├── .github
├── dependabot.yml
└── workflows
│ └── test.yml
├── .gitignore
├── CHANGELOG.md
├── Gemfile
├── LICENSE.txt
├── README.md
├── Rakefile
├── bin
├── console
└── setup
├── lib
├── matrix.rb
└── matrix
│ ├── eigenvalue_decomposition.rb
│ ├── lup_decomposition.rb
│ └── version.rb
├── matrix.gemspec
└── test
├── lib
└── helper.rb
└── matrix
├── test_matrix.rb
└── test_vector.rb
/.github/dependabot.yml:
--------------------------------------------------------------------------------
1 | version: 2
2 | updates:
3 | - package-ecosystem: 'github-actions'
4 | directory: '/'
5 | schedule:
6 | interval: 'weekly'
7 |
--------------------------------------------------------------------------------
/.github/workflows/test.yml:
--------------------------------------------------------------------------------
1 | name: test
2 |
3 | on: [push, pull_request]
4 |
5 | jobs:
6 | ruby-versions:
7 | uses: ruby/actions/.github/workflows/ruby_versions.yml@master
8 | with:
9 | engine: cruby
10 | min_version: 2.6
11 |
12 | test:
13 | needs: ruby-versions
14 | name: build (${{ matrix.ruby }} / ${{ matrix.os }})
15 | strategy:
16 | matrix:
17 | ruby: ${{ fromJson(needs.ruby-versions.outputs.versions) }}
18 | os: [ ubuntu-latest, macos-latest ]
19 | runs-on: ${{ matrix.os }}
20 | steps:
21 | - uses: actions/checkout@v4
22 | - name: Set up Ruby
23 | uses: ruby/setup-ruby@v1
24 | with:
25 | ruby-version: ${{ matrix.ruby }}
26 | bundler-cache: true
27 | - name: Run test
28 | run: bundle exec rake test
29 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | /.bundle/
2 | /.yardoc
3 | /Gemfile.lock
4 | /_yardoc/
5 | /coverage/
6 | /doc/
7 | /pkg/
8 | /spec/reports/
9 | /tmp/
10 |
--------------------------------------------------------------------------------
/CHANGELOG.md:
--------------------------------------------------------------------------------
1 | # Changelog
2 |
3 | List of new feature changes (excluding most bug fixes and optimizations)
4 |
5 | ## v0.4.0
6 |
7 | * Add `Matrix#rotate_entries` [#19]
8 |
9 | ## v0.3.1 / Ruby 3.0
10 |
11 | * Frozen `Matrix` are Ractor-shareable.
12 |
13 | ## v0.3.0
14 |
15 | * Add `Matrix#adjoint` [#14]
16 |
17 | ## v0.2.0 / Ruby 2.7
18 |
19 | * Add Matrix#abs [ruby/ruby#2199]
20 |
21 | ## v0.1.0 / Ruby 2.6
22 |
23 | * Add `Matrix#antisymmetric?` / `#skew_symmetric?`
24 | * Add `Matrix#map!` / `#collect!`
25 | * Add `Matrix#[]=`
26 | * Add `Vector#map!` / `#collect!`
27 | * Add `Vector#[]=`
28 |
29 | ## Ruby 2.5
30 |
31 | * Add `Matrix.combine` and `Matrix#combine`
32 | * `Matrix#hadamard_product` and `Matrix#entrywise_product`
33 |
--------------------------------------------------------------------------------
/Gemfile:
--------------------------------------------------------------------------------
1 | source "https://rubygems.org"
2 |
3 | gemspec
4 |
5 | gem "rake"
6 | gem "test-unit"
7 | gem "test-unit-ruby-core"
8 |
--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------
1 | Copyright (C) 1993-2013 Yukihiro Matsumoto. All rights reserved.
2 |
3 | Redistribution and use in source and binary forms, with or without
4 | modification, are permitted provided that the following conditions
5 | are met:
6 | 1. Redistributions of source code must retain the above copyright
7 | notice, this list of conditions and the following disclaimer.
8 | 2. Redistributions in binary form must reproduce the above copyright
9 | notice, this list of conditions and the following disclaimer in the
10 | documentation and/or other materials provided with the distribution.
11 |
12 | THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
13 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15 | ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
16 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
17 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18 | OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
19 | HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
21 | OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
22 | SUCH DAMAGE.
23 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Matrix [](https://badge.fury.io/rb/matrix) [](https://stdgems.org/matrix/) [](https://github.com/ruby/matrix/actions?query=workflow%3Atest)
2 |
3 | An implementation of `Matrix` and `Vector` classes.
4 |
5 | The `Matrix` class represents a mathematical matrix. It provides methods for creating matrices, operating on them arithmetically and algebraically, and determining their mathematical properties (trace, rank, inverse, determinant, eigensystem, etc.).
6 |
7 | The `Vector` class represents a mathematical vector, which is useful in its own right, and also constitutes a row or column of a `Matrix`.
8 |
9 | ## Installation
10 |
11 | The `matrix` library comes pre-installed with Ruby. Unless you need recent features, you can simply `require 'matrix'` directly, no need to install it.
12 |
13 | If you need features that are more recent than the version of Ruby you want to support (check the [CHANGELOG](CHANGELOG.md)), you must use the gem. To do this, add this line to your application's Gemfile or gem's gemspec:
14 |
15 | ```ruby
16 | gem 'matrix'
17 | ```
18 |
19 | And then execute:
20 |
21 | $ bundle
22 |
23 | To make sure that the gem takes precedence over the builtin library, call `bundle exec ...` (or call `gem 'matrix'` explicitly).
24 |
25 | ## Usage
26 |
27 | ```ruby
28 | require 'matrix'
29 | m = Matrix[[1, 2], [3, 4]]
30 | m.determinant # => -2
31 | ```
32 |
33 | ## Development
34 |
35 | After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake test` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
36 |
37 | To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
38 |
39 | ## Contributing
40 |
41 | Bug reports and pull requests are welcome on GitHub at https://github.com/ruby/matrix.
42 |
43 | ## License
44 |
45 | The gem is available as open source under the terms of the [2-Clause BSD License](https://opensource.org/licenses/BSD-2-Clause).
46 |
--------------------------------------------------------------------------------
/Rakefile:
--------------------------------------------------------------------------------
1 | require "bundler/gem_tasks"
2 | require "rake/testtask"
3 |
4 | Rake::TestTask.new(:test) do |t|
5 | t.libs << "test/lib"
6 | t.ruby_opts << "-rhelper"
7 | t.test_files = FileList["test/**/test_*.rb"]
8 | end
9 |
10 | task :default => :test
11 |
--------------------------------------------------------------------------------
/bin/console:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env ruby
2 |
3 | require "bundler/setup"
4 | require "matrix"
5 |
6 | # You can add fixtures and/or initialization code here to make experimenting
7 | # with your gem easier. You can also use a different console, if you like.
8 |
9 | # (If you use this, don't forget to add pry to your Gemfile!)
10 | # require "pry"
11 | # Pry.start
12 |
13 | require "irb"
14 | IRB.start(__FILE__)
15 |
--------------------------------------------------------------------------------
/bin/setup:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 | set -euo pipefail
3 | IFS=$'\n\t'
4 | set -vx
5 |
6 | bundle install
7 |
8 | # Do any other automated setup that you need to do here
9 |
--------------------------------------------------------------------------------
/lib/matrix.rb:
--------------------------------------------------------------------------------
1 | # encoding: utf-8
2 | # frozen_string_literal: false
3 | #
4 | # = matrix.rb
5 | #
6 | # An implementation of Matrix and Vector classes.
7 | #
8 | # See classes Matrix and Vector for documentation.
9 | #
10 | # Current Maintainer:: Marc-André Lafortune
11 | # Original Author:: Keiju ISHITSUKA
12 | # Original Documentation:: Gavin Sinclair (sourced from Ruby in a Nutshell (Matsumoto, O'Reilly))
13 | ##
14 |
15 | require_relative "matrix/version"
16 |
17 | module ExceptionForMatrix # :nodoc:
18 | class ErrDimensionMismatch < StandardError
19 | def initialize(val = nil)
20 | if val
21 | super(val)
22 | else
23 | super("Dimension mismatch")
24 | end
25 | end
26 | end
27 |
28 | class ErrNotRegular < StandardError
29 | def initialize(val = nil)
30 | if val
31 | super(val)
32 | else
33 | super("Not Regular Matrix")
34 | end
35 | end
36 | end
37 |
38 | class ErrOperationNotDefined < StandardError
39 | def initialize(vals)
40 | if vals.is_a?(Array)
41 | super("Operation(#{vals[0]}) can't be defined: #{vals[1]} op #{vals[2]}")
42 | else
43 | super(vals)
44 | end
45 | end
46 | end
47 |
48 | class ErrOperationNotImplemented < StandardError
49 | def initialize(vals)
50 | super("Sorry, Operation(#{vals[0]}) not implemented: #{vals[1]} op #{vals[2]}")
51 | end
52 | end
53 | end
54 |
55 | #
56 | # The +Matrix+ class represents a mathematical matrix. It provides methods for creating
57 | # matrices, operating on them arithmetically and algebraically,
58 | # and determining their mathematical properties such as trace, rank, inverse, determinant,
59 | # or eigensystem.
60 | #
61 | class Matrix
62 | include Enumerable
63 | include ExceptionForMatrix
64 | autoload :EigenvalueDecomposition, "matrix/eigenvalue_decomposition"
65 | autoload :LUPDecomposition, "matrix/lup_decomposition"
66 |
67 | # instance creations
68 | private_class_method :new
69 | attr_reader :rows
70 | protected :rows
71 |
72 | #
73 | # Creates a matrix where each argument is a row.
74 | # Matrix[ [25, 93], [-1, 66] ]
75 | # # => 25 93
76 | # # -1 66
77 | #
78 | def Matrix.[](*rows)
79 | rows(rows, false)
80 | end
81 |
82 | #
83 | # Creates a matrix where +rows+ is an array of arrays, each of which is a row
84 | # of the matrix. If the optional argument +copy+ is false, use the given
85 | # arrays as the internal structure of the matrix without copying.
86 | # Matrix.rows([[25, 93], [-1, 66]])
87 | # # => 25 93
88 | # # -1 66
89 | #
90 | def Matrix.rows(rows, copy = true)
91 | rows = convert_to_array(rows, copy)
92 | rows.map! do |row|
93 | convert_to_array(row, copy)
94 | end
95 | size = (rows[0] || []).size
96 | rows.each do |row|
97 | raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
98 | end
99 | new rows, size
100 | end
101 |
102 | #
103 | # Creates a matrix using +columns+ as an array of column vectors.
104 | # Matrix.columns([[25, 93], [-1, 66]])
105 | # # => 25 -1
106 | # # 93 66
107 | #
108 | def Matrix.columns(columns)
109 | rows(columns, false).transpose
110 | end
111 |
112 | #
113 | # Creates a matrix of size +row_count+ x +column_count+.
114 | # It fills the values by calling the given block,
115 | # passing the current row and column.
116 | # Returns an enumerator if no block is given.
117 | #
118 | # m = Matrix.build(2, 4) {|row, col| col - row }
119 | # # => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
120 | # m = Matrix.build(3) { rand }
121 | # # => a 3x3 matrix with random elements
122 | #
123 | def Matrix.build(row_count, column_count = row_count)
124 | row_count = CoercionHelper.coerce_to_int(row_count)
125 | column_count = CoercionHelper.coerce_to_int(column_count)
126 | raise ArgumentError if row_count < 0 || column_count < 0
127 | return to_enum :build, row_count, column_count unless block_given?
128 | rows = Array.new(row_count) do |i|
129 | Array.new(column_count) do |j|
130 | yield i, j
131 | end
132 | end
133 | new rows, column_count
134 | end
135 |
136 | #
137 | # Creates a matrix where the diagonal elements are composed of +values+.
138 | # Matrix.diagonal(9, 5, -3)
139 | # # => 9 0 0
140 | # # 0 5 0
141 | # # 0 0 -3
142 | #
143 | def Matrix.diagonal(*values)
144 | size = values.size
145 | return Matrix.empty if size == 0
146 | rows = Array.new(size) {|j|
147 | row = Array.new(size, 0)
148 | row[j] = values[j]
149 | row
150 | }
151 | new rows
152 | end
153 |
154 | #
155 | # Creates an +n+ by +n+ diagonal matrix where each diagonal element is
156 | # +value+.
157 | # Matrix.scalar(2, 5)
158 | # # => 5 0
159 | # # 0 5
160 | #
161 | def Matrix.scalar(n, value)
162 | diagonal(*Array.new(n, value))
163 | end
164 |
165 | #
166 | # Creates an +n+ by +n+ identity matrix.
167 | # Matrix.identity(2)
168 | # # => 1 0
169 | # # 0 1
170 | #
171 | def Matrix.identity(n)
172 | scalar(n, 1)
173 | end
174 | class << Matrix
175 | alias_method :unit, :identity
176 | alias_method :I, :identity
177 | end
178 |
179 | #
180 | # Creates a zero matrix.
181 | # Matrix.zero(2)
182 | # # => 0 0
183 | # # 0 0
184 | #
185 | def Matrix.zero(row_count, column_count = row_count)
186 | rows = Array.new(row_count){Array.new(column_count, 0)}
187 | new rows, column_count
188 | end
189 |
190 | #
191 | # Creates a single-row matrix where the values of that row are as given in
192 | # +row+.
193 | # Matrix.row_vector([4,5,6])
194 | # # => 4 5 6
195 | #
196 | def Matrix.row_vector(row)
197 | row = convert_to_array(row)
198 | new [row]
199 | end
200 |
201 | #
202 | # Creates a single-column matrix where the values of that column are as given
203 | # in +column+.
204 | # Matrix.column_vector([4,5,6])
205 | # # => 4
206 | # # 5
207 | # # 6
208 | #
209 | def Matrix.column_vector(column)
210 | column = convert_to_array(column)
211 | new [column].transpose, 1
212 | end
213 |
214 | #
215 | # Creates a empty matrix of +row_count+ x +column_count+.
216 | # At least one of +row_count+ or +column_count+ must be 0.
217 | #
218 | # m = Matrix.empty(2, 0)
219 | # m == Matrix[ [], [] ]
220 | # # => true
221 | # n = Matrix.empty(0, 3)
222 | # n == Matrix.columns([ [], [], [] ])
223 | # # => true
224 | # m * n
225 | # # => Matrix[[0, 0, 0], [0, 0, 0]]
226 | #
227 | def Matrix.empty(row_count = 0, column_count = 0)
228 | raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
229 | raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0
230 |
231 | new([[]]*row_count, column_count)
232 | end
233 |
234 | #
235 | # Create a matrix by stacking matrices vertically
236 | #
237 | # x = Matrix[[1, 2], [3, 4]]
238 | # y = Matrix[[5, 6], [7, 8]]
239 | # Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
240 | #
241 | def Matrix.vstack(x, *matrices)
242 | x = CoercionHelper.coerce_to_matrix(x)
243 | result = x.send(:rows).map(&:dup)
244 | matrices.each do |m|
245 | m = CoercionHelper.coerce_to_matrix(m)
246 | if m.column_count != x.column_count
247 | raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}"
248 | end
249 | result.concat(m.send(:rows))
250 | end
251 | new result, x.column_count
252 | end
253 |
254 |
255 | #
256 | # Create a matrix by stacking matrices horizontally
257 | #
258 | # x = Matrix[[1, 2], [3, 4]]
259 | # y = Matrix[[5, 6], [7, 8]]
260 | # Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
261 | #
262 | def Matrix.hstack(x, *matrices)
263 | x = CoercionHelper.coerce_to_matrix(x)
264 | result = x.send(:rows).map(&:dup)
265 | total_column_count = x.column_count
266 | matrices.each do |m|
267 | m = CoercionHelper.coerce_to_matrix(m)
268 | if m.row_count != x.row_count
269 | raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}"
270 | end
271 | result.each_with_index do |row, i|
272 | row.concat m.send(:rows)[i]
273 | end
274 | total_column_count += m.column_count
275 | end
276 | new result, total_column_count
277 | end
278 |
279 | # :call-seq:
280 | # Matrix.combine(*matrices) { |*elements| ... }
281 | #
282 | # Create a matrix by combining matrices entrywise, using the given block
283 | #
284 | # x = Matrix[[6, 6], [4, 4]]
285 | # y = Matrix[[1, 2], [3, 4]]
286 | # Matrix.combine(x, y) {|a, b| a - b} # => Matrix[[5, 4], [1, 0]]
287 | #
288 | def Matrix.combine(*matrices)
289 | return to_enum(__method__, *matrices) unless block_given?
290 |
291 | return Matrix.empty if matrices.empty?
292 | matrices.map!(&CoercionHelper.method(:coerce_to_matrix))
293 | x = matrices.first
294 | matrices.each do |m|
295 | raise ErrDimensionMismatch unless x.row_count == m.row_count && x.column_count == m.column_count
296 | end
297 |
298 | rows = Array.new(x.row_count) do |i|
299 | Array.new(x.column_count) do |j|
300 | yield matrices.map{|m| m[i,j]}
301 | end
302 | end
303 | new rows, x.column_count
304 | end
305 |
306 | # :call-seq:
307 | # combine(*other_matrices) { |*elements| ... }
308 | #
309 | # Creates new matrix by combining with other_matrices entrywise,
310 | # using the given block.
311 | #
312 | # x = Matrix[[6, 6], [4, 4]]
313 | # y = Matrix[[1, 2], [3, 4]]
314 | # x.combine(y) {|a, b| a - b} # => Matrix[[5, 4], [1, 0]]
315 | def combine(*matrices, &block)
316 | Matrix.combine(self, *matrices, &block)
317 | end
318 |
319 | #
320 | # Matrix.new is private; use ::rows, ::columns, ::[], etc... to create.
321 | #
322 | def initialize(rows, column_count = rows[0].size)
323 | # No checking is done at this point. rows must be an Array of Arrays.
324 | # column_count must be the size of the first row, if there is one,
325 | # otherwise it *must* be specified and can be any integer >= 0
326 | @rows = rows
327 | @column_count = column_count
328 | end
329 |
330 | private def new_matrix(rows, column_count = rows[0].size) # :nodoc:
331 | self.class.send(:new, rows, column_count) # bypass privacy of Matrix.new
332 | end
333 |
334 | #
335 | # Returns element (+i+,+j+) of the matrix. That is: row +i+, column +j+.
336 | #
337 | def [](i, j)
338 | @rows.fetch(i){return nil}[j]
339 | end
340 | alias element []
341 | alias component []
342 |
343 | #
344 | # :call-seq:
345 | # matrix[range, range] = matrix/element
346 | # matrix[range, integer] = vector/column_matrix/element
347 | # matrix[integer, range] = vector/row_matrix/element
348 | # matrix[integer, integer] = element
349 | #
350 | # Set element or elements of matrix.
351 | def []=(i, j, v)
352 | raise FrozenError, "can't modify frozen Matrix" if frozen?
353 | rows = check_range(i, :row) or row = check_int(i, :row)
354 | columns = check_range(j, :column) or column = check_int(j, :column)
355 | if rows && columns
356 | set_row_and_col_range(rows, columns, v)
357 | elsif rows
358 | set_row_range(rows, column, v)
359 | elsif columns
360 | set_col_range(row, columns, v)
361 | else
362 | set_value(row, column, v)
363 | end
364 | end
365 | alias set_element []=
366 | alias set_component []=
367 | private :set_element, :set_component
368 |
369 | # Returns range or nil
370 | private def check_range(val, direction)
371 | return unless val.is_a?(Range)
372 | count = direction == :row ? row_count : column_count
373 | CoercionHelper.check_range(val, count, direction)
374 | end
375 |
376 | private def check_int(val, direction)
377 | count = direction == :row ? row_count : column_count
378 | CoercionHelper.check_int(val, count, direction)
379 | end
380 |
381 | private def set_value(row, col, value)
382 | raise ErrDimensionMismatch, "Expected a value, got a #{value.class}" if value.respond_to?(:to_matrix)
383 |
384 | @rows[row][col] = value
385 | end
386 |
387 | private def set_row_and_col_range(row_range, col_range, value)
388 | if value.is_a?(Matrix)
389 | if row_range.size != value.row_count || col_range.size != value.column_count
390 | raise ErrDimensionMismatch, [
391 | 'Expected a Matrix of dimensions',
392 | "#{row_range.size}x#{col_range.size}",
393 | 'got',
394 | "#{value.row_count}x#{value.column_count}",
395 | ].join(' ')
396 | end
397 | source = value.instance_variable_get :@rows
398 | row_range.each_with_index do |row, i|
399 | @rows[row][col_range] = source[i]
400 | end
401 | elsif value.is_a?(Vector)
402 | raise ErrDimensionMismatch, 'Expected a Matrix or a value, got a Vector'
403 | else
404 | value_to_set = Array.new(col_range.size, value)
405 | row_range.each do |i|
406 | @rows[i][col_range] = value_to_set
407 | end
408 | end
409 | end
410 |
411 | private def set_row_range(row_range, col, value)
412 | if value.is_a?(Vector)
413 | raise ErrDimensionMismatch unless row_range.size == value.size
414 | set_column_vector(row_range, col, value)
415 | elsif value.is_a?(Matrix)
416 | raise ErrDimensionMismatch unless value.column_count == 1
417 | value = value.column(0)
418 | raise ErrDimensionMismatch unless row_range.size == value.size
419 | set_column_vector(row_range, col, value)
420 | else
421 | @rows[row_range].each{|e| e[col] = value }
422 | end
423 | end
424 |
425 | private def set_column_vector(row_range, col, value)
426 | value.each_with_index do |e, index|
427 | r = row_range.begin + index
428 | @rows[r][col] = e
429 | end
430 | end
431 |
432 | private def set_col_range(row, col_range, value)
433 | value = if value.is_a?(Vector)
434 | value.to_a
435 | elsif value.is_a?(Matrix)
436 | raise ErrDimensionMismatch unless value.row_count == 1
437 | value.row(0).to_a
438 | else
439 | Array.new(col_range.size, value)
440 | end
441 | raise ErrDimensionMismatch unless col_range.size == value.size
442 | @rows[row][col_range] = value
443 | end
444 |
445 | #
446 | # Returns the number of rows.
447 | #
448 | def row_count
449 | @rows.size
450 | end
451 |
452 | alias_method :row_size, :row_count
453 | #
454 | # Returns the number of columns.
455 | #
456 | attr_reader :column_count
457 | alias_method :column_size, :column_count
458 |
459 | #
460 | # Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
461 | # an array). When a block is given, the elements of that vector are iterated.
