,36,19,14 149 | 15/07/2018,21,23,36,19,14 150 | 22/07/2018,18,22,36,20,13 151 | 29/07/2018,17,23,,20,14 152 | 5/08/2018,18,23,37,20,13 153 | 12/08/2018,17,22,36,19,12 154 | 19/08/2018,,24,37,18,14 155 | 26/08/2018,23,26,38,20,14 156 | 2/09/2018,28,27,37,21,14 157 | 9/09/2018,34,25,38,22,14 158 | 16/09/2018,39,25,40,22,15 159 | 23/09/2018,38,25,39,23,15 160 | 30/09/2018,44,26,39,21,15 161 | 7/10/2018,43,26,39,22,15 162 | 14/10/2018,45,26,39,,15 163 | 21/10/2018,42,26,40,24, 164 | 28/10/2018,39,24,39,23,15 165 | 4/11/2018,37,24,36,21,15 166 | 11/11/2018,41,26,39,25,15 167 | 18/11/2018,35,23,37,22,14 168 | 25/11/2018,,26,41,24,15 169 | 2/12/2018,38,26,42,24,16 170 | 9/12/2018,35,26,40,22,15 171 | 16/12/2018,30,,37,23,13 172 | 23/12/2018,19,19,28,17,10 173 | 30/12/2018,20,22,31,18,11 174 | 6/01/2019,30,29,37,22,14 175 | 13/01/2019,31,29,37,24,15 176 | 20/01/2019,30,28,39,22,15 177 | 27/01/2019,29,28,40,23,15 178 | 3/02/2019,29,29,41,23,15 179 | 10/02/2019,32,28,40,24,15 180 | 17/02/2019,,30,42,25,15 181 | 24/02/2019,38,29,41,23,15 182 | 3/03/2019,36,28,42,23,15 183 | 10/03/2019,39,27,40,23,15 184 | 17/03/2019,41,28,41,23,14 185 | 24/03/2019,38,30,,24,16 186 | 31/03/2019,,29,41,23,15 187 | 7/04/2019,38,28,41,23,16 188 | 14/04/2019,36,27,37,21,14 189 | 21/04/2019,36,,39,23,15 190 | 28/04/2019,36,27,39,24,14 191 | 5/05/2019,36,28,41,23,14 192 | 12/05/2019,37,29,41,24,15 193 | 19/05/2019,35,30,39,22,15 194 | 26/05/2019,32,29,38,21,14 195 | 2/06/2019,27,29,40,21,14 196 | 9/06/2019,27,30,42,22,15 197 | 16/06/2019,32,31,41,24,15 198 | 23/06/2019,28,30,41,22,15 199 | 30/06/2019,32,29,40,21,14 200 | 7/07/2019,27,31,40,22,15 201 | 14/07/2019,23,31,41,23,15 202 | 21/07/2019,22,31,40,22,14 203 | 28/07/2019,20,31,39,22, 204 | 4/08/2019,20,30,38,21,14 205 | 11/08/2019,19,31,39,21,14 206 | 18/08/2019,26,35,43,22,14 207 | 25/08/2019,,37,43,22,14 208 | 1/09/2019,33,,40,22,15 209 | 8/09/2019,42,36,44,25,15 210 | 15/09/2019,44,37,45,25,15 211 | 22/09/2019,45,35,46,26,15 212 | 29/09/2019,55,34,43,,15 213 | 6/10/2019,53,34,43,24,15 214 | 13/10/2019,55,34,44,24,15 215 | 20/10/2019,52,32,42,23,14 216 | 27/10/2019,48,31,39,22,14 217 | 3/11/2019,49,34,44,25,14 218 | 10/11/2019,47,33,43,24,15 219 | 17/11/2019,46,34,45,27,15 220 | 24/11/2019,42,30,41,24,15 221 | 1/12/2019,43,34,43,24,14 222 | 8/12/2019,43,32,44,25,15 223 | 15/12/2019,38,32,42,22,15 224 | 22/12/2019,24,26,33,17,11 225 | 29/12/2019,23,,33,19,12 226 | 5/01/2020,38,35,42,25,15 227 | 12/01/2020,34,35,42,25,15 228 | 19/01/2020,,36,,24,14 229 | 26/01/2020,30,35,43,24,14 230 | 2/02/2020,34,36,44,24, 231 | 9/02/2020,37,38,44,25,16 232 | 16/02/2020,43,38,46,26,16 233 | 23/02/2020,42,38,46,26,16 234 | 1/03/2020,48,37,44,25,15 235 | 8/03/2020,57,34,39,23,14 236 | 15/03/2020,98,29,34,19,12 237 | 22/03/2020,100,28,33,19,12 238 | 29/03/2020,97,30,35,19,13 239 | 5/04/2020,100,,38,21,13 240 | 12/04/2020,94,34,41,22,14 241 | 19/04/2020,98,32,41,21,15 242 | 26/04/2020,86,33,41,20,15 243 | 3/05/2020,86,31,41,22,15 244 | 10/05/2020,83,33,40,22,15 245 | 17/05/2020,66,33,40,21,15 246 | 24/05/2020,57,32,40,,15 247 | 31/05/2020,65,33,,21,14 248 | 7/06/2020,,33,41,20,15 249 | 14/06/2020,61,33,40,21,15 250 | 21/06/2020,61,34,41,20,14 251 | 28/06/2020,59,,38,20,14 252 | 5/07/2020,55,35,39,19,14 253 | 12/07/2020,58,36,40,21,15 254 | 19/07/2020,55,36,40,21,14 255 | 26/07/2020,43,34,39,20,14 256 | 2/08/2020,44,34,37,20,13 257 | 9/08/2020,44,35,38,21,13 258 | 16/08/2020,41,36,40,22,14 259 | 23/08/2020,49,39,40,21,14 260 | 30/08/2020,62,37,40,21,14 261 | 6/09/2020,74,,42,24,14 262 | 13/09/2020,80,39,39,21,14 263 | -------------------------------------------------------------------------------- /Day13 - Rename and Replace/Data/SearchTrendData.csv: -------------------------------------------------------------------------------- 1 | Week,eLearning,DataScience,MachineLearning,ArtificialIntelligence,DeepLearning 2 | 20/09/2015,32,9,11,11,4 3 | 27/09/2015,35,10,11,11,4 4 | 4/10/2015,38,10,12,11,4 5 | 11/10/2015,37,9,12,10,4 6 | 18/10/2015,38,9,12,10,4 7 | 25/10/2015,38,10,12,11,4 8 | 1/11/2015,37,9,13,11,3 9 | 8/11/2015,35,8,14,12,5 10 | 15/11/2015,35,9,13,12,4 11 | 22/11/2015,31,8,12,10,4 12 | 29/11/2015,35,9,13,11,4 13 | 6/12/2015,33,9,13,12,5 14 | 13/12/2015,30,9,14,11,5 15 | 20/12/2015,17,7,11,9,4 16 | 27/12/2015,17,7,10,9,3 17 | 3/01/2016,24,10,12,14,4 18 | 10/01/2016,26,9,12,12,4 19 | 17/01/2016,26,11,13,11,6 20 | 24/01/2016,28,11,15,12,7 21 | 31/01/2016,28,11,14,11,6 22 | 7/02/2016,28,10,13,11,5 23 | 14/02/2016,30,10,13,10,5 24 | 21/02/2016,30,10,14,12,5 25 | 28/02/2016,30,10,13,11,5 26 | 6/03/2016,30,10,15,13,7 27 | 13/03/2016,27,10,15,13,8 28 | 20/03/2016,27,9,14,12,6 29 | 27/03/2016,29,9,14,12,6 30 | 3/04/2016,29,10,15,12,7 31 | 10/04/2016,29,10,14,11,6 32 | 17/04/2016,29,10,15,12,6 33 | 24/04/2016,28,10,14,12,6 34 | 1/05/2016,26,9,14,12,6 35 | 8/05/2016,28,11,15,12,6 36 | 15/05/2016,27,10,15,13,7 37 | 22/05/2016,27,10,16,12,6 38 | 29/05/2016,25,10,14,11,6 39 | 5/06/2016,25,11,15,11,7 40 | 12/06/2016,25,10,16,10,6 41 | 19/06/2016,21,10,16,10,7 42 | 26/06/2016,20,10,15,10,7 43 | 3/07/2016,17,9,14,10,6 44 | 10/07/2016,19,10,14,9,6 45 | 17/07/2016,18,10,15,9,6 46 | 24/07/2016,17,9,14,9,6 47 | 31/07/2016,18,11,15,9,6 48 | 7/08/2016,16,10,15,9,6 49 | 14/08/2016,15,10,12,8,5 50 | 21/08/2016,19,12,16,10,6 51 | 28/08/2016,21,13,15,10,7 52 | 4/09/2016,26,13,16,11,6 53 | 11/09/2016,29,14,17,11,7 54 | 18/09/2016,32,14,19,12,6 55 | 25/09/2016,33,13,18,12,8 56 | 2/10/2016,36,12,17,13,8 57 | 9/10/2016,38,12,18,16,8 58 | 16/10/2016,36,13,20,14,8 59 | 23/10/2016,35,13,19,14,8 60 | 30/10/2016,34,13,20,14,8 61 | 6/11/2016,32,13,18,14,8 62 | 13/11/2016,30,13,21,14,9 63 | 20/11/2016,28,12,21,14,9 64 | 27/11/2016,30,14,22,15,9 65 | 4/12/2016,30,13,22,16,10 66 | 11/12/2016,28,14,21,15,9 67 | 18/12/2016,22,11,20,13,9 68 | 25/12/2016,17,10,15,12,7 69 | 1/01/2017,21,13,20,14,9 70 | 8/01/2017,29,15,23,15,10 71 | 15/01/2017,26,15,23,14,10 72 | 22/01/2017,25,15,23,15,10 73 | 29/01/2017,25,16,23,14,10 74 | 5/02/2017,28,16,23,15,10 75 | 12/02/2017,27,15,25,15,11 76 | 19/02/2017,29,16,24,16,11 77 | 26/02/2017,31,17,27,15,11 78 | 5/03/2017,30,16,26,16,11 79 | 12/03/2017,29,16,26,17,12 80 | 19/03/2017,31,16,25,15,11 81 | 26/03/2017,32,16,28,17,11 82 | 2/04/2017,30,17,27,17,12 83 | 9/04/2017,28,15,26,16,11 84 | 16/04/2017,26,16,26,16,12 85 | 23/04/2017,30,16,27,18,12 86 | 30/04/2017,28,15,27,17,11 87 | 7/05/2017,26,17,27,16,12 88 | 14/05/2017,26,16,29,18,12 89 | 21/05/2017,24,17,29,18,12 90 | 28/05/2017,25,16,27,15,11 91 | 4/06/2017,25,15,29,14,11 92 | 11/06/2017,24,16,28,15,11 93 | 18/06/2017,20,16,28,14,11 94 | 25/06/2017,19,16,28,15,12 95 | 2/07/2017,21,15,27,14,11 96 | 9/07/2017,19,16,29,15,12 97 | 16/07/2017,18,16,28,16,13 98 | 23/07/2017,17,17,28,18,12 99 | 30/07/2017,16,17,29,23,12 100 | 6/08/2017,15,17,27,18,13 101 | 13/08/2017,15,16,28,17,13 102 | 20/08/2017,18,18,27,17,12 103 | 27/08/2017,19,18,28,17,12 104 | 3/09/2017,24,19,30,23,13 105 | 10/09/2017,27,20,31,21,13 106 | 17/09/2017,32,20,32,20,14 107 | 24/09/2017,34,20,31,20,13 108 | 1/10/2017,35,19,33,20,13 109 | 8/10/2017,35,20,34,22,13 110 | 15/10/2017,36,20,32,21,14 111 | 22/10/2017,34,20,35,26,13 112 | 29/10/2017,33,21,35,24,14 113 | 5/11/2017,33,21,37,25,14 114 | 12/11/2017,31,20,35,24,15 115 | 19/11/2017,29,17,33,22,14 116 | 26/11/2017,29,19,35,25,15 117 | 3/12/2017,30,20,36,25,15 118 | 10/12/2017,30,20,37,23,15 119 | 17/12/2017,24,17,32,19,14 120 | 24/12/2017,16,14,26,17,12 121 | 31/12/2017,18,19,30,20,13 122 | 7/01/2018,29,22,32,21,15 123 | 14/01/2018,27,21,34,30,14 124 | 21/01/2018,27,21,34,29,14 125 | 28/01/2018,26,22,36,27,16 126 | 4/02/2018,27,20,35,24,15 127 | 11/02/2018,27,21,34,24,13 128 | 18/02/2018,30,21,35,24,14 129 | 25/02/2018,33,21,36,24,14 130 | 4/03/2018,34,22,37,23,14 131 | 11/03/2018,34,22,36,24,14 132 | 18/03/2018,37,23,37,23,15 133 | 25/03/2018,36,22,36,21,14 134 | 1/04/2018,30,22,36,21,14 135 | 8/04/2018,33,23,36,23,15 136 | 15/04/2018,32,21,36,24,15 137 | 22/04/2018,33,22,37,23,15 138 | 29/04/2018,31,22,35,22,14 139 | 6/05/2018,31,21,37,25,15 140 | 13/05/2018,32,22,37,23,15 141 | 20/05/2018,30,23,37,22,14 142 | 27/05/2018,29,22,34,21,14 143 | 3/06/2018,30,23,37,21,14 144 | 10/06/2018,25,21,36,19,14 145 | 17/06/2018,24,21,36,17,14 146 | 24/06/2018,24,21,35,19,14 147 | 1/07/2018,24,20,34,18,13 148 | 8/07/2018,21,23,36,19,14 149 | 15/07/2018,21,23,36,19,14 150 | 22/07/2018,18,22,36,20,13 151 | 29/07/2018,17,23,36,20,14 152 | 5/08/2018,18,23,37,20,13 153 | 12/08/2018,17,22,36,19,12 154 | 19/08/2018,19,24,37,18,14 155 | 26/08/2018,23,26,38,20,14 156 | 2/09/2018,28,27,37,21,14 157 | 9/09/2018,34,25,38,22,14 158 | 16/09/2018,39,25,40,22,15 159 | 23/09/2018,38,25,39,23,15 160 | 30/09/2018,44,26,39,21,15 161 | 7/10/2018,43,26,39,22,15 162 | 14/10/2018,45,26,39,23,15 163 | 21/10/2018,42,26,40,24,15 164 | 28/10/2018,39,24,39,23,15 165 | 4/11/2018,37,24,36,21,15 166 | 11/11/2018,41,26,39,25,15 167 | 18/11/2018,35,23,37,22,14 168 | 25/11/2018,38,26,41,24,15 169 | 2/12/2018,38,26,42,24,16 170 | 9/12/2018,35,26,40,22,15 171 | 16/12/2018,30,23,37,23,13 172 | 23/12/2018,19,19,28,17,10 173 | 30/12/2018,20,22,31,18,11 174 | 6/01/2019,30,29,37,22,14 175 | 13/01/2019,31,29,37,24,15 176 | 20/01/2019,30,28,39,22,15 177 | 27/01/2019,29,28,40,23,15 178 | 3/02/2019,29,29,41,23,15 179 | 10/02/2019,32,28,40,24,15 180 | 17/02/2019,35,30,42,25,15 181 | 24/02/2019,38,29,41,23,15 182 | 3/03/2019,36,28,42,23,15 183 | 10/03/2019,39,27,40,23,15 184 | 17/03/2019,41,28,41,23,14 185 | 24/03/2019,38,30,41,24,16 186 | 31/03/2019,41,29,41,23,15 187 | 7/04/2019,38,28,41,23,16 188 | 14/04/2019,36,27,37,21,14 189 | 21/04/2019,36,27,39,23,15 190 | 28/04/2019,36,27,39,24,14 191 | 5/05/2019,36,28,41,23,14 192 | 12/05/2019,37,29,41,24,15 193 | 19/05/2019,35,30,39,22,15 194 | 26/05/2019,32,29,38,21,14 195 | 2/06/2019,27,29,40,21,14 196 | 9/06/2019,27,30,42,22,15 197 | 16/06/2019,32,31,41,24,15 198 | 23/06/2019,28,30,41,22,15 199 | 30/06/2019,32,29,40,21,14 200 | 7/07/2019,27,31,40,22,15 201 | 14/07/2019,23,31,41,23,15 202 | 21/07/2019,22,31,40,22,14 203 | 28/07/2019,20,31,39,22,13 204 | 4/08/2019,20,30,38,21,14 205 | 11/08/2019,19,31,39,21,14 206 | 18/08/2019,26,35,43,22,14 207 | 25/08/2019,27,37,43,22,14 208 | 1/09/2019,33,34,40,22,15 209 | 8/09/2019,42,36,44,25,15 210 | 15/09/2019,44,37,45,25,15 211 | 22/09/2019,45,35,46,26,15 212 | 29/09/2019,55,34,43,23,15 213 | 6/10/2019,53,34,43,24,15 214 | 13/10/2019,55,34,44,24,15 215 | 20/10/2019,52,32,42,23,14 216 | 27/10/2019,48,31,39,22,14 217 | 3/11/2019,49,34,44,25,14 218 | 10/11/2019,47,33,43,24,15 219 | 17/11/2019,46,34,45,27,15 220 | 24/11/2019,42,30,41,24,15 221 | 1/12/2019,43,34,43,24,14 222 | 8/12/2019,43,32,44,25,15 223 | 15/12/2019,38,32,42,22,15 224 | 22/12/2019,24,26,33,17,11 225 | 29/12/2019,23,29,33,19,12 226 | 5/01/2020,38,35,42,25,15 227 | 12/01/2020,34,35,42,25,15 228 | 19/01/2020,31,36,44,24,14 229 | 26/01/2020,30,35,43,24,14 230 | 2/02/2020,34,36,44,24,15 231 | 9/02/2020,37,38,44,25,16 232 | 16/02/2020,43,38,46,26,16 233 | 23/02/2020,42,38,46,26,16 234 | 1/03/2020,48,37,44,25,15 235 | 8/03/2020,57,34,39,23,14 236 | 15/03/2020,98,29,34,19,12 237 | 22/03/2020,100,28,33,19,12 238 | 29/03/2020,97,30,35,19,13 239 | 5/04/2020,100,32,38,21,13 240 | 12/04/2020,94,34,41,22,14 241 | 19/04/2020,98,32,41,21,15 242 | 26/04/2020,86,33,41,20,15 243 | 3/05/2020,86,31,41,22,15 244 | 10/05/2020,83,33,40,22,15 245 | 17/05/2020,66,33,40,21,15 246 | 24/05/2020,57,32,40,20,15 247 | 31/05/2020,65,33,41,21,14 248 | 7/06/2020,69,33,41,20,15 249 | 14/06/2020,61,33,40,21,15 250 | 21/06/2020,61,34,41,20,14 251 | 28/06/2020,59,35,38,20,14 252 | 5/07/2020,55,35,39,19,14 253 | 12/07/2020,58,36,40,21,15 254 | 19/07/2020,55,36,40,21,14 255 | 26/07/2020,43,34,39,20,14 256 | 2/08/2020,44,34,37,20,13 257 | 9/08/2020,44,35,38,21,13 258 | 16/08/2020,41,36,40,22,14 259 | 23/08/2020,49,39,40,21,14 260 | 30/08/2020,62,37,40,21,14 261 | 6/09/2020,74,38,42,24,14 262 | 13/09/2020,80,39,39,21,14 263 | -------------------------------------------------------------------------------- /Day13 - Rename and Replace/Data/SearchTrendData_WithMissing.csv: -------------------------------------------------------------------------------- 1 | Week,eLearning,DataScience,MachineLearning,ArtificialIntelligence,DeepLearning 2 | 20/09/2015,32,9,11,11,4 3 | 27/09/2015,35,10,11,11,4 4 | 4/10/2015,38,10,12,11,4 5 | 11/10/2015,37,9,12,10,4 6 | 18/10/2015,38,9,12,10,4 7 | 25/10/2015,38,10,,11,4 8 | 1/11/2015,37,9,13,11,3 9 | 8/11/2015,35,8,14,12,5 10 | 15/11/2015,35,9,13,12,4 11 | 22/11/2015,31,8,12,10,4 12 | 29/11/2015,,9,13,11,4 13 | 6/12/2015,33,9,13,12,5 14 | 13/12/2015,30,9,14,11, 15 | 20/12/2015,17,7,11,9,4 16 | 27/12/2015,17,7,10,9,3 17 | 3/01/2016,24,10,12,14,4 18 | 10/01/2016,26,9,12,12,4 