462 | #
463 | def row(i, &block) # :yield: e
464 | if block_given?
465 | @rows.fetch(i){return self}.each(&block)
466 | self
467 | else
468 | Vector.elements(@rows.fetch(i){return nil})
469 | end
470 | end
471 |
472 | #
473 | # Returns column vector number +j+ of the matrix as a Vector (starting at 0
474 | # like an array). When a block is given, the elements of that vector are
475 | # iterated.
476 | #
477 | def column(j) # :yield: e
478 | if block_given?
479 | return self if j >= column_count || j < -column_count
480 | row_count.times do |i|
481 | yield @rows[i][j]
482 | end
483 | self
484 | else
485 | return nil if j >= column_count || j < -column_count
486 | col = Array.new(row_count) {|i|
487 | @rows[i][j]
488 | }
489 | Vector.elements(col, false)
490 | end
491 | end
492 |
493 | #
494 | # Returns a matrix that is the result of iteration of the given block over all
495 | # elements of the matrix.
496 | # Elements can be restricted by passing an argument:
497 | # * :all (default): yields all elements
498 | # * :diagonal: yields only elements on the diagonal
499 | # * :off_diagonal: yields all elements except on the diagonal
500 | # * :lower: yields only elements on or below the diagonal
501 | # * :strict_lower: yields only elements below the diagonal
502 | # * :strict_upper: yields only elements above the diagonal
503 | # * :upper: yields only elements on or above the diagonal
504 | # Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
505 | # # => 1 4
506 | # # 9 16
507 | #
508 | def collect(which = :all, &block) # :yield: e
509 | return to_enum(:collect, which) unless block_given?
510 | dup.collect!(which, &block)
511 | end
512 | alias_method :map, :collect
513 |
514 | #
515 | # Invokes the given block for each element of matrix, replacing the element with the value
516 | # returned by the block.
517 | # Elements can be restricted by passing an argument:
518 | # * :all (default): yields all elements
519 | # * :diagonal: yields only elements on the diagonal
520 | # * :off_diagonal: yields all elements except on the diagonal
521 | # * :lower: yields only elements on or below the diagonal
522 | # * :strict_lower: yields only elements below the diagonal
523 | # * :strict_upper: yields only elements above the diagonal
524 | # * :upper: yields only elements on or above the diagonal
525 | #
526 | def collect!(which = :all)
527 | return to_enum(:collect!, which) unless block_given?
528 | raise FrozenError, "can't modify frozen Matrix" if frozen?
529 | each_with_index(which){ |e, row_index, col_index| @rows[row_index][col_index] = yield e }
530 | end
531 |
532 | alias map! collect!
533 |
534 | def freeze
535 | @rows.each(&:freeze).freeze
536 |
537 | super
538 | end
539 |
540 | #
541 | # Yields all elements of the matrix, starting with those of the first row,
542 | # or returns an Enumerator if no block given.
543 | # Elements can be restricted by passing an argument:
544 | # * :all (default): yields all elements
545 | # * :diagonal: yields only elements on the diagonal
546 | # * :off_diagonal: yields all elements except on the diagonal
547 | # * :lower: yields only elements on or below the diagonal
548 | # * :strict_lower: yields only elements below the diagonal
549 | # * :strict_upper: yields only elements above the diagonal
550 | # * :upper: yields only elements on or above the diagonal
551 | #
552 | # Matrix[ [1,2], [3,4] ].each { |e| puts e }
553 | # # => prints the numbers 1 to 4
554 | # Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
555 | #
556 | def each(which = :all, &block) # :yield: e
557 | return to_enum :each, which unless block_given?
558 | last = column_count - 1
559 | case which
560 | when :all
561 | @rows.each do |row|
562 | row.each(&block)
563 | end
564 | when :diagonal
565 | @rows.each_with_index do |row, row_index|
566 | yield row.fetch(row_index){return self}
567 | end
568 | when :off_diagonal
569 | @rows.each_with_index do |row, row_index|
570 | column_count.times do |col_index|
571 | yield row[col_index] unless row_index == col_index
572 | end
573 | end
574 | when :lower
575 | @rows.each_with_index do |row, row_index|
576 | 0.upto([row_index, last].min) do |col_index|
577 | yield row[col_index]
578 | end
579 | end
580 | when :strict_lower
581 | @rows.each_with_index do |row, row_index|
582 | [row_index, column_count].min.times do |col_index|
583 | yield row[col_index]
584 | end
585 | end
586 | when :strict_upper
587 | @rows.each_with_index do |row, row_index|
588 | (row_index+1).upto(last) do |col_index|
589 | yield row[col_index]
590 | end
591 | end
592 | when :upper
593 | @rows.each_with_index do |row, row_index|
594 | row_index.upto(last) do |col_index|
595 | yield row[col_index]
596 | end
597 | end
598 | else
599 | raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
600 | end
601 | self
602 | end
603 |
604 | #
605 | # Same as #each, but the row index and column index in addition to the element
606 | #
607 | # Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
608 | # puts "#{e} at #{row}, #{col}"
609 | # end
610 | # # => Prints:
611 | # # 1 at 0, 0
612 | # # 2 at 0, 1
613 | # # 3 at 1, 0
614 | # # 4 at 1, 1
615 | #
616 | def each_with_index(which = :all) # :yield: e, row, column
617 | return to_enum :each_with_index, which unless block_given?
618 | last = column_count - 1
619 | case which
620 | when :all
621 | @rows.each_with_index do |row, row_index|
622 | row.each_with_index do |e, col_index|
623 | yield e, row_index, col_index
624 | end
625 | end
626 | when :diagonal
627 | @rows.each_with_index do |row, row_index|
628 | yield row.fetch(row_index){return self}, row_index, row_index
629 | end
630 | when :off_diagonal
631 | @rows.each_with_index do |row, row_index|
632 | column_count.times do |col_index|
633 | yield row[col_index], row_index, col_index unless row_index == col_index
634 | end
635 | end
636 | when :lower
637 | @rows.each_with_index do |row, row_index|
638 | 0.upto([row_index, last].min) do |col_index|
639 | yield row[col_index], row_index, col_index
640 | end
641 | end
642 | when :strict_lower
643 | @rows.each_with_index do |row, row_index|
644 | [row_index, column_count].min.times do |col_index|
645 | yield row[col_index], row_index, col_index
646 | end
647 | end
648 | when :strict_upper
649 | @rows.each_with_index do |row, row_index|
650 | (row_index+1).upto(last) do |col_index|
651 | yield row[col_index], row_index, col_index
652 | end
653 | end
654 | when :upper
655 | @rows.each_with_index do |row, row_index|
656 | row_index.upto(last) do |col_index|
657 | yield row[col_index], row_index, col_index
658 | end
659 | end
660 | else
661 | raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
662 | end
663 | self
664 | end
665 |
666 | SELECTORS = {all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
667 | #
668 | # :call-seq:
669 | # index(value, selector = :all) -> [row, column]
670 | # index(selector = :all){ block } -> [row, column]
671 | # index(selector = :all) -> an_enumerator
672 | #
673 | # The index method is specialized to return the index as [row, column]
674 | # It also accepts an optional +selector+ argument, see #each for details.
675 | #
676 | # Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
677 | # Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
678 | #
679 | def index(*args)
680 | raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
681 | which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
682 | return to_enum :find_index, which, *args unless block_given? || args.size == 1
683 | if args.size == 1
684 | value = args.first
685 | each_with_index(which) do |e, row_index, col_index|
686 | return row_index, col_index if e == value
687 | end
688 | else
689 | each_with_index(which) do |e, row_index, col_index|
690 | return row_index, col_index if yield e
691 | end
692 | end
693 | nil
694 | end
695 | alias_method :find_index, :index
696 |
697 | #
698 | # Returns a section of the matrix. The parameters are either:
699 | # * start_row, nrows, start_col, ncols; OR
700 | # * row_range, col_range
701 | #
702 | # Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
703 | # # => 9 0 0
704 | # # 0 5 0
705 | #
706 | # Like Array#[], negative indices count backward from the end of the
707 | # row or column (-1 is the last element). Returns nil if the starting
708 | # row or column is greater than row_count or column_count respectively.
709 | #
710 | def minor(*param)
711 | case param.size
712 | when 2
713 | row_range, col_range = param
714 | from_row = row_range.first
715 | from_row += row_count if from_row < 0
716 | to_row = row_range.end
717 | to_row += row_count if to_row < 0
718 | to_row += 1 unless row_range.exclude_end?
719 | size_row = to_row - from_row
720 |
721 | from_col = col_range.first
722 | from_col += column_count if from_col < 0
723 | to_col = col_range.end
724 | to_col += column_count if to_col < 0
725 | to_col += 1 unless col_range.exclude_end?
726 | size_col = to_col - from_col
727 | when 4
728 | from_row, size_row, from_col, size_col = param
729 | return nil if size_row < 0 || size_col < 0
730 | from_row += row_count if from_row < 0
731 | from_col += column_count if from_col < 0
732 | else
733 | raise ArgumentError, param.inspect
734 | end
735 |
736 | return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
737 | rows = @rows[from_row, size_row].collect{|row|
738 | row[from_col, size_col]
739 | }
740 | new_matrix rows, [column_count - from_col, size_col].min
741 | end
742 |
743 | #
744 | # Returns the submatrix obtained by deleting the specified row and column.
745 | #
746 | # Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
747 | # # => 9 0 0
748 | # # 0 0 0
749 | # # 0 0 4
750 | #
751 | def first_minor(row, column)
752 | raise RuntimeError, "first_minor of empty matrix is not defined" if empty?
753 |
754 | unless 0 <= row && row < row_count
755 | raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})"
756 | end
757 |
758 | unless 0 <= column && column < column_count
759 | raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})"
760 | end
761 |
762 | arrays = to_a
763 | arrays.delete_at(row)
764 | arrays.each do |array|
765 | array.delete_at(column)
766 | end
767 |
768 | new_matrix arrays, column_count - 1
769 | end
770 |
771 | #
772 | # Returns the (row, column) cofactor which is obtained by multiplying
773 | # the first minor by (-1)**(row + column).
774 | #
775 | # Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1)
776 | # # => -108
777 | #
778 | def cofactor(row, column)
779 | raise RuntimeError, "cofactor of empty matrix is not defined" if empty?
780 | raise ErrDimensionMismatch unless square?
781 |
782 | det_of_minor = first_minor(row, column).determinant
783 | det_of_minor * (-1) ** (row + column)
784 | end
785 |
786 | #
787 | # Returns the adjugate of the matrix.
788 | #
789 | # Matrix[ [7,6],[3,9] ].adjugate
790 | # # => 9 -6
791 | # # -3 7
792 | #
793 | def adjugate
794 | raise ErrDimensionMismatch unless square?
795 | Matrix.build(row_count, column_count) do |row, column|
796 | cofactor(column, row)
797 | end
798 | end
799 |
800 | #
801 | # Returns the Laplace expansion along given row or column.
802 | #
803 | # Matrix[[7,6], [3,9]].laplace_expansion(column: 1)
804 | # # => 45
805 | #
806 | # Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0)
807 | # # => Vector[3, -2]
808 | #
809 | #
810 | def laplace_expansion(row: nil, column: nil)
811 | num = row || column
812 |
813 | if !num || (row && column)
814 | raise ArgumentError, "exactly one the row or column arguments must be specified"
815 | end
816 |
817 | raise ErrDimensionMismatch unless square?
818 | raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty?
819 |
820 | unless 0 <= num && num < row_count
821 | raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})"
822 | end
823 |
824 | send(row ? :row : :column, num).map.with_index { |e, k|
825 | e * cofactor(*(row ? [num, k] : [k,num]))
826 | }.inject(:+)
827 | end
828 | alias_method :cofactor_expansion, :laplace_expansion
829 |
830 |
831 | #--
832 | # TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
833 | #++
834 |
835 | #
836 | # Returns +true+ if this is a diagonal matrix.
837 | # Raises an error if matrix is not square.
838 | #
839 | def diagonal?
840 | raise ErrDimensionMismatch unless square?
841 | each(:off_diagonal).all?(&:zero?)
842 | end
843 |
844 | #
845 | # Returns +true+ if this is an empty matrix, i.e. if the number of rows
846 | # or the number of columns is 0.
847 | #
848 | def empty?
849 | column_count == 0 || row_count == 0
850 | end
851 |
852 | #
853 | # Returns +true+ if this is an hermitian matrix.
854 | # Raises an error if matrix is not square.
855 | #
856 | def hermitian?
857 | raise ErrDimensionMismatch unless square?
858 | each_with_index(:upper).all? do |e, row, col|
859 | e == rows[col][row].conj
860 | end
861 | end
862 |
863 | #
864 | # Returns +true+ if this is a lower triangular matrix.
865 | #
866 | def lower_triangular?
867 | each(:strict_upper).all?(&:zero?)
868 | end
869 |
870 | #
871 | # Returns +true+ if this is a normal matrix.
872 | # Raises an error if matrix is not square.
873 | #
874 | def normal?
875 | raise ErrDimensionMismatch unless square?
876 | rows.each_with_index do |row_i, i|
877 | rows.each_with_index do |row_j, j|
878 | s = 0
879 | rows.each_with_index do |row_k, k|
880 | s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
881 | end
882 | return false unless s == 0
883 | end
884 | end
885 | true
886 | end
887 |
888 | #
889 | # Returns +true+ if this is an orthogonal matrix
890 | # Raises an error if matrix is not square.
891 | #
892 | def orthogonal?
893 | raise ErrDimensionMismatch unless square?
894 |
895 | rows.each_with_index do |row_i, i|
896 | rows.each_with_index do |row_j, j|
897 | s = 0
898 | row_count.times do |k|
899 | s += row_i[k] * row_j[k]
900 | end
901 | return false unless s == (i == j ? 1 : 0)
902 | end
903 | end
904 | true
905 | end
906 |
907 | #
908 | # Returns +true+ if this is a permutation matrix
909 | # Raises an error if matrix is not square.
910 | #
911 | def permutation?
912 | raise ErrDimensionMismatch unless square?
913 | cols = Array.new(column_count)
914 | rows.each_with_index do |row, i|
915 | found = false
916 | row.each_with_index do |e, j|
917 | if e == 1
918 | return false if found || cols[j]
919 | found = cols[j] = true
920 | elsif e != 0
921 | return false
922 | end
923 | end
924 | return false unless found
925 | end
926 | true
927 | end
928 |
929 | #
930 | # Returns +true+ if all entries of the matrix are real.
931 | #
932 | def real?
933 | all?(&:real?)
934 | end
935 |
936 | #
937 | # Returns +true+ if this is a regular (i.e. non-singular) matrix.
938 | #
939 | def regular?
940 | not singular?
941 | end
942 |
943 | #
944 | # Returns +true+ if this is a singular matrix.
945 | #
946 | def singular?
947 | determinant == 0
948 | end
949 |
950 | #
951 | # Returns +true+ if this is a square matrix.
952 | #
953 | def square?
954 | column_count == row_count
955 | end
956 |
957 | #
958 | # Returns +true+ if this is a symmetric matrix.
959 | # Raises an error if matrix is not square.
960 | #
961 | def symmetric?
962 | raise ErrDimensionMismatch unless square?
963 | each_with_index(:strict_upper) do |e, row, col|
964 | return false if e != rows[col][row]
965 | end
966 | true
967 | end
968 |
969 | #
970 | # Returns +true+ if this is an antisymmetric matrix.
971 | # Raises an error if matrix is not square.
972 | #
973 | def antisymmetric?
974 | raise ErrDimensionMismatch unless square?
975 | each_with_index(:upper) do |e, row, col|
976 | return false unless e == -rows[col][row]
977 | end
978 | true
979 | end
980 | alias_method :skew_symmetric?, :antisymmetric?
981 |
982 | #
983 | # Returns +true+ if this is a unitary matrix
984 | # Raises an error if matrix is not square.
985 | #
986 | def unitary?
987 | raise ErrDimensionMismatch unless square?
988 | rows.each_with_index do |row_i, i|
989 | rows.each_with_index do |row_j, j|
990 | s = 0
991 | row_count.times do |k|
992 | s += row_i[k].conj * row_j[k]
993 | end
994 | return false unless s == (i == j ? 1 : 0)
995 | end
996 | end
997 | true
998 | end
999 |
1000 | #
1001 | # Returns +true+ if this is an upper triangular matrix.
1002 | #
1003 | def upper_triangular?
1004 | each(:strict_lower).all?(&:zero?)
1005 | end
1006 |
1007 | #
1008 | # Returns +true+ if this is a matrix with only zero elements
1009 | #
1010 | def zero?
1011 | all?(&:zero?)
1012 | end
1013 |
1014 | #--
1015 | # OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
1016 | #++
1017 |
1018 | #
1019 | # Returns whether the two matrices contain equal elements.
1020 | #
1021 | def ==(other)
1022 | return false unless Matrix === other &&
1023 | column_count == other.column_count # necessary for empty matrices
1024 | rows == other.rows
1025 | end
1026 |
1027 | def eql?(other)
1028 | return false unless Matrix === other &&
1029 | column_count == other.column_count # necessary for empty matrices
1030 | rows.eql? other.rows
1031 | end
1032 |
1033 | #
1034 | # Called for dup & clone.
1035 | #
1036 | private def initialize_copy(m)
1037 | super
1038 | @rows = @rows.map(&:dup) unless frozen?
1039 | end
1040 |
1041 | #
1042 | # Returns a hash-code for the matrix.
1043 | #
1044 | def hash
1045 | @rows.hash
1046 | end
1047 |
1048 | #--
1049 | # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
1050 | #++
1051 |
1052 | #
1053 | # Matrix multiplication.
1054 | # Matrix[[2,4], [6,8]] * Matrix.identity(2)
1055 | # # => 2 4
1056 | # # 6 8
1057 | #
1058 | def *(m) # m is matrix or vector or number
1059 | case(m)
1060 | when Numeric
1061 | new_rows = @rows.collect {|row|
1062 | row.collect {|e| e * m }
1063 | }
1064 | return new_matrix new_rows, column_count
1065 | when Vector
1066 | m = self.class.column_vector(m)
1067 | r = self * m
1068 | return r.column(0)
1069 | when Matrix
1070 | raise ErrDimensionMismatch if column_count != m.row_count
1071 | m_rows = m.rows
1072 | new_rows = rows.map do |row_i|
1073 | Array.new(m.column_count) do |j|
1074 | vij = 0
1075 | column_count.times do |k|
1076 | vij += row_i[k] * m_rows[k][j]
1077 | end
1078 | vij
1079 | end
1080 | end
1081 | return new_matrix new_rows, m.column_count
1082 | else
1083 | return apply_through_coercion(m, __method__)
1084 | end
1085 | end
1086 |
1087 | #
1088 | # Matrix addition.
1089 | # Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
1090 | # # => 6 0
1091 | # # -4 12
1092 | #
1093 | def +(m)
1094 | case m
1095 | when Numeric
1096 | raise ErrOperationNotDefined, ["+", self.class, m.class]
1097 | when Vector
1098 | m = self.class.column_vector(m)
1099 | when Matrix
1100 | else
1101 | return apply_through_coercion(m, __method__)
1102 | end
1103 |
1104 | raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
1105 |
1106 | rows = Array.new(row_count) {|i|
1107 | Array.new(column_count) {|j|
1108 | self[i, j] + m[i, j]
1109 | }
1110 | }
1111 | new_matrix rows, column_count
1112 | end
1113 |
1114 | #
1115 | # Matrix subtraction.
1116 | # Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
1117 | # # => -8 2
1118 | # # 8 1
1119 | #
1120 | def -(m)
1121 | case m
1122 | when Numeric
1123 | raise ErrOperationNotDefined, ["-", self.class, m.class]
1124 | when Vector
1125 | m = self.class.column_vector(m)
1126 | when Matrix
1127 | else
1128 | return apply_through_coercion(m, __method__)
1129 | end
1130 |
1131 | raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
1132 |
1133 | rows = Array.new(row_count) {|i|
1134 | Array.new(column_count) {|j|
1135 | self[i, j] - m[i, j]
1136 | }
1137 | }
1138 | new_matrix rows, column_count
1139 | end
1140 |
1141 | #
1142 | # Matrix division (multiplication by the inverse).
1143 | # Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
1144 | # # => -7 1
1145 | # # -3 -6
1146 | #
1147 | def /(other)
1148 | case other
1149 | when Numeric
1150 | rows = @rows.collect {|row|
1151 | row.collect {|e| e / other }
1152 | }
1153 | return new_matrix rows, column_count
1154 | when Matrix
1155 | return self * other.inverse
1156 | else
1157 | return apply_through_coercion(other, __method__)
1158 | end
1159 | end
1160 |
1161 | #
1162 | # Hadamard product
1163 | # Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]])
1164 | # # => 1 4
1165 | # # 9 8
1166 | #
1167 | def hadamard_product(m)
1168 | combine(m){|a, b| a * b}
1169 | end
1170 | alias_method :entrywise_product, :hadamard_product
1171 |
1172 | #
1173 | # Returns the inverse of the matrix.
1174 | # Matrix[[-1, -1], [0, -1]].inverse
1175 | # # => -1 1
1176 | # # 0 -1
1177 | #
1178 | def inverse
1179 | raise ErrDimensionMismatch unless square?
1180 | self.class.I(row_count).send(:inverse_from, self)
1181 | end
1182 | alias_method :inv, :inverse
1183 |
1184 | private def inverse_from(src) # :nodoc:
1185 | last = row_count - 1
1186 | a = src.to_a
1187 |
1188 | 0.upto(last) do |k|
1189 | i = k
1190 | akk = a[k][k].abs
1191 | (k+1).upto(last) do |j|
1192 | v = a[j][k].abs
1193 | if v > akk
1194 | i = j
1195 | akk = v
1196 | end
1197 | end
1198 | raise ErrNotRegular if akk == 0
1199 | if i != k
1200 | a[i], a[k] = a[k], a[i]
1201 | @rows[i], @rows[k] = @rows[k], @rows[i]
1202 | end
1203 | akk = a[k][k]
1204 |
1205 | 0.upto(last) do |ii|
1206 | next if ii == k
1207 | q = a[ii][k].quo(akk)
1208 | a[ii][k] = 0
1209 |
1210 | (k + 1).upto(last) do |j|
1211 | a[ii][j] -= a[k][j] * q
1212 | end
1213 | 0.upto(last) do |j|
1214 | @rows[ii][j] -= @rows[k][j] * q
1215 | end
1216 | end
1217 |
1218 | (k+1).upto(last) do |j|
1219 | a[k][j] = a[k][j].quo(akk)
1220 | end
1221 | 0.upto(last) do |j|
1222 | @rows[k][j] = @rows[k][j].quo(akk)
1223 | end
1224 | end
1225 | self
1226 | end
1227 |
1228 | #
1229 | # Matrix exponentiation.