19 | 17/01/2016,26,11,13,11,6 20 | 24/01/2016,28,11,15,12,7 21 | 31/01/2016,28,11,14,11,6 22 | 7/02/2016,28,10,,11,5 23 | 14/02/2016,30,10,13,10,5 24 | 21/02/2016,,10,14,12,5 25 | 28/02/2016,30,10,13,11,5 26 | 6/03/2016,30,10,15,13, 27 | 13/03/2016,27,10,15,13,8 28 | 20/03/2016,27,9,14,12,6 29 | 27/03/2016,29,9,14,12,6 30 | 3/04/2016,29,10,15,,7 31 | 10/04/2016,,10,14,11,6 32 | 17/04/2016,29,10,15,12,6 33 | 24/04/2016,28,10,14,12,6 34 | 1/05/2016,26,9,14,12,6 35 | 8/05/2016,28,11,15,12,6 36 | 15/05/2016,27,10,15,13,7 37 | 22/05/2016,27,,16,12,6 38 | 29/05/2016,25,10,14,11,6 39 | 5/06/2016,25,11,15,11,7 40 | 12/06/2016,25,10,16,10,6 41 | 19/06/2016,21,10,16,10,7 42 | 26/06/2016,20,10,15,10,7 43 | 3/07/2016,17,9,14,10,6 44 | 10/07/2016,19,10,14,9,6 45 | 17/07/2016,18,10,15,9,6 46 | 24/07/2016,17,9,14,9,6 47 | 31/07/2016,18,11,15,9, 48 | 7/08/2016,16,10,15,9,6 49 | 14/08/2016,15,10,12,8,5 50 | 21/08/2016,19,12,16,10,6 51 | 28/08/2016,21,13,15,10,7 52 | 4/09/2016,26,13,16,11,6 53 | 11/09/2016,29,14,17,11,7 54 | 18/09/2016,32,14,19,12,6 55 | 25/09/2016,33,13,18,12,8 56 | 2/10/2016,36,12,17,13,8 57 | 9/10/2016,38,12,18,16,8 58 | 16/10/2016,36,13,20,14,8 59 | 23/10/2016,35,13,19,14,8 60 | 30/10/2016,34,13,20,14,8 61 | 6/11/2016,32,13,18,14,8 62 | 13/11/2016,30,13,21,14,9 63 | 20/11/2016,,12,21,14,9 64 | 27/11/2016,30,14,22,15,9 65 | 4/12/2016,30,13,22,16, 66 | 11/12/2016,28,14,21,15,9 67 | 18/12/2016,22,11,20,13,9 68 | 25/12/2016,17,,15,12,7 69 | 1/01/2017,21,13,20,,9 70 | 8/01/2017,29,15,23,15,10 71 | 15/01/2017,26,15,23,14,10 72 | 22/01/2017,25,15,23,15,10 73 | 29/01/2017,25,16,23,14,10 74 | 5/02/2017,28,16,23,15,10 75 | 12/02/2017,,15,25,15,11 76 | 19/02/2017,29,16,24,16,11 77 | 26/02/2017,31,17,27,15,11 78 | 5/03/2017,30,16,26,16,11 79 | 12/03/2017,29,16,26,17,12 80 | 19/03/2017,31,16,25,15,11 81 | 26/03/2017,32,16,28,17,11 82 | 2/04/2017,30,17,27,17,12 83 | 9/04/2017,28,15,26,16, 84 | 16/04/2017,26,16,26,16,12 85 | 23/04/2017,30,16,27,18,12 86 | 30/04/2017,28,15,27,17,11 87 | 7/05/2017,26,17,27,16,12 88 | 14/05/2017,26,16,,18,12 89 | 21/05/2017,24,17,29,18,12 90 | 28/05/2017,25,16,27,15,11 91 | 4/06/2017,25,15,29,14,11 92 | 11/06/2017,24,16,28,15,11 93 | 18/06/2017,,,28,14,11 94 | 25/06/2017,19,16,28,15,12 95 | 2/07/2017,21,15,27,14,11 96 | 9/07/2017,19,16,29,15,12 97 | 16/07/2017,18,16,28,16,13 98 | 23/07/2017,17,17,28,18,12 99 | 30/07/2017,16,17,29,23, 100 | 6/08/2017,15,17,27,18,13 101 | 13/08/2017,15,16,28,17,13 102 | 20/08/2017,,18,27,17,12 103 | 27/08/2017,19,18,28,17,12 104 | 3/09/2017,24,19,30,23,13 105 | 10/09/2017,27,20,31,21,13 106 | 17/09/2017,32,20,32,20,14 107 | 24/09/2017,34,20,31,20,13 108 | 1/10/2017,35,19,33,20,13 109 | 8/10/2017,35,20,34,22,13 110 | 15/10/2017,36,20,32,21,14 111 | 22/10/2017,34,20,35,26,13 112 | 29/10/2017,33,21,35,24,14 113 | 5/11/2017,33,,37,,14 114 | 12/11/2017,31,20,35,24,15 115 | 19/11/2017,29,17,33,22,14 116 | 26/11/2017,29,19,35,25,15 117 | 3/12/2017,30,20,36,25,15 118 | 10/12/2017,30,20,37,23,15 119 | 17/12/2017,24,17,32,19,14 120 | 24/12/2017,16,14,26,17,12 121 | 31/12/2017,,19,30,20, 122 | 7/01/2018,29,22,32,21,15 123 | 14/01/2018,27,21,34,30,14 124 | 21/01/2018,27,21,34,29,14 125 | 28/01/2018,26,22,36,27,16 126 | 4/02/2018,27,20,35,24,15 127 | 11/02/2018,27,21,34,24,13 128 | 18/02/2018,30,21,35,24,14 129 | 25/02/2018,33,21,36,24,14 130 | 4/03/2018,34,22,37,23,14 131 | 11/03/2018,34,22,36,24,14 132 | 18/03/2018,37,23,37,23,15 133 | 25/03/2018,36,22,36,21,14 134 | 1/04/2018,30,22,36,21,14 135 | 8/04/2018,33,23,36,23,15 136 | 15/04/2018,32,,36,24,15 137 | 22/04/2018,,22,37,23,15 138 | 29/04/2018,31,22,35,22,14 139 | 6/05/2018,31,21,37,25,15 140 | 13/05/2018,32,22,37,23, 141 | 20/05/2018,30,23,37,22,14 142 | 27/05/2018,29,22,34,21,14 143 | 3/06/2018,30,23,37,21,14 144 | 10/06/2018,25,21,36,19,14 145 | 17/06/2018,24,21,36,17,14 146 | 24/06/2018,24,21,35,19,14 147 | 1/07/2018,24,20,34,18,13 148 | 8/07/2018,21,23,36,19,14 149 | 15/07/2018,21,23,36,19,14 150 | 22/07/2018,18,22,36,20,13 151 | 29/07/2018,17,23,,20,14 152 | 5/08/2018,18,23,37,20,13 153 | 12/08/2018,17,22,36,19,12 154 | 19/08/2018,,24,37,18,14 155 | 26/08/2018,23,26,38,20,14 156 | 2/09/2018,28,27,37,21,14 157 | 9/09/2018,34,25,38,22,14 158 | 16/09/2018,39,25,40,22,15 159 | 23/09/2018,38,25,39,23,15 160 | 30/09/2018,44,26,39,21,15 161 | 7/10/2018,43,26,39,22,15 162 | 14/10/2018,45,26,39,,15 163 | 21/10/2018,42,26,40,24, 164 | 28/10/2018,39,24,39,23,15 165 | 4/11/2018,37,24,36,21,15 166 | 11/11/2018,41,26,39,25,15 167 | 18/11/2018,35,23,37,22,14 168 | 25/11/2018,,26,41,24,15 169 | 2/12/2018,38,26,42,24,16 170 | 9/12/2018,35,26,40,22,15 171 | 16/12/2018,30,,37,23,13 172 | 23/12/2018,19,19,28,17,10 173 | 30/12/2018,20,22,31,18,11 174 | 6/01/2019,30,29,37,22,14 175 | 13/01/2019,31,29,37,24,15 176 | 20/01/2019,30,28,39,22,15 177 | 27/01/2019,29,28,40,23,15 178 | 3/02/2019,29,29,41,23,15 179 | 10/02/2019,32,28,40,24,15 180 | 17/02/2019,,30,42,25,15 181 | 24/02/2019,38,29,41,23,15 182 | 3/03/2019,36,28,42,23,15 183 | 10/03/2019,39,27,40,23,15 184 | 17/03/2019,41,28,41,23,14 185 | 24/03/2019,38,30,,24,16 186 | 31/03/2019,,29,41,23,15 187 | 7/04/2019,38,28,41,23,16 188 | 14/04/2019,36,27,37,21,14 189 | 21/04/2019,36,,39,23,15 190 | 28/04/2019,36,27,39,24,14 191 | 5/05/2019,36,28,41,23,14 192 | 12/05/2019,37,29,41,24,15 193 | 19/05/2019,35,30,39,22,15 194 | 26/05/2019,32,29,38,21,14 195 | 2/06/2019,27,29,40,21,14 196 | 9/06/2019,27,30,42,22,15 197 | 16/06/2019,32,31,41,24,15 198 | 23/06/2019,28,30,41,22,15 199 | 30/06/2019,32,29,40,21,14 200 | 7/07/2019,27,31,40,22,15 201 | 14/07/2019,23,31,41,23,15 202 | 21/07/2019,22,31,40,22,14 203 | 28/07/2019,20,31,39,22, 204 | 4/08/2019,20,30,38,21,14 205 | 11/08/2019,19,31,39,21,14 206 | 18/08/2019,26,35,43,22,14 207 | 25/08/2019,,37,43,22,14 208 | 1/09/2019,33,,40,22,15 209 | 8/09/2019,42,36,44,25,15 210 | 15/09/2019,44,37,45,25,15 211 | 22/09/2019,45,35,46,26,15 212 | 29/09/2019,55,34,43,,15 213 | 6/10/2019,53,34,43,24,15 214 | 13/10/2019,55,34,44,24,15 215 | 20/10/2019,52,32,42,23,14 216 | 27/10/2019,48,31,39,22,14 217 | 3/11/2019,49,34,44,25,14 218 | 10/11/2019,47,33,43,24,15 219 | 17/11/2019,46,34,45,27,15 220 | 24/11/2019,42,30,41,24,15 221 | 1/12/2019,43,34,43,24,14 222 | 8/12/2019,43,32,44,25,15 223 | 15/12/2019,38,32,42,22,15 224 | 22/12/2019,24,26,33,17,11 225 | 29/12/2019,23,,33,19,12 226 | 5/01/2020,38,35,42,25,15 227 | 12/01/2020,34,35,42,25,15 228 | 19/01/2020,,36,,24,14 229 | 26/01/2020,30,35,43,24,14 230 | 2/02/2020,34,36,44,24, 231 | 9/02/2020,37,38,44,25,16 232 | 16/02/2020,43,38,46,26,16 233 | 23/02/2020,42,38,46,26,16 234 | 1/03/2020,48,37,44,25,15 235 | 8/03/2020,57,34,39,23,14 236 | 15/03/2020,98,29,34,19,12 237 | 22/03/2020,100,28,33,19,12 238 | 29/03/2020,97,30,35,19,13 239 | 5/04/2020,100,,38,21,13 240 | 12/04/2020,94,34,41,22,14 241 | 19/04/2020,98,32,41,21,15 242 | 26/04/2020,86,33,41,20,15 243 | 3/05/2020,86,31,41,22,15 244 | 10/05/2020,83,33,40,22,15 245 | 17/05/2020,66,33,40,21,15 246 | 24/05/2020,57,32,40,,15 247 | 31/05/2020,65,33,,21,14 248 | 7/06/2020,,33,41,20,15 249 | 14/06/2020,61,33,40,21,15 250 | 21/06/2020,61,34,41,20,14 251 | 28/06/2020,59,,38,20,14 252 | 5/07/2020,55,35,39,19,14 253 | 12/07/2020,58,36,40,21,15 254 | 19/07/2020,55,36,40,21,14 255 | 26/07/2020,43,34,39,20,14 256 | 2/08/2020,44,34,37,20,13 257 | 9/08/2020,44,35,38,21,13 258 | 16/08/2020,41,36,40,22,14 259 | 23/08/2020,49,39,40,21,14 260 | 30/08/2020,62,37,40,21,14 261 | 6/09/2020,74,,42,24,14 262 | 13/09/2020,80,39,39,21,14 263 | -------------------------------------------------------------------------------- /Day14 - Merging, Joining and Combine/Data/SearchTrendData1.csv: -------------------------------------------------------------------------------- 1 | Week,eLearning,DataScience,MachineLearning 2 | 20/09/2015,32,9,11 3 | 27/09/2015,35,10,11 4 | 4/10/2015,38,10,12 5 | 11/10/2015,37,9,12 6 | 18/10/2015,38,9,12 7 | 25/10/2015,38,10,12 8 | 1/11/2015,37,9,13 9 | 8/11/2015,35,8,14 10 | 15/11/2015,35,9,13 11 | 22/11/2015,31,8,12 12 | 29/11/2015,35,9,13 13 | 6/12/2015,33,9,13 14 | 13/12/2015,30,9,14 15 | 20/12/2015,17,7,11 16 | 27/12/2015,17,7,10 17 | 3/01/2016,24,10,12 18 | 10/01/2016,26,9,12 19 | 17/01/2016,26,11,13 20 | 24/01/2016,28,11,15 21 | 31/01/2016,28,11,14 22 | 7/02/2016,28,10,13 23 | 14/02/2016,30,10,13 24 | 21/02/2016,30,10,14 25 | 28/02/2016,30,10,13 26 | 6/03/2016,30,10,15 27 | 13/03/2016,27,10,15 28 | 20/03/2016,27,9,14 29 | 27/03/2016,29,9,14 30 | 3/04/2016,29,10,15 31 | 10/04/2016,29,10,14 32 | 17/04/2016,29,10,15 33 | 24/04/2016,28,10,14 34 | 1/05/2016,26,9,14 35 | 8/05/2016,28,11,15 36 | 15/05/2016,27,10,15 37 | 22/05/2016,27,10,16 38 | 29/05/2016,25,10,14 39 | 5/06/2016,25,11,15 40 | 12/06/2016,25,10,16 41 | 19/06/2016,21,10,16 42 | 26/06/2016,20,10,15 43 | 3/07/2016,17,9,14 44 | 10/07/2016,19,10,14 45 | 17/07/2016,18,10,15 46 | 24/07/2016,17,9,14 47 | 31/07/2016,18,11,15 48 | 7/08/2016,16,10,15 49 | 14/08/2016,15,10,12 50 | 21/08/2016,19,12,16 51 | 28/08/2016,21,13,15 52 | 4/09/2016,26,13,16 53 | 11/09/2016,29,14,17 54 | 18/09/2016,32,14,19 55 | 25/09/2016,33,13,18 56 | 2/10/2016,36,12,17 57 | 9/10/2016,38,12,18 58 | 16/10/2016,36,13,20 59 | 23/10/2016,35,13,19 60 | 30/10/2016,34,13,20 61 | 6/11/2016,32,13,18 62 | 13/11/2016,30,13,21 63 | 20/11/2016,28,12,21 64 | 27/11/2016,30,14,22 65 | 4/12/2016,30,13,22 66 | 11/12/2016,28,14,21 67 | 18/12/2016,22,11,20 68 | 25/12/2016,17,10,15 69 | 1/01/2017,21,13,20 70 | 8/01/2017,29,15,23 71 | 15/01/2017,26,15,23 72 | 22/01/2017,25,15,23 73 | 29/01/2017,25,16,23 74 | 5/02/2017,28,16,23 75 | 12/02/2017,27,15,25 76 | 19/02/2017,29,16,24 77 | 26/02/2017,31,17,27 78 | 5/03/2017,30,16,26 79 | 12/03/2017,29,16,26 80 | 19/03/2017,31,16,25 81 | 26/03/2017,32,16,28 82 | 2/04/2017,30,17,27 83 | 9/04/2017,28,15,26 84 | 16/04/2017,26,16,26 85 | 23/04/2017,30,16,27 86 | 30/04/2017,28,15,27 87 | 7/05/2017,26,17,27 88 | 14/05/2017,26,16,29 89 | 21/05/2017,24,17,29 90 | 28/05/2017,25,16,27 91 | 4/06/2017,25,15,29 92 | 11/06/2017,24,16,28 93 | 18/06/2017,20,16,28 94 | 25/06/2017,19,16,28 95 | 2/07/2017,21,15,27 96 | 9/07/2017,19,16,29 97 | 16/07/2017,18,16,28 98 | 23/07/2017,17,17,28 99 | 30/07/2017,16,17,29 100 | 6/08/2017,15,17,27 101 | 13/08/2017,15,16,28 102 | 20/08/2017,18,18,27 103 | 27/08/2017,19,18,28 104 | 3/09/2017,24,19,30 105 | 10/09/2017,27,20,31 106 | 17/09/2017,32,20,32 107 | 24/09/2017,34,20,31 108 | 1/10/2017,35,19,33 109 | 8/10/2017,35,20,34 110 | 15/10/2017,36,20,32 111 | 22/10/2017,34,20,35 112 | 29/10/2017,33,21,35 113 | 5/11/2017,33,21,37 114 | 12/11/2017,31,20,35 115 | 19/11/2017,29,17,33 116 | 26/11/2017,29,19,35 117 | 3/12/2017,30,20,36 118 | 10/12/2017,30,20,37 119 | 17/12/2017,24,17,32 120 | 24/12/2017,16,14,26 121 | 31/12/2017,18,19,30 122 | 7/01/2018,29,22,32 123 | 14/01/2018,27,21,34 124 | 21/01/2018,27,21,34 125 | 28/01/2018,26,22,36 126 | 4/02/2018,27,20,35 127 | 11/02/2018,27,21,34 128 | 18/02/2018,30,21,35 129 | 25/02/2018,33,21,36 130 | 4/03/2018,34,22,37 131 | 11/03/2018,34,22,36 132 | 18/03/2018,37,23,37 133 | 25/03/2018,36,22,36 134 | 1/04/2018,30,22,36 135 | 8/04/2018,33,23,36 136 | 15/04/2018,32,21,36 137 | 22/04/2018,33,22,37 138 | 29/04/2018,31,22,35 139 | 6/05/2018,31,21,37 140 | 13/05/2018,32,22,37 141 | 20/05/2018,30,23,37 142 | 27/05/2018,29,22,34 143 | 3/06/2018,30,23,37 144 | 10/06/2018,25,21,36 145 | 17/06/2018,24,21,36 146 | 24/06/2018,24,21,35 147 | 1/07/2018,24,20,34 148 | 8/07/2018,21,23,36 149 | 15/07/2018,21,23,36 150 | 22/07/2018,18,22,36 151 | 29/07/2018,17,23,36 152 | 5/08/2018,18,23,37 153 | 12/08/2018,17,22,36 154 | 19/08/2018,19,24,37 155 | 26/08/2018,23,26,38 156 | 2/09/2018,28,27,37 157 | 9/09/2018,34,25,38 158 | 16/09/2018,39,25,40 159 | 23/09/2018,38,25,39 160 | 30/09/2018,44,26,39 161 | 7/10/2018,43,26,39 162 | 14/10/2018,45,26,39 163 | 21/10/2018,42,26,40 164 | 28/10/2018,39,24,39 165 | 4/11/2018,37,24,36 166 | 11/11/2018,41,26,39 167 | 18/11/2018,35,23,37 168 | 25/11/2018,38,26,41 169 | 2/12/2018,38,26,42 170 | 9/12/2018,35,26,40 171 | 16/12/2018,30,23,37 172 | 23/12/2018,19,19,28 173 | 30/12/2018,20,22,31 174 | 6/01/2019,30,29,37 175 | 13/01/2019,31,29,37 176 | 20/01/2019,30,28,39 177 | 27/01/2019,29,28,40 178 | 3/02/2019,29,29,41 179 | 10/02/2019,32,28,40 180 | 17/02/2019,35,30,42 181 | 24/02/2019,38,29,41 182 | 3/03/2019,36,28,42 183 | 10/03/2019,39,27,40 184 | 17/03/2019,41,28,41 185 | 24/03/2019,38,30,41 186 | 31/03/2019,41,29,41 187 | 7/04/2019,38,28,41 188 | 14/04/2019,36,27,37 189 | 21/04/2019,36,27,39 190 | 28/04/2019,36,27,39 191 | 5/05/2019,36,28,41 192 | 12/05/2019,37,29,41 193 | 19/05/2019,35,30,39 194 | 26/05/2019,32,29,38 195 | 2/06/2019,27,29,40 196 | 9/06/2019,27,30,42 197 | 16/06/2019,32,31,41 198 | 23/06/2019,28,30,41 199 | 