1230 | # Equivalent to multiplying the matrix by itself N times.
1231 | # Non-integer exponents will be handled by diagonalizing the matrix;
1232 | # this is not supported for Complex matrices.
1233 | #
1234 | # Matrix[[7,6], [3,9]] ** 2
1235 | # # => 67 96
1236 | # # 48 99
1237 | #
1238 | def **(exp)
1239 | case exp
1240 | when Integer
1241 | case
1242 | when exp == 0
1243 | raise ErrDimensionMismatch unless square?
1244 | self.class.identity(column_count)
1245 | when exp < 0
1246 | inverse.power_int(-exp)
1247 | else
1248 | power_int(exp)
1249 | end
1250 | when Numeric
1251 | v, d, v_inv = eigensystem
1252 | v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** exp}) * v_inv
1253 | else
1254 | raise ErrOperationNotDefined, ["**", self.class, exp.class]
1255 | end
1256 | end
1257 |
1258 | protected def power_int(exp)
1259 | # assumes `exp` is an Integer > 0
1260 | #
1261 | # Previous algorithm:
1262 | # build M**2, M**4 = (M**2)**2, M**8, ... and multiplying those you need
1263 | # e.g. M**0b1011 = M**11 = M * M**2 * M**8
1264 | # ^ ^
1265 | # (highlighted the 2 out of 5 multiplications involving `M * x`)
1266 | #
1267 | # Current algorithm has same number of multiplications but with lower exponents:
1268 | # M**11 = M * (M * M**4)**2
1269 | # ^ ^ ^
1270 | # (highlighted the 3 out of 5 multiplications involving `M * x`)
1271 | #
1272 | # This should be faster for all (non nil-potent) matrices.
1273 | case
1274 | when exp == 1
1275 | self
1276 | when exp.odd?
1277 | self * power_int(exp - 1)
1278 | else
1279 | sqrt = power_int(exp / 2)
1280 | sqrt * sqrt
1281 | end
1282 | end
1283 |
1284 | def +@
1285 | self
1286 | end
1287 |
1288 | # Unary matrix negation.
1289 | #
1290 | # -Matrix[[1,5], [4,2]]
1291 | # # => -1 -5
1292 | # # -4 -2
1293 | def -@
1294 | collect {|e| -e }
1295 | end
1296 |
1297 | #
1298 | # Returns the absolute value elementwise
1299 | #
1300 | def abs
1301 | collect(&:abs)
1302 | end
1303 |
1304 | #--
1305 | # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
1306 | #++
1307 |
1308 | #
1309 | # Returns the determinant of the matrix.
1310 | #
1311 | # Beware that using Float values can yield erroneous results
1312 | # because of their lack of precision.
1313 | # Consider using exact types like Rational or BigDecimal instead.
1314 | #
1315 | # Matrix[[7,6], [3,9]].determinant
1316 | # # => 45
1317 | #
1318 | def determinant
1319 | raise ErrDimensionMismatch unless square?
1320 | m = @rows
1321 | case row_count
1322 | # Up to 4x4, give result using Laplacian expansion by minors.
1323 | # This will typically be faster, as well as giving good results
1324 | # in case of Floats
1325 | when 0
1326 | +1
1327 | when 1
1328 | + m[0][0]
1329 | when 2
1330 | + m[0][0] * m[1][1] - m[0][1] * m[1][0]
1331 | when 3
1332 | m0, m1, m2 = m
1333 | + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
1334 | - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
1335 | + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
1336 | when 4
1337 | m0, m1, m2, m3 = m
1338 | + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
1339 | - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
1340 | + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
1341 | - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
1342 | + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
1343 | - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
1344 | + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
1345 | - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
1346 | + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
1347 | - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
1348 | + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
1349 | - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
1350 | else
1351 | # For bigger matrices, use an efficient and general algorithm.
1352 | # Currently, we use the Gauss-Bareiss algorithm
1353 | determinant_bareiss
1354 | end
1355 | end
1356 | alias_method :det, :determinant
1357 |
1358 | #
1359 | # Private. Use Matrix#determinant
1360 | #
1361 | # Returns the determinant of the matrix, using
1362 | # Bareiss' multistep integer-preserving gaussian elimination.
1363 | # It has the same computational cost order O(n^3) as standard Gaussian elimination.
1364 | # Intermediate results are fraction free and of lower complexity.
1365 | # A matrix of Integers will have thus intermediate results that are also Integers,
1366 | # with smaller bignums (if any), while a matrix of Float will usually have
1367 | # intermediate results with better precision.
1368 | #
1369 | private def determinant_bareiss
1370 | size = row_count
1371 | last = size - 1
1372 | a = to_a
1373 | no_pivot = Proc.new{ return 0 }
1374 | sign = +1
1375 | pivot = 1
1376 | size.times do |k|
1377 | previous_pivot = pivot
1378 | if (pivot = a[k][k]) == 0
1379 | switch = (k+1 ... size).find(no_pivot) {|row|
1380 | a[row][k] != 0
1381 | }
1382 | a[switch], a[k] = a[k], a[switch]
1383 | pivot = a[k][k]
1384 | sign = -sign
1385 | end
1386 | (k+1).upto(last) do |i|
1387 | ai = a[i]
1388 | (k+1).upto(last) do |j|
1389 | ai[j] = (pivot * ai[j] - ai[k] * a[k][j]) / previous_pivot
1390 | end
1391 | end
1392 | end
1393 | sign * pivot
1394 | end
1395 |
1396 | #
1397 | # deprecated; use Matrix#determinant
1398 | #
1399 | def determinant_e
1400 | warn "Matrix#determinant_e is deprecated; use #determinant", uplevel: 1
1401 | determinant
1402 | end
1403 | alias_method :det_e, :determinant_e
1404 |
1405 | #
1406 | # Returns a new matrix resulting by stacking horizontally
1407 | # the receiver with the given matrices
1408 | #
1409 | # x = Matrix[[1, 2], [3, 4]]
1410 | # y = Matrix[[5, 6], [7, 8]]
1411 | # x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
1412 | #
1413 | def hstack(*matrices)
1414 | self.class.hstack(self, *matrices)
1415 | end
1416 |
1417 | #
1418 | # Returns the rank of the matrix.
1419 | # Beware that using Float values can yield erroneous results
1420 | # because of their lack of precision.
1421 | # Consider using exact types like Rational or BigDecimal instead.
1422 | #
1423 | # Matrix[[7,6], [3,9]].rank
1424 | # # => 2
1425 | #
1426 | def rank
1427 | # We currently use Bareiss' multistep integer-preserving gaussian elimination
1428 | # (see comments on determinant)
1429 | a = to_a
1430 | last_column = column_count - 1
1431 | last_row = row_count - 1
1432 | pivot_row = 0
1433 | previous_pivot = 1
1434 | 0.upto(last_column) do |k|
1435 | switch_row = (pivot_row .. last_row).find {|row|
1436 | a[row][k] != 0
1437 | }
1438 | if switch_row
1439 | a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
1440 | pivot = a[pivot_row][k]
1441 | (pivot_row+1).upto(last_row) do |i|
1442 | ai = a[i]
1443 | (k+1).upto(last_column) do |j|
1444 | ai[j] = (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
1445 | end
1446 | end
1447 | pivot_row += 1
1448 | previous_pivot = pivot
1449 | end
1450 | end
1451 | pivot_row
1452 | end
1453 |
1454 | #
1455 | # deprecated; use Matrix#rank
1456 | #
1457 | def rank_e
1458 | warn "Matrix#rank_e is deprecated; use #rank", uplevel: 1
1459 | rank
1460 | end
1461 |
1462 | #
1463 | # Returns a new matrix with rotated elements.
1464 | # The argument specifies the rotation (defaults to `:clockwise`):
1465 | # * :clockwise, 1, -3, etc.: "turn right" - first row becomes last column
1466 | # * :half_turn, 2, -2, etc.: first row becomes last row, elements in reverse order
1467 | # * :counter_clockwise, -1, 3: "turn left" - first row becomes first column
1468 | # (but with elements in reverse order)
1469 | #
1470 | # m = Matrix[ [1, 2], [3, 4] ]
1471 | # r = m.rotate_entries(:clockwise)
1472 | # # => Matrix[[3, 1], [4, 2]]
1473 | #
1474 | def rotate_entries(rotation = :clockwise)
1475 | rotation %= 4 if rotation.respond_to? :to_int
1476 |
1477 | case rotation
1478 | when 0
1479 | dup
1480 | when 1, :clockwise
1481 | new_matrix @rows.transpose.each(&:reverse!), row_count
1482 | when 2, :half_turn
1483 | new_matrix @rows.map(&:reverse).reverse!, column_count
1484 | when 3, :counter_clockwise
1485 | new_matrix @rows.transpose.reverse!, row_count
1486 | else
1487 | raise ArgumentError, "expected #{rotation.inspect} to be one of :clockwise, :counter_clockwise, :half_turn or an integer"
1488 | end
1489 | end
1490 |
1491 | # Returns a matrix with entries rounded to the given precision
1492 | # (see Float#round)
1493 | #
1494 | def round(ndigits=0)
1495 | map{|e| e.round(ndigits)}
1496 | end
1497 |
1498 | #
1499 | # Returns the trace (sum of diagonal elements) of the matrix.
1500 | # Matrix[[7,6], [3,9]].trace
1501 | # # => 16
1502 | #
1503 | def trace
1504 | raise ErrDimensionMismatch unless square?
1505 | (0...column_count).inject(0) do |tr, i|
1506 | tr + @rows[i][i]
1507 | end
1508 | end
1509 | alias_method :tr, :trace
1510 |
1511 | #
1512 | # Returns the transpose of the matrix.
1513 | # Matrix[[1,2], [3,4], [5,6]]
1514 | # # => 1 2
1515 | # # 3 4
1516 | # # 5 6
1517 | # Matrix[[1,2], [3,4], [5,6]].transpose
1518 | # # => 1 3 5
1519 | # # 2 4 6
1520 | #
1521 | def transpose
1522 | return self.class.empty(column_count, 0) if row_count.zero?
1523 | new_matrix @rows.transpose, row_count
1524 | end
1525 | alias_method :t, :transpose
1526 |
1527 | #
1528 | # Returns a new matrix resulting by stacking vertically
1529 | # the receiver with the given matrices
1530 | #
1531 | # x = Matrix[[1, 2], [3, 4]]
1532 | # y = Matrix[[5, 6], [7, 8]]
1533 | # x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
1534 | #
1535 | def vstack(*matrices)
1536 | self.class.vstack(self, *matrices)
1537 | end
1538 |
1539 | #--
1540 | # DECOMPOSITIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
1541 | #++
1542 |
1543 | #
1544 | # Returns the Eigensystem of the matrix; see +EigenvalueDecomposition+.
1545 | # m = Matrix[[1, 2], [3, 4]]
1546 | # v, d, v_inv = m.eigensystem
1547 | # d.diagonal? # => true
1548 | # v.inv == v_inv # => true
1549 | # (v * d * v_inv).round(5) == m # => true
1550 | #
1551 | # This is not supported for Complex matrices
1552 | def eigensystem
1553 | EigenvalueDecomposition.new(self)
1554 | end
1555 | alias_method :eigen, :eigensystem
1556 |
1557 | #
1558 | # Returns the LUP decomposition of the matrix; see +LUPDecomposition+.
1559 | # a = Matrix[[1, 2], [3, 4]]
1560 | # l, u, p = a.lup
1561 | # l.lower_triangular? # => true
1562 | # u.upper_triangular? # => true
1563 | # p.permutation? # => true
1564 | # l * u == p * a # => true
1565 | # a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
1566 | #
1567 | def lup
1568 | LUPDecomposition.new(self)
1569 | end
1570 | alias_method :lup_decomposition, :lup
1571 |
1572 | #--
1573 | # COMPLEX ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
1574 | #++
1575 |
1576 | #
1577 | # Returns the conjugate of the matrix.
1578 | # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
1579 | # # => 1+2i i 0
1580 | # # 1 2 3
1581 | # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
1582 | # # => 1-2i -i 0
1583 | # # 1 2 3
1584 | #
1585 | def conjugate
1586 | collect(&:conjugate)
1587 | end
1588 | alias_method :conj, :conjugate
1589 |
1590 | #
1591 | # Returns the adjoint of the matrix.
1592 | #
1593 | # Matrix[ [i,1],[2,-i] ].adjoint
1594 | # # => -i 2
1595 | # # 1 i
1596 | #
1597 | def adjoint
1598 | conjugate.transpose
1599 | end
1600 |
1601 | #
1602 | # Returns the imaginary part of the matrix.
1603 | # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
1604 | # # => 1+2i i 0
1605 | # # 1 2 3
1606 | # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
1607 | # # => 2i i 0
1608 | # # 0 0 0
1609 | #
1610 | def imaginary
1611 | collect(&:imaginary)
1612 | end
1613 | alias_method :imag, :imaginary
1614 |
1615 | #
1616 | # Returns the real part of the matrix.
1617 | # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
1618 | # # => 1+2i i 0
1619 | # # 1 2 3
1620 | # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
1621 | # # => 1 0 0
1622 | # # 1 2 3
1623 | #
1624 | def real
1625 | collect(&:real)
1626 | end
1627 |
1628 | #
1629 | # Returns an array containing matrices corresponding to the real and imaginary
1630 | # parts of the matrix
1631 | #
1632 | # m.rect == [m.real, m.imag] # ==> true for all matrices m
1633 | #
1634 | def rect
1635 | [real, imag]
1636 | end
1637 | alias_method :rectangular, :rect
1638 |
1639 | #--
1640 | # CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
1641 | #++
1642 |
1643 | #
1644 | # The coerce method provides support for Ruby type coercion.
1645 | # This coercion mechanism is used by Ruby to handle mixed-type
1646 | # numeric operations: it is intended to find a compatible common
1647 | # type between the two operands of the operator.
1648 | # See also Numeric#coerce.
1649 | #
1650 | def coerce(other)
1651 | case other
1652 | when Numeric
1653 | return Scalar.new(other), self
1654 | else
1655 | raise TypeError, "#{self.class} can't be coerced into #{other.class}"
1656 | end
1657 | end
1658 |
1659 | #
1660 | # Returns an array of the row vectors of the matrix. See Vector.
1661 | #
1662 | def row_vectors
1663 | Array.new(row_count) {|i|
1664 | row(i)
1665 | }
1666 | end
1667 |
1668 | #
1669 | # Returns an array of the column vectors of the matrix. See Vector.
1670 | #
1671 | def column_vectors
1672 | Array.new(column_count) {|i|
1673 | column(i)
1674 | }
1675 | end
1676 |
1677 | #
1678 | # Explicit conversion to a Matrix. Returns self
1679 | #
1680 | def to_matrix
1681 | self
1682 | end
1683 |
1684 | #
1685 | # Returns an array of arrays that describe the rows of the matrix.
1686 | #
1687 | def to_a
1688 | @rows.collect(&:dup)
1689 | end
1690 |
1691 | # Deprecated.
1692 | #
1693 | # Use map(&:to_f)
1694 | def elements_to_f
1695 | warn "Matrix#elements_to_f is deprecated, use map(&:to_f)", uplevel: 1
1696 | map(&:to_f)
1697 | end
1698 |
1699 | # Deprecated.
1700 | #
1701 | # Use map(&:to_i)
1702 | def elements_to_i
1703 | warn "Matrix#elements_to_i is deprecated, use map(&:to_i)", uplevel: 1
1704 | map(&:to_i)
1705 | end
1706 |
1707 | # Deprecated.
1708 | #
1709 | # Use map(&:to_r)
1710 | def elements_to_r
1711 | warn "Matrix#elements_to_r is deprecated, use map(&:to_r)", uplevel: 1
1712 | map(&:to_r)
1713 | end
1714 |
1715 | #--
1716 | # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
1717 | #++
1718 |
1719 | #
1720 | # Overrides Object#to_s
1721 | #
1722 | def to_s
1723 | if empty?
1724 | "#{self.class}.empty(#{row_count}, #{column_count})"
1725 | else
1726 | "#{self.class}[" + @rows.collect{|row|
1727 | "[" + row.collect{|e| e.to_s}.join(", ") + "]"
1728 | }.join(", ")+"]"
1729 | end
1730 | end
1731 |
1732 | #
1733 | # Overrides Object#inspect
1734 | #
1735 | def inspect
1736 | if empty?
1737 | "#{self.class}.empty(#{row_count}, #{column_count})"
1738 | else
1739 | "#{self.class}#{@rows.inspect}"
1740 | end
1741 | end
1742 |
1743 | # Private helper modules
1744 |
1745 | module ConversionHelper # :nodoc:
1746 | #
1747 | # Converts the obj to an Array. If copy is set to true
1748 | # a copy of obj will be made if necessary.
1749 | #
1750 | private def convert_to_array(obj, copy = false) # :nodoc:
1751 | case obj
1752 | when Array
1753 | copy ? obj.dup : obj
1754 | when Vector
1755 | obj.to_a
1756 | else
1757 | begin
1758 | converted = obj.to_ary
1759 | rescue Exception => e
1760 | raise TypeError, "can't convert #{obj.class} into an Array (#{e.message})"
1761 | end
1762 | raise TypeError, "#{obj.class}#to_ary should return an Array" unless converted.is_a? Array
1763 | converted
1764 | end
1765 | end
1766 | end
1767 |
1768 | extend ConversionHelper
1769 |
1770 | module CoercionHelper # :nodoc:
1771 | #
1772 | # Applies the operator +oper+ with argument +obj+
1773 | # through coercion of +obj+
1774 | #
1775 | private def apply_through_coercion(obj, oper)
1776 | coercion = obj.coerce(self)
1777 | raise TypeError unless coercion.is_a?(Array) && coercion.length == 2
1778 | coercion[0].public_send(oper, coercion[1])
1779 | rescue
1780 | raise TypeError, "#{obj.inspect} can't be coerced into #{self.class}"
1781 | end
1782 |
1783 | #
1784 | # Helper method to coerce a value into a specific class.
1785 | # Raises a TypeError if the coercion fails or the returned value
1786 | # is not of the right class.
1787 | # (from Rubinius)
1788 | #
1789 | def self.coerce_to(obj, cls, meth) # :nodoc:
1790 | return obj if obj.kind_of?(cls)
1791 | raise TypeError, "Expected a #{cls} but got a #{obj.class}" unless obj.respond_to? meth
1792 | begin
1793 | ret = obj.__send__(meth)
1794 | rescue Exception => e
1795 | raise TypeError, "Coercion error: #{obj.inspect}.#{meth} => #{cls} failed:\n" \
1796 | "(#{e.message})"
1797 | end
1798 | raise TypeError, "Coercion error: obj.#{meth} did NOT return a #{cls} (was #{ret.class})" unless ret.kind_of? cls
1799 | ret
1800 | end
1801 |
1802 | def self.coerce_to_int(obj)
1803 | coerce_to(obj, Integer, :to_int)
1804 | end
1805 |
1806 | def self.coerce_to_matrix(obj)
1807 | coerce_to(obj, Matrix, :to_matrix)
1808 | end
1809 |
1810 | # Returns `nil` for non Ranges
1811 | # Checks range validity, return canonical range with 0 <= begin <= end < count
1812 | def self.check_range(val, count, kind)
1813 | canonical = (val.begin + (val.begin < 0 ? count : 0))..
1814 | (val.end ? val.end + (val.end < 0 ? count : 0) - (val.exclude_end? ? 1 : 0)
1815 | : count - 1)
1816 | unless 0 <= canonical.begin && canonical.begin <= canonical.end && canonical.end < count
1817 | raise IndexError, "given range #{val} is outside of #{kind} dimensions: 0...#{count}"
1818 | end
1819 | canonical
1820 | end
1821 |
1822 | def self.check_int(val, count, kind)
1823 | val = CoercionHelper.coerce_to_int(val)
1824 | if val >= count || val < -count
1825 | raise IndexError, "given #{kind} #{val} is outside of #{-count}...#{count}"
1826 | end
1827 | val
1828 | end
1829 | end
1830 |
1831 | include CoercionHelper
1832 |
1833 | # Private CLASS
1834 |
1835 | class Scalar < Numeric # :nodoc:
1836 | include ExceptionForMatrix
1837 | include CoercionHelper
1838 |
1839 | def initialize(value)
1840 | @value = value
1841 | end
1842 |
1843 | # ARITHMETIC
1844 | def +(other)
1845 | case other
1846 | when Numeric
1847 | Scalar.new(@value + other)
1848 | when Vector, Matrix
1849 | raise ErrOperationNotDefined, ["+", @value.class, other.class]
1850 | else
1851 | apply_through_coercion(other, __method__)
1852 | end
1853 | end
1854 |
1855 | def -(other)
1856 | case other
1857 | when Numeric
1858 | Scalar.new(@value - other)
1859 | when Vector, Matrix
1860 | raise ErrOperationNotDefined, ["-", @value.class, other.class]
1861 | else
1862 | apply_through_coercion(other, __method__)
1863 | end
1864 | end
1865 |
1866 | def *(other)
1867 | case other
1868 | when Numeric
1869 | Scalar.new(@value * other)
1870 | when Vector, Matrix
1871 | other.collect{|e| @value * e}
1872 | else
1873 | apply_through_coercion(other, __method__)
1874 | end
1875 | end
1876 |
1877 | def /(other)
1878 | case other
1879 | when Numeric
1880 | Scalar.new(@value / other)
1881 | when Vector
1882 | raise ErrOperationNotDefined, ["/", @value.class, other.class]
1883 | when Matrix
1884 | self * other.inverse
1885 | else
1886 | apply_through_coercion(other, __method__)
1887 | end
1888 | end
1889 |
1890 | def **(other)
1891 | case other
1892 | when Numeric
1893 | Scalar.new(@value ** other)
1894 | when Vector
1895 | raise ErrOperationNotDefined, ["**", @value.class, other.class]
1896 | when Matrix
1897 | #other.powered_by(self)
1898 | raise ErrOperationNotImplemented, ["**", @value.class, other.class]
1899 | else
1900 | apply_through_coercion(other, __method__)
1901 | end
1902 | end
1903 | end
1904 |
1905 | end
1906 |
1907 |
1908 | #
1909 | # The +Vector+ class represents a mathematical vector, which is useful in its own right, and
1910 | # also constitutes a row or column of a Matrix.