30/06/2019,32,29,40 200 | 7/07/2019,27,31,40 201 | 14/07/2019,23,31,41 202 | 21/07/2019,22,31,40 203 | 28/07/2019,20,31,39 204 | 4/08/2019,20,30,38 205 | 11/08/2019,19,31,39 206 | 18/08/2019,26,35,43 207 | 25/08/2019,27,37,43 208 | 1/09/2019,33,34,40 209 | 8/09/2019,42,36,44 210 | 15/09/2019,44,37,45 211 | 22/09/2019,45,35,46 212 | 29/09/2019,55,34,43 213 | 6/10/2019,53,34,43 214 | 13/10/2019,55,34,44 215 | 20/10/2019,52,32,42 216 | 27/10/2019,48,31,39 217 | 3/11/2019,49,34,44 218 | 10/11/2019,47,33,43 219 | 17/11/2019,46,34,45 220 | 24/11/2019,42,30,41 221 | 1/12/2019,43,34,43 222 | 8/12/2019,43,32,44 223 | 15/12/2019,38,32,42 224 | 22/12/2019,24,26,33 225 | 29/12/2019,23,29,33 226 | 5/01/2020,38,35,42 227 | 12/01/2020,34,35,42 228 | 19/01/2020,31,36,44 229 | 26/01/2020,30,35,43 230 | 2/02/2020,34,36,44 231 | 9/02/2020,37,38,44 232 | 16/02/2020,43,38,46 233 | 23/02/2020,42,38,46 234 | 1/03/2020,48,37,44 235 | 8/03/2020,57,34,39 236 | 15/03/2020,98,29,34 237 | 22/03/2020,100,28,33 238 | 29/03/2020,97,30,35 239 | 5/04/2020,100,32,38 240 | 12/04/2020,94,34,41 241 | 19/04/2020,98,32,41 242 | 26/04/2020,86,33,41 243 | 3/05/2020,86,31,41 244 | 10/05/2020,83,33,40 245 | 17/05/2020,66,33,40 246 | 24/05/2020,57,32,40 247 | 31/05/2020,65,33,41 248 | 7/06/2020,69,33,41 249 | 14/06/2020,61,33,40 250 | 21/06/2020,61,34,41 251 | 28/06/2020,59,35,38 252 | 5/07/2020,55,35,39 253 | 12/07/2020,58,36,40 254 | 19/07/2020,55,36,40 255 | 26/07/2020,43,34,39 256 | 2/08/2020,44,34,37 257 | 9/08/2020,44,35,38 258 | 16/08/2020,41,36,40 259 | 23/08/2020,49,39,40 260 | 30/08/2020,62,37,40 261 | 6/09/2020,74,38,42 262 | 13/09/2020,80,39,39 263 | -------------------------------------------------------------------------------- /Day14 - Merging, Joining and Combine/Data/SearchTrendData2.csv: -------------------------------------------------------------------------------- 1 | Week,ArtificialIntelligence,DeepLearning 2 | 20/09/2015,11,4 3 | 27/09/2015,11,4 4 | 4/10/2015,11,4 5 | 11/10/2015,10,4 6 | 18/10/2015,10,4 7 | 25/10/2015,11,4 8 | 1/11/2015,11,3 9 | 8/11/2015,12,5 10 | 15/11/2015,12,4 11 | 22/11/2015,10,4 12 | 29/11/2015,11,4 13 | 6/12/2015,12,5 14 | 13/12/2015,11,5 15 | 20/12/2015,9,4 16 | 27/12/2015,9,3 17 | 3/01/2016,14,4 18 | 10/01/2016,12,4 19 | 17/01/2016,11,6 20 | 24/01/2016,12,7 21 | 31/01/2016,11,6 22 | 7/02/2016,11,5 23 | 14/02/2016,10,5 24 | 21/02/2016,12,5 25 | 28/02/2016,11,5 26 | 6/03/2016,13,7 27 | 13/03/2016,13,8 28 | 20/03/2016,12,6 29 | 27/03/2016,12,6 30 | 3/04/2016,12,7 31 | 10/04/2016,11,6 32 | 17/04/2016,12,6 33 | 24/04/2016,12,6 34 | 1/05/2016,12,6 35 | 8/05/2016,12,6 36 | 15/05/2016,13,7 37 | 22/05/2016,12,6 38 | 29/05/2016,11,6 39 | 5/06/2016,11,7 40 | 12/06/2016,10,6 41 | 19/06/2016,10,7 42 | 26/06/2016,10,7 43 | 3/07/2016,10,6 44 | 10/07/2016,9,6 45 | 17/07/2016,9,6 46 | 24/07/2016,9,6 47 | 31/07/2016,9,6 48 | 7/08/2016,9,6 49 | 14/08/2016,8,5 50 | 21/08/2016,10,6 51 | 28/08/2016,10,7 52 | 4/09/2016,11,6 53 | 11/09/2016,11,7 54 | 18/09/2016,12,6 55 | 25/09/2016,12,8 56 | 2/10/2016,13,8 57 | 9/10/2016,16,8 58 | 16/10/2016,14,8 59 | 23/10/2016,14,8 60 | 30/10/2016,14,8 61 | 6/11/2016,14,8 62 | 13/11/2016,14,9 63 | 20/11/2016,14,9 64 | 27/11/2016,15,9 65 | 4/12/2016,16,10 66 | 11/12/2016,15,9 67 | 18/12/2016,13,9 68 | 25/12/2016,12,7 69 | 1/01/2017,14,9 70 | 8/01/2017,15,10 71 | 15/01/2017,14,10 72 | 22/01/2017,15,10 73 | 29/01/2017,14,10 74 | 5/02/2017,15,10 75 | 12/02/2017,15,11 76 | 19/02/2017,16,11 77 | 26/02/2017,15,11 78 | 5/03/2017,16,11 79 | 12/03/2017,17,12 80 | 19/03/2017,15,11 81 | 26/03/2017,17,11 82 | 2/04/2017,17,12 83 | 9/04/2017,16,11 84 | 16/04/2017,16,12 85 | 23/04/2017,18,12 86 | 30/04/2017,17,11 87 | 7/05/2017,16,12 88 | 14/05/2017,18,12 89 | 21/05/2017,18,12 90 | 28/05/2017,15,11 91 | 4/06/2017,14,11 92 | 11/06/2017,15,11 93 | 18/06/2017,14,11 94 | 25/06/2017,15,12 95 | 2/07/2017,14,11 96 | 9/07/2017,15,12 97 | 16/07/2017,16,13 98 | 23/07/2017,18,12 99 | 30/07/2017,23,12 100 | 6/08/2017,18,13 101 | 13/08/2017,17,13 102 | 20/08/2017,17,12 103 | 27/08/2017,17,12 104 | 3/09/2017,23,13 105 | 10/09/2017,21,13 106 | 17/09/2017,20,14 107 | 24/09/2017,20,13 108 | 1/10/2017,20,13 109 | 8/10/2017,22,13 110 | 15/10/2017,21,14 111 | 22/10/2017,26,13 112 | 29/10/2017,24,14 113 | 5/11/2017,25,14 114 | 12/11/2017,24,15 115 | 19/11/2017,22,14 116 | 26/11/2017,25,15 117 | 3/12/2017,25,15 118 | 10/12/2017,23,15 119 | 17/12/2017,19,14 120 | 24/12/2017,17,12 121 | 31/12/2017,20,13 122 | 7/01/2018,21,15 123 | 14/01/2018,30,14 124 | 21/01/2018,29,14 125 | 28/01/2018,27,16 126 | 4/02/2018,24,15 127 | 11/02/2018,24,13 128 | 18/02/2018,24,14 129 | 25/02/2018,24,14 130 | 4/03/2018,23,14 131 | 11/03/2018,24,14 132 | 18/03/2018,23,15 133 | 25/03/2018,21,14 134 | 1/04/2018,21,14 135 | 8/04/2018,23,15 136 | 15/04/2018,24,15 137 | 22/04/2018,23,15 138 | 29/04/2018,22,14 139 | 6/05/2018,25,15 140 | 13/05/2018,23,15 141 | 20/05/2018,22,14 142 | 27/05/2018,21,14 143 | 3/06/2018,21,14 144 | 10/06/2018,19,14 145 | 17/06/2018,17,14 146 | 24/06/2018,19,14 147 | 1/07/2018,18,13 148 | 8/07/2018,19,14 149 | 15/07/2018,19,14 150 | 22/07/2018,20,13 151 | 29/07/2018,20,14 152 | 5/08/2018,20,13 153 | 12/08/2018,19,12 154 | 19/08/2018,18,14 155 | 26/08/2018,20,14 156 | 2/09/2018,21,14 157 | 9/09/2018,22,14 158 | 16/09/2018,22,15 159 | 23/09/2018,23,15 160 | 30/09/2018,21,15 161 | 7/10/2018,22,15 162 | 14/10/2018,23,15 163 | 21/10/2018,24,15 164 | 28/10/2018,23,15 165 | 4/11/2018,21,15 166 | 11/11/2018,25,15 167 | 18/11/2018,22,14 168 | 25/11/2018,24,15 169 | 2/12/2018,24,16 170 | 9/12/2018,22,15 171 | 16/12/2018,23,13 172 | 23/12/2018,17,10 173 | 30/12/2018,18,11 174 | 6/01/2019,22,14 175 | 13/01/2019,24,15 176 | 20/01/2019,22,15 177 | 27/01/2019,23,15 178 | 3/02/2019,23,15 179 | 10/02/2019,24,15 180 | 17/02/2019,25,15 181 | 24/02/2019,23,15 182 | 3/03/2019,23,15 183 | 10/03/2019,23,15 184 | 17/03/2019,23,14 185 | 24/03/2019,24,16 186 | 31/03/2019,23,15 187 | 7/04/2019,23,16 188 | 14/04/2019,21,14 189 | 21/04/2019,23,15 190 | 28/04/2019,24,14 191 | 5/05/2019,23,14 192 | 12/05/2019,24,15 193 | 19/05/2019,22,15 194 | 26/05/2019,21,14 195 | 2/06/2019,21,14 196 | 9/06/2019,22,15 197 | 16/06/2019,24,15 198 | 23/06/2019,22,15 199 | 30/06/2019,21,14 200 | 7/07/2019,22,15 201 | 14/07/2019,23,15 202 | 21/07/2019,22,14 203 | 28/07/2019,22,13 204 | 4/08/2019,21,14 205 | 11/08/2019,21,14 206 | 18/08/2019,22,14 207 | 25/08/2019,22,14 208 | 1/09/2019,22,15 209 | 8/09/2019,25,15 210 | 15/09/2019,25,15 211 | 22/09/2019,26,15 212 | 29/09/2019,23,15 213 | 6/10/2019,24,15 214 | 13/10/2019,24,15 215 | 20/10/2019,23,14 216 | 27/10/2019,22,14 217 | 3/11/2019,25,14 218 | 10/11/2019,24,15 219 | 17/11/2019,27,15 220 | 24/11/2019,24,15 221 | 1/12/2019,24,14 222 | 8/12/2019,25,15 223 | 15/12/2019,22,15 224 | 22/12/2019,17,11 225 | 29/12/2019,19,12 226 | 5/01/2020,25,15 227 | 12/01/2020,25,15 228 | 19/01/2020,24,14 229 | 26/01/2020,24,14 230 | 2/02/2020,24,15 231 | 9/02/2020,25,16 232 | 16/02/2020,26,16 233 | 23/02/2020,26,16 234 | 1/03/2020,25,15 235 | 8/03/2020,23,14 236 | 15/03/2020,19,12 237 | 22/03/2020,19,12 238 | 29/03/2020,19,13 239 | 5/04/2020,21,13 240 | 12/04/2020,22,14 241 | 19/04/2020,21,15 242 | 26/04/2020,20,15 243 | 3/05/2020,22,15 244 | 10/05/2020,22,15 245 | 17/05/2020,21,15 246 | 24/05/2020,20,15 247 | 31/05/2020,21,14 248 | 7/06/2020,20,15 249 | 14/06/2020,21,15 250 | 21/06/2020,20,14 251 | 28/06/2020,20,14 252 | 5/07/2020,19,14 253 | 12/07/2020,21,15 254 | 19/07/2020,21,14 255 | 26/07/2020,20,14 256 | 2/08/2020,20,13 257 | 9/08/2020,21,13 258 | 16/08/2020,22,14 259 | 23/08/2020,21,14 260 | 30/08/2020,21,14 261 | 6/09/2020,24,14 262 | 13/09/2020,21,14 263 | -------------------------------------------------------------------------------- /Day15 - Summary, Crosstab and Pivot/Data/SearchTrendData_WithMissing.csv: -------------------------------------------------------------------------------- 1 | Week,eLearning,DataScience,MachineLearning,ArtificialIntelligence,DeepLearning 2 | 20/09/2015,32,9,11,11,4 3 | 27/09/2015,35,10,11,11,4 4 | 4/10/2015,38,10,12,11,4 5 | 11/10/2015,37,9,12,10,4 6 | 18/10/2015,38,9,12,10,4 7 | 25/10/2015,38,10,,11,4 8 | 1/11/2015,37,9,13,11,3 9 | 8/11/2015,35,8,14,12,5 10 | 15/11/2015,35,9,13,12,4 11 | 22/11/2015,31,8,12,10,4 12 | 29/11/2015,,9,13,11,4 13 | 6/12/2015,33,9,13,12,5 14 | 13/12/2015,30,9,14,11, 15 | 20/12/2015,17,7,11,9,4 16 | 27/12/2015,17,7,10,9,3 17 | 3/01/2016,24,10,12,14,4 18 | 10/01/2016,26,9,12,12,4 19 | 17/01/2016,26,11,13,11,6 20 | 24/01/2016,28,11,15,12,7 21 | 31/01/2016,28,11,14,11,6 22 | 7/02/2016,28,10,,11,5 23 | 14/02/2016,30,10,13,10,5 24 | 21/02/2016,,10,14,12,5 25 | 28/02/2016,30,10,13,11,5 26 | 6/03/2016,30,10,15,13, 27 | 13/03/2016,27,10,15,13,8 28 | 20/03/2016,27,9,14,12,6 29 | 27/03/2016,29,9,14,12,6 30 | 3/04/2016,29,10,15,,7 31 | 10/04/2016,,10,14,11,6 32 | 17/04/2016,29,10,15,12,6 33 | 24/04/2016,28,10,14,12,6 34 | 1/05/2016,26,9,14,12,6 35 | 8/05/2016,28,11,15,12,6 36 | 15/05/2016,27,10,15,13,7 37 | 22/05/2016,27,,16,12,6 38 | 29/05/2016,25,10,14,11,6 39 | 5/06/2016,25,11,15,11,7 40 | 12/06/2016,25,10,16,10,6 41 | 19/06/2016,21,10,16,10,7 42 | 26/06/2016,20,10,15,10,7 43 | 3/07/2016,17,9,14,10,6 44 | 10/07/2016,19,10,14,9,6 45 | 17/07/2016,18,10,15,9,6 46 | 24/07/2016,17,9,14,9,6 47 | 31/07/2016,18,11,15,9, 48 | 7/08/2016,16,10,15,9,6 49 | 14/08/2016,15,10,12,8,5 50 | 21/08/2016,19,12,16,10,6 51 | 28/08/2016,21,13,15,10,7 52 | 4/09/2016,26,13,16,11,6 53 | 11/09/2016,29,14,17,11,7 54 | 18/09/2016,32,14,19,12,6 55 | 25/09/2016,33,13,18,12,8 56 | 2/10/2016,36,12,17,13,8 57 | 9/10/2016,38,12,18,16,8 58 | 16/10/2016,36,13,20,14,8 59 | 23/10/2016,35,13,19,14,8 60 | 30/10/2016,34,13,20,14,8 61 | 6/11/2016,32,13,18,14,8 62 | 13/11/2016,30,13,21,14,9 63 | 20/11/2016,,12,21,14,9 64 | 27/11/2016,30,14,22,15,9 65 | 4/12/2016,30,13,22,16, 66 | 11/12/2016,28,14,21,15,9 67 | 18/12/2016,22,11,20,13,9 68 | 25/12/2016,17,,15,12,7 69 | 1/01/2017,21,13,20,,9 70 | 8/01/2017,29,15,23,15,10 71 | 15/01/2017,26,15,23,14,10 72 | 22/01/2017,25,15,23,15,10 73 | 29/01/2017,25,16,23,14,10 74 | 5/02/2017,28,16,23,15,10 75 | 12/02/2017,,15,25,15,11 76 | 19/02/2017,29,16,24,16,11 77 | 26/02/2017,31,17,27,15,11 78 | 5/03/2017,30,16,26,16,11 79 | 12/03/2017,29,16,26,17,12 80 | 19/03/2017,31,16,25,15,11 81 | 26/03/2017,32,16,28,17,11 82 | 2/04/2017,30,17,27,17,12 83 | 9/04/2017,28,15,26,16, 84 | 16/04/2017,26,16,26,16,12 85 | 23/04/2017,30,16,27,18,12 86 | 30/04/2017,28,15,27,17,11 87 | 7/05/2017,26,17,27,16,12 88 | 14/05/2017,26,16,,18,12 89 | 21/05/2017,24,17,29,18,12 90 | 28/05/2017,25,16,27,15,11 91 | 4/06/2017,25,15,29,14,11 92 | 11/06/2017,24,16,28,15,11 93 | 18/06/2017,,,28,14,11 94 | 25/06/2017,19,16,28,15,12 95 | 2/07/2017,21,15,27,14,11 96 | 9/07/2017,19,16,29,15,12 97 | 16/07/2017,18,16,28,16,13 98 | 23/07/2017,17,17,28,18,12 99 | 30/07/2017,16,17,29,23, 100 | 6/08/2017,15,17,27,18,13 101 | 13/08/2017,15,16,28,17,13 102 | 20/08/2017,,18,27,17,12 103 | 27/08/2017,19,18,28,17,12 104 | 3/09/2017,24,19,30,23,13 105 | 10/09/2017,27,20,31,21,13 106 | 17/09/2017,32,20,32,20,14 107 | 24/09/2017,34,20,31,20,13 108 | 1/10/2017,35,19,33,20,13 109 | 8/10/2017,35,20,34,22,13 110 | 15/10/2017,36,20,32,21,14 111 | 22/10/2017,34,20,35,26,13 112 | 29/10/2017,33,21,35,24,14 113 | 5/11/2017,33,,37,,14 114 | 12/11/2017,31,20,35,24,15 115 | 19/11/2017,29,17,33,22,14 116 | 26/11/2017,29,19,35,25,15 117 | 3/12/2017,30,20,36,25,15 118 | 10/12/2017,30,20,37,23,15 119 | 17/12/2017,24,17,32,19,14 120 | 24/12/2017,16,14,26,17,12 121 | 31/12/2017,,19,30,20, 122 | 7/01/2018,29,22,32,21,15 123 | 14/01/2018,27,21,34,30,14 124 | 21/01/2018,27,21,34,29,14 125 | 28/01/2018,26,22,36,27,16 126 | 4/02/2018,27,20,35,24,15 127 | 11/02/2018,27,21,34,24,13 128 | 18/02/2018,30,21,35,24,14 129 | 25/02/2018,33,21,36,24,14 130 | 4/03/2018,34,22,37,23,14 131 | 11/03/2018,34,22,36,24,14 132 | 18/03/2018,37,23,37,23,15 133 | 25/03/2018,36,22,36,21,14 134 | 1/04/2018,30,22,36,21,14 135 | 8/04/2018,33,23,36,23,15 136 | 15/04/2018,32,,36,24,15 137 | 22/04/2018,,22,37,23,15 138 | 29/04/2018,31,22,35,22,14 139 | 6/05/2018,31,21,37,25,15 140 | 13/05/2018,32,22,37,23, 141 | 20/05/2018,30,23,37,22,14 142 | 27/05/2018,29,22,34,21,14 143 | 3/06/2018,30,23,37,21,14 144 | 10/06/2018,25,21,36,19,14 145 | 17/06/2018,24,21,36,17,14 146 | 24/06/2018,24,21,35,19,14 147 | 1/07/2018,24,20,34,18,13 148 | 8/07/2018,21,23,36,19,14 149 | 15/07/2018,21,23,36,19,14 150 | 22/07/2018,18,22,36,20,13 151 | 29/07/2018,17,23,,20,14 152 | 5/08/2018,18,23,37,20,13 153 | 12/08/2018,17,22,36,19,12 154 | 19/08/2018,,24,37,18,14 155 | 26/08/2018,23,26,38,20,14 156 | 2/09/2018,28,27,37,21,14 157 | 9/09/2018,34,25,38,22,14 158 | 16/09/2018,39,25,40,22,15 159 | 23/09/2018,38,25,39,23,15 160 | 