1911 | #
1912 | # == Method Catalogue
1913 | #
1914 | # To create a Vector:
1915 | # * Vector.[](*array)
1916 | # * Vector.elements(array, copy = true)
1917 | # * Vector.basis(size: n, index: k)
1918 | # * Vector.zero(n)
1919 | #
1920 | # To access elements:
1921 | # * #[](i)
1922 | #
1923 | # To set elements:
1924 | # * #[]=(i, v)
1925 | #
1926 | # To enumerate the elements:
1927 | # * #each2(v)
1928 | # * #collect2(v)
1929 | #
1930 | # Properties of vectors:
1931 | # * #angle_with(v)
1932 | # * Vector.independent?(*vs)
1933 | # * #independent?(*vs)
1934 | # * #zero?
1935 | #
1936 | # Vector arithmetic:
1937 | # * #*(x) "is matrix or number"
1938 | # * #+(v)
1939 | # * #-(v)
1940 | # * #/(v)
1941 | # * #+@
1942 | # * #-@
1943 | #
1944 | # Vector functions:
1945 | # * #inner_product(v), #dot(v)
1946 | # * #cross_product(v), #cross(v)
1947 | # * #collect
1948 | # * #collect!
1949 | # * #magnitude
1950 | # * #map
1951 | # * #map!
1952 | # * #map2(v)
1953 | # * #norm
1954 | # * #normalize
1955 | # * #r
1956 | # * #round
1957 | # * #size
1958 | #
1959 | # Conversion to other data types:
1960 | # * #covector
1961 | # * #to_a
1962 | # * #coerce(other)
1963 | #
1964 | # String representations:
1965 | # * #to_s
1966 | # * #inspect
1967 | #
1968 | class Vector
1969 | include ExceptionForMatrix
1970 | include Enumerable
1971 | include Matrix::CoercionHelper
1972 | extend Matrix::ConversionHelper
1973 | #INSTANCE CREATION
1974 |
1975 | private_class_method :new
1976 | attr_reader :elements
1977 | protected :elements
1978 |
1979 | #
1980 | # Creates a Vector from a list of elements.
1981 | # Vector[7, 4, ...]
1982 | #
1983 | def Vector.[](*array)
1984 | new convert_to_array(array, false)
1985 | end
1986 |
1987 | #
1988 | # Creates a vector from an Array. The optional second argument specifies
1989 | # whether the array itself or a copy is used internally.
1990 | #
1991 | def Vector.elements(array, copy = true)
1992 | new convert_to_array(array, copy)
1993 | end
1994 |
1995 | #
1996 | # Returns a standard basis +n+-vector, where k is the index.
1997 | #
1998 | # Vector.basis(size:, index:) # => Vector[0, 1, 0]
1999 | #
2000 | def Vector.basis(size:, index:)
2001 | raise ArgumentError, "invalid size (#{size} for 1..)" if size < 1
2002 | raise ArgumentError, "invalid index (#{index} for 0...#{size})" unless 0 <= index && index < size
2003 | array = Array.new(size, 0)
2004 | array[index] = 1
2005 | new convert_to_array(array, false)
2006 | end
2007 |
2008 | #
2009 | # Return a zero vector.
2010 | #
2011 | # Vector.zero(3) # => Vector[0, 0, 0]
2012 | #
2013 | def Vector.zero(size)
2014 | raise ArgumentError, "invalid size (#{size} for 0..)" if size < 0
2015 | array = Array.new(size, 0)
2016 | new convert_to_array(array, false)
2017 | end
2018 |
2019 | #
2020 | # Vector.new is private; use Vector[] or Vector.elements to create.
2021 | #
2022 | def initialize(array)
2023 | # No checking is done at this point.
2024 | @elements = array
2025 | end
2026 |
2027 | # ACCESSING
2028 |
2029 | #
2030 | # :call-seq:
2031 | # vector[range]
2032 | # vector[integer]
2033 | #
2034 | # Returns element or elements of the vector.
2035 | #
2036 | def [](i)
2037 | @elements[i]
2038 | end
2039 | alias element []
2040 | alias component []
2041 |
2042 | #
2043 | # :call-seq:
2044 | # vector[range] = new_vector
2045 | # vector[range] = row_matrix
2046 | # vector[range] = new_element
2047 | # vector[integer] = new_element
2048 | #
2049 | # Set element or elements of vector.
2050 | #
2051 | def []=(i, v)
2052 | raise FrozenError, "can't modify frozen Vector" if frozen?
2053 | if i.is_a?(Range)
2054 | range = Matrix::CoercionHelper.check_range(i, size, :vector)
2055 | set_range(range, v)
2056 | else
2057 | index = Matrix::CoercionHelper.check_int(i, size, :index)
2058 | set_value(index, v)
2059 | end
2060 | end
2061 | alias set_element []=
2062 | alias set_component []=
2063 | private :set_element, :set_component
2064 |
2065 | private def set_value(index, value)
2066 | @elements[index] = value
2067 | end
2068 |
2069 | private def set_range(range, value)
2070 | if value.is_a?(Vector)
2071 | raise ArgumentError, "vector to be set has wrong size" unless range.size == value.size
2072 | @elements[range] = value.elements
2073 | elsif value.is_a?(Matrix)
2074 | raise ErrDimensionMismatch unless value.row_count == 1
2075 | @elements[range] = value.row(0).elements
2076 | else
2077 | @elements[range] = Array.new(range.size, value)
2078 | end
2079 | end
2080 |
2081 | # Returns a vector with entries rounded to the given precision
2082 | # (see Float#round)
2083 | #
2084 | def round(ndigits=0)
2085 | map{|e| e.round(ndigits)}
2086 | end
2087 |
2088 | #
2089 | # Returns the number of elements in the vector.
2090 | #
2091 | def size
2092 | @elements.size
2093 | end
2094 |
2095 | #--
2096 | # ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
2097 | #++
2098 |
2099 | #
2100 | # Iterate over the elements of this vector
2101 | #
2102 | def each(&block)
2103 | return to_enum(:each) unless block_given?
2104 | @elements.each(&block)
2105 | self
2106 | end
2107 |
2108 | #
2109 | # Iterate over the elements of this vector and +v+ in conjunction.
2110 | #
2111 | def each2(v) # :yield: e1, e2
2112 | raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
2113 | raise ErrDimensionMismatch if size != v.size
2114 | return to_enum(:each2, v) unless block_given?
2115 | size.times do |i|
2116 | yield @elements[i], v[i]
2117 | end
2118 | self
2119 | end
2120 |
2121 | #
2122 | # Collects (as in Enumerable#collect) over the elements of this vector and +v+
2123 | # in conjunction.
2124 | #
2125 | def collect2(v) # :yield: e1, e2
2126 | raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
2127 | raise ErrDimensionMismatch if size != v.size
2128 | return to_enum(:collect2, v) unless block_given?
2129 | Array.new(size) do |i|
2130 | yield @elements[i], v[i]
2131 | end
2132 | end
2133 |
2134 | #--
2135 | # PROPERTIES -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
2136 | #++
2137 |
2138 | #
2139 | # Returns whether all of vectors are linearly independent.
2140 | #
2141 | # Vector.independent?(Vector[1,0], Vector[0,1])
2142 | # # => true
2143 | #
2144 | # Vector.independent?(Vector[1,2], Vector[2,4])
2145 | # # => false
2146 | #
2147 | def Vector.independent?(*vs)
2148 | vs.each do |v|
2149 | raise TypeError, "expected Vector, got #{v.class}" unless v.is_a?(Vector)
2150 | raise ErrDimensionMismatch unless v.size == vs.first.size
2151 | end
2152 | return false if vs.count > vs.first.size
2153 | Matrix[*vs].rank.eql?(vs.count)
2154 | end
2155 |
2156 | #
2157 | # Returns whether all of vectors are linearly independent.
2158 | #
2159 | # Vector[1,0].independent?(Vector[0,1])
2160 | # # => true
2161 | #
2162 | # Vector[1,2].independent?(Vector[2,4])
2163 | # # => false
2164 | #
2165 | def independent?(*vs)
2166 | self.class.independent?(self, *vs)
2167 | end
2168 |
2169 | #
2170 | # Returns whether all elements are zero.
2171 | #
2172 | def zero?
2173 | all?(&:zero?)
2174 | end
2175 |
2176 | #
2177 | # Makes the matrix frozen and Ractor-shareable
2178 | #
2179 | def freeze
2180 | @elements.freeze
2181 | super
2182 | end
2183 |
2184 | #
2185 | # Called for dup & clone.
2186 | #
2187 | private def initialize_copy(v)
2188 | super
2189 | @elements = @elements.dup unless frozen?
2190 | end
2191 |
2192 |
2193 | #--
2194 | # COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
2195 | #++
2196 |
2197 | #
2198 | # Returns whether the two vectors have the same elements in the same order.
2199 | #
2200 | def ==(other)
2201 | return false unless Vector === other
2202 | @elements == other.elements
2203 | end
2204 |
2205 | def eql?(other)
2206 | return false unless Vector === other
2207 | @elements.eql? other.elements
2208 | end
2209 |
2210 | #
2211 | # Returns a hash-code for the vector.
2212 | #
2213 | def hash
2214 | @elements.hash
2215 | end
2216 |
2217 | #--
2218 | # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
2219 | #++
2220 |
2221 | #
2222 | # Multiplies the vector by +x+, where +x+ is a number or a matrix.
2223 | #
2224 | def *(x)
2225 | case x
2226 | when Numeric
2227 | els = @elements.collect{|e| e * x}
2228 | self.class.elements(els, false)
2229 | when Matrix
2230 | Matrix.column_vector(self) * x
2231 | when Vector
2232 | raise ErrOperationNotDefined, ["*", self.class, x.class]
2233 | else
2234 | apply_through_coercion(x, __method__)
2235 | end
2236 | end
2237 |
2238 | #
2239 | # Vector addition.
2240 | #
2241 | def +(v)
2242 | case v
2243 | when Vector
2244 | raise ErrDimensionMismatch if size != v.size
2245 | els = collect2(v) {|v1, v2|
2246 | v1 + v2
2247 | }
2248 | self.class.elements(els, false)
2249 | when Matrix
2250 | Matrix.column_vector(self) + v
2251 | else
2252 | apply_through_coercion(v, __method__)
2253 | end
2254 | end
2255 |
2256 | #
2257 | # Vector subtraction.
2258 | #
2259 | def -(v)
2260 | case v
2261 | when Vector
2262 | raise ErrDimensionMismatch if size != v.size
2263 | els = collect2(v) {|v1, v2|
2264 | v1 - v2
2265 | }
2266 | self.class.elements(els, false)
2267 | when Matrix
2268 | Matrix.column_vector(self) - v
2269 | else
2270 | apply_through_coercion(v, __method__)
2271 | end
2272 | end
2273 |
2274 | #
2275 | # Vector division.
2276 | #
2277 | def /(x)
2278 | case x
2279 | when Numeric
2280 | els = @elements.collect{|e| e / x}
2281 | self.class.elements(els, false)
2282 | when Matrix, Vector
2283 | raise ErrOperationNotDefined, ["/", self.class, x.class]
2284 | else
2285 | apply_through_coercion(x, __method__)
2286 | end
2287 | end
2288 |
2289 | def +@
2290 | self
2291 | end
2292 |
2293 | def -@
2294 | collect {|e| -e }
2295 | end
2296 |
2297 | #--
2298 | # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
2299 | #++
2300 |
2301 | #
2302 | # Returns the inner product of this vector with the other.
2303 | # Vector[4,7].inner_product Vector[10,1] # => 47
2304 | #
2305 | def inner_product(v)
2306 | raise ErrDimensionMismatch if size != v.size
2307 |
2308 | p = 0
2309 | each2(v) {|v1, v2|
2310 | p += v1 * v2.conj
2311 | }
2312 | p
2313 | end
2314 | alias_method :dot, :inner_product
2315 |
2316 | #
2317 | # Returns the cross product of this vector with the others.
2318 | # Vector[1, 0, 0].cross_product Vector[0, 1, 0] # => Vector[0, 0, 1]
2319 | #
2320 | # It is generalized to other dimensions to return a vector perpendicular
2321 | # to the arguments.
2322 | # Vector[1, 2].cross_product # => Vector[-2, 1]
2323 | # Vector[1, 0, 0, 0].cross_product(
2324 | # Vector[0, 1, 0, 0],
2325 | # Vector[0, 0, 1, 0]
2326 | # ) #=> Vector[0, 0, 0, 1]
2327 | #
2328 | def cross_product(*vs)
2329 | raise ErrOperationNotDefined, "cross product is not defined on vectors of dimension #{size}" unless size >= 2
2330 | raise ArgumentError, "wrong number of arguments (#{vs.size} for #{size - 2})" unless vs.size == size - 2
2331 | vs.each do |v|
2332 | raise TypeError, "expected Vector, got #{v.class}" unless v.is_a? Vector
2333 | raise ErrDimensionMismatch unless v.size == size
2334 | end
2335 | case size
2336 | when 2
2337 | Vector[-@elements[1], @elements[0]]
2338 | when 3
2339 | v = vs[0]
2340 | Vector[ v[2]*@elements[1] - v[1]*@elements[2],
2341 | v[0]*@elements[2] - v[2]*@elements[0],
2342 | v[1]*@elements[0] - v[0]*@elements[1] ]
2343 | else
2344 | rows = self, *vs, Array.new(size) {|i| Vector.basis(size: size, index: i) }
2345 | Matrix.rows(rows).laplace_expansion(row: size - 1)
2346 | end
2347 | end
2348 | alias_method :cross, :cross_product
2349 |
2350 | #
2351 | # Like Array#collect.
2352 | #
2353 | def collect(&block) # :yield: e
2354 | return to_enum(:collect) unless block_given?
2355 | els = @elements.collect(&block)
2356 | self.class.elements(els, false)
2357 | end
2358 | alias_method :map, :collect
2359 |
2360 | #
2361 | # Like Array#collect!
2362 | #
2363 | def collect!(&block)
2364 | return to_enum(:collect!) unless block_given?
2365 | raise FrozenError, "can't modify frozen Vector" if frozen?
2366 | @elements.collect!(&block)
2367 | self
2368 | end
2369 | alias map! collect!
2370 |
2371 | #
2372 | # Returns the modulus (Pythagorean distance) of the vector.
2373 | # Vector[5,8,2].r # => 9.643650761
2374 | #
2375 | def magnitude
2376 | Math.sqrt(@elements.inject(0) {|v, e| v + e.abs2})
2377 | end
2378 | alias_method :r, :magnitude
2379 | alias_method :norm, :magnitude
2380 |
2381 | #
2382 | # Like Vector#collect2, but returns a Vector instead of an Array.
2383 | #
2384 | def map2(v, &block) # :yield: e1, e2
2385 | return to_enum(:map2, v) unless block_given?
2386 | els = collect2(v, &block)
2387 | self.class.elements(els, false)
2388 | end
2389 |
2390 | class ZeroVectorError < StandardError
2391 | end
2392 | #
2393 | # Returns a new vector with the same direction but with norm 1.
2394 | # v = Vector[5,8,2].normalize
2395 | # # => Vector[0.5184758473652127, 0.8295613557843402, 0.20739033894608505]
2396 | # v.norm # => 1.0
2397 | #
2398 | def normalize
2399 | n = magnitude
2400 | raise ZeroVectorError, "Zero vectors can not be normalized" if n == 0
2401 | self / n
2402 | end
2403 |
2404 | #
2405 | # Returns an angle with another vector. Result is within the [0..Math::PI].
2406 | # Vector[1,0].angle_with(Vector[0,1])
2407 | # # => Math::PI / 2
2408 | #
2409 | def angle_with(v)
2410 | raise TypeError, "Expected a Vector, got a #{v.class}" unless v.is_a?(Vector)
2411 | raise ErrDimensionMismatch if size != v.size
2412 | prod = magnitude * v.magnitude
2413 | raise ZeroVectorError, "Can't get angle of zero vector" if prod == 0
2414 | dot = inner_product(v)
2415 | if dot.abs >= prod
2416 | dot.positive? ? 0 : Math::PI
2417 | else
2418 | Math.acos(dot / prod)
2419 | end
2420 | end
2421 |
2422 | #--
2423 | # CONVERTING
2424 | #++
2425 |
2426 | #
2427 | # Creates a single-row matrix from this vector.
2428 | #
2429 | def covector
2430 | Matrix.row_vector(self)
2431 | end
2432 |
2433 | #
2434 | # Returns the elements of the vector in an array.
2435 | #
2436 | def to_a
2437 | @elements.dup
2438 | end
2439 |
2440 | #
2441 | # Return a single-column matrix from this vector
2442 | #
2443 | def to_matrix
2444 | Matrix.column_vector(self)
2445 | end
2446 |
2447 | def elements_to_f
2448 | warn "Vector#elements_to_f is deprecated", uplevel: 1
2449 | map(&:to_f)
2450 | end
2451 |
2452 | def elements_to_i
2453 | warn "Vector#elements_to_i is deprecated", uplevel: 1
2454 | map(&:to_i)
2455 | end
2456 |
2457 | def elements_to_r
2458 | warn "Vector#elements_to_r is deprecated", uplevel: 1
2459 | map(&:to_r)
2460 | end
2461 |
2462 | #
2463 | # The coerce method provides support for Ruby type coercion.
2464 | # This coercion mechanism is used by Ruby to handle mixed-type
2465 | # numeric operations: it is intended to find a compatible common
2466 | # type between the two operands of the operator.
2467 | # See also Numeric#coerce.
2468 | #
2469 | def coerce(other)
2470 | case other
2471 | when Numeric
2472 | return Matrix::Scalar.new(other), self
2473 | else
2474 | raise TypeError, "#{self.class} can't be coerced into #{other.class}"
2475 | end
2476 | end
2477 |
2478 | #--
2479 | # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
2480 | #++
2481 |
2482 | #
2483 | # Overrides Object#to_s
2484 | #
2485 | def to_s
2486 | "Vector[" + @elements.join(", ") + "]"
2487 | end
2488 |
2489 | #
2490 | # Overrides Object#inspect
2491 | #
2492 | def inspect
2493 | "Vector" + @elements.inspect
2494 | end
2495 | end
2496 |
--------------------------------------------------------------------------------
/lib/matrix/eigenvalue_decomposition.rb:
--------------------------------------------------------------------------------
1 | # frozen_string_literal: false
2 | class Matrix
3 | # Adapted from JAMA: http://math.nist.gov/javanumerics/jama/
4 | # Like JAMA, this code does not support Complex matrices inputs.
5 |
6 | # Eigenvalues and eigenvectors of a real matrix.
7 | #
8 | # Computes the eigenvalues and eigenvectors of a matrix A.
9 | #
10 | # If A is diagonalizable, this provides matrices V and D
11 | # such that A = V*D*V.inv, where D is the diagonal matrix with entries
12 | # equal to the eigenvalues and V is formed by the eigenvectors.
13 | #
14 | # If A is symmetric, then V is orthogonal and thus A = V*D*V.t
15 |
16 | class EigenvalueDecomposition
17 |
18 | # Constructs the eigenvalue decomposition for a square matrix +A+
19 | #
20 | def initialize(a)
21 | # @d, @e: Arrays for internal storage of eigenvalues.
22 | # @v: Array for internal storage of eigenvectors.
23 | # @h: Array for internal storage of nonsymmetric Hessenberg form.
24 | raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix)
25 | @size = a.row_count
26 | @d = Array.new(@size, 0)
27 | @e = Array.new(@size, 0)
28 |
29 | if (@symmetric = a.symmetric?)
30 | @v = a.to_a
31 | tridiagonalize
32 | diagonalize
33 | else
34 | @v = Array.new(@size) { Array.new(@size, 0) }
35 | @h = a.to_a
36 | @ort = Array.new(@size, 0)
37 | reduce_to_hessenberg
38 | hessenberg_to_real_schur
39 | end
40 | end
41 |
42 | # Returns the eigenvector matrix +V+
43 | #
44 | def eigenvector_matrix
45 | Matrix.send(:new, build_eigenvectors.transpose)
46 | end
47 | alias_method :v, :eigenvector_matrix
48 |
49 | # Returns the inverse of the eigenvector matrix +V+
50 | #
51 | def eigenvector_matrix_inv
52 | r = Matrix.send(:new, build_eigenvectors)
53 | r = r.transpose.inverse unless @symmetric
54 | r
55 | end
56 | alias_method :v_inv, :eigenvector_matrix_inv
57 |
58 | # Returns the eigenvalues in an array
59 | #
60 | def eigenvalues
61 | values = @d.dup
62 | @e.each_with_index{|imag, i| values[i] = Complex(values[i], imag) unless imag == 0}
63 | values
64 | end
65 |
66 | # Returns an array of the eigenvectors
67 | #
68 | def eigenvectors
69 | build_eigenvectors.map{|ev| Vector.send(:new, ev)}
70 | end
71 |
72 | # Returns the block diagonal eigenvalue matrix +D+
73 | #
74 | def eigenvalue_matrix
75 | Matrix.diagonal(*eigenvalues)
76 | end
77 | alias_method :d, :eigenvalue_matrix
78 |
79 | # Returns [eigenvector_matrix, eigenvalue_matrix, eigenvector_matrix_inv]
80 | #
81 | def to_ary
82 | [v, d, v_inv]
83 | end
84 | alias_method :to_a, :to_ary
85 |
86 |
87 | private def build_eigenvectors
88 | # JAMA stores complex eigenvectors in a strange way
89 | # See http://web.archive.org/web/20111016032731/http://cio.nist.gov/esd/emaildir/lists/jama/msg01021.html
90 | @e.each_with_index.map do |imag, i|
91 | if imag == 0
92 | Array.new(@size){|j| @v[j][i]}
93 | elsif imag > 0
94 | Array.new(@size){|j| Complex(@v[j][i], @v[j][i+1])}
95 | else
96 | Array.new(@size){|j| Complex(@v[j][i-1], -@v[j][i])}
97 | end
98 | end
99 | end
100 |
101 | # Complex scalar division.
102 |
103 | private def cdiv(xr, xi, yr, yi)
104 | if (yr.abs > yi.abs)
105 | r = yi/yr
106 | d = yr + r*yi
107 | [(xr + r*xi)/d, (xi - r*xr)/d]
108 | else
109 | r = yr/yi
110 | d = yi + r*yr
111 | [(r*xr + xi)/d, (r*xi - xr)/d]
112 | end
113 | end
114 |
115 |
116 | # Symmetric Householder reduction to tridiagonal form.
117 |
118 | private def tridiagonalize
119 |
120 | # This is derived from the Algol procedures tred2 by
121 | # Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
122 | # Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
123 | # Fortran subroutine in EISPACK.
124 |
125 | @size.times do |j|
126 | @d[j] = @v[@size-1][j]
127 | end
128 |
129 | # Householder reduction to tridiagonal form.
130 |
131 | (@size-1).downto(0+1) do |i|
132 |
133 | # Scale to avoid under/overflow.
134 |
135 | scale = 0.0
136 | h = 0.0
137 | i.times do |k|
138 | scale = scale + @d[k].abs
139 | end
140 | if (scale == 0.0)
141 | @e[i] = @d[i-1]
142 | i.times do |j|
143 | @d[j] = @v[i-1][j]
144 | @v[i][j] = 0.0
145 | @v[j][i] = 0.0
146 | end
147 | else
148 |
149 | # Generate Householder vector.
150 |
151 | i.times do |k|
152 | @d[k] /= scale
153 | h += @d[k] * @d[k]
154 | end
155 | f = @d[i-1]
156 | g = Math.sqrt(h)
157 | if (f > 0)
158 | g = -g
159 | end
160 | @e[i] = scale * g
161 | h -= f * g
162 | @d[i-1] = f - g
163 | i.times do |j|
164 | @e[j] = 0.0
165 | end
166 |
167 | # Apply similarity transformation to remaining columns.
168 |
169 | i.times do |j|
170 | f = @d[j]
171 | @v[j][i] = f
172 | g = @e[j] + @v[j][j] * f
173 | (j+1).upto(i-1) do |k|
174 | g += @v[k][j] * @d[k]
175 | @e[k] += @v[k][j] * f
176 | end
177 | @e[j] = g
178 | end
179 | f = 0.0
180 | i.times do |j|
181 | @e[j] /= h
182 | f += @e[j] * @d[j]
183 | end
184 | hh = f / (h + h)
185 | i.times do |j|
186 | @e[j] -= hh * @d[j]
187 | end
188 | i.times do |j|
189 | f = @d[j]
190 | g = @e[j]
191 | j.upto(i-1) do |k|
192 | @v[k][j] -= (f * @e[k] + g * @d[k])
193 | end
194 | @d[j] = @v[i-1][j]
195 | @v[i][j] = 0.0
196 | end
197 | end
198 | @d[i] = h
199 | end
200 |
201 | # Accumulate transformations.
202 |
203 | 0.upto(@size-1-1) do |i|
204 | @v[@size-1][i] = @v[i][i]
205 | @v[i][i] = 1.0
206 | h = @d[i+1]
207 | if (h != 0.0)
208 | 0.upto(i) do |k|
209 | @d[k] = @v[k][i+1] / h
210 | end
211 | 0.upto(i) do |j|
212 | g = 0.0
213 | 0.upto(i) do |k|
214 | g += @v[k][i+1] * @v[k][j]
215 | end
216 | 0.upto(i) do |k|
217 | @v[k][j] -= g * @d[k]
218 | end
219 | end
220 | end
221 | 0.upto(i) do |k|
222 | @v[k][i+1] = 0.0
223 | end
224 | end
225 | @size.times do |j|
226 | @d[j] = @v[@size-1][j]
227 | @v[@size-1][j] = 0.0
228 | end
229 | @v[@size-1][@size-1] = 1.0
230 | @e[0] = 0.0
231 | end
232 |
233 |
234 | # Symmetric tridiagonal QL algorithm.
235 |
236 | private def diagonalize
237 | # This is derived from the Algol procedures tql2, by
238 | # Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
239 | # Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
240 | # Fortran subroutine in EISPACK.
241 |
242 | 1.upto(@size-1) do |i|
243 | @e[i-1] = @e[i]
244 | end
245 | @e[@size-1] = 0.0
246 |
247 | f = 0.0
248 | tst1 = 0.0
249 | eps = Float::EPSILON
250 | @size.times do |l|
251 |
252 | # Find small subdiagonal element
253 |
254 | tst1 = [tst1, @d[l].abs + @e[l].abs].max
255 | m = l
256 | while (m < @size) do
257 | if (@e[m].abs <= eps*tst1)
258 | break
259 | end
260 | m+=1
261 | end
262 |
263 | # If m == l, @d[l] is an eigenvalue,
264 | # otherwise, iterate.
265 |
266 | if (m > l)
267 | iter = 0
268 | begin
269 | iter = iter + 1 # (Could check iteration count here.)
270 |
271 | # Compute implicit shift
272 |
273 | g = @d[l]
274 | p = (@d[l+1] - g) / (2.0 * @e[l])
275 | r = Math.hypot(p, 1.0)
276 | if (p < 0)
277 | r = -r
278 | end
279 | @d[l] = @e[l] / (p + r)
280 | @d[l+1] = @e[l] * (p + r)
281 | dl1 = @d[l+1]
282 | h = g - @d[l]
283 | (l+2).upto(@size-1) do |i|
284 | @d[i] -= h
285 | end
286 | f += h
287 |
288 | # Implicit QL transformation.
289 |
290 | p = @d[m]
291 | c = 1.0
292 | c2 = c
293 | c3 = c
294 | el1 = @e[l+1]
295 | s = 0.0
296 | s2 = 0.0
297 | (m-1).downto(l) do |i|
298 | c3 = c2
299 | c2 = c
300 | s2 = s
301 | g = c * @e[i]
302 | h = c * p
303 | r = Math.hypot(p, @e[i])
304 | @e[i+1] = s * r
305 | s = @e[i] / r
306 | c = p / r
307 | p = c * @d[i] - s * g
308 | @d[i+1] = h + s * (c * g + s * @d[i])
309 |
310 | # Accumulate transformation.
311 |
312 | @size.times do |k|
313 | h = @v[k][i+1]
314 | @v[k][i+1] = s * @v[k][i] + c * h
315 | @v[k][i] = c * @v[k][i] - s * h
316 | end
317 | end
318 | p = -s * s2 * c3 * el1 * @e[l] / dl1
319 | @e[l] = s * p
320 | @d[l] = c * p
321 |
322 | # Check for convergence.
323 |
324 | end while (@e[l].abs > eps*tst1)
325 | end
326 | @d[l] = @d[l] + f
327 | @e[l] = 0.0
328 | end
329 |
330 | # Sort eigenvalues and corresponding vectors.
331 |
332 | 0.upto(@size-2) do |i|
333 | k = i
334 | p = @d[i]
335 | (i+1).upto(@size-1) do |j|
336 | if (@d[j] < p)
337 | k = j
338 | p = @d[j]
339 | end
340 | end
341 | if (k != i)
342 | @d[k] = @d[i]
343 | @d[i] = p
344 | @size.times do |j|
345 | p = @v[j][i]
346 | @v[j][i] = @v[j][k]
347 | @v[j][k] = p
348 | end
349 | end
350 | end
351 | end
352 |
353 | # Nonsymmetric reduction to Hessenberg form.
354 |
355 | private def reduce_to_hessenberg
356 | # This is derived from the Algol procedures orthes and ortran,
357 | # by Martin and Wilkinson, Handbook for Auto. Comp.,
358 | # Vol.ii-Linear Algebra, and the corresponding
359 | # Fortran subroutines in EISPACK.
360 |
361 | low = 0
362 | high = @size-1
363 |
364 | (low+1).upto(high-1) do |m|
365 |
366 | # Scale column.
367 |
368 | scale = 0.0
369 | m.upto(high) do |i|
370 | scale = scale + @h[i][m-1].abs
371 | end
372 | if (scale != 0.0)
373 |
374 | # Compute Householder transformation.
375 |
376 | h = 0.0
377 | high.downto(m) do |i|
378 | @ort[i] = @h[i][m-1]/scale
379 | h += @ort[i] * @ort[i]
380 | end
381 | g = Math.sqrt(h)
382 | if (@ort[m] > 0)
383 | g = -g
384 | end
385 | h -= @ort[m] * g
386 | @ort[m] = @ort[m] - g
387 |
388 | # Apply Householder similarity transformation
389 | # @h = (I-u*u'/h)*@h*(I-u*u')/h)
390 |
391 | m.upto(@size-1) do |j|
392 | f = 0.0
393 | high.downto(m) do |i|
394 | f += @ort[i]*@h[i][j]
395 | end
396 | f = f/h
397 | m.upto(high) do |i|
398 | @h[i][j] -= f*@ort[i]
399 | end
400 | end
401 |
402 | 0.upto(high) do |i|
403 | f = 0.0
404 | high.downto(m) do |j|
405 | f += @ort[j]*@h[i][j]
406 | end
407 | f = f/h
408 | m.upto(high) do |j|
409 | @h[i][j] -= f*@ort[j]
410 | end
411 | end
412 | @ort[m] = scale*@ort[m]
413 | @h[m][m-1] = scale*g
414 | end
415 | end
416 |
417 | # Accumulate transformations (Algol's ortran).
418 |
419 | @size.times do |i|
420 | @size.times do |j|
421 | @v[i][j] = (i == j ? 1.0 : 0.0)
422 | end
423 | end
424 |
425 | (high-1).downto(low+1) do |m|
426 | if (@h[m][m-1] != 0.0)
427 | (m+1).upto(high) do |i|
428 | @ort[i] = @h[i][m-1]
429 | end
430 | m.upto(high) do |j|
431 | g = 0.0
432 | m.upto(high) do |i|
433 | g += @ort[i] * @v[i][j]
434 | end
435 | # Double division avoids possible underflow
436 | g = (g / @ort[m]) / @h[m][m-1]
437 | m.upto(high) do |i|
438 | @v[i][j] += g * @ort[i]
439 | end
440 | end
441 | end
442 | end
443 | end
444 |
445 | # Nonsymmetric reduction from Hessenberg to real Schur form.
446 |
447 | private def hessenberg_to_real_schur
448 |
449 | # This is derived from the Algol procedure hqr2,
450 | # by Martin and Wilkinson, Handbook for Auto. Comp.,
451 | # Vol.ii-Linear Algebra, and the corresponding
452 | # Fortran subroutine in EISPACK.
453 |
454 | # Initialize
455 |
456 | nn = @size
457 | n = nn-1
458 | low = 0
459 | high = nn-1
460 | eps = Float::EPSILON
461 | exshift = 0.0
462 | p = q = r = s = z = 0
463 |
464 | # Store roots isolated by balanc and compute matrix norm
465 |
466 | norm = 0.0
467 | nn.times do |i|
468 | if (i < low || i > high)
469 | @d[i] = @h[i][i]
470 | @e[i] = 0.0
471 | end
472 | ([i-1, 0].max).upto(nn-1) do |j|
473 | norm = norm + @h[i][j].abs
474 | end
475 | end
476 |
477 | # Outer loop over eigenvalue index
478 |
479 | iter = 0
480 | while (n >= low) do
481 |
482 | # Look for single small sub-diagonal element
483 |
484 | l = n
485 | while (l > low) do
486 | s = @h[l-1][l-1].abs + @h[l][l].abs
487 | if (s == 0.0)
488 | s = norm
489 | end
490 | if (@h[l][l-1].abs < eps * s)
491 | break
492 | end
493 | l-=1
494 | end
495 |
496 | # Check for convergence
497 | # One root found
498 |
499 | if (l == n)
500 | @h[n][n] = @h[n][n] + exshift
501 | @d[n] = @h[n][n]
502 | @e[n] = 0.0
503 | n-=1
504 | iter = 0
505 |
506 | # Two roots found
507 |
508 | elsif (l == n-1)
509 | w = @h[n][n-1] * @h[n-1][n]
510 | p = (@h[n-1][n-1] - @h[n][n]) / 2.0
511 | q = p * p + w
512 | z = Math.sqrt(q.abs)
513 | @h[n][n] = @h[n][n] + exshift
514 | @h[n-1][n-1] = @h[n-1][n-1] + exshift
515 | x = @h[n][n]
516 |
517 | # Real pair
518 |
519 | if (q >= 0)
520 | if (p >= 0)
521 | z = p + z
522 | else
523 | z = p - z
524 | end
525 | @d[n-1] = x + z
526 | @d[n] = @d[n-1]
527 | if (z != 0.0)
528 | @d[n] = x - w / z
529 | end
530 | @e[n-1] = 0.0
531 | @e[n] = 0.0
532 | x = @h[n][n-1]
533 | s = x.abs + z.abs
534 | p = x / s
535 | q = z / s
536 | r = Math.sqrt(p * p+q * q)
537 | p /= r
538 | q /= r
539 |
540 | # Row modification
541 |
542 | (n-1).upto(nn-1) do |j|
543 | z = @h[n-1][j]
544 | @h[n-1][j] = q * z + p * @h[n][j]
545 | @h[n][j] = q * @h[n][j] - p * z
546 | end
547 |
548 | # Column modification
549 |
550 | 0.upto(n) do |i|
551 | z = @h[i][n-1]
552 | @h[i][n-1] = q * z + p * @h[i][n]
553 | @h[i][n] = q * @h[i][n] - p * z
554 | end
555 |
556 | # Accumulate transformations
557 |
558 | low.upto(high) do |i|
559 | z = @v[i][n-1]
560 | @v[i][n-1] = q * z + p * @v[i][n]
561 | @v[i][n] = q * @v[i][n] - p * z
562 | end
563 |
564 | # Complex pair
565 |
566 | else
567 | @d[n-1] = x + p
568 | @d[n] = x + p
569 | @e[n-1] = z
570 | @e[n] = -z
571 | end
572 | n -= 2
573 | iter = 0
574 |
575 | # No convergence yet
576 |
577 | else
578 |
579 | # Form shift
580 |
581 | x = @h[n][n]
582 | y = 0.0
583 | w = 0.0
584 | if (l < n)
585 | y = @h[n-1][n-1]
586 | w = @h[n][n-1] * @h[n-1][n]
587 | end
588 |
589 | # Wilkinson's original ad hoc shift
590 |
591 | if (iter == 10)
592 | exshift += x
593 | low.upto(n) do |i|
594 | @h[i][i] -= x
595 | end
596 | s = @h[n][n-1].abs + @h[n-1][n-2].abs
597 | x = y = 0.75 * s
598 | w = -0.4375 * s * s
599 | end
600 |
601 | # MATLAB's new ad hoc shift
602 |
603 | if (iter == 30)
604 | s = (y - x) / 2.0
605 | s *= s + w
606 | if (s > 0)
607 | s = Math.sqrt(s)
608 | if (y < x)
609 | s = -s
610 | end
611 | s = x - w / ((y - x) / 2.0 + s)
612 | low.upto(n) do |i|
613 | @h[i][i] -= s
614 | end
615 | exshift += s
616 | x = y = w = 0.964
617 | end
618 | end
619 |
620 | iter = iter + 1 # (Could check iteration count here.)
621 |
622 | # Look for two consecutive small sub-diagonal elements
623 |
624 | m = n-2
625 | while (m >= l) do
626 | z = @h[m][m]
627 | r = x - z
628 | s = y - z
629 | p = (r * s - w) / @h[m+1][m] + @h[m][m+1]
630 | q = @h[m+1][m+1] - z - r - s
631 | r = @h[m+2][m+1]
632 | s = p.abs + q.abs + r.abs
633 | p /= s
634 | q /= s
635 | r /= s
636 | if (m == l)
637 | break
638 | end
639 | if (@h[m][m-1].abs * (q.abs + r.abs) <
640 | eps * (p.abs * (@h[m-1][m-1].abs + z.abs +
641 | @h[m+1][m+1].abs)))
642 | break
643 | end
644 | m-=1
645 | end
646 |
647 | (m+2).upto(n) do |i|
648 | @h[i][i-2] = 0.0
649 | if (i > m+2)
650 | @h[i][i-3] = 0.0
651 | end
652 | end
653 |
654 | # Double QR step involving rows l:n and columns m:n
655 |
656 | m.upto(n-1) do |k|
657 | notlast = (k != n-1)
658 | if (k != m)
659 | p = @h[k][k-1]
660 | q = @h[k+1][k-1]
661 | r = (notlast ? @h[k+2][k-1] : 0.0)
662 | x = p.abs + q.abs + r.abs
663 | next if x == 0
664 | p /= x
665 | q /= x
666 | r /= x
667 | end
668 | s = Math.sqrt(p * p + q * q + r * r)
669 | if (p < 0)
670 | s = -s
671 | end
672 | if (s != 0)
673 | if (k != m)
674 | @h[k][k-1] = -s * x
675 | elsif (l != m)
676 | @h[k][k-1] = -@h[k][k-1]
677 | end
678 | p += s
679 | x = p / s
680 | y = q / s
681 | z = r / s
682 | q /= p
683 | r /= p
684 |
685 | # Row modification
686 |
687 | k.upto(nn-1) do |j|
688 | p = @h[k][j] + q * @h[k+1][j]
689 | if (notlast)
690 | p += r * @h[k+2][j]
691 | @h[k+2][j] = @h[k+2][j] - p * z
692 | end
693 | @h[k][j] = @h[k][j] - p * x
694 | @h[k+1][j] = @h[k+1][j] - p * y
695 | end
696 |
697 | # Column modification
698 |
699 | 0.upto([n, k+3].min) do |i|
700 | p = x * @h[i][k] + y * @h[i][k+1]
701 | if (notlast)
702 | p += z * @h[i][k+2]
703 | @h[i][k+2] = @h[i][k+2] - p * r
704 | end
705 | @h[i][k] = @h[i][k] - p
706 | @h[i][k+1] = @h[i][k+1] - p * q
707 | end
708 |
709 | # Accumulate transformations
710 |
711 | low.upto(high) do |i|
712 | p = x * @v[i][k] + y * @v[i][k+1]
713 | if (notlast)
714 | p += z * @v[i][k+2]
715 | @v[i][k+2] = @v[i][k+2] - p * r
716 | end
717 | @v[i][k] = @v[i][k] - p
718 | @v[i][k+1] = @v[i][k+1] - p * q
719 | end
720 | end # (s != 0)
721 | end # k loop
722 | end # check convergence
723 | end # while (n >= low)
724 |
725 | # Backsubstitute to find vectors of upper triangular form
726 |
727 | if (norm == 0.0)
728 | return
729 | end
730 |
731 | (nn-1).downto(0) do |k|
732 | p = @d[k]
733 | q = @e[k]
734 |
735 | # Real vector
736 |
737 | if (q == 0)
738 | l = k
739 | @h[k][k] = 1.0
740 | (k-1).downto(0) do |i|
741 | w = @h[i][i] - p
742 | r = 0.0
743 | l.upto(k) do |j|
744 | r += @h[i][j] * @h[j][k]
745 | end
746 | if (@e[i] < 0.0)
747 | z = w
748 | s = r
749 | else
750 | l = i
751 | if (@e[i] == 0.0)
752 | if (w != 0.0)
753 | @h[i][k] = -r / w
754 | else
755 | @h[i][k] = -r / (eps * norm)
756 | end
757 |
758 | # Solve real equations
759 |
760 | else
761 | x = @h[i][i+1]
762 | y = @h[i+1][i]
763 | q = (@d[i] - p) * (@d[i] - p) + @e[i] * @e[i]
764 | t = (x * s - z * r) / q
765 | @h[i][k] = t
766 | if (x.abs > z.abs)
767 | @h[i+1][k] = (-r - w * t) / x
768 | else
769 | @h[i+1][k] = (-s - y * t) / z
770 | end
771 | end
772 |
773 | # Overflow control
774 |
775 | t = @h[i][k].abs
776 | if ((eps * t) * t > 1)
777 | i.upto(k) do |j|
778 | @h[j][k] = @h[j][k] / t
779 | end
780 | end
781 | end
782 | end
783 |
784 | # Complex vector
785 |
786 | elsif (q < 0)
787 | l = n-1
788 |
789 | # Last vector component imaginary so matrix is triangular
790 |
791 | if (@h[n][n-1].abs > @h[n-1][n].abs)
792 | @h[n-1][n-1] = q / @h[n][n-1]
793 | @h[n-1][n] = -(@h[n][n] - p) / @h[n][n-1]
794 | else
795 | cdivr, cdivi = cdiv(0.0, -@h[n-1][n], @h[n-1][n-1]-p, q)
796 | @h[n-1][n-1] = cdivr
797 | @h[n-1][n] = cdivi
798 | end
799 | @h[n][n-1] = 0.0
800 | @h[n][n] = 1.0
801 | (n-2).downto(0) do |i|
802 | ra = 0.0
803 | sa = 0.0
804 | l.upto(n) do |j|
805 | ra = ra + @h[i][j] * @h[j][n-1]
806 | sa = sa + @h[i][j] * @h[j][n]
807 | end
808 | w = @h[i][i] - p
809 |
810 | if (@e[i] < 0.0)
811 | z = w
812 | r = ra
813 | s = sa
814 | else
815 | l = i
816 | if (@e[i] == 0)
817 | cdivr, cdivi = cdiv(-ra, -sa, w, q)
818 | @h[i][n-1] = cdivr
819 | @h[i][n] = cdivi
820 | else
821 |
822 | # Solve complex equations
823 |
824 | x = @h[i][i+1]
825 | y = @h[i+1][i]
826 | vr = (@d[i] - p) * (@d[i] - p) + @e[i] * @e[i] - q * q
827 | vi = (@d[i] - p) * 2.0 * q
828 | if (vr == 0.0 && vi == 0.0)
829 | vr = eps * norm * (w.abs + q.abs +
830 | x.abs + y.abs + z.abs)
831 | end
832 | cdivr, cdivi = cdiv(x*r-z*ra+q*sa, x*s-z*sa-q*ra, vr, vi)
833 | @h[i][n-1] = cdivr
834 | @h[i][n] = cdivi
835 | if (x.abs > (z.abs + q.abs))
836 | @h[i+1][n-1] = (-ra - w * @h[i][n-1] + q * @h[i][n]) / x
837 | @h[i+1][n] = (-sa - w * @h[i][n] - q * @h[i][n-1]) / x
838 | else
839 | cdivr, cdivi = cdiv(-r-y*@h[i][n-1], -s-y*@h[i][n], z, q)
840 | @h[i+1][n-1] = cdivr
841 | @h[i+1][n] = cdivi
842 | end
843 | end
844 |
845 | # Overflow control
846 |
847 | t = [@h[i][n-1].abs, @h[i][n].abs].max
848 | if ((eps * t) * t > 1)
849 | i.upto(n) do |j|
850 | @h[j][n-1] = @h[j][n-1] / t
851 | @h[j][n] = @h[j][n] / t
852 | end
853 | end
854 | end
855 | end
856 | end
857 | end
858 |
859 | # Vectors of isolated roots
860 |
861 | nn.times do |i|
862 | if (i < low || i > high)
863 | i.upto(nn-1) do |j|
864 | @v[i][j] = @h[i][j]
865 | end
866 | end
867 | end
868 |
869 | # Back transformation to get eigenvectors of original matrix
870 |
871 | (nn-1).downto(low) do |j|
872 | low.upto(high) do |i|
873 | z = 0.0
874 | low.upto([j, high].min) do |k|
875 | z += @v[i][k] * @h[k][j]
876 | end
877 | @v[i][j] = z
878 | end
879 | end
880 | end
881 |
882 | end
883 | end
884 |
--------------------------------------------------------------------------------
/lib/matrix/lup_decomposition.rb:
--------------------------------------------------------------------------------
1 | # frozen_string_literal: false
2 | class Matrix
3 | # Adapted from JAMA: http://math.nist.gov/javanumerics/jama/
4 |
5 | #
6 | # For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
7 | # unit lower triangular matrix L, an n-by-n upper triangular matrix U,
8 | # and a m-by-m permutation matrix P so that L*U = P*A.