30/09/2018,44,26,39,21,15 161 | 7/10/2018,43,26,39,22,15 162 | 14/10/2018,45,26,39,,15 163 | 21/10/2018,42,26,40,24, 164 | 28/10/2018,39,24,39,23,15 165 | 4/11/2018,37,24,36,21,15 166 | 11/11/2018,41,26,39,25,15 167 | 18/11/2018,35,23,37,22,14 168 | 25/11/2018,,26,41,24,15 169 | 2/12/2018,38,26,42,24,16 170 | 9/12/2018,35,26,40,22,15 171 | 16/12/2018,30,,37,23,13 172 | 23/12/2018,19,19,28,17,10 173 | 30/12/2018,20,22,31,18,11 174 | 6/01/2019,30,29,37,22,14 175 | 13/01/2019,31,29,37,24,15 176 | 20/01/2019,30,28,39,22,15 177 | 27/01/2019,29,28,40,23,15 178 | 3/02/2019,29,29,41,23,15 179 | 10/02/2019,32,28,40,24,15 180 | 17/02/2019,,30,42,25,15 181 | 24/02/2019,38,29,41,23,15 182 | 3/03/2019,36,28,42,23,15 183 | 10/03/2019,39,27,40,23,15 184 | 17/03/2019,41,28,41,23,14 185 | 24/03/2019,38,30,,24,16 186 | 31/03/2019,,29,41,23,15 187 | 7/04/2019,38,28,41,23,16 188 | 14/04/2019,36,27,37,21,14 189 | 21/04/2019,36,,39,23,15 190 | 28/04/2019,36,27,39,24,14 191 | 5/05/2019,36,28,41,23,14 192 | 12/05/2019,37,29,41,24,15 193 | 19/05/2019,35,30,39,22,15 194 | 26/05/2019,32,29,38,21,14 195 | 2/06/2019,27,29,40,21,14 196 | 9/06/2019,27,30,42,22,15 197 | 16/06/2019,32,31,41,24,15 198 | 23/06/2019,28,30,41,22,15 199 | 30/06/2019,32,29,40,21,14 200 | 7/07/2019,27,31,40,22,15 201 | 14/07/2019,23,31,41,23,15 202 | 21/07/2019,22,31,40,22,14 203 | 28/07/2019,20,31,39,22, 204 | 4/08/2019,20,30,38,21,14 205 | 11/08/2019,19,31,39,21,14 206 | 18/08/2019,26,35,43,22,14 207 | 25/08/2019,,37,43,22,14 208 | 1/09/2019,33,,40,22,15 209 | 8/09/2019,42,36,44,25,15 210 | 15/09/2019,44,37,45,25,15 211 | 22/09/2019,45,35,46,26,15 212 | 29/09/2019,55,34,43,,15 213 | 6/10/2019,53,34,43,24,15 214 | 13/10/2019,55,34,44,24,15 215 | 20/10/2019,52,32,42,23,14 216 | 27/10/2019,48,31,39,22,14 217 | 3/11/2019,49,34,44,25,14 218 | 10/11/2019,47,33,43,24,15 219 | 17/11/2019,46,34,45,27,15 220 | 24/11/2019,42,30,41,24,15 221 | 1/12/2019,43,34,43,24,14 222 | 8/12/2019,43,32,44,25,15 223 | 15/12/2019,38,32,42,22,15 224 | 22/12/2019,24,26,33,17,11 225 | 29/12/2019,23,,33,19,12 226 | 5/01/2020,38,35,42,25,15 227 | 12/01/2020,34,35,42,25,15 228 | 19/01/2020,,36,,24,14 229 | 26/01/2020,30,35,43,24,14 230 | 2/02/2020,34,36,44,24, 231 | 9/02/2020,37,38,44,25,16 232 | 16/02/2020,43,38,46,26,16 233 | 23/02/2020,42,38,46,26,16 234 | 1/03/2020,48,37,44,25,15 235 | 8/03/2020,57,34,39,23,14 236 | 15/03/2020,98,29,34,19,12 237 | 22/03/2020,100,28,33,19,12 238 | 29/03/2020,97,30,35,19,13 239 | 5/04/2020,100,,38,21,13 240 | 12/04/2020,94,34,41,22,14 241 | 19/04/2020,98,32,41,21,15 242 | 26/04/2020,86,33,41,20,15 243 | 3/05/2020,86,31,41,22,15 244 | 10/05/2020,83,33,40,22,15 245 | 17/05/2020,66,33,40,21,15 246 | 24/05/2020,57,32,40,,15 247 | 31/05/2020,65,33,,21,14 248 | 7/06/2020,,33,41,20,15 249 | 14/06/2020,61,33,40,21,15 250 | 21/06/2020,61,34,41,20,14 251 | 28/06/2020,59,,38,20,14 252 | 5/07/2020,55,35,39,19,14 253 | 12/07/2020,58,36,40,21,15 254 | 19/07/2020,55,36,40,21,14 255 | 26/07/2020,43,34,39,20,14 256 | 2/08/2020,44,34,37,20,13 257 | 9/08/2020,44,35,38,21,13 258 | 16/08/2020,41,36,40,22,14 259 | 23/08/2020,49,39,40,21,14 260 | 30/08/2020,62,37,40,21,14 261 | 6/09/2020,74,,42,24,14 262 | 13/09/2020,80,39,39,21,14 263 | -------------------------------------------------------------------------------- /Day16 - Date, Categorical and Sparse Data/.ipynb_checkpoints/Day16-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Topics Covered today\n", 8 | "- Date Functionality and Time Delta\n", 9 | "- Categorical Data\n", 10 | "- Sparse Data\n" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": null, 16 | "metadata": {}, 17 | "outputs": [], 18 | "source": [ 19 | "import pandas as pd" 20 | ] 21 | }, 22 | { 23 | "cell_type": "markdown", 24 | "metadata": {}, 25 | "source": [ 26 | "1a. Creating a Date Column" 27 | ] 28 | }, 29 | { 30 | "cell_type": "code", 31 | "execution_count": null, 32 | "metadata": {}, 33 | "outputs": [], 34 | "source": [ 35 | "print(pd.date_range('1/1/2011', periods=5))" 36 | ] 37 | }, 38 | { 39 | "cell_type": "markdown", 40 | "metadata": {}, 41 | "source": [ 42 | "1b. Adding Frequency" 43 | ] 44 | }, 45 | { 46 | "cell_type": "code", 47 | "execution_count": null, 48 | "metadata": {}, 49 | "outputs": [], 50 | "source": [ 51 | "print(pd.date_range('1/1/2011', periods=5, freq='M'))" 52 | ] 53 | }, 54 | { 55 | "cell_type": "markdown", 56 | "metadata": {}, 57 | "source": [ 58 | "1c. Other Frequency Options" 59 | ] 60 | }, 61 | { 62 | "cell_type": "code", 63 | "execution_count": null, 64 | "metadata": {}, 65 | "outputs": [], 66 | "source": [ 67 | "print(pd.date_range('1/1/2011', periods=5, freq='MS'))\n", 68 | "# Show all the Frequency Options from Pandas" 69 | ] 70 | }, 71 | { 72 | "cell_type": "markdown", 73 | "metadata": {}, 74 | "source": [ 75 | "2a. Time Delta" 76 | ] 77 | }, 78 | { 79 | "cell_type": "code", 80 | "execution_count": null, 81 | "metadata": {}, 82 | "outputs": [], 83 | "source": [ 84 | "day1 = pd.to_datetime('today')\n", 85 | "day2 = day1 + pd.Timedelta('1 day')\n", 86 | "print(\"Day 1:\", day1)\n", 87 | "print(\"Day 2:\", day2, day2.day_name())" 88 | ] 89 | }, 90 | { 91 | "cell_type": "markdown", 92 | "metadata": {}, 93 | "source": [ 94 | "2b. Date Operations" 95 | ] 96 | }, 97 | { 98 | "cell_type": "code", 99 | "execution_count": null, 100 | "metadata": {}, 101 | "outputs": [], 102 | "source": [ 103 | "date = pd.Series(pd.date_range('2020-1-1', periods=7, freq='D'))\n", 104 | "to_be_added = pd.Series([pd.Timedelta(days=i) for i in range(7)])\n", 105 | "date_df = pd.DataFrame({'Date': date, 'To_Add': to_be_added})\n", 106 | "print(date_df)\n", 107 | "date_df['Final_Date'] = date_df['Date'] + date_df['To_Add']\n", 108 | "print(date_df)" 109 | ] 110 | }, 111 | { 112 | "cell_type": "code", 113 | "execution_count": null, 114 | "metadata": {}, 115 | "outputs": [], 116 | "source": [ 117 | "date = pd.Series(pd.date_range('2020-1-1', periods=7, freq='D'))\n", 118 | "to_be_added = pd.Series([pd.Timedelta(days=i) for i in range(7)])\n", 119 | "date_df = pd.DataFrame({'Date': date, 'To_Add': to_be_added})\n", 120 | "print(date_df)\n", 121 | "date_df['Final_Date'] = date_df['Date'] - date_df['To_Add']\n", 122 | "print(date_df)" 123 | ] 124 | }, 125 | { 126 | "cell_type": "code", 127 | "execution_count": null, 128 | "metadata": {}, 129 | "outputs": [], 130 | "source": [ 131 | "date = pd.Series(pd.date_range('2020-1-1', periods=7, freq='D'))\n", 132 | "to_be_added = pd.Series([pd.Timedelta(days=i) for i in range(7)])\n", 133 | "date_df['year'] = date_df['Date'].dt.year\n", 134 | "date_df['month'] = date_df['Date'].dt.month\n", 135 | "date_df['day'] = date_df['Date'].dt.day\n", 136 | "print(date_df)" 137 | ] 138 | }, 139 | { 140 | "cell_type": "markdown", 141 | "metadata": {}, 142 | "source": [ 143 | "More date operation Here - https://pandas.pydata.org/pandas-docs/stable/user_guide/timedeltas.html" 144 | ] 145 | }, 146 | { 147 | "cell_type": "markdown", 148 | "metadata": {}, 149 | "source": [ 150 | "3a. Categorical Data" 151 | ] 152 | }, 153 | { 154 | "cell_type": "code", 155 | "execution_count": null, 156 | "metadata": {}, 157 | "outputs": [], 158 | "source": [ 159 | "gender = pd.Series([\"Male\",\"Female\",\"Male\",\"Female\", \"Female\"], dtype=\"category\")\n", 160 | "print(gender)" 161 | ] 162 | }, 163 | { 164 | "cell_type": "markdown", 165 | "metadata": {}, 166 | "source": [ 167 | "3b. Get all categories" 168 | ] 169 | }, 170 | { 171 | "cell_type": "code", 172 | "execution_count": null, 173 | "metadata": {}, 174 | "outputs": [], 175 | "source": [ 176 | "Categories = pd.Categorical(gender)\n", 177 | "print(Categories)\n" 178 | ] 179 | }, 180 | { 181 | "cell_type": "markdown", 182 | "metadata": {}, 183 | "source": [ 184 | "3c. Accessing the objects from the categories" 185 | ] 186 | }, 187 | { 188 | "cell_type": "code", 189 | "execution_count": null, 190 | "metadata": {}, 191 | "outputs": [], 192 | "source": [ 193 | "print(\"Categories:\", Categories[0], \"and\", Categories[1])" 194 | ] 195 | }, 196 | { 197 | "cell_type": "markdown", 198 | "metadata": {}, 199 | "source": [ 200 | "3d. Summary on the Categrical attribute" 201 | ] 202 | }, 203 | { 204 | "cell_type": "code", 205 | "execution_count": null, 206 | "metadata": {}, 207 | "outputs": [], 208 | "source": [ 209 | "print(gender.describe())" 210 | ] 211 | }, 212 | { 213 | "cell_type": "markdown", 214 | "metadata": {}, 215 | "source": [ 216 | "3e. Removing certain categories" 217 | ] 218 | }, 219 | { 220 | "cell_type": "code", 221 | "execution_count": null, 222 | "metadata": {}, 223 | "outputs": [], 224 | "source": [ 225 | "print(gender.cat.remove_categories(\"Male\"))" 226 | ] 227 | }, 228 | { 229 | "cell_type": "markdown", 230 | "metadata": {}, 231 | "source": [ 232 | "4a. Sparse Data - Useful when there is a large number of zero elements" 233 | ] 234 | }, 235 | { 236 | "cell_type": "code", 237 | "execution_count": null, 238 | "metadata": {}, 239 | "outputs": [], 240 | "source": [ 241 | "import pandas as pd\n", 242 | "import numpy as np\n", 243 | "\n", 244 | "\n", 245 | "df = pd.DataFrame(np.random.randn(10000, 4))\n", 246 | "df.iloc[:9998] = np.nan\n", 247 | "sdf = df.astype(pd.SparseDtype(\"float\", np.nan))\n", 248 | "print(type(sdf))" 249 | ] 250 | }, 251 | { 252 | "cell_type": "code", 253 | "execution_count": null, 254 | "metadata": {}, 255 | "outputs": [], 256 | "source": [ 257 | "sdf.dtypes" 258 | ] 259 | }, 260 | { 261 | "cell_type": "code", 262 | "execution_count": null, 263 | "metadata": {}, 264 | "outputs": [], 265 | "source": [ 266 | "sdf.sparse.density" 267 | ] 268 | }, 269 | { 270 | "cell_type": "markdown", 271 | "metadata": {}, 272 | "source": [ 273 | "To Do\n", 274 | "- Read and try from the pandas documentation - https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html\n", 275 | "- Explore Categorical data with a kaggle dataset" 276 | ] 277 | }, 278 | { 279 | "cell_type": "code", 280 | "execution_count": null, 281 | "metadata": {}, 282 | "outputs": [], 283 | "source": [] 284 | } 285 | ], 286 | "metadata": { 287 | "kernelspec": { 288 | "display_name": "Python 3", 289 | "language": "python", 290 | "name": "python3" 291 | }, 292 | "language_info": { 293 | "codemirror_mode": { 294 | "name": "ipython", 295 | "version": 3 296 | }, 297 | "file_extension": ".py", 298 | "mimetype": "text/x-python", 299 | "name": "python", 300 | "nbconvert_exporter": "python", 301 | "pygments_lexer": "ipython3", 302 | "version": "3.8.5" 303 | } 304 | }, 305 | "nbformat": 4, 306 | "nbformat_minor": 4 307 | } 308 | -------------------------------------------------------------------------------- /Day17 - Pandas Visualizations/Data/SearchTrendData.csv: -------------------------------------------------------------------------------- 1 | Week,eLearning,DataScience,MachineLearning,ArtificialIntelligence,DeepLearning 2 | 20/09/2015,32,9,11,11,4 3 | 27/09/2015,35,10,11,11,4 4 | 4/10/2015,38,10,12,11,4 5 | 11/10/2015,37,9,12,10,4 6 | 18/10/2015,38,9,12,10,4 7 | 25/10/2015,38,10,12,11,4 8 | 1/11/2015,37,9,13,11,3 9 | 8/11/2015,35,8,14,12,5 10 | 15/11/2015,35,9,13,12,4 11 | 22/11/2015,31,8,12,10,4 12 | 29/11/2015,35,9,13,11,4 13 | 6/12/2015,33,9,13,12,5 14 | 13/12/2015,30,9,14,11,5 15 | 20/12/2015,17,7,11,9,4 16 | 27/12/2015,17,7,10,9,3 17 | 3/01/2016,24,10,12,14,4 18 | 10/01/2016,26,9,12,12,4 19 | 17/01/2016,26,11,13,11,6 20 | 24/01/2016,28,11,15,12,7 21 | 31/01/2016,28,11,14,11,6 22 | 7/02/2016,28,10,13,11,5 23 | 14/02/2016,30,10,13,10,5 24 | 21/02/2016,30,10,14,12,5 25 | 28/02/2016,30,10,13,11,5 26 | 6/03/2016,30,10,15,13,7 27 | 13/03/2016,27,10,15,13,8 28 | 20/03/2016,27,9,14,12,6 29 | 27/03/2016,29,9,14,12,6 30 | 3/04/2016,29,10,15,12,7 31 | 10/04/2016,29,10,14,11,6 32 | 17/04/2016,29,10,15,12,6 33 | 24/04/2016,28,10,14,12,6 34 | 1/05/2016,26,9,14,12,6 35 | 8/05/2016,28,11,15,12,6 36 | 15/05/2016,27,10,15,13,7 37 | 22/05/2016,27,10,16,12,6 38 | 29/05/2016,25,10,14,11,6 39 | 5/06/2016,25,11,15,11,7 40 | 12/06/2016,25,10,16,10,6 41 | 19/06/2016,21,10,16,10,7 42 | 26/06/2016,20,10,15,10,7 43 | 3/07/2016,17,9,14,10,6 44 | 10/07/2016,19,10,14,9,6 45 | 17/07/2016,18,10,15,9,6 46 | 24/07/2016,17,9,14,9,6 47 | 31/07/2016,18,11,15,9,6 48 | 7/08/2016,16,10,15,9,6 49 | 14/08/2016,15,10,12,8,5 50 | 21/08/2016,19,12,16,10,6 51 | 28/08/2016,21,13,15,10,7 52 | 4/09/2016,26,13,16,11,6 53 | 11/09/2016,29,14,17,11,7 54 | 18/09/2016,32,14,19,12,6 55 | 25/09/2016,33,13,18,12,8 56 | 2/10/2016,36,12,17,13,8 57 | 9/10/2016,38,12,18,16,8 58 | 16/10/2016,36,13,20,14,8 59 | 23/10/2016,35,13,19,14,8 60 | 30/10/2016,34,13,20,14,8 61 | 6/11/2016,32,13,18,14,8 62 | 13/11/2016,30,13,21,14,9 63 | 20/11/2016,28,12,21,14,9 64 | 27/11/2016,30,14,22,15,9 65 | 4/12/2016,30,13,22,16,10 66 | 11/12/2016,28,14,21,15,9 67 | 18/12/2016,22,11,20,13,9 68 | 25/12/2016,17,10,15,12,7 69 | 1/01/2017,21,13,20,14,9 70 | 8/01/2017,29,15,23,15,10 71 | 15/01/2017,26,15,23,14,10 72 | 22/01/2017,25,15,23,15,10 73 | 29/01/2017,25,16,23,14,10 74 | 5/02/2017,28,16,23,15,10 75 | 12/02/2017,27,15,25,15,11 76 | 19/02/2017,29,16,24,16,11 77 | 26/02/2017,31,17,27,15,11 78 | 5/03/2017,30,16,26,16,11 79 | 12/03/2017,29,16,26,17,12 80 | 19/03/2017,31,16,25,15,11 81 | 26/03/2017,32,16,28,17,11 82 | 2/04/2017,30,17,27,17,12 83 | 9/04/2017,28,15,26,16,11 84 | 16/04/2017,26,16,26,16,12 85 | 23/04/2017,30,16,27,18,12 86 | 30/04/2017,28,15,27,17,11 87 | 7/05/2017,26,17,27,16,12 88 | 14/05/2017,26,16,29,18,12 89 | 21/05/2017,24,17,29,18,12 90 | 28/05/2017,25,16,27,15,11 91 | 4/06/2017,25,15,29,14,11 92 | 11/06/2017,24,16,28,15,11 93 | 18/06/2017,20,16,28,14,11 94 | 25/06/2017,19,16,28,15,12 95 | 2/07/2017,21,15,27,14,11 96 | 9/07/2017,19,16,29,15,12 97 | 16/07/2017,18,16,28,16,13 98 | 23/07/2017,17,17,28,18,12 99 | 30/07/2017,16,17,29,23,12 100 | 6/08/2017,15,17,27,18,13 101 | 13/08/2017,15,16,28,17,13 102 | 20/08/2017,18,18,27,17,12 103 | 27/08/2017,19,18,28,17,12 104 | 3/09/2017,24,19,30,23,13 105 | 10/09/2017,27,20,31,21,13 106 | 17/09/2017,32,20,32,20,14 107 | 24/09/2017,34,20,31,20,13 108 | 1/10/2017,35,19,33,20,13 109 | 8/10/2017,35,20,34,22,13 110 | 15/10/2017,36,20,32,21,14 111 | 22/10/2017,34,20,35,26,13 112 | 29/10/2017,33,21,35,24,14 113 | 5/11/2017,33,21,37,25,14 114 | 12/11/2017,31,20,35,24,15 115 | 19/11/2017,29,17,33,22,14 116 | 26/11/2017,29,19,35,25,15 117 | 3/12/2017,30,20,36,25,15 118 | 10/12/2017,30,20,37,23,15 119 | 17/12/2017,24,17,32,19,14 120 | 24/12/2017,16,14,26,17,12 121 | 31/12/2017,18,19,30,20,13 122 | 7/01/2018,29,22,32,21,15 123 | 14/01/2018,27,21,34,30,14 124 | 21/01/2018,27,21,34,29,14 125 | 28/01/2018,26,22,36,27,16 126 | 4/02/2018,27,20,35,24,15 127 | 11/02/2018,27,21,34,24,13 128 | 18/02/2018,30,21,35,24,14 129 | 25/02/2018,33,21,36,24,14 130 | 4/03/2018,34,22,37,23,14 131 | 11/03/2018,34,22,36,24,14 132 | 18/03/2018,37,23,37,23,15 133 | 25/03/2018,36,22,36,21,14 134 | 1/04/2018,30,22,36,21,14 135 | 8/04/2018,33,23,36,23,15 136 | 15/04/2018,32,21,36,24,15 137 | 22/04/2018,33,22,37,23,15 138 | 29/04/2018,31,22,35,22,14 139 | 6/05/2018,31,21,37,25,15 140 | 13/05/2018,32,22,37,23,15 141 | 20/05/2018,30,23,37,22,14 142 | 27/05/2018,29,22,34,21,14 143 | 3/06/2018,30,23,37,21,14 144 | 10/06/2018,25,21,36,19,14 145 | 17/06/2018,24,21,36,17,14 146 | 24/06/2018,24,21,35,19,14 147 | 1/07/2018,24,20,34,18,13 148 | 8/07/2018,21,23,36,19,14 149 | 15/07/2018,21,23,36,19,14 150 | 22/07/2018,18,22,36,20,13 151 | 29/07/2018,17,23,36,20,14 152 | 5/08/2018,18,23,37,20,13 153 | 12/08/2018,17,22,36,19,12 154 | 19/08/2018,19,24,37,18,14 155 | 26/08/2018,23,26,38,20,14 156 | 2/09/2018,28,27,37,21,14 157 | 9/09/2018,34,25,38,22,14 158 | 16/09/2018,39,25,40,22,15 159 | 23/09/2018,38,25,39,23,15 160 | 30/09/2018,44,26,39,21,15 161 | 7/10/2018,43,26,39,22,15 162 | 14/10/2018,45,26,39,23,15 163 | 21/10/2018,42,26,40,24,15 164 | 28/10/2018,39,24,39,23,15 165 | 4/11/2018,37,24,36,21,15 166 | 11/11/2018,41,26,39,25,15 167 | 18/11/2018,35,23,37,22,14 168 | 25/11/2018,38,26,41,24,15 169 | 2/12/2018,38,26,42,24,16 170 | 9/12/2018,35,26,40,22,15 171 | 16/12/2018,30,23,37,23,13 172 | 23/12/2018,19,19,28,17,10 173 | 30/12/2018,20,22,31,18,11 174 | 6/01/2019,30,29,37,22,14 175 | 13/01/2019,31,29,37,24,15 176 | 20/01/2019,30,28,39,22,15 177 | 27/01/2019,29,28,40,23,15 178 | 3/02/2019,29,29,41,23,15 179 | 10/02/2019,32,28,40,24,15 180 | 17/02/2019,35,30,42,25,15 181 | 24/02/2019,38,29,41,23,15 182 | 3/03/2019,36,28,42,23,15 183 | 10/03/2019,39,27,40,23,15 184 | 17/03/2019,41,28,41,23,14 185 | 24/03/2019,38,30,41,24,16 186 | 31/03/2019,41,29,41,23,15 187 | 7/04/2019,38,28,41,23,16 188 | 14/04/2019,36,27,37,21,14 189 | 21/04/2019,36,27,39,23,15 190 | 28/04/2019,36,27,39,24,14 191 | 5/05/2019,36,28,41,23,14 192 | 12/05/2019,37,29,41,24,15 193 | 19/05/2019,35,30,39,22,15 194 | 26/05/2019,32,29,38,21,14 195 | 2/06/2019,27,29,40,21,14 196 | 9/06/2019,27,30,42,22,15 197 | 16/06/2019,32,31,41,24,15 198 | 23/06/2019,28,30,41,22,15 199 | 30/06/2019,32,29,40,21,14 200 | 7/07/2019,27,31,40,22,15 201 | 14/07/2019,23,31,41,23,15 202 | 21/07/2019,22,31,40,22,14 203 | 28/07/2019,20,31,39,22,13 204 | 4/08/2019,20,30,38,21,14 205 | 11/08/2019,19,31,39,21,14 206 | 18/08/2019,26,35,43,22,14 207 | 25/08/2019,27,37,43,22,14 208 | 1/09/2019,33,34,40,22,15 209 | 8/09/2019,42,36,44,25,15 210 | 15/09/2019,44,37,45,25,15 211 | 22/09/2019,45,35,46,26,15 212 | 29/09/2019,55,34,43,23,15 213 | 6/10/2019,53,34,43,24,15 214 | 13/10/2019,55,34,44,24,15 215 | 20/10/2019,52,32,42,23,14 216 | 27/10/2019,48,31,39,22,14 217 | 3/11/2019,49,34,44,25,14 218 | 10/11/2019,47,33,43,24,15 219 | 17/11/2019,46,34,45,27,15 220 | 24/11/2019,42,30,41,24,15 221 | 1/12/2019,43,34,43,24,14 222 | 8/12/2019,43,32,44,25,15 223 | 15/12/2019,38,32,42,22,15 224 | 22/12/2019,24,26,33,17,11 225 | 29/12/2019,23,29,33,19,12 226 | 5/01/2020,38,35,42,25,15 227 | 12/01/2020,34,35,42,25,15 228 | 19/01/2020,31,36,44,24,14 229 | 26/01/2020,30,35,43,24,14 230 | 2/02/2020,34,36,44,24,15 231 | 9/02/2020,37,38,44,25,16 232 | 16/02/2020,43,38,46,26,16 233 | 23/02/2020,42,38,46,26,16 234 | 1/03/2020,48,37,44,25,15 235 | 8/03/2020,57,34,39,23,14 236 | 15/03/2020,98,29,34,19,12 237 | 22/03/2020,100,28,33,19,12 238 | 29/03/2020,97,30,35,19,13 239 | 5/04/2020,100,32,38,21,13 240 | 12/04/2020,94,34,41,22,14 241 | 19/04/2020,98,32,41,21,15 242 | 26/04/2020,86,33,41,20,15 243 | 3/05/2020,86,31,41,22,15 244 | 10/05/2020,83,33,40,22,15 245 | 17/05/2020,66,33,40,21,15 246 | 24/05/2020,57,32,40,20,15 247 | 31/05/2020,65,33,41,21,14 248 | 7/06/2020,69,33,41,20,15 249 | 14/06/2020,61,33,40,21,15 250 | 21/06/2020,61,34,41,20,14 251 | 28/06/2020,59,35,38,20,14 252 | 5/07/2020,55,35,39,19,14 253 | 12/07/2020,58,36,40,21,15 254 | 19/07/2020,55,36,40,21,14 255 | 26/07/2020,43,34,39,20,14 256 | 2/08/2020,44,34,37,20,13 257 | 9/08/2020,44,35,38,21,13 258 | 16/08/2020,41,36,40,22,14 259 | 23/08/2020,49,39,40,21,14 260 | 30/08/2020,62,37,40,21,14 261 | 6/09/2020,74,38,42,24,14 262 | 13/09/2020,80,39,39,21,14 263 | -------------------------------------------------------------------------------- /Day25 - Visualization Part 3 - Seaborn and Interactive Charts/test.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Example 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |
38 | 39 | 40 | 41 | 42 | 43 | 46 | 82 | 83 | 84 | 85 | -------------------------------------------------------------------------------- /Day28 - Relationship Stats and Distribution/.ipynb_checkpoints/Day28-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### Topics to be Covered\n", 8 | "- Relationship Measures: Causal, Covariance and Correlation\n", 9 | "- Distribution: Intro, Discreate and Continous Distribution\n", 10 | "- Example of Normal and Biinomial Distribution" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": {}, 16 | "source": [ 17 | "- Difference between Causal and Correlation on whiteboard\n", 18 | "- Correlation and Covariance: Change the values in the excel and show the results here for correlation and covariance" 19 | ] 20 | }, 21 | { 22 | "cell_type": "code", 23 | "execution_count": 5, 24 | "metadata": {}, 25 | "outputs": [], 26 | "source": [ 27 | "import numpy as np\n", 28 | "import pandas as pd" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": 6, 34 | "metadata": {}, 35 | "outputs": [ 36 | { 37 | "name": "stdout", 38 | "output_type": "stream", 39 | "text": [ 40 | " Input Output\n", 41 | "0 1000 10\n", 42 | "1 1074 16\n", 43 | "2 1125 21\n", 44 | "3 1197 26\n", 45 | "4 1275 31\n" 46 | ] 47 | } 48 | ], 49 | "source": [ 50 | "data = pd.read_csv('../Data/For_Cor_Cov.csv')\n", 51 | "print(data.head())\n" 52 | ] 53 | }, 54 | { 55 | "cell_type": "code", 56 | "execution_count": 7, 57 | "metadata": {}, 58 | "outputs": [ 59 | { 60 | "data": { 61 | "text/html": [ 62 | "
\n", 63 | "\n", 76 | "\n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | "
InputOutput
Input3.666234e+06410515.140707
Output4.105151e+0545988.313030
\n", 97 | "
" 98 | ], 99 | "text/plain": [ 100 | " Input Output\n", 101 | "Input 3.666234e+06 410515.140707\n", 102 | "Output 4.105151e+05 45988.313030" 103 | ] 104 | }, 105 | "execution_count": 7, 106 | "metadata": {}, 107 | "output_type": "execute_result" 108 | } 109 | ], 110 | "source": [ 111 | "data.cov()" 112 | ] 113 | }, 114 | { 115 | "cell_type": "code", 116 | "execution_count": 8, 117 | "metadata": {}, 118 | "outputs": [ 119 | { 120 | "data": { 121 | "text/html": [ 122 | "
\n", 123 | "\n", 136 | "\n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | "
InputOutput
Input1.0000000.999759
Output0.9997591.000000
\n", 157 | "
" 158 | ], 159 | "text/plain": [ 160 | " Input Output\n", 161 | "Input 1.000000 0.999759\n", 162 | "Output 0.999759 1.000000" 163 | ] 164 | }, 165 | "execution_count": 8, 166 | "metadata": {}, 167 | "output_type": "execute_result" 168 | } 169 | ], 170 | "source": [ 171 | "data.corr()" 172 | ] 173 | }, 174 | { 175 | "cell_type": "markdown", 176 | "metadata": {}, 177 | "source": [ 178 | "Probability Distributions - A probability distribution is a mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment\n", 179 | "- Normal Distribution - Normal distribution describes continuous data which have a symmetric distribution\n", 180 | "- Uniform Distribution - Distribution of binary data from a finite sample\n", 181 | "- Binomial Distribution - Same Probability" 182 | ] 183 | }, 184 | { 185 | "cell_type": "code", 186 | "execution_count": null, 187 | "metadata": {}, 188 | "outputs": [], 189 | "source": [] 190 | } 191 | ], 192 | "metadata": { 193 | "kernelspec": { 194 | "display_name": "Python 3", 195 | "language": "python", 196 | "name": "python3" 197 | }, 198 | "language_info": { 199 | "codemirror_mode": { 200 | "name": "ipython", 201 | "version": 3 202 | }, 203 | "file_extension": ".py", 204 | "mimetype": "text/x-python", 205 | "name": "python", 206 | "nbconvert_exporter": "python", 207 | "pygments_lexer": "ipython3", 208 | "version": "3.8.5" 209 | } 210 | }, 211 | "nbformat": 4, 212 | "nbformat_minor": 4 213 | } 214 | -------------------------------------------------------------------------------- /Day30 - Inferential Stats/.ipynb_checkpoints/Day30-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [], 3 | "metadata": {}, 4 | "nbformat": 4, 5 | "nbformat_minor": 4 6 | } 7 | -------------------------------------------------------------------------------- /Day30 - Inferential Stats/Day30.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "Emprical Rule - Also referred to as 68-95-99.7 rule where in a normal distribution 68% of data falls within one standard deviation, 95% of data falls into 2 standard deviation and 99.7% data falls into 3 standard deviation\n", 8 | "\n", 9 | "Use-Case:\n", 10 | "- Helps to estimate the probability quickly" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": {}, 16 | "source": [ 17 | "Z- Score:\n", 18 | "- Show formula for Variance and Standard Deviation\n", 19 | "- Formula for Z Score\n", 20 | "- Definition: Z Score tells us how much standard deviationw are away from the Mean\n", 21 | "- Z-Score of 0 means its the Mean\n" 22 | ] 23 | }, 24 | { 25 | "cell_type": "markdown", 26 | "metadata": {}, 27 | "source": [ 28 | "Hypothesis Testing" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": null, 34 | "metadata": {}, 35 | "outputs": [], 36 | "source": [] 37 | } 38 | ], 39 | "metadata": { 40 | "kernelspec": { 41 | "display_name": "Python 3", 42 | "language": "python", 43 | "name": "python3" 44 | }, 45 | "language_info": { 46 | "codemirror_mode": { 47 | "name": "ipython", 48 | "version": 3 49 | }, 50 | "file_extension": ".py", 51 | "mimetype": "text/x-python", 52 | "name": "python", 53 | "nbconvert_exporter": "python", 54 | "pygments_lexer": "ipython3", 55 | "version": "3.8.5" 56 | } 57 | }, 58 | "nbformat": 4, 59 | "nbformat_minor": 4 60 | } 61 | -------------------------------------------------------------------------------- /Day36 - DB Concepts - Normalization and ER Design/Day36.sql: -------------------------------------------------------------------------------- 1 | # What is a DB? 2 | # DB is a systematic collection of data that support storage and manipulation of the data 3 | 4 | # We are going to learn in details about the Relation DMBS i.e. a DBMS that incorporates relation data model and incorporates interface to access the data using SQL 5 | 6 | # General steps in designing a Database 7 | # 1. Conceptual Model Design 8 | # 2. Logical Model Design 9 | # 3. Pysical Model 10 | 11 | # Key Database Techniques: 12 | # 1. Normailzation - 1NF, 2-NF and 3-NF - A database design technique that