9 | # If m < n, then L is m-by-m and U is m-by-n.
10 | #
11 | # The LUP decomposition with pivoting always exists, even if the matrix is
12 | # singular, so the constructor will never fail. The primary use of the
13 | # LU decomposition is in the solution of square systems of simultaneous
14 | # linear equations. This will fail if singular? returns true.
15 | #
16 |
17 | class LUPDecomposition
18 | # Returns the lower triangular factor +L+
19 |
20 | include Matrix::ConversionHelper
21 |
22 | def l
23 | Matrix.build(@row_count, [@column_count, @row_count].min) do |i, j|
24 | if (i > j)
25 | @lu[i][j]
26 | elsif (i == j)
27 | 1
28 | else
29 | 0
30 | end
31 | end
32 | end
33 |
34 | # Returns the upper triangular factor +U+
35 |
36 | def u
37 | Matrix.build([@column_count, @row_count].min, @column_count) do |i, j|
38 | if (i <= j)
39 | @lu[i][j]
40 | else
41 | 0
42 | end
43 | end
44 | end
45 |
46 | # Returns the permutation matrix +P+
47 |
48 | def p
49 | rows = Array.new(@row_count){Array.new(@row_count, 0)}
50 | @pivots.each_with_index{|p, i| rows[i][p] = 1}
51 | Matrix.send :new, rows, @row_count
52 | end
53 |
54 | # Returns +L+, +U+, +P+ in an array
55 |
56 | def to_ary
57 | [l, u, p]
58 | end
59 | alias_method :to_a, :to_ary
60 |
61 | # Returns the pivoting indices
62 |
63 | attr_reader :pivots
64 |
65 | # Returns +true+ if +U+, and hence +A+, is singular.
66 |
67 | def singular?
68 | @column_count.times do |j|
69 | if (@lu[j][j] == 0)
70 | return true
71 | end
72 | end
73 | false
74 | end
75 |
76 | # Returns the determinant of +A+, calculated efficiently
77 | # from the factorization.
78 |
79 | def det
80 | if (@row_count != @column_count)
81 | raise Matrix::ErrDimensionMismatch
82 | end
83 | d = @pivot_sign
84 | @column_count.times do |j|
85 | d *= @lu[j][j]
86 | end
87 | d
88 | end
89 | alias_method :determinant, :det
90 |
91 | # Returns +m+ so that A*m = b,
92 | # or equivalently so that L*U*m = P*b
93 | # +b+ can be a Matrix or a Vector
94 |
95 | def solve b
96 | if (singular?)
97 | raise Matrix::ErrNotRegular, "Matrix is singular."
98 | end
99 | if b.is_a? Matrix
100 | if (b.row_count != @row_count)
101 | raise Matrix::ErrDimensionMismatch
102 | end
103 |
104 | # Copy right hand side with pivoting
105 | nx = b.column_count
106 | m = @pivots.map{|row| b.row(row).to_a}
107 |
108 | # Solve L*Y = P*b
109 | @column_count.times do |k|
110 | (k+1).upto(@column_count-1) do |i|
111 | nx.times do |j|
112 | m[i][j] -= m[k][j]*@lu[i][k]
113 | end
114 | end
115 | end
116 | # Solve U*m = Y
117 | (@column_count-1).downto(0) do |k|
118 | nx.times do |j|
119 | m[k][j] = m[k][j].quo(@lu[k][k])
120 | end
121 | k.times do |i|
122 | nx.times do |j|
123 | m[i][j] -= m[k][j]*@lu[i][k]
124 | end
125 | end
126 | end
127 | Matrix.send :new, m, nx
128 | else # same algorithm, specialized for simpler case of a vector
129 | b = convert_to_array(b)
130 | if (b.size != @row_count)
131 | raise Matrix::ErrDimensionMismatch
132 | end
133 |
134 | # Copy right hand side with pivoting
135 | m = b.values_at(*@pivots)
136 |
137 | # Solve L*Y = P*b
138 | @column_count.times do |k|
139 | (k+1).upto(@column_count-1) do |i|
140 | m[i] -= m[k]*@lu[i][k]
141 | end
142 | end
143 | # Solve U*m = Y
144 | (@column_count-1).downto(0) do |k|
145 | m[k] = m[k].quo(@lu[k][k])
146 | k.times do |i|
147 | m[i] -= m[k]*@lu[i][k]
148 | end
149 | end
150 | Vector.elements(m, false)
151 | end
152 | end
153 |
154 | def initialize a
155 | raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix)
156 | # Use a "left-looking", dot-product, Crout/Doolittle algorithm.
157 | @lu = a.to_a
158 | @row_count = a.row_count
159 | @column_count = a.column_count
160 | @pivots = Array.new(@row_count)
161 | @row_count.times do |i|
162 | @pivots[i] = i
163 | end
164 | @pivot_sign = 1
165 | lu_col_j = Array.new(@row_count)
166 |
167 | # Outer loop.
168 |
169 | @column_count.times do |j|
170 |
171 | # Make a copy of the j-th column to localize references.
172 |
173 | @row_count.times do |i|
174 | lu_col_j[i] = @lu[i][j]
175 | end
176 |
177 | # Apply previous transformations.
178 |
179 | @row_count.times do |i|
180 | lu_row_i = @lu[i]
181 |
182 | # Most of the time is spent in the following dot product.
183 |
184 | kmax = [i, j].min
185 | s = 0
186 | kmax.times do |k|
187 | s += lu_row_i[k]*lu_col_j[k]
188 | end
189 |
190 | lu_row_i[j] = lu_col_j[i] -= s
191 | end
192 |
193 | # Find pivot and exchange if necessary.
194 |
195 | p = j
196 | (j+1).upto(@row_count-1) do |i|
197 | if (lu_col_j[i].abs > lu_col_j[p].abs)
198 | p = i
199 | end
200 | end
201 | if (p != j)
202 | @column_count.times do |k|
203 | t = @lu[p][k]; @lu[p][k] = @lu[j][k]; @lu[j][k] = t
204 | end
205 | k = @pivots[p]; @pivots[p] = @pivots[j]; @pivots[j] = k
206 | @pivot_sign = -@pivot_sign
207 | end
208 |
209 | # Compute multipliers.
210 |
211 | if (j < @row_count && @lu[j][j] != 0)
212 | (j+1).upto(@row_count-1) do |i|
213 | @lu[i][j] = @lu[i][j].quo(@lu[j][j])
214 | end
215 | end
216 | end
217 | end
218 | end
219 | end
220 |
--------------------------------------------------------------------------------
/lib/matrix/version.rb:
--------------------------------------------------------------------------------
1 | # frozen_string_literal: true
2 |
3 | class Matrix
4 | VERSION = "0.4.2"
5 | end
6 |
--------------------------------------------------------------------------------
/matrix.gemspec:
--------------------------------------------------------------------------------
1 | # frozen_string_literal: true
2 |
3 | begin
4 | require_relative "lib/matrix/version"
5 | rescue LoadError
6 | # for Ruby core repository
7 | require_relative "version"
8 | end
9 |
10 | Gem::Specification.new do |spec|
11 | spec.name = "matrix"
12 | spec.version = Matrix::VERSION
13 | spec.authors = ["Marc-Andre Lafortune"]
14 | spec.email = ["ruby-core@marc-andre.ca"]
15 |
16 | spec.summary = %q{An implementation of Matrix and Vector classes.}
17 | spec.description = %q{An implementation of Matrix and Vector classes.}
18 | spec.homepage = "https://github.com/ruby/matrix"
19 | spec.licenses = ["Ruby", "BSD-2-Clause"]
20 | spec.required_ruby_version = ">= 2.5.0"
21 |
22 | spec.files = ["LICENSE.txt", "lib/matrix.rb", "lib/matrix/eigenvalue_decomposition.rb", "lib/matrix/lup_decomposition.rb", "lib/matrix/version.rb", "matrix.gemspec"]
23 | spec.bindir = "exe"
24 | spec.executables = []
25 | spec.require_paths = ["lib"]
26 | end
27 |
--------------------------------------------------------------------------------
/test/lib/helper.rb:
--------------------------------------------------------------------------------
1 | require "test/unit"
2 | require "core_assertions"
3 |
4 | Test::Unit::TestCase.include Test::Unit::CoreAssertions
5 |
--------------------------------------------------------------------------------
/test/matrix/test_matrix.rb:
--------------------------------------------------------------------------------
1 | # frozen_string_literal: false
2 | require 'test/unit'
3 | require 'matrix'
4 |
5 | class SubMatrix < Matrix
6 | end
7 |
8 | class TestMatrix < Test::Unit::TestCase
9 | def setup
10 | @m1 = Matrix[[1,2,3], [4,5,6]]
11 | @m2 = Matrix[[1,2,3], [4,5,6]]
12 | @m3 = @m1.clone
13 | @m4 = Matrix[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
14 | @n1 = Matrix[[2,3,4], [5,6,7]]
15 | @c1 = Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
16 | @e1 = Matrix.empty(2,0)
17 | @e2 = Matrix.empty(0,3)
18 | @a3 = Matrix[[4, 1, -3], [0, 3, 7], [11, -4, 2]]
19 | @a5 = Matrix[[2, 0, 9, 3, 9], [8, 7, 0, 1, 9], [7, 5, 6, 6, 5], [0, 7, 8, 3, 0], [7, 8, 2, 3, 1]]
20 | @b3 = Matrix[[-7, 7, -10], [9, -3, -2], [-1, 3, 9]]
21 | @rot = Matrix[[0, -1, 0], [1, 0, 0], [0, 0, -1]]
22 | end
23 |
24 | def test_matrix
25 | assert_equal(1, @m1[0, 0])
26 | assert_equal(2, @m1[0, 1])
27 | assert_equal(3, @m1[0, 2])
28 | assert_equal(4, @m1[1, 0])
29 | assert_equal(5, @m1[1, 1])
30 | assert_equal(6, @m1[1, 2])
31 | end
32 |
33 | def test_identity
34 | assert_same @m1, @m1
35 | assert_not_same @m1, @m2
36 | assert_not_same @m1, @m3
37 | assert_not_same @m1, @m4
38 | assert_not_same @m1, @n1
39 | end
40 |
41 | def test_equality
42 | assert_equal @m1, @m1
43 | assert_equal @m1, @m2
44 | assert_equal @m1, @m3
45 | assert_equal @m1, @m4
46 | assert_not_equal @m1, @n1
47 | end
48 |
49 | def test_hash_equality
50 | assert @m1.eql?(@m1)
51 | assert @m1.eql?(@m2)
52 | assert @m1.eql?(@m3)
53 | assert !@m1.eql?(@m4)
54 | assert !@m1.eql?(@n1)
55 |
56 | hash = { @m1 => :value }
57 | assert hash.key?(@m1)
58 | assert hash.key?(@m2)
59 | assert hash.key?(@m3)
60 | assert !hash.key?(@m4)
61 | assert !hash.key?(@n1)
62 | end
63 |
64 | def test_hash
65 | assert_equal @m1.hash, @m1.hash
66 | assert_equal @m1.hash, @m2.hash
67 | assert_equal @m1.hash, @m3.hash
68 | end
69 |
70 | def test_uplus
71 | assert_equal(@m1, +@m1)
72 | end
73 |
74 | def test_negate
75 | assert_equal(Matrix[[-1, -2, -3], [-4, -5, -6]], -@m1)
76 | assert_equal(@m1, -(-@m1))
77 | end
78 |
79 | def test_rank
80 | [
81 | [[0]],
82 | [[0], [0]],
83 | [[0, 0], [0, 0]],
84 | [[0, 0], [0, 0], [0, 0]],
85 | [[0, 0, 0]],
86 | [[0, 0, 0], [0, 0, 0]],
87 | [[0, 0, 0], [0, 0, 0], [0, 0, 0]],
88 | [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
89 | ].each do |rows|
90 | assert_equal 0, Matrix[*rows].rank
91 | end
92 |
93 | [
94 | [[1], [0]],
95 | [[1, 0], [0, 0]],
96 | [[1, 0], [1, 0]],
97 | [[0, 0], [1, 0]],
98 | [[1, 0], [0, 0], [0, 0]],
99 | [[0, 0], [1, 0], [0, 0]],
100 | [[0, 0], [0, 0], [1, 0]],
101 | [[1, 0], [1, 0], [0, 0]],
102 | [[0, 0], [1, 0], [1, 0]],
103 | [[1, 0], [1, 0], [1, 0]],
104 | [[1, 0, 0]],
105 | [[1, 0, 0], [0, 0, 0]],
106 | [[0, 0, 0], [1, 0, 0]],
107 | [[1, 0, 0], [1, 0, 0]],
108 | [[1, 0, 0], [1, 0, 0]],
109 | [[1, 0, 0], [0, 0, 0], [0, 0, 0]],
110 | [[0, 0, 0], [1, 0, 0], [0, 0, 0]],
111 | [[0, 0, 0], [0, 0, 0], [1, 0, 0]],
112 | [[1, 0, 0], [1, 0, 0], [0, 0, 0]],
113 | [[0, 0, 0], [1, 0, 0], [1, 0, 0]],
114 | [[1, 0, 0], [0, 0, 0], [1, 0, 0]],
115 | [[1, 0, 0], [1, 0, 0], [1, 0, 0]],
116 | [[1, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
117 | [[1, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
118 | [[1, 0, 0], [1, 0, 0], [0, 0, 0], [0, 0, 0]],
119 | [[1, 0, 0], [0, 0, 0], [1, 0, 0], [0, 0, 0]],
120 | [[1, 0, 0], [0, 0, 0], [0, 0, 0], [1, 0, 0]],
121 | [[1, 0, 0], [1, 0, 0], [1, 0, 0], [0, 0, 0]],
122 | [[1, 0, 0], [0, 0, 0], [1, 0, 0], [1, 0, 0]],
123 | [[1, 0, 0], [1, 0, 0], [0, 0, 0], [1, 0, 0]],
124 | [[1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0]],
125 |
126 | [[1]],
127 | [[1], [1]],
128 | [[1, 1]],
129 | [[1, 1], [1, 1]],
130 | [[1, 1], [1, 1], [1, 1]],
131 | [[1, 1, 1]],
132 | [[1, 1, 1], [1, 1, 1]],
133 | [[1, 1, 1], [1, 1, 1], [1, 1, 1]],
134 | [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]],
135 | ].each do |rows|
136 | matrix = Matrix[*rows]
137 | assert_equal 1, matrix.rank
138 | assert_equal 1, matrix.transpose.rank
139 | end
140 |
141 | [
142 | [[1, 0], [0, 1]],
143 | [[1, 0], [0, 1], [0, 0]],
144 | [[1, 0], [0, 1], [0, 1]],
145 | [[1, 0], [0, 1], [1, 1]],
146 | [[1, 0, 0], [0, 1, 0]],
147 | [[1, 0, 0], [0, 0, 1]],
148 | [[1, 0, 0], [0, 1, 0], [0, 0, 0]],
149 | [[1, 0, 0], [0, 0, 1], [0, 0, 0]],
150 |
151 | [[1, 0, 0], [0, 0, 0], [0, 1, 0]],
152 | [[1, 0, 0], [0, 0, 0], [0, 0, 1]],
153 |
154 | [[1, 0], [1, 1]],
155 | [[1, 2], [1, 1]],
156 | [[1, 2], [0, 1], [1, 1]],
157 | ].each do |rows|
158 | m = Matrix[*rows]
159 | assert_equal 2, m.rank
160 | assert_equal 2, m.transpose.rank
161 | end
162 |
163 | [
164 | [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
165 | [[1, 1, 0], [0, 1, 1], [1, 0, 1]],
166 | [[1, 1, 0], [0, 1, 1], [1, 0, 1]],
167 | [[1, 1, 0], [0, 1, 1], [1, 0, 1], [0, 0, 0]],
168 | [[1, 1, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]],
169 | [[1, 1, 1], [1, 1, 2], [1, 3, 1], [4, 1, 1]],
170 | ].each do |rows|
171 | m = Matrix[*rows]
172 | assert_equal 3, m.rank
173 | assert_equal 3, m.transpose.rank
174 | end
175 | end
176 |
177 | def test_inverse
178 | assert_equal(Matrix.empty(0, 0), Matrix.empty.inverse)
179 | assert_equal(Matrix[[-1, 1], [0, -1]], Matrix[[-1, -1], [0, -1]].inverse)
180 | assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { @m1.inverse }
181 | end
182 |
183 | def test_determinant
184 | assert_equal(0, Matrix[[0,0],[0,0]].determinant)
185 | assert_equal(45, Matrix[[7,6], [3,9]].determinant)
186 | assert_equal(-18, Matrix[[2,0,1],[0,-2,2],[1,2,3]].determinant)
187 | assert_equal(-7, Matrix[[0,0,1],[0,7,6],[1,3,9]].determinant)
188 | assert_equal(42, Matrix[[7,0,1,0,12],[8,1,1,9,1],[4,0,0,-7,17],[-1,0,0,-4,8],[10,1,1,8,6]].determinant)
189 | end
190 |
191 | def test_new_matrix
192 | assert_raise(TypeError) { Matrix[Object.new] }
193 | o = Object.new
194 | def o.to_ary; [1,2,3]; end
195 | assert_equal(@m1, Matrix[o, [4,5,6]])
196 | end
197 |
198 | def test_round
199 | a = Matrix[[1.0111, 2.32320, 3.04343], [4.81, 5.0, 6.997]]
200 | b = Matrix[[1.01, 2.32, 3.04], [4.81, 5.0, 7.0]]
201 | assert_equal(a.round(2), b)
202 | end
203 |
204 | def test_rows
205 | assert_equal(@m1, Matrix.rows([[1, 2, 3], [4, 5, 6]]))
206 | end
207 |
208 | def test_rows_copy
209 | rows1 = [[1], [1]]
210 | rows2 = [[1], [1]]
211 |
212 | m1 = Matrix.rows(rows1, copy = false)
213 | m2 = Matrix.rows(rows2, copy = true)
214 |
215 | rows1.uniq!
216 | rows2.uniq!