reduces data redundancy and eliminates undesirable activities like frequent modifications to the data 13 | # 2. ER Design - A graphical approach to Database design 14 | 15 | 16 | # Shown how to create a ER Model 17 | # Reverse engineering a ER Model using sakila DB 18 | 19 | 20 | -------------------------------------------------------------------------------- /Day37 - Table Creation and Data Loading/Day37.sql: -------------------------------------------------------------------------------- 1 | #Day 2: 2 | 3 | CREATE DATABASE Learn_SQL; 4 | 5 | DROP DATABASE Learn_SQL; 6 | 7 | CREATE TABLE Customers ( 8 | CustomerID int, 9 | Name varchar(100), 10 | Address varchar(255), 11 | City varchar(100) 12 | ); 13 | 14 | INSERT INTO Customers (CustomerID, Name, Address, City) 15 | VALUES (100001, 'Mike', 'Elmo Road', 'Melbourne'), 16 | (100002, 'Steve', 'Elmo Road', 'Melbourne'), 17 | (100003, 'Ram', 'Elmo Road', 'Melbourne'), 18 | (100004, 'Adbul', 'Elmo Road', 'Melbourne'); 19 | 20 | SELECT * FROM Customers; 21 | 22 | UPDATE Customers 23 | SET Name = 'Michael' 24 | WHERE CustomerID=100001; 25 | 26 | 27 | DELETE FROM Customers WHERE CustomerID=100001; 28 | 29 | TRUNCATE TABLE Customers; 30 | 31 | Drop table Customers; 32 | 33 | -- Loading data using the Import Option 34 | USE learn_sql; 35 | SELECT * FROM netflix_titles; 36 | SELECT COUNT(*) FROM netflix_titles; 37 | 38 | -- Create a copy 39 | CREATE TABLE netflix_titles_new 40 | select * from netflix_titles; 41 | 42 | -- Bulk Loading 43 | 44 | -- Clear the records 45 | Truncate table netflix_titles_new; 46 | 47 | select * from netflix_titles_new; 48 | 49 | # First copy file to the location of your DB 50 | # C:\ProgramData\MySQL\MySQL Server 8.0\Data\learn_sql 51 | LOAD DATA INFILE 'netflix_titles.csv' 52 | INTO TABLE netflix_titles_new CHARACTER SET latin1 FIELDS TERMINATED BY ',' 53 | ENCLOSED BY '"' LINES TERMINATED BY '\r\n' 54 | IGNORE 1 LINES; 55 | 56 | -------------------------------------------------------------------------------- /Day38 - Basic Queries and Filtering/Day38.sql: -------------------------------------------------------------------------------- 1 | -- Explore the DB 2 | -- Min and Max 3 | -- Avg, and Sum  4 | -- DISTINCT 5 | -- Filter 6 | -- LIKE 7 | -- SORTING 8 | -- Between 9 | -- GROUP BY 10 | -- GROUP BY WITH HAVING 11 | use sakila; 12 | 13 | -- Explore the DB 14 | SELECT * FROM ACTOR; 15 | SELECT * FROM ADDRESS; 16 | SELECT * FROM CITY; 17 | SELECT * FROM FILM; 18 | SELECT * FROM FILM_ACTOR; 19 | SELECT * FROM RENTAL; 20 | SELECT * FROM PAYMENT; 21 | 22 | 23 | SELECT * FROM Actor LIMIT 10; 24 | -- Min and Max 25 | SELECT MIN(replacement_cost), MAX(replacement_cost) FROM FILM; 26 | 27 | -- Avg, and Sum  28 | SELECT SUM(replacement_cost), AVG(rental_duration) FROM FILM; 29 | 30 | -- DISTINCT 31 | SELECT Distinct rating, rental_duration FROM FILM 32 | ORDER BY rating 33 | 34 | -- Filter 35 | SELECT * FROM FILM 36 | WHERE Replacement_cost > 25 37 | AND Rental_rate < 1; 38 | 39 | -- LIKE 40 | SELECT * FROM FILM 41 | WHERE description LIKE '%Action%'; 42 | 43 | -- SORTING 44 | SELECT * FROM FILM 45 | WHERE description LIKE '%Action%' 46 | ORDER BY rental_rate desc; 47 | 48 | -- Between 49 | SELECT * FROM FILM 50 | WHERE rental_duration between 4 AND 7; 51 | 52 | 53 | -- GROUP BY 54 | SELECT customer_id, COUNT(*) 55 | FROM PAYMENT 56 | GROUP BY customer_id; 57 | 58 | SELECT customer_id, SUM(Amount) 59 | FROM PAYMENT 60 | GROUP BY customer_id 61 | ORDER BY SUM(Amount); 62 | 63 | -- WITH HAVING 64 | SELECT customer_id, SUM(Amount) 65 | FROM PAYMENT 66 | GROUP BY customer_id 67 | HAVING SUM(Amount) > 200; 68 | 69 | -------------------------------------------------------------------------------- /Day39 - Join and Union/Category.csv: -------------------------------------------------------------------------------- 1 | CATEGORY_ID, NAME 2 | 1, Action 3 | 2, Animation 4 | 3, Children 5 | 4, Classics 6 | 5, Comedy 7 | 6, Documentary 8 | 7, Drama 9 | -------------------------------------------------------------------------------- /Day39 - Join and Union/Day39.sql: -------------------------------------------------------------------------------- 1 | USE sakila; 2 | 3 | SELECT * FROM Film_test; 4 | SELECT * FROM Category_test; 5 | 6 | -- Inner Join 7 | SELECT f.*, c.Name FROM Film_test f 8 | INNER JOIN Category_test c 9 | ON f.Category_ID = c.Category_ID 10 | 11 | -- Left Join 12 | SELECT f.*, c.Name FROM Film_test f 13 | LEFT JOIN Category_test c 14 | ON f.Category_ID = c.Category_ID 15 | 16 | -- Right Join 17 | SELECT f.*, c.Name FROM Film_test f 18 | RIGHT JOIN Category_test c 19 | ON f.Category_ID = c.Category_ID 20 | 21 | -- Union 22 | SELECT f.*, c.Name FROM Film_test f 23 | LEFT JOIN Category_test c 24 | ON f.Category_ID = c.Category_ID 25 | UNION 26 | SELECT f.*, c.Name FROM Category_test c 27 | LEFT JOIN Film_test f 28 | ON f.Category_ID = c.Category_ID 29 | 30 | 31 | -------------------------------------------------------------------------------- /Day39 - Join and Union/Film.csv: -------------------------------------------------------------------------------- 1 | Film_ID, Category_ID, Title, Description 2 | 5,8, AFRICAN EGG, A Fast-Paced Documentary of a Pastry Chef And a Dentist who must Pursue a Forensic Psychologist in The Gulf of Mexico 3 | 6,9, AGENT TRUMAN, A Intrepid Panorama of a Robot And a Boy who must Escape a Sumo Wrestler in Ancient China 4 | 7,5, AIRPLANE SIERRA, A Touching Saga of a Hunter And a Butler who must Discover a Butler in A Jet Boat 5 | 11,9, ALAMO VIDEOTAPE, A Boring Epistle of a Butler And a Cat who must Fight a Pastry Chef in A MySQL Convention 6 | 14,4, ALICE FANTASIA, A Emotional Drama of a A Shark And a Database Administrator who must Vanquish a Pioneer in Soviet Georgia 7 | 15,9, ALIEN CENTER, A Brilliant Drama of a Cat And a Mad Scientist who must Battle a Feminist in A MySQL Convention 8 | 16,9, ALLEY EVOLUTION, A Fast-Paced Drama of a Robot And a Composer who must Battle a Astronaut in New Orleans 9 | 18,2, ALTER VICTORY, A Thoughtful Drama of a Composer And a Feminist who must Meet a Secret Agent in The Canadian Rockies 10 | 19,1, AMADEUS HOLY, A Emotional Display of a Pioneer And a Technical Writer who must Battle a Man in A Baloon 11 | 21,1, AMERICAN CIRCUS, A Insightful Drama of a Girl And a Astronaut who must Face a Database Administrator in A Shark Tank 12 | 23,2, ANACONDA CONFESSIONS, A Lacklusture Display of a Dentist And a Dentist who must Fight a Girl in Australia 13 | 28,5, ANTHEM LUKE, A Touching Panorama of a Waitress And a Woman who must Outrace a Dog in An Abandoned Amusement Park 14 | 29,1, ANTITRUST TOMATOES, A Fateful Yarn of a Womanizer And a Feminist who must Succumb a Database Administrator in Ancient India 15 | 31,8, APACHE DIVINE, A Awe-Inspiring Reflection of a Pastry Chef And a Teacher who must Overcome a Sumo Wrestler in A U-Boat 16 | 36,2, ARGONAUTS TOWN, A Emotional Epistle of a Forensic Psychologist And a Butler who must Challenge a Waitress in An Abandoned Mine Shaft 17 | 37,4, ARIZONA BANG, A Brilliant Panorama of a Mad Scientist And a Mad Cow who must Meet a Pioneer in A Monastery 18 | 38,1, ARK RIDGEMONT, A Beautiful Yarn of a Pioneer And a Monkey who must Pursue a Explorer in The Sahara Desert 19 | 43,8, ATLANTIS CAUSE, A Thrilling Yarn of a Feminist And a Hunter who must Fight a Technical Writer in A Shark Tank 20 | 47,9, BABY HALL, A Boring Character Study of a A Shark And a Girl who must Outrace a Feminist in An Abandoned Mine Shaft 21 | 48,3, BACKLASH UNDEFEATED, A Stunning Character Study of a Mad Scientist And a Mad Cow who must Kill a Car in A Monastery 22 | -------------------------------------------------------------------------------- /Day39 - Join and Union/Sample.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Day39 - Join and Union/Sample.xlsx -------------------------------------------------------------------------------- /Day40 - SubQueries - Sequencing and Other Functionalities/Day40.sql: -------------------------------------------------------------------------------- 1 | -- Topics Covered 2 | -- Multiple Joins 3 | -- String Operations 4 | -- Date 5 | -- creating sequencing 6 | -- Subqueries 7 | 8 | SELECT * FROM ACTOR; 9 | SELECT * FROM FILM; 10 | SELECT * FROM FILM_ACTOR; 11 | SELECT * FROM PAYMENT; 12 | 13 | SELECT * FROM FILM WHERE TITLE = 'FIGHT JAWBREAKER' 14 | SELECT * FROM FILM_ACTOR WHERE FILM_ID = 314 15 | SELECT * FROM ACTOR WHERE ACTOR_ID IN ('2','146','154'); 16 | 17 | -- Multiple Join 18 | SELECT F.TITLE, A.FIRST_NAME, A.LAST_NAME 19 | FROM FILM F 20 | INNER JOIN FILM_ACTOR FA ON F.FILM_ID = FA.FILM_ID 21 | INNER JOIN ACTOR A ON A.ACTOR_ID = FA.ACTOR_ID 22 | WHERE TITLE = 'FIGHT JAWBREAKER' 23 | 24 | -- Concatinaion 25 | SELECT F.TITLE, CONCAT(A.FIRST_NAME, ' ' , A.LAST_NAME) AS NAME_OF_ACTORS 26 | FROM FILM F 27 | INNER JOIN FILM_ACTOR FA ON F.FILM_ID = FA.FILM_ID 28 | INNER JOIN ACTOR A ON A.ACTOR_ID = FA.ACTOR_ID 29 | WHERE TITLE = 'FIGHT JAWBREAKER' 30 | 31 | -- Sub String 32 | SELECT F.TITLE, SUBSTRING(F.DESCRIPTION, 1, 25) AS SHORT_DESC, CONCAT(A.FIRST_NAME, ' ' , A.LAST_NAME) AS NAME_OF_ACTORS FROM FILM F 33 | INNER JOIN FILM_ACTOR FA ON F.FILM_ID = FA.FILM_ID 34 | INNER JOIN ACTOR A ON A.ACTOR_ID = FA.ACTOR_ID 35 | WHERE TITLE = 'FIGHT JAWBREAKER' 36 | 37 | -- Lower Case 38 | SELECT F.TITLE, lower(F.DESCRIPTION), CONCAT(A.FIRST_NAME, ' ' , A.LAST_NAME) AS NAME_OF_ACTORS FROM FILM F 39 | INNER JOIN FILM_ACTOR FA ON F.FILM_ID = FA.FILM_ID 40 | INNER JOIN ACTOR A ON A.ACTOR_ID = FA.ACTOR_ID 41 | WHERE TITLE = 'FIGHT JAWBREAKER' 42 | 43 | -- Replace 44 | SELECT F.TITLE, REPLACE(F.DESCRIPTION, 'Girl', 'Boy'), CONCAT(A.FIRST_NAME, ' ' , A.LAST_NAME) AS NAME_OF_ACTORS FROM FILM F 45 | INNER JOIN FILM_ACTOR FA ON F.FILM_ID = FA.FILM_ID 46 | INNER JOIN ACTOR A ON A.ACTOR_ID = FA.ACTOR_ID 47 | WHERE TITLE = 'FIGHT JAWBREAKER' 48 | 49 | -- String Length 50 | SELECT F.TITLE, F.DESCRIPTION, LENGTH(F.DESCRIPTION) AS TITLE_LENGTH, CONCAT(A.FIRST_NAME, ' ' , A.LAST_NAME) AS NAME_OF_ACTORS FROM FILM F 51 | INNER JOIN FILM_ACTOR FA ON F.FILM_ID = FA.FILM_ID 52 | INNER JOIN ACTOR A ON A.ACTOR_ID = FA.ACTOR_ID 53 | 54 | 55 | -- Date 56 | SELECT *, DATE_FORMAT(Payment_Date, "%M %d %Y") AS NEW_DATE FROM PAYMENT Limit 5; 57 | SELECT *, DATE_FORMAT(Payment_Date, "%Y") FROM PAYMENT Limit 5; 58 | 59 | -- Add Date 60 | SELECT *, ADDDATE(Payment_Date, INTERVAL 10 DAY) due_date FROM PAYMENT Limit 5; 61 | 62 | -- Current Date 63 | SELECT Current_date() 64 | 65 | -- Date Difference 66 | -- Add Date 67 | SELECT *, DATEDIFF(Last_Update,ADDDATE(Payment_Date, INTERVAL 10 DAY)) Diff FROM PAYMENT Limit 5; 68 | 69 | -- Convert 70 | SELECT CONVERT("2020-11-27", DATE) 71 | SELECT CONVERT("20201127", DATE) 72 | SELECT CONVERT("27-11-2020", DATE) 73 | SELECT STR_TO_DATE('27,11,2020','%d,%m,%Y'); 74 | 75 | -- Sequencing 76 | SELECT F.TITLE, CONCAT(A.FIRST_NAME, ' ' , A.LAST_NAME) AS NAME_OF_ACTORS, 77 | Rank() over ( partition by Title order by CONCAT(A.FIRST_NAME, ' ' , A.LAST_NAME) Asc ) AS ACTOR_SEQ 78 | FROM FILM F 79 | INNER JOIN FILM_ACTOR FA ON F.FILM_ID = FA.FILM_ID 80 | INNER JOIN ACTOR A ON A.ACTOR_ID = FA.ACTOR_ID 81 | WHERE TITLE = 'FIGHT JAWBREAKER' 82 | 83 | -- Sub Queries 84 | SELECT F.TITLE, CONCAT(A.FIRST_NAME, ' ' , A.LAST_NAME) AS NAME_OF_ACTORS 85 | FROM FILM F 86 | INNER JOIN FILM_ACTOR FA ON F.FILM_ID = FA.FILM_ID 87 | INNER JOIN ACTOR A ON A.ACTOR_ID = FA.ACTOR_ID 88 | WHERE CONCAT(A.FIRST_NAME, ' ' , A.LAST_NAME) IN 89 | ( 90 | SELECT SUB1.ACTORS FROM 91 | ( 92 | SELECT CONCAT(A.FIRST_NAME, ' ' , A.LAST_NAME) AS ACTORS, COUNT(DISTINCT F.FILM_ID) 93 | FROM FILM F 94 | INNER JOIN FILM_ACTOR FA ON F.FILM_ID = FA.FILM_ID 95 | INNER JOIN ACTOR A ON A.ACTOR_ID = FA.ACTOR_ID 96 | GROUP BY CONCAT(A.FIRST_NAME, ' ' , A.LAST_NAME) 97 | HAVING COUNT(DISTINCT F.FILM_ID) > 40 98 | ) SUB1 99 | ) 100 | 101 | 102 | -------------------------------------------------------------------------------- /Day41-43 - EDA and Feature Engineering using Titanic Dataset/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Day41-43 - EDA and Feature Engineering using Titanic Dataset/.DS_Store -------------------------------------------------------------------------------- /Day44 - SweetViz/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Day44 - SweetViz/.DS_Store -------------------------------------------------------------------------------- /Day44 - SweetViz/.ipynb_checkpoints/Day44-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 4, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import numpy as np \n", 10 | "import pandas as pd\n", 11 | "import sweetviz as sv" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 28, 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "train = pd.read_csv(\"../Data/Titanic/train.csv\")\n", 21 | "test = pd.read_csv(\"../Data/Titanic/test.csv\")" 22 | ] 23 | }, 24 | { 25 | "cell_type": "code", 26 | "execution_count": 22, 27 | "metadata": {}, 28 | "outputs": [ 29 | { 30 | "name": "stdout", 31 | "output_type": "stream", 32 | "text": [ 33 | "\n" 34 | ] 35 | }, 36 | { 37 | "data": { 38 | "application/vnd.jupyter.widget-view+json": { 39 | "model_id": "a0dd9bde90f347e193b88509e618b4e4", 40 | "version_major": 2, 41 | "version_minor": 0 42 | }, 43 | "text/plain": [ 44 | "HBox(children=(HTML(value=''), FloatProgress(value=0.0, layout=Layout(flex='2'), max=13.0), HTML(value='')), l…" 45 | ] 46 | }, 47 | "metadata": {}, 48 | "output_type": "display_data" 49 | }, 50 | { 51 | "name": "stdout", 52 | "output_type": "stream", 53 | "text": [ 54 | "\n" 55 | ] 56 | } 57 | ], 58 | "source": [ 59 | "#analyzing the dataset\n", 60 | "analysis = sv.analyze(train)" 61 | ] 62 | }, 63 | { 64 | "cell_type": "code", 65 | "execution_count": 23, 66 | "metadata": {}, 67 | "outputs": [ 68 | { 69 | "name": "stdout", 70 | "output_type": "stream", 71 | "text": [ 72 | "Report Titanic_train_data_analysis.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files.\n" 73 | ] 74 | } 75 | ], 76 | "source": [ 77 | "#display the report\n", 78 | "analysis.show_html('Titanic_train_data_analysis.html', layout = 'widescreen', scale=0.7)" 79 | ] 80 | }, 81 | { 82 | "cell_type": "code", 83 | "execution_count": 31, 84 | "metadata": {}, 85 | "outputs": [ 86 | { 87 | "data": { 88 | "application/vnd.jupyter.widget-view+json": { 89 | "model_id": "de610b5f635f486a919d039788bd104e", 90 | "version_major": 2, 91 | "version_minor": 0 92 | }, 93 | "text/plain": [ 94 | "HBox(children=(HTML(value=''), FloatProgress(value=0.0, layout=Layout(flex='2'), max=13.0), HTML(value='')), l…" 95 | ] 96 | }, 97 | "metadata": {}, 98 | "output_type": "display_data" 99 | }, 100 | { 101 | "name": "stdout", 102 | "output_type": "stream", 103 | "text": [ 104 | "\n" 105 | ] 106 | } 107 | ], 108 | "source": [ 109 | "#analyzing the dataset\n", 110 | "analysis = sv.analyze(train, \"Survived\")\n", 111 | "#display the report\n", 112 | "analysis.show_html('Titanic_train_data_analysis.html', layout = 'widescreen', scale=0.7)" 113 | ] 114 | }, 115 | { 116 | "cell_type": "code", 117 | "execution_count": 10, 118 | "metadata": {}, 119 | "outputs": [], 120 | "source": [ 121 | "survived = train[train['Survived'] == 1]\n", 122 | "not_survived = train[train['Survived'] == 0]" 123 | ] 124 | }, 125 | { 126 | "cell_type": "code", 127 | "execution_count": 12, 128 | "metadata": {}, 129 | "outputs": [ 130 | { 131 | "data": { 132 | "application/vnd.jupyter.widget-view+json": { 133 | "model_id": "3abb26105caa4363ab3976a3c6f3ae59", 134 | "version_major": 2, 135 | "version_minor": 0 136 | }, 137 | "text/plain": [ 138 | "HBox(children=(HTML(value=''), FloatProgress(value=0.0, layout=Layout(flex='2'), max=13.0), HTML(value='')), l…" 139 | ] 140 | }, 141 | "metadata": {}, 142 | "output_type": "display_data" 143 | }, 144 | { 145 | "name": "stdout", 146 | "output_type": "stream", 147 | "text": [ 148 | "\n", 149 | "Report comparison.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files.\n" 150 | ] 151 | } 152 | ], 153 | "source": [ 154 | "comparison = sv.compare(survived, not_survived)\n", 155 | "comparison.show_html('comparison.html', layout = 'widescreen', scale=0.7)" 156 | ] 157 | }, 158 | { 159 | "cell_type": "code", 160 | "execution_count": 35, 161 | "metadata": {}, 162 | "outputs": [ 163 | { 164 | "data": { 165 | "application/vnd.jupyter.widget-view+json": { 166 | "model_id": "1bd7ae0ce90547e5bfe75f71c8c1341b", 167 | "version_major": 2, 168 | "version_minor": 0 169 | }, 170 | "text/plain": [ 171 | "HBox(children=(HTML(value=''), FloatProgress(value=0.0, layout=Layout(flex='2'), max=13.0), HTML(value='')), l…" 172 | ] 173 | }, 174 | "metadata": {}, 175 | "output_type": "display_data" 176 | }, 177 | { 178 | "name": "stdout", 179 | "output_type": "stream", 180 | "text": [ 181 | "\n", 182 | "Report comparison.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files.\n" 183 | ] 184 | } 185 | ], 186 | "source": [ 187 | "male = train[train['Sex'] == 'male']\n", 188 | "female = train[train['Sex'] == 'female']\n", 189 | "comparison = sv.compare([male, \" Male\"], [female, \"Female\"])\n", 190 | "comparison.show_html('comparison.html', layout = 'widescreen', scale=0.7)" 191 | ] 192 | }, 193 | { 194 | "cell_type": "code", 195 | "execution_count": 30, 196 | "metadata": {}, 197 | "outputs": [ 198 | { 199 | "data": { 200 | "application/vnd.jupyter.widget-view+json": { 201 | "model_id": "722d007c76664b4cbce70b1523f7db08", 202 | "version_major": 2, 203 | "version_minor": 0 204 | }, 205 | "text/plain": [ 206 | "HBox(children=(HTML(value=''), FloatProgress(value=0.0, layout=Layout(flex='2'), max=13.0), HTML(value='')), l…" 207 | ] 208 | }, 209 | "metadata": {}, 210 | "output_type": "display_data" 211 | }, 212 | { 213 | "name": "stdout", 214 | "output_type": "stream", 215 | "text": [ 216 | "\n", 217 | "Report comparison.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files.\n" 218 | ] 219 | } 220 | ], 221 | "source": [ 222 | "comparison = sv.compare(train, test)\n", 223 | "comparison.show_html('comparison.html')" 224 | ] 225 | } 226 | ], 227 | "metadata": { 228 | "kernelspec": { 229 | "display_name": "Python 3", 230 | "language": "python", 231 | "name": "python3" 232 | }, 233 | "language_info": { 234 | "codemirror_mode": { 235 | "name": "ipython", 236 | "version": 3 237 | }, 238 | "file_extension": ".py", 239 | "mimetype": "text/x-python", 240 | "name": "python", 241 | "nbconvert_exporter": "python", 242 | "pygments_lexer": "ipython3", 243 | "version": "3.8.5" 244 | } 245 | }, 246 | "nbformat": 4, 247 | "nbformat_minor": 4 248 | } 249 | -------------------------------------------------------------------------------- /Day44 - SweetViz/Day44.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import numpy as np \n", 10 | "import pandas as pd\n", 11 | "import sweetviz as sv" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 2, 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "train = pd.read_csv(\"../Data/Titanic/train.csv\")\n", 21 | "test = pd.read_csv(\"../Data/Titanic/test.csv\")" 22 | ] 23 | }, 24 | { 25 | "cell_type": "code", 26 | "execution_count": 3, 27 | "metadata": {}, 28 | "outputs": [ 29 | { 30 | "data": { 31 | "application/vnd.jupyter.widget-view+json": { 32 | "model_id": "ebaba903b0694523994e1faf17aed11d", 33 | "version_major": 2, 34 | "version_minor": 0 35 | }, 36 | "text/plain": [ 37 | "HBox(children=(HTML(value=''), FloatProgress(value=0.0, layout=Layout(flex='2'), max=13.0), HTML(value='')), l…" 38 | ] 39 | }, 40 | "metadata": {}, 41 | "output_type": "display_data" 42 | }, 43 | { 44 | "name": "stdout", 45 | "output_type": "stream", 46 | "text": [ 47 | "\n" 48 | ] 49 | } 50 | ], 51 | "source": [ 52 | "#analyzing the dataset\n", 53 | "analysis = sv.analyze(train)" 54 | ] 55 | }, 56 | { 57 | "cell_type": "code", 58 | "execution_count": 4, 59 | "metadata": {}, 60 | "outputs": [ 61 | { 62 | "name": "stdout", 63 | "output_type": "stream", 64 | "text": [ 65 | "Report Titanic_train_data_analysis.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files.\n" 66 | ] 67 | } 68 | ], 69 | "source": [ 70 | "#display the report\n", 71 | "analysis.show_html('Titanic_train_data_analysis.html', layout = 'widescreen', scale=0.7)" 72 | ] 73 | }, 74 | { 75 | "cell_type": "code", 76 | "execution_count": 5, 77 | "metadata": {}, 78 | "outputs": [ 79 | { 80 | "data": { 81 | "application/vnd.jupyter.widget-view+json": { 82 | "model_id": "51c30e16e3a7473195202ac7b47bde9a", 83 | "version_major": 2, 84 | "version_minor": 0 85 | }, 86 | "text/plain": [ 87 | "HBox(children=(HTML(value=''), FloatProgress(value=0.0, layout=Layout(flex='2'), max=13.0), HTML(value='')), l…" 88 | ] 89 | }, 90 | "metadata": {}, 91 | "output_type": "display_data" 92 | }, 93 | { 94 | "name": "stdout", 95 | "output_type": "stream", 96 | "text": [ 97 | "\n", 98 | "Report Titanic_train_data_analysis.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files.\n" 99 | ] 100 | } 101 | ], 102 | "source": [ 103 | "#analyzing the dataset\n", 104 | "analysis = sv.analyze(train, \"Survived\")\n", 105 | "#display the report\n", 106 | "analysis.show_html('Titanic_train_data_analysis.html', layout = 'widescreen', scale=0.7)" 107 | ] 108 | }, 109 | { 110 | "cell_type": "code", 111 | "execution_count": 6, 112 | "metadata": {}, 113 | "outputs": [], 114 | "source": [ 115 | "survived = train[train['Survived'] == 1]\n", 116 | "not_survived = train[train['Survived'] == 0]" 117 | ] 118 | }, 119 | { 120 | "cell_type": "code", 121 | "execution_count": 7, 122 | "metadata": {}, 123 | "outputs": [ 124 | { 125 | "data": { 126 | "application/vnd.jupyter.widget-view+json": { 127 | "model_id": "2ee7cf21258e4310962cc5549a2469e7", 128 | "version_major": 2, 129 | "version_minor": 0 130 | }, 131 | "text/plain": [ 132 | "HBox(children=(HTML(value=''), FloatProgress(value=0.0, layout=Layout(flex='2'), max=13.0), HTML(value='')), l…" 133 | ] 134 | }, 135 | "metadata": {}, 136 | "output_type": "display_data" 137 | }, 138 | { 139 | "name": "stdout", 140 | "output_type": "stream", 141 | "text": [ 142 | "\n", 143 | "Report comparison.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files.\n" 144 | ] 145 | } 146 | ], 147 | "source": [ 148 | "comparison = sv.compare(survived, not_survived)\n", 149 | "comparison.show_html('comparison.html', layout = 'widescreen', scale=0.7)" 150 | ] 151 | }, 152 | { 153 | "cell_type": "code", 154 | "execution_count": 8, 155 | "metadata": {}, 156 | "outputs": [ 157 | { 158 | "data": { 159 | "application/vnd.jupyter.widget-view+json": { 160 | "model_id": "2673b086e2524caabfdc6369392fc76e", 161 | "version_major": 2, 162 | "version_minor": 0 163 | }, 164 | "text/plain": [ 165 | "HBox(children=(HTML(value=''), FloatProgress(value=0.0, layout=Layout(flex='2'), max=13.0), HTML(value='')), l…" 166 | ] 167 | }, 168 | "metadata": {}, 169 | "output_type": "display_data" 170 | }, 171 | { 172 | "name": "stdout", 173 | "output_type": "stream", 174 | "text": [ 175 | "\n", 176 | "Report comparison.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files.\n" 177 | ] 178 | } 179 | ], 180 | "source": [ 181 | "male = train[train['Sex'] == 'male']\n", 182 | "female = train[train['Sex'] == 'female']\n", 183 | "comparison = sv.compare([male, \" Male\"], [female, \"Female\"])\n", 184 | "comparison.show_html('comparison.html', layout = 'widescreen', scale=0.7)" 185 | ] 186 | }, 187 | { 188 | "cell_type": "code", 189 | "execution_count": 9, 190 | "metadata": {}, 191 | "outputs": [ 192 | { 193 | "data": { 194 | "application/vnd.jupyter.widget-view+json": { 195 | "model_id": "b4a747ac92c444d0a97a468be38d416c", 196 | "version_major": 2, 197 | "version_minor": 0 198 | }, 199 | "text/plain": [ 200 | "HBox(children=(HTML(value=''), FloatProgress(value=0.0, layout=Layout(flex='2'), max=13.0), HTML(value='')), l…" 201 | ] 202 | }, 203 | "metadata": {}, 204 | "output_type": "display_data" 205 | }, 206 | { 207 | "name": "stdout", 208 | "output_type": "stream", 209 | "text": [ 210 | "\n", 211 | "Report comparison.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files.