217 |
218 | assert_equal([[1]], m1.to_a)
219 | assert_equal([[1], [1]], m2.to_a)
220 | end
221 |
222 | def test_to_matrix
223 | assert @m1.equal? @m1.to_matrix
224 | end
225 |
226 | def test_columns
227 | assert_equal(@m1, Matrix.columns([[1, 4], [2, 5], [3, 6]]))
228 | end
229 |
230 | def test_diagonal
231 | assert_equal(Matrix.empty(0, 0), Matrix.diagonal( ))
232 | assert_equal(Matrix[[3,0,0],[0,2,0],[0,0,1]], Matrix.diagonal(3, 2, 1))
233 | assert_equal(Matrix[[4,0,0,0],[0,3,0,0],[0,0,2,0],[0,0,0,1]], Matrix.diagonal(4, 3, 2, 1))
234 | end
235 |
236 | def test_scalar
237 | assert_equal(Matrix.empty(0, 0), Matrix.scalar(0, 1))
238 | assert_equal(Matrix[[2,0,0],[0,2,0],[0,0,2]], Matrix.scalar(3, 2))
239 | assert_equal(Matrix[[2,0,0,0],[0,2,0,0],[0,0,2,0],[0,0,0,2]], Matrix.scalar(4, 2))
240 | end
241 |
242 | def test_identity2
243 | assert_equal(Matrix[[1,0,0],[0,1,0],[0,0,1]], Matrix.identity(3))
244 | assert_equal(Matrix[[1,0,0],[0,1,0],[0,0,1]], Matrix.unit(3))
245 | assert_equal(Matrix[[1,0,0],[0,1,0],[0,0,1]], Matrix.I(3))
246 | assert_equal(Matrix[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], Matrix.identity(4))
247 | end
248 |
249 | def test_zero
250 | assert_equal(Matrix[[0,0,0],[0,0,0],[0,0,0]], Matrix.zero(3))
251 | assert_equal(Matrix[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]], Matrix.zero(4))
252 | assert_equal(Matrix[[0]], Matrix.zero(1))
253 | end
254 |
255 | def test_row_vector
256 | assert_equal(Matrix[[1,2,3,4]], Matrix.row_vector([1,2,3,4]))
257 | end
258 |
259 | def test_column_vector
260 | assert_equal(Matrix[[1],[2],[3],[4]], Matrix.column_vector([1,2,3,4]))
261 | end
262 |
263 | def test_empty
264 | m = Matrix.empty(2, 0)
265 | assert_equal(Matrix[ [], [] ], m)
266 | n = Matrix.empty(0, 3)
267 | assert_equal(Matrix.columns([ [], [], [] ]), n)
268 | assert_equal(Matrix[[0, 0, 0], [0, 0, 0]], m * n)
269 | end
270 |
271 | def test_row
272 | assert_equal(Vector[1, 2, 3], @m1.row(0))
273 | assert_equal(Vector[4, 5, 6], @m1.row(1))
274 | a = []; @m1.row(0) {|x| a << x }
275 | assert_equal([1, 2, 3], a)
276 | end
277 |
278 | def test_column
279 | assert_equal(Vector[1, 4], @m1.column(0))
280 | assert_equal(Vector[2, 5], @m1.column(1))
281 | assert_equal(Vector[3, 6], @m1.column(2))
282 | a = []; @m1.column(0) {|x| a << x }
283 | assert_equal([1, 4], a)
284 | end
285 |
286 | def test_collect
287 | m1 = Matrix.zero(2,2)
288 | m2 = Matrix.build(3,4){|row, col| 1}
289 |
290 | assert_equal(Matrix[[5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5]], m2.collect{|e| e * 5})
291 | assert_equal(Matrix[[7, 0],[0, 7]], m1.collect(:diagonal){|e| e + 7})
292 | assert_equal(Matrix[[0, 5],[5, 0]], m1.collect(:off_diagonal){|e| e + 5})
293 | assert_equal(Matrix[[8, 1, 1, 1], [8, 8, 1, 1], [8, 8, 8, 1]], m2.collect(:lower){|e| e + 7})
294 | assert_equal(Matrix[[1, 1, 1, 1], [-11, 1, 1, 1], [-11, -11, 1, 1]], m2.collect(:strict_lower){|e| e - 12})
295 | assert_equal(Matrix[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], m2.collect(:strict_upper){|e| e ** 2})
296 | assert_equal(Matrix[[-1, -1, -1, -1], [1, -1, -1, -1], [1, 1, -1, -1]], m2.collect(:upper){|e| -e})
297 | assert_raise(ArgumentError) {m1.collect(:test){|e| e + 7}}
298 | assert_not_equal(m2, m2.collect {|e| e * 2 })
299 | end
300 |
301 | def test_minor
302 | assert_equal(Matrix[[1, 2], [4, 5]], @m1.minor(0..1, 0..1))
303 | assert_equal(Matrix[[2], [5]], @m1.minor(0..1, 1..1))
304 | assert_equal(Matrix[[4, 5]], @m1.minor(1..1, 0..1))
305 | assert_equal(Matrix[[1, 2], [4, 5]], @m1.minor(0, 2, 0, 2))
306 | assert_equal(Matrix[[4, 5]], @m1.minor(1, 1, 0, 2))
307 | assert_equal(Matrix[[2], [5]], @m1.minor(0, 2, 1, 1))
308 | assert_raise(ArgumentError) { @m1.minor(0) }
309 | end
310 |
311 | def test_first_minor
312 | assert_equal(Matrix.empty(0, 0), Matrix[[1]].first_minor(0, 0))
313 | assert_equal(Matrix.empty(0, 2), Matrix[[1, 4, 2]].first_minor(0, 1))
314 | assert_equal(Matrix[[1, 3]], @m1.first_minor(1, 1))
315 | assert_equal(Matrix[[4, 6]], @m1.first_minor(0, 1))
316 | assert_equal(Matrix[[1, 2]], @m1.first_minor(1, 2))
317 | assert_raise(RuntimeError) { Matrix.empty(0, 0).first_minor(0, 0) }
318 | assert_raise(ArgumentError) { @m1.first_minor(4, 0) }
319 | assert_raise(ArgumentError) { @m1.first_minor(0, -1) }
320 | assert_raise(ArgumentError) { @m1.first_minor(-1, 4) }
321 | end
322 |
323 | def test_cofactor
324 | assert_equal(1, Matrix[[1]].cofactor(0, 0))
325 | assert_equal(9, Matrix[[7,6],[3,9]].cofactor(0, 0))
326 | assert_equal(0, Matrix[[0,0],[0,0]].cofactor(0, 0))
327 | assert_equal(3, Matrix[[0,0,1],[0,7,6],[1,3,9]].cofactor(1, 0))
328 | assert_equal(-21, Matrix[[7,0,1,0,12],[8,1,1,9,1],[4,0,0,-7,17],[-1,0,0,-4,8],[10,1,1,8,6]].cofactor(2, 3))
329 | assert_raise(RuntimeError) { Matrix.empty(0, 0).cofactor(0, 0) }
330 | assert_raise(ArgumentError) { Matrix[[0,0],[0,0]].cofactor(-1, 4) }
331 | assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { Matrix[[2,0,1],[0,-2,2]].cofactor(0, 0) }
332 | end
333 |
334 | def test_adjugate
335 | assert_equal(Matrix.empty, Matrix.empty.adjugate)
336 | assert_equal(Matrix[[1]], Matrix[[5]].adjugate)
337 | assert_equal(Matrix[[9,-6],[-3,7]], Matrix[[7,6],[3,9]].adjugate)
338 | assert_equal(Matrix[[45,3,-7],[6,-1,0],[-7,0,0]], Matrix[[0,0,1],[0,7,6],[1,3,9]].adjugate)
339 | assert_equal(Matrix.identity(5), (@a5.adjugate * @a5) / @a5.det)
340 | assert_equal(Matrix.I(3), Matrix.I(3).adjugate)
341 | assert_equal((@a3 * @b3).adjugate, @b3.adjugate * @a3.adjugate)
342 | assert_equal(4**(@a3.row_count-1) * @a3.adjugate, (4 * @a3).adjugate)
343 | assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { @m1.adjugate }
344 | end
345 |
346 | def test_laplace_expansion
347 | assert_equal(1, Matrix[[1]].laplace_expansion(row: 0))
348 | assert_equal(45, Matrix[[7,6], [3,9]].laplace_expansion(row: 1))
349 | assert_equal(0, Matrix[[0,0],[0,0]].laplace_expansion(column: 0))
350 | assert_equal(-7, Matrix[[0,0,1],[0,7,6],[1,3,9]].laplace_expansion(column: 2))
351 |
352 | assert_equal(Vector[3, -2], Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0))
353 |
354 | assert_raise(ExceptionForMatrix::ErrDimensionMismatch) { @m1.laplace_expansion(row: 1) }
355 | assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion() }
356 | assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion(foo: 1) }
357 | assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion(row: 1, column: 1) }
358 | assert_raise(ArgumentError) { Matrix[[7,6], [3,9]].laplace_expansion(row: 2) }
359 | assert_raise(ArgumentError) { Matrix[[0,0,1],[0,7,6],[1,3,9]].laplace_expansion(column: -1) }
360 |
361 | assert_raise(RuntimeError) { Matrix.empty(0, 0).laplace_expansion(row: 0) }
362 | end
363 |
364 | def test_regular?
365 | assert(Matrix[[1, 0], [0, 1]].regular?)
366 | assert(Matrix[[1, 0, 0], [0, 1, 0], [0, 0, 1]].regular?)
367 | assert(!Matrix[[1, 0, 0], [0, 0, 1], [0, 0, 1]].regular?)
368 | end
369 |
370 | def test_singular?
371 | assert(!Matrix[[1, 0], [0, 1]].singular?)
372 | assert(!Matrix[[1, 0, 0], [0, 1, 0], [0, 0, 1]].singular?)
373 | assert(Matrix[[1, 0, 0], [0, 0, 1], [0, 0, 1]].singular?)
374 | end
375 |
376 | def test_square?
377 | assert(Matrix[[1, 0], [0, 1]].square?)
378 | assert(Matrix[[1, 0, 0], [0, 1, 0], [0, 0, 1]].square?)
379 | assert(Matrix[[1, 0, 0], [0, 0, 1], [0, 0, 1]].square?)
380 | assert(!Matrix[[1, 0, 0], [0, 1, 0]].square?)
381 | end
382 |
383 | def test_mul
384 | assert_equal(Matrix[[2,4],[6,8]], Matrix[[2,4],[6,8]] * Matrix.I(2))
385 | assert_equal(Matrix[[4,8],[12,16]], Matrix[[2,4],[6,8]] * 2)
386 | assert_equal(Matrix[[4,8],[12,16]], 2 * Matrix[[2,4],[6,8]])
387 | assert_equal(Matrix[[14,32],[32,77]], @m1 * @m1.transpose)
388 | assert_equal(Matrix[[17,22,27],[22,29,36],[27,36,45]], @m1.transpose * @m1)
389 | assert_equal(Vector[14,32], @m1 * Vector[1,2,3])
390 | o = Object.new
391 | def o.coerce(m)
392 | [m, m.transpose]
393 | end
394 | assert_equal(Matrix[[14,32],[32,77]], @m1 * o)
395 | end
396 |
397 | def test_add
398 | assert_equal(Matrix[[6,0],[-4,12]], Matrix.scalar(2,5) + Matrix[[1,0],[-4,7]])
399 | assert_equal(Matrix[[3,5,7],[9,11,13]], @m1 + @n1)
400 | assert_equal(Matrix[[3,5,7],[9,11,13]], @n1 + @m1)
401 | assert_equal(Matrix[[2],[4],[6]], Matrix[[1],[2],[3]] + Vector[1,2,3])
402 | assert_raise(Matrix::ErrOperationNotDefined) { @m1 + 1 }
403 | o = Object.new
404 | def o.coerce(m)
405 | [m, m]
406 | end
407 | assert_equal(Matrix[[2,4,6],[8,10,12]], @m1 + o)
408 | end
409 |
410 | def test_sub
411 | assert_equal(Matrix[[4,0],[4,-2]], Matrix.scalar(2,5) - Matrix[[1,0],[-4,7]])
412 | assert_equal(Matrix[[-1,-1,-1],[-1,-1,-1]], @m1 - @n1)
413 | assert_equal(Matrix[[1,1,1],[1,1,1]], @n1 - @m1)
414 | assert_equal(Matrix[[0],[0],[0]], Matrix[[1],[2],[3]] - Vector[1,2,3])
415 | assert_raise(Matrix::ErrOperationNotDefined) { @m1 - 1 }
416 | o = Object.new
417 | def o.coerce(m)
418 | [m, m]
419 | end
420 | assert_equal(Matrix[[0,0,0],[0,0,0]], @m1 - o)
421 | end
422 |
423 | def test_div
424 | assert_equal(Matrix[[0,1,1],[2,2,3]], @m1 / 2)
425 | assert_equal(Matrix[[1,1],[1,1]], Matrix[[2,2],[2,2]] / Matrix.scalar(2,2))
426 | o = Object.new
427 | def o.coerce(m)
428 | [m, Matrix.scalar(2,2)]
429 | end
430 | assert_equal(Matrix[[1,1],[1,1]], Matrix[[2,2],[2,2]] / o)
431 | end
432 |
433 | def test_hadamard_product
434 | assert_equal(Matrix[[1,4], [9,16]], Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,4]]))
435 | assert_equal(Matrix[[2, 6, 12], [20, 30, 42]], @m1.hadamard_product(@n1))
436 | o = Object.new
437 | def o.to_matrix
438 | Matrix[[1, 2, 3], [-1, 0, 1]]
439 | end
440 | assert_equal(Matrix[[1, 4, 9], [-4, 0, 6]], @m1.hadamard_product(o))
441 | e = Matrix.empty(3, 0)
442 | assert_equal(e, e.hadamard_product(e))
443 | e = Matrix.empty(0, 3)
444 | assert_equal(e, e.hadamard_product(e))
445 | end
446 |
447 | def test_exp
448 | assert_equal(Matrix[[67,96],[48,99]], Matrix[[7,6],[3,9]] ** 2)
449 | assert_equal(Matrix.I(5), Matrix.I(5) ** -1)
450 | assert_raise(Matrix::ErrOperationNotDefined) { Matrix.I(5) ** Object.new }
451 |
452 | m = Matrix[[0,2],[1,0]]
453 | exp = 0b11101000
454 | assert_equal(Matrix.scalar(2, 1 << (exp/2)), m ** exp)
455 | exp = 0b11101001
456 | assert_equal(Matrix[[0, 2 << (exp/2)], [1 << (exp/2), 0]], m ** exp)
457 | end
458 |
459 | def test_det
460 | assert_equal(Matrix.instance_method(:determinant), Matrix.instance_method(:det))
461 | end
462 |
463 | def test_rank2
464 | assert_equal(2, Matrix[[7,6],[3,9]].rank)
465 | assert_equal(0, Matrix[[0,0],[0,0]].rank)
466 | assert_equal(3, Matrix[[0,0,1],[0,7,6],[1,3,9]].rank)
467 | assert_equal(1, Matrix[[0,1],[0,1],[0,1]].rank)
468 | assert_equal(2, @m1.rank)
469 | end
470 |
471 | def test_trace
472 | assert_equal(1+5+9, Matrix[[1,2,3],[4,5,6],[7,8,9]].trace)
473 | end
474 |
475 | def test_transpose
476 | assert_equal(Matrix[[1,4],[2,5],[3,6]], @m1.transpose)
477 | end
478 |
479 | def test_conjugate
480 | assert_equal(Matrix[[Complex(1,-2), Complex(0,-1), 0], [1, 2, 3]], @c1.conjugate)
481 | end
482 |
483 | def test_eigensystem
484 | m = Matrix[[1, 2], [3, 4]]
485 | v, d, v_inv = m.eigensystem
486 | assert(d.diagonal?)
487 | assert_equal(v.inv, v_inv)
488 | assert_equal((v * d * v_inv).round(5), m)
489 | end
490 |
491 | def test_imaginary
492 | assert_equal(Matrix[[2, 1, 0], [0, 0, 0]], @c1.imaginary)
493 | end
494 |
495 | def test_lup
496 | m = Matrix[[1, 2], [3, 4]]
497 | l, u, p = m.lup
498 | assert(l.lower_triangular?)
499 | assert(u.upper_triangular?)
500 | assert(p.permutation?)
501 | assert(l * u == p * m)
502 | assert_equal(m.lup.solve([2, 5]), Vector[1, Rational(1,2)])
503 | end
504 |
505 | def test_real
506 | assert_equal(Matrix[[1, 0, 0], [1, 2, 3]], @c1.real)
507 | end
508 |
509 | def test_rect
510 | assert_equal([Matrix[[1, 0, 0], [1, 2, 3]], Matrix[[2, 1, 0], [0, 0, 0]]], @c1.rect)
511 | end
512 |
513 | def test_row_vectors
514 | assert_equal([Vector[1,2,3], Vector[4,5,6]], @m1.row_vectors)
515 | end
516 |
517 | def test_column_vectors
518 | assert_equal([Vector[1,4], Vector[2,5], Vector[3,6]], @m1.column_vectors)
519 | end
520 |
521 | def test_to_s
522 | assert_equal("Matrix[[1, 2, 3], [4, 5, 6]]", @m1.to_s)
523 | assert_equal("Matrix.empty(0, 0)", Matrix[].to_s)
524 | assert_equal("Matrix.empty(1, 0)", Matrix[[]].to_s)
525 | end
526 |
527 | def test_inspect
528 | assert_equal("Matrix[[1, 2, 3], [4, 5, 6]]", @m1.inspect)
529 | assert_equal("Matrix.empty(0, 0)", Matrix[].inspect)
530 | assert_equal("Matrix.empty(1, 0)", Matrix[[]].inspect)
531 | end
532 |
533 | def test_scalar_add
534 | s1 = @m1.coerce(1).first
535 | assert_equal(Matrix[[1]], (s1 + 0) * Matrix[[1]])
536 | assert_raise(Matrix::ErrOperationNotDefined) { s1 + Vector[0] }
537 | assert_raise(Matrix::ErrOperationNotDefined) { s1 + Matrix[[0]] }
538 | o = Object.new
539 | def o.coerce(x)
540 | [1, 1]
541 | end
542 | assert_equal(2, s1 + o)
543 | end
544 |
545 | def test_scalar_sub
546 | s1 = @m1.coerce(1).first
547 | assert_equal(Matrix[[1]], (s1 - 0) * Matrix[[1]])
548 | assert_raise(Matrix::ErrOperationNotDefined) { s1 - Vector[0] }
549 | assert_raise(Matrix::ErrOperationNotDefined) { s1 - Matrix[[0]] }
550 | o = Object.new
551 | def o.coerce(x)
552 | [1, 1]
553 | end
554 | assert_equal(0, s1 - o)
555 | end
556 |
557 | def test_scalar_mul
558 | s1 = @m1.coerce(1).first
559 | assert_equal(Matrix[[1]], (s1 * 1) * Matrix[[1]])
560 | assert_equal(Vector[2], s1 * Vector[2])
561 | assert_equal(Matrix[[2]], s1 * Matrix[[2]])
562 | o = Object.new
563 | def o.coerce(x)
564 | [1, 1]
565 | end
566 | assert_equal(1, s1 * o)
567 | end
568 |
569 | def test_scalar_div
570 | s1 = @m1.coerce(1).first
571 | assert_equal(Matrix[[1]], (s1 / 1) * Matrix[[1]])
572 | assert_raise(Matrix::ErrOperationNotDefined) { s1 / Vector[0] }
573 | assert_equal(Matrix[[Rational(1,2)]], s1 / Matrix[[2]])
574 | o = Object.new
575 | def o.coerce(x)
576 | [1, 1]
577 | end
578 | assert_equal(1, s1 / o)
579 | end
580 |
581 | def test_scalar_pow
582 | s1 = @m1.coerce(1).first
583 | assert_equal(Matrix[[1]], (s1 ** 1) * Matrix[[1]])
584 | assert_raise(Matrix::ErrOperationNotDefined) { s1 ** Vector[0] }
585 | assert_raise(Matrix::ErrOperationNotImplemented) { s1 ** Matrix[[1]] }
586 | o = Object.new
587 | def o.coerce(x)
588 | [1, 1]
589 | end
590 | assert_equal(1, s1 ** o)
591 | end
592 |
593 | def test_abs
594 | s1 = @a3.abs
595 | assert_equal(s1, Matrix[[4, 1, 3], [0, 3, 7], [11, 4, 2]])
596 | end
597 |
598 | def test_hstack
599 | assert_equal Matrix[[1,2,3,2,3,4,1,2,3], [4,5,6,5,6,7,4,5,6]],
600 | @m1.hstack(@n1, @m1)
601 | # Error checking:
602 | assert_raise(TypeError) { @m1.hstack(42) }
603 | assert_raise(TypeError) { Matrix.hstack(42, @m1) }
604 | assert_raise(Matrix::ErrDimensionMismatch) { @m1.hstack(Matrix.identity(3)) }
605 | assert_raise(Matrix::ErrDimensionMismatch) { @e1.hstack(@e2) }
606 | # Corner cases:
607 | assert_equal @m1, @m1.hstack
608 | assert_equal @e1, @e1.hstack(@e1)
609 | assert_equal Matrix.empty(0,6), @e2.hstack(@e2)
610 | assert_equal SubMatrix, SubMatrix.hstack(@e1).class
611 | # From Vectors:
612 | assert_equal Matrix[[1, 3],[2, 4]], Matrix.hstack(Vector[1,2], Vector[3, 4])
613 | end
614 |
615 | def test_vstack
616 | assert_equal Matrix[[1,2,3], [4,5,6], [2,3,4], [5,6,7], [1,2,3], [4,5,6]],
617 | @m1.vstack(@n1, @m1)
618 | # Error checking:
619 | assert_raise(TypeError) { @m1.vstack(42) }
620 | assert_raise(TypeError) { Matrix.vstack(42, @m1) }
621 | assert_raise(Matrix::ErrDimensionMismatch) { @m1.vstack(Matrix.identity(2)) }
622 | assert_raise(Matrix::ErrDimensionMismatch) { @e1.vstack(@e2) }
623 | # Corner cases:
624 | assert_equal @m1, @m1.vstack
625 | assert_equal Matrix.empty(4,0), @e1.vstack(@e1)
626 | assert_equal @e2, @e2.vstack(@e2)
627 | assert_equal SubMatrix, SubMatrix.vstack(@e1).class
628 | # From Vectors:
629 | assert_equal Matrix[[1],[2],[3]], Matrix.vstack(Vector[1,2], Vector[3])
630 | end
631 |
632 | def test_combine
633 | x = Matrix[[6, 6], [4, 4]]
634 | y = Matrix[[1, 2], [3, 4]]
635 | assert_equal Matrix[[5, 4], [1, 0]], Matrix.combine(x, y) {|a, b| a - b}
636 | assert_equal Matrix[[5, 4], [1, 0]], x.combine(y) {|a, b| a - b}
637 | # Without block
638 | assert_equal Matrix[[5, 4], [1, 0]], Matrix.combine(x, y).each {|a, b| a - b}
639 | # With vectors
640 | assert_equal Matrix[[111], [222]], Matrix.combine(Matrix[[1], [2]], Vector[10,20], Vector[100,200], &:sum)
641 | # Basic checks
642 | assert_raise(Matrix::ErrDimensionMismatch) { @m1.combine(x) { raise } }
643 | # Edge cases
644 | assert_equal Matrix.empty, Matrix.combine{ raise }
645 | assert_equal Matrix.empty(3,0), Matrix.combine(Matrix.empty(3,0), Matrix.empty(3,0)) { raise }
646 | assert_equal Matrix.empty(0,3), Matrix.combine(Matrix.empty(0,3), Matrix.empty(0,3)) { raise }
647 | end
648 |
649 | def test_set_element
650 | src = Matrix[
651 | [1, 2, 3, 4],
652 | [5, 6, 7, 8],
653 | [9, 10, 11, 12],
654 | ]
655 | rows = {
656 | range: [1..2, 1...3, 1..-1, -2..2, 1.., 1..., -2.., -2...],
657 | int: [2, -1],
658 | invalid: [-4, 4, -4..2, 2..-4, 0...0, 2..0, -4..],
659 | }
660 | columns = {
661 | range: [2..3, 2...4, 2..-1, -2..3, 2.., 2..., -2..., -2..],
662 | int: [3, -1],
663 | invalid: [-5, 5, -5..2, 2..-5, 0...0, -5..],
664 | }
665 | values = {
666 | element: 42,
667 | matrix: Matrix[[20, 21], [22, 23]],
668 | vector: Vector[30, 31],
669 | row: Matrix[[60, 61]],
670 | column: Matrix[[50], [51]],
671 | mismatched_matrix: Matrix.identity(3),
672 | mismatched_vector: Vector[0, 1, 2, 3],
673 | }
674 | solutions = {
675 | [:int, :int] => {
676 | element: Matrix[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 42]],
677 | },
678 | [:range , :int] => {
679 | element: Matrix[[1, 2, 3, 4], [5, 6, 7, 42], [9, 10, 11, 42]],
680 | column: Matrix[[1, 2, 3, 4], [5, 6, 7, 50], [9, 10, 11, 51]],
681 | vector: Matrix[[1, 2, 3, 4], [5, 6, 7, 30], [9, 10, 11, 31]],
682 | },
683 | [:int, :range] => {
684 | element: Matrix[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 42, 42]],
685 | row: Matrix[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 60, 61]],
686 | vector: Matrix[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 30, 31]],
687 | },
688 | [:range , :range] => {
689 | element: Matrix[[1, 2, 3, 4], [5, 6, 42, 42], [9, 10, 42, 42]],
690 | matrix: Matrix[[1, 2, 3, 4], [5, 6, 20, 21], [9, 10, 22, 23]],
691 | },
692 | }
693 | solutions.default = Hash.new(IndexError)
694 |
695 | rows.each do |row_style, row_arguments|
696 | row_arguments.each do |row_argument|
697 | columns.each do |column_style, column_arguments|
698 | column_arguments.each do |column_argument|
699 | values.each do |value_type, value|
700 | expected = solutions[[row_style, column_style]][value_type] || Matrix::ErrDimensionMismatch
701 |
702 | result = src.clone
703 | begin
704 | result[row_argument, column_argument] = value
705 | assert_equal expected, result,
706 | "m[#{row_argument.inspect}][#{column_argument.inspect}] = #{value.inspect} failed"
707 | rescue Exception => e
708 | raise if e.class != expected
709 | end
710 | end
711 | end
712 | end
713 | end
714 | end
715 | end
716 |
717 | def test_map!