\n" 212 | ] 213 | } 214 | ], 215 | "source": [ 216 | "comparison = sv.compare([train, \" Train\"], [test, \"Test\"])\n", 217 | "comparison.show_html('comparison.html')" 218 | ] 219 | }, 220 | { 221 | "cell_type": "code", 222 | "execution_count": null, 223 | "metadata": {}, 224 | "outputs": [], 225 | "source": [] 226 | } 227 | ], 228 | "metadata": { 229 | "kernelspec": { 230 | "display_name": "Python 3", 231 | "language": "python", 232 | "name": "python3" 233 | }, 234 | "language_info": { 235 | "codemirror_mode": { 236 | "name": "ipython", 237 | "version": 3 238 | }, 239 | "file_extension": ".py", 240 | "mimetype": "text/x-python", 241 | "name": "python", 242 | "nbconvert_exporter": "python", 243 | "pygments_lexer": "ipython3", 244 | "version": "3.8.5" 245 | } 246 | }, 247 | "nbformat": 4, 248 | "nbformat_minor": 4 249 | } 250 | -------------------------------------------------------------------------------- /Day45 - D-Tale/.ipynb_checkpoints/Day45-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import dtale\n", 10 | "import pandas as pd\n", 11 | "from sklearn.datasets import load_diabetes\n", 12 | "import seaborn as sns" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": 2, 18 | "metadata": {}, 19 | "outputs": [], 20 | "source": [ 21 | "df = sns.load_dataset('car_crashes')\n", 22 | "dtale_carcrash = dtale.show(df)\n", 23 | "#open it in a new window in browser\n", 24 | "dtale_carcrash.open_browser()" 25 | ] 26 | }, 27 | { 28 | "cell_type": "markdown", 29 | "metadata": {}, 30 | "source": [ 31 | "- Rename\n", 32 | "- Replace\n", 33 | "- Describe\n", 34 | "- Outliers\n", 35 | "- Filter Outliers\n", 36 | "- Update grid\n", 37 | "- Variance Report\n", 38 | "- Duplicate and Missing checks\n", 39 | "- Correlation\n", 40 | "- Custom Filter\n", 41 | "- Heatmap\n", 42 | "- Highlight\n", 43 | "- Export\n", 44 | "- Charts" 45 | ] 46 | } 47 | ], 48 | "metadata": { 49 | "kernelspec": { 50 | "display_name": "Python 3", 51 | "language": "python", 52 | "name": "python3" 53 | }, 54 | "language_info": { 55 | "codemirror_mode": { 56 | "name": "ipython", 57 | "version": 3 58 | }, 59 | "file_extension": ".py", 60 | "mimetype": "text/x-python", 61 | "name": "python", 62 | "nbconvert_exporter": "python", 63 | "pygments_lexer": "ipython3", 64 | "version": "3.8.5" 65 | } 66 | }, 67 | "nbformat": 4, 68 | "nbformat_minor": 4 69 | } 70 | -------------------------------------------------------------------------------- /Day50 - EDA and Feature Engineering Wrap-up/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Day50 - EDA and Feature Engineering Wrap-up/.DS_Store -------------------------------------------------------------------------------- /Day51-52 - Linear Regression Concept and Implementation/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Day51-52 - Linear Regression Concept and Implementation/.DS_Store -------------------------------------------------------------------------------- /Day51-52 - Linear Regression Concept and Implementation/Excel_Calc.numbers: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Day51-52 - Linear Regression Concept and Implementation/Excel_Calc.numbers -------------------------------------------------------------------------------- /Day51-52 - Linear Regression Concept and Implementation/Multivariables.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import numpy as np\n", 10 | "import pandas as pd\n", 11 | "from sklearn.linear_model import LinearRegression\n", 12 | "\n", 13 | "from numpy.polynomial.polynomial import polyfit\n", 14 | "import matplotlib.pyplot as plt\n", 15 | "\n", 16 | "import seaborn as sns" 17 | ] 18 | }, 19 | { 20 | "cell_type": "code", 21 | "execution_count": 2, 22 | "metadata": {}, 23 | "outputs": [], 24 | "source": [ 25 | "# Adding more variables\n", 26 | "no_of_projects = np.array([5, 11, 15, 19, 23, 25])\n", 27 | "years_of_exp = np.array([1, 2, 2, 3, 7, 11])\n", 28 | "courses = np.array([2, 3, 3, 3, 2, 2])\n", 29 | "salary = np.array([80000, 90000, 97000, 110000, 118000, 150000])" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "execution_count": 3, 35 | "metadata": {}, 36 | "outputs": [ 37 | { 38 | "data": { 39 | "text/html": [ 40 | "
\n", 41 | "\n", 54 | "\n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | "
no_of_projectsyears_of_expcoursessalary
051280000
1112390000
2152397000
31933110000
42372118000
525112150000
\n", 109 | "
" 110 | ], 111 | "text/plain": [ 112 | " no_of_projects years_of_exp courses salary\n", 113 | "0 5 1 2 80000\n", 114 | "1 11 2 3 90000\n", 115 | "2 15 2 3 97000\n", 116 | "3 19 3 3 110000\n", 117 | "4 23 7 2 118000\n", 118 | "5 25 11 2 150000" 119 | ] 120 | }, 121 | "execution_count": 3, 122 | "metadata": {}, 123 | "output_type": "execute_result" 124 | } 125 | ], 126 | "source": [ 127 | "# Checking the dataset\n", 128 | "dataset = pd.DataFrame({'no_of_projects': no_of_projects, 'years_of_exp': years_of_exp, 'courses': courses, 'salary': salary}, columns=['no_of_projects', 'years_of_exp', 'courses','salary'])\n", 129 | "dataset" 130 | ] 131 | }, 132 | { 133 | "cell_type": "code", 134 | "execution_count": 4, 135 | "metadata": {}, 136 | "outputs": [], 137 | "source": [ 138 | "# initial the model\n", 139 | "reg_model = LinearRegression()" 140 | ] 141 | }, 142 | { 143 | "cell_type": "code", 144 | "execution_count": 5, 145 | "metadata": {}, 146 | "outputs": [ 147 | { 148 | "data": { 149 | "text/plain": [ 150 | "LinearRegression()" 151 | ] 152 | }, 153 | "execution_count": 5, 154 | "metadata": {}, 155 | "output_type": "execute_result" 156 | } 157 | ], 158 | "source": [ 159 | "# Fit the model based on training dataset\n", 160 | "reg_model.fit(dataset[['no_of_projects', 'years_of_exp', 'courses']], dataset.salary)" 161 | ] 162 | }, 163 | { 164 | "cell_type": "code", 165 | "execution_count": 6, 166 | "metadata": {}, 167 | "outputs": [], 168 | "source": [ 169 | "# Sample data to test the prediction\n", 170 | "arr1 = [[7,13,19],[3,3,3]]\n", 171 | "to_predict = pd.DataFrame(arr1)" 172 | ] 173 | }, 174 | { 175 | "cell_type": "code", 176 | "execution_count": 7, 177 | "metadata": {}, 178 | "outputs": [ 179 | { 180 | "data": { 181 | "text/html": [ 182 | "
\n", 183 | "\n", 196 | "\n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | "
012
071319
1333
\n", 220 | "
" 221 | ], 222 | "text/plain": [ 223 | " 0 1 2\n", 224 | "0 7 13 19\n", 225 | "1 3 3 3" 226 | ] 227 | }, 228 | "execution_count": 7, 229 | "metadata": {}, 230 | "output_type": "execute_result" 231 | } 232 | ], 233 | "source": [ 234 | "to_predict" 235 | ] 236 | }, 237 | { 238 | "cell_type": "code", 239 | "execution_count": 8, 240 | "metadata": {}, 241 | "outputs": [ 242 | { 243 | "data": { 244 | "text/plain": [ 245 | "array([286996.68599834, 96376.13918807])" 246 | ] 247 | }, 248 | "execution_count": 8, 249 | "metadata": {}, 250 | "output_type": "execute_result" 251 | } 252 | ], 253 | "source": [ 254 | "# Model prediction\n", 255 | "y_pred = reg_model.predict(to_predict)\n", 256 | "y_pred" 257 | ] 258 | }, 259 | { 260 | "cell_type": "code", 261 | "execution_count": 9, 262 | "metadata": {}, 263 | "outputs": [ 264 | { 265 | "name": "stdout", 266 | "output_type": "stream", 267 | "text": [ 268 | "intercept: 52759.32062966034\n", 269 | "slope: [ 546.81027341 5906.7937034 8085.33554267]\n" 270 | ] 271 | } 272 | ], 273 | "source": [ 274 | "# Intercept and the Slope for the Model built\n", 275 | "print('intercept:', reg_model.intercept_)\n", 276 | "print('slope:', reg_model.coef_)" 277 | ] 278 | }, 279 | { 280 | "cell_type": "code", 281 | "execution_count": null, 282 | "metadata": {}, 283 | "outputs": [], 284 | "source": [] 285 | } 286 | ], 287 | "metadata": { 288 | "kernelspec": { 289 | "display_name": "Python 3", 290 | "language": "python", 291 | "name": "python3" 292 | }, 293 | "language_info": { 294 | "codemirror_mode": { 295 | "name": "ipython", 296 | "version": 3 297 | }, 298 | "file_extension": ".py", 299 | "mimetype": "text/x-python", 300 | "name": "python", 301 | "nbconvert_exporter": "python", 302 | "pygments_lexer": "ipython3", 303 | "version": "3.8.5" 304 | } 305 | }, 306 | "nbformat": 4, 307 | "nbformat_minor": 4 308 | } 309 | -------------------------------------------------------------------------------- /Day53-54 - Logistic Regression Concepts and Implementation/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Day53-54 - Logistic Regression Concepts and Implementation/.DS_Store -------------------------------------------------------------------------------- /Day55-56 - Decision Tree Implementation/DecisionTreeData.csv: -------------------------------------------------------------------------------- 1 | Day,Outlook,Temp.,Humidity,Wind,Decision 2 | 1,Sunny,Hot,High,Weak,No 3 | 2,Sunny,Hot,High,Strong,No 4 | 3,Overcast,Hot,High,Weak,Yes 5 | 4,Rain,Mild,High,Weak,Yes 6 | 5,Rain,Cool,Normal,Weak,Yes 7 | 6,Rain,Cool,Normal,Strong,No 8 | 7,Overcast,Cool,Normal,Strong,Yes 9 | 8,Sunny,Mild,High,Weak,No 10 | 9,Sunny,Cool,Normal,Weak,Yes 11 | 10,Rain,Mild,Normal,Weak,Yes 12 | 11,Sunny,Mild,Normal,Strong,Yes 13 | 12,Overcast,Mild,High,Strong,Yes 14 | 13,Overcast,Hot,Normal,Weak,Yes 15 | 14,Rain,Mild,High,Strong,No -------------------------------------------------------------------------------- /Day57-58 - SVM Concept and Implementation/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Day57-58 - SVM Concept and Implementation/.DS_Store -------------------------------------------------------------------------------- /Day57-58 - SVM Concept and Implementation/.ipynb_checkpoints/SimpleExample-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### A simple SVM example - Linear " 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 1, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "import numpy as np\n", 17 | "from sklearn.svm import SVC" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": null, 23 | "metadata": {}, 24 | "outputs": [], 25 | "source": [ 26 | "X = np.array([[-3, -5], [-2, -2], [1, 3], [2, 4]])\n", 27 | "y = np.array([1, 1, 2, 2])" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": null, 33 | "metadata": {}, 34 | "outputs": [], 35 | "source": [ 36 | "clf = SVC(kernel='linear')\n", 37 | "clf.fit(X, y)" 38 | ] 39 | }, 40 | { 41 | "cell_type": "code", 42 | "execution_count": null, 43 | "metadata": {}, 44 | "outputs": [], 45 | "source": [ 46 | "prediction = clf.predict([[4,6]])" 47 | ] 48 | }, 49 | { 50 | "cell_type": "code", 51 | "execution_count": null, 52 | "metadata": {}, 53 | "outputs": [], 54 | "source": [ 55 | "prediction" 56 | ] 57 | }, 58 | { 59 | "cell_type": "code", 60 | "execution_count": null, 61 | "metadata": {}, 62 | "outputs": [], 63 | "source": [] 64 | } 65 | ], 66 | "metadata": { 67 | "kernelspec": { 68 | "display_name": "Python 3", 69 | "language": "python", 70 | "name": "python3" 71 | }, 72 | "language_info": { 73 | "codemirror_mode": { 74 | "name": "ipython", 75 | "version": 3 76 | }, 77 | "file_extension": ".py", 78 | "mimetype": "text/x-python", 79 | "name": "python", 80 | "nbconvert_exporter": "python", 81 | "pygments_lexer": "ipython3", 82 | "version": "3.8.5" 83 | } 84 | }, 85 | "nbformat": 4, 86 | "nbformat_minor": 4 87 | } 88 | -------------------------------------------------------------------------------- /Day57-58 - SVM Concept and Implementation/SimpleExample.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "#### A simple SVM example - Linear " 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 1, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "import numpy as np\n", 17 | "from sklearn.svm import SVC" 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": 2, 23 | "metadata": {}, 24 | "outputs": [], 25 | "source": [ 26 | "X = np.array([[-3, -5], [-2, -2], [1, 3], [2, 4]])\n", 27 | "y = np.array([1, 1, 2, 2])" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 3, 33 | "metadata": {}, 34 | "outputs": [ 35 | { 36 | "data": { 37 | "text/plain": [ 38 | "SVC(kernel='linear')" 39 | ] 40 | }, 41 | "execution_count": 3, 42 | "metadata": {}, 43 | "output_type": "execute_result" 44 | } 45 | ], 46 | "source": [ 47 | "clf = SVC(kernel='linear')\n", 48 | "clf.fit(X, y)" 49 | ] 50 | }, 51 | { 52 | "cell_type": "code", 53 | "execution_count": 6, 54 | "metadata": {}, 55 | "outputs": [], 56 | "source": [ 57 | "prediction = clf.predict([[-4,-6]])" 58 | ] 59 | }, 60 | { 61 | "cell_type": "code", 62 | "execution_count": 7, 63 | "metadata": {}, 64 | "outputs": [ 65 | { 66 | "data": { 67 | "text/plain": [ 68 | "array([1])" 69 | ] 70 | }, 71 | "execution_count": 7, 72 | "metadata": {}, 73 | "output_type": "execute_result" 74 | } 75 | ], 76 | "source": [ 77 | "prediction" 78 | ] 79 | }, 80 | { 81 | "cell_type": "code", 82 | "execution_count": null, 83 | "metadata": {}, 84 | "outputs": [], 85 | "source": [] 86 | } 87 | ], 88 | "metadata": { 89 | "kernelspec": { 90 | "display_name": "Python 3", 91 | "language": "python", 92 | "name": "python3" 93 | }, 94 | "language_info": { 95 | "codemirror_mode": { 96 | "name": "ipython", 97 | "version": 3 98 | }, 99 | "file_extension": ".py", 100 | "mimetype": "text/x-python", 101 | "name": "python", 102 | "nbconvert_exporter": "python", 103 | "pygments_lexer": "ipython3", 104 | "version": "3.8.5" 105 | } 106 | }, 107 | "nbformat": 4, 108 | "nbformat_minor": 4 109 | } 110 | -------------------------------------------------------------------------------- /Day59-60 - Random Forest Concept and Implementation/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Day59-60 - Random Forest Concept and Implementation/.DS_Store -------------------------------------------------------------------------------- /Day61-62 - Measuring Model Accuracy/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Day61-62 - Measuring Model Accuracy/.DS_Store -------------------------------------------------------------------------------- /Day63 - K Fold Cross Validation/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/rsharankumar/Learn_Data_Science_in_100Days/d1b8fc128c51a782f8cc1b91332cfdc550cf04c0/Day63 - K Fold Cross Validation/.DS_Store -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Learn_Data_Science_in_100Days 2 | A step-by-step tutorial to learn Data Science 3 | --------------------------------------------------------------------------------