718 | m1 = Matrix.zero(2,2)
719 | m2 = Matrix.build(3,4){|row, col| 1}
720 | m3 = Matrix.zero(3,5).freeze
721 | m4 = Matrix.empty.freeze
722 |
723 | assert_equal Matrix[[5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5]], m2.map!{|e| e * 5}
724 | assert_equal Matrix[[7, 0],[0, 7]], m1.map!(:diagonal){|e| e + 7}
725 | assert_equal Matrix[[7, 5],[5, 7]], m1.map!(:off_diagonal){|e| e + 5}
726 | assert_equal Matrix[[12, 5, 5, 5], [12, 12, 5, 5], [12, 12, 12, 5]], m2.map!(:lower){|e| e + 7}
727 | assert_equal Matrix[[12, 5, 5, 5], [0, 12, 5, 5], [0, 0, 12, 5]], m2.map!(:strict_lower){|e| e - 12}
728 | assert_equal Matrix[[12, 25, 25, 25], [0, 12, 25, 25], [0, 0, 12, 25]], m2.map!(:strict_upper){|e| e ** 2}
729 | assert_equal Matrix[[-12, -25, -25, -25], [0, -12, -25, -25], [0, 0, -12, -25]], m2.map!(:upper){|e| -e}
730 | assert_equal m1, m1.map!{|e| e ** 2 }
731 | assert_equal m2, m2.map!(:lower){ |e| e - 3 }
732 | assert_raise(ArgumentError) {m1.map!(:test){|e| e + 7}}
733 | assert_raise(FrozenError) { m3.map!{|e| e * 2} }
734 | assert_raise(FrozenError) { m4.map!{} }
735 | end
736 |
737 | def test_freeze
738 | m = Matrix[[1, 2, 3],[4, 5, 6]]
739 | f = m.freeze
740 | assert_equal true, f.frozen?
741 | assert m.equal?(f)
742 | assert m.equal?(f.freeze)
743 | assert_raise(FrozenError){ m[0, 1] = 56 }
744 | assert_equal m.dup, m
745 | end
746 |
747 | def test_clone
748 | a = Matrix[[4]]
749 | def a.foo
750 | 42
751 | end
752 |
753 | m = a.clone
754 | m[0, 0] = 2
755 | assert_equal a, m * 2
756 | assert_equal 42, m.foo
757 |
758 | a.freeze
759 | m = a.clone
760 | assert m.frozen?
761 | assert_equal 42, m.foo
762 | end
763 |
764 | def test_dup
765 | a = Matrix[[4]]
766 | def a.foo
767 | 42
768 | end
769 | a.freeze
770 |
771 | m = a.dup
772 | m[0, 0] = 2
773 | assert_equal a, m * 2
774 | assert !m.respond_to?(:foo)
775 | end
776 |
777 | def test_eigenvalues_and_eigenvectors_symmetric
778 | m = Matrix[
779 | [8, 1],
780 | [1, 8]
781 | ]
782 | values = m.eigensystem.eigenvalues
783 | assert_in_epsilon(7.0, values[0])
784 | assert_in_epsilon(9.0, values[1])
785 | vectors = m.eigensystem.eigenvectors
786 | assert_in_epsilon(-vectors[0][0], vectors[0][1])
787 | assert_in_epsilon(vectors[1][0], vectors[1][1])
788 | end
789 |
790 | def test_eigenvalues_and_eigenvectors_nonsymmetric
791 | m = Matrix[
792 | [8, 1],
793 | [4, 5]
794 | ]
795 | values = m.eigensystem.eigenvalues
796 | assert_in_epsilon(9.0, values[0])
797 | assert_in_epsilon(4.0, values[1])
798 | vectors = m.eigensystem.eigenvectors
799 | assert_in_epsilon(vectors[0][0], vectors[0][1])
800 | assert_in_epsilon(-4 * vectors[1][0], vectors[1][1])
801 | end
802 |
803 | def test_unitary?
804 | assert_equal true, @rot.unitary?
805 | assert_equal true, ((0+1i) * @rot).unitary?
806 | assert_equal false, @a3.unitary?
807 | assert_raise(Matrix::ErrDimensionMismatch) { @m1.unitary? }
808 | end
809 |
810 | def test_orthogonal
811 | assert_equal true, @rot.orthogonal?
812 | assert_equal false, ((0+1i) * @rot).orthogonal?
813 | assert_equal false, @a3.orthogonal?
814 | assert_raise(Matrix::ErrDimensionMismatch) { @m1.orthogonal? }
815 | end
816 |
817 | def test_adjoint
818 | assert_equal(Matrix[[(1-2i), 1], [(0-1i), 2], [0, 3]], @c1.adjoint)
819 | assert_equal(Matrix.empty(0,2), @e1.adjoint)
820 | end
821 |
822 | def test_ractor
823 | assert_ractor(<<~RUBY, require: 'matrix')
824 | class Ractor
825 | alias value take
826 | end unless Ractor.method_defined? :value # compat with Ruby 3.4 and olders
827 |
828 | obj1 = Matrix[[1, 2], [3, 4]].freeze
829 |
830 | obj2 = Ractor.new obj1 do |obj|
831 | obj
832 | end.value
833 | assert_same obj1, obj2
834 | RUBY
835 | end if defined?(Ractor)
836 |
837 | def test_rotate_with_symbol
838 | assert_equal(Matrix[[4, 1], [5, 2], [6, 3]], @m1.rotate_entries)
839 | assert_equal(@m1.rotate_entries, @m1.rotate_entries(:clockwise))
840 | assert_equal(Matrix[[4, 1], [5, 2], [6, 3]],
841 | @m1.rotate_entries(:clockwise))
842 | assert_equal(Matrix[[3, 6], [2, 5], [1, 4]],
843 | @m1.rotate_entries(:counter_clockwise))
844 | assert_equal(Matrix[[6, 5, 4], [3, 2, 1]],
845 | @m1.rotate_entries(:half_turn))
846 | assert_equal(Matrix[[6, 5, 4], [3, 2, 1]],
847 | @m1.rotate_entries(:half_turn))
848 | assert_equal(Matrix.empty(0,2),
849 | @e1.rotate_entries(:clockwise))
850 | assert_equal(Matrix.empty(0,2),
851 | @e1.rotate_entries(:counter_clockwise))
852 | assert_equal(Matrix.empty(2,0),
853 | @e1.rotate_entries(:half_turn))
854 | assert_equal(Matrix.empty(0,3),
855 | @e2.rotate_entries(:half_turn))
856 | end
857 |
858 | def test_rotate_with_numeric
859 | assert_equal(Matrix[[4, 1], [5, 2], [6, 3]],
860 | @m1.rotate_entries(1))
861 | assert_equal(@m2.rotate_entries(:half_turn),
862 | @m2.rotate_entries(2))
863 | assert_equal(@m2.rotate_entries(:half_turn),
864 | @m1.rotate_entries(2))
865 | assert_equal(@m1.rotate_entries(:counter_clockwise),
866 | @m1.rotate_entries(3))
867 | assert_equal(@m1,
868 | @m1.rotate_entries(4))
869 | assert_equal(@m1,
870 | @m1.rotate_entries(4))
871 | assert_not_same(@m1,
872 | @m1.rotate_entries(4))
873 | assert_equal(@m1.rotate_entries(:clockwise),
874 | @m1.rotate_entries(5))
875 | assert_equal(Matrix.empty(0,2),
876 | @e1.rotate_entries(1))
877 | assert_equal(@e2,
878 | @e2.rotate_entries(2))
879 | assert_equal(@e2.rotate_entries(1),
880 | @e2.rotate_entries(3))
881 | assert_equal(@e2.rotate_entries(:counter_clockwise),
882 | @e2.rotate_entries(-1))
883 | assert_equal(@m1.rotate_entries(:counter_clockwise),
884 | @m1.rotate_entries(-1))
885 | assert_equal(Matrix[[6, 5, 4], [3, 2, 1]],
886 | @m1.rotate_entries(-2))
887 | assert_equal(@m1,
888 | @m1.rotate_entries(-4))
889 | assert_equal(@m1.rotate_entries(-1),
890 | @m1.rotate_entries(-5))
891 | end
892 | end
893 |
--------------------------------------------------------------------------------
/test/matrix/test_vector.rb:
--------------------------------------------------------------------------------
1 | # frozen_string_literal: false
2 | require 'test/unit'
3 | require 'matrix'
4 |
5 | class TestVector < Test::Unit::TestCase
6 | def setup
7 | @v1 = Vector[1,2,3]
8 | @v2 = Vector[1,2,3]
9 | @v3 = @v1.clone
10 | @v4 = Vector[1.0, 2.0, 3.0]
11 | @w1 = Vector[2,3,4]
12 | end
13 |
14 | def test_zero
15 | assert_equal Vector[0, 0, 0, 0], Vector.zero(4)
16 | assert_equal Vector[], Vector.zero(0)
17 | assert_raise(ArgumentError) { Vector.zero(-1) }
18 | assert Vector[0, 0, 0, 0].zero?
19 | end
20 |
21 | def test_basis
22 | assert_equal(Vector[1, 0, 0], Vector.basis(size: 3, index: 0))
23 | assert_raise(ArgumentError) { Vector.basis(size: -1, index: 2) }
24 | assert_raise(ArgumentError) { Vector.basis(size: 4, index: -1) }
25 | assert_raise(ArgumentError) { Vector.basis(size: 3, index: 3) }
26 | assert_raise(ArgumentError) { Vector.basis(size: 3) }
27 | assert_raise(ArgumentError) { Vector.basis(index: 3) }
28 | end
29 |
30 | def test_get_element
31 | assert_equal(@v1[0..], [1, 2, 3])
32 | assert_equal(@v1[0..1], [1, 2])
33 | assert_equal(@v1[2], 3)
34 | assert_equal(@v1[4], nil)
35 | end
36 |
37 | def test_set_element
38 |
39 | assert_block do
40 | v = Vector[5, 6, 7, 8, 9]
41 | v[1..2] = Vector[1, 2]
42 | v == Vector[5, 1, 2, 8, 9]
43 | end
44 |
45 | assert_block do
46 | v = Vector[6, 7, 8]
47 | v[1..2] = Matrix[[1, 3]]
48 | v == Vector[6, 1, 3]
49 | end
50 |
51 | assert_block do
52 | v = Vector[1, 2, 3, 4, 5, 6]
53 | v[0..2] = 8
54 | v == Vector[8, 8, 8, 4, 5, 6]
55 | end
56 |
57 | assert_block do
58 | v = Vector[1, 3, 4, 5]
59 | v[2] = 5
60 | v == Vector[1, 3, 5, 5]
61 | end
62 |
63 | assert_block do
64 | v = Vector[2, 3, 5]
65 | v[-2] = 13
66 | v == Vector[2, 13, 5]
67 | end
68 |
69 | assert_block do
70 | v = Vector[4, 8, 9, 11, 30]
71 | v[1..-2] = Vector[1, 2, 3]
72 | v == Vector[4, 1, 2, 3, 30]
73 | end
74 |
75 | assert_raise(IndexError) {Vector[1, 3, 4, 5][5..6] = 17}
76 | assert_raise(IndexError) {Vector[1, 3, 4, 5][6] = 17}
77 | assert_raise(Matrix::ErrDimensionMismatch) {Vector[1, 3, 4, 5][0..2] = Matrix[[1], [2], [3]]}
78 | assert_raise(ArgumentError) {Vector[1, 2, 3, 4, 5, 6][0..2] = Vector[1, 2, 3, 4, 5, 6]}
79 | assert_raise(FrozenError) { Vector[7, 8, 9].freeze[0..1] = 5}
80 | end
81 |
82 | def test_map!
83 | v1 = Vector[1, 2, 3]
84 | v2 = Vector[1, 3, 5].freeze
85 | v3 = Vector[].freeze
86 | assert_equal Vector[1, 4, 9], v1.map!{|e| e ** 2}
87 | assert_equal v1, v1.map!{|e| e - 8}
88 | assert_raise(FrozenError) { v2.map!{|e| e + 2 }}
89 | assert_raise(FrozenError){ v3.map!{} }
90 | end
91 |
92 | def test_freeze
93 | v = Vector[1,2,3]
94 | f = v.freeze
95 | assert_equal true, f.frozen?
96 | assert v.equal?(f)
97 | assert v.equal?(f.freeze)
98 | assert_raise(FrozenError){ v[1] = 56 }
99 | assert_equal v.dup, v
100 | end
101 |
102 | def test_clone
103 | a = Vector[4]
104 | def a.foo
105 | 42
106 | end
107 |
108 | v = a.clone
109 | v[0] = 2
110 | assert_equal a, v * 2
111 | assert_equal 42, v.foo
112 |
113 | a.freeze
114 | v = a.clone
115 | assert v.frozen?
116 | assert_equal 42, v.foo
117 | end
118 |
119 | def test_dup
120 | a = Vector[4]
121 | def a.foo
122 | 42
123 | end
124 | a.freeze
125 |
126 | v = a.dup
127 | v[0] = 2
128 | assert_equal a, v * 2
129 | assert !v.respond_to?(:foo)
130 | end
131 |
132 | def test_identity
133 | assert_same @v1, @v1
134 | assert_not_same @v1, @v2
135 | assert_not_same @v1, @v3
136 | assert_not_same @v1, @v4
137 | assert_not_same @v1, @w1
138 | end
139 |
140 | def test_equality
141 | assert_equal @v1, @v1
142 | assert_equal @v1, @v2
143 | assert_equal @v1, @v3
144 | assert_equal @v1, @v4
145 | assert_not_equal @v1, @w1
146 | end
147 |
148 | def test_hash_equality
149 | assert @v1.eql?(@v1)
150 | assert @v1.eql?(@v2)
151 | assert @v1.eql?(@v3)
152 | assert !@v1.eql?(@v4)
153 | assert !@v1.eql?(@w1)
154 |
155 | hash = { @v1 => :value }
156 | assert hash.key?(@v1)
157 | assert hash.key?(@v2)
158 | assert hash.key?(@v3)
159 | assert !hash.key?(@v4)
160 | assert !hash.key?(@w1)
161 | end
162 |
163 | def test_hash
164 | assert_equal @v1.hash, @v1.hash
165 | assert_equal @v1.hash, @v2.hash
166 | assert_equal @v1.hash, @v3.hash
167 | end
168 |
169 | def test_aref
170 | assert_equal(1, @v1[0])
171 | assert_equal(2, @v1[1])
172 | assert_equal(3, @v1[2])
173 | assert_equal(3, @v1[-1])
174 | assert_equal(nil, @v1[3])
175 | end
176 |
177 | def test_size
178 | assert_equal(3, @v1.size)
179 | end
180 |
181 | def test_each2
182 | a = []
183 | @v1.each2(@v4) {|x, y| a << [x, y] }
184 | assert_equal([[1,1.0],[2,2.0],[3,3.0]], a)
185 | end
186 |
187 | def test_collect
188 | a = @v1.collect {|x| x + 1 }
189 | assert_equal(Vector[2,3,4], a)
190 | end
191 |
192 | def test_collect2
193 | a = @v1.collect2(@v4) {|x, y| x + y }
194 | assert_equal([2.0,4.0,6.0], a)
195 | end
196 |
197 | def test_map2
198 | a = @v1.map2(@v4) {|x, y| x + y }
199 | assert_equal(Vector[2.0,4.0,6.0], a)
200 | end
201 |
202 | def test_independent?
203 | assert(Vector.independent?(@v1, @w1))
204 | assert(
205 | Vector.independent?(
206 | Vector.basis(size: 3, index: 0),
207 | Vector.basis(size: 3, index: 1),
208 | Vector.basis(size: 3, index: 2),
209 | )
210 | )
211 |
212 | refute(Vector.independent?(@v1, Vector[2,4,6]))
213 | refute(Vector.independent?(Vector[2,4], Vector[1,3], Vector[5,6]))
214 |
215 | assert_raise(TypeError) { Vector.independent?(@v1, 3) }
216 | assert_raise(Vector::ErrDimensionMismatch) { Vector.independent?(@v1, Vector[2,4]) }
217 |
218 | assert(@v1.independent?(Vector[1,2,4], Vector[1,3,4]))
219 | end
220 |
221 | def test_mul
222 | assert_equal(Vector[2,4,6], @v1 * 2)
223 | assert_equal(Matrix[[1, 4, 9], [2, 8, 18], [3, 12, 27]], @v1 * Matrix[[1,4,9]])
224 | assert_raise(Matrix::ErrOperationNotDefined) { @v1 * Vector[1,4,9] }
225 | o = Object.new
226 | def o.coerce(x)
227 | [1, 1]
228 | end
229 | assert_equal(1, Vector[1, 2, 3] * o)
230 | end
231 |
232 | def test_add
233 | assert_equal(Vector[2,4,6], @v1 + @v1)
234 | assert_equal(Matrix[[2],[6],[12]], @v1 + Matrix[[1],[4],[9]])
235 | o = Object.new
236 | def o.coerce(x)
237 | [1, 1]
238 | end
239 | assert_equal(2, Vector[1, 2, 3] + o)
240 | end
241 |
242 | def test_sub
243 | assert_equal(Vector[0,0,0], @v1 - @v1)
244 | assert_equal(Matrix[[0],[-2],[-6]], @v1 - Matrix[[1],[4],[9]])
245 | o = Object.new
246 | def o.coerce(x)
247 | [1, 1]
248 | end
249 | assert_equal(0, Vector[1, 2, 3] - o)
250 | end
251 |
252 | def test_uplus
253 | assert_equal(@v1, +@v1)
254 | end
255 |
256 | def test_negate
257 | assert_equal(Vector[-1, -2, -3], -@v1)
258 | assert_equal(@v1, -(-@v1))
259 | end
260 |
261 | def test_inner_product
262 | assert_equal(1+4+9, @v1.inner_product(@v1))
263 | assert_equal(1+4+9, @v1.dot(@v1))
264 | end
265 |
266 | def test_r
267 | assert_equal(5, Vector[3, 4].r)
268 | end
269 |
270 | def test_round
271 | assert_equal(Vector[1.234, 2.345, 3.40].round(2), Vector[1.23, 2.35, 3.4])
272 | end
273 |
274 | def test_covector
275 | assert_equal(Matrix[[1,2,3]], @v1.covector)
276 | end
277 |
278 | def test_to_s
279 | assert_equal("Vector[1, 2, 3]", @v1.to_s)
280 | end
281 |
282 | def test_to_matrix
283 | assert_equal Matrix[[1], [2], [3]], @v1.to_matrix
284 | end
285 |
286 | def test_inspect
287 | assert_equal("Vector[1, 2, 3]", @v1.inspect)
288 | end
289 |
290 | def test_magnitude
291 | assert_in_epsilon(3.7416573867739413, @v1.norm)
292 | assert_in_epsilon(3.7416573867739413, @v4.norm)
293 | end
294 |
295 | def test_complex_magnitude
296 | bug6966 = '[ruby-dev:46100]'
297 | v = Vector[Complex(0,1), 0]
298 | assert_equal(1.0, v.norm, bug6966)
299 | end
300 |
301 | def test_rational_magnitude
302 | v = Vector[Rational(1,2), 0]
303 | assert_equal(0.5, v.norm)
304 | end
305 |
306 | def test_cross_product
307 | v = Vector[1, 0, 0].cross_product Vector[0, 1, 0]
308 | assert_equal(Vector[0, 0, 1], v)
309 | v2 = Vector[1, 2].cross_product
310 | assert_equal(Vector[-2, 1], v2)
311 | v3 = Vector[3, 5, 2, 1].cross(Vector[4, 3, 1, 8], Vector[2, 9, 4, 3])
312 | assert_equal(Vector[16, -65, 139, -1], v3)
313 | assert_equal Vector[0, 0, 0, 1],
314 | Vector[1, 0, 0, 0].cross(Vector[0, 1, 0, 0], Vector[0, 0, 1, 0])
315 | assert_equal Vector[0, 0, 0, 0, 1],
316 | Vector[1, 0, 0, 0, 0].cross(Vector[0, 1, 0, 0, 0], Vector[0, 0, 1, 0, 0], Vector[0, 0, 0, 1, 0])
317 | assert_raise(Vector::ErrDimensionMismatch) { Vector[1, 2, 3].cross_product(Vector[1, 4]) }
318 | assert_raise(TypeError) { Vector[1, 2, 3].cross_product(42) }
319 | assert_raise(ArgumentError) { Vector[1, 2].cross_product(Vector[2, -1]) }
320 | assert_raise(Vector::ErrOperationNotDefined) { Vector[1].cross_product }
321 | end
322 |
323 | def test_angle_with
324 | assert_in_epsilon(Math::PI, Vector[1, 0].angle_with(Vector[-1, 0]))
325 | assert_in_epsilon(Math::PI/2, Vector[1, 0].angle_with(Vector[0, -1]))
326 | assert_in_epsilon(Math::PI/4, Vector[2, 2].angle_with(Vector[0, 1]))
327 | assert_in_delta(0.0, Vector[1, 1].angle_with(Vector[1, 1]), 0.00001)
328 | assert_equal(Vector[6, 6].angle_with(Vector[7, 7]), 0.0)
329 | assert_equal(Vector[6, 6].angle_with(Vector[-7, -7]), Math::PI)
330 |
331 | assert_raise(Vector::ZeroVectorError) { Vector[1, 1].angle_with(Vector[0, 0]) }
332 | assert_raise(Vector::ZeroVectorError) { Vector[0, 0].angle_with(Vector[1, 1]) }
333 | assert_raise(Matrix::ErrDimensionMismatch) { Vector[1, 2, 3].angle_with(Vector[0, 1]) }
334 | end
335 | end
336 |
--------------------------------------------------------------------------------